
COMPUTATION WITH 2-TUPLE LINGUISTIC VARIABLES AND

ITS APPLICATION IN MATRIX GAMES

A thesis submitted to

DELHI TECHNOLOGICAL UNIVERSITY

in partial fulfillment of the requirements of the award of the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

by

TANYA MALHOTRA

under the supervision of

Prof. Anjana Gupta

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
BAWANA ROAD, DELHI-110 042, INDIA.

December, 2021 Enroll. No. : 2K17/Ph.D./AM/03





© Delhi Technological University–2021

All rights reserved.





DECLARATION

I affirm that the research work presented in this thesis entitled “Computation with 2-

tuple linguistic variables and its application in matrix games” for the award of the

degree of Doctor of Philosophy in Mathematics is an authentic record of my own work

carried out under the supervision of Prof. Anjana Gupta, Department of Applied Mathe-

matics, Delhi Technological University, Delhi, India.

Unless otherwise stated, the research work represented in this thesis is my own research.

I have not previously submitted this thesis in part or full to any other university or institute

with the purpose of receiving a degree or diploma. This thesis contains no other person’s

data, graphs or other information, unless specifically acknowledged.

Date : (Tanya Malhotra)

i





CERTIFICATE

This is to certify that the thesis entitled “Computation with 2-tuple linguistic variables

and its application in matrix games” submitted by Ms. Tanya Malhotra in the Depart-

ment of Applied Mathematics, Delhi Technological University, Delhi, India for the award

of degree of Doctor of Philosophy in Mathematics, is a record of bonafide research work

carried out by her under my supervision.

I have read this thesis and that, in my opinion, it is fully adequate in scope and quality

as a thesis for the degree of Doctor of Philosophy.

To the best of my knowledge the work reported in this thesis is original and has not been

submitted to any other Institution or University in any form for the award of any degree

or diploma.

(Prof. Anjana Gupta)

Supervisor

Department of Applied Mathematics

Delhi Technological University

Delhi.

(Prof. Sivaprasad Kumar)

Head of Department

Department of Applied Mathematics

Delhi Technological University

Delhi.

iii





ACKNOWLEDGEMENTS

I have received encouragement and support from lot of people during my Ph.D. work.

I would never have been able to complete my Ph.D. without the guidance and support

which I have received from the beginning of my Ph.D. work. I think it is the time to

express my gratitude to all of them.

First and foremost I wish to express my deep sense of reverence and gratitude to my

supervisor Prof. Anjana Gupta, Department of Applied Mathematics, Delhi Technological

University (DTU), Delhi for her inspiring guidance, encouragement, concrete suggestions,

advice and invaluable support rendered to me during every stage of my research work

and even during pandemic times of corona (COVID-19). She also gave me the freedom

to explore my own ideas. She is a great thinker for looking new perceptions and ways

to understand the reality around us. It is indeed a great pleasure for me to work under

her supervision. I appreciate all her contributions of time and ideas to make my Ph.D.

experience productive and stimulating. The joy and enthusiasm she has for her research

was contagious and motivational for me.

I sincerely thank to Prof. Siva Kumar Prasad, Head, Department of Applied Math-

ematics, DTU, for providing me the necessary facilities and valuable suggestions during

the progress of the work.

With great humbleness, I would also sincerely thank to Prof. Sangita Kansal, former

Head, Department of Applied Mathematics, DTU, for her suggestions and constant

support throughout the research work.

I extend my sincere thanks to Prof. H. C. Taneja, former Dean (Academic, PG),

DTU for his everlasting support and guidance. My sincere thanks to all faculty members

and all research scholars of the Department of Applied Mathematics for their constant

support and encouragement.

I gratefully acknowledge the academic branch and administration of DTU for providing

the environment and facilities to carry out my research work. I also thanks o�ce sta�

of Department of Applied Mathematics for their all kind of support.

I wish to record my profound gratitude to my parents who has provided me all kinds of

support and helps for my academic achievements, and for their constant love and care. I

would like to express my thanks to my sister for her heartiest cooperation and a�ection.

I want to express my thanks to all of them who have not been mentioned here but

supported, encouraged and inspired me during my Ph.D. work.

v



I gratefully acknowledge Delhi Technological University (DTU), for providing me fel-

lowship (JRF and SRF) that made my Ph.D. work possible.

Last but not the least, I thank to almighty God for showing me the right path to

complete this Ph.D. thesis. Thank you.

Date : (TANYA MALHOTRA)

Place : Delhi, India.

vi





Dedicated to

My Parents
Mr. Sanjay Malhotra & Mrs. Nandita Malhotra

&

My Sister
Miss. Ananya Malhotra

viii



Contents

Declaration page i

Certificate page iii

Acknowledgements v

Preface xiii

List of figures xvii

List of tables xviii

1 Introduction 1
1.1 Fuzzy decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Linguistic Decision Making . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Fuzzy Linguistic Approach . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Conventional Linguistic Computational Models . . . . . . . . . . 9

1.3 2-tuple Linguistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 2-tuple Linguistic Model Based on Symbolic Translation . . . . . 12

1.4 Extensions of the 2-tuple Linguistic Model . . . . . . . . . . . . . . . . . 17

1.4.1 Unbalanced linguistic term sets (ULTSs) . . . . . . . . . . . . . 17

1.4.2 Linguistic distribution (LD) . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Multi-granularity linguistic term sets (MGLTSs) . . . . . . . . . 24

1.4.4 Interval-valued 2-tuple Linguistic Model . . . . . . . . . . . . . 25

1.4.5 Heterogeneous Information . . . . . . . . . . . . . . . . . . . . 27

1.5 Contribution of 2-tuple Linguistic Model . . . . . . . . . . . . . . . . . . 28

1.6 Application of the 2-tuple linguistic model and its extension . . . . . . . 38

1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Group operations and properties for 2-tuple linguistic variables with its ap-
plication 43
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



2.2 Group operations and isomorphic relation with the 2-tuple linguistic vari-
ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 Application of 2-tuple linguistic group in bipolar graphs . . . . . 66

2.3 Group isomorphic properties with some novel operational laws for 2-tuple
linguistic variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Methodology for matrix norm to solve zero-sum matrix game with 2-tuple
linguistic information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4.1 A new perspective of a 2-tuple linguistic matrix game with matrix
norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4.2 Application to equity market domain . . . . . . . . . . . . . . . 82

2.4.3 Comparison and discussion . . . . . . . . . . . . . . . . . . . . 84

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Methodology for unbalanced linguistic term sets 89
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Methodology for unbalanced linguistic term set . . . . . . . . . . . . . . 93

3.2.1 Representation algorithm for unbalanced linguistic set . . . . . . 94

3.2.2 2-tuple representation for unbalanced linguistic set . . . . . . . . 96

3.3 Aggregation operators for 2-tuple model for unbalanced linguistic term set 102

3.4 Numerical illustration and comparative analysis . . . . . . . . . . . . . . 104

3.4.1 Analysis and Comparison . . . . . . . . . . . . . . . . . . . . . 108

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Matrix games with Probabilistic multiplicative unbalanced linguistic infor-
mation 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.1 Probabilistic linguistic term sets . . . . . . . . . . . . . . . . . . 117

4.2.2 A zeros-sum matrix game . . . . . . . . . . . . . . . . . . . . . 117

4.3 Probabilistic multiplicative unbalanced linguistic term set . . . . . . . . . 118

4.3.1 The notion of the probabilistic multiplicative unbalanced linguis-
tic term set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.2 Operational laws for probabilistic multiplicative unbalanced lin-
guistic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.3 Aggregation operators for PM-ULTSs . . . . . . . . . . . . . . . 128

4.4 Matrix games with probabilistic multiplicative unbalanced linguistic in-
formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1 Terminology of a constant-sum probabilistic multiplicative unbal-
anced linguistic information . . . . . . . . . . . . . . . . . . . . 129

4.4.2 Methodology for probabilistic multiplicative unbalanced linguis-
tic matrix game . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5 A numerical illustration and comparison analysis . . . . . . . . . . . . . 138

x



4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Matrix games with interval-valued 2-tuple linguistic information 145
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Comparison of interval-valued 2-tuple fuzzy linguistic variables . . . . . 147

5.3 A zero-sum interval-valued linguistic matrix game . . . . . . . . . . . . . 149

5.4 Interval-valued linguistic linear programming approach to solve interval
linguistic matrix games . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Interval norm approach for solving two player zero sum matrix games with
interval payoffs 159
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.2 Interval comparison . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Mathematical formulation of zero-sum interval-valued matrix games . . . 166

6.2.1 Zero-sum interval-valued matrix games under pure strategy . . . 166

6.2.2 Interval-valued linear programming approach to solve interval ma-
trix games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Application of Interval matrix games . . . . . . . . . . . . . . . . . . . . 176

6.4.1 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Summary and future scope of the work 185

Bibliography 189

List of Publications 220

xi





Preface

Making a decision entails selecting from a set of options based on a preliminary analy-

sis, which frequently includes human intervention and uncertainty. Besides, grasping the

meaning communicated by information in a qualitative setting is necessary before making

a further analysis. One of the most challenging issues is to deal with statements, human

thoughts preferences, feelings, and so on because of the inherent character of natural lan-

guage. Over the years, much work has been taken to account for the ambiguity and impre-

cision of linguistic information by using the theory of fuzzy set and fuzzy linguistic-based

approach. Several computational methods have been created to deal with uncertainty, par-

ticularly when it is not of a probabilistic character. Specifically, in 2000, a new model

known as the “2-tuple linguistic representation model” arose, which improved numerous

linguistic processes for handling complex decision-making issues. It facilitates a contin-

uous representation of the linguistic terms, and henceforth, research concerned with the

2-tuple model is profuse and worthwhile considering in deep.

The introspection of the distinguished literature in the 2-tuple model enabled us to re-

alize that some limitations still persist in the existing uncertain 2-tuple models. This mo-

tivated us to improve the existing uncertain models to make their implementation more

flexible and consistent in decision-making processes. Therefore, in our study, we have ad-

dressed the constraints and challenges associated with the existing 2-tuple model and have

worked towards its development to enhance its applicability. Further, we have supported

our study by applying the 2-tuple model in the domain of matrix games and decision anal-

ysis. This has enabled us to contribute to the researchers worldwide who are working in

this field and are also looking for exploration.

The thesis entitled “Computation with 2-tuple linguistic variable and its application

in matrix games” comprises of six chapters followed by the summary and future scope.

The bibliography and the list of publications are provided at the end of the thesis.

The introductory Chapter 1 presents a short overview of computing with words 2-
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tuple based linguistic model as well as its elementary application anticipated in distinct

decision-making models followed by its extension. Thus, the current chapter creates a

background and motivates this thesis’s work. The chapter is based on a review paper, “A

systematic review of developments in the 2-tuple linguistic model and its applications in

decision analysis,” published in Soft Computing, Springer (2020).

The Chapter 2 entitled, “Group operations and properties for 2-tuple linguistic vari-

ables with its application” establish the basis for a theory of 2-tuple linguistic groups un-

der the given binary operation in a classical impression. In literature, the concept of fuzzy

algebra has been a subject of research for many years and has made significant progress.

Nevertheless, the abstract theory of linguistic groups is pristine and yet to be explored.

The use of fuzzy linguistic concepts to represent practical situations with qualitative data

has shown to be a powerful approach. Several computational techniques have been intro-

duced to alleviate the computation between linguistic terms. Among these computational

techniques, the proposal of a 2-tuple linguistic model is a useful tool by easing out the

computations and avoiding information loss when applied in some practical decision-

making situations. In the study of linguistic information, the aggregation of 2-tuple lin-

guistic labels is a crucial problem. Several computing models existing in the literature

are well-suited to deal with this problem. However, it is noted that the existing opera-

tional laws are not satisfying the closure property. Moreover, to the best of knowledge,

no theory has been developed to support the concept of linguistic groups. For this reason,

the foundation of the theory of 2-tuple linguistic groups under a crisp binary operation is

a milestone in this direction, overcoming the constraints of the existing operational laws

which operate without information loss. The chapter has given a formal methodology

to claim that the 2-tuple linguistic term set forms an algebraic structure group. Further,

a similarity relation between the linguistic groups is obtained, and some properties of

the operational laws, group isomorphic and homomorphic relation, have been discussed

in detail. Lastly, the physical meaning of the abstract concept so developed has been

showcased in bipolar graphs and matrix games. The chapter is based on a research paper

entitled, “Group operations and isomorphic relation with the 2-tuple linguistic variables”,

published in Soft Computing, springer 24, 18287–18300 (2020) and “Group isomorphic

properties with some novel operational laws for 2-tuple linguistic variables and its appli-

cation in linguistic matrix games” Communicated in IEEE Transactions on Systems, Man,

and Cybernetics: Systems.

A qualitative decision making problems with linguistic term set where all plausible lin-
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guistic descriptors provided by experts have symmetric and uniform distribution has been

investigated by several scholars. Obviously, it might not be suitable in practical life de-

cision problems since the experts may prefer linguistic labels distributed non-uniformly

and non-symmetrically. Numerous studies have been developed on theoretical and prac-

tical applications to handle an unbalanced linguistic context. However, the current unbal-

anced linguistic computational models are complex and computationally more expensive.

Therefore, in Chapter 3 entitled, “Methodology for unbalanced linguistic terms” we pro-

pose a newly constructed methodology to handle a set of unbalanced linguistic terms

and further develop a novel 2-tuple linguistic technique for the unbalanced linguistic set.

The new 2-tuple unbalanced linguistic model is computationally less complicated and can

avoid information loss. Finally, numerical illustrations present the concrete steps of the

developed approach and manifest the practicality and flexibility of this model by eluci-

dating a comparative analysis with existing models. The chapter is based on a research

paper titled, “A New 2-Tuple Linguistic Approach for Unbalanced Linguistic Term Sets”,

published in IEEE Transactions on Fuzzy Systems 29 (8) 2158–2168 (2021).

Chapter 4 entitled, “Matrix games with probabilistic multiplicative unbalanced linguis-

tic information” proposes a novel concept of the probabilistic multiplicative unbalanced

linguistic term set considering the probabilities as well as non-uniformity of distinct lin-

guistic labels. Further, based on the proposed concept a unified mechanism to solve a

two-person linguistic matrix game having probabilistic multiplicative unbalanced linguis-

tic information is suggested. The proposed approach can be perceived as a convenient

technique for multiple criteria decision-making (MCDM) problems. Numerical illustra-

tions are presented to discuss the significance of the proposed methodology. The chapter

is based on a research paper titled, “Probabilistic multiplicative unbalanced linguistic term

set and its application in matrix games”, communicated in International journal of ma-

chine learning and cybernetics, Springer.

In Chapter 5 entitled, “Matrix games with interval-valued 2-tuple linguistic informa-

tion” a 2-player non-cooperative zero-sum interval-valued 2-tuple fuzzy linguistic (IVTFL)

matrix game is proposed, and interval-valued linguistic linear programming (IVLLP)

methodology is suggested to solve such class of games. A hypothetical example is used

to demonstrate the suggested method’s applicability in the practical world. The chapter

is based on a research paper titled, “Methodology for Interval-Valued Matrix Games with

2-Tuple Fuzzy Linguistic Information”, published in In: Sergeyev Y., Kvasov D. (eds)

Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in
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Computer Science, Springer, Cham. , 11974, (2020). https://doi.org/10.1007/978-3-030-

40616-5_12.

Chapter 6 entitled, “Interval norm approach for solving two player zero sum matrix

games with interval payoffs” present a new approach that gives a unique outlook for solv-

ing a two-player zero-sum interval-valued matrix game (ZSIMG) based on the interval

matrix norm framework. The methodology presented in this chapter helps obtain an ap-

proximated interval game value for the corresponding ZSIMG without undergoing the

existing process of solving traditional interval linear mathematical models. The chapter is

based on the research paper titled, “Interval norm approach for solving two-player zero-

sum matrix games with interval payoffs” Submitted in Computational optimization and

application, Springer.

After chapter 6, we present the summary of the research work carried out in this thesis.

In addition, the future scope of the thesis has been discussed briefly.

Finally the thesis ended with the bibliography and list of publications.
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Chapter 1

Introduction

Most real-world problems incorporate uncertainty and erroneous information within their

framework of definition such that it is inappropriate to model such problems via numer-

ical values. Under these circumstances, the utility of a fuzzy linguistic-based approach

and computing with words (CWWs) processes have provided effectual results. Concretely,

because of explicit linguistic computations and high interpretability, the 2-tuple linguistic

(2TL) model surpasses. The 2TL model has upgraded several linguistic processes for solv-

ing complex decision-making issues. The present introductory chapter1 initially provides

a brief understanding of a fuzzy linguistic approach and other existing linguistic compu-

tational models (LCMs) designated to introduce the necessity of the 2TL framework. The

chapter explicitly discusses the linguistic model based on the 2-tuples and its foundation.

Its extension to interval-valued 2TL framework, unbalanced LCM, linguistic distribution,

and so forth is also explained. Further, it justifies the significant applications of a 2TL

model witnessed in varied disciplines, primarily decision analysis and game theory (GT).

Henceforth, the fundamentals of this chapter are proficient in providing a platform to

motivate the research work carried out in this thesis.

1The content of chapter is based on the review paper “A systematic review of developments in
2-tuple linguistic model and its applications in decision analysis,” Soft Computing, Springer (2020).
https://doi.org/10.1007/s00500-020-05031-2 (SCIE, Impact Factor: 3.643)

1
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Several real-world problems deal with information that is uncertain and vague. The more

possibility in a question, the less accurate we can be in our understanding of that prob-

lem, and as a result, it should be obstructed apparently. Problems at the molecular level

are not addressed in the late nineteenth century. As a result, to achieve a more credible

solution and simultaneously quantifying the amount of risk leads to the development of

probability theory and more advanced statistical methods in the late 20𝑡ℎ century. The

question of possibility was challenged by the studies of Max-Black in vagueness persist-

ing in the problem, first in 1937. Later on, it was challenged by L.A. Zadeh [316], in 1965

who introduces the notion of Fuzzy sets. The introduction of the Fuzzy set (FS) theory

has shown great alacrity and competence in modeling the uncertainty abiding within the

problems in an attempt to challenge the existing probability theory along with the very

basis on which it depends, i.e., classical binary logic.

Traditional set theory is based primarily on the idea that either an element belongs to a

collection or does not belong to it. There is no significant presence of partial membership

of elements of a set. However, FS theory permits us to extend the fundamental concepts

of classical set theory and logic in an infinite way that seems hugely sensible. The con-

viction of binary membership was extended by Zadeh to accommodate varied “degrees

of membership” on the unit interval [0,1] where 0 and 1 represent “non-membership”

and “full membership” respectively, and the infinite number of values lying in between 0

and 1 represent partial membership. For more details about the contributions made to the

theory of fuzzy sets and applications, one can refer [316–323, 328, 329].

Decision-making and decision analysis are considered among the most prominent com-

ponents of our daily lives and have been studied extensively in the literature. Understand-

ing its complexity, it is observed that most real-world problems are commonly uncertain

in several ways. Lack of information can cause the system’s future state to be ambigu-

ous. This uncertainty persisting within the problem has been addressed using probabilistic

models and statistical tools. However, in several situations, non-deterministic models are

required to offer better results. The fuzzy system has evolved as an uncertain system

covering each field of real-life problems. Subsequently, over time, a plethora of fuzzy

multi-criteria decision-making (MCDM) approaches has been comprehensively studied

in the literature. The motivation for developing diverse fuzzy MCDM approaches is be-

cause of researchers’ and practitioners’ desire to reinforce decision-making methods via

a recent enhancement in computer technology, scientific computing, and mathematical

optimization. In paper [197], the systematic review of fuzzy MCDM methods and their
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application in different fields from 1994 to 2014 has been given.

1.1 Fuzzy decision making

The research prospected on issues concerning fuzzy logic has its origin with the com-

mencing work of Zadeh in 1965 [316]. This line of research analyzed the FS theory con-

cept starting with the utility of standard boolean sets and progressing to a multi-valued

logic [26]. The advancement witnessed in this field was so expeditious that FS theory

has been recognized worldwide as a prominent research field within a few years, being

studied by several researchers and practitioners around the globe in theoretical and prac-

tical aspects [198]. Amid multiple theoretical and practical developments, the theory of

FS outshines as a research area of study of decision-making. Its application in modern

decision science is not astonishing, given that decision analysis is viewed as an area in

which human-originated information is ubiquitous.

The research on fuzzy decision-making (FDM) evolved from a wide number of re-

searchers throughout the world developing concepts suchlike FSs [316], fuzzy environ-

ments [27], approximate reasoning [324–326] and applications of FSs in decision sys-

tems [341]. Its central argument states that many real-world decisions are made in an

framework where the consequences of all plausible actions are not fully understood. Hu-

man subjectivity influences decision-making, which is a multistage process. According

to the paper [26], a fuzzy decision is an intersection of objectives and demarcations pre-

sented inside a multistage mechanism, where human intelligence can manipulate fuzzy

concepts and fuzzy answer instructions.

1.2 Linguistic Decision Making

With increasing complexities in the practical decision-making (DM) problems, it is ob-

served that the information persisting within them is uncertain and fragmentary. Also,

several aspects of real-world problems require human intervention, where they need to

select among different alternatives through rationale and cognitive process. Such decision

problems are ill-structured and are not submissive to quantitative characterization. Mean-

while, there may exist some situations where the present information is not quantifiable

because of its nature (e.g., when categorizing the quality of research paper, the terms like

“Excellent,” “Good,” “Average” can be used), or the cost of computation for quantitative
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information present in the problems is very high that an “approximate value” is bearable.

Therefore, experts often prefer to express the results in a natural language rather than pre-

cise numerical value. This leads to the notion of a linguistic variable (LV). LVs are defined

as variables whose values are accepted as either words or an ordered blend of words used

in a natural or synthetic language, whose meaning is characterized by a semantic princi-

ple [324]. For instance, age can be a LV whose values are considered linguistics, such

as very young, young, not young, not very young, . . . , etc., which is closer to the human

subjective thinking process than numbers like 1, 2, 3,. . . , 100. The formal definition of

LV is stated below:

Definition 1.2.1. [324] A LV is described as (𝐻, 𝑇 (𝐻), 𝑈, 𝐺, 𝑀 (𝐻)) where 𝐻 represents

the name of LV identical with a real variable name; 𝑇 (𝐻) represents a term set consisting

of the names of LV meanings 𝐻. Every term in a set is a fuzzy variable whose meanings

lies within the range 𝑈, [𝑈min, 𝑈max]; 𝐺 refers to the syntactic rule generating the names

of values in 𝐻; and 𝑀 (𝐻) refers to the semantic rule represented by the membership

function (MF) ‘𝜇’.

The linguistic approximation was initiated ideally by L.A. Zadeh [324] and was con-

sidered as the most prominent application area of the linguistic variable concept. He

presented in the paper that the linguistic-based approach was not associated with the con-

ventional non-mathematical ways of dealing with humanistic systems. Instead, it was

represented as an amalgam between the quantitative and qualitative aspects, based on

words when numerical characterizations were inappropriate. The progress in the fuzzy

linguistic-based approach is remarkable with the growing number of years and considered

a core area in different disciplines like decision-making, supply chain, pattern recognition,

energy optimization, approximate reasoning, and so forth. The usefulness of linguistic-

based information implies a broad perspective in the current specialized literature on lin-

guistic decision analysis and CWWs related methodologies. The broad classification of

diverse fields where linguistic modeling (LM) seems considerably logical is mentioned in

Figure 1.1.
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Figure 1.1: Linguistic modeling application

1.2.1 Fuzzy Linguistic Approach

While the rapid development of FS theory to DM problems where only incomplete

or uncertain information is available is the subject of substantial research over the last

decade, it is believed that it brings about another problem of how to potentially present

the decision that could be easily understandable by humans. The solution to the mentioned

problem is the evolution of a fuzzy linguistic-based approach that aims to offer excellent

results more compatible with human cognitive mechanisms.

Zadeh [327] proposed a fuzzy linguistic-based approach in 1975, which served as an

initiatory tool to provide a language for inaccurate estimation of the components involved

in the DM process that are either intrinsically fuzzy or are inadequate of precise mea-

surement. Henceforth, it provides many reliable results and, consequently, successfully

applied in different research areas. For more details on the fuzzy linguistic approach, one

can refer to the papers [20,60,61,88,103,104,261,276,324,327]. Here, Table 1.1 shows a

summary of the existing literature primarily centered on the application area of the fuzzy

linguistic based approach. In this table, the chronological order of the publication along

with a synopsis of the key contributions made by the fuzzy linguistic-based approach is

given.
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Table 1.1: Summary of applications based on a fuzzy linguistic approach

Title year paper Description Why Fuzzy Linguistic Approach Strong/Weak points

“The Concept of a Linguis-
tic Variable and Its Applica-
tions to Approximate Reason-
ing Part I, Part II, Part III"

1975 [324–326]

This paper demonstrates an
idea of a linguistic variable
and its application in approxi-
mate reasoning, which is con-
sidered to be a mode of rea-
soning that is not exact nor
very inexact.

Linguistic variables provides
a method to estimate char-
acterization of phenomena
which are really complex
or obscure to be amenable
to description in standard
quantitative terms.

This approach offers a more
realistic framework for human
reasoning than classical bi-
nary logic. Also, computation
with linguistic variables may
require the solution of non-
linear programs and thereby
leads to results that are impre-
cise to the same degree as the
underlying probabilities.

“A linguistic approach to deci-
sion making with fuzzy sets" 1980 [261]

This paper proposes a method
for fuzzy decision making
based on linguistic approxi-
mation and truth qualification.

Fuzzy linguistic approach is
considered to be the most ex-
propriate in a situation where
information is vague or im-
precise. Hence, decision ex-
pressed in such cases should
be linguistic rather numerical.

The proposed approach cre-
ates a linguistic evaluation of
the choices, and therefore re-
sults acquired from this ap-
proach can be used in fuzzy
decision problems. Decision-
makers associated with the
choice handle at every level,
and as a result, the proposed
approach is of great practical
importance.

“Fuzzy set based linguistic ap-
proach: Theory and applica-
tion"

1980 [23]

Fuzzy sets and logic are con-
sidered to be premise for the
linguistic approach and this
paper very well explains this
approach and further illustrate
it with example.

Proposed approach helps in
developing models that can
able to mimic approximate
reasoning.

The linguistic approach can
able to handle two major is-
sues: firstly, the proposed
methodology relates a name
to an unbalanced fuzzy set on
the premise of semantic simil-
itude and, secondly, perform
mathematical operations with
fuzzy numbers.

“The problem of linguistic ap-
proximation in clinical deci-
sion making"

1988 [76]

This paper explains linguistic
approximation method in
computerized framework
which is the background of
medical decision making.

The proposed method is use-
ful in expressing linguistic
outputs that are simple and re-
liable. Moreover, the choices
can be completely represented
by graphical representation of
the suitability sets over a deci-
sion space [0,1] to avoid un-
certainty.

The linguistic approximation
approach is useful for clin-
ically recognized linguistic
terms whose meaning is well
defined in the medical com-
munity. However, some prob-
lems still persist with the ex-
isting approach. The first con-
cern is regarding a choice of
the threshold, which is used
to differentiate good and bad
approximations. The second
concern is about a limited
number of terms at the user’s
disposal.

“Linguistic decision making
models"

1992 [61]

This paper proposes the model
for decision making problems
in which knowledge about
gains and true state of nature
is given as linguistic rather
than numeric.

Linguistic decision models
proved to be an edge over
other models based on clas-
sical decision theory. Lin-
guistic decision models could
very well handle representa-
tion of the true state of na-
ture, and gains are repre-
sented by means of linguis-
tic terms, and the objective of
decision-makers are vaguely
established.

This article is restricted to sin-
gle objective decision-making
problems.

“A fuzzy linguistic approach
generalizing boolean informa-
tion retrieval: a model and its
evaluation"

1993 [21]

In this article, an extension
of the weighted boolean re-
trieval model is being formal-
ized within the fuzzy linguis-
tic framework. In this model,
linguistic descriptors replace
numeric query weight. This
fuzzy linguistic model is ex-
plained, and further evalua-
tion is being carried out of its
implementation on a boolean
information retrieval system.

Proposed approach has an
ability to deal with the impre-
cision and subjectivity charac-
terizing retrieval activity.

The retrieval model defined
within the fuzzy framework
provides an understandable
and convenient means of
dealing with qualitative and
imprecise criteria. The intro-
duction of linguistic weights
in queries has improved
the expressive power of the
weighted Boolean query
language.

“Non-numeric multi-Criteria
multi-person decision mak-
ing"

1993 [306]

The objective of this paper
is to describe a multi-expert
MCDM strategy for estimat-
ing and selecting the alterna-
tives based on a non-numeric
scale.

The non-numeric linguistic
scale has an ability to deal
with the imprecision and
thereby provides a more
flexible framework for an
evaluator.

The central idea of the pro-
posed methodology in using
linguistic terms linked with
the scores is that it makes
it simple for an evaluator to
manipulate. The process ex-
plained in this paper allows
experts for the multi-criteria
evaluation of every object, fol-
lowed by an aggregation of
these individual experts in or-
der to obtain an overall object
evaluation.

“A fuzzy multi-criteria deci-
sion making method for tech-
nology transfer strategy selec-
tion in biotechnology"

1994 [39]

In this article, the potential ap-
plication of fuzzy set theory
to technology transfer strat-
egy selection in the area of
biotechnology management is
described. This article also
suggests a new look at the
concept of the index of opti-
mism as implicated by Kim
and park in 1990 [140].

Proposed approach is benefi-
cial in describing subjective
assessments of the appropri-
ateness of alternatives verses
criteria and the importance
weightings of criteria.

The decision algorithm de-
vised in this paper is enforced
to the varied management de-
cision process and relevant ar-
eas. But still, their persist
many lookup issues halting
in the enrichment of this ap-
proach, few among them are
stated below: (1.) The defini-
tion of the suitable fuzzy lin-
guistic variables, their num-
bers, their values, and their
universe of discourse for con-
ventional use in the algorithm.
(2.) A method for accumu-
lating raw records and esti-
mating the suited membership
functions for the base linguis-
tic variable values. (3.) The
relative importance of every
decision-maker is not viewed
in this study. Therefore,
in many multi-judge decision
problems, weights are not
only decided by the decision-
maker and criterion; however,
it can be different with respect
to the decision environment
and structure.
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Table 1.1: (Continued)

Title year paper Description Why Fuzzy Linguistic Approach Strong/Weak points

“FUZMAR: An approach to
aggregating market research
data based on fuzzy reason-
ing"

1994 [308]

This article introduces an ap-
proach for validating mod-
els that contain variables hav-
ing linguistic values that are
drawn from a linear ordering
scale. To develop the models,
the methodology provided in
the paper relies on fuzzy logic
operations, and the principle
of lowest entropy to choose
between competing models.

In the proposed methodology,
linguistic values assumed to
give accurate and reliable re-
sults. Also, computations
made on linguistic values are
simpler than numerical ones.

The key idea of the work is to
indicate a methodology to use
the information provided by
market surveys to predict the
values of other related vari-
ables of interest to market re-
search analysts. The proposed
methodology based on the use
of Shannon’s entropy. Fur-
ther, an approach to a sim-
ple aggregate idea to form a
complicated one is also intro-
duced.

“A multiple criteria linguistic
decision model for human de-
cision making"

1994 [164]

This article proposes a mul-
tiple criteria linguistic deci-
sion model (MCLDM) for hu-
man decision-making prob-
lems. MCLDM is beneficial
to appraise a set of alterna-
tives over varied criteria by
using linguistic variables and
then presents linguistic deci-
sion output for selecting the
best alternatives.

The proposed approach is
beneficial in describing a sys-
tematic way of making lin-
guistic decisions within a
fuzzy environment, so as to
tackle imprecise information
well, that cannot be handled
by probability theory.

MCLDM method is one of the
most powerful methods for
managing decision makers en-
gaged in making decisions in
a situation where the informa-
tion available is vague or un-
certain. Moreover, MCLDM
is useful in performing sensi-
tivity analysis.

“A fuzzy linguistic approach
to a multi criteria sequencing
problem"

1996 [1]

This paper considers a fuzzy
approach to a single machine
scheduling problem, where
the system’s variables are de-
fined with the help of linguis-
tic terms. The fundamental
point of the study is to fig-
ure out the period of the trans-
forming times, on grouping
the jobs in the machine. And
lastly, to determine the com-
mon expected rate in a near-
optimal way.

Fuzzy set theoretic linguistic
framework overcomes the dif-
ficulty in approximating the
parameters which best de-
scribe the system under con-
sideration. The proposed ap-
proach proves to be beneficial
in a situation where parame-
ters such as processing times
of tasks are characterized by
vagueness. Such vagueness
is well handled qualitatively
rather numerically.

The advantage of using the
proposed approach in many
real production situations is to
give promising results when
the information available is
vague. It could able to
deal with several scheduling
models in which processing
times of jobs are not precisely
known and henceforth give
considerable results.

“Using fuzzy numbers in edu-
cational grading system" 1996 [149]

This paper frames out a struc-
tural model of a fuzzy aca-
demic grading system and fur-
ther proposes an algorithmic
program for it. This study
also comprised of a strategy to
frame out membership func-
tions of various linguistic val-
ues with dissimilar weights.

Observed scores of students,
as well as scores of distinct
questions in an examination,
are vague, thereby fuzzy set
theory is beneficial in ag-
gregating scores. Moreover,
the linguistic variable is being
used to judge student’s perfor-
mance via grade and hence,
is beneficial in aggregating
scores well.

The proposed approach of-
fers a result that is quite re-
liable and uses the fuzzy set
theory as its basis to pro-
vide us with the information
needed to develop a new grad-
ing method. In the proposed
methodology, the grades to be
assigned corresponds to the
degree of membership so that
aggregation of different test
scores into a single score is
plausible. Further, it provides
us means to strengthen the
quality of the grading system,
thereby giving a clear indica-
tion about the student’s aca-
demic performance.

“Direct approach processes
in group decision making
(GDM) using linguistic or-
dered weighted average oper-
ators"

1996 [104]

In this paper, the properties
and the axiomatic of the lin-
guistic ordered weighted av-
eraging operator (LOWA) by
presenting the rationality of its
aggregation way is being pre-
sented. Further, the use of the
LOWA operator is also being
introduced in order to solve
GDM problems from individ-
ual linguistic preference rela-
tions.

Proposed approach helps in
incorporating high human
consistency in decision mod-
els.

The focal thought created in
the paper is to find out ev-
idence of rationality of the
LOWA operator. Also, fur-
ther indicating its requirement
in processes of GDM in a lin-
guistic environment.

“Application of a fuzzy lin-
guistic approach to analyse
asian airports competitive-
ness"

1997 [229]

This paper proposes an anal-
ysis of the potential compet-
itiveness of 9 major airports,
which is based on the fuzzy
linguistic approach and also
on the airport experts’ point of
view.

The proposed approach pro-
vides a practical and applica-
ble assessment of airport com-
petitiveness in the East Asia
region. Also, it is even more
flexible and adaptable to deal
with competitiveness associ-
ated with designated influenc-
ing factors.

The central idea of our pro-
posed approach is that it helps
in converting influencing fac-
tors to the competitiveness of
finite scales of using linguis-
tic variables.
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Table 1.1: (Continued)

Title year paper Description Why Fuzzy Linguistic Approach Strong/Weak points

“A new method for tool
steel materials selection under
fuzzy environment"

1997 [43]

This paper provides a new
approach in solving the tool
steel materials selection prob-
lem under the framework of
fuzzy, where the significance
weights of distinctive criteria
and the ranking of different
preferences underneath dis-
tinctive criteria are assessed
in linguistic phrases expressed
by way of trapezoidal fuzzy
numbers. Further, an example
is given to illustrate the newer
methodology properly.

The proposed technique is
much more proficient than
rather a traditional method
presented by Wang and Chang
in 1995. Henceforth, it helps
the designer to choose the
most relevant tool steel ma-
terials systematically. Also,
it makes the execution much
faster.

The proposed technique
makes use of easy arithmetic
operations instead of complex
arithmetic operations for
aggregation and ranking of
fuzzy numbers. As a result,
its execution is much quicker.

“Linguistic labels for express-
ing fuzzy preference relations
in fuzzy group decision mak-
ing"

1998 [199]

This paper proposes improve-
ments to pairwise group deci-
sion making based on fuzzy
preference relations and then
propose the use of linguistic
labels for expressing the fuzzy
preference relation.

The proposed approach helps
represent preferences in lin-
guistic labels rather than nu-
merical, thereby producing
the results which are more re-
alistic in presenting imprecise
preference relations.

The linguistic labels represen-
tation method proposed has
helped in improving simplic-
ity and flexibility in the appli-
cations of the group decision-
making method.

“Multi-criteria Multi-stages
linguistic evaluation and
ranking of machine tools"

1999 [80]

This paper shows a model
for the linguistic evaluation
of machine tools parameters
and a procedure for alterna-
tives ranking.

The proposed approach is
helpful in modeling and rank-
ing linguistically evaluated
characteristics of machine
tools. It is primarily based
on the application of FSs
theory and represents an
up-gradation to the former
approaches by overcoming
the inconsistency that appears
in the final result.

Suggested methodology for
machine tools evaluation and
ranking may be used for both
machine tools selection and
linguistic quantification of an
already selected machine tool.
By linguistic quantification of
machine tools elements rigid-
ity and by setting a signifi-
cance of these elements for
given machining conditions, it
is possible to generate a lin-
guistic value of rigidity of ma-
chine tool as a whole.

“Linguistic decision analy-
sis: steps for solving decision
problems under linguistic in-
formation"

2000 [114]

This paper displays a study
on the steps to be embraced
in linguistic decision analysis
under linguistic data.

The linguistic-based approach
provides a smoother frame-
work for solving decision-
making problems such that it
helps in representing informa-
tion in a more straight forward
and adequate manner.

The utility of linguistic
models in decision problems
is highly beneficial in the
decision-making problems
where results cannot be ex-
pressed in numerical form.

“Extensions of the TOPSIS
for group decision-making
(GDM) under fuzzy environ-
ment"

2000 [41]

This paper aims to present the
development of the TOPSIS
method for solving the GDM
problem under the framework
of fuzzy. In this paper, lin-
guistic terms are in a way used
to represent the ranking of ev-
ery attribute and the weight of
each criterion, that can be de-
scribed accordingly with the
triangular fuzzy number. Ver-
tex method is also designed to
estimate the distance between
the two triangular fuzzy rat-
ings. Finally, concerned with
the notion of TOPSIS, a close-
ness coefficient is depicted to
select the ranking order of all
alternatives.

Crisp values are insufficient to
handle practical, real-life situ-
ations. Some amount of fuzzi-
ness is linked with decision
information and GDM prob-
lems. Thereby, the utility of a
linguistic approach to apprais-
ing the weights of all criteria
and ranking of every alterna-
tive concerning every criterion
has provided a more flexible
and realistic framework than
numerical value.

The proposed approach is use-
ful in solving MCDM prob-
lems within a fuzzy frame-
work. The need of linguis-
tic variables in various deci-
sion problems is highly ben-
eficial in assessing alterna-
tives concerning criteria and
significance weights. Fur-
ther, with the help of a vertex
method distance between the
two fuzzy triangular numbers
can be estimated. Henceforth,
extends the TOPSIS technique
to the fuzzy environment.

“A linguistic decision model
for personnel management
solved with a linguistic bi-
objective genetic algorithm"

2001 [117]

This paper exhibits a model
for staff selection in the state
of uncertainty with the goal
that it will both limit the risks
emerging from the perfor-
mance of undertakings by un-
suitable personnel and boost
the limit of the firm via opti-
mal assignment of workers.

The linguistic formulation is
very much useful in a situation
where the information avail-
able is vague or imprecise.
Thereby working in qualita-
tive areas suchlike a person-
nel management linguistic ap-
proach has provided a more
flexible and realistic frame-
work than numerical value.

The proposed method has
given promising results
henceforth; it can be adopted
and further implemented to
different practical, real-life
problems under the same
consideration.
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The use of linguistic labels in a fuzzy linguistic-based approach is appropriate for mod-

eling practical DM problems where the information available is uncertain. We have to

make a suitable choice in selecting linguistic labels for the given term set and their se-

mantics. To achieve the mentioned goal, a significant aspect is to analyze the corre-

sponding granularity of the set. In general, the granularity of the set which is denoted

as ‘𝑔 + 1’ describes the degree of distinct linguistic labels in a linguistic term set (LTS),

LT =
{
ℓ𝑖 | 𝑖 = 0, . . . , 𝑔

}
. The determination of the set’s granularity depends on the given

linguistic DM problem. Once the set’s granularity is fixed, the linguistic descriptors and

their associated semantics are established. Varied methodologies existing in the literature

to determine these requisites are given in papers [324–326]. Lastly, it is envisioned that the

distribution of distinct linguistic labels is defined on a finite ordered scale set exhibiting

the following properties [118].

(i) The LTS is ordered: ℓ𝑖 ≥ ℓ 𝑗 , if 𝑖 ≥ 𝑗 .

(ii) The negation operator is given as neg(ℓ𝑖) = ℓ 𝑗 such that 𝑗 = 𝑔− 𝑖.

(iii) Maximization operator: max(ℓ𝑖, ℓ 𝑗 ) = ℓ𝑖 if 𝑖 ≥ 𝑗 .

(iv) Minimization operator: min(ℓ𝑖, ℓ 𝑗 ) = ℓ𝑖 if 𝑖 ≤ 𝑗 .

For demonstration, we consider a linguistic set LT having seven terms specified as, LT =

{ ℓ0 : “Worst” (W), ℓ1 : “Very Low” (VL), ℓ2 : “Low” (L), ℓ3 : “Medium” (M), ℓ4 : “High” (H),

ℓ5 : “Very High” (VH), ℓ6 : “Excellent” (Ex) }.
Here, neg(ℓ4) = ℓ2, max(ℓ1, ℓ3) = ℓ3, min(ℓ1, ℓ3) = ℓ1.

Context-free grammar methodology [142] is another valuable approach in describing

the linguistic labels. However, in the current study, we restrict ourselves to the ordered

structure approach. The semantics of the stated linguistic descriptors boost the computa-

tional process of LVs. Usually, semantics are represented with membership functions (see

graphically, Fig 1.2)

1.2.2 Conventional Linguistic Computational Models

It is a well-known fact that some human DM problems are too complex to be handled

via traditional quantitative models. Hence, linguistic descriptors camouflage the uncer-

tainty embedded in those problems. For improving the accuracy along with facilitating

the methodologies of CWW by handling the problems involving linguistic information,

distinct LCMs have been designed within the majored literature suchlike:
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Figure 1.2: A set of seven linguistic terms with their semantics

• The extension principle-based computational model [22,76,77,139]. This com-

putational model supports the fuzzy linguistic based approach and performed op-

erations directly on the membership function defined for the linguistic labels by

utilizing the fuzzy extension principle [77, 139]. The fuzzy computations applied

on LTn which symbolizes the ‘𝑛’ cartesian product of LT results in a fuzzy number

𝐹 (R), that generally do not agree to any linguistic label in the given primary LTS.

So, to obtain an information which is interpreted linguistically, it is essential to de-

fine a linguistic approximation function as 𝑎𝑝𝑝1(.) : 𝐹 (R) → LT expressing the

final result in the original expression domain. However, the approximation process

defined has appeared as a primary disadvantage of the model as it causes informa-

tion loss and inaccuracy in the outcome as presented in Figure 1.3.

Figure 1.3: A process of linguistic approximation

• The ordinal scale based computational models [305]. In this symbolic LCM, the

information is represented corresponding to the fuzzy linguistic based approach. It

further enhances the use of the collection of linguistic terms’ ordered structure, i.e.,

LT =
{
ℓ𝑖 | 𝑖 = 0, . . . , 𝑔

}
such that ℓ𝑖 < ℓ 𝑗 ⇔ 𝑖 < 𝑗 to facilitate the required symbolic
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computations. The intermediary results are usually the numerical values, 𝛼 ∈ [0, 𝑔],
which need to be estimated in every step of the mechanism via an approximation

function 𝑎𝑝𝑝2(.). Formally, it can be demonstrated as:

𝐿𝑇𝑛
𝐶−→ [0, 𝑔]

𝑎𝑝𝑝2 (.)−−−−−−→
{
0, . . . , 𝑔

}
→ 𝐿𝑇

Here, 𝐶 represents a linguistic aggregation operator operating over the indices,{
0, . . . , 𝑔

}
of the LTS, LT, 𝑎𝑝𝑝2(.) represents an approximation function that helps

in obtaining an index 𝑖, 𝑖 ∈
{
0, . . . , 𝑔

}
which is associated to a linguistic label in LT

from a value in [0, 𝑔]. The approximation function mentioned in the process offers

inaccurate and distorted information as 𝑎𝑝𝑝2(.) which is applied on any real value

in the interval, [0, 𝑔] taking value of the nearest index, 𝑖 ∈
{
0, . . . , 𝑔

}
.

.

Different ordinal scale-based computational models having similar computations are

presented in [62, 295]. Due to simple adaptation and ease for decision makers [302,

303, 305], symbolic models have been extensively enforced to various problems of DM.

However, the lack of precision and information drop caused by the necessity to outright

the final results in the primary linguistic domain, i.e., discrete, which is shown as a re-

translation step given in Figure 1.4 were the primary concerns of the conventional LCMs.

Henceforth, it is a salient requirement to develop more precise resulting LCM for explic-

itly carrying out CWWs processes.

Figure 1.4: Computing with words scheme [187, 303]

1.3 2-tuple Linguistic Model

The traditional symbolic LCMs lack accuracy due to the information loss that occurs

primarily due to the prerequisite for enumerating the ultimate results in the primary ex-

pression domain. As a result, to overcome the shortcomings of the existing models and

facilitate the process of CWWs, a new model with simplified computation and interpreta-

tion of results is required. Additionally, the model must be fully capable of representing
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the linguistic results with accuracy so that it does not belong to the initial LTS, 𝐿𝑇 . Hence,

initiating a linguistic model with continuous representation is the appropriate response in

this direction.

The introduction of the 2TL model, which overcame the precision constraint of tra-

ditional symbolic models, signaled the start of a new era in the CWW literature. This

model’s ascendancy lies in the fact that the representation of this model remains continu-

ous in its domain, while it is considered discrete in the other existing conventional models.

Therefore, the 2TL model specifies any information in the universe of discourse.

1.3.1 2-tuple Linguistic Model Based on Symbolic Translation

The initiatory 2TL model was proposed by Herrera & Martínez [106] where author

presents the linguistic information in terms of a couple of values, known as a 2-tuple. The

model is created with the help of a linguistic term and a number that is (ℓ𝑖,𝛼) ∈ 𝐿𝑇 ×
[−0.5,0.5), where ℓ𝑖 ∈ 𝐿𝑇 , a linguistic term and 𝛼 ∈ [−0.5,0.5), a crisp value portraying

the “symbolic translation”.

The central idea behind the foundation of the linguistic model based on 2-tuple is

to boost the authenticity and assist the processes of CWW by considering the continu-

ity of the linguistic domain [187]. This model is also referred to as a continuous 2TL

model—further, Herrera and Martínez [111], in their paper, has solved a multi-expert

MCDM problem that is elucidated in a linguistic context of multi-granularity using those

mentioned above linguistic computational techniques. In that paper, the authors have pre-

sented a comparison of the linguistic labels, its authenticity, and the consistency of the

final results obtained using these computational models. It reveals that the 2TL model is

highly efficient in managing the accuracy of linguistic information.

Next, we proceed to primarily discuss the definitions and mathematical formulations of

the 2TL model.

Definition 1.3.1. [106] Let LT =
{
ℓ𝑖 | 𝑖 = 0, . . . , 𝑔

}
be defined as the finite and totally

ordered LTS having cardinality 𝑔 + 1 and let 𝛽 ∈
[
0, 𝑔

]
be the numeric value. Let 𝑖 ∈{

0, . . . , 𝑔
}

and 𝛼 ∈ [−0.5,0.5) be two values then 𝛼 is called a “symbolic translation”

which means, a precise numeric value representing the translated value from initial result

𝛽 to the nearest index label 𝑖. Here, 𝑖 is denoted as round(𝛽) while 𝛼 = 𝛽 − 𝑖.

This 2TL model is described via transformation function established between numeric

values and 2-tuples, as defined above, to carry forward the linguistic computational pro-



13

cesses.

Definition 1.3.2. [106] Let LT =
{
ℓ𝑖 | 𝑖 = 0 to 𝑔

}
be defined as a finite LTS and let 𝛽 ∈[

0, 𝑔
]

be a numeric value that express the outcome of a symbolic aggregation operation,

then the 2-tuple representing the identical information corresponding to 𝛽 is given below:

Δ : [0, 𝑔] → LT

Δ(𝛽) = (ℓround(𝛽) , 𝛽− 𝑖)

where LT ≡ LT × [−0.5,0.5), ‘round(.)’ is the general rounding operation assigning to

crisp value 𝛽 an integeral value 𝑖 ∈
{
0,1, . . . , 𝑔

}
nearest to 𝛽, and 𝛼 = 𝛽− 𝑖, is termed as

the “symbolic translation”.

