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Abstract 

“The Stable marriage problem (SMP) is basically the problem of finding a stable 

matching between two sets of persons, the men and the women, where each person in every 

group has a list containing every person that belongs to other group ordered by preference. The 

first ones to discover a stable solution for the problem were D. Gale and G.S. Shapley. Today the 

problem and most of its variations have been studied by many researchers, and for most of them 

polynomial time algorithms do not exist. Lately genetic algorithms have been used to solve such 

problems and have often produced better solutions than specialised polynomial algorithms. In 

this thesis we study and show that the Stable marriage problem has a number of important real- 

world applications. It the experimentation, we model the original problem and one of its 

variations and show the benefits of using genetic algorithms for solving the SMP .” 
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1.Introduction 

1.1.The standard SMP 

The stable marriage problem is basically the problem of finding a stable matching between 

two sets of persons, the men and the women, where each person in every group has a list 

containing every person that belongs to other group ordered by preference. The problem of 

finding a stable matching was stated in a paper published in 1962 by Gale and Shapley 

(1962, p. 11), and it can be defined as follows: 

“A certain community consists of n men and women. Each person ranks those of 

the opposite sex in accordance with his or her preferences for a marriage partner. We seek 

a satisfactory way of marrying off all members in the community. … we call a set of 

marriages unstable (and here the suitability of the term is quite clear) if under it there are a 

man and a woman who are not married to each other but prefer each other to their actual 

mates.” 

The stable marriage problem (SMP) has been studied and researched by a large number of 

scholars throughout the previous decades. The first ones to discover a stable solution for 

the problem were D. Gale and G.S. Shapley (1962) by the introduction of their algorithm, 

called 

the GSS algorithm, in their paper ”CollegeAdmissions and the Stability of Marriage”Since. their 

findings, many other aspects and variations of the problem have been examined and solved. Also 

a multitude of modifications and implementations of their algorithm exist. 

This is how the GSS algorithm (Gale and Shapley, 1962) functions: One of the sets 

(usually the men) is the applicants, that is the ones who propose marriage. We start with 

the first man who proposes to his most preferred woman. She has to accept since she is 

single and they become engaged. They are not matched until the end of the procedure. We 



could say that the woman keeps the man in mind in case no-one better comes up. This is 

one of the assumptions of the algorithm. Then the second man proposes to his most 

preferred woman. Now there are two possibilities: She is either engaged or single. If she is 

single they become engaged, but if on the other hand she is engaged, she checks her list 

and compares her fiancée with the proposer. If she prefers the new man more than her 

fiancée then she breaks her engagement and creates a new engagement with the new man. 

If not then the man proposes to his next most preferred woman and the cycle repeats. The 

algorithm assures that every girl will get a proposal in the end and it proves that there is 

always a stable set of marriages. It ends when every woman has gotten at least one 

proposal and since we have n men that propose to n women, the algorithm's complexity is 

𝑂(𝑛2) (Dubins and Freedman, 1981). below you can see the algorithm where m = men and 
w = women. 

The Gale Shapley algorithm 

assign each person to be free; 

while some man m is free and m has a nonempty list loop 

w := first woman on m's list; m proposes to w 

if m is not on w's preference list then 

end if 

if some man p is engaged to w then 

assign p to be free; 

end if 

assign m and w to be engaged to each other; 

for each each successor p of m on w's list loop 

delete p from w's list; 

delete w from m's preference 
list;

goto line 3





delete w from p's list; 

end loop; 

end loop; 

The purpose of this thesis is two-fold. In the first part, we will analyse the SMP and its real- 

world applications, and the variations of the problem. Later, we will present our own 

implementation through the use of the genetic algorithm(GA), and evaluate our results according 

to our objectives. 

1.2.Problem Statement 

The GSS algorithm always finds a stable matching. In a stable matching, there is no man-woman 

pair that would prefer each other compared to their current matches. However there are some 

problems with the original algorithm. First of all, it produces either the man optimal or the 

woman optimal result, depending on which group is proposing. “A stable marriage is called 

optimal if every applicant is at least as well off under it as under any other stable assignment. ”

(Gale and Shapley, 1962, p. 10). 

The problem with the man optimal result is that it is also the result where every woman gets her 

worst choice partner, meaning the marriages are stable but all the women are highly unsatisfied 

with their partners, and vice versa for the woman-optimal matching. 

Since 1962, a great amount of articles and books have been written about the stable marriage 

problem. Nowadays, there are variations of the SMP which have been proven to be NP-hard 

(Iwama, Manlove, Miyazaki and Morita, 1999; Manlove, Irving, Iwama and Miyazaki, 2002). 

NP-hard stands for 'non-deterministic polynomial- time hard' which means, that the SMP 

belongs to a category of problems for which it has not been proven yet if polynomial time 

algorithms exist for solving them. Therefore, approximation algorithms were suggested to deal 



with the NP-hard variations of the problem. An approximation algorithm is an algorithm that 

because no polynomial time solution can be found, it settles for an optimal solution, of a specific 

optimality, of a subset of the problem. 

In contrast with approximation algorithms, the genetic algorithm is a heuristic algorithm which 

finds a solution of good quality but of unknown optimality. Genetic algorithms are a category of 

evolutionary algorithms that function in a procedure similar to the one used in natural evolution 

to find solutions to optimization problems. They usually start from a population of random 

solutions and then rate the individuals using a fitness function. The best individuals are 

combined then together to create better solutions until an acceptable result is reached. They also 

allow us to specify the properties of the solution we are looking for, by modifying the fitness 

function. This is why we decided to use a genetic algorithm for our experiments because in that 

way we can specify if we want solutions that are just stable or also have a better happiness for 

the women than the GSS result, or have other different properties according to the criteria we 

wish to apply. 

GAs are especially equipped for dealing with NP-hard problems (Grefenstette, Gopal, Rosmaita 

and Van Gucht, 1985). The reason because genetic algorithms are good at this is because they 

can go through a large number of solutions quite fast and locate good solutions. One example of 

a problem that falls in the same category and has been successfully solved with the genetic 

algorithm, is the travelling salesman problem where we seek to find the shortest way of 

travelling between a number of cities. 

An interesting variation of the SMP is the Stable Marriage with Correlated lists where lists are 

affected by beauty, which means that certain individuals that are considered prettier are higher in 

everyone's list. 

1.3.Objectives 

The objectives behind this thesis are basically two: 

1. First of all, our goal is to find and describe the most important instances of the SMP and 



its variants in real-life. 

2. Our next objective is by studying the original algorithm by Gale and Shapley. to create a 

solution based on a genetic algorithm that focuses on finding solutions that may not be 

stable but have better happiness values and are more fair than the GSS solution, 

concerning the difference between happiness between men and women. Also, we will 

evaluate how correlated lists affect the solutions. 

1.4. Main contribution 

Our contribution is the evaluation of how correlation affects the results in the GA results. It is 

clear that as the level of correlation increases, the properties of the solutions also change. 

1.5.Overall method 

In order to achieve our goals we followed the following strategy. Concerning the first part of the 

research, we did a thorough examination and literature study of previous work on the subject, 

and identified SMP applications and modifications that exist. 

For the second part, we decided to use the genetic algorithm to create an implementation of the 

problem in MATLAB. After that we created a suitable fitness function and in addition an 

implementation of the GSS algorithm. Then a number of experiments was conducted for the 

original SMP and for the Stable Marriage with Correlated lists. Our plan was to compare the two 

implementations and judge them in accordance to certain criteria, in order to show how efficient 

the GA is for finding solutions to the Stable marriage problem, and how these solutions change 

as correlation increases. 

2.Background Theory 

In chapter 2 we provide all the instances and variations of the SMP we managed to locate 

through literature study. After that we describe some basic elements of the genetic algorithm and 



finally we present other attempts to combine the two subjects. 

2.1.Stable Marriage problem variations 

There are a few variations of the SMP that can be combined together of course to create even 

more. Here we present those that are the most important and have been studied more over the 

last 50 years. 

1. Stable marriage with Ties 

Perhaps the simplest generalization of the SMP is the SMT, the Stable marriage problem with 

Ties, or with indifference (Iwama, Manlove, Miyazaki and Morita, 1999; Irving, Manlove and 

Scott, 2000). The difference about it is that the preference lists include ties, in the sense that a 

person finds two of the persons of the opposite sex equally preferable and they both occupy the 

same position in his/her preference list. The notion of stability then changes. In order for us to 

move on, we need to present the notions of weak strong and super stability as mentioned by 

Manlove (1999, p. 3) : 

“A matching M is weakly stable if there is no couple (x; y), each of whom strictly prefers the 

other to his/her partner in M. Also, a matching M is strongly stable if there is no couple (x; y) 

such that x strictly prefers y to his/her partner in M, and y either strictly prefers x to his/her 

partner in M or is indifferent between them. Finally, a matching M is super-stable if there is no 

couple (x; y), each of 

whom either strictly prefers the other to his/her partner in M or is indifferent between them.” 

Out of the three stability notions weak-stability is the most important (Manlove, et al., 2002) and 

it is shown that a weak stable matching always exists. In order to tackle the SMT the solution is 

quite simple. 



