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ABSTRACT 
 

Schizophrenia is a kind of mental illness that affects about 1% of the world's population. It may 

be difficult for schizophrenic patients to distinguish between internally generated and externally 

generated stimuli due to one or more problems with the nervous system's corollary discharge 

process. This is one explanation for some symptoms of schizophrenia. As a result, looking into 

this process and how it relates to the disease's symptoms could help us learn more about the 

abnormal brain processes seen in patients with this disease. New avenues in the study of 

electrophysiological brain activity can be explored, and ambulatory neuronal disease diagnosis 

can be performed, thanks to improved access to EEG data. The aim is to use a variety of 

diagnostic techniques to identify neuronal pathologies. The dataset used to test the methods was 

a larger sample replication of EEG data from previous studies published on July 10, 2013 in 

Schizophrenia Bulletin Advance Access. The electroencephalogram (EEG) data of 22 healthy 

people and 36 people with schizophrenia were combined with the EEG data of 10 healthy 

people and 13 schizophrenia patients from a previous study. Two different methods for 

diagnosing SZ using EEG signals were considered during the classification phase. To classify 

EEG signals, traditional machine learning techniques have been used. Among the methods used 

were xgboost, decision tree, naïve bayes, random forest, Long short-term memories (LSTMs), 

support vector machines, two-dimensional convolutional networks (2D-CNNs), and two-

dimensional convolutional networks-LSTMs. The Deep Learning models were implemented at 

this point, and a variety of activation functions were compared. Among all proposed models, 

the SVM architecture has demonstrated the highest level of performance. The RBF Kernel with 

Cross Validation(CV) = 3, 6, 8 are used in this architecture. A precision of 100 percent is 

achieved using the SVM model. 
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CHAPTER 1 

INTRODUCTION 

EEG data is becoming more accessible and accurate, providing unprecedented opportunities to 

better comprehend brain activity, contribute to the development of individualised prognoses, 

as well as promotes health using the use of various type of biofeedback systems [1]. 

Electroencephalography, unlike other techniques based on brain imaging like MRI, has a high 

temporal content in addition to being non-invasive, safe, and inexpensive. Imaging by magnetic 

resonance, for instance, incurs increased costs and risks, in addition to recording frequency 

restrictions [2]. Electroencephalograms (EEGs) have been demonstrated to be an effective 

research tool for schizophrenia, which affects approximately one percent of the global 

population and is frequently misdiagnosed [3]. Due to the small size of populations [4] as well 

as the inherent difficulty of extracting brain signals, monitoring electrophysiological brain 

activity has a limited application in the diagnosis of neurodegenerative diseases. Case-control 

populations are composed of patients and healthy individuals serving as controls. Obtaining 

reliable results using case-control populations is also difficult. This remains true despite the 

fact that monitoring this activity has numerous benefits apart from those derived from 

monitoring the activity itself. [5] Brain data is multivariate, high-dimensional, temporally-

spatially-spectrally dense, and susceptible to artefacts and noise. Furthermore, the data varies 

greatly between individuals. Researchers examined the corollary discharge in individuals with 

schizophrenia and healthy controls by having them perform a simple button-pressing task. 

Participants either actively generated a tone by pressing a button that generated it instantly, sat 

back and listened to the same tone, or actively generated no tone by pressing a button that did 

not generate a tone. The N100, a negative deflection of the EEG brain wave that occurs 100 

milliseconds after a sound's onset, was not suppressed when schizophrenia patients generated 

a tone as opposed to passively listening to it. This discovery was made possible by the active 

participation of schizophrenia patients in the experiment. This occurred as a direct result of the 

level of patient participation in the study. 

In conventional machine learning, selection for the SZ appropriate algorithm for feature 

extraction of the diagnosis is a challenging job demanding extensive signal processing and 

expertise in the field of AI. To successfully complete the task, conventional machine learning 

employs supervised learning. Both will be necessary for the successful completion of this task. 

To achieve the desired results, the successful completion of this task requires both of these 
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elements. In recent years, EEG-based DL methods for diagnosing schizotypal personality 

disorder have been developed. Using these methods, the extraction of features is performed in 

a manner distinct from the construction of the deep layer. [6]. Shalbaf et al. [7] propose an 

electroencephalogram (EEG)-based model on transfer learning for the schizophrenia diagnosis. 

In this study, EEG signals were processed using the ResNet18 model so that features could be 

extracted from the underlying data. In addition, SVM was utilised from the beginning to the 

end of the classification phase of the project. Diverse CNN models have been investigated to 

determine the extent to which they might be useful for SZ diagnosis based on EEG. Applying 

CNN models to the SZ diagnostic procedure produced positive outcomes in [8] and [9]. 

Convolutional recurrent neural network (CNNRNN) models are used to diagnose a variety of 

brain diseases [8, 9]. Convolutional neural network with recurrent connections is denoted by 

[CNNRNN]. CNNRNN models are frequently referred to by the abbreviation "CNNRNN." In 

[10], [11], [12], and [13], CNN-LSTM models were integrated into the SZ diagnostic 

procedure, with encouraging results. 

Using the dataset published by Brian Roach (https://www.kaggle.com/datasets/broach/button-

tone-sz) , the SVM, CNN, LSTM as well as the CNN+LSTM models are being trained. Before 

concluding that one IMF's findings are more accurate than those of other IMFs, we will 

examine the correlation between the two different data sets. 

The thesis is supported by the following outline. In the first section of Chapter 2, the current 

contributions to individual diagnosis based on brain signal data are discussed in greater detail 

in the form of Literature Review. In the third chapter of this thesis, the problem is presented in 

a more formal manner, followed by a summary of the key concepts that must be understood in 

order to proceed. In the fourth chapter, we provide a comprehensive review of the suggested 

procedures. In the fifth chapter, you will find a thorough domain analysis of the EEG signal 

dataset as well as a demonstration of the machine learning and DL methods that can be used to 

diagnose schizophrenia. In Chapter 6, we discuss the Results of our proposed methods and 

which method actually worked for us followed by the chapter 7 which contains the conclusion 

of the closing remarks and future scope.

https://www.kaggle.com/datasets/broach/button-tone-sz
https://www.kaggle.com/datasets/broach/button-tone-sz
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                                                              CHAPTER 2 

LITERATURE REVIEW 

The authors of "The effect of individual alpha neurofeedback training on short-term memory" 

are Wenya Nan, Joo Pedro Rodrigues, Jiali Ma, Xiaoting Qu, Feng Wan, Pui-In Mak, Peng Un 

Mak, Mang I Vai, and Agostinho Rosa. Each of these authors contributed in some way to the 

book. Higher alpha activity levels on an electroencephalogram (EEG), which researchers used 

to measure brain activity, were associated with the ability to recall information. By training 

with individual alpha neurofeedback, individuals could enhance their neuronal short-term 

memory (NFT) (NFT). During their time with NFT, participants learned how to increase the 

relative amplitude of their own alpha band by employing a technique developed specifically 

for NFT. After participating in 20 NFT sessions, they were significantly better able to recall 

recent memories. In addition, additional research has demonstrated that training increases the 

relative amplitude of a person's upper alpha band, which is associated with enhanced short-

term memory. [Requires citation] [Requires citation] In order to demonstrate this, the 

participants' brain activity was monitored. Researchers also discovered a link between positive 

thinking and the most effective mental strategies for individual alpha training. 

Adrian J. Fowle and Colin D. Binnie published in their paper findings, "EEG Uses and Misuses 

in Epilepsy," that there is little evidence-based medical literature on the electroencephalogram 

(EEG) is both unexpected and disheartening (EBM). Given the recent emphasis on evidence-

based medicine, this finding is unexpected (EBM). Even though there is a Cochrane review 

group dedicated to the study of epilepsy, it has not yet conducted research on EEG as a subject 

in and of itself. It appears that Medline, which many people use as their primary source of 

scientific information, categorises EEG-related papers incorrectly. Even though "EEG" appears 

in the title, this remains true. Both Cochrane and Medline contain tens of thousands of citations 

to articles discussing how drugs affect the EEG and how various disorders manifest in the EEG. 

According to the principles of evidence-based medicine, these publications must support the 

use of EEG with evidence. In many parts of the world, there is insufficient evidence to support 

the use of the EEG, so it is possible that some individuals will incorrectly believe that the EEG 

is ineffective. In addition, medical care is extremely costly in these regions. The 

electroencephalogram, or EEG, is an effective method for diagnosing epilepsy. However, 

improper usage is possible. In some instances, the electroencephalogram (EEG) is an effective 

method for diagnosing epilepsy. Because of this, obtaining an EEG in such a setting is 
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frequently viewed as abusive. Ictal recording is the only way to distinguish between an epileptic 

seizure and a non-epileptic seizure in a patient with unexplainable recurrent symptoms. This 

can be accomplished through EEG telemetry or recording while the subject is in motion. 

However, once epilepsy has been identified, the electroencephalogram (EEG) is likely to be 

the most useful diagnostic tool for determining the type of epilepsy, the prognosis, and the most 

effective treatment. Electroencephalograms, or EEGs, are the most effective method for 

determining the location of partial seizures. They are also an integral part of the evaluation 

process for people who are considering epilepsy surgery. EEG monitoring of how epilepsy 

worsens is ineffective unless the doctor can observe changes. Also, the EEG is not used to 

determine the efficacy of antiepileptic drugs (AEDs), despite the fact that it could be useful for 

determining whether they are dangerous. The EEG can help determine if it is safe to discontinue 

the use of AEDs on children. Regarding adults, the electroencephalogram, or EEG, is 

significantly less important in making this determination. Evaluating how well an EEG would 

function in a given environment is a difficult task that should only be undertaken by someone 

with prior experience with the technology. For any EEG interpretation, the clinical picture 

(EEG) must be considered (EEG). There is a possibility that the difficult decisions discussed 

in this article will make it more difficult to comprehend the EEG exam report. It is crucial that 

the EEG department and the physicians who send patients there can communicate for a number 

of reasons. This holds true for both individual testing and staff training. 

A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi presented a paper titled "Transfer learning 

using deep convolutional neural network for automated identification of schizophrenia from 

eeg signals" at the Physical and Engineering Sciences in Medicine conference in 2020. 

According to the findings of this study, schizophrenia is a severe brain disorder that can impede 

a person's ability to think, remember, comprehend, communicate, and perform a variety of 

other daily tasks. If a person with schizophrenia is not promptly diagnosed and treated, their 

odd behaviour can worsen over time. So, detecting SZ early may aid in its treatment or 

prevention. Electroencephalography, also known as EEG, is frequently used to study brain 

disorders such as schizophrenia due to its low cost and high temporal resolution. In this study, 

an automatic method for distinguishing between people with schizophrenia and healthy 

controls is proposed. Transfer learning is used in addition to deep convolutional neural 

networks (CNNs) to achieve this aim (CNNs). The time-frequency algorithm, also known as 

the continuous wavelet transform (CWT), is employed to generate images from EEG signals. 