Remark 1.3.1. [106] Δ mapping as defined above is one-one and onto hence invertible,

therefore there exist Δ−1 : LT→ [0, 𝑔] which returns an identical crisp value 𝛽 ∈ [0, 𝑔] ⊂
R corresponding to equivalent 2-tuple such that Δ−1(ℓ𝑖, 𝛼) = 𝛽 = 𝑖 +𝛼.

Remark 1.3.2. 2TL term is obtained from a linguistic term ℓ𝑖 by merely including a value

0 as “symbolic translation": ℓ𝑖 ∈ LT⇒ (ℓ𝑖,0) ∈ LT× [−0.5,0.5).

Remark 1.3.3. Linguistic model based on 2-tuple can be utilized from any one of the

membership function maintaining the semantics of the given linguistic terms and also up-

grade the authenticity of the traditional symbolic ways. Nevertheless, in the paper [106,

111] it was demonstrated that the utilization of the triangular shaped membership func-

tions bring about the most likely outcome with high precision.

Further, Herrera and Martínez [106] presented the comparison of 2TL information by

using conventional lexicographic order.

Definition 1.3.3. Let (ℓ𝑖,𝛼𝑖) and (ℓ 𝑗 ,𝛼 𝑗 ) be two 2TL variables.

• if 𝑖 < 𝑗 =⇒ (ℓ𝑖,𝛼𝑖) < (ℓ 𝑗 ,𝛼 𝑗 ).

• if 𝑖 = 𝑗 then,

1. if 𝛼𝑖 = 𝛼 𝑗 =⇒ (ℓ𝑖, 𝛼𝑖) = (ℓ 𝑗 , 𝛼 𝑗 );

2. if 𝛼𝑖 < 𝛼 𝑗 =⇒ (ℓ𝑖, 𝛼𝑖) < (ℓ 𝑗 , 𝛼 𝑗 );

3. if 𝛼𝑖 > 𝛼 𝑗 =⇒ (ℓ𝑖, 𝛼1) > (ℓ 𝑗 , 𝛼2).
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The operation of negation is found to be an elementary notion of LVs. The follow-

ing definition of negation of 2TL variable is broadened in light of conventional negation

operator for LVs.

Definition 1.3.4. [106] Let LT =
{
ℓ𝑖 | 𝑖 = 0, . . . , 𝑔

}
be the finite LTS with cardinality 𝑔+1,

then the 2TL negation operator is given as

neg((ℓ𝑖, 𝛼)) = Δ(𝑔− (Δ−1(ℓ𝑖, 𝛼))).

Its worth noting that if 𝛼 = 0, the negation operator is given as neg(ℓ𝑖) = ℓ𝑔−𝑖, which is

similar to a standard negation of the linguistic terms.

Remark 1.3.4. Based on the property of linearity and monotonicity of the Δ operator, the

following observations for the 2TL variables �̃�𝑖 = (ℓ𝑖, 𝛼𝑖) and �̃� 𝑗 = (ℓ 𝑗 , 𝛼 𝑗 ) readily hold:

(i) neg(neg(�̃�𝑖)) = �̃�𝑖;

(ii) min
{
neg(�̃�𝑖), neg(�̃� 𝑗 )

}
= neg(max

{
�̃�𝑖, �̃� 𝑗

}
);

(iii) max
{
neg(�̃�𝑖), neg(�̃� 𝑗 )

}
= neg(min

{
�̃�𝑖, �̃� 𝑗

}
); here the operation of max and min

for two 2TL variables are considered as the similar operation given in the Defi-

nition 1.3.3.

We will now proceed to present the following illustration to demonstrate the above-

mentioned concept.

Example 1.3.1. Consider the predefined LTS,

LT = {ℓ0 : VB, ℓ1 : B, ℓ2 : M, ℓ3 : G, ℓ4 : VG}

Note: “Very Bad” (VB), “Bad” (B), “Medium” (M),“ Good ”(G), “Very Good” (VG). Let

LT =
{
(ℓ0,0.4), (ℓ2,0.243), (ℓ1,0.259), (ℓ2,−0.4369)

}
be a set of 2TL variables. Then,

if 𝛽 = 1.5631 =⇒ 𝑖 = round(1.5631) = 2 and 𝛼 = −0.4369; hence, the corresponding

2TL variable is given as (ℓ2,−0.4369). Contrastingly, by using the Δ−1 operator, i.e.,

Δ−1(ℓ2,−0.4369) = 1.5631, we can transform the given 2TL variable into its original nu-

meric value. Also, based on the classical lexicographic ranking relation, the elements of

the set LT can be arranged as (ℓ0,0.4) < (ℓ1,0.259) < (ℓ2,−0.4369) < (ℓ2,0.243). Fig-

ure 1.5 presents the 2TL representations.
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Figure 1.5: Representation of 2TL model proposed by Herrera and Martínez

Now, we will discuss few elementary aggregation operators that are defined for 2TL

variables based on the above-mentioned definitions of Δ and Δ−1 operators.

(A) Arithmetic mean (AM) operator

Definition 1.3.5. [106] Let 𝑋=
{
(ℓ1, 𝛼1), (ℓ2, 𝛼2), . . . , (ℓ𝑘 , 𝛼𝑘 )

}
be the 2TL set, the

arithmetic mean operator 𝑋
𝑒

is defined as:

𝑋
𝑒
= Δ

(∑𝑘
𝑖=1Δ

−1(ℓ𝑖, 𝛼𝑖)
𝑘

)
.

The 𝑋
𝑒

estimated for the set 𝑋 is incurred in a precise way without any information

loss.

(B) Weighted average (WA) operator

In the case of weighted average, considering the nature of the variable 𝑥, distinct

values say 𝑥𝑖 have different importance. As a consequence, each value 𝑥𝑖 is associ-

ated with a weight 𝑤𝑖, which signifies the variable’s nature.

Definition 1.3.6. [106] Let 𝑋=
{
(ℓ1, 𝛼1), (ℓ2, 𝛼2), . . . , (ℓ𝑘 , 𝛼𝑘 )

}
be the 2TL and let

𝑊 =
{
𝑤𝑖 | 𝑖 = 1, 2, . . . , 𝑘

}
be the set of weights associated with 2TL set, then the

WA operator 𝑋
𝑤

for the set 𝑋 is defined as:

𝑋
𝑤
= Δ

(∑𝑘
𝑖=1Δ

−1(ℓ𝑖, 𝛼𝑖) ·𝑤𝑖∑𝑘
𝑖=1𝑤𝑖

)
(C) Ordered weighted average (OWA) operator

In literature, the weighted aggregation operator was initiated by Yager [303]. In

that operator, the weights which are given are not connected with a predetermined

value. Instead, it is provided that the weights are connected to a fixed position.

The OWA operator 𝑋𝑜𝑤 for handling 2TL are defined as:
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Definition 1.3.7. [106] Let 𝑋=
{
(ℓ1, 𝛼1), (ℓ2, 𝛼2), . . . , (ℓ𝑘 , 𝛼𝑘 )

}
be the 2TL set

and let𝑊 =

{
𝑤𝑖 | 𝑖 = 1, 2, . . . , 𝑘,

∑𝑘
𝑖=1𝑤𝑖 = 1and𝑤𝑖 ∈ [0,1]

}
be the set of associated

weights. Then the 2-tuple OWA operator 𝑋𝑜𝑤 is computed as:

𝑋𝑜𝑤 = Δ

( 𝑘∑︁
𝑗=1
𝑤 𝑗 · 𝛽∗𝑗

)
.

where the numerical value 𝛽∗
𝑗

represents the largest of 𝑗 𝑡ℎ value among all the 𝛽𝑖

values.

Furthermore, the generalized version of the 2TL variable and the translation function is

proposed by Chen and Tai [40].

Definition 1.3.8. [40] Let LT =
{
ℓ𝑖 | 𝑖 = 0, . . . , 𝑔

}
be the finite LTS with cardinality 𝑔+1

and let 𝛽 be the crisp value such that 𝛽 ∈ [0,1] then, the transformation of 𝛽 to 2TL vari-

able is procured in the following aspect:

Δ : [0,1] → LT

Δ(𝛽) = (ℓ𝑖, 𝛼) 𝑤𝑖𝑡ℎ


ℓ𝑖, 𝑖 = 𝑟𝑜𝑢𝑛𝑑 (𝛽𝑔),

𝛼 = 𝛽− 𝑖/𝑔, 𝛼 ∈
[
−0.5/𝑔,0.5/𝑔

)
.

where LT ≡ LT× [−0.5,0.5), where ‘round(.)’ is the general rounding operation, ℓ𝑖 being

the nearest index linguistic label to 𝛽, and 𝛼 represents the “symbolic translation”.

On the contrary, Δ−1 : LT→ [0,1] can also be defined to convert the 2TL variable into

an equivalent crisp value 𝛽 (𝛽 ∈ [0,1]) in the following aspect:

Δ−1(ℓ𝑖, 𝛼) = 𝛽 = 𝑖/𝑔 +𝛼.

Clearly, Δ( 𝑖
𝑔
) = (ℓ𝑖, 0) and Δ−1(ℓ𝑖, 0) = 𝑖

𝑔
.

The negation of 2TL variable (ℓ𝑖, 𝛼) can be given as, neg(ℓ𝑖, 𝛼) = Δ(1−Δ−1(ℓ𝑖, 𝛼)).
Likewise, the ordering relation of the generalized 2TL variables can be defined as given

in Definition 1.3.3.
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1.4 Extensions of the 2-tuple Linguistic Model

Being the most beneficial model for CWWs processes due to its more straightforward

interpretation and competence of expressing any linguistic data in a continuous domain,

the 2-tuple model, has many applications. Over the subsequent years, many researchers

have proposed variant versions of this model, stating its mathematical formulations, oper-

ations, and aggregation operators. This section has brought to light the extensions of the

2TL model and its applications in DM. Below we summarize some of the extensions of

the 2TL model individually by highlighting the main results.

1.4.1 Unbalanced linguistic term sets (ULTSs)

It is known that Herrera and Martínez’ 2-tuple model is alleged to address only the

LTS having the symmetric distribution of linguistic labels. However, some problems are

subjected to term sets having uneven distribution of linguistic labels, such type of set is

termed as ULTS [112]. There are mainly two categories of ULTS. In the first category,

the distribution of the linguistic terms are uneven such that the cardinality of the terms on

one side of the intermediate-term is higher than the other, and the corresponding distance

between the consecutive terms are not equal (namely, ULTS of type I, see Fig. 1.6).

Meanwhile, in the second category, an equal number of the linguistic terms are distributed

on the left and right sides of the intermediate-term with unequal spacings (namely, ULTS

of the type II, see Fig. 1.7).

Herrera et al. [112] represented a fuzzy linguistic based approach to handle a context of

ULTS. In the methodology, Herrera et al. [112] take into consideration a ULTS, namely,

Figure 1.6: Unbalanced linguistic set type I

Figure 1.7: Unbalanced linguistic set type II
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LT as a set of minimum, maximum, and central label, and the distribution of the leftover

labels on either side of the central term, i.e., LT = LT𝐿 ∪ LT𝐶 ∪ LT𝑅 such that:

• LT𝐿 represents left lateral set containing all the terms except the central one.

• LT𝐶 represents central set containing just one central term.

• LT𝑅 represents right lateral set containing all the linguistic labels that are higher

than the central linguistic label.

Herrera et al. [112] accustomed the conception of linguistic hierarchy to acquire linguis-

tic representations of unbalanced linguistic values in the format of 2-tuple. A linguistic

hierarchy (LH) [108] is determined as a collection of levels, where each and every level

is represented by a LTS, LT𝑛(𝑡) =
{
ℓ
𝑛(𝑡)
0 , ℓ

𝑛(𝑡)
1 , . . . , ℓ

𝑛(𝑡)
𝑛(𝑡)−1

}
. Each level associated with a

linguistic hierarchy is constructed as 𝑙 (𝑡, 𝑛(𝑡)), where 𝑡 is a numeric value indicating the

hierarchy level and 𝑛(𝑡) indicates the cardinality of the LTS corresponding to the level 𝑡.

Here, we underline that the linguistic terms utilized in the linguistic hierarchical process

are given by triangular-shaped membership functions distributed uniformly in [0, 1].

Usually, we witness that the LTS, LT𝑛(𝑡+1) of level 𝑡 + 1 can be easily acquired from the

previous term set LT𝑛(𝑡) as

𝑙 (𝑡, 𝑛(𝑡)) → 𝑙 (𝑡 + 1, 2 · 𝑛(𝑡) − 1).

In LH [108], transformation functions are defined between linguistic labels from distinct

levels to perform CWWs techniques in a multi granular linguistic context avoiding any

information loss.

Definition 1.4.1. [108] For any level 𝑡 and 𝑡′, the transformation function is determined

as TF𝑡
𝑡 ′ : 𝑙 (𝑡, 𝑛(𝑡)) → 𝑙 (𝑡′, 𝑛(𝑡′)) such that

TF𝑡𝑡 ′ (ℓ
𝑛(𝑡)
𝑖
, 𝛼𝑛(𝑡)) = Δ

(
Δ−1
𝑡 (ℓ

𝑛(𝑡)
𝑖
, 𝛼𝑛(𝑡)) · (𝑛(𝑡′) − 1)
𝑛(𝑡) − 1

)
. (1.4.1)

For the most part, any level could be chosen in the LCM characterized for the LH to

bring together the multi-granular linguistic data in the model characterized for the LH.

However, for the sake of convenience and generalization, we refer ‘𝑡𝑚’ as the maximum

level in the LH, i.e., 𝑙 (𝑡𝑚, 𝑛(𝑡𝑚)) = LT𝑛(𝑡𝑚) =
{
ℓ
𝑛(𝑡𝑚)
𝑖
| 𝑖 = 0, . . . , 𝑛(𝑡𝑚) −1

}
.
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Next, we present below the details of the transformation process to transform any 2-

tuple linguistic variable (ℓ𝑖, 𝛼) into the term in 𝐿𝐻 = ∪𝑡 𝑙 (𝑡, 𝑛(𝑡)):

(i) Representation in the LH: The representation algorithm proposed in the paper uti-

lizes the concept of a LH to address the unbalanced terms. As a consequence, the

initial step to bring about CWWs processes to convert the unbalanced terms lying

in a set LT into their corresponding terms in the LH, ℓ𝑛(𝑡)
𝑘
∈ 𝐿𝐻 = ∪𝑡 𝑙 (𝑡, 𝑛(𝑡)) by

virtue of the transformation function 𝜓 given as:

𝜓 : LT → 𝐿𝐻 (LT) (1.4.2)

such that 𝜓(ℓ𝑖, 𝛼) = (ℓ𝐺 (𝑖)𝐼 (𝑖) , 𝛼), for all (ℓ𝑖, 𝛼) ∈ LT.

Here, 𝐼 and 𝐺 represents a function assigning every unbalanced label ℓ𝑖 ∈ LT index

of the label symbolizing it in LH and the cardinality of label set of LH where it is

presented, respectively.

(ii) Computational phase: The computational model characterized for LH helps in ac-

complishing the process of CWWs. At first, use the Eq. 1.4.1 to transform (ℓ𝐺 (𝑖)
𝐼 (𝑖) , 𝛼)

(for 𝑖 = 0, . . . , 𝑔) into linguistic 2-tuples, referred as (ℓ𝑛(𝑡𝑚)
𝐼 ′(𝑖) , 𝜆

′) ∈ LT𝑛(𝑡𝑚) . Without

loss of generality, if 𝐺 (𝑖) = 𝑛(𝑡′), then Eq. 1.4.3 is obtained. Further, use Herrera

and Martínez model over LT𝑛(𝑡𝑚) to acquire desired result (ℓ𝑛(𝑡𝑚)𝑟 , 𝜆′𝑟) ∈ LT𝑛(𝑡𝑚) .

(ℓ𝑛(𝑡𝑚)
𝑗

, 𝜆′) = 𝑇𝐹 𝑡 ′𝑡𝑚 (ℓ
𝐺 (𝑖)
𝐼 (𝑖) , 𝛼) (1.4.3)

(iii) Re-translation process: A process of re-translation is performed to change the ob-

tained result (ℓ𝑛(𝑡𝑚)𝑟 , 𝜆′𝑟) ∈ LT𝑛(𝑡𝑚) back into the desired unbalanced term in LT, by

utilizing the following function, 𝜓−𝑙 , i.e.,

𝜓−1 : 𝐿𝐻 (LT) → LT. (1.4.4)

such that 𝜓−1(ℓ𝑛(𝑡𝑚)𝑟 , 𝜆′𝑟) = (ℓ𝑟𝑒𝑠𝑢𝑙𝑡 , 𝜆𝑟𝑒𝑠𝑢𝑙𝑡) ∈ LT.

The detailed explanation of the methodology to deal with ULTSs is given in the corre-

sponding paper [107].

In sequence with the computational models to address unbalanced linguistic informa-

tion, Wang and Hao [271] presented an updated formulation of the current 2TL model
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that is known as a proportional 2TL model. This proportional 2-tuples are subjected to

a notion of symbolic proportion and canonical characteristics values (CCV) of linguistic

labels. The formal definition is stated below:

Definition 1.4.2. [271] Let LT =
{
ℓ0, ℓ1, . . . , ℓ𝑔

}
be a finite ordered set with 𝑔 +1 ordinal terms

and 𝐼 = [0,1] and

𝐼𝐿 ≡ 𝐼 ×LT =
{
(𝛼,ℓ𝑖) : 𝛼 ∈ [0,1], 𝑖 = 0,1, . . . , 𝑔

}
For a given pair (ℓ𝑖 , ℓ𝑖+1) of two consecutive ordinal terms of LTS, LT, any two arbitrary elements

(𝛼,ℓ𝑖), (𝛽,ℓ𝑖+1) of set 𝐼𝐿 is known a symbolic proportion pair (SPP) and 𝛼, 𝛽 are referred as a pair

of symbolic proportions that are corresponding to the pair (ℓ𝑖 , ℓ𝑖+1) if 𝛼 + 𝛽 = 1. A SPP (𝛼,ℓ𝑖),

(1−𝛼,ℓ𝑖+1) will be denoted by (𝛼ℓ𝑖 , (1−𝛼)ℓ𝑖+1) and the set of all the SPPs is denoted by �̄� that is

�̄� =
{
(𝛼ℓ𝑖 , (1−𝛼)ℓ𝑖+1) : 𝛼 ∈ [0,1], 𝑖 = 0,1, . . . , 𝑔−1

}
,

the set �̄� will be termed as ordinal proportional 2TL set which is generated by LT and the members

of set �̄� will be called as ordinal proportional 2-tuples utilization of which represents the ordinal

information for CWW.

Remark 1.4.1. We can either use (0ℓ𝑖−1,1ℓ𝑖) or (1ℓ𝑖,0ℓ𝑖+1) as representatives of ordinal

terms ℓ𝑖 in �̄� for 𝑖 = 2, . . . , 𝑔−1.

Definition 1.4.3. [271] Let LT =
{
ℓ0, ℓ1, . . . , ℓ𝑔

}
be an ordinal LTS and �̄� be the set of ordinal

proportional 2TL generated by LT, then comparison of ordinal data presented by proportional 2-

tuples is lugged out as follows: let (𝛼ℓ𝑖 , (1−𝛼)ℓ𝑖+1),(𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1) ∈ �̄� be any two SPPs such

that

(𝛼ℓ𝑖 , (1−𝛼)ℓ𝑖+1) < (𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1)

⇔ 𝛼𝑖 + (1−𝛼) (𝑖 +1) < 𝛽 𝑗 + (1− 𝛽) ( 𝑗 +1)

⇔ 𝑖 + (1−𝛼) < 𝑗 + (1− 𝛽)

Thus for any two proportional 2-tuples (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1),(𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1) we get the fol-

lowing relation :

1. if 𝑖 < 𝑗 then,

(a) if 𝑖 = 𝑗 − 1 and 𝛼 = 0, 𝛽 = 1 then (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1),(𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1) imitates

identical information.

(b) otherwise (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1) < (𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1)
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2. if 𝑖 = 𝑗 then,

(a) for 𝛼 = 𝛽 we have, (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1),(𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1) imitates identical infor-

mation.

(b) for 𝛼 < 𝛽 we have, (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1) > (𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1).

(c) for 𝛼 > 𝛽 we have, (𝛼ℓ𝑖, (1−𝛼)ℓ𝑖+1) < (𝛽ℓ 𝑗 , (1− 𝛽)ℓ 𝑗+1).

Definition 1.4.4. [271] Proportional 2-tuple negation operator is given as:

𝑁𝑒𝑔((𝛼ℓ𝑖 , (1−𝛼)ℓ𝑖+1)) = ((1−𝛼)ℓ𝑔−𝑖−1, 𝛼ℓ𝑔−𝑖)

where 𝑔 +1 is the cardinality of LT , LT =
{
ℓ𝑘 |𝑘 = 0,1, . . . , 𝑔

}
.

Dong et al. [64] extended the current version of the Herrera and Martínez model to man-

age ULTSs by laying down the idea of a numerical scale. The mathematical formulations

of the Numerical scale model is given as follows:

Definition 1.4.5. [64] Let LT =
{
ℓ𝑖 | 𝑖 = 0 to 𝑔

}
be a finite LTS, and R has the usual

meaning. The function: 𝑁𝑆 : LT→ R is circumscribed as a numerical scale of LT,

and 𝑁𝑆(ℓ𝑖) is termed as numerical index of ℓ𝑖. If the 𝑁𝑆 function is defined as strictly

monotonically increasing, then it is termed as an ordered numerical scale.

Definition 1.4.6. [64] Numerical scale function 𝑁𝑆 : LT→ R is defined in the following

aspect:

𝑁𝑆((ℓ𝑖, 𝛼)) =


𝑁𝑆(ℓ𝑖) + 𝛼 × ((𝑁𝑆(ℓ𝑖+1)) − 𝑁𝑆(ℓ𝑖)), 𝛼 ≥ 0;

𝑁𝑆(ℓ𝑖) + 𝛼 × ((𝑁𝑆(ℓ𝑖)) − 𝑁𝑆(ℓ𝑖−1)), 𝛼 < 0.

For simplicity of the notation, 𝑁𝑆 is used in lieu of 𝑁𝑆.

Proposition 1.4.1. [64] By defining 𝑁𝑆(ℓ𝑖) = 𝑖 for 𝑖 ∈
{
0, . . . , 𝑔

}
yields the Herrera and

Martínez model.

Usually, linear triangular or trapezoidal membership functions are being used to ex-

press semantics of the terms belonging to a LTS. However, in the proportional model

introduced by Wang and Hao [271] the semantics of linguistic labels are expressed by us-

ing trapezoidal fuzzy numbers symmetrical in nature. If the semantics of ℓ𝑖 is defined by

𝑇 [𝑏𝑖 − 𝜎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑐𝑖 + 𝜎𝑖], in the Wang and Hao model [271], the canonical characteristic

values (CCVs) of ℓ𝑖 is 𝑏𝑖+𝑐𝑖
2 , i.e., 𝐶𝐶𝑉 (𝑠𝑖) = 𝑏𝑖+𝑐𝑖

2 .
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Proposition 1.4.2. [64] By defining 𝑁𝑆(ℓ𝑖) = 𝐶𝐶𝑉 (ℓ𝑖) for 𝑖 ∈
{
0, . . . , 𝑔

}
yields the

Wang and Hao model.

Propositions 1.4.1 and 1.4.2 provide a strong relation of the NS to the model of Herrera

and Martínez [110] and Wang and Hao [271].

Furthermore, Guo and Huynh [97] suggested a proportional 2TL screening evaluation

model and the so-called preference-preserving transformation based on CCV. In that pa-

per, the authors presented a newer screening assessment model that not only refines the

standard requirement of equal distance between labels. It also can reflect evaluators’

level of confidence in decisions, enriching the knowledge of results, and thus providing

decision-makers with more detailed guidance.

Interval judgments thoroughly endorse several decision-making models. As a conse-

quence, Dong et al. [65] developed a new LCM primarily based upon the 2-tuple and in-

tervals, which was termed as an interval version of the 2TL model. Authors have defined

the notion of interval NS that converts linguistic terms into interval numbers and has fur-

ther introduced a generalized inverse operation of interval NS. By continuing the study of

the interval 2TL model, Dong and E. Herrera-Viedma [68] introduces a novel consistency-

driven methodology in the problem of DM along with the linguistic preference relations.

The proposed methodology stipulates a peculiar way out to set the interval NS with-

out requiring the semantics given by interval type-2 fuzzy sets (IT2FSs). Furthermore,

Dong [69] proposed a methodology to connect two distinct models designed to address

ULTS, i.e., LCM based on hierarchical linguistic concept [112] and the NS model [64].

Moreover, authors have designed a novel CWW methodology relied on the NS model

and ULTS to handle unbalanced linguistic information hesitant in nature. Henceforth, the

NS model establishes an integrated framework to link the classical linguistic model of

2-tuples, the proportional 2-tuples, and the hierarchical linguistic model.

M. Cai et al. [50] developed a new LCM based on symbolic models. Z. Pei and Li

Zheng [233] constructed a series of the normal distribution, which is based on unbal-

anced linguistic scale sets and has furthermore developed a novel approach for defining

unbalanced linguistic information in a format of 3-tuple. Lastly, M. Cai and Z. Gong [51]

redefined the concept of ULTS and provided the graph for the representation model.
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1.4.2 Linguistic distribution (LD)

According to Wang and Hao model [271], the linguistic information is provided in

terms of proportional 2-tuples where symbolic proportions are given to two consecutive

ordinal linguistic terms. However, it is envisaged that the proportional 2TL model seems

improper to handle decision situations where performances of the alternatives are eval-

uated via uncertain linguistic judgments as examined in the papers [120, 294, 310, 311].

As a consequence, to overcome the limitations offered by the mentioned model, Zhang et

al. [336] has introduced a notion of the distribution assessment in an LTS where symbolic

proportions are assigned to all the linguistic terms. In that paper, authors have devel-

oped a consensus model to facilitate decision-makers in improving the level of consensus.

Followed by discussing the desirable properties of the model as well as measures of con-

sistency and consensus in favor of linguistic preference relations (LPRs) centered upon

distribution assessments. Lastly, some operational laws and aggregation operators on ac-

count of linguistic distribution assessments are also introduced.

Meanwhile, considering both Wang and Hao’s model [271] and Zhang et al.’s model [336]

it is envisioned that the symbolic proportions involved in them are summing up to 1.

Henceforth, both these models are inadequate to handle incomplete information. So,

to overcome this limitation, Guo et al. [98] proposed a new proportional LD model for

modeling incomplete linguistic assessments addressed in MADM problems. However,

given varying subjective conditions, it found challenging for decision-makers in provid-

ing exact symbolic proportions in LD assessments. As a consequence, Dong et al. [72]

developed a notion of LD assessments in terms of interval symbolic proportions under a

multi-granular unbalanced linguistic context. Furthermore, Zhang et al. [339] introduced

a new LCM for solving large-scale group decision making (LGDM) problem to model lin-

guistic information in multi granular context by allowing the maximum information at the

first stage and further removal of the initial processes of aggregation as well as managing

the required information given by experts along with the utilization of LD assessments to

acquire accurate results. Wu et al. [279] presented a novel linguistic GDM model referred

to as the maximum support degree model (MSDM) primarily based upon the utilization

of LD [336] and hesitant fuzzy linguistic term sets (HFLTSs) [240]. The proposed model

aims at providing maximum degree support of the group opinion and further guarantees

the accuracy.

Although the HFLTSs and LDs are appropriate enough to represent linguistic prefer-
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ences in a more realistic form in an uncertain decision environment, however, they are

not flexible enough due to some limitations. In the case of the HFLTSs, several succes-

sive linguistic labels are utilized to extract the preferences of the decision-makers’. While

LDs present certain probabilistic preference information over linguistic terms. However,

the elicitation of preferences is not closer to humans’ cognitive processes. As a con-

sequence, Wu et al. [285] recently developed a more comprehensive format of linguistic

expressions ideally termed as flexible linguistic expression (FLE) to substantially improve

the flexibility in constructing complex linguistic expressions as well as eliciting linguistic

preferences. Further, in the paper, authors developed a novel linguistic GDM model along

with FLEs, termed as FLE-based GDM (FLEGDM). For the detailed explanation of the

proposed methodology, one can refer to the corresponding paper [285]. In the sequent,

Wu et al. [286] proposed a notion of flexible linguistic preference relations (FLPRs) where

linguistic expressions are expressed in a more flexible way to generalize all kinds of lin-

guistic preference relations (LPRs). Further, in that paper, the authors presented a novel

methodology to rank alternatives centered upon preference information in FLPRs by en-

visaging the LD as well as priority approximation (PA) of FLPRs. Lastly, a comparative

study for the obtained results of priority vectors is put forward to validate the proposal.

1.4.3 Multi-granularity linguistic term sets (MGLTSs)

The problems of GDM addressing linguistic information incorporates the intricacy and

further encompasses the involvement of several experts in the DM process. In the spe-

cialized literature, the majority of the proposals designed for solving GDM problems

are subjected to situations where experts express linguistic information within the same

LTS [106, 150]. However, in many practical, real-life problems, it is envisioned that

most of the experts have their distinct cultures, qualifications, knowledge background,

and skills. Also, their decisions are taken according to different circumstances. As a con-

sequence, the representation of the information via unique LTS seems inadequate. Thus,

in such cases, experts often use LTSs with different cardinalities, commonly referred to

as MGLTSs, in order to represent their individual assessment information without any

information loss.

The research on the problems of DM assessed with information in a multi-granular con-

text holds considerable importance in practical applications, and several methods have

been developed in the literature to solve problems involving MGLTSs. Morente-Molinera

et al. [201] presented a systematic review of the recent enhancements in multi-granular
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linguistic methodologies from 2000 to 2014. In that review, the authors have presented

an in-depth analysis of the respective methodologies designed for solving GDM problems

as well as more relevant applications. Further, Morente-Molinera et al. [202] proposed a

novel methodology for solving MCGDM problems involving a high amount of alterna-

tives. In that paper, fuzzy ontologies reasoning procedures are utilized in order to obtain

the alternatives ranking classification, and multi-granular linguistic methodology automat-

ically is being used to improve human-computer communication. The proposed method

is highly advantageous and is useful for cases involving a high amount of alternatives. For

a deep understanding of the method, one can refer to paper [202].

Tian et al. [262] presented a novel approach to managing hesitant fuzzy linguistic

MCGDM problems with multi-granular unbalanced LTS. In that paper, authors have ini-

tially developed a signed distance measure, which is considered as the support tool for

HFLTS. This measure is primarily centered on the ordinal semantics of linguistic descrip-

tors and the possibility distribution method. For the unification of the multi-granular hes-

itant unbalanced linguistic information, a signed-distance based transformation function

is proposed. Furthermore, a comprehensive consensus measure is presented so that it can

robustly measure the consensus degree among decision-makers and also give guidance to

members in order to modify their judgments before the selection process. Lastly, a nu-

merical example validates the applicability of the proposed methodology in the practical

scenario. The results and an in-depth comparative analysis of the proposed approach with

the existing methods [290] demonstrate the possibility and effectiveness of the proposed

methodology in tackling MCGDM problems with HFLTSs based on balanced LTSs to

some degree. The proposed approach is an upgraded and generalized version of Wu and

Xu’s [290] method.

1.4.4 Interval-valued 2-tuple Linguistic Model

Several hard decision problems in the literature demand experts to convey their opin-

ions based on a present criterion using specific linguistic or 2TL information from a pre-

defined LTS. In practise, however, it is unlikely that every decision maker will be able to

convey his or her choice information clearly and precisely under such constraints. From

this point of view, the experts may conclude that the cardinality of the LTS is either too

small to properly convey their professional judgements on some characteristics or too

large to completely express their professional opinions on other attributes. In such cir-

cumstances, Zhang [332] proposed the interval-valued 2TL model, which can be thought
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of as a standardised interval 2TL model and is well suited to multi-attribute GDM prob-

lems in multi-granular linguistic settings. Decision information can be fully articulated

and unified under a multi-granular linguistic framework utilising an interval-valued 2TL

model.

Definition 1.4.7. [332] Let LT = {ℓ𝑖 : 𝑖 = 0,1, . . . , 𝑔} be a LTS. An interval-valued 2TL

variable comprises of two 2TL terms, denoted by [(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )] where 𝑖 ≤ 𝑗 . Here ℓ𝑖

and ℓ 𝑗 represent the linguistic labels from LT and 𝛼𝑖 and 𝛼 𝑗 are the symbolic translations.

Analogous to the Δ and Δ−1 functions defined in Definition 1.3.8, Zhang [332] also pro-

posed a bijection function to obtain the corresponding 2TL interval from a given numerical

interval ∈ [0,1] × [0,1] and vice-versa.

Let [𝛽𝑖, 𝛽 𝑗 ] ∈ [0,1] be a numeric interval. The corresponding linguistic interval can be

obtained as follows.

Δ( [𝛽𝑖, 𝛽 𝑗 ]) = [(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )] where



ℓ𝑖 𝑖 = round (𝛽𝑖 𝑔)

𝛼𝑖 = 𝛽𝑖 − 𝑖
𝑔

𝛼𝑖 ∈
[
−1
2𝑔 ,

1
2𝑔

)
ℓ 𝑗 𝑗 = round (𝛽 𝑗 𝑔)

𝛼 𝑗 = 𝛽 𝑗 − 𝑗

𝑔
𝛼 𝑗 ∈

[
−1
2𝑔 ,

1
2𝑔

)
.

Also, an interval-valued 2TL variable can be transformed into an interval [𝛽𝑖, 𝛽 𝑗 ], 𝛽𝑖, 𝛽 𝑗 ∈
[0,1], 𝛽𝑖 ≤ 𝛽 𝑗 , as follows.

Δ−1 ([(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )]) = [ 𝑖
𝑔
+𝛼𝑖 ,

𝑗

𝑔
+𝛼 𝑗

]
= [𝛽𝑖, 𝛽 𝑗 ] .

Remark 1.4.2. If ℓ𝑖 = ℓ 𝑗 , then it implies that the interval 2TL representation [(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )] ≡
(ℓ𝑖, [𝛼𝑖, 𝛼 𝑗 ]) where ℓ𝑖 ∈ LT and [𝛼𝑖, 𝛼 𝑗 ], (𝛼𝑖 ≤ 𝛼 𝑗 , 𝛼𝑖, 𝛼 𝑗 ∈ [−1

2𝑔 ,
1

2𝑔 ]) is an interval form

of symbolic translation.

Remark 1.4.3. If ℓ𝑖 = ℓ 𝑗 and 𝛼𝑖 = 𝛼 𝑗 , then the interval 2TL representation reduces to 2TL

variable.

Zhang [332] defined score and accuracy functions to rank interval-valued 2TL variables.

Definition 1.4.8. For an interval-valued 2TL variable 𝐴 = [(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )], the 2TL score
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function is defined as

𝑆(𝐴) = (ℓ𝑘 , 𝛼𝑘 ) , where 𝑘 = 𝑟𝑜𝑢𝑛𝑑
( 𝑖 + 𝑗 + (𝛼𝑖 +𝛼 𝑗 )𝑔

2
)
,

and 𝛼𝑘 =
( 𝑖 + 𝑗 + (𝛼𝑖 +𝛼 𝑗 )𝑔

2𝑔

)
− 𝑘
𝑔
.

and the accuracy function can be given as:

𝐻 (𝐴) =
( 𝑗
𝑔
+𝛼 𝑗

)
−

( 𝑖
𝑔
+𝛼𝑖

)
.

The ranking scheme to compare any two interval-valued 2TL variables is summarized in

the subsequent fashion.

Definition 1.4.9. Let A= [(ℓ𝑖, 𝛼𝑖), (ℓ 𝑗 , 𝛼 𝑗 )] and B= [(ℓ𝑖 ′, 𝛼𝑖 ′), (ℓ 𝑗 ′, 𝛼 𝑗 ′)] be two interval-

valued 2TL variables.

1. If 𝑆(𝐴) > 𝑆(𝐵) then A> B.

2. If 𝑆(𝐴) < 𝑆(𝐵) then A< B.

3. If 𝑆(𝐴) = 𝑆(𝐵) then,

(a) if 𝐻 (𝐴) > 𝐻 (𝐵) then 𝐴 < 𝐵;

(b) if 𝐻 (𝐴) < 𝐻 (𝐵) then 𝐴 > 𝐵;

(c) if 𝐻 (𝐴) = 𝐻 (𝐵) then 𝐴 = 𝐵, that is, both 𝐴 and 𝐵 represent same information.

While comparing 𝑆(𝐴), we require to use a ranking scheme of 2TL variables defined

previously.

1.4.5 Heterogeneous Information

Nowadays, the DM process has become one of the essential human activity. In many

complex real-life decision problems, the attributes can be either quantitative or qualita-

tive. The quantitative attribute values can be given using distinct numerical types suchlike

real numbers, fuzzy numbers (triangular or trapezoidal), interval numbers, and so forth.

Complex GDM problems often contain heterogeneous information, i.e., the information

in a mixed form. However, heterogeneous GDM problems are specified in 3 frameworks.

The very first framework is related to different preference formats where opinions of the

decision-makers are expressed by different preference relations such as preference order-

ings, utility functions, multiplicative preference relations, and fuzzy preference relations.
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The second framework appears when each expert has different levels of knowledge and

background related to the problem, or when the experts have different LTSs to assess

preferences, i.e., the multi granular and unbalanced linguistic contexts. The third frame-

work focuses majorly on the heterogeneous expressions of the experts, which are used

to express or provide their particular preferences for the attributes of each alternative. It

provides information about attributes, which consists of not only crisp or uncertain in-

formation, but also interval numbers, fuzzy numbers, and linguistic data [158]. Several

authors have proposed different methodologies to solve GDM problems assessing infor-

mation in a heterogeneous form [158, 171, 190, 338]. For a more detailed study of the

methodology, one can refer to [158, 171, 190, 338].

1.5 Contribution of 2-tuple Linguistic Model

Human beings are always engaged in making decisions beneath the linguistic environ-

ment to tackle the ill-structured problems successfully. Several methods have developed

in the literature for managing linguistic information like method grounded on extension

principles and symbols. Both these techniques have certain limitations, which is resolved

by the introduction of a 2TL model. The 2TL model has improved the accuracy and fa-

cilitated the processes of CWW by managing the linguistic information in the continuous

linguistic domain. In the present section, we emphasize the decision models centered

upon the 2TL model as well as its extension.

On the broader prospect, MADM and MCGDM problems are two majorly considered

decision-making problems. MADM process ideally composes of two-steps: (1) collection

of decision information about attribute weights as well as attribute values. In the MADM

problem, there exists a finite set of alternatives. The attributes are pointers that measure

the given alternatives, and thereby making each attribute as necessary, determine within

the procedure of DM. (2) Aggregating the decision information. It is one of the most

prominent concepts in the DM problem. As different experts come up with different

knowledge areas and preferences. As a consequence, it is the process of merging an

entire collection of information into a particular representative value. Hence, aggregation

operators have become one of the most prominent tools while merging of information

in a DM problem. Henceforth, it has become the most populous studied field among

researchers and has drawn a great deal of consideration from practitioners among various

disciplines [44, 90, 121, 245, 301]. (Refer Table 1.2 for more clarity of MADM model)
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Table 1.2: Summary of MCDM model based on 2-tuple linguistic model

Title year paper Description Approach/Strategy Strong/Weak points

“A model based on linguistic
2-tuples for dealing with multi
granular hierarchical linguis-
tic contexts in multi-expert
decision making (MEDM)"

2001 [108]

This paper provides a tech-
nique for dealing with the
problem of MEDM, defined
within a multi-granular lin-
guistic context so that we can
unify the knowledge evalu-
ated in it without losing any
information.

Multi granular linguistic
framework

The proposed model is based
on the 2TL model. The devel-
opment of different functions
leads to the transformation of
LTSs of a linguistic hierarchy
without losing any informa-
tion. The proposed functions
are further applied to decision
models based on multi granu-
lar linguistic information.

“Multi granular hierarchical
linguistic model for design
evaluation based on safety and
cost analysis"

2005 [188]

This paper proposes a method
dependent on multi-expert
MCDM that handle multi
granular linguistic data with-
out any information loss,
to evaluate different design
options for large engineering
system is related to safety and
cost criteria.

Multi-granular hierarchical
linguistic model

This article presents an evalu-
ation approach for the design
assessment of complicated en-
gineering systems based on
safety and cost analysis. The
usage of the linguistic model
has proved beneficial than
traditional probability models
and tools as it could able to
handle vagueness and uncer-
tainty well. Thereby linguistic
approach provides a more re-
alistic and favorable means in
supporting solutions related to
such complex decision prob-
lems.

“A fuzzy model for design
evaluation based on multiple
criteria analysis in engineer-
ing systems."

2006 [189]

The central idea of the pa-
per is to develop a fuzzy eval-
uation model depending on
multi-criteria decision analy-
sis. The proposed model deals
with the information, i.e., both
numerical and linguistic, in
order to evaluate different de-
sign options available for an
engineering system following
the safety, cost, and techni-
cal performance criteria as-
sessed within the distinct util-
ity spaces.

Fuzzy rule based evidential
reasoning

In the proposed model, to deal
with the evaluation framework
where information assessed in
distinct expression domains
and scales, that is by using
the potential of heterogeneous
information. Distinct fuzzy
transformation functions are
presented so that it permits
to conduct this heterogeneous
information into common util-
ity space by way of 2-tuple
linguistic information. Fur-
ther, an evaluation procedure
primarily based on a multi-
expert MCDM model to esti-
mate the suitability of distinc-
tive pattern options have been
developed.

“A method for multi attribute
decision-making (MADM)
with incomplete weight infor-
mation in linguistic setting"

2007 [297]

The central idea of the study
is to propose a method to
solve MADM problems well
equipped with linguistic infor-
mation, wherein the attribute
weight information is inade-
quately known. In order to de-
termine the attribute weights,
an optimization model pri-
marily based on the ideal
point of attribute values is also
established in the paper.

ideal point of attribute values

The proposed method is well
sufficient for solving MADM
problems with incomplete in-
formation. Moreover, sim-
ple optimization models es-
tablished have provided a sim-
ple and exact formula for ob-
taining the attribute weights.
Henceforth, making the pro-
posed method more favorable
for practical application.

“Linguistic multi person de-
cision making based on the
use of multiple preference re-
lations"

2009 [66]

This paper proposes a lin-
guistic multi-person decision-
making model that depends on
linguistic preference relations,
integrating fuzzy preference
relations, distinctive types of
multiplicative preference rela-
tions, and multi-granular lin-
guistic preference relations.
Furthermore, conditions un-
derneath which the proposed
decision model satisfy social
choice axiom have also been
discussed.

Fuzzy majority and 2-tuple
ordered weighted averaging
(TOWA) operator, linguistic
preference relation.

Preference relations are ex-
tensively used in decision
models. This paper has given
considerable contributions
to present ongoing research
based on linguistic prefer-
ence relations and TOWA
operators. In the proposed
model, a set of transformation
functions has been developed
to relate fuzzy preference
relations and distinctive types
of multiplicative preference
relations with multi-granular
linguistic preference relations.
Further, the linguistic version
of the selection procedure
based on the OWA like oper-
ator and the fuzzy majority
have been discussed. Finally,
the internal consistency of
the proposed transformation
function has been analyzed in
detail.
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Table 1.2: Continued

Title year paper Description Approach/Strategy Strong/Weak points

“Fuzzy multi-criteria
decision-making (MCDM)
approach for personnel selec-
tion"

2010 [75]

This paper proposes a fuzzy
MCDM algorithm depending
on the principles of fusion of
fuzzy information and 2-tuple
linguistic model. Further,
“technique for order prefer-
ence by similarity to ideal so-
lution (TOPSIS)" is also being
established.

Fuzzy multi criteria decision-
making approach

The proposed methodology is
pertinent in managing infor-
mation appraised using both
linguistic as well as numerical
scales, making problems with
multiple information. Also,
the proposed method could
able to tackle heterogeneous
information and thereby per-
mits the use of distinct se-
mantic types of the decision-
maker.

“A multi granular linguistic
model for management deci-
sion making in performance
appraisal"

2010 [2]

The paper aims to propose a
performance appraisal model,
wherein assessments are mod-
eled by utilizing linguistic in-
formation described by sets of
distinctive reviewers to man-
age the uncertainty and sub-
jectivity of such assessments.

Multi granular linguistic
scheme

The proposed model provides
a pretty flexible framework
and thereby permits the man-
agement group to customizes
how to aggregate the individ-
ual speculations and how to
classify employees. Subse-
quently, this model suggests
an increment of flexibility and
an improvement in the cure of
information with uncertainty
and vagueness in the perfor-
mance appraisal model.

“An innovative multi-criteria
supplier selection based on
2-tuple MULTIMOORA and
hybrid data"

2011 [19]

This paper is an extension
of multi-criteria decision-
making (MCDM) method
MULTIMOORA (multi-
objective analysis by ratio
analysis plus the full mul-
tiplicative form) to handle
fuzzy supplier selection
problem. This extension of
MULTIMOORA primarily
based on the 2TL method.
Thus varied crisp and fuzzy
numbers are represented,
converted, and mapped into a
basic linguistic term set with
the help of a 2TL model.

Multi-objective analysis by
ratio analysis plus the full
multiplicative form (MULTI-
MOORA)

MULTIMOORA is a pretty
effective tool for assessing
the sustainability of varied
phenomena resulting in an
unbiased rating of alterna-
tives. New MCDM method
MULTIMOORA-2T pro-
posed in the paper aimed
at a combination of hybrid
data, specifically real num-
bers, interval numbers, and
linguistic variables. Thus,
the proposed strategy able
to handle both objective and
subjective criteria.

“Uncertain linguistic Bonfer-
roni mean operators and their
application to multiple at-
tribute decision making"

2013 [287]

This paper aims to develop
two aggregation techniques
called the “uncertain lin-
guistic Bonferroni mean
(ULBM)" operator and the
“uncertain linguistic geo-
metric Bonferroni mean"
(ULGBM) operator for
aggregating the uncertain
linguistic information. The
“uncertain linguistic weighted
Bonferroni mean" (ULWBM)
operator and the “uncertain
linguistic weighted geo-
metric Bonferroni mean"
(ULWGBM) operator is
defined based on which two
procedures for MADM under
the uncertain linguistic envi-
ronments are developed.

Bonferroni mean and geomet-
ric bonferroni mean operator

The prominent advantage of
the proposed operators and
approaches over the tradi-
tional uncertain linguistic op-
erators and approaches is be-
cause these operators accom-
modate the uncertain linguis-
tic environment. Also, due to
the consideration of the inter-
relationship among the input
arguments, therefore making
it more feasible and practical.
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Table 1.2: Continued

Title year paper Description Approach/Strategy Strong/Weak points

“A method based on induced
aggregation operators and dis-
tance measures to multiple at-
tribute decision making un-
der 2-tuple linguistic environ-
ment"

2014 [153]

The objective of this article
is to develop the 2-tuple
linguistic induced generalized
ordered weighted averaging
distance (2LIGOWAD) op-
erator, which is considered
as newer multi-attribute
decision-making (MADM)
approach for dealing with
2-tuple linguistic information.
The paper consists of some
of its essential properties and
further by using quasi arith-
metic mean this operator is
generalized. Finally, the paper
concludes with an application
of a proposed operator to
a group decision-making
problem about the selection
of strategies.

Induced aggregation operators
and distance measures

The 2LIGOWAD operator is
capable of dealing with com-
plicated reordering processes
that represent a broad spec-
trum of factors in an uncertain
linguistic environment. Con-
sequently, deal in situations
where the available informa-
tion has a high degree of un-
certainty. Further, the pro-
posed operator is capable of
dealing with complicated at-
titudinal characters in the de-
cision process by utilizing or-
der inducing variables. The
2LIGOWAD operator is gen-
eralized by using the Quasi
arithmetic means to obtain the
Quasi arithmetic 2LIOWAD
(Q2LIOWAD). This approach
includes the 2LIGOWAD op-
erator as a special case and a
lot of other cases. Thereby,
we obtain a more robust for-
mulation of this model.

“New linguistic aggregation
operator and its application
to multiple attribute decision-
making"

2015 [148]

This paper proposes a new
linguistic aggregation opera-
tor in order to deal with
qualitative linguistic informa-
tion, and further desirable
properties like monotonicity,
idempotent, commutative, and
boundedness have also been
studied.

Uncertain linguistic aggrega-
tion operator

The proposed aggregation op-
erator depends on the linguis-
tic scale function that helps in
converting linguistic variables
to the [0,1] and, therefore,
proficiently avoids the prob-
lem caused by the product of
numerical values and linguis-
tic variables, aggregated re-
sults belong to initial linguis-
tic expression domain. Uncer-
tain linguistic aggregation op-
erator could able to aggregate
linguistic variable with non-
equidistant labels.