“Bybreaking the ties arbitrarily, an instance I of SMT becomes an instance I' of SM, and it is 

clear that a stable matching for I' is a weakly stable matching for I. Thus a weakly stable 

matching for I may be found in O(n2) time, using the Gale/Shapley algorithm" (Manlove, 1999, 

p. 2). 

The way however, that ties are broken has an impact on the size of the stable matchings that the 

algorithm produces, and it is impossible to identify the most suitable way (Irving and Manlove, 

2007). Because every instance of SMT actually includes many different instances depending on 

how we choose to treat it, we have many different sizes of stable matchings according to the way 

we break ties (Irving, Manlove and Scott, 2008). Nevertheless, Irving (1994) produced an 

algorithm that finds solutions that include no strong or super-stable matching. 

The SMT is usually studied in combination with the next variation, that of Incomplete Lists, so a 

few more algorithmic solutions about it are mentioned in chapter 2.1.2. 

2. Stable marriage with Incomplete Lists 

Known as SMI (Stable Marriage with Incomplete lists) it is a variation of the original problem 

that is more realistic. In this case, we have the situation where a woman might declare that one 

or more men are unacceptable for her, meaning she would under no circumstances accept a 

proposal from them even if she were single. A stable matching exists in this variation but it does 

not always contain all persons, some might remain “single”(GaleandSotomayor, 1985). 

You can observe below the differences between the preference lists for the women, for the SMP 

with a population of 4 men and women, for the four variations of the problem. SMTI stands for 

Stable marriage with Ties and Incomplete lists which is the combination of the two problems. 

Wx is the preference list of woman number x (likewise for men) and the brackets in figure 2 

symbolize ties in the lists. The SMI and SMTI lists contain only the acceptable individuals. 



Figure 2: Preference lists for SMP 

By combining SMT and SMI we get the SMTI(Stable marriage problem with Ties and 

Incomplete Lists), which was first addressed by Ronn (1986). Manlove (1999) also provided 

three algorithms, one for each notion of stability, that were based on Irving's work (1994). 

Irving's (1994) contribution was algorithms for the stable marriage problem with complete lists 

and ties. The application of both incomplete lists and ties causes the problem to become NP-hard 

(Iwama, Manlove, Miyazaki and Morita, 1999). For the SMTI a number of approximation 

algorithms exist (Iwama, Miyazaki and Yamauchi, 2007; Irving and Manlove, 2007). In the 

Standard problem SMT
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SMTI, the stable matchings that exist, are not always of the same size. So the algorithms must 



also focus on finding a maximum stable matching, also known as MAX SMTI (Iwama, Manlove, 

Miyazaki and Morita, 1999). In comparison with the SMP, the SMTI also has at least one stable 

matching where the algorithm's complexity is O(a), By a we symbolize the acceptable pairs that 

exist (Gusfield and Irving, 1989). Alternative solutions include the use of local search solutions, 

that try to improve a matching by moving from a solution with n stable pairs to one with n+1 

until an optimal one is reached (Marx and Schlotter, 2010; Gelain, et al., 2010). 

3. Agents 

Agents refer to the existence of individuals, whose purpose is to match the men with the women 

and each of them has in their possession the preference lists of one or more participants. The 

pairs are created after negotiations between the respective agents. The preference lists of each 

person therefore are hidden. Each agent only has possession of the information of his own client, 

and knows nothing about the way other participants have ranked him/her. It can be said that if 

the participants chose to act as agents to themselves this variation could be treated as the original 

problem. The main focus in this situation for every participant is to act by keeping his 

preferences private. This problem is known as the Distributed Stable Marriage Problem (DisSM) 

(Brito and Meseguer, 2008). 

4. The sex-equal stable marriage 

It is clearly evident that the SMP could never be implemented to solve the problem of divorces in 

modern society. The reason for that is that each man or woman would prefer the matching in 

which their happiness is maximized. The algorithms which have as a goal to achieve stable 

solutions are diametrically opposed to the individual happiness of any participant (Caldarelli and 

Capocci, 2000). 

We adopt the idea that a person's happiness or his regret cost, relates to the rank of his/her 

partner has on his/her preference list (Dzierzawa and Omero, 2000). In the following simple 

problem for 3 men and women, the regret cost for man 1 if he picks woman 3 is 3 since that is 

her rank, and woman 3 has a regret cost of 2: 



Men’spreference lists Women’spreference lists 

Figure 3: Regret costs 

Therefore, if our aim is to maximize the total happiness for both the men and women, we could 

achieve it through the minimization of a function. We bring into attention that in the Gale 

Shapley algorithm even though the happiness of the men is maximum, there might be another 

stable matching with a better total happiness. 

The sex-equal stable marriage problem (Gusfield and Irving, 1989), or the sex fair problem, can 

be defined like this: If M is a stable matching between n men and women and the position 

of a woman w in a man's preference list is pm(w), and for the woman pw(m) 

respectively, we can define the happiness cost h(M), and the egalitarian happiness cost eh(M), for 

any instance of SMP, with formulas (1) and (2) (Iwama and Miyazaki, 2008). 

1: 1 2 3 1: 3 1 2

2: 3 2 1 2: 3 2 1

3: 2 3 1 3: 3 1 2

Happiness cost

h(M) = ∑pm(w) + ∑pw(m)

Egalitarian cost

eh(M) = ∑p (w) - ∑p (m)

m w



We can define the happiness per person if we divide the above numbers with the number of 

participants. The formulas 3,4 and 5 give us the happiness per person(hpp), for men or women, 

the happiness per couple(hpc) and the egalitarian happiness per couple(ehc) (Caldarelli and 

Capocci, 2000). Where N is the number of men/women. 

Back in 1987, Gusfield (1987) presented three polynomial time algorithms using graph theory to 

solve the SMP, and proved how to construct a tree graph, representing the SMP. One of those 

algorithms found the minimum regret stable matching for women. The problem of finding a sex- 

equal stable matching is NP-hard (Yanagisawa, 1993), and polynomial algorithms where 

suggested by Gusfield and Irving (1989). Approximation algorithms also exist for the sex-equal 

Happiness per person

hpp(M) = 1/
N( ∑pm(w))

(3)

Happiness per couple

hpc(M) = 1/N( ∑p (w) + ∑p (m))

m w (4)

Egalitarian happiness per couple

ehc(M) = 1/N( ∑pm(w) - ∑pw(m)) (5)
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N( ∑pm(w))

(3)

Happiness per couple

hpc(M) = 1/N( ∑p (w) + ∑p (m))

m w (4)

Egalitarian happiness per couple

ehc(M) = 1/N( ∑pm(w) - ∑pw(m)) (5)



problem (Iwama, 2007). 

Apart from those forms of happiness and their respective maximum matchings, lately there has 

been research around finding a lexicographic maximum matching. A lexicographic maximum 

stable matching is defined as follows (Irving, Manlove and Scott, 2008, p. 2): 

“Alexicographic maximum stable matching is one in which the maximum number of people 

obtain their 1rst-choice partner, and subject to this condition, the maximum number obtain their 

second-choice partner, and so on.” 

5. Stable matchings 

We already mentioned that at least one stable matching exists in every SMP instance (Gale and 

Shapley, 1962). Knuth (1976) wondered if it is possible to know the number of stable matchings 

that exist if we know the number of men and women. The answer was given by Irving and 

Leather (1986), by an algorithm that calculated, that if n is a power of 2, we can calculate the 

number of stable matchings that exist. In SMTI, or in the hospital/residents problem with 

couples, that is described later, a stable matching does not always exist. However, other solutions 

that are not stable but have a maximum number of stable pairs can be found in those situations. 

This constitutes, a good judging criteria, concerning the quality of the solutions. Also, if total 

stability is not a fundamental requirement then solutions with the maximum number of couples, 

are frequently more desirable, especially for a large number of participants. In these cases the 

matches with the largest possible number of stable matchings are given priority (Biro, Manlove 

and Mittal, 2010). 

6. Quantitative lists 

In contrast to the SMP where every man only assigns a rank to every woman, SMP with 

Quantitative lists, or SMQ, includes values that show how much a man prefers a woman 

compared to another one. SMQ can be handled in the same way and can be solved with 

traditional SMP algorithms (Gusfield, 1987; Irving and Gusfield, 1989). Lately a new side of the 



problem was studied where the notion of a -stability was introduced, where a symbolizes the 

preference value (Pini, Roshi, Venable and Walsh, 2010). 

7. Beauty and distance 

Caldarelli and Capocci (2000) created a more realistic model by introducing the notions of 

beauty and distance. It is obvious, that in the real world, people's opinions about beauty 

tend to be similar, so those tendencies should be reflected in the preference lists of each 

gender. It is highly unlikely for example, in an instance of 1000 men and women that 

someone would rank a woman 1st and someone else would rank the same woman last. This 

instance of the problem also known as SM with Correlated lists, is of great significance 

because it is a closer representation of reality than the standard SMP where the preference 

lists are created randomly. Also in the real world, people usually find partners that live 

geographically close to them. By applying those two principles in their model Caldarelli 

and Capocci (2000) came to the conclusion that: 

“It is interesting to note, however, that even if the more beautiful players have by 

far a larger satisfaction in their matching with respect to the others, the general 

dissatisfaction in the system increases. As a matter of fact, when the concept of “most 

beautiful”intheworldtends to be the same for everyone it becomes more and more difficult to 

make more people happy. However, the presence of beauty transforms in a fairer way the GS 

algorithm that now tends to give the same results regardless the sex.”(Caldarelli and Capocci, 

2000, p. 4). 