Four prominent CNNs have been trained to recognise images of EEG signals. These CNNs are 
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named AlexNet, ResNet-18, VGG-19, and Inception-v3, in that order. The SVM classifier 

receives the results of these models' convolutional and pooling layers. These characteristics are 

also known as deep qualities. We altered the classification parameters of the SVM so that we 

could distinguish between healthy individuals and SZ patients. The EEG readings of 28 people, 

including 14 healthy volunteers and 14 people with SZ, are analysed to determine whether or 

not the proposed approach is effective. Using the frontal, central, parietal, and occipital regions 

with the ResNet-18-SVM yielded the highest levels of accuracy, sensitivity, and specificity, 

with values of 98.60 percent 2.29, 99.65 percent 2.35, and 96.92 percent 2.25, respectively, for 

accuracy, sensitivity, and specificity. As a result, the methodology could be utilized as a 

diagnostic means to help physicians quickly identify and treat SZ patients. 

In 2019, Application Sciences published the paper which 2,870 readers accessed. This article 

discusses a computerised method for diagnosing schizophrenia. Utilizing SZ convolutional 

neural networks (SZ). Schizophrenia is a brain disorder that, among other symptoms, causes 

disorganised speech and auditory hallucinations. Schizophrenia can also cause individuals to 

believe falsehoods. Electroencephalograms, also known as EEGs, are frequently employed in 

research and the diagnosis of brain-related diseases. The EEG signals were analysed using a 

CNN with eleven layers. This model examined EEG signals from 14 healthy volunteers and 14 

individuals with SZ. Traditional machine learning algorithms are susceptible to differences 

between observers and require extensive training time to function effectively. In this area of 

study, deep learning strategies are employed to facilitate the automatic extraction and 

categorization of relevant data. The convolution stage is responsible for automatically 

extracting features. In contrast, the max-pooling stage is responsible for extracting the most 

important features. The fully linked layer is the most effective method for sorting signals into 

distinct groups. The classification accuracy of the proposed model was 98.07 percent when it 

was used for non-subject-based testing, but it dropped to 81.26 percent when it was used for 

subject-based testing. Clinicians can utilise the proposed model to diagnose SZ in its earliest 

stages. 

Carlos Alberto Torres Nairo and Cristian Jos'e L'opez Del Alamo co-authored an article that 

was published in the Volume 10 Issue 10 of the International Journal of Advanced Computer 

Science and Applications (IJACSA) (IJACSA). According to the findings of this study, 

schizophrenia affects more than 21 million people worldwide. People with severe mental 

illnesses are frequently mistreated, stigmatised, and denied their human rights. Signals from an 

electroencephalogram (EEG) reveal how the brain functions and how diseases alter this 
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activity. Consequently, they are used to categorise and diagnose mental disorders. This allows 

for more precise results. This study presents a model for grouping schizophrenia patients and 

healthy individuals. The model was built using EEG signals and Deep Learning techniques. 

The model is based on both the data provided by EEG signals and the efficiency demonstrated 

by Deep Learning algorithms. Due to the EEG's high dimensionality and the number of 

channels, the Pearson Correlation Coefficient (PCC) was chosen to demonstrate the 

relationships between the channels (PCC). We therefore did not use an EEG to feed CNN with 

a massive amount of data; rather, we fed it a smaller matrix (CNN). The research demonstrated 

that the classification model derived from EEG data was 90% accurate, 90% specific, and 90% 

sensitive. 

In the volume11, number1 issue of Scientific Reports in 2021, J. Sun, R. Cao, M. Zhou, W. 

Hussain, B. Wang, J. Xue, and J. Xiang published "A hybrid deep neural network for 

categorising schizophrenia with the help of EEG data”. According to the research findings 

discussed in this article, it is a very severe mental illness that causes its sufferers great suffering. 

Due to this, it is crucial to obtain an accurate diagnosis as soon as possible. This research has 

focused to improve the classification accuracy of electroencephalography (EEG) signals in 

both individuals with schizophrenia and healthy controls. This was accomplished by locating 

and identifying an improved method of describing electroencephalography (EEG) signals. Our 

method of instruction consists of two distinct components. A series of spatially informative 

red, green, and blue (RGB) images are generated from these characteristics. Fuzzy entropy 

(also known as FuzzyEn) appears to be more significant in brain topography than fast Fourier 

transform (also known as FFT) (also known as FFT). The proposed deep learning (DL) method 

has an accuracy of 99%, while FFT as well as the FuzzyEn have an accuracy of 96% and 99.22 

percent, respectively. Using a hybrid DNN after obtaining fuzzy features from an EEG time 

series as input features is the optimal method for achieving accurate classification, based on 

these findings. It was determined that this was the optimal approach. In this field, significant 

progress has been made in comparison to the most cutting-edge techniques currently employed. 

In the 2021 edition of Biomedical Signal Processing and Control, volume 66, the authors of 

this study A. M. Joshi, A. Sharma, and A. Parashar published a paper based on 

electroencephalograms, "Dephnn: A Novel Hybrid Neural Network for Depression Screening" 

also known as "A Novel Hybrid Neural Network for Depression Screening" (A Novel Hybrid 

Neural Network for Depression Screening). Depression is distinct from other mental disorders 

because it causes persistent sadness. It is essential to understand that this disease can affect 



 

P a g e  | 7 

people of all ages and from all over the world. People anticipate that early detection of this 

disease, which is currently considered a global threat, will save many lives. 

Electroencephalogram (EEG) signals can reveal how a person is currently thinking, which can 

assist in diagnosing a mental disorder. This article examines and discusses the advantages of a 

fully automated Depression Detection System. This is because manually analysing EEG data 

is extremely difficult, time-consuming, and requires a great deal of prior knowledge. DepHNN 

(Depression Hybrid Neural Network) is a new EEG-based computer-aided (CAD) Hybrid 

Neural Network that can be used to screen patients for depression, according to the findings of 

this study. Convolutional neural network (CNN) architectures are utilised for temporal 

learning, windowing, sequence learning, and long-short term memory (LSTM) in the proposed 

method (LSTM). Neuroscan was used to collect EEG (electroencephalogram) data from 24 

healthy people and 21 depressed people who did not take drugs for this model. Compared to 

other methods, the windowing method saves the model a great deal of time and effort. The 

precision is 99.10%, while the mean absolute error (MAE) is 0.204%. The CNN-LSTM hybrid 

model developed to detect depression from EEG signals was found to be accurate, user-

friendly, and effective. 

Kuldeep Singh, Jytirmesh Malhotra and also Sukhjeet Singh published a paper entitled 

"Spectral characteristics-based CNN for accurate as well as the rapid detection of schizophrenia 

patients" in the year 2020. Schizophrenia is an incurable mental disorder, according to the 

information in this article. This condition affects millions of people worldwide and causes them 

to think, feel, and act in a peculiar manner. In this era of the internet of things, cloud computing, 

and machine learning, it is difficult to overstate the importance of being able to diagnose 

schizophrenia using a computer. The objective is to assist individuals with schizophrenia in 

leading happier, more fulfilling lives. Utilizing spectral features and a model known as a 

convolutional neural network, or CNN, this study demonstrates how to accurately identify 

patients suffering from schizophrenia. Throughout the entirety of the model's development, 

multichannel EEG recordings were analysed in real-time. In this model, EEG signals are 

processed using techniques such as filtering, segmentation, and frequency domain conversion. 

During this process, the frequency domain segments are transformed into the spectral bands of 

the frequencies delta, theta-1, and theta-2, as well as alpha, beta, and gamma. Formulas for 

calculating the mean spectral amplitude, spectral power, and Hjorth descriptors are derived 

using the spectral characteristics of each band (Activity, Mobility, and Complexity). The 

convolutional neural network (CNN) and the long short-term memory network (LSTM) 
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classification models acquire these spectral characteristics in distinct ways. Raw time-domain 

and frequency-domain EEG segments can be classified using CNN models with comparable 

architectures to those described in this paper. The proposed spectral features-based 

convolutional neural network (CNN) model was found to be an efficient and accurate method 

for identifying schizophrenic patients among healthy individuals. This was determined by 

examining the simulation results for each model. Using the appropriate classification times, 

this method achieves an average classification accuracy of 94.08 and 98.56 percent for two 

distinct datasets, respectively. Moreover, this method produces the quickest classification 

times. 

Siuly Siuly, Smith K. Khare, Varun Bajaj, Hua Wang, and Yanchun Zhang presented in their 

article "A Computerized Method for Automatic Detection of Schizophrenia Using EEG 

Signals" an EMD-based method for identifying SZ patients based on EEG signals. This method 

was used to identify patients with schizophrenia. EMD can convert a fixed number of nonlinear 

and nonstationary EEG signals into a fixed number of IMFs. In order to discover crucial 

information in the time domain, a signal processing system requires constant, unchanging 

signals. After collecting these five statistical characteristics from each IMF, a KW test was 

used to determine how well each was able to distinguish itself from the others. According to 

the researchers, IMF 2 outperformed the other IMFs when classifying SZ and HC EEG signals. 

Their method paved the way for the development of new techniques for analysing and detecting 

SZ using EEG signals, which are currently difficult to classify due to their nonlinear and 

dynamic characteristics. 

This paper's authors are also the authors of a 2017 paper titled "Automatic Schizophrenia 

Diagnosis Using EEG Signals Modelling with CNN-LSTM". Researchers utilised a variety of 

traditional machine learning-based classification algorithms when attempting to diagnose SZ 

by analysing EEG signals. The algorithms used the normalised versions of the EEG signals as 

classification features. This research's proposed model is intended to be more precise than 

models proposed for the vast majority of other studies. The proposed model, which uses EEG 

signals as a diagnostic aid, can be implemented on specialised software and hardware platforms 

to aid hospitals in the rapid diagnosis of SZ 10 cases.  
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CHAPTER 3 

BACKGROUND OF EEG 

 

In the section, we begin with explanation of the dataset that was used for analysis of our study, 

as well as the pre-processing procedure used. Following that, we discuss the methodology plan 

that has been proposed. The framework of the projected methodologies for classifying SZ as 

well as the HC based on signals of the EEG is depicted in Figure 1. [9]. The method that has 

been suggested includes the following procedures:  

i. Calculating statistical characteristics and shrinking the dimensions of the IMFs are 

two of the steps involved. 

ii. Generation of a feature matrix that combines significant features using the EMD 

algorithm.  

iii. EEG signal decomposition into AM-FM components (referred to as IMFs).  

iv. categorising the compiled feature matrix by employing multiple classifiers. 

Fig.1. Identifying SZ patients using EEG signals using the proposed framework.  

3.1 Electroencephalography 

Electroencephalography, or EEG, measures the sum of inhibitory as well as the excitatory 

postsynaptic potentials [5]. This information reflects the electrophysiology of the brain. 

Individual neurons generate electrical fields that, when combined, produce externally 

observable effects. EEG signals are less expensive and easier to acquire than other brain 

imaging techniques, making them more desirable for use. This increases the attractiveness of 

their application. Even though there is a great deal of noise and the spatial resolution is poor, 

the temporal resolution is excellent. 𝑥⃗𝑖∈0..𝑚 is a type of time series, which is a collection of 

measured observations overtime, with every observation possessing its own set of 

characteristics 𝑥⃗𝑖 = 𝑥𝑖
0, … , 𝑥𝑖

𝑝
. The definition of a time series is a collection of observations. If 

𝑝 = 1, it is known as the univariate and it is known as the multivariate if 𝑝 > 1. If the 

characteristics are numeric, their values are real; if they are nominal, their values are symbolic. 
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Each observation in a tabular dataset consists of a collection of characteristics. In contrast, each 

observation in a time series-based dataset consists of a time series.  