“Linguistic discriminative
aggregation in multi-Criteria
decision-making (MCDM)"

2016 [4]

This paper aims to develop
and discuss in detail new lin-
guistic aggregation operators
termed as linguistic discrim-
inative averaging (LDA) and
linguistic discriminative or-
dered geometric (LDOG) op-
erator along with their proper-
ties. Further, ordered variants
and generalized variants of the
proposed operators have also
been investigated.

Aggregation operators

The proposed linguistic ag-
gregation operators are mod-
eled to give weight to a crite-
rion according to the degree of
variation in the various eval-
uations of alternatives against
it. Further, these operators are
very much useful in discrim-
inating among alternatives in
MCDM problems.

“Adaptive linguistic weighted
aggregation operators for
multi-criteria decision mak-
ing"

2017 [3]

This paper proposes new
aggregation operators for
MCDM under linguistic set-
ting, and further its properties
are investigated.

Aggregation Operators

The proposed operators are
mainly designed for a MCDM
environment, where the ex-
perts provide the evaluations
of the alternatives against cri-
teria in the linguistic terms,
and the management decides
the primary criteria weights.
It is useful in a situation where
primary weight information is
not available.
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Over the years, as the complexity of the socio-economic environment increases [44].

DM processes have become one of the most wide-ranging and prominent application

areas and have attracted various practitioners and researchers. Many institutions have

turned from single decision-makers to group decision-makers to successfully and profi-

ciently complete the task. A simple GDM problem is specified as a problem where the

DM is considered with manifold alternatives and experts who are trying to accomplish

a peculiar solution by considering their preferences or point of view. Ideally, the GDM

problem composed of two steps: (1.) Aggregation Phase A phase that aggregates experts’

preferences, and (2.) Exploitation Phase A phase that helps in obtaining a solution set of

alternatives in the decision problem. The table 1.3 below is arranged in a chronological

order of publication and outline briefly about the summary of the existing literature related

to a GDM model based on the 2TL model.
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Table 1.3: Summary of GDM model based on a 2-tuple linguistic model and its extension

Title year paper Description Approach/Strategy Strong/Weak points

“A group decision support ap-
proach to evaluate experts for
R and D project selection"

2008 [246]

This paper aims to propose
a group decision support ap-
proach in order to assess ex-
perts for R and D project
selection wherein the criteria
and their attributes are sum-
marized majorly grounded on
the experience with the “Na-
tional Natural Science Foun-
dation of China (NSFC)".

group decision support ap-
proach

The aim of the proposed
method is to present a fea-
sible expert evaluation ap-
proach that can be used for
R and D project selection
and thereby both GDM ap-
proach and group decision
support system are required to
help aggregating and eliciting
group judgements.

“A method for group decision
making with multi-granularity
linguistic assessment infor-
mation"

2008 [137]

This paper aims to develop
a methodology to solve the
GDM problems subjected to
multi-granularity linguistic
assessment data.

Linguistic assessment infor-
mation, goal programming

The methodology proposed
in the paper able to express
the multi-granularity linguis-
tic information in terms of
fuzzy numbers. A linear
goal programming model is
designed to integrate the in-
formation of fuzzy assessment
and, lastly, to compute the col-
lective ranking values of al-
ternatives without the require-
ment of information transfor-
mation.

“Group decision making
based on computing with
linguistic variables and an ex-
ample in information system
selection"

2008 [42]

This paper proposes a trans-
formation technique to trans-
form the non-homogeneous
linguistic information into a
standard linguistic term set.
Then, grounded on comput-
ing with the 2TL variables, a
decision-making model is de-
veloped to manage the GDM
problems.

2-tuple linguistic variables

The linguistic variables de-
fined in terms of 2-tuple
is utilized in the proposed
model representing the sub-
jective judgment of every
decision-maker. After that,
the 2-tuple model and oper-
ation method is applied to
deal with the aggregation of
ranking and weighting among
items and criteria effectively.
An extended version of TOP-
SIS within a fuzzy environ-
ment is also developed pri-
marily based on CWWs.

“PROMETHEE-MD-2T
method for project selection" 2009 [122]

The objective of this paper is
to develop two newer multi-
criteria 2-tuple GDM methods
called “Preference Ranking
Organisation Method for
Enrichment Evaluation Multi
Decision maker 2-Tuple-I and
II (PROMETHEE-MD-2T-I
and II)". These methods are
capable enough to integrate
inside their procedure, both
quantitative and qualitative
information in an uncertain
context.

Promethee method

The proposed methods apply
to all kinds of decision-
making problems with hetero-
geneous and multi-granular
information. Therefore,
the applicability of these
techniques to real problems
provides better outcomes in
MCGDM. It offers to the
decision-makers an extensive
and simpler application of the
aggregation operators of the
PROMETHEE multi-criteria
method.

“Group decision making with
incomplete fuzzy linguistic
preference relations"

2009 [5]

This paper aims to develop
a method to estimate miss-
ing preference values while
dealing with incomplete fuzzy
linguistic preference relations
appraised employing a 2TL
approach.

Incomplete fuzzy linguistic
preference relations

The proposed methodology is
useful in estimating missing
values in the incomplete 2-
tuple fuzzy linguistic prefer-
ence relations based on the ad-
ditive consistency property.
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Table 1.3: Continued

Title year paper Description Approach/Strategy Strong/Weak points

“The unbalanced linguistic
aggregation operator in group
decision making"

2012 [342]

This paper aims to propose
an updated linguistic aggre-
gation operator to handle un-
balanced linguistic values in
GDM problems and linguis-
tic hierarchies to express un-
balanced linguistic values. Fi-
nally, the unbalanced linguis-
tic ordered weighted geomet-
ric operator to aggregate un-
balanced linguistic evaluation
values is also presented.

ordered weighted geometric
(OWG) operator

The unbalanced linguistic
ordered weighted geometric
(ULOWG) operator proposed
in the paper to solve linguis-
tic group decision-making
problems where experts use
unbalanced linguistic values
to express their evaluation for
problems. The proposed op-
erator has several enthralling
properties.

“Linguistic power aggrega-
tion operators and their ap-
plication to multiple attribute
group decision making"

2012 [298]

This paper aims to propose an
updated linguistic aggregation
operator based on a power-
average (PA) operator. For the
unknown weighting vector of
the decision-maker, a different
approach based on a linguistic
power ordered weighted aver-
age operator is also proposed.
Further, these approaches are
extended to solve GDM prob-
lems.

Power-average (PA) operator,
linguistic weighted average
operator

The operators that are devel-
oped in the paper can easily
relieve the influence of petty
arguments on the aggregated
outcomes, and thereby the ob-
tained aggregated outcomes
are more reasonable. Two ap-
proaches have been developed
to deal with the GDM prob-
lems under linguistic prefer-
ence values when the weight-
ing vector of the decision-
maker is known and when
it is unknown. The promi-
nent characteristic of the ap-
proaches that have been de-
veloped is that they take all
the decision arguments and
their relationships into ac-
count. Further, an extension
of the operators to the un-
certain linguistic environment
has also been developed.

“Some interval-valued 2-tuple
linguistic aggregation opera-
tors and application in multi-
attribute group decision mak-
ing (MAGDM)"

2013 [331]

This paper proposes a method
that deals with MAGDM
problems based on interval-
valued 2-tuple linguistic
information. Some new
aggregation operators and
their desirable properties
have been discussed in detail.
Furthermore, an updated
methodology to decide the
weight vector of the interval-
valued 2-tuple aggregation
operator primarily based
on the idea of the degree
of precision has also been
presented.

interval-valued 2-tuple lin-
guistic information, degree of
precision

Interval-valued 2-tuple lin-
guistic model is suitable in
handling the MAGDM prob-
lem described under a multi
granular linguistic notion as it
is capable of fully expressing
the information and also able
to unify it easily without in-
volving any tedious aggrega-
tion steps.

“Multi-attribute group
decision-making (MAGDM)
with multi-granularity lin-
guistic assessment informa-
tion: An improved approach
based on deviation and TOP-
SIS"

2013 [165]

This paper aims to propose
an updated method concern-
ing GDM problems asso-
ciated with multi-granularity
linguistic assessment infor-
mation. The computational
formula is developed to trans-
form and unify the multi-
granularity linguistic compar-
ison matrices. Furthermore,
the technique of standard and
mean deviation to decide the
attribute weights that are not
known is applied. Finally,
the weights of the decision-
makers will be decided by
using the extended TOPSIS
method.

“TOPSIS (technique for order
preference by similarity to an
ideal solution) method", stan-
dard and mean deviation

The proposed method could
able to overcome the lim-
itation of the classical
approaches. It can com-
bine a standard and mean
deviations as well as the
TOPSIS method. Further,
the MAGDM approach
transforms multi-granularity
linguistic information sim-
pler. Along with this, it takes
into account the weights of
the attributes and decision-
makers by the process of
aggregating the assessment
information and objectively
weighing the attributes and
decision-makers.
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Title year paper Description Approach/Strategy Strong/Weak points

“Multi-attribute group deci-
sion making with aspirations:
A case study"

2014 [91]

This paper aims to propose
an integrated multi-attribute
decision-making approach for
problems with consideration
of the decision maker’s aspi-
rations. By solving the case
problem of China Southern
Airlines (CAS).

Aspiration utility function

This study presents an in-
tegrated decision-making
approach for solving multi-
attribute group decision-
making problems with aspira-
tions. The proposed approach
integrates aspirations into the
utility theory for MADM.
Further, it uses optimization
techniques for reducing the
gap between group opinion
and individual opinions,
thereby allowing managers to
make more reliable decisions.
It also provides a consistency
coefficient to managers for
checking the group decision
making quality. Lastly, it
can accommodate complex
decision data by incorporat-
ing numerical values, interval
numbers, linguistic terms, and
uncertain linguistic terms.

“Method of multi-criteria
group decision-making
based on cloud aggregation
operators with linguistic
information"

2014 [236]

The central idea of the
paper is to define cloud
operators (such as “cloud
weighted arithmetic averaging
(CWAA)" operator, “cloud-
ordered weighted arithmetic
averaging (COWA)" operator,
and “cloud hybrid arithmetic
(CHA)" operator), followed
by its application in the
MCGDM problem. Further,
in the paper, a section is
devoted, which explains the
conversion between linguistic
variables and clouds.

cloud model, aggregation op-
erator

Traditional methods existing
in the literature are not ro-
bust enough to convert qual-
itative concepts to quantita-
tive information in linguis-
tic MCDM problems; nei-
ther can they completely re-
flect the fuzziness and ran-
domness inherent in qualita-
tive concepts. However, the
cloud model proposed in the
paper overcome these diffi-
culties. The three numeri-
cal characteristics of the cloud
model render the transforma-
tion between this qualitative
concept and quantitative in-
formation smoothly and effec-
tively.

“Consensus-Based Group De-
cision Making Under Multi-
granular Unbalanced 2-Tuple
Linguistic Preference Rela-
tions"

2015 [71]

The GDM model is proposed
in this study, along with
multi-granular unbalanced
2TL preference relations.
The transformation function
is used to link both bal-
anced and unbalanced multi
granular language prefer-
ence relations. A consensus
model is also offered to assist
decision-makers in reaching
an agreement.

Proportional 2-tuple linguistic
model

The proposed multi-granular
linguistic GDM model is
based on the linguistic model
of 2-tuple. The transforma-
tion function presented in the
paper can be reduced into
a traditional transformation
function given in [?] beneath
the context of a multi-granular
balanced linguistic environ-
ment. The consensus model
so proposed sets out a new
means to manage both the
consistency of an individual
and group via a linear pro-
gramming model. The model
also stipulates a novel means
by minimizing the loss of in-
formation when the consensus
has been established.

“A model based on subjec-
tive linguistic preference rela-
tions for group decision mak-
ing problems"

2016 [200]

In this paper, a novel defi-
nition of preference relation,
the so-called “subjective lin-
guistic preference relation", is
proposed. These preference
relations are based on the
concept of subjective evalua-
tions, introduced in the LCM
based on discrete fuzzy num-
bers. Further, an example
of a multi-expert DM prob-
lem with a hierarchical multi-
granular linguistic context is
analyzed to illustrate the po-
tential of the proposed method
and its advantages concerning
other methods.

Subjective linguistic prefer-
ence relation

The advantage of the pro-
posed model is that it offers
experts more flexibility to ex-
press their opinions, and also,
this model guarantees no loss
of information.
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Title year paper Description Approach/Strategy Strong/Weak points

“A method for multi-criteria
group decision making with
2-tuple linguistic information
based on cloud model"

2017 [333]

To remedy the fault of the
existing operators, this study
proposes a 2-tuple hybrid
ordered weighted geometric
(THOWG) operator that syn-
thetically considers the impor-
tance of both individual and
ordered position. This re-
search also introduces a new
cloud formation approach for
converting 2TL variables into
clouds.

Cloud model

The proposed method has
the advantage of allowing
new THOWG operators to
be developed in order to
overcome the restrictions of
existing 2-linguistic power
aggregation operators. Tra-
ditional 2TL operators either
overlook or dismiss the im-
portance of the individual or
the ordered position. New
cloud-generating methods for
converting 2TL variables into
clouds have also been given.
This method incorporates the
cloud model’s tremendous
advantages to handle the ran-
domness of natural languages,
resulting in significantly
improved decision quality.
Finally, various novel cloud
algorithms have been devised,
including cloud distance,
cloud possibility degree, and
cloud support degree.

“Personalized individual se-
mantics in computing with
words for supporting linguis-
tic group decision making.
An application on consensus
reaching"

2017 [156]

This paper introduces a per-
sonalized individual seman-
tics (PIS) model to tailor in-
dividual semantics by a nu-
merical scale model primarily
based on intervals and the tra-
ditional linguistic model of 2-
tuple. Further, to obtain and
express the PIS model, a con-
sistency driven optimization-
based model is also proposed.
Finally, to justify the feasi-
bility and validity of the PIS
model, it is applied to a lin-
guistic GDM problem with
a consensus reaching process,
by defining the notion of
the individual linguistic un-
derstanding.

Interval numerical scale, 2-
tuple linguistic model

The introduction of PIS
methodology to model and
solve linguistic GDM prob-
lems with preference relations
could able to improvise the
management of different
meanings of words for dif-
ferent people. The proposed
model is based on the nu-
merical interval scale. This
is because it could able to
handle distinct linguistic
representations in a more
precise way. Moreover, a
novel frame of work devel-
oped for handling PIS could
able to redesign the phases
of CWW, which helps in
obtaining tailored linguistic
results easier to interpret and
understandable by humans.

“The 2-rank consensus reach-
ing model in the multigranular
linguistic multiple-attribute
Group Decision-Making
(MAGDM)"

2017 [335]

In this paper, a 2-rank con-
sensus reaching model with
minimum adjustments for the
2-rank MAGDM problem is
developed. An optimization
model to support a 2-rank
consensus rule is also pro-
posed, which is further trans-
formed into a mixed 0 − 1 lin-
ear programming model. Fi-
nally, a comparative analysis
of the proposed model with
the existing consensus models
is also presented.

2-rank consensus reaching
model

Preferences of the decision-
makers are expressed by us-
ing the context of multi gran-
ular linguistic term sets. Op-
timization based model is put
forwarded to support the con-
sensus rule. The optimal ad-
justed uniform linguistic deci-
sion matrices are transformed
into multi granular linguis-
tic decision matrices, which
are used as the references
for decision-makers to mod-
ify their preferences. Fur-
ther, an iterative 2-rank con-
sensus reaching process with
the minimum adjustments is
also developed. Moreover,
many useful properties of the
proposed model is also dis-
cussed.
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Title year paper Description Approach/Strategy Strong/Weak points

“Group decision making
based on linguistic dis-
tributions and hesitant
assessments: Maximizing
the support degree with an
accuracy constraint"

2018 [279]

In this paper, a novel ap-
proach is designed to propose
a new linguistic group deci-
sion model called the max-
imum support degree model
(MSDM). This model aims to
ensure maximum support de-
gree of the group opinion and
further guarantying the accu-
racy of the group opinion.
Further, a mixed 0-1 linear
programming approach is also
presented to solve the MSDM.
Finally, the utility and validity
of the MSDM in multiple at-
tribute group decision making
is proven.

Linguistic distributions and
Hesitant fuzzy linguistic term
sets (HFLTSs)

The aggregation methodology
proposed in this study en-
sures maximum degree sup-
port of the group opinion in
linguistic distributions based
on GDM problems and fur-
ther guarantees that the opin-
ion of the group is an HFLTS
has a certain degree of accu-
racy. In the MSDM, linguis-
tic distributions are used to
express decision-makers’ in-
dividual preferences to pro-
vide more probabilistic pref-
erence information over lin-
guistic terms, and the HFLTS
with certain accurate con-
straint is employed to guaran-
tee the accuracy of the group
opinion.

Due to the societal developments and an increase in the complexity of the problems, we

come across several decision problems where a group of individuals is having differences

in cultural and knowledge background. As a result, decision-makers may represent their

respective evaluations using MGLTSs. In literature, several methodologies have been

developed to tackle the problems of GDM involving multi-granularity linguistic informa-

tion. Zhang and Guo [334] proposed a GDM method where decision-makers are required

to express their assessment using multi-granularity in an uncertain linguistic environment

along with insufficient information of the attributes’ weight. The information of the eval-

uation is transformed into a trapezoidal fuzzy number (TFNs). Optimization models are

established to minimize the deviation between the evaluation of each decision-maker and

the group’s collective evaluation for each alternative. These models of optimization are

solved to obtain the group’s collective evaluation value of the alternatives. Finally, the

closeness coefficient and ranking for each alternative are evaluated. The optimal alter-

native based on the ranking can be further selected. The method proposed is simple and

easy to understand. Henceforth, is well applicable in the GDM problems involving multi-

granularity uncertain linguistic and insufficient weight information.

Li [154] introduced the notion of extended LVs to propose a new approach for solving

multi-attribute GDM problems under linguistic assessments. Further, Y. Ju [136] pro-

posed an upgraded method to solve MCGDM problems, where both the criteria values

and criteria weights take the form of linguistic information, and the information about

linguistic criteria weights is partly known or completely unknown. Morente-Molinera et

al. [201] proposed a systematic literature review on multi-granular fuzzy linguistic mod-
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eling in GDM from the year 2000 and 2014 and further discussed their drawbacks and

advantages.

With the developing headway of the 2TL model in DM processes and other disciplines,

it had been scrutinized that multi-objective linguistic optimization problem concomitant

with the 2TL model was a significant advantage. Multi-objective optimization problems

helped manage problems that were engrossed with conflicting objectives. There exist,

class of issues, where every objective function was self-governed, thereby, cannot be

solved by transforming into multiple objective optimization problems. Numerous meth-

ods had been developed in the literature to solve such problems [47, 48]. These methods

were primarily based on Tsukamoto’s fuzzy reasoning method, where the objective func-

tion was converted into a crisp form, and further, the objective function was solved by

using any conventional optimization technique. Nevertheless, this methodology endured

through a limitation as the resulting output of the problem was attained in crisp form

rather than linguistic. To overcome this limitation, Gupta and Muhuri [95] developed a

newer method grounded upon the 2TL model in solving multiple linguistic optimization

problems.

In certain situations, for instance, the problem of the social network, e-democracy, and

so forth decisions are required to be taken by relatively larger group size, categorized as

the large scale GDM. By defining a consensus model based on PIS for large scale GDM,

Li et al [157] gave the first proposal in this field. For the detailed knowledge of the model,

one can refer to the corresponding paper [157].

1.6 Application of the 2-tuple linguistic model and its ex-

tension

The 2TL model is prudent over other existing approaches by overcoming the restrictions

experienced by conventional methods. After having reviewed the dominant position that

the 2TL model holds among variant LCMs as well as other decision models, we move

forward to show extensive applications of the model in various disciplines. Table 1.4

shows the application depending on the 2TL model as well as its extension.



39

Table 1.4: Application based on 2-tuple linguistic model

Title paper
Supply chain [155, 309]
Nuclear safeguards [162, 238]
Selection Process [19, 122, 246]
Engineering Systems [6, 189]
Recommender System [191, 192, 231, 232, 239]
risk evaluation [46, 163, 230, 312, 340]

The 2TL model is used for segmentation of color images [225]. For this, a set of experts

are being provided such that every object of the considering image is assigned degree of

every pixel by each expert. The objects are represented by means of fuzzy linguistic la-

bels and then by using the DM model based on 2-tuples an aggregation phase to classify

each pixel is applied. Other application areas of 2TL model are social judgement anal-

ysis [292], weapon system evaluation [278], cooking recipe recommendation [24, 25],

decision-making [71, 118, 156, 166, 168, 170, 218, 247, 291], personalized individual se-

mantics [156, 157], renewable energy [79], energy optimization [96, 203], natural lan-

guage generation [141], supplier selection problems [269, 273, 289], Sensory evaluation

model [194, 195], a cloud-based decision support model [275, 281], emergency manage-

ment [237], emergency decision-making [337], financial technologies selection [204],

analysis of information and communication technology [49], information retrieval sys-

tem, hotel selection [313], non-coorperative matrix games [248, 249].

1.7 Motivation

Analysis of the practical life problems collectively present aspects that can appertain to

different nature, based on these nature’s aspects the present problems deal with a different

type of information. Generally, the problems present quantitative aspects easily accessi-

ble through precise numeric values, nevertheless in some cases, they present qualitative

aspects that are complicated to handle by precise numeric values. Linguistic assessments

successfully modeled via LVs in the problem presenting qualitative aspects have provided

better results. The presence of linguistic information requires CWWs processes to obtain

the solution for the real-life problems in a fashion emulating the subjectivity of the hu-

man mind. The 2TL and the variant extension of the model have delivered remarkable

advancement in the uncertainty domain.

In this thesis, we have analyzed both the theoretical and practical aspects of the 2TL
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model with its extension. Since the literature of extension of the 2TL model is abundant,

therefore, we restricted our study, focusing majorly on the unbalanced LCMs and interval-

valued 2TL model. We proposed various algorithms and methodologies for meticulously

modeling the intricate decision problems with the broad applications witnessed in matrix

games and decision sciences and have further validated the models with appropriate data.

Chapter 2 presents the abstract theory of a 2TL group based on a crisp binary operation

in a conventional sense. The LTS utilized in the current theory is a balanced LTS having

all linguistic terms distributed symmetrically. A practical application in bipolar graphs

and matrix games has been discussed to showcase the physical meaning of the abstract

concept so developed.

It is noteworthy that experts cannot always express the qualitative information that is

distributed uniformly and symmetrically in real world decision system. In some situa-

tions, experts have to use LTSs having the non-uniform distribution of the linguistic la-

bels. Several pioneering studies have been put forward to support the context of an ULTS.

However, there exist some weaknesses in the existing unbalanced LCMs. Henceforth,

motivated by the discussed concern, a new 2-tuple unbalanced LCM based on distance

measure is proposed in Chapter 3 with an application example to demonstrate the perfor-

mance excellence of the model.

Further, in Chapter 4, we extend the concept of unbalanced LTS to propose the notion of

probabilistic multiplicative ULTS, which considers the probability and the non-uniformity

of the linguistic labels so that the information is represented in a more flexible form that

aligns human thoughts. Game theory is considered an essential domain of decision sci-

ence. Fuzzy theory, stochastic framework, intervals, and linguistic models have been

successfully incorporated in the traditional game theory to model uncertain information

in matrix game problems. However, probabilistic multiplicative unbalanced linguistic

information has not been employed within the current game models to the best of our

knowledge. So, the proposed concept of Chapter 4 is also dedicated to modeling uncer-

tain information in game theory under a probabilistic multiplicative unbalanced linguistic

environment.

Chapter 5 is dedicated to modeling uncertain information in interval-valued matrix

games by proposing interval-valued linguistic linear programming methodology. We put

forth the concept of max-min principle for defining the lower and upper value of the inter-

val linguistic game problem that builds up an analogy with the point based matrix game

problem. However, in the absence of pure strategies, we designed a new approach in the
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chapter for evaluating the optimal strategies and value of the game.

Meanwhile, Chapter 6 introduced a unique outlook for solving interval-valued matrix

game problems by developing the notion of interval matrix norm. The methodology de-

vised in the chapter is capable of obtaining an approximated interval game value for the

corresponding zero-sum interval matrix game without undergoing the existing process of

solving traditional interval linear mathematical models. Additionally, some new matrix

game results primarily based on interval norm concept have been developed. Finally, a

case study is reported to validate the efficacy of the proposed method.

A summary followed by the future scope of the research work is evinced to conclude

the thesis after chapter 6.





Chapter 2

Group operations and properties for

2-tuple linguistic variables with its

application

This chapter1 2 is implemented in two segments. The objective of the initial module is

to put forward the theory of 2TL groups under the binary operation in the conventional

impression. In addition, a similarity relation between the set of all 2TL information and

numerical interval, [−𝑛,𝑛], is obtained. The notion of a 2TL bipolar graph is envisioned

as a practical application to explicate the appropriateness of the proposed linguistic group

isomorphic relation. The next module discusses the catalog of properties of 2TL abstract

group isomorphism and homomorphism, along with laying down the concept of linguistic

kernels, cosets, normal subgroups, and factor groups. Some new operational laws are

also given for a 2TL term set such that the final computed results belong to the original

term set. Finally, an equivalent of the fundamental theorem of group homomorphism for

a 2TL group is obtained. Consequently, based on the listed linguistic group isomorphic

properties and new operational laws, this chapter also gives a constructive study on the

1The content of this chapter is based on research paper “Group operations and isomorphic re-
lation with the 2-tuple linguistic variables”, Soft Computing, springer 24, 18287–18300 (2020).
https://doi.org/10.1007/s00500-020-05367-9 (SCIE, Impact Factor: 3.643)

2“Group isomorphic properties with some novel operational laws for 2-tuple linguistic variables and its
application in linguistic matrix games” (Communicated)
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theory of matrix games by introducing linguistic matrix norms. The proposed concept is

then taken forward to present a new methodology to solve a two-player zero-sum linguistic

matrix game having 2TL information offering approximated linguistic game value without

solving any linguistic linear mathematical equations. Lastly, a real-life practical example

from the equity market domain is illustrate to exhibit the feasibility and consistency of the

developed approach.
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2.1 Introduction

The Zadeh’s [316] introduction of fuzzy sets is considered to be the most relevant con-

cept in describing the problems of real-life since every object in the physical world pos-

sesses some degree of fuzziness. Therefore, fuzzy-based approaches are well-suited to

deal with uncertainty and have become a considerable research area with manifold appli-

cations in respect of engineering, computer science, and so forth. Several investigations

have also been envisioned to “fuzzify” many essential mathematical structures like alge-

bra, topological spaces, groups, etc.

It is a well-known fact that the classical theory of groups is recognized as the study of

algebraic structures designed to model and thus contemplate the symmetries of specific

objects. In other words, group theory plays a notable role in mathematics to analyze in-

dividual objects’ symmetries. An object’s symmetry can be either discrete or continuous.

It is, therefore, imperative to examine each discrete and continuous group. Ideally, group

theory evolution begins in 1770 and is extended to the twentieth century. However, the

nineteenth century witnessed the significant era of development of group theory. Since

then, the scope of group theory has been expanded to geometry, cryptography, particle

physics, combinatorics, some areas of analysis, and so forth. Many academics have made

significant contributions to the development of theories and perspectives that have en-

riched the wide-ranging application of group theory based on a crisp set (to mention only

a few, one may refer to [81, 143, 144, 205, 241]).

The scope of group theory is further anticipated in terms of fuzzy variables and fuzzy

sets [316] widely referred to as the fuzzy group theory. Rosenfeld [242] initially intro-

duced the idea of fuzzy groups to outspread the elementary concepts of classical group

theory in an effort to reinforce fuzzy groups. Subsequently, Luca and Termini [82] defined

appropriate algebraic properties associated with the class of fuzzy sets as well as making

a careful examination of certain new algebraic aspects of the “fuzzy sets” theory, thereby

linking it with Brouwerian lattices. Furthermore, Anthony and Sherwood [7] redefined

the concept of fuzzy algebraic structures based on the kind of semi-groups defined on

the unit interval [0, 1] called as “t-norm" introduced by Schweizer and Sklar [252]. In

that paper, authors have stated new results and properties in light of the proposed defini-

tion and, consequently, overcomes the limitation possessed by the previously stated fuzzy

algebraic concept [82, 242].

Das [83] inspected fuzzy groups to characterize all the fuzzy subgroups of finite cyclic
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groups and put forward the idea of “level subgroups” of a fuzzy subgroup centered on

a concept of “level subset” developed by Zadeh. For a more detailed knowledge about

the results and deeper understanding of a concept, a reader can refer to the corresponding

paper [83]. Mukherjee and Bhattacharya [206] gave an introduction of a “fuzzy normal

subgroup” and “fuzzy coset” and have further established a fuzzy Lagrange’s theorem.

Thereby, presented the analogs of the basic group-theoretic results in an elementary fash-

ion. In a sequel, Mukherjee, and Bhattacharya [28, 207] further investigated several anal-

ogous concepts of classical group theory in terms of fuzzy groups and proved the fuzzy

variants of a few prominent group theoretical results. Also, Bhattacharya [29] proposed

a more detailed study about the “level subgroups” of a fuzzy subgroup and further ex-

amined the possibility of the unique determination of the fuzzy subgroup by the class of

“level subgroups” of a fuzzy subgroup. The author also rectified the inaccuracies per-

sisting within the few results of Das [83] and later on initiated to delineate all the fuzzy

subgroups of a group of finite order in an effort to generalize the results of Rosenfeld [242]

and Das [83].

Sherwood [251] presented the concept of product of fuzzy groups and further discussed

the related properties as well. Later on, Ray [243] gave the introduction of the isomor-

phism of fuzzy groups and have stated an acceptable definition of the fuzzy version of

the isomorphism theorems. Further, Choudhary et al. [53] introduced the concept of a

fuzzy homomorphism between two groups and to study its effect on the fuzzy subgroup.

In a sequel, Chakraborty and Khare [54] proved an analogous version of the Fundamental

Theorem of Homomorphism and the Second Isomorphism Theorem for fuzzy homomor-

phisms. Later, Ajmal [13] catered the highly-awaited solution of the problem of present-

ing a one-to-one correspondence between the family of fuzzy subgroups of a given group,

constituting the kernel of a given homomorphism, and the family of fuzzy subgroups of

the homomorphic image of the given group. Analogous to classical normal groups and

group homomorphism, Akgül [8] defined “fuzzy normal subgroups," “fuzzy level normal

subgroups," and their homomorphism. Subsequently, Makamba [208] introduced the no-

tion of the internal and external direct product of a fuzzy subgroup of a corresponding

group 𝐺 and has additionally established fuzzy isomorphic relation between fuzzy sub-

groups. Since the literature of fuzzy algebra is profuse and vast, so therefore, readers can

also refer to the papers (to mention a few, see [9,84,85,100,145,226,244,263,264,315])

in order to understand the detail concepts of fuzzy algebra.

Although “fuzzy sets" theory and fuzzy algebra have been massively studied and be-
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come a robust field of research in severe engineering branches, medical sciences, graph

theory, etc., there are persisting some real-life situations where “fuzzy sets" theory is not

suitable to handle uncertainty. This happens due to the presence of much enigmatic and

imprecise information in intricate problems. As a result, it is quite clumsy and unnat-

ural to express results quantitatively in terms of a fuzzy variable. Therefore, the use of

LV and linguistic-based approaches, as developed by Zadeh [324–326], is much suit-

able and straightforward to handle uncertainty and thus has been studied extensively

(see [20, 61, 63, 103, 104, 261, 324–327]). Several DM problems are solved using lin-

guistic information to model experts’ preferences, which implies using computing with

words (CWWs) processes. To efficiently address linguistic information, Herrera and

Martínez [106] proposed a pioneering linguistic computational model, namely “2-tuple

linguistic model” so as to authenticate the linguistic computations by overcoming the lim-

itation possessed by the classical symbolic LCMs as discussed in chapter 1.

Since in meaning, a linguistic variable is in sight as a fuzzy set and 2-tuple representa-

tion is alleged to be the most effective way of representing linguistic information. There-

fore, in this chapter, we link the theory of 2TL set and classical group theory to develop

the notion of 2TL groups under binary operations in a classical sense. Consequently, this

chapter extend the concept of fuzzy algebra, particularly fuzzy groups in the 2TL scenario,

which is viewed as the initial aspect of our chapter.

Since game theory (GT) is found to be the most significant area of research in the subject

of operation research (OR) providing a mathematical configuration to study the strategies

of rational individuals in a competitive environment. After the groundbreaking work of

Von Neumann and Morgenstern in the early 20𝑡ℎ century, GT has gained a considerable

attention in multiple disciplines and wide-ranging fields. It is often viewed that a funda-

mental problem linked with the ordinary GT is that game players make decisions in a crisp

sense. However, within a realistic situations the majority of games always believed in un-

certain environments where the knowledge about the payoffs are not completely known by

the players. Therefore, the introduction of imprecise matrix game problem to deal with the

uncertainty is envisioned from the perspective of stochastic payoff games [92,254], fuzzy

payoff games [30, 31, 55, 77, 219], single linguistic terms [14, 15], and 2-tuple linguistic

term [248].

The matrix game methodology given in the various uncertain game models is needed

to solve two linear optimization problems for each corresponding player to obtain an

optimal solution. However, solutions obtained for these problems will be troublesome for
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the zero-sum matrix game (ZSMG) problems having a bigger size. Therefore, the current

chapter is also dedicated to construct a practical method convenient enough to attain an

approximated solution accelerated with the matrix norms of the game matrix having 2TL

as payoff value. For this, based on the 2TL group-theoretic properties and new operational

laws, we introduce the notion of 2TL matrix norms. Then, we introduce the notion of 1′−
norm and ∞′− norm of the 2TL payoff matrix. Henceforth, succeeded in obtaining an

approximated solution for a zero-sum linguistic matrix game (ZSLMG). We also state

certain conditions and present a new outlook of matrix game with 2TL information and

its solution procedure.

Although any ZSLMG problem can be solved by utilizing the linguistic linear pro-

gramming (LLP) method [248], our proposed novel methodology may solve and offer an

approximated matrix game value without addressing any system of linear mathematical

equations. The proposed method gives us an optimal range of the game value containing

an exact solution to the game problem, henceforth giving players an idea about the value

of the game at the beginning of the problem itself. Moreover, using the LLP method for a

large-scale matrix game problem is quite tedious and time-consuming, whereas linguistic

matrix norm methodology offers an approximated game value at a faster rate and reduces

the computational cost. Additionally to the straightforwardness of use, this is the most

crucial and novel part of our methodology. To the best of our knowledge, it is foreseen

that the concept of 2TL matrix norms is not used in imprecise matrix games yet, and the

presented study brings about a new viewpoint to the game solution.

The subject matter of the current chapter is presented in the subsequent sections as

follows. The forthcoming Section 2.2 presents a methodology claiming that a finite

subscript-symmetric linguistic term set (SSLTS), intervals [−𝑛,𝑛] and [−1
2 ,

1
2 ] forms a

group under a binary operator ‘∗’, ‘⊕’ respectively. In addition, we have proved that

𝐿𝑇 ≡ 𝐿𝑇 × [−1
2 ,

1
2 ] is a 2TL direct group under a binary operation ‘◦’. The definition of

all these group operations are defined in the following section. Lastly, a result describ-

ing an isomorphic relation between the 2TL group, 𝐿𝑇 , and a numerical interval, [−𝑛,𝑛]
based on the classical definition of isomorphic groups is also presented. To validate the

results and showcase the physical meaning of the isomorphic groups, we herein propose

an application in terms of bipolar graphs. In this connection, we first developed the con-

cept of 2TL bipolar set (2TLBS) accompanied by the introduction of the notion of 2TL

bipolar graphs (2TLBGs) based on a finite SSLTS and after that define its relevant prop-

erties. Later on, we define graph isomorphism viewed as a direct consequence of a 2TL
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group isomorphic relation. Additionally, the properties of a homomorphic and isomor-

phic relation, the novel concept of cosets, normal subgroups, linguistic version of kernels,

followed by the fundamental theorem of linguistic group homomorphism with some new

operational laws primarily based on a 2TL term set, is examined in the Section 2.3. Sec-

tion 2.4 explains the formulation of the linguistic matrix norm approach to solve ZSMG

problem with 2TL information along with the demonstration of its applicability in practi-

cal DM problem and further presents some comparative analysis with the existing method.

Lastly, Section 2.5 provides the concluding remarks of this chapter.

The work presented in this chapter is advantageous in developing the basis for linguistic

group theory. Although the fuzzy group theory has been developed and comprehensively

studied in the literature, linguistic group theory development is pristine and yet to be

explored. Therefore, the ideas and results exhibited in this chapter are a milestone in this

direction and also provide a more flexible framework in proving an “algebraic structure

groups” for the 2TL model by using SSLTS. Moreover, the chapter’s results depict an

analogy with an existing theory of groups based on a crisp set.

2.1.1 Preliminaries

We first aims to review some basic definitions and operational laws related to the sub-

script symmetric LCM, classical group theory and the matrix norm approach for solving

two-person classical ZSMGs followed by the foundations of matrix games with linguistic

information required for this chapter.

Subscript-symmetric linguistic computational model

Definition 2.1.1. [299] Assume 𝐿𝑇 = {𝑡−𝑛, . . . , 𝑡0, . . . , 𝑡𝑛} be a finite SSLTS such that the

following properties are satisfied:

(i) The set 𝐿𝑇 is termed as an ordered set i.e., 𝑡𝑝 > 𝑡𝑞 if and only if 𝑝 > 𝑞;

(ii) The negation operator of a linguistic variable is defined as: neg(𝑡𝑝) = 𝑡−𝑝 ∈ 𝐿𝑇 .

Here, 𝑡0 represents a middle linguistic term, and the rest over terms are placed uniformly

on each side of the middle term. In particular, 𝑡−𝑛 and 𝑡𝑛 represent the lower and upper

bound of the LTS.

The existing 2TL model explained briefly in the section 1.3 is defined over the domain

[0, 𝑛]. However, the present model can be easily specified for the domain [−𝑛, 𝑛] by
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using the above mentioned SSLTS, namely 𝐿𝑇 . Meanwhile, the notion of Δ and Δ−1

operators, ideally formalized by Herrera and Martínez [106] is extended to the set 𝐿𝑇 and

the transformation function facilitating to convert a numeric value 𝑥 to a corresponding

2TL variable is given below.

Definition 2.1.2. Let 𝐿𝑇 =
{
𝑡𝑝 | 𝑝 = −𝑛 . . . ,0, 1, . . . , 𝑛

}
be a finite SSLTS having cardi-

nality 2𝑛 + 1 and let 𝑥 ∈ [−𝑛, 𝑛]. Then, the transformation function Δ needed to express

the 2TL variable identical to 𝑥 is identified as.

Δ : [−𝑛,𝑛] → 𝐿𝑇 ×
[−1

2
,

1
2
]

Δ(𝑥) = (𝑡𝑝, 𝛼) where 𝑝 = round(𝑥) ∈ 𝐿𝑇&𝛼 = 𝑥− 𝑝 ∈
[−1

2
,

1
2
]
.

where round(*) is termed as the general rounding operation, 𝑡𝑝 represent the linguistic

label nearest to 𝑥, and 𝛼 referred as the “symbolic translation”.

From the above function, it has been clearly envisioned that the Δ is a bijective map-

ping [106] and therefore, its inverse is stipulated by,

Δ−1 : 𝐿𝑇 × [−1
2
,

1
2
] → [−𝑛,𝑛] as Δ−1(𝑡𝑝, 𝛼) = 𝑝 +𝛼 = 𝑥 .

Furthermore, Herrera & Martínez [106] has established the comparison law for the well-

known linguistic model of 2-tuple primarily based upon the classical lexicographic order-

ing. Hence, correspondingly the following definition can be outlined to state the ranking

order.

Definition 2.1.3. Let (𝑡𝑝, 𝛼𝑝) and (𝑡𝑞, 𝛼𝑞) be two 2TL variables. Then,

(i) If 𝑝 < 𝑞 then (𝑡𝑝, 𝛼𝑝) < (𝑡𝑞, 𝛼𝑞).

(ii) If 𝑝 = 𝑞, i.e., 𝑡𝑝 = 𝑡𝑞, then

(a) if 𝛼𝑝 = 𝛼𝑞, then (𝑡𝑝, 𝛼𝑝) = (𝑡𝑞, 𝛼𝑞);

(b) if 𝛼𝑝 > 𝛼𝑞, then (𝑡𝑝, 𝛼𝑝) > (𝑡𝑞, 𝛼𝑞);

(c) if 𝛼𝑝 < 𝛼𝑞, then (𝑡𝑝, 𝛼𝑝) < (𝑡𝑞, 𝛼𝑞).

For a comprehensive and complete elucidation of the theory for the existing 2TL model,

one can refer to the introductory chapter 1.
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Classical Group Theory

In the following, we review the formal definition of the classical group 𝐺 and some ele-

mentary concepts required for this chapter.

Definition 2.1.4. [99] A group𝐺 is defined as a nonempty set along with a group operator

‘• ∈ {+, ·}’ such that it should satisfy the subsequent characteristics:

(i) 𝑔 • ℎ ∈ 𝐺∀𝑔, ℎ ∈ 𝐺;

(ii) Associative property holds trivially;

(iii) There exist an element 𝑒 ∈ 𝐺 such that 𝑔 • 𝑒 = 𝑒 •𝑔 = 𝑔∀𝑔 ∈ 𝐺;

(iv) For every 𝑔 ∈ 𝐺, there exist an inverse element 𝑓 ∈ 𝐺 such that 𝑔 • 𝑓 = 𝑓 •𝑔 = 𝑒.

It can be noted that the inverse and identity element of a group 𝐺 is uniquely defined.

Note 2.1.1. If a group 𝐺 satisfies an additional condition

𝑔 • ℎ = ℎ • 𝑔

for all 𝑔, ℎ ∈ 𝐺 then 𝐺 is referred as abelian group.

In a generic way, if • = + then we write 𝑔 • ℎ as 𝑔 + ℎ ∈ 𝐺 ∀𝑔, ℎ ∈ 𝐺 and the identity

element is 0 while the inverse element of 𝑔 is −𝑔. On the other hand if • = · then we write

𝑔 • ℎ as 𝑔 · ℎ ∈ 𝐺 ∀𝑔, ℎ ∈ 𝐺 and the identity element is 1 while the inverse element of 𝑔

is 𝑔−1.

Note 2.1.2. If a group 𝐺 consists of a finite range of elements, then 𝐺 is referred to as a

finite group; otherwise, we call 𝐺 an infinite group.

Note 2.1.3. The total number of elements present within the group 𝐺 is referred as order

of the group and is denoted by |𝐺 |.

Definition 2.1.5. [99] A subset 𝐻 of 𝐺 forms a subgroup of 𝐺 if it satisfies all the group

properties under the same binary operation of 𝐺 and it is denoted by 𝐻 ≤ 𝐺.

Definition 2.1.6. [99] A group homomorphism is defined as a mapping 𝜙 : 𝐺→ 𝐺 that

preserves the operation of the group; i.e., 𝜙(𝑔 • ℎ) = 𝜙(𝑔)#𝜙(ℎ) ∀𝑔, ℎ ∈ 𝐺 where •, # ∈
{+, ·} are binary operations of group 𝐺 and 𝐺, respectively.
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Definition 2.1.7. [99] Group isomorphism is defined as a bijective homomorphic map-

ping 𝜙 from a group𝐺 to group𝐺. i.e., 𝜙 : 𝐺→𝐺 such that 𝜙(𝑔 • ℎ) = 𝜙(𝑔) #𝜙(ℎ) ∀𝑔, ℎ ∈
𝐺 where •, # ∈ {+, ·} are binary operations of group 𝐺 and 𝐺, respectively. When group

𝐺 is isomorphic to 𝐺, then we say that 𝐺 � 𝐺, i.e., both groups are equivalent and seems

out to be abstractly similar in several aspects.

Definition 2.1.8. [99] Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be a finite collection of arbitrary groups. The

direct product of groups 𝐺1, 𝐺2, . . . ,𝐺𝑛 is defined as a set of n-tuples such that ith com-

ponent is an element of 𝐺𝑖 and the operation is component wise.

Mathematically, direct product of groups is written as:

𝐺1×𝐺2× . . .×𝐺𝑛 =
{
(𝑔1, 𝑔2, . . . , 𝑔𝑛) | 𝑔𝑖 ∈ 𝐺𝑖

}
where,

(𝑔1, 𝑔2, . . . , 𝑔𝑛) • (𝑔′1, 𝑔
′
2, . . . , 𝑔

′
𝑛) = (𝑔1 •𝑔′1, 𝑔2 •𝑔′2, . . . , 𝑔𝑛 •𝑔

′
𝑛)

and ‘•’ is the respective group operations of each 𝐺𝑖 .

For a complete knowledge about classical group theory, it is advised to refer any familiar

text on abstract algebra, for instance, [99].

Two-player zero-sum matrix games

In literature, a ZSMG engaging only two players is considered the most straightforward

game. Out of all the solution methods that have been formulated to solve such matrix

games, the linear programming technique is the most prevalent one. However, the linear

programming method generally becomes a time consuming method for the bigger size

matrix game. Therefore, to overcome this limitation Izgi and Özkaya [133] proposed a

novel approach to solve two players’ classical zero-sum games by utilizing the concept of

matrix norms. The present subsection review some basics of that method.

Definition 2.1.9. [209] Let 𝐴 ∈ R𝑝×𝑞 be a matrix of real numbers, then 1− norm and∞−
norm are successively given in the following manner:

• | |𝐴| |1 = max𝑑
∑
𝑐 |𝑎𝑐𝑑 | represents the greatest absolute column sum.

• | |𝐴| |∞ = max𝑐
∑
𝑑 |𝑎𝑐𝑑 | represents the greatest absolute row sum.
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Throughout the paper, we refer 1− norm and ∞− norm for a matrix of real numbers

whereas 1′− norm and∞′− norm for a matrix with 2TL information.

Lemma 2.1.1. [133] Let the triplet (𝑋, 𝑌, 𝐴) be a finite two player ZSMG where 𝑋, 𝑌

represents a mixed strategy set of the corresponding players’ I and II, respectively, 𝐴 ∈
R𝑝×𝑞 is the given payoff matrix and 𝑣 represents the value of the game. Then,
𝑘

| |𝐴| |∞
≤ 𝑣 ≤ ||𝐴| |1 for 𝑣 > 0,

−||𝐴| |1 ≤ 𝑣 ≤ 𝑘
| |𝐴| |∞ for 𝑣 < 0.

where 𝑘 = max
1≤𝑐≤𝑝,𝑐≠𝑙

∑𝑞

𝑑=1 𝑣 |𝑎𝑐𝑑 | and | |𝐴| |∞ =
∑𝑞

𝑑=1 |𝑎𝑙𝑑 | for fixed 𝑙.

Theorem 2.1.1. [133] Let (𝑋, 𝑌, 𝐴) be a finite two player ZSMG where 𝐴 ∈ R𝑝×𝑞 is the

given payoff matrix and 𝑣 represents the value of the game. Then,

for |𝑣 | ≥ 1, then
| |𝐵 | |∞
| |𝐴| |∞

≤ |𝑣 | ≤ | |𝐴| |1

for |𝑣 | ≤ 1 and 𝑣 ≠ 0, then
1
| |𝐴| |1

≤ |𝑣 | ≤ | |𝐴| |∞| |𝐵 | |∞
.

where 𝐵 is represented as the row-wise induced matrix of 𝐴.

Next, result helps in obtaining the largest and smallest elements of the mixed strategy

set.

Theorem 2.1.2. [133] Let 𝐴 ∈ R𝑝×𝑞 be the real valued payoff matrix where each entry

i.e., 𝑎𝑐𝑑 > 0∀𝑐, 𝑑. Then, the boundaries for 𝑥max and 𝑥min representing the biggest and

smallest elements of the mixed strategy set, respectively, are defined in the following

manner,

𝑥max ≥ 𝐿𝐵 where 𝐿𝐵 = max


1− |𝑣 |
| |𝐴| |1

𝑝−1
,
|𝑣 |
| |𝐵 | |1


𝑥min ≤ 𝑈𝐵 where𝑈𝐵 = min


1− |𝑣 |

| |𝐵 | |1
𝑝−1

,
|𝑣 |
| |𝐴| |1


where 𝐵 represents the column wise induced matrix of 𝐴.

For the justification and deeper discussion of the above-mentioned results one can refer

to the corresponding paper [133].

Zero-sum linguistic matrix game

The matrix game problem where the sum of the payoffs corresponding to any given set of

strategies is zero is termed as two players zero-sum game [36]. A ZSMG is a particular

case of the constant sum game and has subjected to several findings both in the fuzzy as

well as conventional set up. However, the game problems with linguistic payoff matrices

are pristine and required to be explored.
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In the present subsection, we review the basic terminologies and notations related to the

ZSMGs within a 2TL framework. The following definitions are taken from paper [248]

and can be easily extended to the SSLTS, LT as mentioned already.