The above results can be easily explained. In the case of uncorrelated lists, it is easier to 

satisfy the majority of the participants because their interests, in most cases, do not 

coincide. So in extreme cases like in the man-optimal matching it could happen that every 

man is matched with his first choice, if all the first choices are different. When beauty is 

applied however, it is certain that the opinions of people and their preference lists will start 

to look more and more alike. Therefore, it is evident that more and more people would 



have to settle for a lower ranking partner. Thus the overall satisfaction decreases compared 

to original SMP. Nevertheless, the happiness for the women increases since now the more 

beautiful women would get more proposals and it is more likely that they would get more 

preferable partners. 

In order to introduce beauty into the SMP we can use formula number (6), that Caldarelli 

and Capocci (2000) used: 

The preference lists in this situation are created as follows. Each man gives a score S to 

each woman. S is consisted of n and UI. In this case, n is a random number between 0 and 

1. This reflects the man's individual opinion of the woman. The second number I belongs 

again to (0,1), but is the same for every man. U is a value used to weigh the contribution of 

I in every preference list. In that way it is certain that every man will have a different value 

for the same woman w, but we ensure that the scores tend towards a specific value 

according to the value of I. For larger values of U, beauty plays greater part, and is 

considered more important, and the larger U becomes the more the lists become identical 

for everyone. It is also noted that there is a gap between the happiness of the more 

preferable and “uglier”people,that grows as U increases. If U = 0 then beauty plays no part 

whatsoever and we have an instance of the original SMP. Then all the women are sorted 

according to their scores in a descending order and the preference lists are created. The 

women's preference lists are created in the same way. 

In contrast, the introduction of distance, calculated in the scores in a similar way as beauty, did 

not yield different results in comparison with the classic algorithm, because the criterion of 

beauty had a much larger impact on the creation of the lists. Distance did not give an advantage 

to every woman or man that was considered beautiful, but rather every participant received a set 

of “neighbours”thathadanadvantage in comparison with the rest people for that specific 

preference list. So the lists' nature became more random in contrast with beauty. In a subsequent 

paper (Caldarelli, Capocci and Laureti, 2001) it was considered that the participants had 

S = n + U*I (6)



incomplete information about the other sex. It was thought that distance separated people in such 

a way, that some of the participants had access or were acquainted to only a fraction of the 

population of the other sex. So the preference lists contained subsets of the population different 

for each man/woman, and the problem now started to look like SMI. The results from such 

studies implied that, the competition for more beautiful partners was not so fierce as before, due 

to lack of knowledge and lack of alternative partners to choose from. So as a result, the more the 

number of people that were missing from the preference lists increased, the better total happiness 

tended to be. 

Beauty and distance are terms borrowed from the real world. They do not apply only to the 

marriage example. We could say that beauty is the attribute that the other side finds attractive in 

every instance. For example, in the student-hospitals representation which is examined in chapet 

2.2.1, beauty has different meanings for each side. For the students, beauty could be the sum of 

all their qualifications, since that is what hospitals would find attractive in a medical student, and 

for the hospitals beauty could represent how well-known or prestigious a hospital is. Distance 

could also have some significance, since some students might prefer hospitals situated close to 

their homes or in specific cities where they would like to reside in. 

2.2.Real world applications 

There are some instances of the stable marriage problem like the firm-workers problem (Roth 

and Sotomayor,1992), that are exact copies of the SMP with only the terminology changing. The 

firm-workers problem is a basic representation of the job market, where every company wants to 

hire the best workers and every worker wants to be hired at the company he prefers most, and is 

of course an instance of SMP. The original problem is however, significant since all other 

methodologies for solving the more complex variations are based on the GSS algorithm. 

We will not mention any more real-world applications that are similar to the firm-workers 

example, but we will present those instances that include different aspects, in comparison with 

the original problem and how researchers have addressed them in order to deal with their 

characteristic properties. 



1. College admissions and the hospital residents problem 

Perhaps the most practical and the most well- known application of SMP is college admissions. 

The same problem is also known as the hospitals/medical students matching problem (Roth and 

Sotomayor, 1992). It was mentioned for the first time in the paper by Gale and Shapley (1962). 

Here we have the notion that each college can admit a number of students, so more than one 

student can be admitted in the same college. The problem that led to the use of SMP in this 

situation, was that in the mid-40's medical students, when they received offers from hospitals, 

they used to wait in case a better offer would present itself from a hospital more to their liking. 

The situation would end up in unhappy students who accepted their first offers only to regret it 

or in unhappy hospitals when students did not keep their earlier commitments. 

The problem was resolved through an initiative called the National Internships Matching 

Problem (Roth and Sotomayor, 1990) which in 1951 solved the problem long before Gale and 

Shapley came up with stable matchings. Same initiatives are still used around the world for the 

particular problem such as USA, Canada and Scotland (Irving, Manlove and Scott, 2000). These 

organisations have a policy of producing the hospital/college optimal matching. Obviously, the 

algorithm solves the problem but there is one alteration required. Since hospitals/colleges take in 

a number of students we need to have as many clones of every hospital as their quota (Dubins 

and Freedman, 1981). All the clones have the same preference rank as the original hospital. Then 

we have a case of matching many to one. 

In the same paper (Dubins and Freedman, 1981) it was proven that the original algorithm always 

resulted in the student-optimal result and it was also shown that by deliberating handing in false 

preferences a student, cannot improve his position, that is to receive a better matching, provided 

that all the other students are truthful about their own. If a group of students applies the same 

strategy, some might get better matchings but not all of them. Therefore, it is more profitable, for 

the proposers to always hand in their real preferences. 

However, the above statement is true for the proposing side only. It was proven by Dubins and 



Freedman (1981) and Gale and Sotomayor (1985), that if a woman states a falsified preference 

list, then under some situations she could yield better results. It was proven that: 

“If there is more than one stable matching, then there is at least one woman who will be 

better off by falsifying, assuming the others tell the truth.”(Gale and Sotomayor, 1985, p. 5) 

In the category of cheating we could also include a situation studied by Irving (2008), where after 

the allocation of hospitals, two students realised that they would prefer to have one another's 

hospital, and exchanged their positions. This did not happen because the matching was not stable 

but because the students noticed that they were better off trading places, although the hospitals 

were quite unhappy about it. Then those two students formed a man-blocking pair. 

If we generalise the original problem and consider the case where the number of students is more 

than the available college positions, then there is a number of students that will remain “single”

Thosestudents. will be the same in every stable matching (Gale and Sotomayor, 1985). 

In the case where the hospital-residents problem might be an instance of SMT there are some 

facts that need to be taken into account. This situation is very plausible since hospitals have a 

large number of applicants on a national level, and there might often be applicants with the same 

qualifications, or from the applicants point of view indifference between choices is certain to 

come up. Irving, Manlove and Scott (2000), the existence of an algorithm that produces a weak 

stable matching which has the largest number of pairs as possible, and they also noticed the 

problem where a student might convince a hospital to prefer him in the expense of another 

student, when the hospital is indifferent between the two of them. 

This system has been in use since the 1950's in America. However in the 1970's, it was noted that 

there was a number of students that negotiated their positions outside the system. This was due to 

the fact that many medical students used to get married during their college years so they 

naturally preferred to be residents at the same hospital (Dean, Goemans and Immorlica, 2006). 

So because the system could not facilitate their needs, it was to their benefit not to participate in 

the NRMP(National Residents Matching Program). In order to deal with such cases the NRMP 



changed its algorithm and strategy many times (Roth and Sotomayor, 1990; Roth and Peranson, 

1999) and allowed couples to have a common preference list, however in such cases the problem 

is NP-hard and stable matchings might not exist (Ronn, 1990). In addition, because in different 

instances of the hospital/residents problem with couples, depending on which stable matching we 

choose, the number of students that are admitted changes, so selecting one matching over the 

other could affect the future of some students (Aldershof and Carducci, 1996). 

2. The sailors-boats problem 

In a similar way to the hospitals/medical students problem, we have the problem of assigning 

sailors to boats in the U.S, Navy. Sailors are given new assignments every few years and they are 

required to hand in a preference list. The Navy is responsible for arranging these assignments, 

and it must do so in a way that the cost of making those assignments is minimized or kept within 

bounds of the budget. The cost of re-educating and training the sailors in ways suitable for their 

new duties is also a cost parameter. But it is also imperative that the Navy takes into 

consideration not only the stability of the matching, but also the happiness of the sailors and the 

commanders of the boats, because in the boat optimal case, the happiness of the sailors is 

minimal, which would certainly result in a drop in moral (Garrett et al., 2005), or vice versa in 

the sailor optimal case. The whole process has been computerized with the sailors selecting their 

preferred positions through an online pool. 

The whole process can be reduced to an instance of the SMTI, but it does not take into 

consideration the implementation costs, so that a stable matching might not be affordable, or a 

sailor might not be qualified for a job. Therefore, we have another case of a NP-hard problem. 