3.1.1 Frequency bands 

The frequency domains of EEG signals are extremely important due to the fact that they can 

be interpreted as a collection of waves produced by a variety of neuronal ensembles. Studies 

of EEG spectral values using statistical factor analysis produce clusters of frequency 

components that display significant overlap with frequency bands that are already well known. 

Infralow (less than 0.2 Hz ), 𝛿 (ranging between 0.2 Hz-3.5 Hz ), 𝜃 (ranging between 4 Hz to 

7.5 Hz ), 𝛼 as well as 𝜇 (ranging between 8 Hz -13 Hz ), 𝛽 (ranging b/w 14 Hz to 30 Hz ), 𝛾 

(ranging between 30 Hz to 90 Hz ) [5]. 

3.1.2 EEG Properties 

The authors in the article [5] describe in detail how the impact of this signal has been observed 

in the many different subfields of neuroscience research. Within the frequency band that is 

being investigated, there needs to be a spectral peak for it to be possible to identify an EEG 

oscillation. One of its characteristics is the maximum frequency that the oscillation can reach, 

in addition to its power as well as the bandwidth. The authors contend that a collection of 

neurons would be able to function as a single entity, which necessitates a population of neurons 

that is sufficiently large, temporally and spatially organised, and whose electrical fields can be 

recorded at a distance. The evidence suggests that the brain is made up of distinct communities 

that are responsible for information processing and communication. A complete understanding 

of cognitive processes requires familiarity with the data and communication processing that 

occurs within the brain [5]. 

3.1.3 EEG channels 

The EEG signal is typically measured using electrodes placed in a variety of positions, it can 

be thought of as a multivariate time series. The collection of electroencephalographic data that 

comes from a single location is referred to as a channel. The identifier of a channel is the 

geographical region in which the channel can be found. The nomenclature of each channel as 

well as its location is shown, for instance, in Figure 2.1. The first few letters of the EEG 

identifier provide information about the general location of the lobe, while the remaining 

characters provide information about a specific location within the lobe. The frontal lobe 

channels are represented by the letters 𝐹3, 𝐹4, 𝐹7, 𝐹8, 𝐹𝑝1, 𝐹𝑝2, 𝐹𝑧. The mid-scalp channels 



 

P a g e  | 11 

are represented by the letters 𝐶3, 𝐶4, 𝑎𝑛𝑑 𝐶𝑧. The temporal lobe channels are represented by 

the letters 𝑇3, 𝑇4, 𝑇5, 𝑎𝑛𝑑 𝑇6. The parietal lobe channels are represented by the letters P3, P4, 

and 𝑃𝑧. The occipital lobe channels are represented by the letter O. 

3.2 EEG Uses in Schizophrenia 

There has been an extensive use of EEG imaging in the neural pathologies diagnosis, and it is 

a technique that is both appropriate and desirable for the schizophrenia pathology. This is 

because EEG imaging can detect subtle changes in brain activity that may not be detected by 

other diagnostic methods. According to the findings of [7], people who are diagnosed with 

schizophrenia have a response time that is noticeably more drawn out than healthy controls. 

The electroencephalogram (EEG) is a method that is frequently used for the diagnosis and 

investigation of schizophrenia, as indicated by a number of studies that are discussed in section 

3. Both the ease with which EEG can be assessed and performed in virtually any psychiatric 

setting and the fact that it has been shown to be well tolerated by nearly all patients are 

important factors in its use in the diagnosis of schizophrenia. In addition, EEG has been shown 

to be accurate in predicting the prognosis of schizophrenia. 

Fig 2. EEG Channel Mapping Nomenclature 

[8] provides a concise summary of the EEG abnormalities that should be looked for in patients 

being evaluated for a diagnosis of schizophrenia. In order to accomplish this, they analysed the 

progression of spectral EEG deviations throughout the course of the study. Only research that 

compared the spectral power of schizophrenia patients to healthy controls as a control group 

was considered for inclusion in the meta-analysis. The existence of two groups (or 

populations), one with a healthy control group and the other with pathology, is required in order 

to classify distinguishing characteristics based on the collected signals. One of the groups must 

serve as the control group. It is necessary to choose one of these groups to serve as the control 

group. At one time, it was thought that schizophrenia was linked to increased levels of delta 

power, increased levels of theta power, decreased levels of alpha power, and increased levels 
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of beta power. In the wake of these preliminary discoveries, a number of follow-up 

investigations concluded that people with schizophrenia display noticeably higher levels of 

lower spectrum activity (slow waves). The most common type of slow wave abnormality, 

which manifests itself most frequently as an increase in delta frequency, is found in the frontal 

lobes. Electrode locations on an electroencephalogram (EEG) should ideally be reported when 

making a diagnosis of schizophrenia. These should include the frontal, temporal, central, 

parietal, and occipital electrodes. 

Neural oscillations and the synchronisation of those oscillations are, according to event-related 

EEG traces, crucial devices for communication of intraneuronal processed by distributed brain 

regions [9]. The regulation of synaptic transmission between neurons is another process that is 

impacted by oscillations in the neural network. The use of EEG data analysis in schizophrenia 

research is supported by a number of previous EEG studies with the goal of gaining a more in-

depth understanding of the pathophysiological processes that are responsible for the cognitive 

deficits that are characteristic of neuropsychiatric disorders. 

3.3 Processing EEG signal 

The representation of an EEG signal that is most commonly used is that of a multivariate 

asynchronous time series. If there is no discernible pattern throughout the entirety of a time 

series, then that time series may be considered to be asynchronous. During the course of an 

EEG recording session, multiple channels are utilised, which results in a signal that is 

composed of contributions from multiple sources. The signal will take on multivariate 

characteristics as a result of this. It has been suggested that the time domain of the EEG signal 

should be converted into the frequency domain so that spectral patterns can be analysed and 

then correlated with brain-evoked events. This would allow for greater accuracy in the analysis. 

3.3.1 Fourier Transform 

The Fourier transform is a crucial component of modern signal processing, and its namesake, 

Joseph Fourier, is credited with developing it. Because of this property, it is possible to segment 

a signal into waves, each of which possesses a frequency and intensity function of its own. The 

transformation known as the Fourier transform is used to represent a signal in the frequency 

domain. Because every signal in the real world is discrete, the Fourier Transform can only be 

applied to continuous signals (a collection of samples over time). Nevertheless, it is possible 

to convert continuous signals with its help. 
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3.3.2 Discrete Fourier Transform (DFT) 

Utilization of the Fourier transform is commonplace in digital signal processing (discrete 

signals). The name of the Discrete Fourier Transform is represented by the symbol in question. 

𝑋𝑘  = ∑  

𝑁−1

𝑖=0

 𝑥𝑖𝑒−
2𝜋𝑦1

𝑁
𝑘𝑖

𝑘  = 0, … , 𝑁 − 1

 

𝑋𝑘 is the amplitude for the frequency 𝑘 and there is a total of 𝑁 frequencies. 

3.3.3 Fast Fourier Transform 

[10] suggested using the Fast Fourier Transform for a faster computation rather than the 

conventional Fourier Transform because the conventional Fourier Transform requires an 

excessive amount of computing power. 

3.3.4 Short-time Fourier Transform (STFT) 

The signal is first partitioned into windowed segments by the STFT, after which the Fourier 

transform is computed for each of these subsegments individually. Deciphering non-repetitive 

signals is a particularly strong suit of this method. This assumes that a periodic portion of a 

non-periodic signal can be identified by zooming in and examining it closely enough. This was 

derived from the fact that the above statement was true. This is the fundamental principle that 

underlies the STFT, and the primary reason why its application in EEG has become so 

widespread. The size of the window plays an essential role; the lower frequencies can be 

captured much more accurately by windows that are larger. Even when the frequency of the 

difference is low, it is still possible to find a difference between healthy controls and people 

with schizophrenia that is statistically significant. 
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CHAPTER 4 

PROPOSED METHODOLOGIES 

The primary purpose of this thesis is to categorise data from the brain in order to accurately 

diagnose the pathology associated with schizophrenia. The goal of the classification task is to 

correctly label new instances of unlabelled data by acquiring a mapping model between data 

and corresponding classes by making use of an annotated dataset as a source of information. 

The classification algorithms known as Decision Tree Classifier, Random Forest Classifier, 

Naïve Bayes, XGBoost, Support Vector Machines (SVM), Convolutional Neural Networks 

(CNN), Long Short-Term Memory (LSTM), and CNN-LSTM will be covered in this section. 

This section provides insights about the methods used to classify our dataset namely DT, RF, 

NB, XGB, SVM, 2D-CNN, LSTM, and 2D-CNN-LSTM models for SZ diagnosis via EEG 

signals.  

4.1 SVM (SVC and Linear SVM) 

SVMs are a subgroup of SL techniques that can be used for both classification (SL or USL) 

and regression [2]. They are members of the family of generalised linear classification. 

Uniquely, the SVM algorithm reduces empirical classification error while simultaneously 

increasing geometric margin. As a direct result, Maximum Margin Classifiers were utilised by 

SVM. SVM employs the SRM algorithm, which is utilised to mitigate structural risk (SRM). 

In a higher-dimensional space, the support vector machine (SVM) generates a hyperplane that 

is maximally distinct from the input vector. The hyperplane sides on each end separating the 

data is composed of two parallel hyperplanes. "Separating hyperplane" refers to the hyperplane 

that creates the largest distance between two parallel hyperplanes. As the margin or distance 

between these parallel hyperplanes increases, it is assumed that the generalisation error of the 

classifier will decrease [2]. We consider data points of the form  

{(x1, y1), (x2, y2), (x3, y3), (x4, y4) … … … , (xn, yn)}. 

Where   yn=1 / -1, a constant denoting the class to which that point xn belongs. n = number of 

sample. Each x n represents a p-dimensional real vector. Scaling is essential for protecting 

against variables (attributes) with greater variance. This Training data can be viewed by means 

of the dividing (or separating) hyperplane, which takes 
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𝑤. 𝑥 + 𝑏 = 0 

b is a scalar and w is a p-dimensional vector in this equation. The separation hyperplane is 

parallel to the vector, while the vector w is perpendicular to it. When the offset parameter b is 

utilised, the margin increases. If b is absent, the hyperplane must pass through the origin, which 

drastically reduces the number of possible solutions. We are particularly interested in SVM 

and parallel hyperplanes because we want to maximise our margin. An equation can be utilised 

to describe parallel hyperplanes. 

𝑤. 𝑥 + 𝑏 = 1 

𝑤. 𝑥 + 𝑏 = −1 

If the training data can be separated linearly, we can select hyperplanes with no intermediate 

points and maximise the distance between them. According to geometry, the distance between 

the hyperplanes is equal to 2 w divided by the width. Consequently, we wish to keep w to a 

minimum.  

w. xi – b ≥ 1   or   w. xi – b ≤ -1 

This is also possible as 

yi ( w. xi –  b) ≥ 1, 1 ≤  i ≤  n 

Support vectors (SVs) are samples that run parallel to the hyperplanes (SVs). Support vectors 

are indicated by a separating hyperplane with the largest margin, as defined by M = 2 / w, that 

specifies support vectors. Which ones are adequate? 

yj[wT ⋅ xj + b] = 1 , i = 1 

l represents the number of training data points. A machine learning algorithm should minimise 

║w║2 while considering inequality constraints in order to find the optimal hyperplane with the 

largest margin. 