Definition 2.1.10. A two-player ZSLMG 𝐺 is defined by a quadruplet (𝑆𝑛, 𝑆𝑚, LT, 𝐴),
where 𝑆𝑛 and 𝑆𝑚 are the strategy sets of player I and II, LT = {ℓ−𝑔, . . . , ℓ0, ℓ1, . . . , ℓ𝑔}, with

cardinality 2𝑔 + 1, is a SSLTS for both the players, 𝐴 is the linguistic payoff matrix of

player I against player II, and 𝑛𝑒𝑔(𝐴) is the payoff matrix for player II.

Since the lexicographic ordering is available in the 2TL variables, one can easily extend

the notion of the value of the game to the linguistic matrix game 𝐺.

Definition 2.1.11. A matrix game 𝐺 with payoff matrix 𝐴 = [�̃�𝑖 𝑗 ]𝑛×𝑚 has the linguistic

lower value and the linguistic upper value defined as,

�̃�− = max
𝑖=1,...,𝑛

min
𝑗=1,...,𝑚

�̃�𝑖 𝑗 , �̃�+ = min
𝑗=1,...,𝑚

max
𝑖=1,...,𝑛

�̃�𝑖 𝑗 .

Here, it is considered that �̃�− (player I gain floor) is the minimum linguistic payoff that

player I is assured to receive while �̃�+ (player II loss ceiling) is the maximum linguistic

loss of player II. The value of the game𝐺 exists if and only if �̃�− = �̃�+. The strategies 𝑖∗ and

𝑗∗, yielding the payoff �̃�𝑖∗ 𝑗∗ = �̃�− = �̃�+ , are optimal for player I and player II, respectively.

The pair (𝑖∗, 𝑗∗) is also known as the saddle point of the game 𝐺.

In the case, where solution set of the game 𝐺 does not possess pure strategies. We

define the solution set as mixed strategies.

Definition 2.1.12. A mixed strategy is an ordered pair of vectors (𝑥, 𝑦) ∈ 𝑆𝑛× 𝑆𝑚, where

𝑆𝑛 = {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ≥ 0, 𝑖 = 1 . . . , 𝑛,
∑𝑛
𝑖=1 𝑥𝑖 = 1};

𝑆𝑚 = {(𝑦1, . . . , 𝑦𝑚) : 𝑦 𝑗 ≥ 0, 𝑗 = 1, . . . ,𝑚,
∑𝑚
𝑗=1 𝑦 𝑗 = 1}.

Here, 𝑥𝑖 is the probability of choosing an arbitrary strategy 𝑖 by player I and 𝑦 𝑗 is the

probability of selecting an arbitrary strategy 𝑗 by player II.
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2.2 Group operations and isomorphic relation with the

2-tuple linguistic variables

In the present section, we give a comprehensive study to introduce the concept of 2TL

groups based upon the binary operator in a crisp sense. To do this, we initially show

that [−𝑛,𝑛], 𝐿𝑇 , the interval [−1
2 ,

1
2 ] forms a group under the binary operation ‘∗’, ‘⊕’

respectively and further, prove the assertion that the set of all 2TL variables, 𝐿𝑇×[−1
2 ,

1
2 ] is

isomorphic to the nonempty set of numerical interval [−𝑛,𝑛], where 𝑛 is a positive integer.

Hence, both the groups are abstractly similar and have identical algebraic properties.

Proposition 2.2.1. Let [−𝑛,𝑛] be any arbitrary nonempty set where 𝑛 is presumed to be

a sufficiently large positive integer. Then [−𝑛,𝑛] is a group concerning binary operation

‘*’ defined as:

𝑎 ∗ 𝑏 =


𝑎 + 𝑏 +𝑛, if 𝑎 + 𝑏 < −𝑛

𝑎 + 𝑏, if −𝑛 ≤ 𝑎 + 𝑏 ≤ 𝑛

𝑎 + 𝑏−𝑛, if 𝑎 + 𝑏 > 𝑛

for all 𝑎, 𝑏 ∈ [−𝑛,𝑛].

Proof. Let 𝑎𝑝, 𝑎𝑞 ∈ 𝑋 be any arbitrary element. Based on the binary operation ‘∗’, we

infer clearly that, 𝑎𝑝, 𝑎𝑞 ∈ 𝑋 . Therefore, 𝑋 satisfies the closure property. Now, let 𝑎𝑝, 𝑎𝑞,

𝑎𝑟 ∈ 𝑋 and let 𝑎𝑞 ∗ 𝑎𝑟 = 𝜇1 such that 𝑎𝑝 ∗ (𝑎𝑞 ∗ 𝑎𝑟) = 𝑎𝑝 ∗ 𝜇1 = 𝜌1 therefore,

𝜌1 =


𝑎𝑝 + 𝜇1 +𝑛, if 𝑎𝑝 + 𝜇1 < −𝑛

𝑎𝑝 + 𝜇1, if −𝑛 ≤ 𝑎𝑝 + 𝜇1 ≤ 𝑛

𝑎𝑝 + 𝜇1−𝑛, if 𝑎𝑝 + 𝜇1 > 𝑛

(2.2.1)

since 𝜇1 = 𝑎𝑞 ∗ 𝑎𝑟 i.e.

𝜇1 =


𝑎𝑞 + 𝑎𝑟 +𝑛, if 𝑎𝑞 + 𝑎𝑟 < −𝑛

𝑎𝑞 + 𝑎𝑟 , if −𝑛 ≤ 𝑎𝑞 + 𝑎𝑟 ≤ 𝑛

𝑎𝑞 + 𝑎𝑟 −𝑛, if 𝑎𝑞 + 𝑎𝑟 > 𝑛

(2.2.2)

By substituting equation 2.2.2 in equation 2.2.1 we obtain following cases defined below:
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Case(i) If 𝑎𝑞 + 𝑎𝑟 < −𝑛 then, 𝜇1 = 𝑎𝑞 + 𝑎𝑟 +𝑛 therefore,

𝜌1 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +2𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < −2𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +𝑛, if −2𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 0

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 0

Case(ii) If −𝑛 ≤ 𝑎𝑞 + 𝑎𝑟 ≤ 𝑛 then, 𝜇1 = 𝑎𝑞 + 𝑎𝑟 therefore,

𝜌1 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < −𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if −𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 𝑛

Case(iii) If 𝑎𝑞 + 𝑎𝑟 > 𝑛 then, 𝜇1 = 𝑎𝑞 + 𝑎𝑟 −𝑛 therefore,

𝜌1 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < 0

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −𝑛, if 0 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 2𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −2𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 2𝑛

Next, we let 𝑎𝑝 ∗ 𝑎𝑞 = 𝜇2 such that (𝑎𝑝 ∗ 𝑎𝑞) ∗ 𝑎𝑟 = 𝜇2 ∗ 𝑎𝑟 = 𝜌2 therefore,

𝜌2 =


𝜇2 + 𝑎𝑟 +𝑛, if 𝜇2 + 𝑎𝑟 < −𝑛

𝜇2 + 𝑎𝑟 , if −𝑛 ≤ 𝜇2 + 𝑎𝑟 ≤ 𝑛

𝜇+ 𝑎𝑟 −𝑛, if 𝜇2 + 𝑎𝑟 > 𝑛

(2.2.3)

Since 𝜇2 = 𝑎𝑝 ∗ 𝑎𝑞 i.e.,

𝜇2 =


𝑎𝑝 + 𝑎𝑞 +𝑛, if 𝑎𝑝 + 𝑎𝑞 < −𝑛

𝑎𝑝 + 𝑎𝑞, if −𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 ≤ 𝑛

𝑎𝑝 + 𝑎𝑞 −𝑛, if 𝑎𝑝 + 𝑎𝑞 > 𝑛

(2.2.4)

By substituting equation 2.2.4 in equation 2.2.3 we obtain the following cases which are

defined below:
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Case(i) If 𝑎𝑝 + 𝑎𝑞 < −𝑛 then, 𝜇2 = 𝑎𝑝 + 𝑎𝑞 +𝑛 therefore,

𝜌2 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +2𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < −2𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +𝑛, if −2𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 0

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 0

Case(ii) If −𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 ≤ 𝑛 then, 𝜇2 = 𝑎𝑝 + 𝑎𝑞 therefore,

𝜌2 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 +𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < −𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if −𝑛 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 𝑛

Case(iii) If 𝑎𝑝 + 𝑎𝑞 > 𝑛 then, 𝜇2 = 𝑎𝑝 + 𝑎𝑞 −𝑛 therefore,

𝜌2 =


𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 , if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 < 0

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −𝑛, if 0 ≤ 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 ≤ 2𝑛

𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 −2𝑛, if 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 > 2𝑛

From all the above cases we infer that 𝜌1 = 𝜌2 ⇒ 𝑎𝑝 ∗ (𝑎𝑞 ∗ 𝑎𝑟) = (𝑎𝑝 ∗ 𝑎𝑞) ∗ 𝑎𝑟 . Hence,

𝑋 satisfies associative property. Next, 0 is an identity element such that for every 𝑎𝑝 ∈
[−𝑛,𝑛] we have 𝑎𝑝 ∗0 = 0∗𝑎𝑝 = 𝑎𝑝. Finally, for every 𝑎𝑝 ∈ 𝑋 = [−𝑛,𝑛] their exist (−𝑎𝑝) ∈
𝑋 = [−𝑛,𝑛] such that 𝑎𝑝 ∗ (−𝑎𝑝) = (−𝑎𝑝) ∗ 𝑎𝑝 = 0. Hence, 𝑋 = [−𝑛,𝑛] is a group. □

Proposition 2.2.2. Let 𝐿𝑇 = {𝑡−𝑛, . . . , 𝑡0, 𝑡1, . . . , 𝑡𝑛} be a finite SSLTS. Then 𝐿𝑇 is a group

concerning binary operation ‘∗’ defined as:

𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝∗𝑞

=


𝑡𝑝+𝑞+𝑛, if 𝑝 + 𝑞 < −𝑛

𝑡𝑝+𝑞, if −𝑛 ≤ 𝑝 + 𝑞 ≤ 𝑛

𝑡𝑝+𝑞−𝑛, if 𝑝 + 𝑞 > 𝑛

for all 𝑡𝑝, 𝑡𝑞 ∈ 𝐿𝑇 .
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Proof. We here give a detailed proof. Consider SSLTS 𝐿𝑇 = {𝑡−𝑛, . . . , 𝑡0, 𝑡1, . . . , 𝑡𝑛} and let

𝑡𝑝, 𝑡𝑞 ∈ 𝐿𝑇 be any two arbitrary linguistic term. Based on a binary operation ‘∗’, we infer

that, 𝑡𝑝 ∗ 𝑡𝑞 ∈ 𝐿𝑇 ∀ 𝑡𝑝, 𝑡𝑞 ∈ 𝐿𝑇 . Hence, closure property holds. Next, let 𝑡𝑝, 𝑡𝑞, 𝑡𝑟 ∈ 𝐿𝑇
be a linguistic term. Let 𝑡𝑞 ∗ 𝑡𝑟 = 𝑡𝑞∗𝑟 = 𝜈1 such that 𝑡𝑝 ∗ (𝑡𝑞 ∗ 𝑡𝑟) = 𝑡𝑝 ∗ 𝜈1 = 𝜏1 therefore,

𝜏1 = 𝑡𝑝 ∗ 𝜈1

= 𝑡𝑝 ∗ 𝑡𝑞∗𝑟

=


𝑡𝑝+(𝑞∗𝑟)+𝑛, if 𝑝 + (𝑞 ∗ 𝑟) < −𝑛

𝑡𝑝+(𝑞∗𝑟) , if −𝑛 ≤ 𝑝 + (𝑞 ∗ 𝑟) ≤ 𝑛

𝑡𝑝+(𝑞∗𝑟)−𝑛, if 𝑝 + (𝑞 ∗ 𝑟) > 𝑛

(2.2.5)

since 𝜈1 = 𝑡𝑞 ∗ 𝑡𝑟 = 𝑡𝑞∗𝑟 i.e.,

𝜈1 =


𝑡𝑞+𝑟+𝑛, if 𝑞 + 𝑟 < −𝑛

𝑡𝑞+𝑟 , if −𝑛 ≤ 𝑞 + 𝑟 ≤ 𝑛

𝑡𝑞+𝑟−𝑛, if 𝑞 + 𝑟 > 𝑛

(2.2.6)

Substitute equation 2.2.6 in equation 2.2.5 to obtain the following cases defined below:

Case(i) If 𝑞 + 𝑟 < −𝑛 then, 𝜈1 = 𝑡𝑞+𝑟+𝑛 therefore,

𝜏1 = 𝑡𝑝 ∗ 𝜈1

= 𝑡𝑝 ∗ 𝑡𝑞∗𝑟

=


𝑡𝑝+𝑞+𝑟+2𝑛, if 𝑝 + 𝑞 + 𝑟 < −2𝑛

𝑡𝑝+𝑞+𝑟+𝑛, if −2𝑛 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 0

𝑡𝑝+𝑞+𝑟 , if 𝑝 + 𝑞 + 𝑟 > 0

Case(ii) If −𝑛 ≤ 𝑞 + 𝑟 ≤ 𝑛 then, 𝜈1 = 𝑡𝑞∗𝑟 = 𝑡𝑞+𝑟 therefore,

𝜏1 = 𝑡𝑝 ∗ 𝜈1

= 𝑡𝑝 ∗ 𝑡𝑞∗𝑟

=


𝑡𝑝+𝑞+𝑟+𝑛, if 𝑝 + 𝑞 + 𝑟 < −𝑛

𝑡𝑝+𝑞+𝑟 , if −𝑛 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 𝑛

𝑡𝑝+𝑞+𝑟−𝑛, if 𝑝 + 𝑞 + 𝑟 > 𝑛
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Case(iii) If 𝑞 + 𝑟 > 𝑛 then, 𝜈1 = 𝑡𝑞∗𝑟 = 𝑡𝑞+𝑟−𝑛 therefore,

𝜏1 = 𝑡𝑝 ∗ 𝜈1

= 𝑡𝑝 ∗ 𝑡𝑞∗𝑟

=


𝑡𝑝+𝑞+𝑟 , if 𝑝 + 𝑞 + 𝑟 < 0

𝑡𝑝+𝑞+𝑟−𝑛, if 0 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 2𝑛

𝑡𝑝+𝑞+𝑟−2𝑛, if 𝑝 + 𝑞 + 𝑟 > 2𝑛

Next, let 𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝∗𝑞 = 𝜈2 such that (𝑡𝑝 ∗ 𝑡𝑞) ∗ 𝑡𝑟 = 𝜈2 ∗ 𝑡𝑟 = 𝜏2 therefore,

𝜏2 = 𝜈2 ∗ 𝑡𝑟

= 𝑡𝑝∗𝑞 ∗ 𝑡𝑟

=


𝑡(𝑝∗𝑞)+𝑟+𝑛, if (𝑝 ∗ 𝑞) + 𝑟 < −𝑛

𝑡(𝑝∗𝑞)+𝑟 , if −𝑛 ≤ (𝑝 ∗ 𝑞) + 𝑟 ≤ 𝑛

𝑡(𝑝∗𝑞)+𝑟−𝑛, if (𝑝 ∗ 𝑞) + 𝑟 > 𝑛

(2.2.7)

since 𝜈2 = 𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝∗𝑞 i.e.,

𝜈2 =


𝑡𝑝+𝑞+𝑛, if 𝑝 + 𝑞 < −𝑛

𝑡𝑝+𝑞, if −𝑛 ≤ 𝑝 + 𝑞 ≤ 𝑛

𝑡𝑝+𝑞−𝑛, if 𝑝 + 𝑞 > 𝑛

(2.2.8)

By substituting 𝜈2 from equation 2.2.8 in equation 2.2.7 we obtain the following cases

defined below:

Case(i) If 𝑝 + 𝑞 < −𝑛 then, 𝜈2 = 𝑡𝑝+𝑞+𝑛 therefore,

𝜏2 = 𝜈2 ∗ 𝑡𝑟

= 𝑡𝑝+𝑞+𝑛 ∗ 𝑡𝑟

=


𝑡𝑝+𝑞+𝑟+2𝑛, if 𝑝 + 𝑞 + 𝑟 < −2𝑛

𝑡𝑝+𝑞+𝑟+𝑛, if −2𝑛 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 0

𝑡𝑝+𝑞+𝑟 , if 𝑝 + 𝑞 + 𝑟 > 0
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Case(ii) If −𝑛 ≤ 𝑝 + 𝑞 ≤ 𝑛 then, 𝜈2 = 𝑡𝑝∗𝑞 = 𝑡𝑝+𝑞 therefore,

𝜏2 = 𝜈2 ∗ 𝑡𝑟

= 𝑡𝑝+𝑞 ∗ 𝑡𝑟

=


𝑡𝑝+𝑞+𝑟+𝑛, if 𝑝 + 𝑞 + 𝑟 < −𝑛

𝑡𝑝+𝑞+𝑟 , if −𝑛 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 𝑛

𝑡𝑝+𝑞+𝑟−𝑛, if 𝑝 + 𝑞 + 𝑟 > 𝑛

Case(iii) If 𝑝 + 𝑞 > 𝑛 then, 𝜈2 = 𝑡𝑝∗𝑞 = 𝑡𝑝+𝑞−𝑛 therefore,

𝜏2 = 𝜈2 ∗ 𝑡𝑟

= 𝑡𝑝+𝑞−𝑛 ∗ 𝑡𝑟

=


𝑡𝑝+𝑞+𝑟 , if 𝑝 + 𝑞 + 𝑟 < 0

𝑡𝑝+𝑞+𝑟−𝑛, if 0 ≤ 𝑝 + 𝑞 + 𝑟 ≤ 2𝑛

𝑡𝑝+𝑞+𝑟−2𝑛, if 𝑝 + 𝑞 + 𝑟 > 2𝑛

From all the above cases we infer that 𝜏1 = 𝜏2 ⇒ 𝑡𝑝 ∗ (𝑡𝑞 ∗ 𝑡𝑟) = (𝑡𝑝 ∗ 𝑡𝑞) ∗ 𝑡𝑟 . Hence, 𝐿𝑇

satisfies associative property. Next, 𝑡0 ∈ 𝐿𝑇 is an identity element such that for every

𝑡𝑝 ∈ 𝐿𝑇 we have 𝑡𝑝 ∗ 𝑡0 = 𝑡0 ∗ 𝑡𝑝 = 𝑡𝑝. Finally, for every 𝑡𝑝 ∈ 𝐿𝑇 their exist 𝑡−𝑝 ∈ 𝐿𝑇 such

that 𝑡𝑝 ∗ 𝑡−𝑝 = 𝑡−𝑝 ∗ 𝑡𝑝 = 0. Hence, 𝐿𝑇 is a group. □

Proposition 2.2.3. Let 𝐻 = [−1
2 ,

1
2 ] be a closed and bounded interval. Then H is a group

concerning a binary operation ‘⊕’ given by.

𝛼𝑝 ⊕𝛼𝑞 =


𝛼𝑝 +𝛼𝑞, if𝛼𝑝 +𝛼𝑞 ∈

(−1
2 ,

1
2
)

𝛼𝑝 +𝛼𝑞 − round(𝛼𝑝 +𝛼𝑞), else

Proof. Let 𝐻 = [−1
2 ,

1
2 ] =

{
𝛼 | −1

2 ≤ 𝛼 ≤
1
2

}
be a nonempty set. Let 𝛼𝑝, 𝛼𝑞 ∈ 𝐻, then fol-

lowed by the definition clearly, 𝛼𝑝 ⊕𝛼𝑞 ∈ 𝐻. Next, let 𝛼𝑝, 𝛼𝑞, 𝛼𝑟 ∈ 𝐻. Consider 𝛼𝑞 ⊕𝛼𝑟 = 𝜇
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such that

𝛼𝑝 ⊕ (𝛼𝑞 ⊕𝛼𝑟) = 𝛼𝑝 ⊕ 𝜇

=


𝛼𝑝 + 𝜇, if 𝛼𝑝 + 𝜇 ∈

(−1
2 ,

1
2
)

𝛼𝑝 + 𝜇− round(𝛼𝑝 + 𝜇), else
(2.2.9)

since,

𝜇 = 𝛼𝑞 ⊕𝛼𝑟 =


𝛼𝑞 +𝛼𝑟 , if 𝛼𝑞 +𝛼𝑟 ∈

(−1
2 ,

1
2
)

𝛼𝑞 +𝛼𝑟 − round(𝛼𝑞 +𝛼𝑟), else

By substituting value of 𝜇 in equation 2.2.9 we obtain the following cases define below:

Case(i) If 𝛼𝑞 +𝛼𝑟 ∈ ( −1
2 ,

1
2 ) then, 𝜇 = 𝛼𝑞 +𝛼𝑟 therefore,

𝛼𝑝 ⊕ (𝛼𝑞 ⊕𝛼𝑟) = 𝛼𝑝 ⊕ 𝜇

=


𝛼𝑝 + 𝜇, if 𝛼𝑝 + 𝜇 ∈ ( −1

2 ,
1
2 )

𝛼𝑝 + 𝜇− round(𝛼𝑝 + 𝜇), else

=


𝛼𝑝 +𝛼𝑞 +𝛼𝑟 , if𝛼𝑝 +𝛼𝑞 +𝛼𝑟 ∈

(−1
2 ,

1
2
)

𝛼𝑝 +𝛼𝑞 +𝛼𝑟 − round(𝛼𝑝 +𝛼𝑞 +𝛼𝑟), else

Case(ii) If 𝜇 ∉
(−1

2 ,
1
2
)

then, 𝜇 = 𝛼𝑞 +𝛼𝑟 − round(𝛼𝑞 +𝛼𝑟) therefore,

𝛼𝑝 ⊕ (𝛼𝑞 ⊕𝛼𝑟 ) = 𝛼𝑝 ⊕ 𝜇

=


𝛼𝑝 + 𝜇, if 𝛼𝑝 + 𝜇 ∈

( −1
2 ,

1
2
)

𝛼𝑝 + 𝜇− round(𝛼𝑝 + 𝜇), else

=



𝛼𝑝 +𝛼𝑞 +𝛼𝑟 − round(𝛼𝑞 +𝛼𝑟 ), if 𝛼𝑝 +𝛼𝑞 +𝛼𝑟

− round(𝛼𝑞 +𝛼𝑟 ) ∈ ( −1
2 ,

1
2 )

𝛼𝑝 +𝛼𝑞 +𝛼𝑟 − round(𝛼𝑞 +𝛼𝑟 )−

round
(
𝛼𝑝 +𝛼𝑞 +𝛼𝑟 − round(𝛼𝑞 +𝛼𝑟 )

)
, else

Similarly, we can have (𝛼𝑝 ⊕ 𝛼𝑞) ⊕ 𝛼𝑟 and 𝛼𝑝 ⊕ (𝛼𝑞 ⊕ 𝛼𝑟) = (𝛼𝑝 ⊕ 𝛼𝑞) ⊕ 𝛼𝑟 and thus as-

sociative property holds. Next, 0 ∈ [−1
2 ,

1
2 ] is an identity element and finally for every

𝛼𝑝 ∈ [−1
2 ,

1
2 ] their exist (−𝛼𝑝) ∈ [−1

2 ,
1
2 ] such that 𝛼𝑝 ⊕ (−𝛼𝑝) = (−𝛼𝑝) ⊕𝛼𝑝 = 0. Hence, H

is a group under a binary operation ‘⊕’. □
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It is known that the direct product of groups is itself forms a group [99]. Therefore, in

this direction, the underlying theorem gives an elementary proof of the 2TL term set to be

a group.

Theorem 2.2.1. Let 𝐿𝑇 = {𝑡−𝑛, . . . , 𝑡0, 𝑡1, . . . , 𝑡𝑛} be the SSLTS with odd cardinality 2𝑛+1

and let 𝛼𝑝 ∈ [−1
2 ,

1
2 ] be the numeric value representing the value of symbolic translation

corresponding a linguistic term 𝑡𝑝. Then 𝐿𝑇 ≡ 𝐿𝑇 × [−1
2 ,

1
2 ] is a direct group under a

binary operation ‘◦’ defined as:

(𝑡𝑝, 𝛼𝑝) ◦ (𝑡𝑞, 𝛼𝑞) = (𝑡𝑝 ◦ 𝑡𝑞, 𝛼𝑝 ◦𝛼𝑞)

such that 𝑡𝑝 ◦ 𝑡𝑞 = 𝑡𝑝 ∗ 𝑡𝑞 and 𝛼𝑝 ◦𝛼𝑞 = 𝛼𝑝 ⊕𝛼𝑞
where 𝑡𝑝, 𝑡𝑞 ∈ 𝐿𝑇 and 𝛼𝑝, 𝛼𝑞 ∈ [−1

2 ,
1
2 ].

Proof. Let 𝐿𝑇=
{
(𝑡𝑝, 𝛼𝑝) |𝑡𝑝 ∈ 𝐿𝑇 and𝛼𝑝 ∈ [−1

2 ,
1
2 ]

}
be a nonempty set of 2TL terms. From

the definition (𝑡𝑝, 𝛼𝑝) ◦ (𝑡𝑞, 𝛼𝑞) = (𝑡𝑝 ◦𝑡𝑞, 𝛼𝑝 ◦𝛼𝑞) = (𝑡𝑝 ∗𝑡𝑞, 𝛼𝑝⊕𝛼𝑞) ∈ 𝐿𝑇 ∀ (𝑡𝑝, 𝛼𝑝), (𝑡𝑞, 𝛼𝑞) ∈
𝐿𝑇 , so closure property holds. Next associative property is followed by using proposi-

tion 2.2.2 and 2.2.3 such that (𝑡𝑝, 𝛼𝑝) ◦
(
(𝑡𝑞, 𝛼𝑞) ◦ (𝑡𝑟 , 𝛼𝑟)

)
=

(
(𝑡𝑝, 𝛼𝑝) ◦ (𝑡𝑞, 𝛼𝑞)

)
◦ (𝑡𝑟 , 𝛼𝑟).

Next (𝑡0,0) ∈ 𝐿𝑇 is an identity element and finally for every (𝑡𝑝, 𝛼𝑝) ∈ 𝐿𝑇 their exist

(𝑡−𝑖, (−𝛼𝑝)) ∈ 𝐿𝑇 such that

(𝑡𝑝, 𝛼𝑝) ◦ (𝑡−𝑝, (−𝛼𝑝)) = (𝑡−𝑝, (−𝛼𝑝)) ◦ (𝑡𝑝, 𝛼𝑝) = (𝑡0,0)

Hence 𝐿𝑇 is a group. □

Next, we present the main result of this section.

Theorem 2.2.2. Let 𝐿𝑇 = {𝑡−𝑛, . . . , 𝑡0, . . . , 𝑡−𝑛} be the finite SSLTS and let 𝑥 ∈ [−𝑛, 𝑛] a

numeric value supporting the outcome of an operation of symbolic aggregation. Then a

2TL direct group, 𝐿𝑇 and [−𝑛, 𝑛] are isomorphic.

Proof. Consider the mapping,

𝜙 : [−𝑛,𝑛] → 𝐿𝑇 defined by

𝜙(𝑥𝑝) = (𝑡𝑝, 𝛼𝑝)
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with, 
𝑡𝑝, 𝑝 = round(𝑥𝑝),

𝛼𝑝 = 𝑥𝑝 − 𝑝, 𝛼𝑝 ∈ [−1
2 ,

1
2 ] .

Let 𝑥𝑝, 𝑥𝑞 ∈ [−𝑛,𝑛] such that 𝜙(𝑥𝑝)=𝜙(𝑥𝑞) ⇔ (𝑡𝑝, 𝛼𝑝)=(𝑡𝑞, 𝛼𝑞) ⇔ (𝑡𝑝, 𝑥𝑝− 𝑝)=(𝑡𝑞, 𝑥𝑞−𝑞)
⇔ 𝑡𝑝 = 𝑡𝑞, 𝑥𝑝 − 𝑝 = 𝑥𝑞 − 𝑞 ⇔ 𝑝 = 𝑞, 𝑥𝑝 − 𝑝 = 𝑥𝑞 − 𝑞 ⇔ 𝑥𝑝 = 𝑥𝑞. Therefore, 𝜙 is well-

defined and one-one. 𝜙 is a onto function. This is easy to see that for every (𝑡𝑝, 𝛼𝑝) ∈ 𝐿𝑇
their exist𝑥𝑝 ∈ [−𝑛,𝑛] such that,

𝜙(𝑥𝑝) = (𝑡𝑝, 𝛼𝑝)where


𝑡𝑝, 𝑝 = round(𝑥𝑝),

𝛼𝑝 = 𝑥𝑝 − 𝑝, 𝛼𝑝 ∈ [−1
2 ,

1
2 ] .

Next, we proceed to show 𝜙 is homomorphic. Let 𝑥𝑝, 𝑥𝑞 ∈ [−𝑛,𝑛] such that,

𝜙(𝑥𝑝) = (𝑡𝑝, 𝛼𝑝), with


𝑡𝑝, 𝑝 = round(𝑥𝑝),

𝛼𝑝 = 𝑥𝑝 − 𝑝, 𝛼𝑝 ∈ [−1
2 ,

1
2 ] .

𝜙(𝑥𝑞) = (𝑡𝑞, 𝛼𝑞), with


𝑡𝑞, 𝑞 = round(𝑥𝑞),

𝛼𝑞 = 𝑥𝑞 − 𝑞, 𝛼𝑞 ∈ [−1
2 ,

1
2 ] .

𝜙(𝑥𝑝 ∗ 𝑥𝑞) = (𝑡𝑟 , 𝛼𝑟), with


𝑡𝑟 , 𝑟 = round(𝑥𝑝 ∗ 𝑥𝑞)

𝛼𝑟 = (𝑥𝑝 ∗ 𝑥𝑞) − 𝑟, 𝛼𝑟 ∈ [−1
2 ,

1
2 ] .

We claim 𝜙(𝑥𝑝 ∗ 𝑥𝑞) = 𝜙(𝑥𝑝) ◦ 𝜙(𝑥𝑞), i.e., to show 𝑡𝑟 = 𝑡𝑝 ∗ 𝑡𝑞 and 𝛼𝑟 = 𝛼𝑝 ⊕ 𝛼𝑞, via

algorithm.

The algorithm 2.2.1-2.2.4 defines a decision rule to represent the homomorphic relation

between the groups, considering all the possible cases such that

𝜙(𝑥𝑝 ∗ 𝑥𝑞) = (𝑡𝑟 , 𝛼𝑟)

= (𝑡𝑝 ∗ 𝑡𝑞, 𝛼𝑝 ⊕𝛼𝑞)

= (𝑡𝑝 ◦ 𝑡𝑞, 𝛼𝑝 ◦𝛼𝑞)

= (𝑡𝑝, 𝛼𝑝) ◦ (𝑡𝑞, 𝛼𝑞)

= 𝜙(𝑥𝑝) ◦𝜙(𝑥𝑞).

Hence, 𝜙 is an isomorphism.
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Case (i)

Algorithm 2.2.1. Require: 𝑝 + 𝑞 < −𝑛, then, followed by the definition we

have, 𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝+𝑞+𝑛.
1: if 𝑝 + 𝑞 +𝑛 = 𝑟 then

2: 𝑡𝑟 = 𝑡𝑝+𝑞+𝑛,

3: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

4: else

5: 𝑡𝑟 is represented as 𝑡𝑚, where 𝑚← 𝑟 −1,

6: if 𝑚 ∈ (−𝑛,𝑛) then

7: 𝑡𝑚 = 𝑡𝑝+𝑞+𝑛,

8: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

9: end if

10: if 𝑚 ≤ −𝑛 then

11: 𝑚 = 𝑟 −1+𝑛 such that 𝑡𝑚 = 𝑡𝑝+𝑞+𝑛 = 𝑡𝑟 ,

12: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

13: end if

14: end if

Case (ii)

Algorithm 2.2.2. Require: −𝑛 < 𝑝 + 𝑞 < 𝑛, then, followed by the definition

we have 𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝+𝑞.

1: if 𝑟 = 𝑝 + 𝑞 then

2: 𝑡𝑟 = 𝑡𝑝+𝑞,

3: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

4: else

5: 𝑡𝑟 is represented as 𝑡𝑚, where 𝑚← 𝑟 +1 or 𝑚← 𝑟 −1 such that

6: 𝑡𝑟 = 𝑡𝑚,

7: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

8: end if

Case (iii)

Algorithm 2.2.3. Require: 𝑝 + 𝑞 > 𝑛, then, followed by the definition we

have 𝑡𝑝 ∗ 𝑡𝑞 = 𝑡𝑝+𝑞−𝑛.
1: if 𝑝 + 𝑞−𝑛 = 𝑟 then

2: 𝑡𝑟 = 𝑡𝑝+𝑞−𝑛,

3: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.
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4: else

5: 𝑡𝑟 is represented as 𝑡𝑚, where 𝑚← 𝑟 +1,

6: if 𝑚 ∈ (−𝑛,𝑛) then

7: 𝑡𝑚 = 𝑡𝑝+𝑞−𝑛,

8: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

9: end if

10: if 𝑚 ≥ 𝑛 then

11: 𝑚 = 𝑟 +1−𝑛 such that 𝑡𝑚 = 𝑡𝑝+𝑞−𝑛 = 𝑡𝑟 ,

12: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

13: end if

14: end if

Case (iv)

Algorithm 2.2.4. 1: if 𝑝 + 𝑞 = −𝑛 or 𝑝 + 𝑞 = 𝑛 then

2: 𝑟← 𝑛or −𝑛 such that 𝑡𝑟 = 𝑡𝑝+𝑞 or 𝑡𝑟 = 𝑡−(𝑝+𝑞) ,

3: 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

4: end if

□

It is requisite to view that the aforementioned algorithm guarantees that the mapping

𝑥 → (𝑡, 𝛼) is an operation preserving map under a defined binary operation. Moreover,

the time complexity of the proposed algorithm is linear, which has a practical advantage

in laying the foundations for 2TL group homomorphism in several real-life problems.

In particular, if there exists an isomorphism of a group 𝐿𝑇 to itself, i.e., 𝐿𝑇 → 𝐿𝑇 then

it is termed as an automorphism of a 2TL group.

We now consider the following illustration to understand the working of the algorithm as

mentioned above and further combining the result to indicate that the mapping 𝑥 → (𝑡, 𝛼)
is an isomorphism defined from [−𝑛, 𝑛] to 𝐿𝑇 under binary operation previously stated.

Example 2.2.1. Consider a mapping 𝜙 : [−3,3] → 𝐿𝑇 such that𝜙(𝑥𝑝) = (𝑡𝑝, 𝛼𝑝) where

𝑡𝑝 ∈ {𝑡−3, 𝑡−2, 𝑡−1, 𝑡0, 𝑡1, 𝑡2, 𝑡3} be the SSLTS and 𝛼𝑝 ∈
[−1

2 ,
1
2
]
. Clearly, the defined map-

ping is bijective. Next, in order to establish isomorphism between the groups we need to

preserve the group operation. In this direction, we shall claim 𝜙(𝑥𝑝 ∗ 𝑥𝑞) = 𝜙(𝑥𝑝) ◦𝜙(𝑥𝑞),
i.e., to show 𝑡𝑟 = 𝑡𝑝 ∗ 𝑡𝑞 and 𝛼𝑟 = 𝛼𝑝 ⊕𝛼𝑞.

For this, we use algorithm 2.2.1-2.2.4. Since the order of both the groups are infinite,

therefore, we have constructed a MATLAB code based on the aforementioned algorithm



66

to generate numbers randomly to perform further routine computations. We present in

Table 2.1 the list of cases to accomplish the result.

Table 2.1: Computations for randomly generated numbers by using Algorithm 2.2.1-2.2.4.
𝑥𝑝 𝑥𝑞 𝜙(𝑥𝑝 ∗ 𝑥𝑞) 𝜙(𝑥𝑝) ◦𝜙(𝑥𝑞)
1.8 2.8 (𝑡2,−0.4) (𝑡2,−0.2) ◦ (𝑡3,−0.2) = (𝑡2,−0.4)
0.8 −2.4 (𝑡−1, 0.4) (𝑡1,−0.2) ◦ (𝑡−2,−0.4) = (𝑡−1, 0.4)
−2.8 −2.4 (𝑡−2, −0.2) (𝑡−3, 0.2) ◦ (𝑡−2,−0.4) =

(𝑡−2, −0.2)
−0.4 2.5 (𝑡3, 0.1) (𝑡0, −0.4) ◦ (𝑡3,−0.5) = (𝑡3, 0.1)
2.0 −1.5 (𝑡0, 0.5) (𝑡2, 0) ◦ (𝑡−2,0.5) = (𝑡0, 0.5)
1.5 1.5 (𝑡1, 0) (𝑡2, −0.5) ◦ (𝑡2,−0.5) = (𝑡1, 0)
−2.4 1.9 (𝑡0, −0.5) (𝑡−2, −0.4) ◦ (𝑡2,−0.1) = (𝑡0, −0.5)

From table 2.1, we can infer that the mapping is group operation preserving, i.e., 𝜙(𝑥𝑝 ∗
𝑥𝑞) = 𝜙(𝑥𝑝) ◦𝜙(𝑥𝑞) and therefore, [−3,3] is isomorphic to 𝐿𝑇 .

Remark 2.2.1. It can be noted here that in order to simplify the calculations and un-

derstand the result described above, we have taken 𝑛 = 3. However, the procedure is

analogous for any integral value of 𝑛.

2.2.1 Application of 2-tuple linguistic group in bipolar graphs

In literature, Zhang [343, 344] presented the notion of bipolar fuzzy sets (BFSs). The

extent of membership degree for a BFS is depicted as falling inside the range [−1, ,1],
which is regarded an extrapolation of FSs. Here, the element with 0 membership degree

is considered insignificant to the associated property. In contrast, the elements whose

membership degree lying in the range (0, 1] represent the element fulfills the property,

unlike the elements whose degree of membership lying within the range [−1, 0) represent

the element is somewhat fulfilling the implicit counter-property. Nevertheless, bipolar

information plays a significant role in a wide-ranging multiagent decision analysis where

both-sided judgemental thinking is involved and therefore, this domain has pervasively in-

spired several researchers across the globe. Recently, Akram [10–12] has put forward the

impression of bipolar fuzzy graphs to amplify the purview of BFSs within the construction

of a structure of fuzzy graphs.

The amalgamation of linguistic information with the existing notion of FSs has allegedly

played a pivotal role in handling the uncertainty persisting within the problem. Therefore,

inspired by the work of Akram [10] in the present section, we bring forth the foundation of



67

2-tuple linguistic bipolar set (2TLBS) and, after that, discuses the basic algebra on the set.

We later make headway to give the application of 2TL groups by developing the notion of

2-tuple linguistic bipolar graphs (2TLBGs) and further establishing the graph isomorphic

relation.

The 2-tuple linguistic bipolar set

It is well known that the popularly known 2TL representation is ideally introduced by

Herrera and Martínez [106] for the LTS LT =
{
𝑡𝑝 | 𝑝 = 0, 1, . . . , 𝑛

}
primarily based upon

the symbolic translation. Since the traditional 2-tuple model is capable of effectively

handling linguistic information without any loss. As a consequence, we will first intro-

duce the notion of 2TLBS based on the 2-tuple model using predefined SSLTS 𝐿𝑇 ={
𝑡𝑝 | 𝑝 = −𝑛, . . . , 0, . . . , 𝑛

}
followed by some basic operations on the set which are re-

quired to establish the conception of 2TLBG given in the subsequent part of the section.

Definition 2.2.1. Let 𝑋 = [−𝑛, 𝑛] be any arbitrary nonempty set and let 𝐿𝑇 = { 𝑡𝑝 | 𝑝 =

−𝑛, . . . , 0, . . . , 𝑛 } be a SSLTS. Then, we define 2TLBS on 𝑋 as follows:

C =
{
(𝑥, 𝜙+(|𝑥 |), 𝜙−(−|𝑥 |)) | 𝑥 ∈ 𝑋

}
with 𝜙+ : 𝑋 → 𝐿𝑇+×

[−1
2 ,

1
2
)

such that 𝜙+(𝑥) = (𝑡𝑝+ , 𝛼) where 𝑡𝑝+ ∈ 𝐿𝑇+ =
{
𝑡𝑝 | 𝑝 = 0, 1, . . . , 𝑛

}
and 𝜙− : 𝑋 → 𝐿𝑇−×

(−1
2 ,

1
2
]

such that 𝜙−(𝑥) = (𝑡𝑝− , 𝛼) where 𝑡𝑝− ∈ 𝐿𝑇− =
{
𝑡𝑝 | 𝑝 = −𝑛, . . . , −1, 0

}
.

Here, 𝑡𝑝+ represents one of the positive linguistic terms from the set 𝐿𝑇+ whereas 𝑡𝑝−

represents the counter linguistic term belonging to the 𝐿𝑇− and 𝛼 indicates a numerical

value that captures the uncertainty about a corresponding linguistic term. Consequently,

both 𝜙+(𝑥) and 𝜙−(𝑥) represents the positive and negative 2-tuple representation based on

the linguistic term respectively.

For notational simplicity, we use C = (𝜙+, 𝜙−) to refer 2TLBS.

Example 2.2.2. Let 𝑋 = [−2,2] and let 𝐿𝑇 = { 𝑡−2 = “Very poor (VP)", 𝑡−1 = “Poor (P)", 𝑡0 =

“Fair (F)", 𝑡1 = “Good (G)", 𝑡2 = “Very Good (VG)" } be predefined SSLTS. Then,

C =
{
(−1.2, 𝜙+(1.2), 𝜙−(−1.2)), (−0.5, 𝜙+(0.5), 𝜙−(−0.5)), (1.8, 𝜙+(1.8), 𝜙−(−1.8))

}
=

{
(−1.2, (𝐺, 0.2), (𝑃, −0.2)), (−0.5, (𝐺, −0.5), (𝑃, 0.5)), (1.8, (𝑉𝐺, −0.2), (𝑉𝑃, 0.2))

}
is the 2TLBS for given set 𝑋 .



68

Definition 2.2.2. Suppose C = (𝜙+
C
, 𝜙−

C
, D = (𝜙+

D
, 𝜙−

D
) are any two 2TLBS defined on set

𝑋 . Then the following operations for set C and D holds:

1.
(
C∪D

)
(𝑥) =

(
𝜙+

C∪D
, 𝜙−

C∪D

)
where 𝜙+

C∪D
= max(𝜙+

C
, 𝜙+

D
) and 𝜙−

C∪D
= min(𝜙−

C
, 𝜙−

D
).

2.
(
C∩D

)
(𝑥) = (𝜙+

C∩D
, 𝜙−

C∩D
) where 𝜙+

C∩D
= min(𝜙+

C
, 𝜙+

D
) and 𝜙−

C∩D
= max(𝜙−

C
, 𝜙−

D
).

It is worth noting that the necessary operational laws defined in the above definition

are valid as the comparison of two 2TL variables is plausible. However, the other set

operations can be easily deduced for 2TLBSs by combining the operations existing for

the BFSs and the operations of 2TL variables.

Next, based on the result proved in the former section that the 2TL set LT ≡ LT×[−1
2 ,

1
2 ]

is a direct group under a binary operation ‘◦’ we proceed further to review the following

definition required for this section.

Definition 2.2.3. Assume 𝑋 to be a nonempty set and C = (𝜙+
C
, 𝜙−

C
) be any 2TLBS. Then,

a mapping C = (𝜙+
C
, 𝜙−

C
) : 𝑋 × 𝑋 → 𝐿𝑇 × 𝐿𝑇 is known as 2TL bipolar relation on set X

such that 𝜙+
C
∈ 𝐿𝑇+× [−1

2 ,
1
2 ) and 𝜙−

C
∈ 𝐿𝑇−× ( −1

2 ,
1
2 ].

Definition 2.2.4. Let 𝑋 be any arbitrary set and let C = (𝜙+
C
, 𝜙−

C
) and D = (𝜙+

D
, 𝜙−

D
) be

any two 2TLBSs on set 𝑋 . If C = (𝜙+
C
, 𝜙−

C
) is a 2TL bipolar relation. Then, C can be

considered as a 2TL bipolar relation on D satisfying the subsequent condition:

𝜙+
C
(𝑐, 𝑑) ≤ min(𝜙+

D
(𝑐), 𝜙+

D
(𝑑))

and

𝜙−
C
(𝑐, 𝑑) ≥ max(𝜙−

D
(𝑐), 𝜙−

D
(𝑑)) for all 𝑐, 𝑑 ∈ 𝑋.

Note 2.2.1. We call 2TL bipolar relation C= (𝜙+
C
, 𝜙−

C
) on set 𝑋 as symmetric if 𝜙+

C
(𝑐, 𝑑) =

𝜙+
C
(𝑑, 𝑐) and 𝜙−

C
(𝑐, 𝑑) = 𝜙−

C
(𝑑, 𝑐) for all 𝑐, 𝑑 ∈ 𝑋 .

The 2-tuple linguistic bipolar graphs

With the above concept of 2TLBS, we herein propose 2TLBGs and further consider an

application of group operations and isomorphic relation already proved for the linguistic

term set of 2-tuples to 2TLBGs by developing an isomorphic relation between the graphs.

In the classical graph theory [123], a graph is considered as an ordered pair 𝑇 = (𝑉, 𝐸)
where 𝑉 and 𝐸 represents a set of vertices and edges of 𝑇 , respectively. Analogously, we

define the 2TLBGs based on SSLTS.
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It is noteworthy to take T∗ as a notation for 2TLBG, and 𝑇 is a notation for crisp graphs

throughout this section.

Definition 2.2.5. Let C = (𝜙+
C
, 𝜙−

C
) and D = (𝜙+

D
, 𝜙−

D
) be any two 2TLBSs on set 𝑉 and

𝐸 ⊆ 𝑉 × 𝑉 , respectively. Then, we define 2TLBG as T∗ = (C, D) such that 𝜙+
D
({𝑐, 𝑑}) ≤

min(𝜙+
C
(𝑐), 𝜙+

C
(𝑑)) and 𝜙−

D
({𝑐, 𝑑}) ≥ max(𝜙−

C
(𝑐), 𝜙−

C
(𝑑)) for all {𝑐, 𝑑} ∈ 𝐸.

Here, we represent C as 2TL bipolar vertex set of 𝑉 , D as 2TL bipolar edge set 𝐸 ,

respectively. Also, we use 𝑐𝑑 as the notation for an element of edge set 𝐸 , i.e., {𝑐, 𝑑} ≡
𝑐𝑑.

Example 2.2.3. Consider a crisp graph 𝑇 = (𝑉, 𝐸) such that 𝑉 = {𝑢, 𝑣, 𝑤} and 𝐸 =

{𝑢𝑣, 𝑣𝑤,𝑤𝑢}. Suppose 𝑋 = [−3, 3] and 𝐿𝑇 =
{
𝑡𝑝 | 𝑖 = −3, −2, −1, 0, 1, 2, 3

}
be prede-

fined SSLTS. Let C = (𝜙+
C
, 𝜙−

C
) and D = (𝜙+

D
, 𝜙−

D
) be any two 2TLBSs defined by

𝑢 𝑣 𝑤

𝜙+
C
(𝑡2, 0.4) (𝑡2, −0.5) (𝑡0, 0.3)

𝜙−
C
(𝑡−2, −0.4) (𝑡−2, 0.5) (𝑡0, −0.3)
𝑢𝑣 𝑣𝑤 𝑤𝑢

𝜙+
D
(𝑡1, 0.4) (𝑡0, 0.1) (𝑡0, 0.2)

𝜙−
D
(𝑡−1, −0.4) (𝑡0, −0.1) (𝑡0, −0.2)

Figure 2.1: A 2-tuple linguistic bipolar graph G∗

From routine calculations, we infer that T∗ = (C, D) is a 2TLBG of 𝑇 (as given in

Fig. 2.1).

In the literature of classical graph theory [123], graphs 𝑇1 and 𝑇2 are said to be isomor-

phic if there is a one-one and onto mapping between the sets of vertices of 𝑇1 and 𝑇2 such

that any two arbitrary vertices 𝑣1 and 𝑣2 are adjoined in 𝑇1 if and only if corresponding

vertex 𝑓 (𝑣1) and 𝑓 (𝑣2) in graph 𝑇2 are adjoined. If such an order-preserving bijective
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map exists between the two graphs, then we call the corresponding graph to be isomor-

phic, i.e., 𝑇1 � 𝑇2. On the other hand, graph automorphism is defined as an isomorphism

of the graph itself, i.e., a well-defined mapping defined from the vertices of the given

graph 𝑇 to the vertices of 𝑇 so that the following graph 𝑇 is isomorphic with itself.

Based on the notion of isomorphism of crisp graphs, we shall now present the following

definition to define an isomorphism of 2TLBGs considered to be a direct application of a

2TL group isomorphism.

Definition 2.2.6. Let T1
∗ = (C1, D1) and T2

∗ = (C2, D2) be any two 2TLBGs. A homo-

morphism 𝑓 : T1
∗ → T2

∗ is a mapping 𝑓 : 𝑉1 → 𝑉2 satisfying the subsequent conditions:

1. 𝜙+
C1
(𝑐1) ≤ 𝜙+C2

( 𝑓 (𝑐1)), 𝜙−C1
(𝑐1) ≥ 𝜙−C2

( 𝑓 (𝑐1));

2. 𝜙+
D1
(𝑐1𝑑1) ≤ 𝜙+D2

( 𝑓 (𝑐1) 𝑓 (𝑑1)) and 𝜙−
D1
(𝑐1𝑑1) ≥ 𝜙−D2

( 𝑓 (𝑐1) 𝑓 (𝑑1)).

for all 𝑐1 ∈ 𝑉1, 𝑐1𝑑1 ∈ 𝐸1.