3. The stable room-mates problem 

Mentioned in the original paper (Gale and Shapley, 1962) as well as by Irving (1985), the room- 

mates problem describes a matching problem where a set of people have to pick someone to be 

their room-mate, and therefore the sex of the people involved is of no concern so we can have 

only one set of people with preference lists. The significant difference mentioned by Gale and 



Shapley (1962) is that for this problem even when we have complete lists, there are cases where 

a stable matching is not possible. Below, in figure 4 we have the example they gave: 

Person Preference List 

Figure 4: Instance with no stable solutions 

It is evidently shown in figure 4, that anyone would prefer someone else other than n. 4 so this 

instance will always be unstable. 

If we introduce incomplete lists and ties in the problem, we get the SRT and the SRTI. Ronn 

(1986; 1990) studied the problem and showed that the existence of ties in preference lists makes 

the SRT NP-complete. Irving and Manlove (2002) studied the problem and proposed an 

approximation algorithm. 

4. Application in router technology 

MUFCA (Most Urgent Cell First) is an algorithm presented by Balaji Prabhakar and Nick 

McKeown (1999) for solving the problem of creating a switch used in LAN switches and routers 

that while it falls on the category of switches that combine input and output queuing they act 

however in the same way as an output-queued switch. In order for it to handle inputs and 

outputs, it uses the Gale Shapley algorithm (1962). Each input in MUFCA has a urgency value 

and according to that value, the preference lists for each switch are created, and then inputs are 

matched with the outputs. This resulted in a speed-up of the process by four times. 

5. Stable allocation problem 

1 2 3 4
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The stable allocation problem is basically a matching of many to many. It has many every day 

applications (Dean, Goemans and Immorlica, 2006). The matching of network clients to specific 

servers is one of them. In order to improve performance it is better to assign servers to clients 

that are closer geographically. Also the assignment of teaching assistants in universities to 

courses is another example. One difference with the standard SMP is that costs or weights that 

must be satisfied are assigned to each agent in the problem. The Gale-Shapley algorithm can be 

extended and it has been proven that it solves this problem in the same way as the SMP and it 

 

6. Propose-and-Reject Algorithm 

A matching is considered stable if it contains no rogue couples. This is because no one can 

convince anyone else to leave their partner in order to form a new pair. The stable marriage 

algorithm allows us to find stable matchings. 

provides the man-optimal solution (Dean, Goemans and Immorlica, 2006).



2.3.The genetic algorithm 

In chapter 2.3 we describe the basic genetic algorithm and its main components; i.e., selection, 

reproduction and fitness. 

1. Definition and history 

Genetics algorithms are a category of evolutionary algorithms. A definition of genetic 

algorithms was given by Goldberg (1989, p. 1): 

“Genetic algorithms are search algorithms based on the mechanics of natural selection 

and natural genetics. They combine survival of the fittest among string structures with a 

structured yet randomized information exchange to form a search algorithm with some of the 

innovative flair of human search. In every generation, a new set of artificial creatures (strings) is 

created using bits and pieces of the fittest of the old; an occasional new part is tried for good 

measure. While randomized, genetic algorithms are no simple random walk. They efficiently 

exploit historical information to speculate on new search points with expected improved 

performance." 

Research on genetic algorithms started in the 1950's, when following the work of Alex 

Fraser (1957), Hans-Joachim Bremermann introduced the notions of mutation and selection and 

grounded the basics of genetic algorithms (1962). Interest in this new technique rose in the 

1970's and 1980's mainly due to the book written by John Holland (1975) Adaptation in Natural 

and Artificial Systems. Soon applications of GA in artificial intelligence (Schwefel, 1977, 1981) 

arose, and finally research led to the production of genetic algorithm products. Genetic 

algorithms are especially efficient at finding solutions to optimization problems and search 

problems. An optimization problem consists of a pool of solutions out of which we need to find 

the best possible one. As mentioned in chapter 1, some variations of SMP are NP-hard 

optimization problems. 



2. The genetic algorithm 

Following the patterns of living organisms and natural evolution, genetic algorithms solve 

mathematical problems. In the beginning, the problem that needed solution, had to be 

represented as a bit string of 0's and 1's. Nowadays, and in our problem, other representations are 

available. Each string represents an individual or a chromosome, and a population is a collection 

of those chromosomes. In the travelling salesman problem, we face the problem of finding the 

shortest route for a salesman to travel between a number of cities. With 4 cities we could 

represent the problem by an ordered string such as this one [2,3,4,1] where each element of the 

string represents a city and the order of the elements defines the order with which they are going 

to be visited. 

The first step of the GA is to create an initial population. There are no restrictions concerning the 

initialization, although one could try to begin with a set of solutions that one knows are better, or 

it can be done randomly. Once a number of those solutions is created, it is easy to discern that 

parts of some chromosomes, or maybe whole ones, will be better than the others. This evaluation 

takes place through the use of a fitness function. 

A fitness function is an objective function that is used to measure the quality of a 

chromosome. Then through the use of a selection function, those chromosomes that are of 

better quality or fittest, are selected. In nature that would be equivalent to “survivalofthe 

fittest”Itisimperative. that the fitness function is related to the goal we wish to achieve. In 

the travelling salesman problem again, a possible fitness function would be a function that 

calculates the total distance travelled and selects the chromosomes with the minimum value. 

More than one fitness functions could be used for the same problem, depending on the value 

we wish to minimize. The complexity of the GA is O( n3) (Goldberg, 1989), where n 

equals the number elements in a string. The fitness function is the key component of 

the GA since it must capture the correct optimization criterion and, at the same time, it 



must be fairly straightforward to calculate the fitness values. Because of that it 

requires a large amount of computation time for complicated problems, and the GA 

has been criticised hardly because of that. 

By isolating only the best chromosomes a reproduction strategy is needed after that. 

There are many to choose from but the ones mostly used are crossover and mutation. 

Crossover is a reproduction technique that requires two chromosomes, the “parents”By. 

combining the two parents in a specific way, a number of new chromosomes is acquired, 

called “children”Thatcanbe.achieved in a variety of ways. The most common is one or 

two point crossover. A position is selected in both chromosomes and then they are split 

them into two pieces and the pieces in the two parents are swapped. 

We then evaluate the children through the fitness function and select the fittest and 

reject the weakest, so that we have a new population. In most of the cases, the new 

generation will be more fit than the previous one since it will be descended from 

mostly the fittest chromosomes. For our problem these two techniques are unsuitable, 

so we applied a crossover function called cyclic crossover, which is described in 

chapter 3. 

Mutation is another term borrowed from natural evolution. Mutation only requires one 

and not two parents. As the word implies, by applying mutation to a chromosome we 

randomly change an element of the string sequence. In problems such as ours and the 

travelling salesman, where we have restrictions over the appearance of each number, 

this technique can not be applied but there are other ones such as inversion of string,  

or the swapping of two elements. The reason behind using mutation along with 

crossover is because by selecting the fittest children every time we have the risk of our 

results becoming localized, and the population chromosomes' becoming identical to 

one another. Therefore, by adding mutation, we avoid that risk. If we wish to further 

reduce that risk, we can add a probability value to each member of the population. 



Therefore, even the weak chromosomes might have an opportunity to be selected, 

adding in that way to the diversity of the new population. Unfit chromosomes will 

remain in the population for a few generations, thanks to mutation, in a similar way to 

natural selection. Nevertheless, if the rate of mutation is too high we run the risk of 

losing some fit solutions. 

The procedure of evaluating each chromosome and then selecting the most optimal 

ones as a reproduction pool, is repeated until the algorithm is terminated. There are a 

few termination reasons, and the most common are, reaching a previously set number 

of generations, reaching a satisfactory solution, achieving a fitness value or running 

out of computation time. There are no guarantees that the GA will always find the best 

solution, because the algorithm is heuristic. Because the algorithm tends to go for fit 

solutions in the short-term future, it might be led towards a solution that seems at the 

time to be fitter and lose fittest solutions. So, another algorithm, for example a linear 

algorithm might sometimes provide a better solution than the GA. It is still an open 

question which category of algorithms performs better. 

3. Selection 

A number of methods exist for selecting the most appropriate parents for reproduction. The 

majority of them evaluate the quality of the chromosomes using the values of the fitness 

function. A description of the most common ones follows. 

◆ Stochastic uniform places all individuals in a line where each individual occupies a part 
of the line depdning on how fit it is. The algorithm goes through the line in a number of 

steps equal to the number of parents. The individual on which the algorithm lands after 

each step is then selected as a parent. 

◆ Roulette is similar to a wheel where the area of each individual is proportional to its 
fitness value. The better the fitness value, the bigger the area is. The algorithm then 

randomly selects one of the sections with a probability equal to the area it occupies. 



◆ Tournament selects each parent by choosing two individuals from the population at 
random and then it selects the best one by comparing their fitness values. 

Other settings of the GA that were taken into account where the elite count, which is the number 

of chromosomes from the previous generation that survive for the next generation while the rest 

of them are thrown away. Of significance also are the crossover and mutation rate, that calculate 

what percentage of the children are created by crossover and what percentage by mutation. 

2.4.Related work 

We have already mentioned that genetic algorithms excel at handling NP -hard optimization 

problems. In Roth's and Vande Vate's work (1990) a sequence of steps was described for finding 

a stable matching that is similar to the process the GA uses. They used the following strategy, 

themselves following the example of Knuth (1976). 