𝑦[𝑤𝑇 ⋅ 𝑥𝑖 + 𝑏] ≥ 1; 𝑖 = 1,2 … 1 

Lagrange's Function saddle points resolve this optimization issue. 

L𝑝 = L(w,b,c) = 1/2 ∥ w ∥ 2 − ∑i=1  𝑎𝑖(y𝑖(wTx + b) − 1) 
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= 1/2wTw − ∑i=1
1  𝛼𝑖(ywwTxi + b) − 1) 

Lagranges must be minimised with respect to w and b and maximised with respect to 

nonnegative 𝛼𝑖 (𝛼𝑖  ≥  0), so the search for the optimal saddle point (𝑤0, 𝑏𝑖, 𝛼0) is necessary. 

There are two ways to solve this problem: the primary (represented by w and b) and the dual 

form (represented by 𝛼𝑖). Equations 4 and 5 are sufficient and necessary conditions for a 

maximum of equations because they are convex and KKT. Equation (5) is differentiated 

partially in terms of saddle points (𝑤0, 𝑏𝑖, 𝛼0). 

∂𝐿 ∂𝑤0 = 0

 i.e  𝑤0  = ∑  

𝑖=1

 𝛼𝑖𝑦𝑖𝑥𝑖
 

And                                                                        ∂L/ ∂b0 = 0 

 i.e.,                                                                              ∑𝑖
1  𝛼𝑖𝑦𝑖 = 0 

 

Alter equation (6) and equation (7) in equation (5). The dual form derives from the primary 

form. 

𝐿𝑑(𝛼) = ∑𝛼𝑖 − 1/2∑𝑖=1
1  𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑥𝑖

𝑇𝑥𝑗 

To find the optimal hyperplane, a dual lagrangian (Ld) must be maximised with respect to 

nonnegative 𝛼𝑖 (i.e., 𝛼𝑖 must be in the nonnegative quadrant) and equality constraints. 

𝑎𝑖 ≥ 0 , 𝑖 = 1,2 … … 1 

∑𝑖=1  𝛼𝑖𝑦𝑖 = 0 

Fig 3. Maximum Margin Hyperplanes for a SVM trained with Samples from Two Classes 
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4.1.1 KERNEL SELECTION OF SVM  

The Ф function transforms xi into a higher-dimensional space (possibly infinite dimensions). 

In this higher-dimensional space, the SVM identifies the hyperplane with the greatest margin 

for linear separation. 𝐶 >  0 is the error term penalisation parameter. The alternate name of 

the kernel function is 𝐾(𝑥𝑖 , 𝑥𝑗)  ≡  Ф(𝑥𝑖)𝑇 Ф(𝑥𝑗) [17]. The selection of the most appropriate 

kernel function from the numerous SVM options is a further research obstacle. On the other 

hand, the two kernel functions listed below [17] are especially useful for more widespread 

applications: 

• Linear kernel: 𝐾(xi, x𝑗) = xi
Txj. 

• Polynomial kernel: 

K(xi, xj) = (𝛾xi
Txj + r)

d
,  𝛾 > 0 

• RBF kernel: 

K(xi, xj) = exp (−𝛾∥∥xi − xj∥∥
2

) ,  𝛾 > 0 

• Sigmoid kernel: 

𝐾(𝑥𝑖 , 𝑥𝑗) = tanh (𝛾𝑥𝑖 
𝑇𝑥𝑗 + 𝑟) 

Here  𝛾, 𝑟 and 𝑑 are kernel parameters.  

RBF is the primary kernel function in these widely used kernel functions for the following 

reasons [2]: 

In contrast to a linear kernel, the RBF kernel maps samples into a higher-dimensional space in 

a nonlinear fashion. The RBF kernel has fewer hyperparameters than its polynomial 

counterpart. RBF kernel presents fewer numerical challenges. 

4.1.2 Utilization of SVM for Model Selection 

Without model selection, an SVM analysis is incomplete. Recent studies have demonstrated 

that SVM outperforms other data classification techniques. A number of parameters whose 

values influence the generalisation error must be fine-tuned for the operation to be successful. 

Model selection denotes to the fine-tuning process the parameters of a model. The only 

parameter that must be adjusted when employing the linear support vector machine is the cost 

parameter C. However, linear SVM is frequently used to solve problems that can be separated 
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linearly. There are numerous things that are challenging to distinguish. For example, data from 

the Space Shuttle and data from satellites cannot be separated in a linear fashion. When solving 

classification problems [4 & 5], we frequently use nonlinear kernels to obtain the value of cost 

parameter (C) and the kernel parameters (𝛾, d). When determining the optimal parameter set 

for cross validation, the grid-search method is frequently employed. Upon applying this 

parameter set to the training dataset, the classifier can then be obtained. Use the classifier to 

categorise the testing dataset so that you can evaluate the accuracy of the generalisation. There 

are numerous things that are challenging to distinguish. For example, data from the Space 

Shuttle and data from satellites cannot be separated in a linear fashion. When solving 

classification problems, we frequently use nonlinear kernels to determine the value of the cost 

parameter (C) and the kernel parameters (𝛾, d). When determining the optimal parameter set 

for cross validation, the grid-search method is frequently employed. Upon applying this 

parameter set to the training dataset, the classifier can then be obtained. Use the classifier to 

categorise the testing dataset so that you can evaluate the accuracy of the generalisation. 

4.2 CNN 

Convolutional Neural Networks, also referred to as CNNs or ConvNets, are a type of multi-

layer neural network that is inspired by the optical systems of living organisms. According to 

Hubel and Wiesel, animal cells in the small receptive field of the visual cortex are responsible 

for light detection. [4.] In 1980, Kunihiko Fukushima introduced the neocognitron [5], a 

multilayered neural network capable of learning to recognise hierarchical visual patterns, to the 

world. This network served as the model for CNN's design. LeCun et al. created the practical 

CNN model [6] [7] and LeNet-5 [8] in 1990. After being trained with the backpropagation [9] 

algorithm, LeNet-5 was able to recognise visual patterns from unprocessed pixels without a 

separate mechanism for feature engineering. This was made possible by the network's ability 

to recognise visual patterns. In addition, conventional feedforward neural networks with 

comparable network sizes had more connections and parameters, whereas CNN models had 

fewer connections and parameters, making model training easier. CNN's performance in 

complex problems, such as the classification of high-resolution images, was hindered at the 

time by a lack of large training data, an improved regularisation method, and insufficient 

computing power. ImageNet [10], LabelMe [11], and other sources provide access to more 

extensive datasets with millions of high-resolution, labelled data spanning thousands of 

categories. Since the introduction of powerful GPU machines and a refined regularisation 
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method, CNN's performance in image classification tasks has significantly increased. This 

advancement was made possible by the combination of these two innovations: by imposing a 

local connectivity pattern between neurons in adjacent layers, CNNs take advantage of their 

spatially local correlation. As shown in the diagram, layer m neurons are connected to a local 

subset of layer m-1 neurons, and layer m-1 neurons have contiguous receptive fields (2a) 

 

Fig 4(a): Graphical Flow of Layers showing Connection between Layers 

 

Fig 4(b): Graphical Flow of Layers showing sharing of weights 

Each sparse filter is replicated across the entire visual field when the CNN algorithm is utilised. 

Using the same weight vector and bias, these units then construct the feature map. Figure 4b 

depicts three concealed units on the same feature map as Figure 4a. Since the weights of each 

colour are shared, it is essential that they are identical. 

By adding the gradients of the shared parameters, it is possible to calculate the gradient of the 

shared weights. Due to this replication, features can be identified regardless of their position 

within the field of vision. Additionally, weight sharing reduces the total number of available 

free learning parameters. This control enables CNN to achieve a more accurate generalisation 

of vision problems. CNN uses a nonlinear downsampling technique known as max-pooling in 

its reporting. This method divides the input image into non-intersecting rectangles. The 

production of each subregion reaches its maximum level. 

4.2.1 Convolution layer: 
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CNN's network consists of multiple layers, the first of which is the convolution layer. This 

diagram illustrates the composition of this layer (3). Also included are a bias term, a function 

expression, and a convolution mask. Together, they produce the layer's final product. In the 

image below, a 32 x 32 input feature map with a 5 x 5 convolution mask has been applied. This 

operation will result in a 28-by-28 matrix. The sigmoid function is then applied to the matrix 

[7] following the application of the bias. 

Fig 5. Convolutional Layer Working 

4.2.2 Sub sampling layer 

The subsampling layer follows the convolutional layer immediately. The number of planes in 

this layer is identical to that of the convolutional layer. This layer is intended to compress the 

feature map in order to conserve space. After dividing the image into 2x2 blocks, averaging is 

performed on the blocks. The subsampling layer remembers only the relative nature of the 

relationships between features. 

Fig 6. Sub-Sampling Layer Working 
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A layer with complete connectivity (FC Layer) As illustrated in Figure 7, the CNN conclusion 

is composed of interconnected layers. This layer receives input from all of the neurons in the 

layer below it and generates output using the neurons in the layer above it. 

Fig 7. Fully Connected Layer 

4.3 LSTM 

Due to its superior ability to model and learn from sequential data, long short-term memory, 

also known as LSTM, has recently gained popularity among natural language processing 

researchers (NLP). On a variety of publicly available benchmarks, including sentence 

classification [9] [10], language modelling, and sequence-to-sequence predictions [6], this 

algorithms have demonstrated state-of-the-art performance. The LSTM algorithm solves the 

RNN gradient vanishing and exploding problem. LSTM architecture substitutes the hidden 

vectors in recurrent neural networks with memory blocks containing gates. It is a proof that, to 

be useful in achieving advanced solutions for a variety of problems, including speech 

recognition [3], and by practising appropriate gating weights, it can theoretically maintain long-

term memory. Note: Hochreiter and Schmidhuber (1997) proposed LSTM as a solution to the 

issue of long-term learning dependence. The LSTM is responsible for storing unique memory 

cells that are only updated and displayed when necessary [3]. Three levels comprise the LSTM 

gates mechanism: (1) the input gate, (2) the forget gate, and (3) the output gate . As depicted 

in Figure 2, every LSTM unit has a memory cell, and ct denotes the values that represent the 

state at any given time. The sigmoid gate controls both reading and modification in addition to 

the input gate it, the forget gate ft, and the output gate ot. The following is the formula for the   

 Fig 8. LSTM Architecture 
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Currently, the model obtains its information from two distinct external sources (ht-1 and xt). 

When calculating the node states of the hidden layer, keep in mind that the input gate, output 

gate, forget gate, and xt all influence the node state simultaneously. 