Definition 2.2.7. Let T1
∗ = (C1, D1) and T2

∗ = (C2, D2) be any two 2TLBGs. An isomor-

phism 𝑓 : T1
∗ → T2

∗ is a bijective map 𝑓 : 𝑉1 → 𝑉2 satisfying the following conditions:

1. 𝜙+
C1
(𝑐1) = 𝜙+C2

( 𝑓 (𝑐1)), 𝜙−C1
(𝑐1) = 𝜙−C2

( 𝑓 (𝑐1));

2. 𝜙+
D1
(𝑐1𝑑1) = 𝜙+D2

( 𝑓 (𝑐1) 𝑓 (𝑑1)) and 𝜙−
D1
(𝑐1𝑑1) = 𝜙−D2

( 𝑓 (𝑐1) 𝑓 (𝑑1)).

for all 𝑐1 ∈ 𝑉1, 𝑐1𝑑1 ∈ 𝐸1.

We can observe that the above mappings are well-defined since the 2TL set forms a

group under a given binary operation, and also, 𝜙 is an isomorphism. Consequently, the

graphical structures of an isomorphic groups are similar.

Example 2.2.4. Suppose 𝑋 = [−3, 3] and 𝐿𝑇 =
{
𝑡𝑝 | 𝑝 = −3, −2, −1, 0, 1, 2, 3

}
be pre-

defined SSLTS. Consider 2TLBGs T1
∗ and T2

∗ (as shown in Fig. 2.2). Therefore, by

making routine computations we can observe that the two graphs are isomorphic, i.e.,

T1
∗ � T2

∗.

2.3 Group isomorphic properties with some novel opera-

tional laws for 2-tuple linguistic variables

Definition 2.3.1. The linguistic kernel of a homomorphism 𝜙 : [−𝑛,𝑛] → 𝐿𝑇 is defined

as 𝐾𝑒𝑟 (𝜙) =
{
𝛽 ∈ [−𝑛, 𝑛] | 𝜙(𝛽) = (𝑡0, 0)

}
.
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(a) T1
∗

(b) T2
∗

Figure 2.2: A 2-tuple linguistic bipolar graphs T1
∗, T2

∗

The following proposition is beneficial in the sense of knowing the properties of ele-

ments under homomorphism.

Proposition 2.3.1. Let 𝜙 : [−𝑛,𝑛] → 𝐿𝑇 be a 2TL group homomorphism. Then,

(i) 𝜙(0) = (𝑡0, 0);

(ii) 𝜙(neg(𝛽)) = neg(𝜙(𝛽));

(iii) 𝜙(−1) ((𝑡𝑐, 𝛼𝑐)) =
{
𝛽 ∈ [−𝑛, 𝑛] | 𝜙(𝛽) = (𝑡𝑐, 𝛼𝑐)

}
=𝛽 ∗ 𝐾𝑒𝑟 (𝜙).

Proof. Consider the mapping,

𝜙 : [−𝑛,𝑛] → 𝐿𝑇 defined by

𝜙(𝑥𝑐) = (𝑡𝑐, 𝛼𝑐)
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For the sake of convenience, we have 𝑒 = 0 ∈ [−𝑛, 𝑛] and 𝑒 = (𝑡0, 0) ∈ 𝐿𝑇 . Then, we

can write 0 = 0 ∗ 0 such that 𝜙(0) = 𝜙(0 ∗ 0) = 𝜙(0) ◦ 𝜙(0). But 𝜙(0) ∈ 𝐿𝑇 =⇒ 𝜙(0) =
(𝑡0, 0). Using cancellation law, 𝜙(0) = (𝑡0, 0). Next, we need to prove that 𝜙(neg(𝛽)) =
neg(𝜙(𝛽)). So, for any 𝛽 ∈ [−𝑛, 𝑛] observe that 𝜙(𝛽) ∗𝜙(neg(𝛽)) = 𝜙(𝛽∗ (neg(𝛽)) = 𝜙(𝛽∗
neg(𝛽)) = 𝜙(0) = (𝑡0, 0) implies that 𝜙(𝛽) ◦𝜙(neg(𝛽)) = (𝑡0, 0) ≡ 0 therefore, 𝜙(neg(𝛽)) =
neg(𝜙(𝛽)). Finally, we need to show that 𝜙(−1) ((𝑡𝑐, 𝛼𝑐)) =

{
𝛽 ∈ [−𝑛, 𝑛] | 𝜙(𝛽) = (𝑡𝑐, 𝛼𝑐)

}
=𝛽⊕

𝐾𝑒𝑟 (𝜙). Consider 𝑥 ∈ 𝜙(−1) (𝑡𝑐, 𝛼𝑐) =⇒ 𝜙(𝑥) = (𝑡𝑐, 𝛼𝑐) = 𝜙(𝛽). Now, by taking 𝜙(𝛽) to

the other side we obtain 𝜙(𝑥) ∗neg(𝜙(𝛽)) = 0≡ (𝑡0, 0) =⇒ 𝜙(𝑥 ∗neg(𝛽)) = (𝑡0, 0). There-

fore, 𝑥 ∗neg(𝛽) ∈ 𝐾𝑒𝑟 (𝜙) =⇒ 𝑥 ∈ 𝛽⊕𝐾𝑒𝑟 (𝜙). Now, consider 𝑘 ∈ 𝐾𝑒𝑟 (𝜙) then, we have

𝜙(𝛽∗𝑘) = 𝜙(𝛽) ◦𝜙(𝑘) = 𝜙(𝛽) ◦ (𝑡0, 0) = (𝑡𝑐, 𝛼𝑐) ◦ (𝑡0, 0) = (𝑡𝑐 ∗𝑡0, 𝛼𝑐⊕0) = (𝑡𝑐, 𝛼𝑐) =⇒ 𝛽∗
𝑘 = 𝜙−1(𝑡𝑐, 𝛼𝑐). Hence, 𝜙(−1) ((𝑡𝑐, 𝛼𝑐)) =

{
𝛽 ∈ [−𝑛, 𝑛] | 𝜙(𝛽) = (𝑡𝑐, 𝛼𝑐)

}
=𝛽 ∗ 𝐾𝑒𝑟 (𝜙). □

We will now present the new operational laws for 2TL term set.

Definition 2.3.2. Let 𝐿𝑇 be a predetermined SSLTS and 𝐿𝑇 =
{
𝑡𝑐 | 𝑐 = −𝑛, . . . , 0, . . . , 𝑛

}
be a set of 2TL variables. Then,

(i) (𝑡𝑐, 𝛼𝑐) ⊙ (𝑡𝑑 , 𝛼𝑑) = (𝑡𝑐 ⊙ 𝑡𝑑 , 𝛼𝑐 ⊙𝛼𝑑)

where 𝑡𝑐 ⊙ 𝑡𝑑 =


𝑡𝑐·𝑑 , if 𝑐 · 𝑑 ∈ {−𝑛, . . . , 0, . . . , 𝑛}

𝑡round( 𝑐·𝑑
𝑛
) , otherwise.

and

𝛼𝑐 ⊙𝛼𝑑 =


𝛼𝑐 ⊙𝛼𝑑 −0.25, 𝛼𝑐 ⊙𝛼𝑑 < 0,

𝛼𝑐 ⊙𝛼𝑑 +0.25, otherwise.

(ii)
(𝑡𝑐, 𝛼𝑐) ⊘ (𝑡𝑑 , 𝛼𝑑) = (𝑡𝑐 ⊘ 𝑡𝑑 , 𝛼𝑐 ⊘𝛼𝑑)

= (𝑡min(𝑐, 𝑑) , min(𝛼𝑐, 𝛼𝑑)).

The following property of the above-mentioned algebra can be simply obtained by Def-

inition 2.3.2.

Proposition 2.3.2. Let Γ be the set of all 2TL variables, i.e., (𝑡𝑐, 𝛼𝑐) ∈ Γ and (𝑡𝑑 , 𝛼𝑑) ∈ Γ.

Then, (𝑡𝑐, 𝛼𝑐) ⊙ (𝑡𝑑 , 𝛼𝑑) ∈ Γ and (𝑡𝑐, 𝛼𝑐) ⊘ (𝑡𝑑 , 𝛼𝑑) ∈ Γ.

Proof. The proof of the theorem can be given directly from the definition. □
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Proposition 2.3.3. Let 𝜙 : [−𝑛,𝑛] → 𝐿𝑇 be a 2TL group isomorphism. Then,

(i) 𝜙(0) = (𝑡0, 0);

(ii) 𝜙(neg(𝛽)) = neg(𝜙(𝛽));

(iii) For any element 𝛽1 and 𝛽2 in [−𝑛, 𝑛], 𝛽1 and 𝛽2 commute iff 𝜙(𝛽1) and 𝜙(𝛽2)
commute.

(iv) 𝜙−1 : 𝐿𝑇 → [−𝑛, 𝑛] is an isomorphism.

Proof. The proof of the theorem can be stated trivially. □

Definition 2.3.3. Let 𝐺 = [−𝑛, 𝑛] be an additive group and 𝐻 = [−1
2 ,

1
2 ] ⊆ 𝐺. For any

𝛽 ∈ 𝐺, the set
{
𝛽 ∗ ℎ | ℎ ∈ 𝐻

}
is denoted by 𝛽 ∗𝐻 is referred as linguistic left coset of 𝐻 in

𝐺.

𝛽 ∗𝐻 =
{
𝛽 ∗ ℎ | ℎ ∈ 𝐻

}
=


𝛽+ ℎ+ 𝑛2 , if 𝛽+ ℎ < −𝑛2 ,

𝛽+ ℎ, if −𝑛2 ≤ 𝛽+ ℎ ≤
𝑛
2 ,

𝛽+ ℎ− 𝑛
2 , if 𝛽+ ℎ > 𝑛

2 .

In the similar fashion, we can state the definition of linguistic right coset as well, i.e.,

𝐻 ∗ 𝛽.

Next, we proceed to discuss the properties of linguistic cosets.

Proposition 2.3.4. Let 𝐺 = [−𝑛, 𝑛] be an additive group and 𝐻 = [−1
2 ,

1
2 ] ⊆ 𝐺. Let 𝛽1

and 𝛽2 be any two arbitrary element of 𝐺. Then,

(i) 𝛽 ∈ 𝛽 ∗𝐻;

(ii) 𝛽 ∗𝐻 = 𝐻 ⇐⇒ 𝛽 ∈ 𝐻;

(iii) 𝛽 ∗𝐻 = 𝛽′ ∗𝐻 or 𝛽 ∗𝐻∩ 𝛽′ ∗𝐻 = 𝜙;

(iv) 𝛽 ∗𝐻 = 𝛽′ ∗𝐻 ⇐⇒ 𝛽′ ∗neg(𝛽) ∈ 𝐻;

(v) 𝛽 ∗𝐻 = 𝐻 ∗ 𝛽′ ⇐⇒ 𝐻 = 𝛽 ∗𝐻 ∗neg(𝛽);

(vi) 𝛽 ∗𝐻 is a subgroup of 𝐺 ⇐⇒ 𝛽 ∈ 𝐻.

Proof. To prove property (𝑖), we note that as 0 ∈ 𝐻, so 𝛽 = 𝛽+0 ∈ 𝛽 ∗𝐻 =⇒ 𝛽 ∈ 𝛽 ∗𝐻.

Next, to prove (𝑖𝑖) property we initially suppose that 𝛽∗𝐻 =𝐻 then, 𝛽 = 𝛽+0 ∈ 𝛽∗𝐻 =𝐻

=⇒ 𝛽 ∈ 𝐻. Conversely, Suppose that 𝛽 ∈ 𝐻 =⇒ 𝛽 ∗𝐻 ⊆ 𝐻 since closure property holds

true. Let ℎ ∈ 𝐻 now as 𝛽 ∈ 𝐻 =⇒ ℎ ∗ neg(𝛽) ∈ 𝐻. Consider, ℎ = ℎ ∗ 𝛽 ∗ neg(𝛽) =
(ℎ ∗ neg(𝛽)) ∗ 𝛽 ∈ 𝛽 ∗𝐻 =⇒ 𝐻 ⊆ 𝛽 ∗𝐻. Therefore, 𝛽 ∗𝐻 = 𝐻. Next, in order to show
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𝛽 ∗𝐻 = 𝛽′ ∗𝐻 or 𝛽 ∗𝐻 ∩ 𝛽′ ∗𝐻 = 𝜙. Let if possible 𝛽 ∗𝐻 ∩ 𝛽′ ∗𝐻 ≠ 𝜙 then we claim

𝛽∗𝐻 = 𝛽′∗𝐻. Let 𝑥 ∈ 𝛽∗𝐻∩ 𝛽′∗𝐻 then their exist ℎ1, ℎ2 ∈ 𝐻 such that we have 𝑥 = 𝛽∗𝐻
and 𝑥 = 𝛽′ ∗𝐻. Then, based on the definition ‘∗’ we have

𝑥 = 𝛽∗ℎ1 =


𝛽+ ℎ1 + 𝑛2 , if 𝛽+ ℎ1 <

−𝑛
2 ,

𝛽+ ℎ1, if −𝑛2 ≤ 𝛽+ ℎ1 ≤ 𝑛
2 ,

𝛽+ ℎ1− 𝑛
2 , if 𝛽+ ℎ1 >

𝑛
2 .

and 𝑥 = 𝛽∗ℎ2 =


𝛽+ ℎ2 + 𝑛2 , if 𝛽+ ℎ2 <

−𝑛
2 ,

𝛽+ ℎ2, if −𝑛2 ≤ 𝛽+ ℎ2 ≤ 𝑛
2 ,

𝛽+ ℎ2− 𝑛
2 , if 𝛽+ ℎ2 >

𝑛
2 .

We now contemplate the following cases:

Case 1: 𝛽+ ℎ1 <
−𝑛
2

𝑥 = 𝛽+ ℎ1+ 𝑛2 =⇒ 𝛽 = 𝑥− ℎ1− 𝑛2 . Also, 𝛽+ ℎ1+ 𝑛2 = 𝛽′+ ℎ2+ 𝑛2 =⇒ 𝛽 = 𝛽′+ ℎ2− ℎ1. Now,

𝛽 ∗𝐻 = (𝛽′+ ℎ2− ℎ1) ∗𝐻 = 𝛽′ ∗𝐻 followed by property (𝑖𝑖). Therefore, 𝛽 ∗𝐻 = 𝛽′ ∗𝐻. In

the similar fashion the proof of other two cases can also be given, i.e.,

Case 2: −𝑛2 ≤ 𝛽+ ℎ1 ≤ 𝑛
2

Case 3: 𝛽+ ℎ1 >
𝑛
2

Next, we claim 𝛽 ∗𝐻 = 𝛽′ ∗𝐻 ⇐⇒ 𝛽′ ∗ neg(𝛽) ∈ 𝐻. Suppose 𝛽 ∗𝐻 = 𝛽′ ∗𝐻. Let

𝛽∗ℎ1 = 𝛽
′∗ℎ2 for some ℎ1, ℎ2 ∈ 𝐻. Now, followed by the definition if 𝛽+ℎ1 <

−𝑛
2 we have

𝛽 ∗ ℎ1 = 𝛽+ ℎ1 + 𝑛2 and 𝛽′ ∗ ℎ2 = 𝛽
′+ ℎ2 + 𝑛2 =⇒ 𝛽+ ℎ1 + 𝑛2 = 𝛽′+ ℎ2 + 𝑛2 =⇒ 𝛽′ ∗neg(𝛽) =

ℎ1 − ℎ2 ∈ 𝐻 =⇒ 𝛽′ − 𝛽 ∈ 𝐻. For 𝛽 + ℎ1 ∈ [−𝑛2 ,
𝑛
2 ] result follows directly. Lastly, for

the case where 𝛽 + ℎ1 >
𝑛
2 the proof is similar as case (1). Conversely, we suppose that

𝛽′ ∗ neg(𝛽) ∈ 𝐻 by using property (𝑖𝑖) we have (𝛽′ ∗ neg(𝛽)) ∗𝐻 = 𝐻 therefore, 𝛽 ∗𝐻 =

𝛽′ ∗𝐻. Finally, property (𝑣) and (𝑣𝑖) can be proved trivially.

□

Definition 2.3.4. Let 𝐺 = [−𝑛, 𝑛] be an additive group and 𝐻 = [−1
2 ,

1
2 ] be a subgroup of

𝐺. Then, 𝐻 is referred as a linguistic normal subgroup if 𝛽 ∗𝐻 = 𝐻 ∗ 𝛽 ∀ 𝛽 ∈ 𝐺. Here,

𝛽 ∗𝐻 =


𝛽+ ℎ+ 𝑛2 , if 𝛽+ ℎ < −𝑛2 ,

𝛽+ ℎ, if −𝑛2 ≤ 𝛽+ ℎ ≤
𝑛
2 ,

𝛽+ ℎ− 𝑛2 , if 𝛽+ ℎ > 𝑛
2 .

Remark 2.3.1. It is noted that to test a subgroup 𝐻 of 𝐺 is linguistic normal in 𝐺 iff

𝛽 ∗𝐻 ∗neg(𝛽) ⊆ 𝐻 ∀𝛽 ∈ 𝐺 (for proof See property (𝑣𝑖) in previous proposition).
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Definition 2.3.5. Let 𝐺 = [−𝑛, 𝑛] be a group and 𝐻 = [−1
2 ,

1
2 ] be a linguistic normal

subgroup of𝐺. Then the set𝐺/𝐻 =
{
𝛽 ∗𝐻 |𝛽 ∈ 𝐺

}
is referred a group under the following

group operation

(𝛽 ∗𝐻) ∗ (𝛽′ ∗𝐻) = 𝛽 ∗ 𝛽′ ∗𝐻

where, 𝛽 ∗𝐻 =


𝛽+ ℎ+ 𝑛2 , if 𝛽+ ℎ < −𝑛2 ,

𝛽+ ℎ, if −𝑛2 ≤ 𝛽+ ℎ ≤
𝑛
2 ,

𝛽+ ℎ− 𝑛
2 , if 𝛽+ ℎ > 𝑛

2 .

Note 2.3.1. It is noted that a mapping 𝜙 : 𝐺 → 𝐿𝑇 is a group homomorphism. Then,

𝑘𝑒𝑟 (𝜙) is a linguistic normal subgroup of𝐺. Since 𝐾 =𝐾𝑒𝑟 (𝜙) =
{
𝛽 ∈ [−𝑛, 𝑛] |𝜙(𝛽) = (𝑡0, 0)

}
.

Clearly, 𝜙(0) = (𝑡0, 0) =⇒ 0 ∈ 𝐾 = 𝐾𝑒𝑟 (𝜙) ≠ 𝜙. Next, by taking 𝑥, 𝑦 ∈ 𝐾𝑒𝑟 (𝜙) we have

𝜙(𝑥) = (𝑡0, 0) and 𝜙(𝑦) = (𝑡0, 0). we claim 𝑥 ∗neg(𝑦) ∈ 𝐾𝑒𝑟 (𝜙). Consider 𝜙(𝑥 ∗neg(𝑦)) =
𝜙(𝑥) ◦ 𝜙(neg(𝑦)) as 𝜙 is a homomorphism. Therefore, 𝜙(𝑥 ∗neg(𝑦)) = (𝑡0, 0) ∈ 𝐾𝑒𝑟 (𝜙).
Lastly, we are left to show that 𝐾𝑒𝑟 (𝜙) is a normal subgroup of 𝐺. For any 𝛽 ∈ 𝐺 and 𝑥 ∈
𝐾𝑒𝑟 (𝜙) we have, 𝜙(𝛽∗𝑥 ∗neg(𝛽)) = 𝜙(𝛽) ◦𝜙(𝑥) ◦𝜙(neg(𝛽)) = 𝜙(𝛽) ◦𝜙(𝑥) ◦neg(𝜙(𝛽)) =
(𝑡0, 0) =⇒ 𝛽 ∗ 𝑥 ∗neg(𝛽) ∈ 𝐾𝑒𝑟 (𝜙).

We next discuss the main theorem of this section.

Theorem 2.3.1. Let 𝜙 : 𝐺→ 𝐿𝑇 is a onto group homomorphism with 𝐾𝑒𝑟 (𝜙), then

[−𝑛, 𝑛]
𝐾𝑒𝑟 (𝜙) ≈ 𝐿𝑇

Proof. Consider a mapping 𝑓 : [−𝑛,𝑛]
𝐾
≈ 𝐿𝑇 such that 𝑓 (𝛽 ∗𝐾) = 𝜙(𝛽) ∀𝛽 ∈ 𝐺 where

𝐾 = 𝐾𝑒𝑟 (𝜙). We first show that the map is well-defined and one-one. Let 𝛽 ∗𝐾 = 𝛽′ ∗
𝐾 ⇐⇒ 𝛽 ∗ neg(𝛽′) ∈ 𝐾 ⇐⇒ 𝜙(𝛽 ∗ neg(𝛽′)) = (𝑡0,0). Since 𝜙 is a homomorphism,

therefore 𝜙(𝛽) ∗ neg(𝛽′) = (𝑡0,0) ⇐⇒ 𝜙(𝛽) = 𝜙(𝛽′) ⇐⇒ 𝑓 (𝛽 ∗𝐾) = 𝑓 (𝛽′ ∗𝐾). Next,

𝑓 ((𝛽 ∗𝐾) ∗ (𝛽′ ∗𝐾)) = 𝑓 (𝛽 ∗ 𝛽′ ∗𝐾) = 𝜙(𝛽 ∗ 𝛽′) = 𝜙(𝛽) ◦𝜙(𝛽′) = 𝑓 (𝛽 ∗𝐾) ◦ 𝑓 (𝛽′ ∗𝐾) thus

𝑓 is a homomorphism. Lastly, to show 𝑓 is onto. Let (𝑡𝑐, 𝛼𝑐) ∈ 𝐿𝑇 be any arbitrary

element. Since 𝜙 is an onto homomorphism, so there exist 𝛽 ∈ [−𝑛, 𝑛] such that 𝜙(𝛽) =
(𝑡𝑐, 𝛼𝑐) =⇒ 𝑓 (𝛽 ∗𝐾) = (𝑡𝑐, 𝛼𝑐). Therefore, 𝑓 is onto. Hence proved. □

After discussing about the properties of 2TL group homomorphism and isomorphism

we present a new outlook of zero sum imprecise matrix games having 2TL information

by introducing the notion of linguistic matrix norms, in the next forthcoming section.
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2.4 Methodology for matrix norm to solve zero-sum ma-

trix game with 2-tuple linguistic information

In literature, Izgi and Özkaya [133] initially presented a novel approach to solve clas-

sical ZSMG problems by using the idea of matrix norms. However, the 2TL model pro-

posed by Herrera and Martínez [111] provides a competent tool in addressing uncertainty

persisting within several organizational decision-making and realistic game-related prob-

lems. Therefore, Singh et al. [248] gave a unified mechanism to solve matrix games with

2TL information by adopting the LLP approach, which is a bit time-consuming for big-

ger size game problems. On the contrary, according to the matrix norm methodology,

game value is obtained faster without solving any linear mathematical equations. There-

fore, inspired by this idea, we will introduce matrix norms to solve the ZSMG with 2TL

information in the present section.

We primarily study the elementary terminologies and concepts associated with the 2TL

matrix norm methodology for matrix game based on the group-theoretic properties given

in the previous section. Next, we derive the inequalities for obtaining an optimal range that

consists of a 2TL game value and further define some results to find boundary conditions

for the maximal and minimal elements in the mixed strategy set. Lastly, the implementa-

tion of the proposed methodology is given for validation.

2.4.1 A new perspective of a 2-tuple linguistic matrix game with ma-

trix norm

Motivated by the notion of matrix norm given in [209], we can present the analogous

definition of matrix norm for 2TL information.

Definition 2.4.1. A 2TL matrix norm is a function | |.| | defined from the set of all 2TL

matrices into the set of all 2TL term set that obeys the subsequent properties:

(i) | |𝐴| | ≥ 0 and | |𝐴| | = 0 ⇐⇒ (𝑡𝑐, 0) = 0∀𝑐;

(ii) | |𝜔𝐴| | = 𝜔| |𝐴| | for 𝜔 ∈ [0, 1];

(iii) | |𝐴 ◦ 𝐵 | | ≤ | |𝐴| | ◦ | |𝐵 | | where the binary operation ‘◦’ has the similar meaning de-

fined in the theorem 2.2.1 for the matrices 𝐴, 𝐵 of the similar size;
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(iv) | |𝐴 ⊙ 𝐵| | ≤ | |𝐴| | ⊙ | |𝐵 | | for all matrices of similar size. Here, the binary operation

‘⊙’ is taken in respect of definition 2.3.2.

Here, 𝐴 represents the payoff matrix with 2TL information.

Definition 2.4.2. Let 𝐿𝑇 =
{
𝑡𝑐 |𝑐 = −𝑛, . . . , 0, . . . , 𝑛

}
be the finite ordered pre-defined SSLTS

such that absolute 2TL variable is given as follows:

𝐴𝑏𝑠(𝑡𝑐, 𝛼𝑐) =


(neg(𝑡𝑐), −𝛼𝑐) for 𝑐 < 0,

(𝑡𝑐, 𝛼𝑐) otherwise

where neg has a usual meaning.

Definition 2.4.3. Let 𝐴 ∈ 𝐿𝑇𝑛×𝑚 then 1′− norm and∞′− norm are given as follows:

• | |𝐴| |1 = max𝑑⃝𝑐 (𝐴𝑏𝑠(�̃�𝑐𝑑)) = (𝑡𝑐, 𝛼𝑐) = the largest absolute column sum of the

2TL payoff matrix;

• | |𝐴| |∞ = max𝑐⃝𝑑 (𝐴𝑏𝑠(�̃�𝑐𝑑)) = (𝑡𝑐, 𝛼𝑐) = the largest absolute row sum of the 2TL

payoff matrix.

where �̃� ∈ 𝐿𝑇 .

We observe that in the above definition if | |𝐴| |1 = (𝑡𝑐, 𝛼𝑐) ∉ 𝐿𝑇 or | |𝐴| |∞ = (𝑡𝑐, 𝛼𝑐) ∉ 𝐿𝑇
, then (𝑡𝑐, 𝛼𝑐) = (𝑡𝑐−1, 𝛼𝑐).

Based on the notion of those as mentioned above, the 1′− norm and ∞′− norm, we

derive the inequalities in the following lemma and further state some new theorem offering

new panorama to the solution of the imprecise matrix game and successfully obtain the

required inequalities for the 2TL matrix game value.

It is noteworthy that to avoid any confusion; we assume Player I (PI) as a row player and

Player II (PII) as a column player of the game matrix with 2TL information. Consequently,

it is significant to mention that we define the following results of the matrix game in the

respect of the PI, i.e., a row player. However, one may readily use the proposed approach

for PII as well.

Lemma 2.4.1. Let 𝐴 be a 𝑝× 𝑞 payoff matrix having 2TL information and �̃� be the 2TL

value of the game of a 2-person ZSLMG. Then,
ℎ̃

| |𝐴| |∞
≤ �̃� ≤ ||𝐴| |1 for �̃� > 0 i.e., 𝑡𝑐 > 0 for some 𝑐;
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neg( | |𝐴| |1) ≤ neg(�̃�) ≤ ℎ̃

| |𝐴| |∞
for neg(�̃�) < 0 i.e., 𝑡𝑐 < 0 for some 𝑐 < 0.

where ℎ̃ = max
1≤𝑐≤𝑝,𝑐≠𝑟

⃝𝑞

𝑑=1�̃�⊙ 𝐴𝑏𝑠(�̃�𝑐𝑑) and | |𝐴| |∞ =⃝𝑞

𝑑=1𝐴𝑏𝑠(�̃�𝑟𝑑) for fixed 𝑟 and | |𝐴| |1 =

⃝𝑝

𝑐=1𝐴𝑏𝑠(�̃�𝑐𝑡) for fixed 𝑡.

Proof. Consider the game matrix 𝐴 = [�̃�𝑐𝑑] 𝑝×𝑞 with 2TL information where �̃�𝑐𝑑 ∈ 𝐿𝑇 .

For the notational simplicity and understanding, we use throughout the proof �̃�+ > (𝑡0, 0)
as positive 2TL game value �̃� and neg(�̃�+) < (𝑡0, 0) as negative 2TL game value �̃�. Also,

we represent 𝐴𝑏𝑠(�̃�𝑐𝑑) as �̃�𝑐𝑑 .

We now contemplate the following cases:

Case 1 For �̃�+ > (𝑡0, 0):
Let | |𝐴| |∞ =⃝𝑞

𝑑=1�̃�𝑟𝑑 for fixed 𝑟. From the definition we obtain

⃝𝑞

𝑑=1�̃�𝑟𝑑 ≥ max⃝𝑞

𝑑=1�̃�𝑐𝑑

for𝑐 = 1, 2, . . . , 𝑝 and 𝑐 ≠ 𝑟

⇒ 1 ≥
max⃝𝑞

𝑑=1�̃�𝑐𝑑

⃝𝑞

𝑑=1�̃�𝑟𝑑

⇒ �̃�+ ≥ ℎ̃∑𝑞

𝑑=1 �̃�𝑟𝑑

where, ℎ̃ = max
1≤𝑐≤𝑝,𝑐≠𝑟

⃝𝑞

𝑑=1�̃�
+ ⊙ �̃�𝑐𝑑

Therefore,
ℎ̃

| |𝐴| |∞
≤ �̃�+ (2.4.1)

Clearly, the 2TL game value is evaluated as �̃�+ = ⊕𝑝
𝑐=1𝑥𝑐 �̃�𝑐𝑑 for any fixed 𝑑. Here,

𝑥𝑐 represents the probability credited to each element of the mixed strategy set of

PI. Then, it follows that �̃�+ ≤ ⃝𝑝

𝑐=1�̃�𝑐𝑑 ∀ 𝑑. After taking max on both sides we

obtain,

�̃�+ ≤ ||𝐴| |1 (2.4.2)

From equation 2.4.1 and 2.4.2 we obtain
ℎ̃

| |𝐴| |∞
≤ �̃�+ ≤ ||𝐴| |1.

Case 2 For neg(�̃�+) < [0, 0]:

From case 1 we have 1 ≥
max⃝𝑞

𝑑=1�̃�𝑐𝑑

| |𝐴| |∞
. Now, since the present case deals with

neg(�̃�+). Hence, we obtain the following inequality
ℎ̃

| |𝐴| |∞
≥ neg(�̃�+), where
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ℎ̃ = max
1≤𝑐≤𝑝,𝑐≠𝑟

⃝𝑞

𝑑=1 neg(�̃�+) ⊙ �̃�𝑐𝑑 . Next, to obtain the other inequality we con-

sider the relation neg(�̃�+) = ⊕𝑝
𝑐=1𝑥𝑐 �̃�𝑐𝑡 for any fixed 𝑡. Contrastingly, neg(�̃�𝑐𝑑) ≤

neg(�̃�𝑐𝑑)𝑥𝑐 as 𝑥𝑐 ∈ [0, 1]. Therefore, the inequality neg(�̃�+) ≥ ⊕𝑝
𝑐=1(𝑥𝑐 neg(�̃�𝑐𝑡) ≥

⃝𝑝

𝑐=1 neg(�̃�𝑐𝑡) ≥ neg( | |𝐴| |1) is valid since⃝𝑝

𝑐=1�̃�𝑐𝑡 ≤ max
1≤𝑑≤𝑞

⃝𝑝

𝑐=1�̃�𝑐𝑡 = | |𝐴| |1. Hence,

the result follows.

□

Before we proceed to give the next result, we give the following definition beneficial in

the main theorem.

Definition 2.4.4. For 𝐴 ∈ 𝐿𝑇 𝑝×𝑞 a 2TL game matrix, let | |𝐴| |∞ have the sum of absolute

values of the 𝑠𝑡ℎ entries of the row. Then, the matrix 𝑁 ∈ 𝐿𝑇 (𝑝−1)×𝑞
obtained after deleting

𝑠𝑡ℎ row of the matrix 𝐴 is termed as a row-wise induced matrix of 𝐴. Analogously,

if | |𝐴| |1 represents sum of absolute values of the 𝑡𝑡ℎ column entries. Then, the matrix

𝑁 ∈ 𝐿𝑇 𝑝×(𝑞−1)
obtained after deleting 𝑡𝑡ℎ column of the matrix 𝐴 is termed as column-

wise induced matrix of 𝐴.

Theorem 2.4.1. Let 𝐴 ∈ 𝐿𝑇 𝑝×𝑞 be a 2TL payoff matrix for the two-person ZSLMG and

�̃� be a 2TL game value. Then,

(i)
| |𝑁 | |∞
| |𝐴| |∞

≤ �̃� ≤ ||𝐴| |1 whenever �̃� ≥ (𝑡1, 0);

(ii)
1
| |𝐴| |1

≤ neg(�̃�) ≤ ||𝐴| |∞
| |𝑁 | |∞

whenever neg(�̃�) ≤ (𝑡1, 0) and neg(�̃�) ≠ 0.

where 𝑁 is represented as the row-wise induced matrix of 𝐴.

Proof. The proof of the theorem can be directly proved with the help of lemma 2.4.1. □

Remark 2.4.1. The critical purpose of the above result is to obtain the boundaries for

the 2TL game value. As it is significant to analyze the linguistic game value from the

viewpoint of each corresponding player. Consequently, we acquire two distinct inequal-

ities for the single linguistic game value. Since our primary concern is to obtain optimal

boundaries for the linguistic game value. Therefore, it suffices to compare each inequality

obtained for both the PI and PII, respectively, and thereby choose the best optimal bound-

aries for the game value such that the original linguistic game value falls within the ambit

of optimum range.
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It is pointed out that the results offered by the main theorem 2.4.1 are sufficient enough

to solve the bigger size linguistic matrix game problem so that we can have an impression

about the approximated linguistic game value without explicitly solving the auxiliary pair

of linguistic linear mathematical models. Hence, reducing the issue of computational cost

and time complexity of the linguistic game problem.

Next, we proceed to establish a result that points out some necessary conditions to obtain

the boundaries for the largest and smallest elements in the corresponding mixed strategy

set. For simplicity notation, we refer 𝑥max as the largest element and 𝑥min as the smallest

element of the mixed strategy set of the game players.

Theorem 2.4.2. Let 𝐴 ∈ 𝐿𝑇 𝑝×𝑞 be a 2TL payoff matrix with all entries positive. Then,

𝑥max ≥ max

{
⃝𝑝

𝑐=1�̃�𝑐𝑑

(𝑝−1).| |𝐴| |1
| 𝑑 = 1, 2, . . . , 𝑞 and⃝𝑐 �̃�𝑐𝑑 ≠ | |𝐺 | |1

}

𝑥min ≤
1

𝑝−1
−

max
{
⃝𝑝

𝑐=1�̃�𝑐𝑑

(𝑝−1).| |𝐴| |1
| 𝑑 = 1, 2, . . . , 𝑞 and⃝𝑐 �̃�𝑐𝑑 ≠ | |𝐺 | |1

}
𝑝−1

where �̃� > (𝑡0, 0).

Proof. Consider the linguistic payoff matrix 𝐴𝑝×𝑞.

Without loss of generality, we presume that ∥|𝐴| |1 = �̃�1𝑟 ◦ �̃�2𝑟 ◦ . . .◦ �̃�𝑝𝑟 for any arbitrary

fixed 𝑟 . Then, based on the definition we have
(
�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟

)
𝑥max ≥ �̃�1𝑡 ◦ �̃�2𝑡 ◦ . . . ◦

�̃�𝑝𝑡 , where 𝑡 = 1, 2, . . . , 𝑟 −1, 𝑟 +1, . . . , 𝑞.

i.e., we have the following set of inequalities

(
�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟

)
𝑥max ≥ �̃�11 ◦ �̃�21 ◦ . . . ◦ �̃�𝑝1,(

�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟
)
𝑥max ≥ �̃�12 ◦ �̃�22 ◦ . . . ◦ �̃�𝑝2,

...(
�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟

)
𝑥max ≥ �̃�1(𝑟−1) ◦ �̃�2(𝑟−1) ◦ . . . ◦ �̃�𝑝(𝑟−1)(

�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟
)
𝑥max ≥ �̃�1(𝑟+1) ◦ �̃�2(𝑟+1) ◦ . . . ◦ �̃�𝑝(𝑟+1)

...(
�̃�1𝑟 ◦ �̃�2𝑟 ◦ . . . ◦ �̃�𝑝𝑟

)
𝑥max ≥ �̃�1𝑞 ◦ �̃�2𝑞 ◦ . . . ◦ �̃�𝑝𝑞



(q-1)

Since 𝑥1+𝑥2+ . . .+𝑥𝑝 = 1 =⇒ 𝑥1+𝑥2+ . . .+𝑥max+𝑥min+ . . .+𝑥𝑝 = 1 =⇒ 𝑥1 + 𝑥2 + . . .+ 𝑥max + . . .+ 𝑥𝑝︸                             ︷︷                             ︸
p-1

=

1− 𝑥min.

∥|𝐴| |1(𝑝 − 1)𝑥max ≥ �̃�1𝑡 ◦ �̃�2𝑡 ◦ . . . ◦ �̃�𝑝𝑡 , where 𝑡 = 1, 2, . . . , 𝑟 − 1, 𝑟 + 1, . . . , 𝑞. Now, by
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taking max on both sides and rearranging the terms we obtain,

𝑥max ≥ max

{
⃝𝑝

𝑐=1�̃�𝑐𝑑

(𝑝−1).| |𝐴| |1
| 𝑑 = 1, 2, . . . , 𝑞 and⃝𝑐 �̃�𝑐𝑑 ≠ | | �̃�| |1

}
(2.4.3)

Next, in order to show the boundaries for 𝑥min, we consider the following equation:

𝑥1 + 𝑥2 + . . .+ 𝑥max + 𝑥min + . . .+ 𝑥𝑝 = 1

⇒ 𝑥1 + 𝑥2 + . . .+ 𝑥min + . . .+ 𝑥𝑝︸                             ︷︷                             ︸
p-1

= 1− 𝑥max

⇒ (𝑝−1)𝑥min = 1− 𝑥max

⇒ 𝑥max = 1− (𝑝−1)𝑥min.

Now, by using the equation 2.4.3 we obtain

1− (𝑝−1)𝑥min ≥ max

{
⃝𝑝

𝑐=1�̃�𝑐𝑑

(𝑝−1).| |𝐴| |1
| 𝑑 = 1, 2, . . . , 𝑞

}
,

and ⃝𝑐 �̃�𝑐𝑑 ≠ | |𝐴| |1. After rearranging the terms we obtain the desired inequality and

hence the theorem. □

Remark 2.4.2. It is significant to point out that our proposed approach helps calculating

the approximate value of the 2TL game falling within the optimal boundaries of the game

value that we have obtained using theorem 2.4.1 and the elements of the mixed strategy set

are selected by taking consideration of the inequalities acquired by using theorem 2.4.2

Remark 2.4.3. It is worthwhile to emphasis that by giving careful consideration to the

required bounds obtained for 𝑥max and 𝑥min based on theorem 2.4.2 we arbitrarily select

an appropriate value for 𝑥max and 𝑥min, respectively. The remaining elements of the mixed

strategy set for the players are hereafter decided in a manner that it must satisfy the prin-

cipal of probability theory, i.e., all the strategies for the player sums up to 1.

Before addressing a numerical example in the subsequent section to illustrate the uti-

lization of a novel approach for the ZSLMG, we provide a solution algorithm for the same

to obtain the required optimal solution. It is noted that the subsequent algorithm is given

for PI; however, one may use for PII as well.

Consider the game model for PI.

Step 1: Consider absolute value of the payoff matrix with 2TL information such that 𝐴𝑏𝑠(�̃�𝑐𝑑) ∈
𝐿𝑇 .

Step 2: Calculate the boundaries for linguistic game value using theorem 2.4.1.
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Step 3: Choose appropriate value for 𝑥max and 𝑥min depending on the related inequality

given in theorem 2.4.2.

Step 4: Determine the suitable value for the remaining strategies one by one, arbitrarily.

Step 5: Evaluate approximate value of the linguistic game �̃�𝑎𝑝𝑝 by randomly selecting any

column of the given payoff matrix.

Step 6: Compare the �̃�𝑎𝑝𝑝 with the original linguistic game value �̃� obtained by solving

linguistic game problem via linguistic linear programming method given in pa-

per [248].

2.4.2 Application to equity market domain

In the present section, we further illustrate the expediency of the proposed methodology

by taking a practical, real-life problem of the company’s selection problem to invest.

We consider a DM problem involving two competitive players: the first is an investor

who aims to invest his money by choosing stocks after carefully analyzing a company’s

fundamentals, and the second player is Nature. The idea of presenting a game model

with Nature is originated from the problem of portfolio choice given in the paper [255].

However, in this particular section, it is presumed that the decision-maker is reactionary,

expecting Nature to compete against him to minimize his payoffs.

Example 2.4.1. As we know, investing is a mode to increase wealth over time, but this

process also withholds the risk of dropping money, especially while selecting the com-

panies one may wish to invest in. To become a successful investor and avoid costly mis-

takes, it is significant to perform thorough research in understanding the fundamentals of

the companies before investing. Therefore, in this example, we consider the investor as

the PI whose only goal is to invest his money in the company to maximize the returns,

while nature is regarded as PII who is conflicting against him to formulate the two-player

matrix game problem.

Next, after preliminary screening an investor has shortlisted 6 companies as an al-

ternatives set, i.e., 𝑇𝑐 (𝑐 = 1, 2, 3, 4, 5, 6) where he wants to invest in. Since investing

decision is tough and is not always easy for a person to invest his hard-earned money

without conducting a research. To compete these shortlisted companies so as to choose

the most stable of them and also rank them from the viewpoint of their significance

degree, it is crucial for an investor to perform the evaluation and selection operation
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𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8
𝑥1 (𝑡0, 0) (𝑡0, 0.4) (𝑡−2,0.4) (𝑡−1,0.4) (𝑡0,−0.2) (𝑡−2,0.2) (𝑡1,−0.2) (𝑡2,0.4)
𝑥2(𝑡−3,0.2) (𝑡3,0) (𝑡4,0) (𝑡1,0.2) (𝑡2,0.2) (𝑡3,0.2) (𝑡2,0.4) (𝑡3,0.2)
𝑥3 (𝑡1,0) (𝑡3,0.2) (𝑡3,0.2) (𝑡−1,−0.2) (𝑡1,−0.2) (𝑡0,0.2) (𝑡1,−0.2) (𝑡3,0.4)
𝑥4 (𝑡1,0.2) (𝑡4,0) (𝑡−3,−0.2) (𝑡1,0.4) (𝑡3,0.2) (𝑡1,0.2) (𝑡0,−0.2) (𝑡4,0)
𝑥5(𝑡1,−0.4) (𝑡−2,0) (𝑡−1,0.2) (𝑡3,0.4) (𝑡1,−0.2) (𝑡1,0.2) (𝑡1,−0.3) (𝑡0,−0.4)
𝑥6 (𝑡4,0) (𝑡1,0.4) (𝑡2,0.4) (𝑡3,0.4) (𝑡1,0.2) (𝑡3,−0.4) (𝑡4,0) (𝑡3,0.2)

Table 2.3: 2-tuple linguistic payoff matrix.

primarily based on various essential criteria. Nevertheless, in this case study, we con-

sider eight main criteria: the performance of company (𝐶1); the market value of com-

pany (𝐶2); the efficiency level of company (𝐶3); the business model of company (𝐶4);
Employee satisfaction level (𝐶5); shareholders funds (𝐶6); Companies future innova-

tion networks (𝐶7); Companies debt and liabilities assessments (𝐶8). Since an investor

is careful about strategic choice of Nature, so he will select his mixed strategy set as

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑥𝑐 ≥ 0, 𝑐 = 1, 2, 3, 4,5,6,
∑6
𝑐=1 𝑥𝑐 = 1 over the alternative set{

𝑇𝑐 |𝑐 = 1, 2, 3, 4,5,6
}
. On the contrary, the investor view nature as a non-cooperative

player, thus to counter the choice of his mixed strategy, Nature will choose the mixed

strategy set as 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8) 𝑦𝑑 ≥ 0, 𝑑 = 1, 2, 3, 4, 5, 6,7,8
∑8
𝑑=1 𝑦𝑑 = 1,

over the criteria set
{
𝐶𝑑 |𝑑 = 1, 2, 3, 4, 5, 6,7,8

}
.

To deal with this problem more efficiently, an investor consider the linguistic decision

matrix given in table 2.3 which is based on the predefined SSLTS 𝐿𝑇 = { 𝑡−4 : W, 𝑡−3 :

EP, 𝑡−2 : VP, 𝑡−1 : P, 𝑡0 : M, 𝑡1 : G, 𝑡2 : VG, 𝑡3 : EG, 𝑡4 : PR }.

Note: “Worst” (W), “Extremely poor” (EP), “Very poor” (VP), “Poor” (P), “Medium”

(M), “Good” (G), “Very good” (VG), “Extremely good” (EG), “Perfect” (PR).

We first check the entries of the given payoff matrix. Since some of the entries are neg-

ative therefore we take neg of all such entries. Next, we proceed to solve the matrix game

problem for row player. In this case, | |𝐴| |1 = (𝑡3,0.4), | |𝐴| |∞ = (𝑡3,−0.2) and correspond-

ing row wise induced matrix of 𝐴 is given by | |𝑁 | |∞ = (𝑡2,−0.1) and | |𝑁 | |1 = (𝑡2,0.2)
. Then, according to the theorem 2.4.1, the boundaries for the approximated 2TL game

value is calculated as follows:
| |𝑁 | |∞
| |𝐴| |∞

≤ �̃� ≤ ||𝐴| |1 whenever �̃� ≥ (𝑡1,0).

Based on the new operational laws defined for the 2TL information given in the Def-

inition 2.3.2, we have (𝑡2,−0.2) ≤ �̃� ≤ (𝑡3,0.4). Since Δ−1 is monotonically increasing

bijective function, therefore we apply Δ−1 throughout the equation, i.e., Δ−1((𝑡2,−0.2)) ≤
Δ−1(�̃�) ≤ Δ−1((𝑡3,0.4)) =⇒ 1.8 ≤ Δ−1(�̃�) ≤ 3.4.
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Finally, to obtain maximum and minimum element of the strategy set we have the sub-

sequent boundary conditions, i.e.,

𝑥max ≥ max { (𝑡2,−0.4)
(5).(𝑡3,0.4)

,
(𝑡1,0)

(5) (𝑡3,0.4)
,
(𝑡3,0.2)
(5) (𝑡3,0.4)

,
(𝑡2,0.2)
(5) (𝑡3,0.4)

,
(𝑡1,0.1)
(5) (𝑡3,0.4)

,
(𝑡3,−0.4)
(5) (𝑡3,0.4)

}.

Since 𝜙−1 is a bijective homomorphism, therefore we apply 𝜙−1 and after simplifying

the calculation we obtain ⇒ 𝑥max ≥ max {0.094, 0.059, 0.1882, 0.1294, 0.065, 0.1529}
⇒ 𝑥max ≥ 0.1882.

Now, 𝑥min ≤ 0.2−0.037, then the required bound for 𝑥min is 𝑥min ≤ 0.1623. Based on the

remark 2.4.3, we randomly select the value of strategies as 𝑥min = 0, 𝑥1 = 0.20, 𝑥2 = 0.15,

𝑥3 = 0.25, 𝑥4 = 0, 𝑥max = 0.4.

Now, as our primary concern is to find out a 2TL value of the game such that the value

must fall within the optimum boundaries we have obtained above. Therefore, one can

choose any arbitrary column for evaluating the approximate game value. However, in this

scenario we select sixth column of the payoff matrix 𝐴 to obtain the approximate game

value, i.e., �̃�𝑎𝑝𝑝 = 0(𝑡2,−0.2) ⊕ 0.20(𝑡3,0.2) ⊕ 0.15(𝑡0,0.2) ⊕ 0.25(𝑡1,0.2) ⊕ 0(𝑡1,0.2) ⊕
0.4(𝑡3,−0.4), after applying Δ−1 on both sides we get Δ−1(�̃�𝑎𝑝𝑝) = 2.01.

We next solve the matrix game problem for the column player. The required 2TL ma-

trix norms are | |𝐴𝑇 | |1 = (𝑡3,−0.2), | |𝐴𝑇 | | |∞ = (𝑡3,0.4) and | |𝑁𝑇 | | |∞ = (𝑡2,0.2). Here, ‘𝑇’

represents transpose of matrix 𝐴. Now, based on Theorem 2.4.1 we obtain
(𝑡2,0.2)
(𝑡3,0.4)

≤ �̃� ≤
(𝑡3,−0.2) ⇒ (𝑡2,0.2) ≤ �̃� ≤ (𝑡3,−0.2).