Beginning from a random matching, Roth and Vande Vate (1990) located the first blocking pair 

for the matching. A blocking pair is a pair of people that prefer each other to their current 

partners, and because of them the matching is unstable (Roth and Vande Vate, 1990). A way to 

measure how unstable a matching is, is by counting the blocking pairs. By altering the matching 

in a way that the two people are matched together one can come to a new matching, which might 

be stable or might contain more blocking pairs. By continuing in the same way, a stable matching 

will eventually be found. The GA basically follows the same pattern, but it changes more than 

one pair in every generation. 

Aldershof and Carducci (1999), modelled a coding of the SMP and the hospital couples problem, 

through the use of a GA they created, and their goal was to solve the hospital/residents couples 

problem. They achieved that goal by representing the problem in the form of a bit matrix X of 

dimensions h and p, where h is the number of hospital positions, and p the number of students. If 

a student and a hospital are matched then the value of of X(h,p) = 1, otherwise it is 0. That matrix 

was then translated into a string where every position represented a hospital, and the 



number located in that position represented the student that was assigned to that hospital. They 

represented the rest of the problem in the form of inequalities. If all those inequalities are 

satisfied by a chromosome X then that chromosome constitutes a stable marriage. Moreover, in 

their initialization and reproduction functions they ensured that their population produces 

acceptable pairs (Aldershof and Carducci, 1999), that is pairs that have each other on their 

preference lists. 

As far as the couples problem is concerned, they separated the applicants set into three 

categories. Those who are single applicants, and two sets of men and women for the couples that 

create a married couple, which then is matched to a hospital. More inequalities (Aldershof and 

Carducci, 1999) were then introduced for this problem. 

For fitness function, they simply created a function that adds the number of inequalities that were 

satisfied. This helped them locate solutions for the couples problem where a stable matching 

might not exist, but it is the best available solution might be located anyway, even though it 

might lack stability. For a mating function they used cyclic crossover, which is described in 

chapter 3.1.3. 

As far as mutation was concerned, they chose to use a function that randomly or after finding an 

unstable pair in a chromosome, performs the change. Mutation is of importance, because simply 

changing a random number in the string may result in an illegal chromosome. 

Their results were finding all matches in the SMP, and a student-optimal matching but no 

hospital-optimal matching in the couples problem. Also, it appeared that singles get more 

satisfactory results than couples, and couples had a larger probability of being unmatched in the 

end of the algorithm, which can simply be explained by the fact that, it is easier to satisfy the pre-

requisites of a single than of two persons. They also emphasized on the need for an algorithm 

with specific criteria for deciding among matchings. 

The sex-fair problem was studied through the use of a GA (Nakamura, Onaga, Kyan and Silva, 

2002). The SMP was then translated into a graph problem as shown in the picture below and the 

effectiveness of the GA was confirmed. The representation of the problem was the same as 



before (Aldershof and Carducci, 1999). 

 

The sailor-boat problem has also been transformed into a GA representation (Garrett, et al., 

2005). The goal was to minimize the cost that the U.S. Navy must pay for making the 

assignments, and also maximize the number of sailors that are assigned jobs. However, a sailor 

can only apply for a specific set of jobs that he is qualified for. So creating an initial population 

as well as applying mutation functions, is harder in this instance of the problem. In order to 

bypass this problem, Garret et al. (2005) connected each sailor with the set of jobs he is allowed 

to be assigned to, beforehand. That way it was assure that no illegitimate matching would occur. 



They also applied a function for looking into the probability that a position might be assigned 

twice. Uniform crossover (Sywerda, 1989) was used as a reproduction function. Their research 

resulted in an algorithm that greatly improved the selection process. 

In the chapter 3 we present the initialization function, the reproduction function and the fitness 

function, we have implemented with the help of MATLAB's genetic algorithm optimization tool, 

as well as the standard Gale-Shapley algorithm (1962). 

We tested our implemented algorithms on the following two problems: the original stable 

marriage problem with random lists and the stable marriage problem with correlated lists where 

'beauty' affects the preferences of every participant. The reason why we chose the correlated lists 

problem was because it gives a closer representation of a real life problem and because as 

mentioned before this is the main contribution of this thesis. Preferences are never totally 

random but there always more popular individuals. 

3.Method 

3.1.Representation 

In chapter 3.1 we are going to present all the details about the functions we created for the GA 

implementation. 

1. Population 

To begin with the standard bit-string representation of the first GAs is not particularly easy to use 

in the SMP. Our choice of chromosome type was a vector of integers, who represent the men 

matched to the women..For example, the vector [ 3, 1, 2 ] can be translated as the 1st woman is 

matched to the 3rd man, the 2nd woman to the 1st man and the 3rd woman to the 2nd man. 

2. Initialization 

There are two parameters that the GA must have before we start our experiments. The population 

vectors and the preference lists. The preference lists are created once and stay the same through 

the iterations. We chose to create both these elements randomly. One might argue that this would 



require a number of more iterations in the beginning until we receive good results, unless we are 

lucky, but we can sidestep that with a good population size to ensure we get more good results. 

3. Crossover 

The two crossover functions that we described in chapter 2.3.2 are not suitable for the SMP. If 

we chose to implement any of the two we would come to disastrous results. Let us take for 

example, the two chromosomes of length 8 [ 3, 8, 1, 2, 5, 7, 4, 6 ] and [ 2, 7, 8, 4, 6, 3, 5, 1 ]. If 

we used one-point crossover after position 3 we would come with the children: [ 2, 7, 8, 2, 5, 7, 

4, 6 ] [ 3, 8, 1, 4, 6, 3, 5, 1 ], which contain the same number twice and thus destroy the 

chromosomes rendering them into not valid representations of the SMP. In addition, if our aim is 

to represent an instance with incomplete lists, we must make certain that our crossover function 

not only creates appropriate descendants, but also that the matchings are acceptable. 

The solution to the above problem is to use cyclic crossover (Aldershof and Carducci, 1999). 

Cyclic crossover operates as follows: Two children are created, so that in each of them an integer 

is placed only in the position it occupied in the parents. By accepting that rule, acceptability of 

the matchings is assured. We randomly select, a position in the first parent. 

We copy the integer x1 in that position in the same position in the child. Now, if we look at 

the same position in the second parent, because of the way the function works, we must place the 

integer x2 that lies there, who is called the opposing gene, in the position it has in the first 

parent (since x1 has taken the place it had in parent 2). So we copy x2 in the position it has in 

the  1st parent. Then we get a new opposing gene which we also copy in the position it holds 

in the 1st parent. We continue in such fashion, until we find a number that already exists in the 

child. The genes that have not been copied so far, we copy them into the 2nd child (which has 

been empty until now). We now have two half-empty chromosomes. We complete them with the 

missing genes in the same position they have in the 2nd parent. The whole process is better 

described step-by-step, in figure 6. 

Parent 1: [ 3, 2, 5, 1, 4 ] 



Parent 2: [ 1, 3, 4, 2, 5 ] starting 

point is position 2 

Final children 

Child 1 : [ 3, 2, 4, 1, 5 ] Child 2 

: [ 1, 3, 5, 2, 4 ] 

Figure 6: Cyclic crossover example 

Starting from position 2 in Parent 1, we place “2” into Child 1 in the second position (Step 1). 

The corresponding gene is number “3” in Parent 2. It occupies position 1 in Parent 1 and we 

copy it into Child 1 (Step 2). The next gene is “1”. After copying it into Child 1 (Step 3), we 

have the next gene is “2” which already exists in Child 1, so we are obligated to stop. We copy 

the remaining genes from Parent 1 into Child 2 (Step 4). Then we fill in the gaps in both children 

with the genes in the positions they hold in Parent 2 (final children). 

One disadvantage of this method is that, although it guarantees the reproduction of acceptable 

children, is that the children due to the strict positioning rule, clones of the same chromosome are 

created. Especially if the generating function creates chromosomes randomly. The use of a 

slightly increased rate of mutation helps us avoid that danger and ensure diversity. 

Ste
p

Paren
ts

Children

1 Parent 1: [ 3, 2, 5, 1, 4 ] 

Parent 2: [ 1, 3, 4, 2, 5 ]

Child 1 : [ , 2, , , 
] 

Child 2 : []

2 Parent 1: [ 3, 2, 5, 1, 4 

]Parent 2: [ 1, 3, 4, 2, 5 ]

Child 1 : [ 3, 2, , , ] 

Child 2 : []

3 Parent 1: [ 3, 2, 5, 1, 4 ] 

Parent 2: [ 1, 3, 4, 2, 5 ]

Child 1 :[ 3, 2, , 1, ] 

Child 2 : []

4 Parent 1: [ 3, 2, 5, 1, 4 ] 

Parent 2: [ 1, 3, 4, 2, 5 ]

Child 1 :[ 3, 2, , 1, ] 

Child 2 : [ , , 5, , 4 ]



4. Mutation 

Applying mutation has the same difficulties as crossover. Because of its random nature it has the 

capability to disturb the stability and structure of the chromosome and make it unacceptable. For 

our problem we chose to use two functions where one of them is chosen randomly each time 

mutation is used. In the first function we randomly swap the positions of 5% of the elements of 

the vector, and and not just randomly change one gene, thus keeping the chromosome 

acceptable. In the second function we locate all the unstable pairs in an individual and then select 

one of them randomly and swap it with another random element. 