A step-by-step explanation of the LSTM cell and its gates is provided below:  

1 Input Gate: 

 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1) 

 𝐶̆𝑡 = tanh (𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶  (2) 

 

2 Forget Gate: 

 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑓) (3) 

 

3 Memory State: 
 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡  (4) 

 

4 Output Gate:    

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (6) 

        

Evaluation The multi-label evaluation steps of the confusion matrix in the following 

equations:  

 
Acc =

∑𝑖=1
𝑙  

𝑇𝑃𝑖 + 𝑇𝑁𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖

𝑙
∗ 100% 

(7) 

 Presisi =
∑𝑖=1

𝑙  𝑇𝑃𝑖

∑𝑖=1
𝑙  (𝐹𝑃𝑖 + 𝑇𝑃𝑖)

∗ 100% (8) 

 Recall =
∑𝑖=1

𝑙  𝑇𝑃𝑖

∑𝑖=1
𝑙  (𝑇𝑃𝑖 + 𝐹𝑁𝑖)

∗ 100% (9) 

 F1 score =
2 ∗  Presisi ∗  Recall 

 Presisi +  Recall 
 (10) 

 

4.3.1 Optimization 

SGD, Adam, RMSProp, and others are deep learning optimizers. This research trained the data 

with Adam and RMSProp. Adam Optimizer controls sparse gradients [4]. It's an expansion of 

stochastic gradient descent, which is used in deep learning and NLP. 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (11) 
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 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 + 𝛽2)𝑔𝑡
2Type equation here. (12) 

 

g is the minibatch gradient, and m and v are its first two moments. RMSProp lets users 

customise each parameter's learning rate. It divides the weight learning rate by a moving 

average of recent gradient magnitudes [35]. 

 𝑣(𝑤, 𝑡): = 𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))2 (13) 

 

γ ➔ forgetting factor. As well as the parameters are updated as,  

 𝑤: = 𝑤 −
𝑛

√𝑣(𝑤, 𝑡)
∇𝑄𝑖(𝑤) (14) 

 

4.3.2 Pre-Processing 

4.3.2.1 One-hot Encoding 

A one-hot encoding is performed as the very first step in the pre-processing phase of this 

research. When categorical text data needs to be converted to numerical form, one-hot encoding 

is the method of choice. At the moment, algorithms for machine learning are unable to directly 

process data that is categorical. Converting categorical data to numerical data is required. Deep 

learning methods, such as long-term memory recurrent neural networks, are utilised in research 

pertaining to sequence classification. 

The process of dividing a text into tokens, which may be words, phrases, symbols, or other 

meaningful components, is known as tokenization. Tokens can take on a variety of forms. 

There is a wide range of sizes and contours to choose from when purchasing tokens. The 

process of separating a text into individual tokens that are incomprehensible is known as 

tokenization. This is necessary in order for any type of processing to take place. This procedure 

tokenizes each sentence individually after the text has been broken up into sentences. 

Therefore, punctuation marks have to go in their very own designated spaces within the text. 

The generation of training data is one of the characteristics that results from tokenization. 

Padding is utilised during the training process of the decoder on a sentence-by-sentence basis 

to ensure that an accurate determination of the end of each sentence can be made during the 

training phase. 

4.4 CNN-LSTM Network 
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There is a theory that states that CNNs are straightforward computational models of the 

mammalian visual cortex [17]. CNNs are a form of biologically motivated feed-forward ANN. 

CNNs draw their inspiration from the processes that occur in living organisms. 2D and 3D 

convolutional neural networks are typically utilised in the processing of images and videos, 

whereas 1D convolutional neural networks are typically utilised in the recognition of audio and 

text (as a time series data). 1D-CNNs are particularly effective when applied to problems that 

require the recognition and forecasting of time series. Recent applications of networks include 

early diagnosis, monitoring of structural health, identification, and detection and identification 

of anomalies [18]. An additional illustration is the detection of early anomalies. Because our 

data is a time series of vibration signals, we will be using one-dimensional convolutional neural 

networks. The output of a convolutional layer that is located in the ith layer (vij x) at the 

position x of the jth feature map is represented by the following expression. 

𝑣𝑖𝑗
𝑥 = 𝑔 (𝑏𝑖𝑗 + ∑𝑚  ∑𝑝=0

𝑃𝑖−1
 𝑤𝑖𝑚

𝑝
𝑣(𝑖−1)𝑚

𝑥−𝑝
) 

Where m is the index of the feature map from the layer below the current layer that is connected 

to the feature map from the layer above it. n is the total number of feature maps that are being 

taken into consideration, and Wim p is the weight of position p in the mth feature map. Pi 

stands for the kernel width of the spectral dimension, bij for the bias of the ith layer's jth feature 

map, and g for the activation function. All three are denoted by the superscripts pi, bij, and g. 

After one or more CNN layers have been added, a Pooling layer is typically added to provide 

invariance by reducing the resolution of the feature map [20]. The final layer of CNN models 

is referred to as the pooling layer. There is a connection between each successive layer of 

pooling and the one that came before it. The max-pooling operation is the one that is used the 

vast majority of the time: 

u̅a = max1≤𝑗<k  (un
j

) 

In this equation, " 𝑢𝑛 𝑗 " stands for the jth element of the nth patch, " 𝑢̅𝑛 " stands for the 

maximum pooling sample of the nth patch, and "k" stands for the size of the patch. [21] Long-

term memory networks, also known as LSTM networks, are neural networks that regulate 

access to memory cells through the use of a specialised gating mechanism. LSTM networks 

are able to maintain signals for significantly longer durations than conventional recurrent 

neural networks can due to the gates' ability to prevent the rest of the network from altering the 

contents of the memory cells for multiple time steps. In addition, this makes it possible for 
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errors to spread over an extended period of time. The LSTM was developed by Hochreiter and 

his colleagues [21] in order to model temporal sequences and the long-range dependencies 

between them with greater precision than is possible with conventional RNNs. Each LSTM 

block consists of three gates: an input gate, a forget gate, and an output gate. These gates are 

referred to collectively as "gates." Sigmoid activation functions are responsible for the 

generation of numbers in the range of zero to one, and gates are a method for selectively 

transmitting information. 

𝜎(𝑡) =
1

1 + 𝑒−1
 

The gate will not let anything that has a value of zero through, but anything that has a value of 

one will be allowed to proceed. The following equations are what describe the gates 

mathematically: [22] 

𝑖1 = 𝜎(𝑤𝑖[ℎ1−1, 𝑥1] + 𝑏𝑖) 

𝑓1 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑤𝑎[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑒) 

Where it is the input gate, ft is the forget gate, ot is the output gate, sigmoid is the activation 

function, wx is the weight of the respective gate (x), ht1 is the output of the previous LSTM 

block at time-step t-1, xt is the current input, and bx is the biases of the respective gate. bx is 

the biases of the respective gate. It is the input gate, the forget gate is denoted by ft, and the 

output gate is denoted by ot (x). You can determine the cell state vector, denoted by ct, as well 

as the LSTM unit output vector, denoted by ht, by using the following formulas: 

𝑐̃1 = tanh (𝑤𝑐[ℎ𝑡−1, 𝑥1] + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐1−1 + 𝑖1 ∗ 𝑧1 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐1) 

Where 𝑐 ̃𝑡 represents the candidate vector for cell state vector (how much we decide to update 

each state vector); tanh is the hyperbolic tangent activation function and (⁎) denotes the 

Hadamard product. An illustration of an LSTM block is provided in the following diagram. 
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Fig 9. LSTM BLOCK 

CNN-LSTMs are useful for a wide range of applications, including visual learning, speech 

recognition, and the processing of natural languages [8]. Both convolutional neural networks 

(CNNs) and long short-term memory (LSTMs) have been shown to be equally effective at 

predicting temporal sequences [9]. Both the precision and accuracy of predictions are improved 

by the CNN-LSTM network [10]. When working with large data sets or complex temporal 

sequence problems, this is an especially useful skill to have. We will be able to explain the 

temporal sequence prediction if we are able to observe a dynamical system that spans a 

temporal region that is represented by an MN grid that has M rows and N columns. A time-

varying measurement of the parameter P is stored in each grid cell of the matrix. As a 

consequence of this, the number of features can be accurately represented by a tensor that has 

the dimensions P, M, and N. We are able to divide the dataset into samples of the same length 

and obtain a series of tensors that are denoted by the numerals X̂1, X̂2, X̂3…, X̂n, if the features 

are recorded at regular intervals throughout the data collection process. The goal of the 

temporal sequence prediction problem is to maximise the following conditional probability in 

order to determine the most likely kth sequence of observations given the jth observation. This 

will be accomplished by predicting the most likely outcome of the problem. 

𝑌̂𝑡+1, … , 𝑌̂𝑡+𝑘 = arg max
𝑋𝑡+1,…𝑋𝑡+1

𝑝(𝑋𝑡+1, … , 𝑋𝑡+𝑘 ∣ 𝑋̂𝑡−𝑗+1, 𝑋̂𝑡−𝑗+2, … , 𝑋̂𝑡) 

4.5 Decision Tree Classifier: 

The decision tree algorithm is a data mining induction technique that divides a set of records 

into classes repeatedly using either a depth-first greedy approach or a breadth-first approach 

until all of the data items belong to that class. This process can be carried out using either a 

depth-first approach or a breadth-first approach. The starting point of a decision tree is called 

the root node, and it is made up of the nodes that come before and after it. Unknown data 
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records are categorised into subcategories by using the tree structure. In order to determine the 

most effective method of splitting at each node within the tree, measures of impurity are used. 

The leaves of the tree are made up of the class labels that were utilised in the process of 

grouping the data items. The first step of the decision tree classification method is to construct 

the tree, and the second step is to prune it. The crown of a tree is the first layer to form. At this 

point, the tree will be divided multiple times until all of the data items have the same class 

label. This process will continue until the tree is complete. It is a very challenging task that 

requires a lot of processing power due to the fact that the training data set is gone through 

multiple times. When trees are pruned, work is done from the ground up. Its purpose is to 

reduce the likelihood of the algorithm's predictions and classifications being incorrect by acting 

as a check against overfitting (noise or much detail in the training data set). Overfitting data 

can result in misclassification errors when using decision tree algorithms. Pruning a tree 

requires less effort than growing a tree does due to the fact that the training data set only needs 

to be scanned once. The decision tree that the proposed system uses provides the end user with 

an improved method for classifying tweets into positive and negative categories. It is done by 

comparing the items with the highest frequency in the training data with the items with the 

highest frequency in the test data. This makes it simple to organise the data into categories. The 

results of the proposed system were compared to those of other classification methods and 

research papers that had previously used the Twitter dataset. This allowed the researchers to 

determine how well the proposed system works. The proposed system's efficiency was 

evaluated based on a number of different metrics, including its precision, recall, classification 

accuracy, and f-measure. 

4.6 Random Forest 

Learning algorithms known as ensemble classification methods create a group of classifiers as 

opposed to just one, vote on how new data points should be categorised, and then classify the 

data based on the results of that vote. Bagging, Boosting, and Random Forest are the three 

ensemble classifiers that are used the most frequently [28] (RF). The random forest algorithm 

is a form of supervised machine learning that utilises group learning as its primary data 

processing method. The goal of the learning strategy known as ensemble learning is to produce 

a more accurate prediction model by combining several distinct implementations of the same 

algorithm. The algorithm known as "random forest" gets its name from the fact that it combines 

multiple algorithms that are all of the same kind—for example, multiple decision trees—in 
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order to create a forest of trees. Both regression and classification problems are amenable to 

being solved with the assistance of the random forest algorithm. A group of classifiers 

organised in a tree-like fashion is referred to as an RF classifier. It's a more difficult variation 

of Bagging that involves the element of chance [28]. In RF, rather than using the best split for 

all variables, the best split is used for a subset of predictors that are chosen at random at each 

node. This allows for more accurate results. Alterations are made to the primary data set before 

a new training data set can be created. Then, a tree is created by selecting its characteristics at 

random and growing it. It is not necessary to prune trees that have reached their mature size 

[27, 28]. This strategy gives RF an accuracy that can't be beat. RF is also quick, doesn't fit too 

well, and can make as many trees as the user wants [27, 28]. For both classification and 

regression, this is how the random forests algorithm works: Make bootstrap samples from the 

original data. Grow an unpruned classification or regression tree for each of the bootstrap 

samples, with the following change: at each node, instead of choosing the best split among all 

of the predictors, randomly sample a subset of the predictors and choose the best split among 

those variables. (You can think of bagging as a special case of random forests where the number 

of predictors is equal to p.) By putting together what the trees say, you can predict new data 

(i.e., majority votes for classification, the average for regression) (i.e., majority votes for 

classification, the average for regression). 

