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ABSTRACT 

Word Sense Disambiguation or WSD intent to find the exact meaning of an ambiguous 

word for a particular context. Its enormous applications lies in various research areas 

including sentiment analysis, Information Retrieval, Machine translation and knowledge 

graph construction. The main objective remains intact that words with same spelling can 

have completely different senses depending on subtle characteristics of the context. In 

this paper we analyse the traditional word expert supervised methods. However in 

comparison with knowledge-based methods, supervised method outperforms better. We 

standardise the pre-trained BERT and LESK algorithms on SemEval data set and 

experiment the algorithms on this dataset & compare the accuracy for better results. 
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CHAPTER 1  INTRODUCTION 

1.1.  SYNOPSIS 

Word Sense Disambiguation is a primitive challenge in NLP, which intents 

to find the exact meaning of an ambiguous word in a particular context. The dispute 

here is that words with the same spelling can have completely different senses or 

meaning depending on subtle features of the context. A word bear is ambiguous as it can 

relate either to an animal or to hold on ( a verb form ).  

In this paper we are going to invoke different algorithms used to 

disambiguate any word in any context and provide integrated framework in identifying 

the context and exact meaning of the words. Since there is lack of reliable evaluation 

framework, our comparison of algorithmic results will provide the most appropriately 

reliable model or framework for Word Sense Disambiguation. We are going to use 

LESK algorithm which is knowledge based and BERT model for WSD and for 

comparing the results. We standardised algorithms on SemEval-2015-en data set and 

experiment the algorithms on this dataset. SemEval-15 task 13 dataset is WSD dataset 

interpreted with WordNet 3.0. It includes 1022 sense interpretations in four documents 

taken from three assorted concerns : biomedical, mathematics/computing and social 

issues.  

This papers grants two main features : Firstly a complete evaluation 

framework for all WSD words overcoming the disadvantages by Standardising the 

WSD datasets and training dataset semeval-2013-en into unified format. Initially 

cleaning the dataset and converting the ambiguous word from dataset to WordNet 3.0. 

Secondly, we evaluate this framework to perform a fair comparison of proposed 

techniques available in WSD literature. 
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1.2 PRE-REQUISITE KNOWLEDGE 

The main aim of Word Sense Disambiguation is to link the words in subject to the most 

appropriate meaning in a pre-defined sense inventory. In this paper, WSD set-up is 

segregated into two major groups : Supervised and knowledge- based. 

The following is summarisation of these types of approach : 

1.2.1.  SUPERVISED WSD APPROACH : 

Supervised approach is based on a training corpus of words tagged with 

their respective sense. This approach is mostly based on facts provided by words 

neighbouring the targeted word and its collocations. Supervised models have 

conventionally outperformed knowledge-based approach. However, acquiring sense-

annotated corpora is quite upscale, and sometimes such compilations are not even 

available for specific concerns. This is the reason for the supervised methods to count 

on unlabelled corpora.  

1.2.2. KNOWLEDGE-BASED APPROACH : 

Knowledge- based approach does not require any sense-annotated corpus. 

Rather , this approach depends on the context of frequently updated knowledge 

resources for disambiguation. The one of major approaches is Lesk algorithm 

introduced in 1986 in which its initial version consisted of calculating the extend over 

the context of the target word and its definition as mentioned in sense inventory. 
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CHAPTER 2  METHODOLOGY  

2.1. TASK DEFINITION : 

We have used Semeval-2015-en dataset for its implementation on proposed 

algorithms. Data is in form of a xml file that has various sentences that contains 

ambiguous words. Our first task is to clean the dataset and then with the help of already 

present nltk corpus and wordnet, we disambiguate the searched word from the dataset 

Semeval-2015-en , and scan for its synonyms and antonyms with their first senses 

present in annotated corpus.Then our task will be to implement the clean data achieved 

to proposed Lesk and Bert algorithm. 

2.2. LESK ALGORITHM :  

Lesk algorithm tells us that the accurate sense of words individually in a 

given context which is identified by detecting the meaning that overlaps between the 

dictionary definition and the given context. Instead of identifying the meanings of all 

words at the same time in a given context, this approach addresses each word 

individually, irrespective of the meaning of the other words occurring in the same 

context.  
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The Lesk-algorithm scans sense of words in short clauses. The definition of 

each sense of a word in a clause is collated to the meaning of every other word in the 

sentence. A word is allocated the meaning whose gloss sense contributes to the 

maximum number of common words with the glosses of the other words. This 

algorithm starts a new process for each word and does not utilize the senses it 

previously assigned. 

BERT ALGORITHM : 

BERT is a characterization model, and it is a multilayer bidirectional 

Transformer encoder. BERT model is pre-trained on a large collection of written text 

and two unsupervised prediction pieces of work, that is the next sentence prediction 

tasks and masked language model are used in pre-training. When we use BERT  for 

WSD tasks, the tuning up procedure is recommended. The pretrained BERT model on 

WSD task is tuned up. 

2.3.1. BERT (Token-CLS) : 

Neural networks are the web of interrelated vertices where each vertex 

performs simple calculations. To get appropriate results we take union of calculations. 

In present machine learning and deep learning environment, neural networks are 

considered among the most important area of study growing in readiness. [3] Three 

major neural networks are ANN, CNN and RNN.  

2.3.2. LSTM Networks : 

Long Short-Term Memory networks are influential kind of RNN. LSTM 

were introduced to curb the long-term dependency problem. In regular RNN, the 
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frequent problem is occurred when we connect new information to previous 

information. If RNN is able to do this, the information would be very useful. This 

problem is called long-term dependency. 