5. Fitness function 

The values of the fitness function depend on the kind of problem we wish to maximize. In 

chapter 2.1.4 we mentioned how happiness is defined in the SMP. 

The fitness function we considered at first, consisted of the sum of the number of stable pairs 

plus the value of happiness. In the problem of maximizing the man or woman happiness we used 

a function where each person's partner is given a value of their rank in the preference list. That 

way first choices get the lowest values and last choices the highest. This is both convenient and 

inconvenient, because the GA tries to solve any given problem by minimizing the fitness 

function values. So for example, in the original problem the matchings with the highest amount 

of stable matchings is the individual with the highest fitness value and therefore it will be 

rejected. 

In contrast, when we are interested about happiness scores, the individual with the lowest 

happiness score is considered the most fit, and that matches perfectly our chosen representation 

of happiness, which is according to formula (4). Individuals with their first options like in 

optimal cases will get the best scores. 

The same applies for egalitarian function costs. To solve the stable pairs representation problem, 

we inverted the value ( matching with 9 stable matchings would get the score 2 and vice versa). 

That way the stable pairs score must be minimized, exactly like the others. We also added three 

constants S, H and E to weight the contribution of every optimality criterion to the fitness value. 

In conclusion, our final fitness formula for one individual x was formula (7): 



F(x) = S*sta_pairs(x) + H*hap(x)+E*ehap(x) (7) 

This function value contains stable pairs, happiness for every person, and egalitarian happiness. 

The values A, B, C represent how much every criterion affects the final fitness score. The more 

we increase the value of one of these three the more significant is any increase or decrease of that 

criterion , meaning the fitness function focuses more on minimizing that specific one. By setting 

S=H=E=1 we acknowledge that all three criteria play the same role and we search for a solution 

which compromises for a stable matching that has good happiness and egalitarian happiness 

values. By setting H=E=0 we can research only for stable matchings. By setting E=0 we would 

obtain better happiness solution. Finally, for H=0 the algorithm returns a better egalitarian 

solution. 

6. Implemented algorithms for comparison 

We have implemented the Gale-Shapley algorithm (1962), as a means of comparison with our 

own algorithm. It always yields the man-optimal solution, so we know beforehand that unless the 

man-optimal solution is the same with the happiness solution it always gives us results that are 

not happiness optimal. So we are quite sure that our GA implementation will outperform the 

GSS. 

3.2.Experiments 

1. Algorithm settings 

First, we took the Gale-Shapley algorithm and noted the produced results, and then ran the GA 

algorithm experimenting with different sets of values for every setting. The quality of the 

solutions was then compared and studied. Because of the nature of the GA, it is not guaranteed 

that it always succeeds in finding all the possible stable matchings, but in most cases it always 

finds at least one solution of good quality. 

The matter of settings was not of great importance in our study. Our primary goal was to show 

that the GA can deal with the SMP and its variants with ease and produce satisfying results. We 

experimented with 3 different n sizes of 10, 25, 50 in both variations. For the same n size we also 

experimented with different weight values for stability in contrast with maximum happiness, to 



observe the differences in the solutions. We applied each combination of S,H,E on 5 problems 

and then found the average value. 

After that we wished to have a correlated lists example where with higher correlation so that we 

could see the differences between the solutions depending on the correlation value. 

The GA settings for every experiment had to be modified because for larger values of n we need 

a larger population size and a larger iteration size so that we do not miss any solutions. 

All the settings for our experiments are mentioned here on table 1: 

Table 1: Genetic algorithm settings 

The last setting states that 10% of the children come from crossover and 90% from mutation. 

2. Original Stable marriage 

We used a problem of small size to test our algorithm with an instance of the original problem at 

first. We present here and comment the results for the problem of size n = 10 to see if our 

algorithm manages to solve the typical problem and find all the stable matchings. 

By cross-checking our results with the results of the GSS algorithm, Our goal was not to just 

reach a stable matching, but by altering our fitness function and running more experiments for 

different S, H and E values, to find solutions with better happiness and egalitarian happiness 

values. That way we searched for results that would be sex-fair but also of high happiness for 

both sexes, by sacrificing stability. 

n 10 25 50

Population size 100 100
0

4000

Number of 

Iterations/Running 
time

150 1000/13 

minutes

20000/57 
minutes

Selection function tohastic 
Uniform

Crossover/Mutation 

fraction

0.1/0.9



The reasons for choosing these values was to find out and compare the solutions for different 

combinations of the criteria. We wished to use a function that maximizes more than one criterion 

at the same time. We then examined how the absence of one or more of the criteria affects the 

solutions. Our purpose was to compare the solutions where one of the S,H, or E are equal to zero 

with the first setting where they are all present. 

In tables 2,3 and 4, you can see the GSS results. Hap(m) represents the happiness of men, hap(w) 

the happiness of women, hap(m+w) the overall happiness and ehap the egalitarian happiness. 

Table 2: GSS results for n =10 for SMP 

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 
+w)

Eha
p

10 3.2 2.7 5.9 0.5

10 1.7 4.3 6 2.6

10 2.9 3.2 6.1 0.3

10 1.8 4.1 5.9 2.3

10 2 3.8 5.8 1.8

Average 
values

10 2.1 3.85 5.95 1.75

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 
+w)

Eha
p

25 3.8 6.56 10.36 2.76

25 2.88 7.8 10.68 4.92

25 2.24 10.36 12.6 8.12

25 4.2 5.48 9.68 1.28

25 2.44 8.08 10.52 5.64



Table 3: GSS results for n =25 for SMP 

Table 4: GSS results for n =50 for SMP 

In tables 5,6, and 7 we have the GA results with their average values for every S,H,E 

combination that we experimented with for all the n sizes. 

Average 
values

25 2.94 7.93 10.87 4.99

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 
+w)

Eha
p

50 3.12 13.1 16.22 9.98

50 4.16 12.74 16.9 8.58

50 3.56 16.24 19.8 12.6
8

50 3.94 12.5 16.44 8.56

50 4.76 11.12 15.88 6.36

Average 
values

50 3.61 14.03 17.64 10.4
1

S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

10 3.2 2.7 5.9 0.5

10 2.6 2.1 4.7 0.5

10 2.9 3.2 6.1 0.3

9 3.1 3.3 6.4 0.2



10 3 2.5 5.5 0.5

Average 
values

9.8 2.96 2.76 5.72 0.4

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

10 3.2 2.7 5.9 0.5

10 2.6 2.1 4.7 0.5

10 3.2 3 6.2 0.2

9 3.3 3.3 6.6 0

10 3 2.5 5.5 0.5

Average 
values

9.8 3.06 2.72 5.78 0.34

S = 1 H = 1 E = 

0

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

10 3.2 2.7 5.9 0.5

10 2.6 2.1 4.7 0.5

10 2.9 3.2 6.1 0.3

10 2.8 3.4 6.2 0.6

10 3.8 1.5 5.3 2.3



Table 5: Genetic Algorithm results for n =10 for original SMP 

Average 
values

10 3.06 2.58 5.64 0.84

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

9 2.8 2.7 5.5 0.1

8 2 2.3 4.3 0.3

7 2.9 3 5.9 0.1

6 3 3.1 6.1 0.1

9 2.6 2.3 4.9 0.3

Average 
values

7.8 2.66 2.68 5.34 0.18

S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

24 5.2 4.56 9.76 0.64

24 4.88 4.24 9.12 0.64

23 5.32 5.24 10.56 0.08

23 4.72 4.48 9.2 0.24

23 4.6 5.16 9.76 0.56



Average values

23.4 4.94 4.74 9.68 0.43

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

22 5.68 5.72 11.4 0.04

25 4.6 4.32 8.92 0.28

23 5.52 5.24 10.76 0.28

25 4.84 4.44 9.28 0.4

25 4.68 4.76 9.44 0.08

Average values

24 5.06 4.9 9.96 0.22

S = 1 H = 1 E = 

0

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

25 6.68 3.28 9.96 3.4

23 4.68 4.72 9.4 0.04

24 7.2 3.68 10.88 3.52

22 4.92 3.48 8.4 1.44

25 4.68 4.76 9.44 0.08

Average values



Table 6: Genetic Algorithm results for n =25 for original SMP 

23.8 5.63 3.98 9.62 1.7

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

19 4.76 4.76 9.52 0

17 4.76 4.8 9.56 0.04

17 5.16 5.2 10.36 0.04

20 4.32 4.08 8.4 0.24

19 4.64 4.68 9.32 0.04

Average values

18.4 4.73 4.7 9.43 0.07

S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

41 8.32 8.36 16.68 0.04

38 8.44 8.56 17 0.12

41 9.08 8.88 17.96 0.2

43 7.52 7.24 14.76 0.28

41 9.1 8.98 18.08 0.12

Average 
values



40.8 8.49 8.4 16.9 0.09

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

41 11.22 11.2 22.42 0.02

38 12.38 12.44 24.82 0.06

41 11.38 11.46 22.84 0.08

39 11.36 11.32 22.68 0.04

38 12.26 12.26 24.52 0

Average 
values

39.4 11.72 11.74 23.46 0.02

S = 1 H = 1 E = 

0

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

43 9.96 5.48 15.44 4.48

43 7.38 6.32 13.7 1.06

43 11.4 5.8 17.2 5.6

42 9.94 6.36 16.3 3.58

43 8.64 6.36 15 2.28

Average 
values

42.8 9.46 6.06 15.53 3.4



Table 7: Genetic Algorithm results for n =50 for original SMP 

3. Stable Marriage with Correlated Lists 

The major difference in the SMP with Correlated lists is in the way the preference lists are 

created. We used formula (6) to produce the preference lists. You can see the GSS results on 

tables 8,9, and 10. The value of correlation for this problem was U = 1. 