Analogously, we can obtain the boundaries for 𝑦max and 𝑦min by using Theorem 2.4.2.

Therefore, 𝑦max ≥ max {0.05, 0.04, 0.97, 0.06} ⇒ 𝑦max ≥ 0.097 and 𝑦min ≤ 0.129. Con-

sequently, as mentioned-above the randomly selected strategy values are 𝑦max = 0.45,

𝑦min = 0, 𝑦1 = 0.01, 𝑦2 = 0, 𝑦3 = 0.223, 𝑦4 = 0.18, 𝑦5 = 0.02, 𝑦6 = 0.117 . We choose

column 2 to obtain approximated game value for PII, Δ−1(�̃�𝑎𝑝𝑝) = 0Δ−1((𝑡3,−0.2)) +
0.01Δ−1((𝑡3,0))+0Δ−1((𝑡4,0))+0.223Δ−1((𝑡1,0.2))+0.18Δ−1((𝑡2,0.2))+0.02Δ−1((𝑡3,0.2))+
0.117Δ−1((𝑡2,0.4)) + 0.45Δ−1((𝑡3,0.2)) = 2.3. On comparing the boundaries of game

value for PI and PII, respectively we envisioned that the boundaries of the game value

corresponding to the PII is optimum.

2.4.3 Comparison and discussion

The comparison of the proposed methodology is implemented from the viewpoint of

an information representation, and its application anticipated in the domain of multiple

decision analysis.
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Compared with the LLP methodology proposed by Singh and Gupta [248] to solve the

ZSMG with 2TL information, the 2TL matrix norm approach allows players to provide

approximate linguistic game value without explicitly solving the pair of auxiliary linguis-

tic linear mathematical models as solved below:

For PI

min 𝑉 = 𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 + 𝑋5 + 𝑋6

subject to

0𝑋1 +2.8𝑋2 + 𝑋3 +1.2𝑋4 +0.6𝑋5 +4𝑋6 ≥ 1,

0.4𝑋1 +3𝑋2 +3.2𝑋3 +4𝑋4 +2𝑋5 +1.4𝑋6 ≥ 1,

1.6𝑋1 +4𝑋2 +3.2𝑋3 +3.2𝑋4 +0.8𝑋5 +2.4𝑋6 ≥ 1,

0.6𝑋1 +1.2𝑋2 +1.2𝑋3 +1.4𝑋4 +3.4𝑋5 +3.4𝑋6 ≥ 1,

0.2𝑋1 +2.2𝑋2 +0.8𝑋3 +3.2𝑋4 +0.8𝑋5 +1.2𝑋6 ≥ 1,

1.8𝑋1 +3.2𝑋2 +0.2𝑋3 +1.2𝑋4 +1.2𝑋5 +2.6𝑋6 ≥ 1,

0.8𝑋1 +2.4𝑋2 +0.8𝑋3 +0.2𝑋4 +0.7𝑋5 +4𝑋6 ≥ 1,

2.4𝑋1 +3.2𝑋2 +3.4𝑋3 +4𝑋4 +0.4𝑋5 +3.2𝑋6 ≥ 1,

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6 ≥ 0.

For PII

max 𝑉 = 𝑌1 +𝑌2 +𝑌3 +𝑌4 +𝑌5 +𝑌6 +𝑌7 +𝑌8

subject to

0𝑌1 +0.4𝑌2 +1.6𝑌3 +0.6𝑌4 +0.2𝑌5 +1.8𝑌6 +0.8𝑌7 +2.4𝑌8 ≤ 1,

2.8𝑌1 +3𝑌2 +4𝑌3 +1.2𝑌4 +2.2𝑌5 +3.2𝑌6 +2.4𝑌7 +3.2𝑌8 ≤ 1,

𝑌1 +3.2𝑌2 +3.2𝑌3 +1.2𝑌4 +0.8𝑌5 +0.2𝑌6 +0.8𝑌7 +3.4𝑌8 ≤ 1,

1.2𝑌1 +4𝑌2 +3.2𝑌3 +1.4𝑌4 +3.2𝑌5 +1.2𝑌6 +0.2𝑌7 +4𝑌8 ≤ 1,

0.6𝑌1 +2𝑌2 +0.8𝑌3 +3.4𝑌4 +0.8𝑌5 +1.2𝑌6 +0.7𝑌7 +0.4𝑌8 ≤ 1,

4𝑌1 +1.4𝑌2 +2.4𝑌3 +3.4𝑌4 +1.2𝑌5 +2.6𝑌6 +4𝑌7 +3.2𝑌8 ≤ 1,

𝑌1,𝑌2,𝑌3,𝑌4, 𝑦5,𝑌6,𝑌7,𝑌8 ≥ 0.

The optimal solution obtained is (0, 0.093, 0, 0.1781, 0, 0.188) and 𝑉∗ = 0.459 for PI

and (0, 0, 0, 0.1286, 0.2117, 0.1187, 0, 0) for PII.

Here, for the investor, the criteria for which 𝑦∗
𝑑
= 0 are of minimal importance. Anal-

ogously, the alternatives with 𝑥∗𝑐 = 0 are not much relevant to the investor to invest his

money.

Based on the scores of the alternatives obtained above, the ranking is given as 𝑇6 > 𝑇4 >

𝑇2 > 𝑇1 = 𝑇3 = 𝑇5 and alternative 𝑇6 is the recommended company whose stocks can be

chosen for investing money.

However, it is envisioned that solving those mentioned above auxiliary linear mathemat-

ical equations becomes tedious for large-scale game problems. Finding an approximated

solution without solving the linear equations reduces the computational cost and time

complexity in such a situation. Henceforth, it is considered the most significant advantage

part of our new approach to a certain extent.

In example 2.4.1, the original value of the game is given as 𝑣 = 2.1786 for both the play-

ers. Therefore, for the case of row player the absolute error is |𝑣−𝑣𝑎𝑝𝑝 | = |2.1786−2.01| =
0.1. Also, for the case of column player the absolute error is |𝑣−𝑤𝑎𝑝𝑝 | = |2.1786−2.3| =
0.13. It is foreseen that the absolute error so obtained is small in both cases. Hence, the
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proposed method is showing consistency with the methodology proposed in the corre-

sponding paper [248]. Moreover, in this algorithm, the approximated game value evalu-

ated for the row and column player, more precisely maximizing and minimizing player,

follows the relation 𝑣𝑎𝑝𝑝 ≤ 𝑤𝑎𝑝𝑝. It is henceforth showing similarity with the existing

results (as shown in [248]).

Finally, it is perceived that the proposed game-theoretic approach is utilized to solve

multi decision analysis problems, which perhaps seems to be more advantageous in com-

parison to the methodology given in the literature (See [248]) in the sense that the latter

evaluates the weights as an intermediate step by solving linear mathematical equations.

However, our proposed approach evaluates the weights directly using the boundary con-

ditions.

2.5 Conclusion

In this chapter, we have developed a formal method that shows the intervals [−𝑛,𝑛]
and [−1

2 ,
1
2 ], and 𝐿𝑇 forms a group with respect to a binary operation in a crisp sense.

Then, we have proved that the 2TL term set i.e., 𝐿𝑇 ≡ 𝐿𝑇 × [−1
2 ,

1
2 ] is a direct group under

the defined operation ‘◦’ and later on developed an isomorphic relation between the 2TL

direct group and the interval [−𝑛,𝑛]. An application in terms of bipolar linguistic graphs is

also given to exhibit the effectiveness and practicality of the developed approach. In this

connection, we initially defined the concept of 2TLBS, followed by the introduction of

2TLBGs. We have also established the isomorphic relation between the 2TLBGs, which

directly follows from the 2TL group isomorphism. This is because when the two groups

are isomorphic, they are abstractly similar and have the same graphical structures.

In addition, some of the properties of 2TL group isomorphism and homomorphism are

discussed. We introduce the concept of linguistic kernels, cosets, normal subgroups, and

factor groups. We also propose some novel algebraic operational laws for the 2TL term

set. The results calculated by using the operational laws are closed such that it avoids

any information loss. Lastly, based on the proposed algebraic concept fundamental theo-

rem of 2TL group homomorphism is obtained. Next, we demonstrated an application of

novel 2TL group isomorphism and its properties in the study of linguistic matrix games

by presenting the novel linguistic norm method helpful in solving a two-player ZSLMG

problem. For this, we propose a notion of a 1′− norm and ∞′− norm that builds up an

analogy with the existing notion of matrix norm method defined for real numbers. Some
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results and theorems are stated and proved to find optimal boundaries for the linguistic

game value depending on the norm concept. Furthermore, we exhibit a result facilitat-

ing the game players to obtain lower and upper bounds of the mixed strategy set’s most

prominent and smallest element, respectively. Consequently, the result is based on the

normalization concept, which helps provide bounds for the matrix game problem whose

game value is unknown. Moreover, the approximated linguistic game value obtained in a

row and column player scenario satisfies the generic inequalities, showing the similarity

with existing linear programming methods. Finally, a real-life problem of the company’s

stock selection problem to invest and comparison of results with the existing method show

that the proposed methodology demonstrates consistent results and promotes studies in

imprecise matrix games.

Nevertheless, the findings predicted in the chapter are described using the SSLTS, the

terms of which are uniformly and symmetrically positioned on either side of the middle

term. We tend to envision that the research presented in the direction of the 2TL term

set is to commence the theory of 2TL groups by utilizing classical group theory based

definitions and results. We believe that the key findings proposed in this study will give

rise to a new algebraic view of the 2TL model and can be seen as a significant step towards

enhancing the importance of classical group theory in the uncertainty domain.





Chapter 3

Methodology for unbalanced linguistic

term sets

Several real-world problems employ linguistic-based approaches to handle qualitative

data. The set of linguistic terms that are utilized in the problems are mostly alleged to

be symmetrically distributed. However, with the advent of time, as the complexity of the

problem increases, the equidistant linguistic term set seems improper. Consequently, in

such cases, experts often prefer to use the set of the unbalanced linguistic term to direct

the appraisal for the problems. In this chapter1, we tend to propose a method that is newly

designed to deal with a set of unbalanced linguistic terms. In this direction, we initially

propose an algorithm to represent unbalanced linguistic information via a multiplicative

linguistic label set that has a global inconsistent linguistic term distribution. Furthermore,

in light of the Herrera and Martinez, “2-tuple linguistic model,” we develop a novel 2-

tuple approach for the unbalanced linguistic set, which is based on the notion of minimum

distance measure. Finally, to validate the proposed model in the physical realm and to

demonstrate the functioning of the method, a numerical example is being elucidated. The

proposed methodology seeks to indicate a reduction in the computation time and also

enhances the decision-makers’ evaluations.

1The result of this chapter is based on a research paper “A New 2-Tuple Linguistic Approach for Unbal-
anced Linguistic Term Sets” IEEE Transactions on Fuzzy Systems 29 (8) 2158–2168 (2021). (SCI, Impact
Factor: 12.029)
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3.1 Introduction

The societal development engenders complex situations, consequently increases in-

determinacy within the problems. In general, there may exist some intricate problems

entailing quantitative aspects that are well handled through precise numerical values.

However, some cases entail qualitative aspects as well that are more arduous to be man-

aged through precise and exact values. Therefore, to handle such problems adequately,

Zadeh [324–326] initiated a fuzzy linguistic-based approach whereby qualitative informa-

tion is represented via LVs. The utility of this approach aims to provide more logical and

precise results in the problems encapsulating uncertainty, which is of non-probabilistic

nature. Hence, on account of successful results, the fuzzy linguistic-based approach has

an application of broad-spectrum, which are witnessed in distinct areas suchlike informa-

tion retrieval system [33, 34, 124–126, 345], web quality [127, 128], aggregation opera-

tors [105, 109, 288], and so forth.

The presence of qualitative information in a decision problem insinuates the appropri-

ateness for a LCMs [107, 129, 188, 271]. According to the existing majored literature

several LCMs has become widespread, for instance LCMs that are based on membership

functions [76, 137], ordinal scales [109, 295, 305], type-2 fuzzy sets [267, 292], granular

computing [56, 234]. Followed by the 2-tuple LCM and its extensions [64, 106, 111, 112,

271].

Since a determination of the membership function is difficult in some of the practical

applications, as a consequence, symbolic models like Herrera and Martínez [106], 2TL

model has gained considerable attention. This is because of the competence of a 2TL

model to interpret and evaluate the results in a highly accurate and straightforward man-

ner. Moreover, it provides a way out to handle linguistic information in a continuous

range in place of a discrete one without any information loss. Most of these LCMs and

their respective enhancements rely upon the term set having a uniform distribution of

the linguistic terms. Such type of linguistic term set is termed as a balanced linguistic

term set (BLTS). The most commonly referred BLTSs are LT =
{
ℓ𝑖 | 𝑖 = 0, 1, . . . , 𝑔

}
and

LT =
{
ℓ𝑖 | 𝑖 = −𝑔, . . . , 0, . . . , 𝑔

}
, where ‘𝑔’ is a positive integer and each linguistic term is

equidistant about their respective central cardinal. Apparently, these two BLTS follow the

rule of monotonicity stating that any two linguistic terms, namely, ℓ𝛼 and ℓ𝛽 belonging to

either set LT1 or LT2 are comparable, i.e, ℓ𝛼 ≥ ℓ𝛽 iff 𝛼 ≥ 𝛽.

However, there exist problems where information managed with linguistic assessments
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require LVs appraised in an unevenly distributed LTSs. Such type of sets is termed as

unbalanced linguistic term sets (ULTSs) where the distribution of the terms are uneven.

It is precisely viewed in the problems that linguistic information distributed unevenly

appears due to necessity of assessing the preferences of the linguistic terms having higher

granularity on either side of the central term, or maybe in light of the explicit nature of

the LVs which are defined in the problems for computations. In compliance with the

existing literature, there are primarily 2 classes of ULTSs. In the first class of ULTSs, the

distribution of the linguistic terms are uneven such that the cardinality of the terms on one

side of the central term is higher than the other and corresponding distance between the

consecutive terms are not equal (namely, ULTS of Ist class, see Fig. 1.6). Meanwhile, in

the second class of ULTSs, an equal number of the linguistic terms are distributed on both

the sides of the central term with unequal spacings (namely, ULTS of the second class,

see Fig. 1.7).

Recent years mark the remarkable progress in the LCMs developed to deal with the

ULTSs. Several methodologies were introduced in the literature, which ideally concerns

with the presentations and applications of both the classes of ULTSs. One of the pioneer-

ing studies addressing the linguistic information assessed in ULTS is proposed by Herrera

et al. [112]. In that paper, authors have described a representation model to allocate se-

mantics to the linguistic terms, which are diffused unevenly. The semantics of a linguistic

term is capable of expressing each linguistic terms via parametric membership function

by utilizing the concept of LH. Lastly, in the paper, they have developed a computational

model that uses the existing 2-tuple model [106] as its basis for ULTSs to carry out pro-

cesses of CWWs without information loss. The details of the model is given in section 1.4.

Followed by this pioneering work, Wang and Hao [271] presented a new proportional 2TL

model having “symbolic proportion” as its basis. In the proposed method, it is mentioned

that linguistic information is expressed in a 2-tuple format, which composes two propor-

tional linguistic terms. Hence, the proportional 2TL model deals with ULTS avoiding any

information loss. Continuing further with the study of proportional 2-tuple model, Wang

and Hao [272] bring forth a unifying link between the framework of Lawry [150] and the

traditional 2-tuple framework [106], in parallel with the CWWs, processes for the line of

reasoning with linguistic syllogisms mathematically feasible. Zou et al. [342] proposed a

novel linguistic aggregation operator elicited from the model of traditional 2-tuple [106]

and linguistic hierarchies [108] to express unbalanced linguistic values. Jiang et al. [138]

presented the linguistic proportional 2-tuple power average operator aggregating the lin-
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guistic values of ULTSs.

Abchir and Truck [16] broadened the traditional 2-tuple model by introducing a dif-

ferent kind of fuzzy partition for ULTS. Bartczuk et al. [35] presented a novel approach,

which is a modification of the traditional 2-tuple linguistic model for handling ULTS.

In that paper, linguistic information is represented by an extended-term set which com-

poses a pair that carries a linguistic term along with a value representing correction factor.

This correction factor is used to describe the relocation of the term corresponding to its

respective position in a term set distributed evenly.

Dong et al. [64] developed a new interpretation of the 2TL model constructed to be an

extended version of it primarily based on the notion of numerical scale. Moreover, guided

by the notion of the “transitive calibration matrix,” along with its consistency index Dong

et al. [67] introduced a novel scheme for generating individual numerical scales within the

analytic hierarchy process (AHP). Further, Dong et al. [69,70], proposed a connection link

between the two different models, i.e., LCM based on the linguistic hierarchical concept

[112] and the model of numerical scale [64], and lastly demonstrated the equivalence of

these models to deal with ULTSs. Continuing with the noticeable advancements in the

field of 2-tuples LCMs developed for addressing ULTSs, Dong, and Herrera-Viedma [68]

and Dong et al. [65] introduced interval numerical scales. Wang et al. [293] proposed a

methodology of normalized numerical scaling to form BLTSs or ULTSs into the unique

interval [0,1]. M. Cai et al. [50] developed a new LCM based on symbolic models.

Z. Pei and Li Zheng [233], constructed a series of a normal distribution which is based

upon unbalanced linguistic scale sets and additionally, formulated a novel approach for

defining unbalanced linguistic information in a format of 3-tuple. Further, M. Cai and

Z. Gong [51], redefined the concept of ULTS and provided the graph for the representation

model.

Li et al. [160] proposed personalized individual semantics model by virtue of an inter-

val type numerical scale and the linguistic model of 2-tuple and later on solved problems

of group decision making with a process of consensus-reaching. Considering the wide-

ranging decision problems existing in an uncertain decision environment providing exact

values for symbolic proportions is not always easy for decision-makers. Moreover, there

exist situations where linguistic distribution assessments are required to assess in ULTS.

Therefore, to fix these issues, Dong et al. [72] developed the notion of unbalanced lin-

guistic distribution assessments in the light of interval symbolic proportions and further

presented the application of the proposed methodology.
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However, concerning the above LCMs, it is envisioned that the representation of the

ULTSs is made by using a set of linguistic terms distributed uniformly. As a consequence,

the literal meaning of a ULTS is missing. Thereby in this study, we are taking the theory

of ULTS a step forward. In this chapter, we aim to develop a methodology to represent and

manage ULTS. The representation of the ULTS is given by the multiplicative unbalanced

linguistic scale set initially proposed by Tang et al. [265]. Secondly, we present a novel

2-tuple model for unbalanced linguistic information based upon a notion of minimum

distance measures.

Our method is advantageous because of two reasons; firstly, in our approach, a mul-

tiplicative linguistic scale set is utilized to represent unbalanced linguistic information

where the terms are unevenly distributed. In the existing literature of ULTS, it is men-

tioned that an evenly distributed linguistic scale set is utilized to express the original un-

balanced information. As a result, it leads to the absence of the existence of a formal def-

inition of unbalanced linguistic information within the problem. Henceforth, we able to

subjugate the limitation by employing a multiplicative linguistic scale set to substitute the

given unbalanced information. In this way, throughout the procedure, a formal definition

of ULTS is preserved. Secondly, our proposed method has a more straightforward design.

As a consequence, it is computationally less expensive and less complicated in compari-

son to the other LCMs, suchlike, LCM based on linguistic hierarchical concept [112] and

numerical scale [64], and so forth.

The organization of the current chapter is presented as follows: Section 3.2 present a

representation algorithm for ULTS and further propose a new 2-tuple unbalanced linguis-

tic computational model (ULCM) to address ULTS. Next, for the sake of completeness,

we define basic aggregation operators based on a new 2-tuple ULCM in Section 3.3. To

validate the proposed methodology and illustrate the practical relevance of the method

in real-world, 2 numerical examples related to the ULTS of first and second types are

presented in section 3.4. Further, Subsection 3.4.1 gives an analysis and comparison of

the proposed model with other existing works. Lastly, Section 3.5 covers the concluding

remarks for the model presented in the chapter.

3.2 Methodology for unbalanced linguistic term set

For reviewing the basics of the ULCMs one can refer to the section 1.4. Here, we pro-

ceed to briefly explain the methodology constructed for managing unbalanced linguistic
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information. For doing this, we design a novel approach to represent semantics to the

linguistic terms that belong to a ULTS and finally propose the new 2-tuple ULCM.

3.2.1 Representation algorithm for unbalanced linguistic set

In literature, Tang et al. [265] defined a multiplicative linguistic scale set distributed

throughout inconsistently as 𝐿𝑆=
{
𝑡𝑎 (−𝑚) , 𝑡𝑎−(𝑚−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where 𝑎 ∈ R and 𝑚 ∈

Z+.

Here, before we step forward to present a representation algorithm for ULTS, we state

the following definition.

Definition 3.2.1. Let 𝐿𝑆=
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where, 𝑎 > 1, 𝑛, 𝑚 ∈ Z+ be a

multiplicative ULTS with cardinality 𝑛+𝑚+1 such that n and m may or may not be equal.

Then we call the term 𝑡𝑎𝑖 as a plausible value for a LV. The set 𝐿𝑆 is termed as an ordered

set if the following properties are satisfied:

(P1): The set 𝐿𝑆 is ordered: 𝑡𝑎𝑖 ≥ 𝑡𝑎 𝑗 for 𝑖 ≥ 𝑗 ;

(P2): A maximization operator: max (𝑡𝑎𝑖 , 𝑡𝑎 𝑗 ) = 𝑡𝑎𝑖 for 𝑖 ≥ 𝑗 ;

(P3): A minimization operator: min (𝑡𝑎𝑖 , 𝑡𝑎 𝑗 ) = 𝑡𝑎𝑖 for 𝑖 ≤ 𝑗 .

We now proceed to present the representation algorithm in order to manage unevenly

distributed unbalanced linguistic information:

Step 1 Partition the ULTS 𝐿𝑆 into the following three subsets, i.e, 𝐿𝑆 = 𝐿𝑆𝑙𝑒 𝑓 𝑡 ∪ 𝐿𝑆𝑐𝑒𝑛𝑡𝑒𝑟 ∪
𝐿𝑆𝑟𝑖𝑔ℎ𝑡 :

• 𝐿𝑆𝑙𝑒 𝑓 𝑡 defines the set of linguistic terms lying left to the central term.

• 𝐿𝑆𝑐𝑒𝑛𝑡𝑒𝑟 defines the set of central term.

• 𝐿𝑆𝑟𝑖𝑔ℎ𝑡 defines the set of linguistic terms lying right to the central term.

Step 2 Set #(𝐿𝑆𝑙𝑒 𝑓 𝑡) = 𝑛 and #(𝐿𝑆𝑟𝑖𝑔ℎ𝑡) = 𝑚, where #(𝐿𝑆𝑙𝑒 𝑓 𝑡), #(𝐿𝑆𝑟𝑖𝑔ℎ𝑡) are cardinalities

of the set 𝐿𝑆𝑙𝑒 𝑓 𝑡 , 𝐿𝑆𝑟𝑖𝑔ℎ𝑡 respectively.

Step 3 Representation of the central linguistic label set.

Algorithm 3.2.1. Identify the central linguistic term such that 𝑡𝑖𝑐 ← 𝑡𝑎0 . For the

central linguistic term, neg(𝑡𝑎𝑖 ) = 𝑡𝑎𝑖 for 𝑖 ∈
{
−𝑛, −(𝑛−1), . . . , 0, 1, . . . , 𝑚

}
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Step 4 Represent the left linguistic label set. The decision rule of representation of set

𝐿𝑆𝑙𝑒 𝑓 𝑡 is given below.

Algorithm 3.2.2. Representation of set 𝐿𝑆𝑙𝑒 𝑓 𝑡

𝑖𝐿 ← #(𝐿𝑆𝑙𝑒 𝑓 𝑡);
while 𝑖𝐿 ≥ 1 do

𝑡𝑖𝐿 = 𝑡𝑎−𝑖𝐿 ;

𝑖𝐿 = 𝑖𝐿 −1.

end

Step 5 Represent the right linguistic label set. The decision rule of representation of set

𝐿𝑆𝑟𝑖𝑔ℎ𝑡 is given below

Algorithm 3.2.3. Representation of set 𝐿𝑆𝑟𝑖𝑔ℎ𝑡

𝑖𝑅 ← 1;

while 𝑖𝑅 ≤ #(𝐿𝑆𝑟𝑖𝑔ℎ𝑡) do
𝑡𝑖𝑅 = 𝑡𝑎𝑖𝑅 ;

𝑖𝑅 = 𝑖𝑅 +1.

end

Example 3.2.1. To present the working of the proposed representation method, we con-

sider the same example of a grading system evaluation taken from [112] (see Fig. 3.1).

Figure 3.1: Grading system evaluation [112].

We express 𝑆 = {𝐹, 𝐷, 𝐶, 𝐵, 𝐴} with #(𝑆) = 5, in the form of set
{
𝑡𝑎−1 , 𝑡𝑎0 , 𝑡𝑎1 , 𝑡𝑎2 , 𝑡𝑎3

}
.

According to the representation method, partition the set 𝑆, i.e, 𝑆𝑙𝑒 𝑓 𝑡 = {𝐹}, 𝑆𝑟𝑖𝑔ℎ𝑡 =
{𝐶, 𝐵, 𝐴} and 𝑆𝑐𝑒𝑛𝑡𝑒𝑟 = {𝐷}. Hence, 𝑛 = 1 and 𝑚 = 3. After implementing the deci-

sion rule, we obtain

𝐹← 𝑡𝑎−1 , 𝐷← 𝑡𝑎0 , 𝐶← 𝑡𝑎1 , 𝐵← 𝑡𝑎2 , 𝐴← 𝑡𝑎3 .

After developing a methodology to represent semantics to the terms of ULTS, we pro-

ceed next to develop a novel 2TL model for ULTS to effectuate the process of CWW in a

precise way without any information loss.
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3.2.2 2-tuple representation for unbalanced linguistic set

In the present subsection, we formalize the new 2-tuple based computational model for

the ULTS based on a notion of minimum distance measure. In this framework, the so-

called translation function defined converts a numerical value into a 2-tuple represented

as (𝑡𝜆, 𝛾) where 𝑡𝜆 ∈ 𝐿𝑆 and 𝛾 ∈ [−0.5, 0.5] is referred as a symbolic translation and

vice-versa. The 2TL representation discussed in the present section is defined on the

similar line of the representation proffered in the paper [106], however, the computation

of 𝜆 and 𝛾 are different. After demarcating the translation function, we present different

computational operators suchlike negation operator and comparison operator to manage

the unbalanced linguistic information.

Let 𝐿𝑆=
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where, 𝑎 > 1 and 𝑛, 𝑚 ∈ Z+ and n, m may or

may not be equal is a multiplicative ULTS whose terms are non uniformly and inconsis-

tently distributed. The numerical value 𝛽 ∈ [𝑎−𝑛, 𝑎𝑚], where n and m may or may not

be equal and 𝛽 ∉
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
is obtained as a value from a symbolic

method aggregating unbalanced linguistic information. Subsequently an approximation

function is utilized to represent the index of the outcome in an unbalanced set 𝐿𝑆.

We shall now move a step forward to develop a novel approach to represent an un-

balanced linguistic information in terms of 2-tuples (𝑡𝜆, 𝛾), where 𝑡𝜆 ∈ 𝐿𝑆 and 𝛾 ∈
[−0.5,0.5]:

1. 𝑡𝜆 expresses the linguistic label which is the center of information where 𝜆 is of the

form 𝑎𝑖 for 𝑖 ∈
{
−𝑛, −(𝑛−1), . . . , 0, . . . , 𝑚

}
;

2. 𝛾 expresses a numerical value computed as a ratio of (𝛽−𝜆) and sum of 𝑑𝐿 & |𝑑𝑅 |
where 𝜆 is the index of closest label and 𝑑𝐿 & 𝑑𝑅 represent nearest left and right

distance of 𝜆 from 𝛽 respectively.

Next, we define a translation function giving 2TL value encrypted in the space 𝐿𝑆 ×
[−0.5, 0.5] from a numerical value 𝛽 ∈ [𝑎−𝑛, 𝑎𝑚].

Definition 3.2.2. Let 𝐿𝑆 =
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where, 𝑎 > 1 and 𝑛, 𝑚 ∈ Z+

and n, m may or may not be equal, be a multiplicative ULTS having 𝑛 + 𝑚 + 1 as cardi-

nality. Let 𝛽 ∈ [𝑎−𝑛, 𝑎𝑚] be a numerical value that supports symbolic aggregation result.

Then the translation function that translates a numeric value 𝛽 into a corresponding 2-tuple
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unbalanced linguistic value is shown below:

Ω : [𝑎−𝑛, 𝑎𝑚] −→ 𝐿𝑆 × [−0.5,0.5]

Ω(𝛽) = (𝑡𝜆, 𝛾)

in which


𝜆 = 𝑎𝑖𝐿 or𝜆 = 𝑎𝑖𝑅 for 𝑖𝐿 , 𝑖𝑅 ∈ {−𝑛, . . . , 0, . . . , 𝑚} ;

𝛾 =
𝛽−𝜆

𝑑𝐿 + |𝑑𝑅 | for𝛾 ∈ [−0.5, 0.5] .

The decision rule for the computation of values 𝜆 and 𝛾 defined above in the definition

is given in algorithm 3.2.4.

Algorithm 3.2.4. Input:𝐿𝑆=
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
& 𝛽 ∈ [𝑎−𝑛, 𝑎𝑚], where n

and m may or may not be equal and 𝑎 > 1.

Begin:

𝑖𝐿← argmin𝑖
{
𝛽− 𝑎𝑖 | 𝛽− 𝑎𝑖 ≥ 0, 𝑖 ∈ {−𝑛, . . . ,0, . . . ,𝑚}

}
;

𝑖𝑅← argmax𝑖
{
𝛽− 𝑎𝑖 | 𝛽− 𝑎𝑖 ≤ 0, 𝑖 ∈ {−𝑛, . . . ,0, . . . ,𝑚}

}
. Then:

𝜆𝐿← 𝑎𝑖𝐿 , and 𝜆𝑅← 𝑎𝑖𝑅 , such that 𝛽 ∈ (𝜆𝐿 , 𝜆𝑅).
Next, compute:

𝑑𝐿← 𝛽−𝜆𝐿 , and 𝑑𝑅← 𝛽−𝜆𝑅.

Define: 𝑑←min (𝑑𝐿 , |𝑑𝑅 |);
if 𝑑 = 𝑑𝐿 then

𝜆← 𝜆𝐿;

𝛾← 𝛽−𝜆
𝑑𝐿 + |𝑑𝑅 | .

else

𝜆← 𝜆𝑅;

𝛾← 𝛽−𝜆
𝑑𝐿 + |𝑑𝑅 | .

end if

Note 3.2.1. We can infer from the Algorithm 3.2.4 that the “𝜆” value is evaluated by virtue

of the nearest distance measure from the numerical value “𝛽” whereas “𝛾” is termed as a

value of “symbolic translation.” However, according to the algorithm 3.2.4, the range of

the value “𝛾” belongs to [−0.5, 0.5].

Proposition 3.2.1. The symbolic translation 𝛾 ∈ [−0.5, 0.5].

Proof. We know, 𝛾 =
𝛽−𝜆

𝑑𝐿+|𝑑𝑅 | where 𝜆 = 𝜆𝑅 or𝜆𝐿 , and 𝛽 ∈ [𝜆𝐿 , 𝜆𝑅] ⊆ [𝑎−𝑛, 𝑎𝑚]. We

consider the following two cases:
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Case 1: 𝜆 = 𝜆𝐿

In this case, 𝑑𝐿 ≤ |𝑑𝑅 | =⇒ 2𝑑𝐿 ≤ |𝑑𝑅 | + 𝑑𝐿 =⇒ 𝛽−𝜆𝐿
𝑑𝐿 + |𝑑𝑅 | ≤

1
2 =⇒ 𝛾 ≤ 1

2 .

Case 2: 𝜆 = 𝜆𝑅

In this case, |𝑑𝑅 | ≤ 𝑑𝐿 =⇒ 2|𝑑𝑅 | ≤ 𝑑𝐿 + |𝑑𝑅 | =⇒ −|𝑑𝑅 |
𝑑𝐿 + |𝑑𝑅 | ≥

−1
2 =⇒ 𝛽−𝜆𝑅

𝑑𝐿 + |𝑑𝑅 | ≥
−1
2

=⇒ 𝛾 ≥ −1
2 .

□

We next put forward the concept of numerical scale function based on ULTS. In lit-

erature, Dong et al. [64] suggested the notion of a numerical scale based on a BLTS,

LT =
{
ℓ𝑖 | 𝑖 = 0 to 𝑔

}
as given in Definition 1.4.6. Analogously, we provide a definition

of a numerical scale based on a multiplicative linguistic scale set, 𝐿𝑆.

Definition 3.2.3. Let 𝐿𝑆=
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where, 𝑎 > 1 and 𝑛, 𝑚 ∈ Z+ and

n, m may or may not be equal is a multiplicative ULTS and R has the usual meaning in

mathematical terms. Then we define a numerical scale function as 𝑁𝑆 : 𝐿𝑆 → R such

that 𝑁𝑆(𝑡𝑎𝑖 ) = 𝑎𝑖.

Definition 3.2.4. Numerical scale function 𝑁𝑆 : 𝐿𝑆 × [−0.5, 0.5] → R is defined as

follows:

𝑁𝑆((𝑡𝑎𝑖 , 𝛾)) =


𝑁𝑆(𝑡𝑎𝑖 ) + 𝛾 × ((𝑁𝑆(𝑡𝑎𝑖+1)) − 𝑁𝑆(𝑡𝑎𝑖 )), 𝛾 ≥ 0;

𝑁𝑆(𝑡𝑎𝑖 ) + 𝛾 × ((𝑁𝑆(𝑡𝑎𝑖 )) − 𝑁𝑆(𝑡𝑎𝑖−1)), 𝛾 < 0.

Now, we proceed further to give a proposition to obtain our model from a numerical

scale.

Proposition 3.2.1. When setting 𝑁𝑆(𝑡𝑎𝑖 )=𝑎𝑖 where 𝑖 = −𝑛, −(𝑛− 1), . . . , 0, 1, . . . , 𝑚, we

have 𝑁𝑆((𝑡𝑎𝑖 , 𝛾𝑎𝑖 )) = Ω−1((𝑡𝑎𝑖 , 𝛾𝑎𝑖 )), for any (𝑡𝑎𝑖 , 𝛾𝑎𝑖 ) ∈ 𝐿𝑆 × [−0.5, 0.5].

Proof. Consider the following two cases:

Case 1: 𝛾 ≥ 0

In this case, 𝑎𝑖 = 𝑎𝑖𝐿 and 𝑎𝑖+1 = 𝑎𝑖𝑅 for 𝑖 = −𝑛, −(𝑛−1), . . . , 0, 1, . . . , 𝑚; Ω−1(𝑡𝑎𝑖 , 𝛾) = 𝛾 ×
(𝑑𝐿 + |𝑑𝑅 |) + 𝑎𝑖 = 𝛾 × (𝛽− 𝑎𝑖 + |(𝛽− 𝑎𝑖+1) |) + 𝑎𝑖; since 𝛽 < 𝑎𝑖+1 therefore Ω−1(𝑡𝑎𝑖 , 𝛾) =
𝛾 × (𝑎𝑖+1 − 𝑎𝑖) + 𝑎𝑖. Now, from the definition of numerical scale function, we have

𝑁𝑆((𝑡𝑎𝑖 , 𝛾)) = 𝑎𝑖 + 𝛾 × (𝑎𝑖+1 − 𝑎𝑖). Hence, 𝑁𝑆((𝑡𝑎𝑖 , 𝛾)) = Ω−1((𝑡𝑎𝑖 , 𝛾)).
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Case 2: 𝛾 < 0

In this case, 𝑎𝑖 = 𝑎𝑖𝑅 and 𝑎𝑖−1 = 𝑎𝑖𝐿 for 𝑖 = −𝑛, −(𝑛− 1), . . . , 0, 1, . . . , 𝑚; Ω−1(𝑡𝑎𝑖 , 𝛾) =
𝛾 × (𝑑𝐿 + |𝑑𝑅 |) + 𝑎𝑖 = 𝛾 × (𝛽−𝑎𝑖−1 + |(𝛽−𝑎𝑖) |) + 𝑎𝑖; since 𝛽 < 𝑎𝑖 therefore Ω−1(𝑡𝑎𝑖 , 𝛾) =
𝛾 × (𝑎𝑖 − 𝑎𝑖−1) + 𝑎𝑖. Now, from the definition of numerical scale function, we have

𝑁𝑆((𝑡𝑎𝑖 , 𝛾)) = 𝑎𝑖 + 𝛾 × (𝑎𝑖 − 𝑎𝑖−1). Hence, 𝑁𝑆((𝑡𝑎𝑖 , 𝛾)) = Ω−1((𝑡𝑎𝑖 , 𝛾)).

□

We provide the following example for a better understanding of the concept of new

2-tuple ULCM.

Consider a multiplicative ULTS 𝐿𝑆 =

{
𝑡 1

8
, 𝑡 1

4
, 𝑡 1

2
, 𝑡1, 𝑡2, 𝑡4, 𝑡8

}
, here we have taken 𝑎 = 2

(not specific) and 𝑛 = 𝑚 = 3. Suppose 𝛽 = 5.8 ∈ [ 18 , 8] be the value obtained as a result

of symbolic aggregation. Then, the representation of 𝛽 in terms of 2-tuple is given as

Ω(5.8) = (𝑡4, 0.45).

The graphical representation of the 2-tuple computation calculated above is given in the

Fig. 3.2.

Figure 3.2: Graphical representation of 2-tuple for ULTS

Proposition 3.2.2. Let 𝐿𝑆 =
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
be an ULTS and let (𝑡𝜆, 𝛾)

be a 2TL corresponding to numerical value 𝛽 ∈ [𝑎−𝑛, 𝑎𝑚] ⊂ R. Then, there always exist

a function Ω−1 which returns an equivalent numerical information from a corresponding

2TL information.

Proof. It is trivial to show that a translation function Ω is a bijective. We consider the

following function:

Ω−1 : 𝐿𝑆 × [−0.5, 0.5] −→ [𝑎−𝑛, 𝑎𝑚]

Ω−1(𝑡𝜆, 𝛾) = 𝛾 × (𝑑𝐿 + |𝑑𝑅 |) + 𝜆 = 𝛽.□
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Remark 3.2.1. A linguistic term 𝑡𝛼 ∈ 𝐿𝑆 can be easily converted into a 2-tuple by adding

a value 0 as minimum distance measure, i.e., 𝑡𝛼 ∈ 𝐿𝑆 =⇒ (𝑡𝜆, 0).

Remark 3.2.2. It is noted that if 𝑡𝛼 ∈ 𝐿𝑆 then 𝑡𝛼 is termed as actual unbalanced linguistic

term and meanwhile if 𝑡𝛼 ∉ 𝐿𝑆 then 𝑡𝛼 is termed as virtual unbalanced linguistic term.

Herrera and Martínez [110] has proposed a comparison of a 2TL information based

upon classical lexicographic ordering. Analogously, we present a comparison of 2TL

information for ULTS in compliance with the existing lexicographic approach.

Definition 3.2.5. Let (𝑡𝜆𝑖 , 𝛾𝑖), (𝑡𝜆 𝑗 , 𝛾 𝑗 ) be represented as two 2-tuples. Then, the 2-tuples

are compared as follows:

• If 𝜆𝑖 < 𝜆 𝑗 then (𝑡𝜆𝑖 , 𝛾𝑖) < (𝑡𝜆 𝑗 , 𝛾 𝑗 );

• If 𝜆𝑖 = 𝜆 𝑗 then

1. If 𝛾𝑖 = 𝛾 𝑗 =⇒ (𝑡𝜆𝑖 , 𝛾𝑖) = (𝑡𝜆 𝑗 , 𝛾 𝑗 );

2. If 𝛾𝑖 < 𝛾 𝑗 =⇒ (𝑡𝜆𝑖 , 𝛾𝑖) < (𝑡𝜆 𝑗 , 𝛾 𝑗 );

3. If 𝛾𝑖 > 𝛾 𝑗 =⇒ (𝑡𝜆𝑖 , 𝛾𝑖) > (𝑡𝜆 𝑗 , 𝛾 𝑗 ).

Definition 3.2.6. Let 𝐿𝑆 =
{
𝑡𝑎 (−𝑛) , . . . , 𝑡𝑎0 , 𝑡𝑎1 , . . . , 𝑡𝑎𝑚

}
be an ULTS with cardinality 𝑛 +

𝑚 + 1. Then we define negation operator for a 2-tuple as:

neg(𝑡𝑎𝑖 , 𝛾) = (neg(𝑡𝑎𝑖 ), −𝛾)

where the existence of a neg(𝑡𝑎𝑖 ) for an unbalanced linguistic term in all the plausible

cases is given in Algorithm 3.2.5.

Algorithm 3.2.5. Input: 𝐿𝑆=
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where n and m may or may

not be equal and 𝑎 > 1.

𝐿𝑆 = 𝐿𝑆𝑙𝑒 𝑓 𝑡 ∪ 𝐿𝑆𝑐𝑒𝑛𝑡𝑒𝑟 ∪ 𝐿𝑆𝑟𝑖𝑔ℎ𝑡 .
Begin:

1: #(𝐿𝑆𝑙𝑒 𝑓 𝑡) ← 𝑛, and, #(𝐿𝑆𝑟𝑖𝑔ℎ𝑡) ← 𝑚 Then:

2: if 𝑛 = 𝑚 then

3: for 𝑖← 0 to 𝑛 do

4: neg(𝑡𝑎𝑖 ) ← 𝑡𝑎−𝑖 ;

5: end for

6: end if
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7: if 𝑛 ≠ 𝑚 then

8: if 𝑛 < 𝑚 then

9: for 𝑖← 0 to 𝑚 do

10: if 𝑖 ≤ 𝑛 then

11: neg(𝑡𝑎𝑖 ) ← 𝑡𝑎−𝑖 ;

12: else

13: neg(𝑡𝑎𝑖 ) ← 𝑡𝑎𝑚− 𝑖 ;

14: end if

15: end for

16: else

17: for 𝑖← 0 to 𝑛 do

18: if 𝑖 ≤ 𝑚 then

19: neg(𝑡𝑎 (−𝑖) ) ← 𝑡𝑎𝑖 ; else

end

neg(𝑡𝑎 (−𝑖) ) ← 𝑡𝑎𝑖−𝑛 ;

20:21: end if

22: end for

23: end if

24: end if

Remark 3.2.3. Based on the property of linearity and monotonicity of the Ω operator, it

is easily observed that for the case 𝑛 = 𝑚, the following holds:

(i) neg(neg(�̃�1)) = �̃�1;

(ii) min
{
neg(�̃�1), neg(�̃�2)

}
= neg(max {�̃�1, �̃�2});

(iii) max
{
neg(�̃�1), neg(�̃�2)

}
= neg(min {�̃�1, �̃�2}).

where �̃�1 = (𝑡𝜆1 , 𝛾1), �̃�2 = (𝑡𝜆2 , 𝛾2) are two unbalanced linguistic 2-tuple variables and the

max and min operations are considered as given in the Definition 3.2.1.

After, discussing the existence of negation operator for ULTS, we wish here, to point

out three observations:

• In first place, we consider the case, 𝑛 ≠ 𝑚, for instance take 𝑛 = 2 and 𝑚 = 3 such

that 𝐿𝑆=
{
𝑡𝑎−2 , 𝑡𝑎−1 , 𝑡𝑎0 , 𝑡𝑎1 , 𝑡𝑎2 , 𝑡𝑎3

}
. Then according to the Algorithm 3.2.5, it is
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stated that neg(𝑡𝑎1) = 𝑡𝑎−1 , neg(𝑡𝑎2) = 𝑡𝑎−2 , neg(𝑡𝑎3) = 𝑡𝑎0 = neg(𝑡𝑎0). Henceforth, we

may claim that for the case 𝑛 ≠ 𝑚, neg(neg(𝑡𝑎𝑖 )) ≠ 𝑡𝑎𝑖 for 𝑖 ∈ {−2, −1, 0, 1, 2, 3}.

• The case 𝑛 ≠𝑚 can be converted it into the case 𝑛 =𝑚, by adding dummy linguistic

variables, ‘𝑑𝑎𝑖 ’ for 𝑖 ∈ {−𝑛, . . . ,0, . . . , 𝑚} to the set 𝐿𝑆. Hence, proceed likewise as

described in Algorithm 3.2.5.

• The dummy linguistic variables which are added to the set 𝐿𝑆 are given ‘no’ weights.

As a result, in several MCDM problems or linguistic game-theoretic models, we

cannot be able to obtain an optimal solution for such a case. This validates our

proposed Algorithm 3.2.5.

When we have expressed all the unbalanced linguistic terms and have also defined the

linguistic information in terms of 2-tuples, it, therefore, necessitates us to aggregate such

information. Henceforth, the following section discusses the aggregating operators for a

new 2-tuple ULCM.

3.3 Aggregation operators for 2-tuple model for unbal-

anced linguistic term set

Several aggregation operators have been developed in literature [106] for the traditional

2TL model based upon “symbolic translation.” The aggregating operation carried out by

these so-called aggregation operators are without any information loss.

Since the primary focus of the aggregation operator is to mitigate value set into a single

one that gives an overview of the inputs in a particular way. As a consequence, it plays a

significant role in decision problems and further amalgamation of information. However,

the information to be considered is not always balanced. Sometimes, unbalanced linguis-

tic information is also involved in the problem. Henceforth, in the present section, we

extend these operators for the developed 2-tuple ULCM.

The transformation function Ω and Ω−1 discussed in the previous section helps in con-

verting a numerical value into a linguistic value given in the form of 2-tuples and vice-

versa.

(A) Arithmetic mean (AM) operator

Definition 3.3.1. Let 𝑋=
{
(𝑡𝜆1 , 𝛾1), (𝑡𝜆2 , 𝛾2), . . . , (𝑡𝜆𝑘 , 𝛾𝑘 )

}
be the 2-tuple ULTS, the
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arithmetic mean operator 𝑋
𝐴𝑀

is defined as:

𝑋
𝐴𝑀

= Ω

(∑𝑘
𝑖=1Ω

−1(𝑡𝜆𝑖 , 𝛾𝑖)
𝑘

)
.

The functions Ω and Ω−1 have their usual meaning, as discussed in the previous

section. Moreover, the 𝑋
𝐴𝑀

estimated for the set 𝑋 is incurred in a precise way

without any information loss.

(B) Weighted average (WA) operator

In the case of weighted average, considering the nature of the variable 𝑥, distinct

values say 𝑥𝑖 have different importance. As a consequence, each value 𝑥𝑖 is associated

with a weight 𝑤𝑖, which signifies the variable’s nature.

In literature, the equivalent operator exists for the Herrera and Martinez’ [106] 2TL

model. Likewise, we can extend the theory concerning the WA operator for a ULCM

based on 2-tuples.

Definition 3.3.2. Let 𝑋=
{
(𝑡𝜆1 , 𝛾1), (𝑡𝜆2 , 𝛾2), . . . , (𝑡𝜆𝑘 , 𝛾𝑘 )

}
be the 2-tuple ULTS and

let 𝑊 =
{
𝑤𝑖 | 𝑖 = 1, 2, . . . , 𝑘

}
be the set of weights associated with 2TL set, then the

WA operator 𝑋
𝑊𝐴

for the set 𝑋 is defined as:

𝑋
𝑊𝐴

= Ω

(∑𝑘
𝑖=1Ω

−1(𝑡𝜆𝑖 , 𝛾𝑖) ·𝑤𝑖∑𝑘
𝑖=1𝑤𝑖

)
(C) Ordered weighted average (OWA) operator

In literature, the weighted aggregation operator is initiated by Yager [304]. In that

operator, the weights which are given are not connected with a predetermined value.

Instead, it is provided that the weights are connected to a fixed position.

The OWA operator 𝑋𝑂𝑊𝐴 for dealing with 2-tuple ULCM are defined as:

Definition 3.3.3. Let 𝑋=
{
(𝑡𝜆1 , 𝛾1), (𝑡𝜆2 , 𝛾2), . . . , (𝑡𝜆𝑘 , 𝛾𝑘 )

}
be the 2-tuple uLTS and

let𝑊 =

{
𝑤𝑖 | 𝑖 = 1, 2, . . . , 𝑘,

∑𝑘
𝑖=1𝑤𝑖 = 1and𝑤𝑖 ∈ [0,1]

}
be the set of associated weights.

Then the 2-tuple OWA operator 𝑋𝑂𝑊𝐴 is computed as:

𝑋𝑂𝑊𝐴 = Ω

( 𝑘∑︁
𝑗=1
𝑤 𝑗 · 𝛽∗𝑗

)
.
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where the numerical value 𝛽∗
𝑗

represents the largest of 𝑗 𝑡ℎ value among all the 𝛽𝑖

values.