4.7 XGBOOST: 

Gradient-boosted decision trees are used in XGBoost, which is a fast and efficient way to do 

this. XGBoost stands for eXtreme Gradient Boosting. Most predictive models aren't as good as 

XGBoost. Because of this, we will use it to put our tweets into groups. 

XGBoost is one of a group of algorithms called "boosters" that help weak learners get better. 

A slow learner is someone who isn't much better than someone who just guesses at things. 

Boosting is a process where trees are grown one after the other using information from a tree 

that has already been grown. Over time, this process slowly learns from the data and tries to 

get better at making predictions. Gradient-boosted decision trees are used in XGboost, which 

is a fast and efficient way to do this. At its core, it is based on a framework called "gradient 

boosting." This machine learning algorithm has the following parts: 

4.7.1 Parallel Computing 
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It is set up for parallel processing, which means that when you run XG boost, it will 

automatically use all of your computer's cores. 

• Regularization: Regularization is a way to avoid overfitting in linear and tree-based 

models. 

• Missing Values: XGBoost is built to handle missing values on the inside. The missing 

values are dealt with in a way that lets the model pick up on any trend in missing 

values.In addition to regression, classification, and ranking problems, user-defined 

objective functions can also be used. Given a set of parameters, an objective function 

is used to judge how well the model works. It also lets users set up their own metrics 

for judging. 

• Save and Load: With XGBoost, we can save and load our data matrix and model. If we 

have a lot of data, we don't have to redo the calculations. Instead, we can just save the 

model and use it again in the future. 

Unlike GBM, which stops pruning when a negative loss is found, XGBoost grows the tree to 

its maximum depth and then prunes backward until the improvement in the loss function is 

below a threshold. 

4.8 Naïve Bayes: 

Assigning the class 𝑐∗ = arg max𝑐 𝑃(𝑐 ∣ 𝑑) to a given document 𝑑 is one method of text 

categorization. The Naive Bayes (NB) classifier is derived by first recognizing that, 

according to Bayes' rule, 

𝑃(𝑐 ∣ 𝑑) =
𝑃(𝑐)𝑃(𝑑 ∣ 𝑐)

𝑃(𝑑)
 

𝑃(𝑑) has no bearing on the selection of 𝑐∗. Naive Bayes decomposes the term 𝑃(𝑑 ∣ 𝑐), by 

𝑃NB(𝑐 ∣ 𝑑): =
𝑃(𝑐)(∏  𝑚

𝑖=1  𝑃(𝑓𝑖 ∣ 𝑐)𝑛𝑖(𝑑))

𝑃(𝑑)
 

Our training technique uses add-one smoothing to estimate the relative frequency of 𝑃(𝑐) 

as well as 𝑃(𝑓𝑖 ∣  𝑐). In spite of it being simple as well as the fact that its conditional 

independence assumption doesn't hold in the real-world situations, Naive Bayes-based text 

categorization performs admirably (Lewis, 1998); indeed, Domingos and Pazzani (1997) 

demonstrate that Naive Bayes is optimal for certain problem classes with highly dependent 

features. 
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CHAPTER 5 

DATASET PREPARATION &ANALYSIS OF PROPOSED METHODS 

5.1 DATASET PREPARATION 

The EEG readings of over 80 patients, each of whom took part in multiple trials, make up the 

bulk of the data that we have collected for this project from Kaggle. 

The capacity to lessen or get rid of the sensory consequences of one's actions is present in the 

brains of many different animals, including the human brain. This is accomplished through the 

utilisation of a corollary discharge forward model system by the nervous system. During this 

stage of the process, the sensory cortex receives what the motor cortex refers to as a "reference 

copy" of an upcoming motor plan. The information contained in the "efference copy" is used 

by the sensory cortex to generate a "corollary discharge" representation of the anticipated 

sensory consequences of the upcoming motor act. This representation is based on the 

information. If you move your eyes from left to right, for example, your brain realises that the 

environment has not altered but simply follows along with the new visual input. When you 

speak, the auditory cortex in your brain reacts in a manner that is distinct from how it normally 

does when it hears the sound of your own voice. 

Schizophrenia is a persistent mental illness that impacts approximately 1 percent of the world's 

population. It may be challenging for patients with schizophrenia to differentiate between 

internally generated and externally generated stimuli. This difficulty may be caused by one or 

more problems with the corollary discharge process of the nervous system. This is one of the 

possible explanations for some of the symptoms of schizophrenia. Therefore, studying this 

process and how it relates to disease symptoms could help us gain a better understanding of the 

abnormal brain processes that are present in patients who have this disease. Patients who have 

Alzheimer's disease have been shown to have these abnormal brain processes. 

The authors of a previously published EEG study [14] utilised a straightforward button-

pressing task in order to investigate the corollary discharge in both participants who had 

schizophrenia and healthy controls. During this activity, participants were given the option to 

either (1) immediately press a button to generate a tone, (2) listen passively to the same tone, 

or (3) press a button without generating a tone. Participants in the study were selected from a 

pool of people who had a history of receiving a diagnosis of schizophrenia. Patients with 

https://www.kaggle.com/datasets/broach/button-tone-sz
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schizophrenia were unable to suppress the N100, which is a negative deflection in the EEG 

brain wave that occurs one hundred milliseconds after the beginning of a tone. This occurred 

when the patients pressed a button to produce the tone. When patients were instructed to simply 

listen to sounds without actively participating, the N100 was suppressed. The number of people 

in the sample was increased so that the results of the earlier study could be repeated. In this 

study, the EEG data of 10 healthy individuals and 13 patients with schizophrenia from a 

previous study were combined with the EEG data of 22 healthy individuals and 36 patients 

with schizophrenia. 

5.2 Pre-Processing 

The EEG signals from the dataset go through a series of pre-processing steps to prepare them 

for analysis. In order to generate a total of 7092 temporal samples without any overlap, each 

of the 19 recorded EEG signals was first segmented into 25-second frames. As a direct 

consequence of this, each frame of an EEG signal has the dimensions of 709219. Following 

that, the subsequent EEG frames were subjected to the z-score and L2 methods of 

normalisation, respectively. Traditional ML and DL models benefit from having their precision 

and overall performance improved by normalising the EEG signals. The dataset has been 

obtained from Kaggle and following steps describe the pre-processing part of the dataset.  

Preprocessing Steps : 

[1] Making average n rows in a matrix and also reshaping with mean. 

[2] Using electrodes list and taking average creating array for dependent and independent 

variable.  

[3] Using data button-tone data, column label dividing them with number of person. 

[4] Using number of trails of process (9216.0) 

[5] Calculating total trails with appropriate number of measurements using dependent and 

independent variable counter functions. 

[6] Splitting data into train and test then normalizing and setting (norm = max) and then 

reshaping 

[7] Again splitting data with shuffling setting True. 

[8] Finally, reshaping the independent data using normalizing data with length of 

electrodes data in both data (test and train). 

https://www.kaggle.com/datasets/broach/button-tone-sz
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Fig 10: Brain stumuli of patients during EEG 

Fig 11: Modelling Methodology 
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Fig 12: Research Methodology 

5.3 Data leakage, Pipeline and Hyper Parameter tuning 

Data leakage is a serious concern when utilising machine learning to build predictive models. 

When information from outside the training dataset is utilised to generate the model, this is 

known as data leaking. Predictive modeling's purpose is to create a model that can make 

accurate predictions based on fresh data not observed during training. This is a complicated 

situation. It's troublesome since we can't test the model against something we don't have. As a 

result, we must estimate the model's performance on unknown data by training and assessing 

it on a portion of the data. This approach underpins cross validation and other advanced 

processes that aim to limit the variation in this estimate. Forecasting models may be unduly 

optimistic, if not entirely wrong, as a result of data breaches. Data leakage occurs when 

information from outside the training dataset is used to create the model. This additional input 

may allow the model to learn or know something it wouldn't have known otherwise, 

undermining the mode's expected performance. Data preparation (for example, dealing with 

missing information, scaling/encoding, and feature extraction) is the first step in the machine 

learning process. While learning this method, we do the data preparation one step at a time. 

This may take some time since we need to prepare both training and testing data. Pipelines 

allow us to streamline this process by combining the preliminary processes and making model 
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modification and monitoring more convenient. Scikit-Pipeline Learn's class provides a 

framework for conducting a series of data changes followed by an estimation (Mayo, 2017). 

There are many benefits when implementing a Pipeline: 

• Convenience and encapsulation: We call fit as well as make the prediction only once 

about data to fit an entire sequence of estimators. 

• Joint parameter selection: We can do a grid-search over the parameters of all the 

estimators in pipeline. 

• Cross-Validation: Pipelines are responsible in helping to avoid any data leakage from 

testing data into trained model during the cross-validation. It’s achieved by making 

sure that same samples have been used for training the transformers as well as 

predictors. 

5.4 Performance Analysis of Proposed Methods 

5.4.1 Machine Learning Algorithms 

Research Studies related to the study of EEG signals data for Schizophrenia patients using 

machine learning techniques have been published. We have trained our model on Logistic 

Regression, Decision Tree, Classifier, Random Forest classifier, Stochastic Gradient Descent, 

Gradient Boosting Classifier, XGB Classifier, Bernoulli Naïve Bayes Classifier. 

The Accuracies for all the models are presented in the table below: 

Algorithm Accuracy (Test) 

Logistic Regression 60.74 

Decision Tree Classifier 57.99 

Random Forest Classifier 65.96 

Stochastic Gradient Descent 59.41 

Gradient Boosting Classifier 59.27 

XGB Classifier 69.27 
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Bernoulli Naïve Bayes Classifier 53.14 

Table 1: Accuracy of Machine Learning Models 

Since the above accuracies aren’t good enough for us, we will in order to reduce the data 

leakage and get better accuracy use a Pipeline to minimize the error rate or data leakage which 

help to boost our accuracy as we tried seven different classifiers. Logistic Regression, Decision 

Tree, Classifier, Random Forest classifier, Stochastic Gradient Descent, Gradient Boosting 

Classifier, XGB Classifier, Bernoulli Naïve Bayes Classifier. Pipelines contain our pre-

processing procedures and models, simplifying the machine learning workflow. If necessary, 

we may perform several pre-processing steps before fitting a model into the pipeline. 

After using Pipeline to reduce the data leakage our accuracy for the above mentioned 

algorithms are presented below in the form of Classification Report and Confusion Matrix. 