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

31 6.96 7.06 14.02 0.1

34 7.36 7.44 14.8 0.08

27 7.04 7.08 14.12 0.04

33 6.88 6.88 13.76 0

30 7.6 7.5 15.1 0.1

Average 
values

31 7.17 7.19 14.36 0.02

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 

+w)

Eha
p

10 3.2 2.7 5.9 0.5

10 1.7 4.3 6 2.6

10 2.9 3.2 6.1 0.3

10 1.8 4.1 5.9 2.3

10 2 3.8 5.8 1.8



Table 8: GSS results for n =10 for SM with Corr. lists 

Table 9: GSS results for n =25 for SM with Corr. lists 

Average values

10 2.1 3.85 5.95 1.75

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 

+w)

Eha
p

25 3.8 6.56 10.36 2.76

25 2.88 7.8 10.68 4.92

25 2.24 10.36 12.6 8.12

25 4.2 5.48 9.68 1.28

25 2.44 8.08 10.52 5.64

Average values

25 2.94 7.93 10.87 4.99

Stable 
pairs

Hap(m
)

Hap(
w)

Hap(m 

+w)

Eha
p

50 50 14.12 16.92 31.0
4

50 50 14.84 12.94 27.7
8

50 50 14.66 14.44 29.1

50 50 13.86 13.58 27.4
4

50 50 13.76 14.42 28.1
8

Average values

50 14.54 14.77 29.31 0.23



Table 10: GSS results for n =50 for SM with Corr. lists 

Here are our experimental results for the new problem on tables 11,12 and 13. 

S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

9 3.8 4.1 7.9 0.3

9 3.4 4.2 7.6 0.8

10 3.7 4 7.7 0.3

10 4.3 4.1 8.4 0.2

10 4.3 3.6 7.9 0.7

Average values

9.6 3.9 4 7.9 0.46

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

9 4.6 4.4 9 0.2

9 3.9 4.5 8.4 0.6

10 3.7 4 7.7 0.3

10 4.3 4.1 8.4 0.2

10 4.3 3.6 7.9 0.7

Average values



Table 11: Genetic Algorithm results for n =10 for SM with Corr. lists 

9.6 4.16 4.12 8.28 0.4

S = 1 H = 1 E = 

0

Stable pairs Hap(m) Hap(
w)

Hap(m 
+w)

Ehap

9 3.8 4.1 7.9 0.3

10 2.8 4.7 7.5 1.9

10 3.7 4 7.7 0.3

10 3.5 4.6 8.1 1.1

10 4.3 3.6 7.9 0.7

Average values

9.8 3.62 4.2 7.82 0.86

S = 0 H = 1 E = 

1

Stable pairs Hap(m) Hap(
w)

Hap(m 
+w)

Ehap

6 3.8 3.8 7.2 0

5 3.7 3.7 7.4 0

7 3.5 3.5 7 0

7 3.8 3.7 7.5 0.1

6 3.4 3.4 6.8 0

Average values

6.2 3.64 3.62 7.18 0.02



S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

21 7.28 7.28 14.56 0

25 8 7.8 15.8 0.2

25 8.4 8.24 16.64 0.16

21 8 7.92 15.92 0.08

24 8.08 7.76 15.84 0.32

Average values

23.2 7.95 7.8 15.75 0.15

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

21 9.16 9.16 18.32 0

23 8.44 8.56 17 0.12

20 9 9 18 0

23 8.68 8.68 17.36 0

22 8.28 8.28 16.56 0

Average values

21.8 8.71 8.74 17.45 0.02

S = 1 H = 1 E =



Table 12: Genetic Algorithm results for n =25 for SM with Corr. lists 
 

0

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

21 8.36 6.76 15.12 1.6

23 9.52 6.36 15.88 3.16

24 9.36 7.04 16.4 2.32

23 8.04 7.36 15.4 0.68

24 8.6 6.92 15.52 1.68

Average values

23 8.78 6.89 15.66 1.89

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

12 6.88 6.88 13.76 0

10 7.2 7.16 14.36 0.04

8 7.4 7.4 14.8 0

11 7.2 7.2 14.4 0

11 7.12 7.08 14.2 0.04

Average values

10.4 7.16 7.14 14.3 0.02

S = 1 H = 1 E =



1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

38 14.02 14.1 28.12 0.08

41 14.34 13.88 28.22 0.46

36 15.04 14.96 30 0.08

37 14.62 14.58 29.2 0.04

40 14.64 14.68 29.32 0.04

Average values

38.4 14.53 14.44 28.97 0.09

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

37 18.14 18.14 36.28 0

31 19.12 19.12 38.24 0

34 17.46 17.46 34.92 0

34 18.58 18.58 37.16 0

30 19.86 19.86 39.72 0

Average values

33.2 18.63 18.63 37.26 0

S = 1 H = 1 E = 

0



Table 13: Genetic Algorithm results for n =50 for SM with Corr. lists 

In order to compare how the results change with the increase of correlation we have also run 

experiments with the same settings for n = 25 and U = 1.5. Here are the results on table 14. 

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

38 15.26 12.96 28.22 2.3

37 15.36 11.36 26.72 4

36 15.06 13.08 28.14 1.98

38 14.26 12.88 27.14 1.38

37 12.94 14.6 27.54 1.66

Average values

37.2 14.58 12.98 27.55 1.6

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 
+w)

Eha
p

13 12.7 12.7 25.4 0

20 12.6 12.6 25.2 0

18 12.62 12.58 25.2 0.04

23 12.98 13 25.98 0.02

15 12.2 12.18 24.38 0.02

Average values

17.8 12.62 12.61 25.23 0.01



S = 1 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 

+w)

Eha
p

23 9.28 9.16 18.44 0.12

23 9.52 9.2 18.72 0.32

23 9.4 8.24 17.64 1.16

22 9 8.72 17.72 0.28

22 9.36 9.4 18.76 0.04

Average 
values

22.6 9.31 8.94 18.26 0.38

S = 1 H = 0 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 

+w)

Eha
p

24 9.32 9.4 18.72 0.08

24 9.96 9.52 19.48 0.44

22 9.96 9.92 19.88 0.04

21 10.56 10.56 21.12 0

22 9.6 9.6 19.2 0

Average 
values

22.6 9.88 9.8 19.68 0.11



Table 14: Genetic Algorithm results for correlated lists for n =25 with higher correlation 

S = 1 H = 1 E = 

0

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 

+w)

Eha
p

23 9 8.32 17.32 0.68

23 10.72 8.48 19.2 2.24

22 9.88 7.52 17.4 2.36

22 9.4 8.28 17.68 1.12

23 8.52 9.52 18.04 1

Average 
values

22.6 9.5 8.42 17.93 1.48

S = 0 H = 1 E = 

1

Stable 
pairs

Hap(m) Hap(
w)

Hap(m 

+w)

Eha
p

10 8.04 8 16.04 0.04

10 8 8.04 16.04 0.04

14 8.36 8.36 16.72 0

12 8.6 8.6 17.2 0

10 8.4 8.4 16.8 0

Average 
values

11.2 8.28 8.28 16.56 0.02



4.Analysis 

4.1. Comparison of GA results with GSS results 

To begin with we shall first compare the GSS with the GA results. On tables 15, 16 and 17, we 

have the average GSS results and the average GA results for comparison for the original 

problem. 

Table 15:  Average  GSS and GA results n =10 for original SMP 

Table 16:  Average GSS and GA results n =25 for original SMP 

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p

GSS 10 5.95 1.75

S =1 H = 1 E = 
1

9.8 5.72 0.4

S =1 H = 0 E = 
1

9.8 5.78 0.34

S =1 H = 1 E = 
0

10 5.64 0.84

S =0 H = 1 E = 
1

7.8 5.34 0.18

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p

GSS 25 10.87 4.99

S =1 H = 1 E = 
1

23.4 9.68 0.43

S =1 H = 0 E = 
1

24 9.96 0.22

S =1 H = 1 E = 
0

23.8 9.62 1.7

S =0 H = 1 E = 
1

18.4 9.43 0.07

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p



GSS 50 17.64 10.4
1

S =1 H = 1 E = 
1

40.8 16.9 0.09

S =1 H = 0 E = 
1

39.4 23.46 0.02

S =1 H = 1 E = 
0

42.8 15.53 3.4

S =0 H = 1 E = 
1

31 14.36 0.02



Table 17: Average GSS and GA results n =50 for original SMP 

The purpose with our results was to minimize the values of happiness and egalitarian happiness. 