3.4 Numerical illustration and comparative analysis

In the present section, we consider 2 numerical examples to exhibit the efficacy of the

proposed 2-tuple ULCM in the physical realm.

In the Example 3.4.1, we consider the usual problem of evaluating students’ expertise

from variant tests to obtain a global evaluation, which is a similar example discussed in

Herrera et al. [112]. The ULTS utilized here is of type I, i.e., a set where the distribution

of the linguistic terms on the left and right side of the central term is unequal (𝑚 ≠ 𝑛).

The Example 3.4.2 is related to the stock market, which is an organized financial market

and plays a significant role in raising the economic infrastructure. In the current scenario,

it is envisioned that most of the car manufacturing companies in India are undergoing huge

losses. Consequently, affecting Indian stock market saliently. Henceforth, the current

study provides a comparative analysis of the stock prices for different car manufacturing

companies in the financial year 2018. The ULTS utilized here is of type II, i.e., several

linguistic terms distributed on the left and right sides of the central term are equal (𝑚 = 𝑛).

Example 3.4.1. Suppose a teacher wants to acquire a maximum evaluation of his pupils

who have appeared in 6 different exams equally essential. The exams are completed, and

the evaluations are being done using the grading system. The grading scale is considered

to be a ULTS, 𝐿𝑆, which is given in example 3.2.1. Also, the respective grades obtained

by students in each exam are given in table 3.1.

E1 E2 E3 E4 E5 E6
J.

Smith

(D,0) (C,0) (B,0) (C,0) (C,0) (C,0)

M.

Grant

(A,0) (D,0) (D,0) (C,0) (B,0) (A,0)

Table 3.1: 2-tuple linguistic assessment of unbalanced set [112].

Herrera et al [112] has solved the example to obtain global evaluations for 2 students

based on the linguistic hierarchical concept for unbalanced linguistic information. The

detailed calculations and required steps are provided in the paper [112].
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Now, for the similar mission we solve this example by using our methodology. Ac-

cording to our approach, we initially apply the semantic representation algorithm for un-

balanced linguistic information. The descriptive information about the working of this

algorithm is given in example 3.2.1. From the analysis, we infer that 𝑎 = 2 to be the

best value for the base. However, one may take any value of ‘a.’ Hence, we obtain

𝐿𝑆𝑙𝑒 𝑓 𝑡 :
{
𝐹 ← 𝑡2−1

}
, 𝐿𝑆𝑐𝑒𝑛𝑡𝑒𝑟 :

{
𝐷 ← 𝑡20

}
, 𝐿𝑆𝑟𝑖𝑔ℎ𝑡 :

{
𝐶 ← 𝑡21 , 𝐵 ← 𝑡22 , 𝐴 ← 𝑡23

}
.

Next, to compute the global evaluations of the students by applying arithmetic mean

operator defined in section 3.3, we proceed as follows:

𝑥𝐽.𝑆𝑚𝑖𝑡ℎ = Ω

(
1
6
(
Ω−1(𝐷,0) + 4×Ω−1(𝐶,0) + Ω−1(𝐵,0)

) )
=Ω

(
1
6
(
Ω−1(𝑡20 ,0) + 4×Ω−1(𝑡21 ,0) + Ω−1(𝑡22 ,0)

) )
=Ω(2.167) = (𝐶, 0.0835).

𝑥𝑀.𝐺𝑟𝑎𝑛𝑡 =Ω

(
1
6
(
2×Ω−1(𝐴,0) + 2 × Ω−1(𝐷,0) + Ω−1(𝐵,0)

+Ω−1(𝐶,0)
) )

=Ω

(
1
6
(
2×Ω−1(𝑡23 ,0) + 2×Ω−1(𝑡20 ,0) + Ω−1(𝑡22 ,0)

+Ω−1(21,0)
) )

=Ω(4.00) = (𝐵, 0).

Hence, from the above analysis, we observe that M. Grant has scored maximum grades

in comparison to J. Smith.

The ranking order of the two students so obtained is similar to the order obtained in

the paper [112]. Henceforth, we conclude that our proposed model is consistent with the

model of Herrera et al. [112].

Example 3.4.2. In this illustration, we have considered a fundamental real-life decision

problem where the computations are made using the type II ULTS discussed in the previ-

ous section.

Suppose an investor wants to invest his/her money into a particular car manufacturing

company by taking into consideration that which company has a high market value as well

as high share growth in the financial year 2018 (FY2018). The alternatives of the Indian

car companies that an investor is looking up in particular are:
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𝑥1 𝑥2 𝑥3

“Maruti

Suzuki India”

“Tata Motors” “Mahindra &

Mahindra”

The factors which affect the share prices of the aforementioned car companies are

broadly classified into three classes: (1) Macroeconomic class, (2) Microeconomic class,

and (3) Class of linguistic factors. The list of these factors is given in table 3.2.

Macro economic

factors

Micro economic

factors

Class of linguistic

factors
𝑀1: Gross domestic

product (GDP)(%)

𝑚1: Book value per

share (In INR)

ℓ1: Investors

confidence
𝑀2: Interest rate (%) 𝑚2: Depreciation (In

Rs Cr)

ℓ2: Risk of

Investment
𝑀3: Inflation rate

(%)

𝑚3: Dividend per

share (In Rs)
𝑀4: Index of

industrial production

(IIP)(%)

𝑚4: Net profit

margin (%)

Table 3.2: List of factors affecting stock prices

Each factor equally affects the price of the stock market. The evaluations of the stock

prices for the auto company affected by these factors are assessed in the unbalanced lin-

guistic scale set 𝐿𝑆={VL, L, M, H, VH} where VL: “Very low,” L: “Low,” M: “Moder-

ate,” H: “High,” VH: “Very high”. The Table 3.3 provides the values of different inde-

pendent factors that affect the stock prices of the auto company for the FY2018. The data

given in the Table 3.3 is taken from https://www.moneycontrol.commoneycontrol and

https://www.rbi.org.inReserve bank of India.

Apart from the listed quantitative factors, however, there exist certain qualitative factors

that also affect the stock prices. So, to incorporate these factors and further obtain accurate

results without any information loss, we apply a 2-tuple model for managing unbalanced

linguistic information.

Based on the values recorded in Table 3.3 along with the qualitative factors, we obtain

the fluctuations of the stock prices for the auto companies. The variations incurred in

the values of the stock prices for the companies due to these factors for the FY2018 are

evaluated in the unbalanced linguistic scale set (as shown in the Table 3.4).

https://www.moneycontrol.com
https://www.rbi.org.in
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Factors 𝑥1 𝑥2 𝑥3
GDP 6.8%

Interest rate 6.4%
Inflation rate 3.48%

IIP 31.4%
Book value per share 8,648.198 294.65 837.08

Depreciation (In Rs Crs.) 727.80 770.55 431.80
Increase/Decrease in stocks (In Rs Crs.) −331.98 −231 98.14

Net Profit/Loss for the period (In Rs Crs.) 1896.78 353.62 1251.58
Dividend per share (In Rs) 80.00 0.00 7.50

Net profit margin (%) 9.68 −1.75 8.98

Table 3.3: Values of the Independent factors affecting stock prices for the FY2018.

Factors

𝑀1 𝑀2 𝑀3 𝑀4 𝑚1 𝑚2 𝑚3 𝑚4 ℓ1 ℓ2

𝑥1 VH L VL VH VH VL VH VH VH VH

𝑥2 L H L H L VH L VL L H

𝑥3 H L H L L H L VH H L

Table 3.4: Evaluations of the factors for each company

Next, we apply our technique to deal with unbalanced linguistic information to obtain

which company has a higher growth in share market for the FY2018. For this, we follow

the similar steps as done in previous example. Henceforth, according to the semantic

representation algorithm we obtain 𝐿𝑆 =
{
𝑡2−2 : VL, 𝑡2−1 : L, 𝑡20 : M, 𝑡21 : H, 𝑡22 : VH

}
.

Lastly, we convert the unbalanced linguistic evaluations obtained for each alternatives

into 2TL representation for further computations.

Now, these 2-tuples are aggregated by utilizing a 2-tuple arithmetic mean operator for

ULTS, thereby obtaining the collective values given in the table 3.5.

𝑥1 𝑥2 𝑥3

(H, 0.45) (M, 0.275) (M, 0.45)

Table 3.5: Aggregated results

Hence, the solution set of alternatives we obtain as {𝑥1}, i.e., “Maruti Suzuki India” has

a high share growth for the FY2018. Therefore an investor would likely invest his money

into the same company.
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3.4.1 Analysis and Comparison

The present section aims to provide a comparative study of our model with the existing

works in an effort to validate the efficiency of our proposal.

So far, computational models existing in the literature [72] deal with ULTSs proposed by

Herrera et al. [107]. The authors in that paper considered ULTS, 𝐿𝑇 = 𝐿𝑇𝐿 ∪ 𝐿𝑇𝐶 ∪ 𝐿𝑇𝑅
where 𝐿𝑇𝐿 represents a minimum label set, 𝐿𝑇𝑅 represents a maximum label, and 𝐿𝑇𝐶

represents a central label set. As a consequence, the methodology depicted could be

able to address only the first class of ULTS (See Figure 1.6). In the sequent, methods

portrayed in the paper [64, 66, 271] could be able to manage the second class of ULTS

(See Figure 1.7). However, in contrast to the existing methodologies, our proposal is well-

suited to handle both the classes of ULTS. In our proposal, the ULTS 𝐿𝑆 is partitioned as

𝐿𝑆 = 𝐿𝑆𝑙𝑒 𝑓 𝑡 ∪ 𝐿𝑆𝑐𝑒𝑛𝑡𝑒𝑟 ∪ 𝐿𝑆𝑟𝑖𝑔ℎ𝑡 where it is no longer necessary for the set 𝐿𝑆𝑙𝑒 𝑓 𝑡 and

𝐿𝑆𝑟𝑖𝑔ℎ𝑡 to be represented as minimum, and maximum label set respectively. The details

of the representation algorithm are given in Section 3.2. Henceforth, we contemplate our

proposed definition to handle any real-world situations involving unbalanced linguistic

information.

The example 3.4.1 given in the previous section is from the paper [112]. According to

the results obtained in the corresponding paper ‘M. Grant’ scored maximum in compari-

son to ‘J. Smith’ which is analogous to the results shown in this chapter. Therefore, the

comparison of our results exhibits the consistency of our proposal.

Furthermore, it is seen in the papers [50, 51, 64, 112, 271] that ULTS is expressed by a

symmetrically distributed LTS. So, in our proposal we work on to overcome this limitation

and define ULTS as 𝐿𝑆 =
{
𝑡𝑎 (−𝑛) , 𝑡𝑎−(𝑛−1) , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
where 𝑎 ∈ R. The terms dis-

tributed in the set 𝐿𝑆 are globally inconsistent. Our proposal is not subjected to any trans-

formation function converting unbalanced linguistic scale set into a balanced set which

might be a tedious and time taking job in several large scale decision problems.

Although any group decision problems dealing with unbalanced linguistic information

can be tackled by using well-known methodologies provided in the literature, our ap-

proach is an improvement to offer acceptable results at a faster rate. Moreover, it is wit-

nessed that the time complexity of our model is linear and further involves less number

of computation steps. Consequently, it’s computational cost decreases in contrast with

the model-based upon linguistic hierarchy [112]. Lastly, the design of our model is much

simpler, which is considered to be the most significant component of our proposal.
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3.5 Conclusion

In this chapter, we have formulated a novel approach to handle unbalanced linguistic

information wherein linguistic information is presupposed to be asymmetrically and non-

uniformly distributed. Further, we have designed an algorithm to represent semantics

to the unbalanced linguistic terms and afterward developed a 2-tuple model for ULTS

based on the concept of minimum distance measure. For the sake of completeness, we

provided basic aggregation operators based on Ω and Ω−1 functions. The utility of our

methodology lies in the fact that it is less expensive and further dispels the complexity

instead of other existing methods that are based on linguistic hierarchy [112]. Lastly,

two numerical illustrations are provided to validate and demonstrate the usability of the

suggested model in the physical realm.

The proposed model is generalized for both the types of ULTSs and also useful for the

cases where linguistic information is assessed in the set suchlike 𝐿𝑆 = { very low, fair, high,

very high }. It is noted here that the distance between each of the consecutive terms as-

sessed in the set is unequal. However, to carry out the computations, one may proceed

by adding a dummy variable to the set 𝐿𝑆. It is envisioned that the addition of dummy

variable into the set 𝐿𝑆 does not provide us with the optimal solution in the several cases

suchlike cases of MCDM problems, fuzzy linguistic-based game-theoretic models, finan-

cial problems, and so forth which may lead to a limitation.

Hence, one can work for the further extension of this model to subjugate the limitation

associated with it. To complete this model, we give an exhaustive study relevant to the

aggregation operators based on our model in the future and further give a comparison.

Moreover, we should emphasize that this model has increased the efficacy of several lin-

guistic solving processes and has produced results in less computation time, which, in a

way, center the continuity of work.





Chapter 4

Matrix games with Probabilistic

multiplicative unbalanced linguistic

information

Probabilistic linguistic term sets (PLTSs) are regarded as a suitable tool for enunciating

evaluators’ complex linguistic perceptions more accurately within the intricate qualitative

setting. It is viewed that the prevailing PLTS is primarily based on the predefined addi-

tive symmetric LTS. Nevertheless, the representation of probabilistic linguistic informa-

tion is not explicitly limited to the additive symmetric LTS. Sometimes, experts are more

affluent to prefer plausible linguistic labels whose distribution is non-uniform. Hence-

forth, in the present chapter1, we initially develop a novel concept of the probabilistic

multiplicative ULTS that considers the probabilities of distinct linguistic labels and the

non-uniformity of the labels. Afterward, we put forward specific operational laws for

the newly constructed probabilistic linguistic label set such that the resultant and corre-

sponding probability information of the obtained linguistic labels is preserved. For the

sake of convenience, some elementary aggregation operators beneficial in aggregating

probabilistic linguistic information in DM problems are also constructed. Furthermore,

based on the proposed concept, this study initiates to design a unified two-person linguis-

tic matrix game model with probabilistic multiplicative unbalanced linguistic information

as a parameter and addresses the imprecise information by information measure function.

Such a two-player probabilistic unbalanced linguistic matrix game is considered a con-

1The content of this chapter is based on research paper “Probabilistic multiplicative unbalanced linguis-
tic term set and its application in matrix games” (Submitted).
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venient technique for multiple decision analysis. Additionally, the proposed game model

involves a re-translation process to convert the output back into the information belonging

to the original probabilistic unbalanced linguistic domain without losing the information,

thereby escalating the interpretability of the game model when compared with other ex-

isting uncertain matrix games methodologies. Finally, we discuss the significance of the

proposed methodology and concept to question its validity and usefulness by presenting

suitable examples.
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4.1 Introduction

The formulation of traditional game theory was done 80 years ago which was introduced

ideally by Von Neumann and Morgenstern [268]. Since then, the advancement in game

theory has gone beyond limitations and has been conclusively applied in diverse fields like

economics, finance, sociology, and so forth. It is anticipated that within the traditional

setup of games, the payoffs are well-known with certainty. Nevertheless, getting to the

practical world, the assumption of certainty is not meaningful on several occasions. As a

consequence, the persisting impreciseness within the problem is modeled via contrasting

ways, and one can easily encounter in the devoted literature of uncertain matrix games the

existence of Interval payoff games [178,179,220], stochastic payoffs games [92,253,254],

and fuzzy payoff games [30, 31, 55, 77, 219] to mention a few.

Although the foundation of fuzzy games has overcome the difficulties envisioned in

conventional game-theoretic models, it can still not eradicate vagueness. Moreover, in the

fuzzy environment, to provide payoff values accurately, players require the understanding

of membership or non-membership function and their shape, which causes hindrance to

players in practical scenarios. Thus, to efface vagueness that inheres in strategic commu-

nication, Arfi [14, 15] anchored game theory in terms of linguistic fuzzy logic, which is

a more relaxed and straightforward approach to express information and payoff opinions

reasonably without restraining to precision. Since then, many investigations have been

directed on building the more robust endowment of linguistic game-theoretic methodolo-

gies. Papers in this direction of research are [248, 249].

Meanwhile, if we consider complicated real-life game problems, then it is hard enough

for the players to express their qualitative information by taking simple and unique lin-

guistic terms as envisioned in the paper [248]. For instance, while evaluating the class per-

formance of a student, a teacher may think that “the student’s score is good in mathemat-

ics, but his score is much better in science", the corresponding linguistic term set in this

particular case can be identified as, 𝐿𝑇 =
{
“𝑔𝑜𝑜𝑑,”“𝑏𝑒𝑡𝑡𝑒𝑟”

}
. In this instance, all pos-

sible linguistic labels have equal importance, i.e., the weights of “good” and “better” are

50% and 50%, respectively. Nevertheless, the score obtained in science is “much better”,

which means it should be considered as more important then “good”. To express such

kind of information realistically, Pang et al. [235] developed the notion of probabilistic

linguistic term set (PLTS). With the PLTS, the players or decision-makers (DMs) provide

assessment using several linguistic terms instead of a single term such that the relevance
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of each linguistic term is assigned a weight through probability. For the above instance, a

PLTS can be fixed as 𝐿𝑇 =
{
“𝑔𝑜𝑜𝑑”(0.2), “𝑏𝑒𝑡𝑡𝑒𝑟”(0.8)

}
, which conveys that the prece-

dence of “good” is 0.2 while the precedence of “better” is 0.8. It testifies that the “better”

is more significant than the “good”.

Since PLTS provides us a more extensible and comprehensive way for DMs to elicit

hesitant linguistic information, many scholars have been dedicated to examining mathe-

matical operations as well as measures of PLTSs [167, 314]. Pang et al. [235] introduced

the study of mathematical operations and aggregation operators for PLTSs. However,

the final results obtained by them are exceeding the bounds and are not PLTS. To over-

come the drawback so that final results are not exceeding the bounds Gou and Xu [101]

proposed new probabilistic linguistic operators. Further, the new probabilistic linguistic

weighted arithmetic average (WAA) operator was presented in the paper [348]. More-

over, numerous beneficial DM methodologies have also been developed based on the

context of PLTSs [93, 169, 175, 211, 282–284]. For a more detailed understanding of

the idea of PLTS and to seek its wide-ranging application, one can also refer to the pa-

pers [130, 173, 174, 176, 177, 259, 266, 284, 300, 349].

In most available works about PLTSs, it is generally presumed that DMs will utilize a

linguistic label set having a uniform distribution of all plausible linguistic labels to provide

their evaluations. Nevertheless, in some possible practical DM situations, DMs may pre-

fer to represent more linguistic information lying on the right side rather than on the left

side of the mid-term so that the LVs have non-uniform and non-symmetrical distribution.

To remedy, Herrera et al. [112] proposed a methodology to address unbalanced linguis-

tic information by making use of non-uniformly distributed linguistic labels. In addition,

a lot of functional studies have been established ideally concerning both theoretical and

practical aspects of unbalanced linguistic representation models. For instance, Numerical

scale model [64, 69], Proportional 2TL model [271], linguistic 3-tuple model [233], Per-

sonalized individual semantic model [159, 160] and so forth. In sequence, one can also

refer to the papers [57, 72–74, 132, 274] for a deeper understanding of the literature cen-

tered on the context of an ULTS. The methodology proposed in these papers is capable of

addressing unbalanced linguistic information.

It is noted that the ULTS can reflect the non-uniformity of distinct linguistic labels,

while the PLTS can consist of different linguistic terms associated with different weights

by utilizing the probabilities. The PLTS promotes the affluence and flexibility of repre-

senting convoluted cognitive-linguistic information. From this viewpoint, the construction
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of probabilistic ULTS focuses on explicating the non-uniform and asymmetrical distribu-

tion of linguistic assessment values along with the probability associated with each unbal-

anced linguistic label. Henceforth, to efficiently express qualitative expression closed to

human ideas to deal with complicated decision problems, Han et al. [130] introduced the

notion of probabilistic ULTSs. In that paper, the authors developed a novel computational

model centered on Archimedean copula and co-copula to manage unbalanced linguistic

information. However, the representation of the information is still given by an additive

scale set such that the literal meaning of ULTS is missing.

Therefore, to overcome the concerned issue and be motivated by the work presented in

Chapter 3, the current Chapter will introduce the notion of probabilistic multiplicative un-

balanced linguistic term set (PM-ULTS), reflecting not just the probabilistic information

of LVs but also emphasize the irregular and non-symmetric dispersion of linguistic labels

to maintain the literal meaning of ULTSs. This is the pioneer research gap filled by the

work presented in this study to model probabilistic unbalanced information. Further, we

put forth some new operational laws and elementary aggregation operators to aggregate

probabilistic multiplicative unbalanced linguistic terms. The operational laws presented

in the chapter can easily sustain the operation results without exceeding the boundaries

of multiplicative ULTSs and can keep probabilistic information complete after the opera-

tions.

Since it is acclaimed that GT can establish mathematical tools of strategic interrelations

among rational DMs. Consequently, in several situations, evaluating the payoffs in terms

of crisp values is challenging while it is effortless to collect uncertain information in the

form of PLTS. Therefore, recently Mi et al. [214] put forward a two-person ZSMG model

taking the probabilistic linguistic information as input and imparts imprecise information

by using the triangular membership function. The PLTS defined in that paper is based

on predefined symmetric LTS. Thus, to take the theory of probabilistic linguistic matrix

games a step forward, we investigate the game model within the context of probabilistic

multiplicative unbalanced linguistic circumstances, enhancing the feasibility and flexibil-

ity of the game theory scope. This is the second aspect of this Chapter. Later on, working

examples about the companies selection problem to invest in and comparative analysis

of the proposed method with the existing ones have also been presented to exhibit its

effectiveness and universality.

The novelties of the Chapter can be outlined as follows:

(1) The novel operational laws developed for PM-ULTS are closed, i.e., the final result
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obtained after the operation does not exceed the bounds of LTSs, thereby overcom-

ing the unreasonableness in logic proficiency. In addition, these laws can efficiently

deal with the persisting decision information by expressing it using the PM-ULTSs

and can avoid losing the given priority information validly.

(2) We formulate a probabilistic multiplicative unbalanced linguistic linear program-

ming (PMULLP) model to solve a constant sum unbalanced linguistic matrix game

problem. Further, the PMULLP model is transformed into a classical linear pro-

gramming problem (LPP) by defining the information measure of the given proba-

bilistic multiplicative unbalanced linguistic terms. The defined information measure

can efficiently avoid losing the information present within the PM-ULTS.

(3) The computational unbalanced linguistic game model proposed in the chapter is ap-

plied to solve the MADM problem modeled as a constant sum unbalanced linguistic

game problem.

(4) We make some comparative analysis for the proposed method with the existing

method to highlight the advantages.

Finally, the chapter is structured in the following manner: Section 4.2 presents some

preliminary definitions and concepts about the existing probabilistic linguistic term sets,

and conventional two-player ZSMGs. In Section 4.3, a novel concept of PM-ULTSs is

proposed, following that the new ranking method, operational laws with its properties,

and the aggregation operators are also given. Next, based on the proposed concept, the

methodology to solve uncertain linguistic matrix games with probabilistic multiplicative

unbalanced linguistic information is presented in Section 4.4. Furthermore, we illustrate

an application example about companies’ stock selection problem to present the effec-

tiveness of the method in a physical realm, which is followed by the comparison analysis

with the existing methods provided in Section 4.5. Lastly, some concluding remarks are

specified in Section 4.6.

4.2 Preliminaries

The present section briefly review some elementary definitions and concepts related to

our proposal presented in this chapter. Specifically, existing probabilistic linguistic term

set and conventional zero-sum matrix games.
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4.2.1 Probabilistic linguistic term sets

Pang et al. [235] extended HFLTS by introducing the notion of PLTS where probabil-

ity is allocated to each linguistic term. The added probability in the set can easily avoid

the original information loss and therefore PLTS has gained several attention of the re-

searchers [172, 346, 347].

Definition 4.2.1. [235] Let 𝐿𝑇 =
{
ℓ(−𝜏) , . . . , ℓ0, . . . , ℓ𝜏

}
be a finitely ordered LTS. Then,

a PLTS is defined as follows:

𝐿𝑇 (𝑝) =
{
ℓ
(𝑘)
𝑖
(𝑝 (𝑘)) |𝑘 = 1 to#𝐿𝑇 (𝑝)

}
where ℓ(𝑘)

𝑖
∈ 𝐿𝑇 (𝑖 = −𝜏, . . . , 0, . . . , 𝜏), the term ℓ

(𝑘)
𝑖
(𝑝 (𝑘)) expresses the linguistic term

ℓ
(𝑘)
𝑖

associated with the probability 𝑝 (𝑘) , 0 ≤ ∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) ≤ 1, and #𝐿𝑇 (𝑝) represents

the number of all given distinct linguistic terms in 𝐿𝑇 (𝑝).

It is noted that if
∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) = 1 represents complete information of probabilistic

distribution of each plausible linguistic terms; if
∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) < 1 represents the exis-

tence of partial ignorance which persists in practical decision-making problems and if∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) = 0 represents complete ignorance.

Next, the details of the normalizing method for PLTS 𝐿𝑇 (𝑝) with
∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) < 1 is

given below:

Definition 4.2.2. [235] Given a PLTS 𝐿𝑇 (𝑝) with
∑#𝐿𝑇 (𝑝)
𝑘=1 𝑝 (𝑘) < 1, the normalized PLTS

𝐿𝑇 (𝑝) is defined as: 𝐿𝑇 (𝑝) =
{
ℓ
(𝑘)
𝑖
(𝑝 (𝑘)) | 𝑘 = 1 to#𝐿𝑇 (𝑝)

}
where 𝑝 (𝑘) = 𝑝 (𝑘)∑#𝐿𝑇 (𝑝)

𝑘=1 𝑝 (𝑘)
for

all 𝑘 = 1 to#𝐿𝑇 (𝑝).

4.2.2 A zeros-sum matrix game

We review some elementary definitions from classical matrix GT taken from popular

text Barron [36].

Definition 4.2.3. [36] A two-person ZSMG 𝐺 is described as a triplet (𝑆1, 𝑆2, 𝐴), where

𝑆1 and 𝑆2 termed as a finite strategy set for player I (PI) and player II (PII), respectively,

and 𝐴 is a real-valued payoff matrix of PI against PII while −𝐴 is regarded as the real-

valued payoff matrix for PII.

Definition 4.2.4. [36] Given matrix 𝐴 = [𝑎𝑖 𝑗 ]𝑛×𝑚, let 𝑣− and 𝑣+ are the values correspond-

ing to PI and PII, respectively such that: 𝑣− = max
𝑖=1,...,𝑛

min
𝑗=1,...,𝑚

𝑎𝑖 𝑗 ; 𝑣+ = min
𝑗=1,...,𝑚

max
𝑖=1,...,𝑛

𝑎𝑖 𝑗 .
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Definition 4.2.5. [36] Suppose (𝑥, 𝑦) ∈ 𝑆1 × 𝑆2 is considered to be an ordered pair of
mixed strategy, such that

𝑆1 =

(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,
𝑛∑︁
𝑖=1
𝑥𝑖 = 1

 ;

𝑆2 =

(𝑦1, . . . , 𝑦𝑚) : 𝑦 𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑚,
𝑚∑︁
𝑗=1
𝑦 𝑗 = 1

 .
Here, 𝑥𝑖 is taken as the probability of PI selecting strategy 𝑖 and 𝑦 𝑗 is the probability of

PII choosing strategy 𝑗 .

For more comprehensive overview about crisp zero-sum matrix game, one can refer to

the text in [36].

4.3 Probabilistic multiplicative unbalanced linguistic term

set

The present section is devoted to the concept of PM-ULTSs. Followed by the intro-

duction of novel comparison method, some operational laws and its properties and the

aggregation operators.

4.3.1 The notion of the probabilistic multiplicative unbalanced lin-

guistic term set

In literature, the idea of reflecting the probabilistic information for the evenly distributed

linguistic terms is proposed by Pang et al. [235]. Analogously, we define the concept of

PM-ULTSs in considering the case where the linguistic terms are unevenly distributed in

the following definition:

Definition 4.3.1. Let 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑚

}
be an ULTS where n and m may or

may not be equal and 𝑎 > 1, a probabilistic multiplicative ULTS is defined as: 𝐿𝑆(𝑝) ={
𝑡
(𝑘)
𝑎𝑖
(𝑝 (𝑘)) | 𝑘 = 1, 2, . . . , #𝐿𝑆(𝑝)

}
where 𝑡 (𝑘)

𝑎𝑖
∈ 𝐿𝑆, 𝑝 (𝑘) ≥ 0,

∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) may or may

not be equal to 1 and #𝐿𝑆(𝑝) is the cardinality of the multiplicative unbalanced linguistic

terms in 𝐿𝑆(𝑝).

Note 4.3.1. The term 𝑡
(𝑘)
𝑎𝑖
(𝑝 (𝑘)) is interpreted as unbalanced linguistic term 𝑡𝑎𝑖 associated

with the probability 𝑝 (𝑘) .
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It is noted that if
∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) < 1 or

∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) > 1 then the probability information

within the set is incomplete whereas if
∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) = 1 then the information is complete.

Remark 4.3.1. For the incomplete PM-ULTS, we perform the normalization process to

transform the set into complete PM-ULTS. The normalization of the PM-ULTS can be

acquired by using the following steps:

(i) Normalize the probability of PM-ULTS. If
∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) ≠ 1, then the given PM-

ULTS is defined as 𝐿𝑆(𝑝) =
{
𝑡𝑘
𝑎𝑖
(𝑝𝑘 ) |∑#𝐿𝑆(𝑝)

𝑘=1 𝑝𝑘 = 1
}

where 𝑝 =
𝑝𝑘∑#𝐿𝑆 (𝑝)

𝑘=1 𝑝 (𝑘)
, 𝑡𝑎𝑖 ∈

𝐿𝑆, 𝑝 (𝑘) ≥ 0, and 𝑘 = 1 to#𝐿𝑆(𝑝);

(ii) Normalize the granularity of PM-ULTS. Let 𝐿𝑆1(𝑝) and 𝐿𝑆2(𝑝) are two PM-ULTS

such that #𝐿𝑆1(𝑝), #𝐿𝑆2(𝑝) represent the cardinalities of the set respectively. If

#𝐿𝑆1(𝑝) < #𝐿𝑆2(𝑝), we add #𝐿𝑆2(𝑝) − #𝐿𝑆1(𝑝) multiplicative unbalanced lin-

guistic terms to the set 𝐿𝑆1(𝑝), so that both PM-ULTSs have equal cardinalities.

It is noted that the added multiplicative unbalanced linguistic terms are the least

one having the probability as zero in 𝐿𝑆1(𝑝).

Henceforth, the resultant PM-ULTSs are termed as the normalized PM-ULTSs. Hereafter,

for the sake of convenience we refer 𝐿𝑆1(𝑝) and 𝐿𝑆2(𝑝) as normalized PM-ULTS.

Unless otherwise mentioned, the PM-ULTS is always presupposed to be a normalized

PM-ULTS. Furthermore, it is viewed that in general PM-ULTS are not ordered set, there-

fore to fix the position of probabilistic multiplicative unbalanced linguistic terms we define

ordered PM-ULTSs in the following fashion.

Definition 4.3.2. Given a PM-ULTS 𝐿𝑆(𝑝) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝 (𝑘)) | 𝑘 = 1, 2, . . . , #𝐿𝑆(𝑝)

}
, then 𝐿𝑆(𝑝)

is termed as an ordered PM-ULTS if the unbalanced linguistic terms 𝑡 (𝑘)
𝑎𝑖
(𝑝 (𝑘)) (𝑘 = 1, . . . , #𝐿𝑆(𝑝))

are arranged in a descending order of the values 𝑎𝑖 · 𝑝 for each 𝑘 .

Next, in literature, Mao et al. [204] designed a possibility degree algorithm to rank

series of classic PLTSs which is robust and beneficial approach. On the similar lines, the

simplified ranking method to rank PM-ULTSs can also be stated.

Definition 4.3.3. Given ULTS 𝐿𝑆. Assume 𝐿𝑆1(𝑝) =
{
𝑡
(𝑘1)
𝑎𝑖
(𝑝1
(𝑘1) |𝑘1 = 1 to#𝐿𝑆1(𝑝)

}
and 𝐿𝑆2(𝑝) = { 𝑡 (𝑘2)

𝑎 𝑗
(𝑝2
(𝑘2) |𝑘2 = 1 to#𝐿𝑆1(𝑝) } for (𝑖, 𝑗 = −𝑛, . . . , 0, . . . , 𝑚) are two nor-
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malized PM-ULTSs. Then, an unbalanced binary relation �̂�(𝑡 (𝑘1)
𝑎𝑖

, 𝑡
(𝑘2)
𝑎 𝑗
) is defined as:

�̂�(𝑡 (𝑘1)
𝑎𝑖

, 𝑡
(𝑘2)
𝑎 𝑗
) =


𝑝1

𝑘1 𝑝2
𝑘2 , if𝑎𝑖 > 𝑎 𝑗

1
2 𝑝1

𝑘1 𝑝2
𝑘2 , if𝑎𝑖 = 𝑎 𝑗

0, if𝑎𝑖 < 𝑎 𝑗

(4.3.1)

From Eq. (4.3.1) we can infer that the possibility degree of 𝑡 (𝑘1)
𝑎𝑖

in 𝐿𝑆1(𝑝) is greater

than 𝑡 (𝑘2)
𝑎 𝑗

in 𝐿𝑆2(𝑝). Hence, the possibility degree is given as:

𝑃(𝐿𝑆1(𝑝) ≥ 𝐿𝑆2(𝑝)) =
#𝐿𝑆1 (𝑝)∑︁
𝑘1=1

#𝐿𝑆2 (𝑝)∑︁
𝑘2=1

�̂�(𝑡 (𝑘1)
𝑎𝑖

, 𝑡
(𝑘2)
𝑎 𝑗
) (4.3.2)

Mao et al. [204] have defined some desirable properties of the possibility degree for

the classic normalized PLTSs. However, it is anticipated that these properties hold true

even for the case of normalized PM-ULTSs. Meanwhile, for the case if 𝑃(𝐿𝑆1(𝑝) ≥
𝐿𝑆2(𝑝)) = 𝑃(𝐿𝑆2(𝑝) ≥ 𝐿𝑆1(𝑝)) = 0.5, then it can be concluded that the classic PLTSs

cannot be compared and hence, range value of PLTSs is calculated which represents the

degree of dispersion. On the similar grounds, the range value for normalized PM-ULTSs

𝐿𝑆(𝑝) is stated as follows:

Definition 4.3.4. Let 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑚

}
be an ULTS and 𝐿𝑆(𝑝) = { 𝑡 (𝑘)

𝑎𝑖
(𝑝 (𝑘) |𝑘1 =

1 to#𝐿𝑆(𝑝) } be a normalized PM-ULTS. Let 𝑎 (𝑘)
𝑖
(𝑖 =−𝑛, . . . ,0, 1, . . . ,𝑚) be the subscript

of unbalanced linguistic term 𝑡
(𝑘)
𝑎𝑖

. Let 𝑎𝑖
(−)

= min𝑘
{
𝑎𝑖

}
and 𝑎𝑖

(+)
= max𝑘

{
𝑎𝑖

}
be the lower

and upper boundaries of the term 𝑡
(𝑘)
𝑎𝑖

, 𝑝− and 𝑝+ be the respective probabilities. Then,

the range value is given as:

𝑅(𝐿𝑆(𝑝)) = |𝑎𝑖 (+) 𝑝+− 𝑎𝑖 (−) 𝑝− |. (4.3.3)

After combining the possibility degree alongwith the range value, Mao et al. [204] de-

fined the ordered relation for two classic PLTSs. In similar fashion, a simplified proposal

of the ordered relation for two normalized PM-ULTS 𝐿𝑆1(𝑝) and 𝐿𝑆2(𝑝) can be stated

below:

Definition 4.3.5. Let 𝐿𝑆1(𝑝) and 𝐿𝑆2(𝑝) be any two normalized PM-ULTS. Then,

(i) If 𝑃(𝐿𝑆1(𝑝) ≥ 𝐿𝑆2(𝑝)) > 0.5, then 𝐿𝑆1(𝑝) > 𝐿𝑆2(𝑝);
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(ii) If 𝑃(𝐿𝑆1(𝑝) ≥ 𝐿𝑆2(𝑝)) = 0.5, then

(a) if 𝑅(𝐿𝑆1(𝑝)) < 𝑅(𝐿𝑆2(𝑝)), then 𝐿𝑆1(𝑝) > 𝐿𝑆2(𝑝);

(b) if 𝑅(𝐿𝑆1(𝑝)) = 𝑅(𝐿𝑆2(𝑝)), then 𝐿𝑆1(𝑝) = 𝐿𝑆2(𝑝).

Next, based on the analysis mentioned above, Mao et al. [204] states a possibility algo-

rithm to rank given list of classic PLTSs. Analogously, we propose a possibility algorithm

to rank list of normalized PM-ULTSs 𝐿𝑆𝑖 (𝑝) (𝑖 = 1, 2, . . . , 𝑛)

Step 1: Calculate the possibility degrees 𝑃𝑖 𝑗 = 𝑃(𝐿𝑆𝑖 (𝑝) ≥ 𝐿𝑆 𝑗 (𝑝)) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) using

Eq. (4.3.2) and the range value 𝑅(𝐿𝑆𝑖 (𝑝)) (𝑖 = 1, 2, . . . , 𝑛) using Eq. (4.3.3).

Step 2: Calculate the superior index 𝑃𝑖 =
∑𝑛
𝑗=1𝑃𝑖 𝑗 .

Step 3: The descending values of 𝑃𝑖 generates the desired ranking order of 𝐿𝑆𝑖 (𝑝) (𝑖 =
1, 2, . . . , 𝑛). However, if for some 𝐿𝑆𝑖 (𝑝) the value of superior index is equal, then

the reordering of 𝐿𝑆𝑖 (𝑝) is given by the ascending value of 𝑅(𝐿𝑆𝑖 (𝑝)).

We proceed to define the negation of PM-ULTS in the following manner.

Definition 4.3.6. Let 𝐿𝑆(𝑝) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝 (𝑘)) |𝑘 = 1 to#𝐿𝑆(𝑝)

}
be a normalized PM-ULTS.

Then, the negation of PM-ULTS is defined as: neg(𝐿𝑆(𝑝)) = { neg(𝑡𝑎𝑖 ) (𝑘) ((𝑝) (𝑘)) | 𝑘 =
1, 2, . . . , #𝐿𝑆(𝑝) }.

Next, for clarity of the ranking algorithm defined, we give the following example:

Example 4.3.1. Consider the list of four PM-ULTS i.e., 𝐿𝑆1(𝑝) = { 𝑡1/23 (0.1), 𝑡1/22 (0.4),
𝑡20 (0.3), 𝑡2(0.2) }, 𝐿𝑆2(𝑝) =

{
𝑡1/2(0.5), 𝑡20 (0.5)

}
, 𝐿𝑆3(𝑝) =

{
𝑡22 (0.2), 𝑡23 (0.8)

}
, 𝐿𝑆4(𝑝) ={

𝑡22 (0.4), 𝑡23 (0.6)
}

based on ULTS 𝐿𝑆 = { 𝑡1/23 , 𝑡1/22 , 𝑡1/2, 𝑡20 , 𝑡21 , 𝑡22 , 𝑡23 }. Now, we will

apply the proposed ranking algorithm to rank the given list of PM-ULTSs.

Step 1: Calculate the possibility degrees 𝑃𝑖 𝑗 (𝑖, 𝑗 = 1, 2, 3, 4) using Eq. (4.3.2) and the range

value 𝑅(𝐿𝑆𝑖 (𝑝)) (𝑖 = 1, 2, 3, 4) using Eq. (4.3.3) as demonstrated: 𝑃11 = 0.5, 𝑃12 =

0.425, 𝑃13 = 0, 𝑃14 = 0, 𝑃21 = 0.575, 𝑃22 = 0.5, 𝑃23 = 0, 𝑃24 = 0, 𝑃31 = 1, 𝑃32 = 1,

𝑃33 = 0.5, 𝑃34 = 0.68, 𝑃41 = 1, 𝑃42 = 1, 𝑃43 = 0.32, 𝑃44 = 0.5. 𝑅(𝐿𝑆1(𝑝)) = 0.3875,

𝑅(𝐿𝑆2(𝑝)) = 0.25, 𝑅(𝐿𝑆3(𝑝)) = 5.6, 𝑅(𝐿𝑆4(𝑝)) = 3.2.

Step 2: The corresponding superior index 𝑃𝑖 =
∑4
𝑗=1𝑃𝑖 𝑗 (𝑖 = 1, 2, 3, 4) is obtained as: 𝑃1 =

0.925, 𝑃2 = 1.075, 𝑃3 = 3.18, 𝑃4 = 2.82.
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Step 3: From the values of 𝑃𝑖 (𝑖 = 1, 2, 3, 4) and 𝑅(𝐿𝑆𝑖 (𝑝)) (𝑖 = 1, 2, 3, 4) obtained in

the previous steps, the ranking order is given as: 𝐿𝑆3(𝑝) ≻ 𝐿𝑆4(𝑝) ≻ 𝐿𝑆2(𝑝) ≻
𝐿𝑆1(𝑝).

4.3.2 Operational laws for probabilistic multiplicative unbalanced lin-

guistic terms

In the present section we will present some new operational laws primarily based on the

given PM-ULTSs. For this, we will assume that all PM-ULTSs are normalized and have

equal cardinality, i.e., for each PM-ULTSs 𝐿𝑆1(𝑝1) and 𝐿𝑆2(𝑝2), we have
∑#𝐿𝑆1 (𝑝1)
𝑘=1 𝑝𝑘1 =∑#𝐿𝑆2 (𝑝2)

𝑘=1 𝑝𝑘2 = 1 and #𝐿𝑆1(𝑝1) = #𝐿𝑆2(𝑝2).

Definition 4.3.7. Let 𝐿𝑆1(𝑝1) and 𝐿𝑆2(𝑝2) be any two arbitrary ordered PM-ULTSs,

𝐿𝑆1(𝑝1) = { 𝑡 (𝑘)𝑎𝑖 (𝑝1
𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1) } and 𝐿𝑆2(𝑝2) =

{
𝑡
(𝑘)
𝑎 𝑗
(𝑝2

𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆2(𝑝2)
}

for (𝑖, 𝑗 = −𝑛, . . . , 0, . . . , 𝑚). Then, the operational laws based on minimum distance mea-

sures are given as follows:

(1) Addition operation

𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) =
{
𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 (𝑝

𝑘
1 ⊕ 𝑝

𝑘
2) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
(2) Multiplication operation

𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2) =
{
𝑡
(𝑘)
𝑎𝑖⊗𝑎 𝑗 (𝑝

𝑘
1 ⊗ 𝑝

𝑘
2) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
.

(3) Scalar multiplication operation

For 𝜆 ∈ (0, 1) being any arbitrary scalar, 𝜆⊙𝐿𝑆(𝑝) =
{
𝑡
(𝑘)
𝜆⊙𝑎𝑖 (𝑝

𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆(𝑝)
}
.

(4) Power operation

(𝐿𝑆(𝑝))𝜆 =
{
𝑡
(𝑘)
𝑎𝜆𝑖
(𝑝 (𝑘)) | 𝑘 = 1, 2, . . . , #𝐿𝑆(𝑝)

}
Given the two arbitrary PM-ULTSs 𝐿𝑆1(𝑝1) and 𝐿𝑆2(𝑝2), the computational values for

the aforementioned operational laws can be outlined in the Algorithm 4.3.1, 4.3.2, 4.3.3,

and 4.3.4.

Algorithm 4.3.1. Computation of 𝑡 (𝑘)
𝑎𝑖⊕𝑎 𝑗 and 𝑝 (𝑘)1 ⊕ 𝑝

(𝑘)
2

Input: 𝐿𝑆1(𝑝1) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝1

𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)
}

and 𝐿𝑆2(𝑝2) = { 𝑡 (𝑘)𝑎 𝑗 (𝑝2
𝑘 ) | 𝑘 =

1, 2, . . . ,#𝐿𝑆2(𝑝1) }, (𝑖, 𝑗 = −𝑛, . . . ,0, 1, . . . , 𝑚) where 𝑎 > 1 and n may or may not be

equal.
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Output: 𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) =
{
𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 (𝑝

𝑘
1 ⊕ 𝑝

𝑘
2) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
,

Begin:

for 𝑘← 1 to #𝐿𝑆1(𝑝1) do

if 𝑡 (𝑘)
𝑎𝑖⊕𝑎 𝑗 ∈

{
𝑡𝑎−𝑛 , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
then

𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 = 𝑡

(𝑘)
𝑎𝑖+𝑎 𝑗 ;

end if

if 𝑡 (𝑘)
𝑎𝑖⊕𝑎 𝑗 ∉

{
𝑡𝑎−𝑛 , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
then

𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 ← 𝑡

(𝑘)
𝑑

where

𝑑←


𝑎𝑖 + 𝑎 𝑗 if 𝑑 ∈ [𝑎−𝑛, 𝑎𝑚];

𝑎𝑖 + 𝑎 𝑗 − 𝑎𝑚 otherwise.
.

if 𝑑 ∈ [𝑎−𝑛, 𝑎𝑚] or𝑑 ∉ [𝑎−𝑛, 𝑎𝑚] then

𝑖𝐿← argmin𝑖
{
𝑑 − 𝑎𝑖 | 𝑑 − 𝑎𝑖 ≥ 0

}
;

𝑖𝑅← argmax𝑖
{
𝑑 − 𝑎𝑖 | 𝑑 − 𝑎𝑖 ≤ 0

}
, for (𝑖 = −𝑛, . . . ,0, . . . ,𝑚).

Compute:

𝐷 𝑙𝑒 𝑓 𝑡← 𝑑 − 𝑎𝑖𝐿 and 𝐷𝑟𝑖𝑔ℎ𝑡← 𝑑 − 𝑎𝑖𝑅 where 𝑖𝐿 , 𝑖𝑅 ∈ (−𝑛, . . . ,0, . . . ,𝑚)
Define: 𝐷 = min(𝐷 𝑙𝑒 𝑓 𝑡 , |𝐷𝑟𝑖𝑔ℎ𝑡 |)
if 𝐷← 𝐷 𝑙𝑒 𝑓 𝑡 then

𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 = 𝑡

(𝑘)
𝑎𝑖𝐿

else

𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 = 𝑡

(𝑘)
𝑎𝑖𝑅

end if

end if

end if

Next compute for 𝑝 (𝑘)1 ⊕ 𝑝
(𝑘)
2 :

𝑝
(𝑘)
1 ⊕ 𝑝

(𝑘)
2 ← 𝑝

(𝑘)
3 , where 𝑝 (𝑘)3 ←


𝑝𝑘1 + 𝑝

𝑘
2 , if 𝑝1 + 𝑝2 ≤ 1;

𝑝𝑘1 + 𝑝
𝑘
2 −1, if 𝑝1 + 𝑝2 > 1.

if
∑#𝐿𝑆 (𝑝1)
𝑘=1 𝑝

(𝑘)
3 ← 1 then

done

else

𝑝
(𝑘)
3 ←

𝑝
(𝑘)
3∑#𝐿𝑆1 (𝑝1)

𝑘=1 𝑝
(𝑘)
3

end if

end for

Algorithm 4.3.2. Computation of 𝑡 (𝑘)
𝑎𝑖⊗𝑎 𝑗 and 𝑝 (𝑘)1 ⊗ 𝑝

(𝑘)
2

Input: 𝐿𝑆1(𝑝1) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝1

𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)
}

and 𝐿𝑆2(𝑝2) = { 𝑡 (𝑘)𝑎 𝑗 (𝑝2
𝑘 ) | 𝑘 =
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1, 2, . . . ,#𝐿𝑆2(𝑝1) }, (𝑖, 𝑗 = −𝑛, . . . ,0, 1, . . . , 𝑚) where 𝑎 > 1 and n may or may not be

equal.