 

Fig 13: Confusion Matrix for Logistic Regression (Pipeline Version) 

Fig 14: Classification Report for Logistic Regression (Pipeline Version) 
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Fig 15: Confusion Matrix for Decision Tree Classfier (Pipeline Version) 

 

Fig 16: Classification Report for Decision Tree Classifier (Pipeline Version) 

Fig 17: Confusion Matrix for Random Forest Classifier 
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  Fig 18: Classification Report for Random Forest Classifier 

 

Fig 19: Confusion Matrix for Stochastic Gradient Descent 

 

Fig 20: Classification Report for Stochastic Gradient Descent 
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     Fig 21: Confusion Matrix for Gradient Boosting Classfier 

 

Fig 22. Classification Report for Gradient Boosting Classifier 

Fig 23: Confusion Matrix for XGB Classifier 
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Fig 24: Classification Report for XGB Classifier 

 

Fig 25: Confusion Matrix for Bernoulli Naïve Bayes Classifier 

 

Fig 26: Classification Report for Bernoulli Naïve Bayes Classifier 
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Fig 27: Accuracy Comparisons for the Classifiers 

 

 

Fig 28: Accuracy Curve of ML Algorithms 

The above graph shows that the data pipeline doesn’t solve our concerns related to accuracy, 

so we will now move on to our Deep Learning Models in order to build a better classifier which 

will justify our desired results. 

5.4.2 Deep Learning Models 

a. SVM: 
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SVMs [17] are a type of algorithm that can be used for a variety of purposes, including 

classification, regression, and others. These algorithms produce either a single hyper-plane or 

a collection of hyper-planes in a space that has a high or an infinitely high number of 

dimensions. The distance that is the farthest from the nearest training data point for each class 

is the functional margin of the hyperplane that intuitively achieves a good separation. This 

distance is what distinguishes one class from another. This is due to the fact that the 

generalisation error of the classifier will decrease as the margin gets larger. 

The Support Vector Machine, also known as SVM, was developed by fusing together two 

separate algorithms, namely: 

i. SVC (When the hyperplane performs its function linearly, the classification method 

is referred to as SVC.) 

ii. Linear SVC (The algorithm that separates the dataset by known linear approach 

then we call it as SVM.) 

When it comes to fine-tuning the hyper-parameters of the two algorithms that were just 

explained, we make use of a wide variety of cross-validation values (CV). We were successful 

in accomplishing our objectives as a result of improvements in precision and recall, in addition 

to a general reduction in error rates. The Kernel = RBF algorithm is utilised in order to perform 

the fine-tuning of the SVC hyperparameters. 

The linear SVC can be represented by the following expression: We employ two distinct 

methodologies in order to put the algorithm through its paces: first, a Linear SVC model, and 

then a standardised scale. These methodologies are used in this order. These methodological 

procedures are carried out in the order listed above. After that, we perform hyper-parameter 

tuning on this model by using Grid Search CV, Randomize Search CV, and a scaled feature. 

As a direct consequence of this, we were successful in accomplishing the required degree of 

precision while preserving an exceptionally low error rate. 

The same algorithm is then utilised on a number of different cross-validation values, such as 

cv = 3, 6, and 8. In order for us to accomplish this goal, we can put our algorithm to the test by 

applying it to a number of different cross-validation values to see how well it does. Throughout 

the entire process, we were able to accomplish our goals while preserving a high degree of 

accuracy. 
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Fig 29: Confusion Matrix for Simple SVC Model 

 

Fig 30: Classification Report of Simple SVC Model 
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Fig 31: Hyper-parameter tuning of Simple SVC Model 

 

Fig 32: Classification Report of Hyper-parameter tuned Simple SVC Model 
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Fig 33: Classification report of Linear SVC Model 

 

Fig 34: Classification report of Standardized Linear SVC Model 

b. CNN (Convolutional Neural Network): 

Convolutional, pooling, and fully connected (FC) layers constitute the architecture of a CNN 

model [50, 51]. Convolutional layers of 2D-CNN models contain a total of 32 3x3-dimensional 

filters. In addition, activation functions such as ReLU, Sigmoid, and Tanh have been added to 

convolutional layers. In the "Experiment Results" section of the report, the outcomes of these 

various activation functions will be compared to one another. To classify the data, dense layers 

were utilised to convert matrices to vectors, flatten layers were utilised to convert matrices to 

vectors, max-pooling layers were utilised to reduce the dimensions of the data, dropout layers 

with variable dropout rates were utilised to prevent overfitting, and dropout layers with variable 

dropout rates were utilised to prevent overfitting. Utilizing the sigmoid activation function, 

which is present in the dense layer that follows the dense one, it is possible to classify data into 

two categories. Following that, the 317 dense layers will be utilised. 

The number of filters, the size of the kernel, and the activation function determine the unique 

properties of the second proposed model for a 2D-CNN with three convolutional layers. The 

convolutional portion of this model's representation contains 5000 neurons. In addition, the 

model is comprised of one flat layer and two dense layers. The initial dense layer's activation 
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function is of the ReLU type, whereas the final dense layer's activation function is for sigmoid 

classification. 

The initial step is to normalise our data, followed by separating it into test and training sets, 

and the final step is to run the 2D-CNN with as little cooling and dropouts as possible. Tanh, 

Sigmoid, and ReLU activation functions are utilised during the initial phase of the process 

when working with a binary cross entropy loss function. 

 

Fig 35: Model Accuracy and Model Loss of CNN 

 

Fig 36: Classification Report of CNN 
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Fig 37: Second CNN Model Accuracy and Model Loss 

 

Fig 38: Classification Report for Second CNN Model 
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c. LSTM models  

Speech recognition [53], natural language processing (NLP) [54], and biomedical signal 

processing [55, 56] are some of the applications that make use of recurrent neural networks. 

(RNNs). The designs used by CNN are completely Feed-Forward. In contrast, RNNs have a 

FeedBack layer that returns the network output in addition to the subsequent input. This is in 

contrast to the fact that there is no such layer in CNNs. RNNs are able to recall previously 

received information and apply it to the processing of subsequent inputs as a result of their 

internal memory. This ability allows RNNs to improve their accuracy. According to [52], the 

three primary RNN subtypes are referred to as simple RNN networks, LSTM networks, and 

GRU networks. In this section, several LSTM models for determining if someone has 

schizophrenia based on their EEG signals are proposed. 

i. The first version of LSTM model 

The first proposed LSTM model, is made up of three different layers Front(Input) gates, Forget 

Gate and Output Gate. An LSTM layer consisting of 128-neurons is utilised in the construction 

of this model. These layers are as follows: 3 dropout layers, 10 dense layers. The ReLU and 

sigmoid activation functions are put to use. 

iii.  The second version of LSTM model 

The second LSTM model, it is composed of three layers again similar to the first version. In 

this architecture, LSTM layer consists of 100-neurons is utilised. When EEG signals are used 

as the data source for this study, the purpose of this investigation is to determine how the 

addition of LSTM layers to SZ affects the diagnostic accuracy of the model. 

The LSTM consists of three layers, each of which contains a dropout. The total number of 

neurons is 100 for our second model, we also use an extra embedding layer apart from the three 

layers. In this LSTM model our dense layer is 1. 

The dataset is then divided in 80:20 ration, with 80% becoming the Training Data and the other 

20% becoming the Testing Data. At some point during the training procedure, the three-layer 

LSTM model is applied to the Training Data. Before training and testing can be performed, it 

is necessary to reformat the input data dimension. This can be achieved by setting the 

dimension to 64. The binary cross entropy is used as the basis for the loss function, which is 

realised by employing the RMSProp optimizer during the process of adjusting the learning rate. 

In the updated version of the model, a dense output layer based on softmax has been included. 
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The binary cross-entropy is then employed as the loss function and the model is compiled using 

the Adam optimizer for a total of two hundred iterations. Using the Testing Data, the precision, 

recall, f1-score, and loss of the model are evaluated in the final step. At this stage, the 

effectiveness of the model will be evaluated. 

When evaluating a system, training and validation can be time-consuming processes; in fact, 

the size of the dataset after conversion (to integer format) may be smaller than the original text 

or string contained in the packets. This is due to the fact that the space required by the integer 

data type may be less than that required by the text data type. On the other hand, although 

unlikely, there is a remote possibility that the size will decrease. As a result, the number of 

words that will be trained on can have a substantial effect on the amount of time required to 

complete the training. For the purposes of this study, we have considered the full dataset, to 

get our model train better. We performed this algorithm on standard value but unfortunately 

didn’t get the required output/ accuracy.  

 

 

Fig 39: Model Loss vs Accuracy of LSTM Model 
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Fig 40: Train and Test Data Accuracy on different Epoch for Second Version of LSTM 

 

d.  𝑪𝑵𝑵-LSTM models: 

In CNN-RNN models, the first layer will typically consist of convolutional layers [52]. These 

layers are used to extract features and identify local patterns. The outputs from preceding RNN 

stages are utilised by subsequent layers. Experiments show that convolutional layers perform 

significantly better than RNNs when it comes to extracting both local and spatial EEG signal 

patterns. An RNN that makes use of convolutional layers is able to perform data analysis with 

greater precision. Several CNN-LSTM models for SZ diagnosis are going to be proposed in 

the section that comes after this one. 

i. The first version of CNN-LSTM model 

The CNN-LSTM model that has been proposed contains a total of five layers, some of which 

are referred to as embedding, dropout, CNN, LSTM, and dense. Convolutional layer with 32 
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filters, LSTM layer with 100 neurons, and one dense layer with sigmoid activation functions 

are included in this architecture. 

 

 

Fig 41: Train and Test Accuracy on different Epoch for First version of CNN-LSTM Model 

 

ii.                The second version of CNN-LSTM model 

In the following sections, we will discuss the second CNN-LSTM model that has been 

proposed. The CNN and LSTM layers of this network are CNN, Embedding, LSTM, dense. In 

the dense layer of the architecture, the ReLU activation function and a dense layer of 100 

neurons are utilised. This layer is an essential component of the building's structure. The dense 

layer is utilised for classification purposes. 