Minimized values mean better results. 

By taking a look at the results, if we look at the values for all 3 criteria we can see that the GA 

results for happiness and egalitarian happiness are better compared to the GSS results. For 

egalitarian happiness especially the results are very close to optimality which is 0. There is 

however a small drop in the number of stable pairs. This goes in accordance with the theory 

since every person tries to get as best a matching as possible and that is at the expense of stability 

(Caldarelli and Capocci, 2000). This can also be seen at the last set of results for all n where S=0, 

H=1, E=1. Actually, for this setting the results are much better  as far as happiness and 

egalitarian happiness are concerned. This is also the reason we used this combination of settings 

even though it doesn't take into account the number of stable pairs in the fitness function. On all 

other combinations of weight values, we can observe that we get a high improvement of 

happiness and egalitarian happiness at the cost of a few stable pairs. This proves that the GA can 

get better results with different properties if we use a fitness function containing more than one 

criteria. 

Moreover, if we compare the solutions to each other, we can see that when either H or E are 

absent from the fitness function, we then get a greater improvement in the value of the remaining 

criterion. This is quite evident from the results. That way we have either a generally good 

solution for all criteria (S=H=E=1), or have a better happiness (E=0) or a better egalitarian 

happiness solution (H=0). 

It can be noticed in the results for n =50, that the number of stable pairs drops more than in the 

previous experiments. That is due to the fact that the GA can not find all stable pairs in a 

reasonable running time for higher problem sizes. However, in this research stability was not 

considered more important than the other two criteria. It was considered more important to get 

improved values for the other two criteria than finding a stable solution. Stability restrictions can 

be relaxed in the real world also to satisfy other needs, like in the navy case where the U.S. Navy 

can block a matching if they think it is unprofitable economically even though the result would 

be stable. On tables 18, 19 and 20, we present the results for the correlated lists problem. 



Table 18:  Average  GSS and GA results n =10 for SM with Corr. lists 

Table 19:  Average  GSS and GA results n =25 for SM with Corr. lists 

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p

GSS 10 7.8 1

S =1 H = 1 E = 
1

9.6 7.9 0.7

S =1 H = 0 E = 
1

9.6 8.28 0.4

S =1 H = 1 E = 
0

9.8 7.82 0.86

S =0 H = 1 E = 
1

6.2 7.18 0.02

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p

GSS 25 16.26 1.3

S =1 H = 1 E = 
1

23.2 15.75 0.15

S =1 H = 0 E = 
1

21.8 17.45 0.02

S =1 H = 1 E = 
0

23 15.66 1.89

S =0 H = 1 E = 
1

10.4 14.3 0.02

Algorithm Stable 
pairs

Hap(m + 
w)

Eha
p

GSS 50 29.31 0.23

S =1 H = 1 E = 
1

38.4 28.97 0.09

S =1 H = 0 E = 
1

33.2 37.26 0

S =1 H = 1 E = 
0

37.2 27.55 1.6

S =0 H = 1 E = 
1

17.8 25.23 0.01



Table 20:  Average  GSS and GA results n =50 for SM with Corr. lists 

As it is seen, all the above comments apply here as for the original problem. The GA managed to 

find better solutions concerning happiness and egalitarian happiness by sacrificing some stable 

pairs. 



4.2. Comparison of GA results between the two variations 

In the second part of our results' analysis we will compare the solutions between original SMP 

and correlated lists SMP for both low and high correlation for n = 25. Here they are on table 21. 

Criteria Stable 
pairs

Hap(m + 
w)

Eha
p

Original SMP

S =1 H = 1 
E 

= 1

23.4 9.68 0.43

S =1 H = 0 
E 

= 1

24 9.96 0.22

S =1 H = 1 
E 

= 0

23.8 9.62 1.7

S =0 H = 1 
E 

= 1

18.4 9.43 0.07

Correlated SMP U = 1

S =1 H = 1 
E 

= 1

23.2 15.75 0.15

S =1 H = 0 
E 

= 1

21.8 17.45 0.02

S =1 H = 1 
E 

= 0

23 15.66 1.89

S =0 H = 1 
E 

= 1

10.4 14.3 0.02

Correlated SMP U = 1.5



S =1 H = 1 
E 

= 1

22.6 18.26 0.38

S =1 H = 0 
E

22.6 19.68 0.11



Table 21: Comparison between SMP and SM with Corr. lists results 

The first observation that can be made is that in the correlated results happiness is worse 

compared to the SMP results, and also, for higher correlation it has almost a doubled value. This 

is quite logical, since now everyone's preferences are more similar, so it is harder for everyone to 

be just as satisfied as when the lists are created more randomly. 

Secondly, egalitarian happiness in both correlated problems is better than in the original 

problem. This was expected and according to theory (Caldarelli and Capocci, 2000), is due to the 

fact that the men are going to be less satisfied now because they will get worse matches than 

with random lists, and in addition, the more popular women will get better results since they will 

receive more proposals. Those two facts combined lead to the improvement of the egalitarian 

happiness value. 

However, egalitarian happiness when U =1.5 is worse than what it is for U=1, when E=1. This is 

attributed to the fact that there is a fewer number of stable matchings now. Since everyone's 

preferences are more similar it is only logical that it is harder to find stable matchings. So when 

we try to optimize egalitarian happiness along with stability, the results are less fair because 

there are not so many stable or almost stable solutions to choose from. 

5.Conclusions 

In this chapter we show how our results are in accord with our objectives. 

5.1.Objectives 

The first objective we had set was answered with the help of literature study. We saw that 

matching problems that are instances of SMP exist in important parts of society like in education 

= 1

S =1 H = 1 
E 

= 0

22.6 17.93 1.48

S =0 H = 1 
E 

= 1

11.2 16.56 0.02



and in the military, or in technological areas like in router technology. We also saw that most 

instances are not straightforward representations of the SMP. 

Since it has been studied extensively, it is not surprising that a variety of algorithms exist for the 

SMP. Most of them focus only on stable matchings. But the Navy example shows that stable 

solutions are not always the best choice. And the human factor of satisfaction led people to 

trying to find ways of fooling the system, to improve their situation. 

So it is obvious, that different approaches to the problem would benefit the participants, 

especially if they are willing to compromise on the matter of stability. 

Let us not forget that in real world situations stability might not play such an important role, 

otherwise people would choose to follow the SMP to find their partners. These facts combined 

with the more realistic Correlated lists example, can lead us to the conclusion that maximum 

egalitarian solutions of the problem might be more preferable than just stable ones. 

That brings us to our second objective. We implemented the SMP and the SM with Correlated 

lists, and we came up with a function that, through the use of weight constants it tried to improve 

at least two criteria at the same time. Our results, were satisfying and yielded better results than 

the GSS, but that was achieved by sacrificing a number of stable pairs. Especially for egalitarian 

happiness many of our results were much closer to optimality than the GSS results. 

We also showed that correlation affects happiness in a negative way, while egalitarian happiness 

improves for a small value of correlation, but then decreases as correlation increases. 

It is clear that the benefits of using GA implementations for solving the SMP do not lie on 

finding optimal solutions, like in any polynomial algorithm, but on the combination of many 

criteria that are important to the 'matchmaker', in order for him to create solutions that focus on 

increasing the participants' happiness. 

6.Summary 

We have studied the stable marriage problem and have given a detailed description of its 

variations and its real world instances. We have shown the implications and what changes those 

real world instances have and what modifications were made by other researchers to handle 



them. Afterwards, we created an genetic algorithm representation for the original Stable 

Marriage Problem and also for an instance of the Stable Marriage Problem with Correlated lists, 

something that has not been done before. Through the use of a genetic algorithm representation 

we showed that we can get better happiness matches and especially egalitarian happiness 

matches by relaxing the stability restrictions. We came to the conclusion that while correlation 

leads to more fair solutions, if it increases highly, egalitarian happiness starts to decrease. 

The significance of the SMP is clearly proven by all its variations and applications in real life. 

Along with that every algorithm that manages to improve the certain aspects of the solutions and 

not just stability should be beneficial. 

The GA manages to give an alternative point of view on the situation by providing with solutions 

that can raise the system's happiness by holding stability on high levels. 

7.Appendix 

1. Gale Shapley Algorithm 



 

2. Propose-and-Reject Algorithm 
 

:An Invalid Simple Algorithm for proposal 

Function Simple - Proposal - But- Invalid 

1: Start with some assignment between the men and women 

2: loop 

3: if assignment is stable 

then 4:  stop 

5: else 

6:  find a dissatisfied pair and swap mates to satisfied the 

pair 7: end if 



This will not work since a loop can occur. Swaps can be made that might continually result is 

dissatisfied pairs. We can come up with an equally simple, deterministic algorithm. 

 

1. While there is an unpaired man do 

2. Pick an unpaired man X and the first women w on his list 

3. Remove w from his list so it won’t be picked again 

4. If w is engaged then 

5. If w prefers X more than her current partner Y then 

6. Set X-w as married 

7. Set Y-w as unmarried so now Y is unpaired 

8. else 

9. X is still unpaired since w is happier with Y 

10. end if 

11. else 

12.  The women was not previously paired so accept immediately, X-w, as 

married 

13. end if 

Function Proposal- Algorithm
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