2.3.3. Bi-LSTM : 

Bidirectional Long-Short Term Memory is the procedure of making any 

neural network to collect the sequence information in both directions that is future to 

past or past to future. We need to scan each target word in the mentioned sentence to 

find for disambiguation. Basically, WSD task is a token level classification task. To 

embrace BERT to WSD task, we take the final concealed state of the token correlating 

to the target word, if there is more than one token, we take their average and add a 

classification layer for every target word, which is similar to the last layer of the Bi-

LSTM model. 

2.3.4. GlossBert : 

BERT is favourable to model the relationship of pair of texts for various 

NLP tasks. Now in order to collect the complete facts of the target word in WordNet, 

GlossBERT is used to set up context-gloss pairs. Hence it treats WSD tasks as a 

classification problem for sentence-pair. 

2.3.5 Context-Gloss Pairs : 

The sentence which has target words is referred as context sentence. We 

extract glosses of all N possible senses of the target word in WordNet To obtain the 
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gloss sentence for each target word. We add [CLS] and [SEP] tokens to the contextgloss 

pairs for making it satisfactory for the input of BERT model. 

CHAPTER 3   EVALUATION  

The evaluation scheme consists of the WSD evaluation datasets described in 

Section 2.2 and 2.3. To proceed with evaluation we use mentioned scheme to  

implement assorted WSD set-up. The systems used in the evaluation are described in 

detail in Chapter 2, the results are shown in Section 4. 

3.1. STANDARDISING THE WSD DATASET SEMEVAL-2013-EN INTO 

UNIFIED FORMAT : 

First 5 sentences of the dataset are enclosed under tags <sentence> </sentence> as 

shown below 

SENTENCE 1 
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SENTENCE 2 

SENTENCE 3 
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SENTENCE 4 

SENTENCE 5 
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After standardising the dataset, first 5 sentences will be :  

Now for instance let’s suppose that ambiguous word in this sentence is ‘leaflet’, then its 

synset meaning , synonym and first few senses present in wordnet are :  
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3.2. LESK ALGORITHM : 

[5] SemEval-15 task 13 is the WSD dataset interpreted with WordNet 3.0. It consists of 

1022 sense annotations. In less algorithm, the correct sense for every word in a context 

is obtained independently by tracking the sense that superimposes the most among its 

dictionary definition and the provided context. 

PYTHON CODE 
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In any sentence for chosen target word, its synset definition is scanned, 

For a random sentence in dataset mentioned :  

3.3. BERT ALGORITHM : 

We fine-tune a BERT model using the pytorch_transformers-models PIP 

package. [3] To do this, we use the pre-trained BERT encoder (large-uncased BERT) 

from pytorch_transformers Hub. To fine-tune a pre-trained model, exactly the same 

tokenization, vocabulary, and index mapping with the model should be used.So, we use 

the tokenizer that was used by the base model.  

Next, we initialize the provided data and prepare it as the input of the BERT 

model. For every sentence, we add a “[TGT]” token before and after the target word in 

each sentence. After that, we add a “[SEP]” (Separator) token at the end of each 

sentence. Then we encrypt them separately by the tokenizer. We also encode and add 

a“[CLS]” token at the first position to be able to do a classification task. Note that we 

had to add “[TGT]” as a token into the tokenizer vocabulary. Here is an example with 

“[TGT]” token. 
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CHAPTER 4  INFERENCE 

4.1. SUMMARY  

Word Sense Disambiguation (WSD) is a task concerned with analysing the 

correct sense of an ambiguous word. To minimise the gap between humans and 

computers and to provide better interfacing, there is need to improve the accuracy of the 

systems for this task.  

For example, if we consider the word plant has different senses which can 

be analysed only by looking at the context. This is effortless for humans as we are well 

aware from the day to day learning experience. WSD aims at enabling computers to do 

the same. 

If we consider sentences “This is a factory plant that produces cushions" and 

“We must plant trees regularly". The sense of the word ‘plant' is industrial site and a 

living organism respectively. We can observe that word plant is not sufficient to 

determine the correct sense but if we consider the surrounding words, the sense 

becomes clear. Using WSD, the first sentence can be sense-tagged as /factory plant / 

produce cushions. 

In this report, we have addressed the need to increase accuracy of existing 

WSD systems, and to set forth our presumed model based on supervised approach. The 

model uses a two level algorithm that uses our improvised system at the first level and 

Lesk algorithm at second level to maximize accuracy. 
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4.2. CONCLUSION 

Considering the results from the study in previous section we have done the 

precise analysis about the overall performance of each algorithm. One main inference 

that can be concluded from the evaluation is that supervised systems clearly surpass 

knowledge-based models. The main disambiguation trace is provided by its preceding 

and immediate following word, which occurs before and after the particular sense. For 

knowledge- based approach the Wordnet first sense criterion proves still to be extremely 

rigid.  

This paper focuses on  integrated evaluation framework for all-words WSD. 

This study relies on evaluation dataset taken from Senseval-2015-en and automatically 

sense-interpreted corpora. In this evaluation framework dataset has xml format, sense 

inventory (i.e., WordNet 3.0), which reduces the complexity of the task to assess  

models. Also it does a fair comparison among proposed algorithms. Supervised systems 

attains the more encouraging results. 

4.3. FUTURE WORK 

According to our analysis, we anticipate that further scanning the complete 

dataset with disambiguating each word of each sentence and then comparing the results 

with keys present in wordnet. Moreover study among more datasets of SemCor & 

SemEval that share common format and concatenating all the datasets into a single 

framework.As far as knowledge-based approach is concerned, enhancing knowledge 

resources with connotation connections for non-nominal mentions can be an important 

step further upgrading its performance.  
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