The following steps are required prior to feeding our CNN-LSTM model tensors. The features 

are separated into train, validation, and test sets based on their respective requirements and the 

model is trained and tested first on CNN and then consequently on LSTM.  
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Fig 42: Second Version of CNN-LSTM Model 

 

 

Fig 43: Train and Test Data accuracy on different Epoch for Second Version of CNN-LSTM 

Model 
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Table 2: Accuracy Score for Deep Learning Classification Models 

Model Kernels Parameters Settings Accuracy Error 

SVM-SVC RBF C = 1.0, 

‘gamma’ = Scale 

87.18/65.60 MSE = 0.34 

SVM-SVC  

(Hyper 

Parameter 

Tuning) 

RBF 'C': [0.1, 1, 10, 100, 

1000],  

'gamma':[1, 0.1, 0.01, 

0.001, 0.0001] 

 

62.11/54.38 MSE = 0.94 

kaLinear SVC( 

CV=3) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1) 

100/99.98 MSE = 0 

Standardized 

Linear SVC 

(CV=3) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1) 

100/100 MSE = 0 

Linear SVC 

(CV=6) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1)  

100/99.98 MSE = 0 

Standardized 

Linear SVC 

(CV=6) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1) 

100/100 MSE = 0 

Linear SVC 

(CV=8) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1)  

100/99.98 MSE = 0 
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Standardized 

Linear SVC 

(CV=8) 

RBF "C": uniform(1, 10), 

"gamma": 

reciprocal(0.001, 0.1) 

100/100 MSE = 0 

CNN ( ReLU) Conv2d, 

MaxPooling2D 

kernel_size=(5, 20)/ 

(3,3) 

activation=‘tanh’,‘relu’,‘

sigmoid’ 

 

64.75/63.63 

 

 

Loss = 0.64 

CNN  ‘neurons’= 5000,  

‘activation’ = ‘relu’, 

‘sigmoid’ 

99.59/ 69.5 

 

 

Loss = 0.42 

LSTM 

(First Version) 

 ‘neurons’ = 128 

‘activation’ = 'sigmoid' 

‘dense’ = 10 

 

59.83/ 

0.0000e+00 

 

 

Loss = 0.67 

 

LSTM 

(Second 

Version) 

 ‘neurons’ = 100 

‘activation’ = 'sigmoid' 

‘dense’ = 1 

 

59.70/ 60.35 

 

 

Loss = 0.67 

 

CNN-LSTM 

(First Version) 

 ‘neurons’ = 100 

‘activation’ = 'sigmoid' 

‘dense’ = 1 

59.69/ 60.35 

 

Loss = 0.67 

 

CNN-LSTM 

(Second 

Version) 

 ‘neurons’ = 100 

‘activation’ = 'relu' 

‘dense’ = 1 

59.69/60.35 

 

Loss = 0.67 
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Table 3: Performance of SVM Classifier 

Name Accuracy Precision Recall F1-Score 

Standardized Linear SVC 

(CV=3) 

100% 100% 100% 100% 

Standardized Linear SVC 

(CV=6) 

100% 100% 100% 100% 

Standardized Linear SVC 

(CV=8) 

100% 100% 100% 100% 
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CHAPTER 6 

RESULTS AND DISCUSSION 

SZ is a mental disorder that interferes with normal brain function and can result in a wide range 

of day-to-day difficulties for patients. For the purpose of diagnosing schizophrenia spectrum 

disorders, also known as SZ mental disorders, a number of screening methods have been 

developed, with the EEG functional imaging modality attracting the attention of neurologists 

and specialist physicians. A diagnosis of coma based on EEG signals has historically been 

notoriously difficult to attain. A number of research projects utilising the application of AI 

methods to the diagnosis of SZ and the interpretation of EEG signals have been successfully 

completed over the past few years. Using EEG signals, it is hoped that neurologists and other 

medical professionals will be able to diagnose SZ disorder more quickly and accurately. This 

article investigates the use of EEG signals in conjunction with a variety of AI-based diagnostic 

methods for schizophrenia. DL models [19], [20], [21], and [22] are combined with a variety 

of conventional ML techniques [22]. AI models that diagnose SZ by analysing EEG signals 

incorporate all of the steps of selecting a dataset, preprocessing that dataset, extracting and 

selecting features, and classifying the data. The purpose of this is to diagnose SZ. This study 

collected EEG data from a total of 14 participants, including both healthy participants and those 

with a diagnosis of schizophrenia [23]. This dataset contains EEG signals sampled at 250 Hz 

and distributed across 10 channels [23]. This dataset contains forty distinct channels in total. 

During the initial stage of the preprocessing phase, the EEG signals were divided into 25-

second frames. The EEG signals were subsequently transformed using the z-score and z-score-

L2 functions. During this portion of the recording, each EEG frame had a resolution of 196250 

pixels. It is important to note that z-score and z-score-L2 normalisation methods were used to 

preprocess EEG signals for DL models. The classification algorithms we used were designed 

using the system with the features: 

Processor - AMD Ryzen 5 5600X , Ram - 16GB, Hard Disk - 1 TB, SSD - 500GB, GPU - 8GB 

RTX 3060TI. 

Multiple classification algorithms based on conventional machine learning were used to 

diagnose SZ by analysing EEG signals. This section investigates the use of normalised EEG 

signals as features within classification algorithms. This study employed the following 

classification algorithms: SVM [24], KNN [25], DT [26], naive Bayes [27], RF [28], ERT [29], 

and bagging [30]. In comparison to other classification methods, Simple SVC and Linear SVM 
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classification using EEG signals had the highest accuracy, with test and train accuracy of 

100/100. The algorithms were evaluated using a technique known as cross validation with 3,6 

and 8 folds. In the sections that follow, we will examine a variety of DL methods for diagnosing 

schizophrenia based on EEG signals. This section describes a variety of deep learning 

strategies, including the ones listed below: There are two LSTM models, two 2D-CNN 

structures, and two 2D-CNN-LSTM networks. Various activation functions, such as ReLU, 

Sigmoid, and tanh, were used to implement the proposed deep learning models. Throughout 

the classification process, each model utilised its own implementation of the sigmoid activation 

function. The results of a re-evaluation of the outcomes predicted by DL models employing a 

variety of distinct normalisation strategies and activation functions are presented in Tables 

below. The fact that this model has never achieved an accuracy of 100 percent with training of 

full dataset compared to previous paper studies is unique. Figure below compares our best 

Classification model to other models and used to diagnose SZ using EEG signals in our work.  

 

Fig 44: Accuracy Comparison for Machine Learning and Deep Learning Models 

Fig 45: Accuracy Curve of Machine Learning and Deep learning Algorithms 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

 

7.1 Conclusion: 

This dissertation compares the system performance of Decision Tree, Random Forest, SVM, 

Nave Bayes, XGBoost, LSTM, CNN, and LSTM-CNN prediction models developed for 

hospitalised schizophrenia patients. The study determined that SVM (accuracy = 100%) is the 

most accurate model for classifying hospitalised patients with schizophrenia into this group, 

followed by CNN (accuracy = 99.59%). We also tried training our model on other algorithms 

such as LSTM, CNN-LSTM, Random Forest and Decision Tree but due to overfitting and bad 

accuracy couldn’t continue with them. We even tried data pipeline methods to avoid leakage 

of data in order to improve the accuracy of our test data, but it was not an effective approach. 

XGBoost did give us somewhat better number(accuracy=69%) when compared with other 

machine learning models but the run time for the continued for more than 2 days and eventually 

we had to stop the trial. Apart from all the approaches, the SVM and CNN algorithms perform 

better in terms of performance metrics than the other algorithm. The results indicate that 

algorithms such as SVM may assist hospitals in treating this disorder. In this regard, the 

predictive modelling approach could prevent the hospitalisation of individuals with 

schizophrenia. Consequently, we will concentrate on utilising future lines to predict risk factors 

in hospitalised patients with schizophrenia and readmissions in the acute units of each health 

complex. 

complex. 

Table 4: A comparison of related work with our model accuracy and best classifier. 

Work 
Reference 

Techniques 
Used 

Best 
Performing 
Classifier 

Overall 
Accuracy 

Dataset 
 

EEG Data 
(Test Subjects) 

[36] SVM  SVM with 60 
features and 
cross validation 
to validate. 

87.0% Public 
Dataset 

40 
Schizophrenia 
and 12 
healthy 
subjects 

[31] DT, LD, KNN, 
PNN, SVM 

SVM using RBF 
kernel and t-
test for feature 
selection 

92.90 Institute 
of 
Psychiatry 
and 

14 
Schizophrenia 
and 14 
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Neurology 
in 
Warsaw, 
Poland 

healthy 
subjects 

[28] SVM SVM with 
combined 
feature set of 
15 

88.24% Clinical 
Dataset 

34 
schizophrenia 
patients and 
34 healthy 
subjects 

[39] SVM, 
Multilayer 
perceptron 
(MLP) 
classifiers 

MLP using 
feature 
selection J5 

93.42% Public 
Dataset 

31 healthy 
subjects and 
16 patients 

[8] CNN CNN with 11 
layes and ReLU 
activation 
function 

89.59 Institute 
of 
Psychiatry 
and 
Neurology 
in 
Warsaw, 
Poland  

14 healthy 
subject and 14 
schizophrenia 
patients 

[40] Feed Forward 
Neural 
Network, SVM 

SVM for EEG, 
Resting +two 
different 
mental 
task(visual 
stimulus) using 
RBF Kernel 

88.50% Clinical 
Trial 

55 
schizophrenia 
subjects and 
23 healthy 
subjects 

[10] SVM , KNN, DT , 
Naïve Bayes, 
RF, 1D-CNN, 
1D-CNN-LSTM 

1D CNN-LSTM 
with 5-fold-
cross validation 
using 11 Max, 
dropout, CNN, 
LSTM, flatten, 
pooling, and 
dense layers. 

99.25% Institute 
of 
Psychiatry 
and 
Neurology 
in 
Warsaw, 
Poland 

Schizophrenia 
patients:14, 
Healthy 
patients:14 

[9] DT, KNN, EBT, 
SVM 

EBT using 
Approximate 
Entropies 
empirical mode 
decomposition 
(EMD) based 
characteristics 

89.59% Kaggle 49 patients 
with 
schizophrenia 
and 32 
healthy 
control 
subjects 

[41] SzNet-5(with 
Ensemble 
method), 
SzNet-15, 
SzNet-35(with 
Deep learning 

SzNet-5(5 
meaning 5 
midline 
electrodes) 
with Ensemble 
method using 
cross-validation 

78% Kaggle 63 healthy 
patients and 
65 
schizophrenia 
patients 
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method like 
CNN) 

10 and hyper 
parameter 
tuning. 

[42] Random Forest Random Forest 
using 10-cross 
validation 

96.77% Public 
Dataset 

14 healthy 
patients and 
14 
schizophrenia 
patients 

[43] Random Forest Random Forest 
using 10-cross 
validation and 
mtry(number 
of features) = 8 

81.10% Kaggle 49 
Schizophrenia 
patients and 
32 healthy 
patients 

[44] TCN, MLPNN, 
TCN-AE 

MLPNN using 
7-fold cross 
validation 

64% Clinical 
Dataset 

NA 

[45] LSTM, SNN SNN method 
with 1-fold-
cross validation 

100% Kaggle 
 

32 Healthy 
subjects; 49 
Schizophrenia 
patients. 

Presented 
Work 

Logistic 
Regression, RF, 
DT, XGBoost, 
SVM, 2D-CNN, 
LSTM,2D-CNN-
LSTM 

Standardized 
Linear SVM 
using 3,6,8 
cross-validation 
with RBF 
Kernel 

100% Kaggle 32 Healthy 
subjects; 49 
Schizophrenia 
patients. 

 

7.2 Future Scope: 

We plan to expand the scope of the experimental study to include additional disorders and 

populations, each of which may use a different instrumentations as well as protocols for EEG; 

compare the performance of the proposed methodologies for EEG data classification by 

comparing all of the models that have been mentioned; increase the accuracy while minimising 

the loss and error caused by using a variety of kernels, activation functions, and fitting dense 

layers; and develop a method that is relevant to a range of disorders as well as the populations. 

Future research will concentrate on combining traditional ML models with models based on 

the deep learning in order to diagnose schizophrenia by extracting various nonlinear EEG 

signal characteristics beforehand. Following this, DL models are used to extract features from 

the previously extracted raw EEG signals. The classification process is complete once the DL 

and handcrafted characteristics are combined. Utilizing graph models powered by deep 

learning is one of the novel approaches being investigated for the diagnosis of brain disorders 

(DL). 
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