Output: 𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2) =
{
𝑡
(𝑘)
𝑎𝑖⊗𝑎 𝑗 (𝑝

𝑘
1 ⊗ 𝑝

𝑘
2) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
,

Begin:

𝑘← 1

while 𝑘 ≤ #𝐿𝑆1(𝑝1) do

𝑡
(𝑘)
𝑎𝑖⊗𝑎 𝑗 ←


𝑡𝑘
𝑎𝑖+ 𝑗+𝑛

if 𝑖 + 𝑗 < −𝑛;

𝑡𝑘
𝑎𝑖+ 𝑗

if 𝑖 + 𝑗 ∈
{
−𝑛, −(𝑛−1), . . . ,0, . . . ,𝑚

}
𝑡𝑘
𝑎𝑖+ 𝑗−𝑚

if 𝑖 + 𝑗 > 𝑚.

and

𝑝𝑘1 ⊗ 𝑝
𝑘
2 ← 𝑝

(𝑘)
3 , 𝑝

(𝑘)
3 =

𝑝
(𝑘)
3∑#𝐿𝑆1 (𝑝1)

𝑘=1 𝑝
(𝑘)
3

end while

Algorithm 4.3.3. Computation of 𝑡 (𝑘)
𝜆⊙𝑎𝑖

Input: 𝐿𝑆(𝑝) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆(𝑝)

}
, where 𝑎 > 1 and n may or may not be

equal and 𝜆 ∈ (0, 1).
Output: 𝜆 ⊙ 𝐿𝑆(𝑝) =

{
𝑡
(𝑘)
𝜆⊙𝑎𝑖 (𝑝

𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆(𝑝)
}

Begin:

for 𝑘← 1 to #𝐿𝑆1(𝑝1) do

if 𝑡 (𝑘)
𝜆⊙𝑎𝑖 ∈

{
𝑡𝑎−𝑛 , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
then

𝑡
(𝑘)
𝜆⊙𝑎𝑖 = 𝑡

(𝑘)
𝜆·𝑎𝑖 ;

else

if 𝑡 (𝑘)
𝜆⊙𝑎𝑖 ∉

{
𝑡𝑎−𝑛 , . . . , 𝑡𝑎0 , . . . , 𝑡𝑎𝑚

}
then

𝑡
(𝑘)
𝜆⊙𝑎𝑖 ← 𝑡

(𝑘)
𝑑

where

𝑑←


𝑡𝑘
𝜆·𝑎𝑖+𝑎−𝑛 if 𝑑 ∉ [𝑎−𝑛, 𝑎𝑚];

𝑡𝑘
𝜆·𝑎𝑖 if 𝑑 ∈ [𝑎−𝑛, 𝑎𝑚]

if 𝑑 ∈ [𝑎−𝑛, 𝑎𝑚] or𝑑 ∉ [𝑎−𝑛, 𝑎𝑚] then

𝑖𝐿← argmin𝑖
{
𝑑 − 𝑎𝑖 | 𝑑 − 𝑎𝑖 ≥ 0

}
;

𝑖𝑅← argmax𝑖
{
𝑑 − 𝑎𝑖 | 𝑑 − 𝑎𝑖 ≤ 0

}
, for (𝑖 = −𝑛, . . . ,0, . . . ,𝑚).

Compute:

𝐷 𝑙𝑒 𝑓 𝑡← 𝑑 − 𝑎𝑖𝐿 and 𝐷𝑟𝑖𝑔ℎ𝑡← 𝑑 − 𝑎𝑖𝑅 where 𝑖𝐿 , 𝑖𝑅 ∈ (−𝑛, . . . ,0, . . . ,𝑚)
Define: 𝐷 = min(𝐷 𝑙𝑒 𝑓 𝑡 , |𝐷𝑟𝑖𝑔ℎ𝑡 |)
if 𝐷← 𝐷 𝑙𝑒 𝑓 𝑡 then

𝑡
(𝑘)
𝜆⊙𝑎𝑖 = 𝑡

(𝑘)
𝑎𝑖𝐿

else
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𝑡
(𝑘)
𝜆⊙𝑎𝑖 = 𝑡

(𝑘)
𝑎𝑖𝑅

end if

end if

end if

end if

end for

Algorithm 4.3.4. Computation of 𝑡 (𝑘)
𝑎𝜆·𝑖

Input: 𝐿𝑆(𝑝) =
{
𝑡
(𝑘)
𝑎𝑖
(𝑝𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆(𝑝)

}
, where 𝑎 > 1 and n may or may not be

equal and 𝜆 ∈ (0, 1).
Output: 𝐿𝑆(𝑝)𝜆 =

{
𝑡
(𝑘)
𝑎𝜆·𝑖
(𝑝𝑘 ) | 𝑘 = 1, 2, . . . ,#𝐿𝑆(𝑝)

}
,

Begin:

for 𝑘← 1 to #𝐿𝑆1(𝑝1) do

if 𝜆 · 𝑖 ∈
{
−𝑛, −(𝑛−1), . . . ,0, . . . , 𝑚

}
then

done

else

if 𝜆 · 𝑖 ∉
{
−𝑛, −(𝑛−1), . . . ,0, . . . , 𝑚

}
then

𝑖𝐿← argmin𝑖
{
(𝜆 · 𝑖) − 𝑎𝑖 | (𝜆 · 𝑖) − 𝑎𝑖 ≥ 0

}
;

𝑖𝑅← argmax𝑖
{
(𝜆 · 𝑖) − 𝑎𝑖 | (𝜆 · 𝑖) − 𝑎𝑖 ≤ 0

}
, for (𝑖 = −𝑛, . . . ,0, . . . ,𝑚).

Define: 𝐼 = min(𝑖𝐿 , |𝑖𝑅 |)
if 𝐼← 𝑖𝐿 then

𝑡
(𝑘)
𝑎𝜆·𝑖

= 𝑡
(𝑘)
𝑎𝑖𝐿

else

𝑡
(𝑘)
𝑎𝜆·𝑖

= 𝑡
(𝑘)
𝑎𝑖𝑅

end if

end if

end if

end for

Remark 4.3.2. The final outcomes obtained after using the operational laws should pre-

serve the probability information.

Based on the definition 4.3.7 the subsequent properties of the aforementioned opera-

tional laws we can defined as follows.

Theorem 4.3.1. (Closure properties). Let Γ be the set of all PM-ULTSs, i.e., 𝐿𝑆1(𝑝1) ∈ Γ
and 𝐿𝑆2(𝑝2) ∈ Γ. Then,
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(i) 𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) ∈ Γ;

(ii) 𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2) ∈ Γ;

(iii) 𝜆 ⊙ 𝐿𝑆1(𝑝1) ∈ Γ;

(iv) (𝐿𝑆1(𝑝1))𝜆 ∈ Γ;

(v) neg(𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2)) ∈ Γ;

(vi) neg(𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2)) ∈ Γ;

(vii) neg(𝜆 ⊙ 𝐿𝑆1(𝑝1)) ∈ Γ;

(viii) neg((𝐿𝑆1(𝑝1))𝜆) ∈ Γ.

Proof. The proof of theorem 4.3.1 is trivial and can be followed directly from the defini-

tion 4.3.7. □

Theorem 4.3.2. (Commutative law). For any 𝐿𝑆1(𝑝1) and 𝐿𝑆2(𝑝2) we have:

(i) 𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) = 𝐿𝑆2(𝑝2) ⊕ 𝐿𝑆1(𝑝1);

(ii) 𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2) = 𝐿𝑆2(𝑝2) ⊗ 𝐿𝑆1(𝑝1).

Proof. According to the definition 4.3.7, we have

𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2)
=

{
𝑡
(𝑘)
𝑎𝑖⊕𝑎 𝑗 (𝑝

𝑘
1 ⊕ 𝑝

𝑘
2) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
=

{
𝑡
(𝑘)
𝑎 𝑗⊕𝑎𝑖 (𝑝

𝑘
2 ⊕ 𝑝

𝑘
1) | 𝑘 = 1, 2, . . . ,#𝐿𝑆1(𝑝1)

}
= 𝐿𝑆2(𝑝2) ⊕ 𝐿𝑆1(𝑝1).

Similarly, we can prove the second part. □

Theorem 4.3.3. (Associative law). Let 𝐿𝑆1(𝑝1), 𝐿𝑆2(𝑝2), 𝐿𝑆3(𝑝3) be any three normal-

ized PM-ULTSs, then

(i) 𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) ⊕ 𝐿𝑆3(𝑝3) = 𝐿𝑆1(𝑝1) ⊕ (𝐿𝑆2(𝑝2) ⊕ 𝐿𝑆3(𝑝3));

(ii) (𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2)) ⊗ 𝐿𝑆3(𝑝3) = 𝐿𝑆1(𝑝1) ⊗ (𝐿𝑆2(𝑝2) ⊗ 𝐿𝑆3(𝑝3)).

Proof. The proof of theorem 4.3.3 is trivial and therefore it is omitted. □

Remark 4.3.3. It is noteworthy to derive the subsequent conclusions based on the afore-

mentioned operational laws of PM-ULTSs.



127

(i) Linking the similar unbalanced linguistic terms having different probabilities asso-

ciated together. For instance, consider the terms 𝑡22 (0.2) and 𝑡22 (0.3), then we can

connect them into 𝑡22 (0.5) by summing up their corresponding probabilities. Nev-

ertheless, if the sum total of two probabilities is not within the bounds then it can

be re-translated by subtracting 1 from the resultant, i.e., if
∑𝑛
𝑖=1 𝑝𝑖 > 1 where 𝑛 is

the number of similar unbalanced linguistic terms, then
∑𝑛
𝑖=1 𝑝𝑖 − 1 would be the

resultant value.

(ii) We rank the resultant probabilistic multiplicative unbalanced linguistic terms ob-

tained after employing the operational laws in increasing order of its subscript.

(iii) The operational laws are defined in such a way that the resultant probabilistic infor-

mation is preserved.

An example can be presented to illustrate the whole mechanism of the above mentioned

operational laws and algebra operations.

Example 4.3.2. Let 𝐿𝑆 =
{
𝑡𝑎𝑖 | 𝑖 = −4, . . . ,0, . . . ,3

}
be a ULTS. For convenience, we take

𝑎 = 2. Let 𝐿𝑆1(𝑝1) = { 𝑡1/8(0.1276), 𝑡1(0.8147), 𝑡4(0.9572) } and 𝐿𝑆2(𝑝2) = { 𝑡1/16(0.9134),
𝑡1/2(0.9572), 𝑡8(0.4854) }. Since the given sets are not normalized, therefore we will

firstly normalize the given PM-ULTSs such that 𝐿𝑆1(𝑝1) =
{
𝑡1/8(0.0669), 𝑡1(0.4290), 𝑡4(0.5041)

}
and 𝐿𝑆2(𝑝2) =

{
𝑡1/16(0.3877), 𝑡1/2(0.4063), 𝑡8(0.2060)

}
, then

(1) 𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2)
=

{
𝑡1/8⊕1/16(0.4546), 𝑡1⊕1/2(0.8353), 𝑡4⊕8(0.7101)

}
=

{
𝑡0.1875(0.4546), 𝑡1.5(0.8353), 𝑡12(0.7101)

}
=

{
𝑡0.1250(0.2273), 𝑡1(0.41765), 𝑡4(0.3551)

}
.

(2) 𝐿𝑆1(𝑝1) ⊗ 𝐿𝑆2(𝑝2)
=

{
𝑡1/23⊗1/24 (0.0259), 𝑡1⊕1/2(0.1743), 𝑡22⊕23 (0.1038)

}
=

{
𝑡1/8(0.0259), 𝑡1/2(0.1743), 𝑡22 (0.1038)

}
=

{
𝑡1/8(0.0852), 𝑡1/2(0.5734), 𝑡4(0.3414)

}
.

(3) Take 𝜆 = 0.8.

0.8⊙ 𝐿𝑆1(𝑝1)
= 0.8⊙

{
𝑡1/8(0.0669), 𝑡1(0.4290), 𝑡4(0.5041)

}
=

{
𝑡0.1250(0.0669), 𝑡1(0.4290), 𝑡4(0.5041)

}
.
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(4) Take 𝜆 = 0.8.

(𝐿𝑆1(𝑝1))0.8

=
( {
𝑡1/23 (0.0669), 𝑡20 (0.4290), 𝑡22 (0.5041)

} )0.8

=

{
𝑡1/22 (0.0669), 𝑡1(0.4290), 𝑡22 (0.5041)

}
.

(5) neg(𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2))
=

{
neg(𝑡1/23) (0.7727),neg(𝑡1) (0.58235),neg(𝑡4) (0.6449)

}
=

{
𝑡23 (0.7727), 𝑡1(0.58235), 𝑡1/22 (0.6449)

}
=

{
𝑡1/22 (0.3225), 𝑡1(0.2912), 𝑡23 (0.3864)

}
.

4.3.3 Aggregation operators for PM-ULTSs

Considering the significance of aggregation operators in practical DM or matrix game

problems useful for emulsion of information, we will propose some elementary aggrega-

tion operators for PM-ULTSs.

Before we proceed to define the aggregation operators the PM-ULTSs utilized during

the operation are always presumed to be a normalized PM-ULTSs having equal cardinal-

ities.

Definition 4.3.8. Let
{
𝐿𝑆𝑖 (𝑝𝑖) |𝑖 = 1, 2, . . . , 𝐾

}
be the cluster of normalized PM-ULTSs.

The probabilistic multiplicative unbalanced linguistic averaging (PMULA) operator is de-

fined as a mapping 𝐿𝑆1(𝑝1) × 𝐿𝑆2(𝑝2) × . . .× 𝐿𝑆𝐾 (𝑝𝐾) → 𝐿𝑆(𝑝) such that

𝑃𝑀𝑈𝐿𝐴(𝐿𝑆1(𝑝1), 𝐿𝑆2(𝑝2), . . . , 𝐿𝑆𝐾 (𝑝𝐾))
= 1
𝐾
(𝐿𝑆1(𝑝1) ⊕ 𝐿𝑆2(𝑝2) ⊕ . . .⊕ 𝐿𝑆𝐾 (𝑝𝐾)).

Definition 4.3.9. Let
{
𝐿𝑆𝑖 (𝑝𝑖) |𝑖 = 1, 2, . . . , 𝐾

}
be the cluster of normalized PM-ULTSs.

Assign a relevant weight vector𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝐾) such that 𝑤𝑖 ∈ [0, 1] and
∑𝐾
𝑖=1𝑤𝑖 =

1. The probabilistic multiplicative unbalanced linguistic weighted averaging (PMULWA)

operator is defined as: 𝑃𝑀𝑈𝐿𝑊𝐴(𝐿𝑆1(𝑝1), 𝐿𝑆2(𝑝2), . . . , 𝐿𝑆𝐾 (𝑝𝐾))
= (𝑤1 ⊙ 𝐿𝑆1(𝑝1)) ⊕ . . .⊕ (𝑤𝐾 ⊙ 𝐿𝑆𝐾 (𝑝𝐾))
= (𝑤1⊙

{
𝑡
(𝑘)
𝑎𝑖1
(𝑝 (𝑘)1 ) |𝑘 = 1, . . . ,#𝐿𝑆1(𝑝1)

}
) ⊕ . . .⊕ (𝑤𝐾 ⊙

{
𝑡
(𝑘)
𝑎𝑖𝐾
(𝑝 (𝑘)

𝐾
) |𝑘 = 1, . . . ,#𝐿𝑆1(𝑝1)

}
).

Definition 4.3.10. Let
{
𝐿𝑆𝑖 (𝑝𝑖) |𝑖 = 1, 2, . . . , 𝐾

}
be the cluster of normalized PM-ULTSs.

Then the probabilistic multiplicative unbalanced linguistic geometric (PMULG) operator

is defined as: 𝑃𝑀𝑈𝐿𝐺 (𝐿𝑆1(𝑝1), 𝐿𝑆2(𝑝2), . . . , 𝐿𝑆𝐾 (𝑝𝐾))
= (𝐿𝑆1(𝑝1) ⊗ . . . 𝐿𝑆𝐾 (𝑝𝐾))1/𝐾

= (𝐿𝑆1(𝑝1))1/𝐾 ⊗ . . . (𝐿𝑆𝐾 (𝑝𝐾))1/𝐾 .
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Definition 4.3.11. Let
{
𝐿𝑆𝑖 (𝑝𝑖) |𝑖 = 1, 2, . . . , 𝐾

}
be the cluster of normalized PM-ULTSs.

Assign a relevant weight vector𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝐾) such that 𝑤𝑖 ∈ [0, 1] and
∑𝐾
𝑖=1𝑤𝑖 =

1. Then the probabilistic multiplicative unbalanced linguistic weighted geometric (PMULWG)

operator is defined as: 𝑃𝑀𝑈𝐿𝑊𝐺 (𝐿𝑆1(𝑝1), 𝐿𝑆2(𝑝2), . . . , 𝐿𝑆𝐾 (𝑝𝐾))
= (𝐿𝑆1(𝑝1))𝑤1 ⊗ . . . (𝐿𝑆𝐾 (𝑝𝐾))𝑤𝐾 .

Considering the flexibility and interpretability of PLTS to handle complex uncertainties,

numerous studies in the literature have been devoted to application and achievements.

Recently, Mi et al. [214] introduced a two-person ZSMG model taking probabilistic lin-

guistic information as input. However, real-life problems are not always subjected to

uniformly distributed LTSs. Henceforth, the subsequent section is explicitly dedicated to

introducing a constant-sum matrix game problem with probabilistic unbalanced linguis-

tic information. It is envisioned that the probabilistic multiplicative unbalanced linguistic

information has not been established in the current matrix game models to our optimum

knowledge.

4.4 Matrix games with probabilistic multiplicative unbal-

anced linguistic information

The present section proposes the notion of a constant-sum matrix game problem with

probabilistic unbalanced linguistic information. For this, we initially introduce the ter-

minology related to the constant-sum probabilistic unbalanced linguistic matrix game in

Section 4.4.1. Then, in Section 4.4.2 probabilistic unbalanced linguistic linear program-

ming methodology is developed to acquire the optimal strategy set in the absence of pure

strategy of corresponding players and the probabilistic unbalanced linguistic game value.

4.4.1 Terminology of a constant-sum probabilistic multiplicative un-

balanced linguistic information

Due to the perplexity and uncertainty present within the practical DM problems where

DMs prefer to present linguistic labels distributed non-uniformly, the probabilistic unbal-

anced linguistic information is introduced to model approximate payoff values.

Definition 4.4.1. A two-player constant-sum unbalanced linguistic game 𝐺 is described

as a quadruple (𝑆1, 𝑆2, 𝐿𝑆, 𝑅), where 𝑆1 and 𝑆2 represents the strategy set of the player

I (PI) and player II (PII), 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑚

}
having 𝑛+𝑚 +1 cardinality is a
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presupposed ULTS for both the PI and PII, 𝑅 = [𝐿𝑆𝑐𝑑 (𝑝)]𝑟×𝑞 is the payoff matrix for PI

with probabilistic unbalanced linguistic information denoted as:

𝑅 =

©«
𝐿𝑆11 (𝑝) 𝐿𝑆12 (𝑝) . . . 𝐿𝑆1𝑞 (𝑝)
𝐿𝑆21 (𝑝) 𝐿𝑆22 (𝑝) . . . 𝐿𝑆2𝑞 (𝑝)

...
...

. . .
...

𝐿𝑆𝑟1 (𝑝) 𝐿𝑆𝑟2 (𝑝) . . . 𝐿𝑆𝑟𝑞 (𝑝)

ª®®®®®®¬
where 𝐿𝑆𝑐𝑑 (𝑝) =

{
(𝑡𝑎𝑖 )𝑐𝑑 (𝑝 (𝑘)) |𝑘 = 1, . . . , #𝐿𝑆(𝑝)

}
, #𝐿𝑆11(𝑝) = #𝐿𝑆12(𝑝) = . . . = #𝐿𝑆𝑟𝑞 (𝑝) =

#𝐿𝑆(𝑝). On the contrary neg(𝑅) is the payoff matrix for PII.

It is worth observing that the probabilistic unbalanced linguistic payoff matrix 𝑅 =

[𝐿𝑆𝑐𝑑 (𝑝)]𝑟×𝑞 for PI is defined with the intention that each 𝐿𝑆𝑐𝑑 (𝑝) represents response

to strategy 𝑐 of PI, 𝑐 = 1, . . . , 𝑟 when PII selects strategy 𝑑, 𝑑 = 1, . . . , 𝑞, to play the

game. Consequently, the corresponding payoff of PI is 𝐿𝑆𝑐𝑑 (𝑝) while the payoff of PII is

neg(𝐿𝑆𝑐𝑑 (𝑝)).

A probabilistic unbalanced linguistic payoff implies the importance it holds for a game

player to play a particular strategy that can be easily expressed on a multiplicative unbal-

anced linguistic scale set, i.e., 𝐿𝑆.

Since the ranking of PM-ULTSs is possible and is defined in the previous section 4.3,

therefore the idea of the classical value of the game can be easily extended to the prob-

abilistic multiplicative unbalanced linguistic matrix game 𝐺. Furthermore, the PI and

PII are examined from the prospects of the gain floor and the lost ceiling, respectively.

Finally, the aim of players are esteemed as follows:

Definition 4.4.2. Let �̂� and 𝜔 are the values corresponding to PI and PII, respectively such

that:

�̂�1−(𝑝) = max
𝑐=1,...,𝑟

min
𝑑=1,...,𝑞

𝐿𝑆
(𝑘)
𝑐𝑑
(𝑝 (𝑘));

𝜔2−(𝑝) = max
𝑑=1,...,𝑞

min
𝑐=1,...,𝑟

neg(𝐿𝑆(𝑘)
𝑐𝑑
(𝑝 (𝑘))).

Note 4.4.1. From above definition, it is noted that �̂�(𝑝) = �̂�1−(𝑝) and𝜔(𝑝) = neg(𝜔2−(𝑝))
refers to the lower and upper value of the game 𝐺, respectively. The value of the game

is defined if �̂�(𝑝) = 𝜔(𝑝). Meanwhile, the strategies 𝑐∗ and 𝑑∗ offering the payoff value

𝐿𝑆𝑐∗𝑑∗ (𝑝) such that the equality condition holds are optimal pure strategies for PI and PII.

Also, the ordered strategy pair (𝑐∗, 𝑑∗) is ascertained as the saddle point of the game 𝐺.
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Note 4.4.2. Obviously from Remark 2.4.3, it is clear that

𝜔(𝑝) = neg(𝜔2− (𝑝))

= neg( max
𝑑=1,...,𝑞

min
𝑐=1,...,𝑟

neg(𝐿𝑆 (𝑘)
𝑐𝑑
(𝑝 (𝑘) )))

= min
𝑑=1,...,𝑞

max
𝑐=1,...,𝑟

𝐿𝑆
(𝑘)
𝑐𝑑
(𝑝 (𝑘) ).

Since the above analysis holds true only for the case 𝑛 = 𝑚, therefore, we consider the

following example having predefined ULTS for 𝑛 = 𝑚 to understand the above concept of

the matrix game.

Example 4.4.1. Let 𝐿𝑆 =
{
𝑡1/8, 𝑡1/4, 𝑡1/2, 𝑡20 , 𝑡2, 𝑡22 , 𝑡23

}
be the presumed ULTS. Suppose

for PI the probabilistic unbalanced linguistic payoff matrix 𝑅 having all the PM-ULTSs

as payoff entries is stated in the Table 4.1 and additionally, the payoff matrix for PII i.e.,

neg(𝑅) is given in Table 4.2.

𝐶1 𝐶2 𝐶3
𝑅1

{
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

} {
𝑡2(0.6), 𝑡22 (0.4), 𝑡21 (0)

} {
𝑡22 (0.3), 𝑡23 (0.7), 𝑡22 (0)

}
𝑅2

{
𝑡1/8(0.8), 𝑡1/4(0.2), 𝑡1/4(0)

} {
𝑡1/4(0.6), 𝑡1/2(0.4), 𝑡1/4(0)

} {
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

}
𝑅3

{
𝑡1/8(0.8), 𝑡1/4(0.2), 𝑡1/4(0)

} {
𝑡22 (0.3), 𝑡23 (0.7), 𝑡22 (0)

} {
𝑡22 (0.3), 𝑡23 (0.7), 𝑡22 (0)

}
Table 4.1: The comprehensive evaluation payoff matrix 𝑅 in form of PM-ULTSs

𝐶1 𝐶2 𝐶3
𝑅1

{
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

} {
𝑡1/2(0.6), 𝑡1/4(0.4), 𝑡1/2(0)

} {
𝑡1/4(0.3), 𝑡1/8(0.7), 𝑡1/4(0)

}
𝑅2

{
𝑡8(0.8), 𝑡4(0.2), 𝑡4(0)

} {
𝑡4(0.6), 𝑡2(0.4), 𝑡4(0)

} {
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

}
𝑅3

{
𝑡8(0.8), 𝑡4(0.2), 𝑡4(0)

} {
𝑡1/4(0.3), 𝑡1/8(0.7), 𝑡1/4(0)

} {
𝑡1/4(0.3), 𝑡1/8(0.7), 𝑡1/4(0)

}
Table 4.2: The comprehensive evaluation payoff matrix neg(𝑅) in form of PM-ULTSs

From the given payoff matrices, it is anticipated that each payoff entry provided in

the form of PM-ULTSs are normalized with equal cardinalities. Hence, we can proceed

further. Now, based on the ranking algorithm and definition 4.3.5 given in the previous

section, one can order the PM-ULTSs 𝐿𝑆𝑐𝑑 (𝑝) as well as neg(𝐿𝑆𝑐𝑑 (𝑝)). Therefore, the

lower and upper values of the game are given as follows:

For gain floor: PI

�̂�1− (𝑝) = �̂�(𝑝)

= max
𝑐=1,2,3

min
𝑑=1,2,3,4

𝐿𝑆𝑐𝑑 (𝑝𝑐𝑑)

=
{
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

}
For loss ceiling: PII
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𝜔2− (𝑝) = max
𝑑=1,2,3,4

min
𝑐=1,2,3

neg(𝐿𝑆𝑐𝑑 (𝑝𝑐𝑑))

=
{
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

}
Hence, in this instance (1, 1) is the saddle point and probabilistic unbalanced linguistic

value of the game is �̂�(𝑝) = 𝜔(𝑝) =
{
𝑡20 (1), 𝑡20 (0), 𝑡20 (0)

}
.

However, it is not always plausible for a probabilistic unbalanced linguistic matrix game

to have an equality i.e., �̂�(𝑝) = 𝜔(𝑝). In general, the following inequality exist for any

probabilistic unbalanced linguistic matrix game.

Theorem 4.4.1. Suppose �̂�(𝑝) and 𝜔(𝑝) be the probabilistic unbalanced linguistic lower

and upper values of probabilistic unbalanced linguistic matrix game 𝐺 such that both

values exist. Then, �̂�(𝑝) ≤ 𝜔(𝑝).

Proof. Without loss of generality, let �̂�(𝑝) and 𝜔(𝑝) both exist, so that for some column

𝑑 and fixed row 𝑐, we have,

min
𝑑=1,...,𝑞

𝐿𝑆𝑐𝑑 (𝑝) ≤ 𝐿𝑆𝑐𝑑 (𝑝),

Now, take max over 𝑐 = 1, . . . , 𝑟 on both sides, such that,

�̂�(𝑝) ≡ max
𝑐=1,...,𝑟

min
𝑑=1,...,𝑞

𝐿𝑆𝑐𝑑 (𝑝) ≤ max
𝑐=1,...,𝑟

𝐿𝑆𝑐𝑑 (𝑝)

⇒ �̂�(𝑝) ≤ max
𝑐=1,...,𝑟

𝐿𝑆𝑐𝑑 (𝑝).

Seeing that the above inequality claims for any 𝑑. Hence, the subsequent inequality is

obtained.

�̂�(𝑝) ≤ min
𝑑=1,...,𝑞

max
𝑐=1,...,𝑟

𝐿𝑆𝑐𝑑 (𝑝)

Hence, �̂�(𝑝) ≤ 𝜔(𝑝). □

Considering the crisp setup of a 2-person ZSMG where the expected payoff is described

as the statistical expectation of information present within the payoff matrix. However,

probabilistic unbalanced linguistic matrix game has ambiguity and uncertainty within the
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assessment of the payoff entries such that the veracity of the expected value is incompre-

hensible. Thus, it is necessary to give the following definition explaining the probabilistic

unbalanced linguistic expected payoffs of corresponding players.

Definition 4.4.3. Consider 𝑥 (𝑘) = (𝑥 (𝑘)1 , . . . , 𝑥
(𝑘)
𝑟 ) ∈ 𝑆1 and 𝑦 (𝑘) = (𝑦 (𝑘)1 , . . . , 𝑦

(𝑘)
𝑞 ) ∈ 𝑆2 as

a mixed strategy pair associated with degree of importance for corresponding PI and PII,

respectively. Then, PI’s probabilistic unbalanced linguistic expectation payoff is defined

by

𝐸
𝑅
(𝑥 (𝑘) , 𝑦 (𝑘)) =

𝑟⊕
𝑐=1

(
𝑥
(𝑘)
𝑐

( 𝑞⊕
𝑑=1

𝐿𝑆𝑐𝑑 (𝑝) ⊙ 𝑦 (𝑘)𝑑

))
.

On the other hand PII’s probabilistic unbalanced linguistic expectation payoff is

neg(𝐸
𝑅
(𝑥 (𝑘) , 𝑦 (𝑘))).

4.4.2 Methodology for probabilistic multiplicative unbalanced linguis-

tic matrix game

This section majorly discusses the probabilistic multiplicative unbalanced linguistic lin-

ear programming (PMULLP) method for matrix game problem having probabilistic mul-

tiplicative unbalanced linguistic information.

Based on the presumed multiplicative ULTS, 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑛

}
, the proba-

bilistic unbalanced linguistic payoff matrix is viewed as:

𝑅 =
(
𝐿𝑆𝑐𝑑 (𝑝)

)
𝑟×𝑞 .

Let �̂� (𝑝) refers to the minimal probabilistic unbalanced linguistic payoff value of the

PI and let 𝑥 (𝑘) = (𝑥 (𝑘)1 , . . . , 𝑥
(𝑘)
𝑟 ) ∈ 𝑆1 denote its mixed strategy set associated with certain

degree of importance. Now, based on the goal that PI is having, the unbalanced linguistic

expectation of PI for the 𝑑𝑡ℎ strategy of PII is presented as the weighted average of the

probabilistic multiplicative unbalanced linguistic variables 𝐿𝑆1𝑑 (𝑝), 𝐿𝑆2𝑑 , . . . , 𝐿𝑆𝑟𝑑 , i.e.,

𝐿𝑆1𝑑 (𝑝)𝑥 (𝑘)1 ⊕ 𝐿𝑆2𝑑 (𝑝)𝑥 (𝑘)2 ⊕ . . .⊕ 𝐿𝑆𝑟𝑑 (𝑝)𝑥
(𝑘)
𝑟 . Similarly, 𝜔(𝑝) can be viewed as the max-

imal probabilistic unbalanced linguistic payoff value of the PII, 𝑦 (𝑘) = (𝑦 (𝑘)1 , . . . , 𝑦
(𝑘)
𝑞 ) ∈ 𝑆2

be its mixed strategy set, and the unbalanced linguistic expectation of PII against PI’s 𝑐𝑡ℎ

strategy is presented as 𝐿𝑆𝑐1(𝑝)𝑦 (𝑘)1 ⊕ 𝐿𝑆𝑐2(𝑝)𝑦
(𝑘)
2 ⊕ . . .⊕ 𝐿𝑆𝑐𝑞 (𝑝)𝑦

(𝑘)
𝑞 .

Hence, we have the required PMULLP problem for PI:
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max �̂�(𝑝) (PMULLP1)

subject to


𝑟⊕
𝑐=1

𝐿𝑆𝑐𝑑 (𝑝)𝑥𝑐 ≥ �̂�(𝑝), 𝑑 = 1, . . . , 𝑞∑𝑟
𝑐=1 𝑥𝑐 = 1; 𝑥𝑐 ≥ 0, 𝑐 = 1, . . . , 𝑟 .

where the probabilistic unbalanced linguistic objective value can be outlined as �̂�(𝑝) =
{ �̃� (𝑘) (𝑝 (𝑘)) |𝑘 = 1, . . . , #𝐿𝑆(𝑝) } , �̃� ∈ 𝐿𝑆, and,

∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) = 1.

Next, for PII, we have the following system:

min 𝜔(𝑝) (PMULLP2)

subject to


𝑞⊕
𝑑=1

𝐿𝑆𝑐𝑑 (𝑝)𝑦𝑑 ≤ 𝜔(𝑝), 𝑐 = 1, . . . , 𝑟∑𝑞

𝑑=1 𝑦𝑑 = 1; 𝑦𝑑 ≥ 0, 𝑑 = 1, . . . , 𝑞.

where the probabilistic unbalanced linguistic objective value can be outlined as 𝜔(𝑝) ={
𝜔(𝑘) (𝑝 (𝑘)) |𝑘 = 1, . . . , #𝐿𝑆(𝑝)

}
, 𝜔 ∈ 𝐿𝑆, and,

∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) = 1.

After setting up the mathematical models namely PMULLP1 and PMULLP2 of a prob-

abilistic multiplicative unbalanced linguistic matrix game, it is necessary to describe a

unified mechanism to solve these models. Before we proceed to define the main steps of

the algorithm we will give the following definition required in the procedure.

Definition 4.4.4. Let 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑛

}
be the presumed ULTSs and 𝐿𝑆(𝑝) ={

𝑡𝑎𝑖 (𝑝 (𝑘)) |𝑘 = 1, . . . , #𝐿𝑆(𝑝)
}

be the PM-ULTSs. Then, the information measure of the

PM-ULTSs is defined as a mapping:

𝐼𝑀 : 𝐿𝑆(𝑝) → R

such that 𝐼𝑀 (𝑡𝑎𝑖 (𝑝)) = 𝑝 · 𝑎𝑖 .

For the sake of convenience while solving the probabilistic unbalanced linguistic game

problem, we rewrite 𝑝 · 𝑎𝑖 as 𝑝 ·Ω−1(𝑡𝑎𝑖 ). The definition of Ω−1 is same as given in the

Proposition 3.2.2.

We take into consideration certain assumptions before we conduct the needful steps of
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the newly designed method i.e.,

• Firstly, we need to normalize the payoff matrix in such a way that each payoff entry

has equal cardinality.

• Secondly, the probability of the unbalanced linguistic terms within the set 𝐿𝑆(𝑝)
should be nonzero.

• Finally, the cardinality of the probabilistic unbalanced linguistic game value of both

the players should be same as that of each of the payoff entry in the payoff matrix.

Now we provide the main steps involved in the working process of solving probabilistic

unbalanced linguistic matrix game problem:

Step 1: Analyze the original two-player constant sum probabilistic unbalanced linguistic

matrix game problem and determine the mixed strategy set 𝑥 = (𝑥 (𝑘)1 , 𝑥
(𝑘)
2 , . . . , 𝑥

(𝑘)
𝑟 ) ∈

𝑆1 and 𝑦 = (𝑦 (𝑘)1 , 𝑦
(𝑘)
2 , . . . , 𝑦

(𝑘)
𝑞 ) of the players I and II, respectively. Based on

the ULTS 𝐿𝑆 =
{
𝑡𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑛

}
, the PI and PII express their multiplica-

tive unbalanced linguistic evaluation estimates over the strategies 𝑥 (𝑘)𝑐 (𝑐 = 1, . . . , 𝑟)
with respect to the strategies 𝑦 (𝑘)

𝑑
(𝑑 = 1, . . . , 𝑞). All the different multiplicative

unbalanced linguistic evaluation estimates 𝐿𝑆(𝑘)
𝑐𝑑
(𝑘 = 1, . . . , #𝐿𝑆(𝑝)) having the

corresponding probability 𝑝 (𝑘) (𝑘 = 1, . . . , #𝐿𝑆(𝑝)) are represented as PM-ULTS

𝐿𝑆𝑐𝑑 (𝑝) =
{
(𝑡𝑎𝑖 ) (𝑘)𝑐𝑑 (𝑝

(𝑘)) |𝑘 = 1, . . . , #𝐿𝑆𝑐𝑑 (𝑝)
}
, where 𝑝 (𝑘) > 0, 𝑘 = 1, . . . , #𝐿𝑆(𝑝),

#𝐿𝑆11(𝑝) = #𝐿𝑆12(𝑝) = . . . = #𝐿𝑆𝑟𝑞 (𝑝) = #𝐿𝑆(𝑝), and
∑#𝐿𝑆(𝑝)
𝑘=1 𝑝 (𝑘) = 1. All the

PM-ULTSs 𝐿𝑆𝑐𝑑 (𝑝) (𝑐 = 1, . . . , 𝑟; 𝑑 = 1, . . . , 𝑞) are recorded within the probabilis-

tic multiplicative unbalanced linguistic payoff matrix 𝑅 = [𝐿𝑆𝑐𝑑 (𝑝)]𝑟×𝑞.

Step 2: Formulate PMULLP1 and PMULLP2 for PI and PII, respectively.

Step 3: For PI, due to the fact that there exist ordering relation of probabilistic multi-

plicative unbalanced linguistic term, therefore in IVLLP1, max
{
�̂�(𝑝)

}
is easily

converted into max
{
�̃� (𝑘) (𝑝 (𝑘)) |𝑘 = 1, . . . ,#𝐿𝑆(𝑝)

}
, which is considered as a multi-

objective linguistic linear optimization problem (MOLLOP). Similarly, for PII we

have min
{
𝜔(𝑝)

}
which is also considered as a MOLLOP min

{
𝜔(𝑘) (𝑝 (𝑘)) |𝑘 = 1, . . . ,#𝐿𝑆(𝑝)

}
where �̃� (𝑘) , 𝜔(𝑘) ∈ 𝐿𝑆.

Step 4: Now decompose the multi objective problem PMULLP1 into single objective PMULLP1.1

problem as follows:
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For each 𝑘 = 1, . . . ,#𝐿𝑆(𝑝), we have

max �̃� (𝑘) (𝑝 (𝑘) ) (PMULLP1.1)

subject to


𝑟⊕
𝑐=1
(𝑡𝑎𝑖 )

(𝑘)
𝑐𝑑
(𝑝 (𝑘) )𝑥 (𝑘)𝑐 ≥ �̃� (𝑘) (𝑝 (𝑘) ), 𝑑 = 1, . . . , 𝑞∑𝑟

𝑐=1 𝑥
(𝑘)
𝑐 = 1; 𝑥𝑐 ≥ 0, 𝑐 = 1, . . . , 𝑟 .

Similarly, for PII we have

For each 𝑘 = 1, . . . ,#𝐿𝑆(𝑝)

min 𝜔 (𝑘) (𝑝 (𝑘) ) (PMULLP2.1)

subject to


𝑞⊕
𝑑=1
(𝑡𝑎𝑖 )

(𝑘)
𝑐𝑑
(𝑝 (𝑘) )𝑦 (𝑘)

𝑑
≤ 𝜔 (𝑘) (𝑝) (𝑘) , 𝑐 = 1, . . . , 𝑟∑𝑞

𝑑=1 𝑦
(𝑘)
𝑑

= 1; 𝑦𝑑 ≥ 0, 𝑑 = 1, . . . , 𝑞.

Step 5: Since Ω−1 is determined as monotonically increasing transformation function, hence-

forth on application of Ω−1 on both the sides of the constraint of PMULLP1.1 we

obtain the following system of linear optimization problem:


𝑟∑
𝑐=1

Ω−1((𝑡𝑎𝑖 )
(𝑘)
𝑐𝑑
) · 𝑝 (𝑘)𝑥 (𝑘)𝑐 ≥ Ω−1(�̃� (𝑘) ) · 𝑝 (𝑘) , 𝑑 = 1, . . . , 𝑞∑𝑟

𝑐=1 𝑥
(𝑘)
𝑐 = 1; 𝑥𝑐 ≥ 0, 𝑐 = 1, . . . , 𝑟 .

Now, following from the definition 4.4.4, we can rewrite the term Ω−1((𝑡𝑎𝑖 ) (𝑘)𝑐𝑑 ) ·
𝑝 (𝑘) as (𝑎𝑖) (𝑘)

𝑐𝑑
𝑝 (𝑘) (𝑘 = 1, . . . ,#𝐿𝑆(𝑝)). Next, by Assuming that Ω−1(�̃� (𝑘)) · 𝑝 (𝑘) =

𝑣 (𝑘) 𝑝 (𝑘) > 0, we make the following substitution as 𝑋 (𝑘)𝑐 =
𝑥
(𝑘)
𝑐

𝑣 (𝑘) 𝑝 (𝑘)
(𝑘 = 1, . . . ,#𝐿𝑆(𝑝)), (𝑐 =

1, . . . , 𝑟) and 𝑉 (𝑘) = 1
𝑣 (𝑘) 𝑝 (𝑘)

. Therefore, the transformed system of linear optimiza-

tion problem is given as follows:

min 𝑉 (𝑘) = 𝑋 (𝑘)1 + . . .+ 𝑋 (𝑘)𝑟 (PMULLP1.2)

subject to


𝑟∑
𝑐=1
(𝑎𝑖) (𝑘)

𝑐𝑑
𝑝 (𝑘)𝑋 (𝑘)𝑐 ≥ 1, 𝑑 = 1, . . . , 𝑞

𝑋
(𝑘)
𝑐 ≥ 0, 𝑐 = 1, . . . , 𝑟 .

Step 6: We repeat the above step for PII and the problem can be constructed in an analogous

fashion
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𝑞∑
𝑑=1

Ω−1((𝑡𝑎𝑖 )
(𝑘)
𝑐𝑑
) · (𝑝 (𝑘) )𝑦 (𝑘)

𝑑
≤ Ω(�̃� (𝑘) ) · (𝑝) (𝑘) , 𝑐 = 1, . . . , 𝑟∑𝑞

𝑑=1 𝑦
(𝑘)
𝑑

= 1; 𝑦𝑑 ≥ 0, 𝑑 = 1, . . . , 𝑞.

Recall that, Ω−1((𝑡𝑎𝑖 ) (𝑘)𝑐𝑑 ) · 𝑝
(𝑘) as (𝑎𝑖) (𝑘)

𝑐𝑑
𝑝 (𝑘) (𝑘 = 1, . . . ,#𝐿𝑆(𝑝)). Also, by setting

𝑌
(𝑘)
𝑑

=
𝑦
(𝑘)
𝑑

𝜔 (𝑘) 𝑝 (𝑘)
(𝑘 = 1, . . . ,#𝐿𝑆(𝑝)),

(𝑑 = 1, . . . , 𝑞) and 𝑉 (𝑘) = 1
𝜔 (𝑘) 𝑝 (𝑘)

since Ω−1(�̃�(𝑘)) · 𝑝 (𝑘) = 𝜔(𝑘) 𝑝 (𝑘) > 0. Therefore,

the transformed system of linear optimization problem is given as follows:

max 𝑉 (𝑘) = 𝑌 (𝑘)1 + . . .+ 𝑌 (𝑘)𝑞 (PMULLP2.2)

subject to


𝑞∑
𝑑=1
(𝑎𝑖) (𝑘)

𝑐𝑑
𝑝 (𝑘)𝑌 (𝑘)

𝑑
≤ 1, 𝑐 = 1, . . . , 𝑟

𝑌
(𝑘)
𝑑
≥ 0, 𝑑 = 1, . . . , 𝑞.

Step 7: After solving the mathematical models PMULLP1.2 and PMULLP2.2, we can ob-

tain the optimal strategies (𝑥 (𝑘)∗1 , . . . , 𝑥
(𝑘)∗
𝑟 ) and (𝑦 (𝑘)∗1 , . . . , 𝑦

(𝑘)∗
𝑞 ) and the value of

the game 𝑝 (𝑘)𝑣 (𝑘) = 𝑝 (𝑘)𝜔(𝑘) = 1
𝑉 (𝑘)∗

.

Step 8: After representing probabilistic unbalanced linguistic information by information

measure function and further obtaining the corresponding efficient game value men-

tioned in the previous step, we can then apply the retranslation process to retrans-

form the optimal values into probabilistic unbalanced linguistic information. The

retranslation mechanism can be performed in the following two steps:

(1) For the value 𝑝 (𝑘)𝑣 (𝑘)∗ = 𝑝 (𝑘)𝜔(𝑘)∗ = 1
𝑉 (𝑘)∗

, if 1
𝑉 (𝑘)∗

∈
{
𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑛

}
then, �̃� (𝑘) = �̃�(𝑘) =Ω( 1

𝑉 (𝑘)∗
) (𝑘 = 1, . . . ,#𝐿𝑆(𝑝)). If 1

𝑉 (𝑘)∗
∉
{
𝑎𝑖 |𝑖 = −𝑛, . . . , 0, . . . , 𝑛

}
then either 1

𝑉 (𝑘)∗
∈ [𝑎−𝑛, 𝑎𝑛] or otherwise 1

𝑉 (𝑘)∗
= 1
𝑉 (𝑘)∗
+𝑎−𝑛. Finally, �̃� (𝑘) 𝑝 (𝑘) =

�̃�(𝑘) 𝑝 (𝑘) = Ω( 1
𝑉 (𝑘)∗
).

It is noted that if 𝛾 = 0 =⇒ Ω( 1
𝑉 (𝑘)∗
) = 𝑡 (𝑘)

𝜆
and for 𝛾 ≠ 0 then Ω has its usual

meaning and (𝑡𝜆, 𝛾).

(2) Finally, the optimal mixed strategy for PI and PII is represented as 𝑥∗ = (𝑥∗1, . . . , 𝑥
∗
𝑟 )

where 𝑥∗𝑐 = { 𝑥
(𝑘)
𝑐 |𝑘 = 1, . . . , #𝐿𝑆(𝑝) }, (𝑐 = 1, . . . , 𝑟), 𝑦∗ = (𝑦∗1, . . . , 𝑥

∗
𝑞) where

𝑦∗
𝑑
=

{
𝑦
(𝑘)
𝑑
|𝑘 = 1, . . . , #𝐿𝑆(𝑝)

}
, (𝑑 = 1, . . . , 𝑞), respectively. The probabilistic

unbalanced linguistic game value can be represented as �̂�(𝑝) = { �̃� (𝑘) (𝜃) |𝑘 =
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1, . . . ,#𝐿𝑆(𝑝) } and𝜔(𝑝) =
{
𝜔(𝑘) (𝜃) |𝑘 = 1, . . . ,#𝐿𝑆(𝑝)

}
where 𝜃 (𝑘) =


1, if 𝛾 = 0;

𝛾 +0.5, otherwise.

It is noteworthy that the linear mathematical models (PMULLP1.2) and (PMULLP2.2)

are primal-dual linear optimization models in the crisp setup.

4.5 A numerical illustration and comparison analysis

In the current section, we further illustrate the expediency of PM-ULTS and understand

the usefulness and applicability of the two-player constant-sum game having probabilistic

multiplicative unbalanced linguistic information with no saddle point by taking a practical,

real-life problem of companies selection problem to invest.

Example 4.5.1. The problem statement taken in the current illustration is same as the one

presented in the Example 2.4.1.

Here, after preliminary screening an investor has shortlisted 4 companies as an alter-

natives set, i.e., 𝐴𝑐 (𝑐 = 1, 2, 3, 4) where he wants to invest in. Since investing decision

is tough and is not always easy for a person to invest his hard-earned money without

conducting a research. To compete these shortlisted companies so as to choose the most

stable of them and also rank them from the viewpoint of their significance degree, it is

crucial for an investor to perform the evaluation and selection operation primarily based

on various essential criteria. Nevertheless, in this case study, we consider six main crite-

ria: the performance of company (𝐶1); the market value of company (𝐶2); the efficiency

level of company (𝐶3); the business model of company (𝐶4); Employee satisfaction level

(𝐶5); shareholders funds (𝐶6). Since an investor is careful about strategic choice of

Nature, so he will select his mixed strategy set as 𝑥 = (𝑥 (𝑘)1 , 𝑥
(𝑘)
2 , 𝑥

(𝑘)
3 , 𝑥

(𝑘)
4 ), 𝑥𝑐 ≥ 0, 𝑐 =

1, 2, 3, 4,
∑4
𝑐=1 𝑥

(𝑘)
𝑐 = 1 for each (𝑘 = 1, . . . , #𝐿𝑆) over the alternative set

{
𝐴𝑐 |𝑐 = 1, 2, 3, 4

}
.

On the contrary, the investor view nature as a non-cooperative player, thus to counter the

choice of his mixed strategy, Nature will choose the mixed strategy set as 𝑦 = (𝑦 (𝑘)1 , 𝑦
(𝑘)
2 , 𝑦

(𝑘)
3 ,

𝑦
(𝑘)
4 , 𝑦

(𝑘)
5 , 𝑦

(𝑘)
6 ) 𝑦𝑑 ≥ 0, 𝑑 = 1, 2, 3, 4, 5, 6,

∑6
𝑑=1 𝑦

(𝑘)
𝑑

= 1, (𝑘 = 1, . . . , #𝐿𝑆) over the criteria

set
{
𝐶𝑑 |𝑑 = 1, 2, 3, 4, 5, 6

}
.

To deal with this problem by means of PM-ULTSs, an investor utilize the following

ULTS to evaluate the companies 𝐴𝑐:

𝐿𝑆 =
{
P, VW, W, Avg, G, VG, PR

}
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max �̂� (𝑝) =
{
�̃� (𝑘) (𝑝 (𝑘) ) |𝑘 = 1, 2, 3

}
subject to

{
𝐴𝑣𝑔 (0.5) , 𝐺 (0.25) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
1 ⊕

{
𝑊 (0.5) , 𝐺 (0.25) , 𝐴𝑣𝑔 (0.25)

}
𝑥
(𝑘)
2 ⊕

{
𝑊 (0.5) , 𝑉𝑊 (0.25) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝑃𝑅 (0.25) , 𝑉𝐺 (0.25) , 𝐺 (0.5)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝){

𝐺 (0.5) , 𝐴𝑣𝑔 (0.25) , 𝑉𝐺 (0.25)
}
𝑥
(𝑘)
1 ⊕

{
𝑉𝐺 (0.33) , 𝐺 (0.33) , 𝐴𝑣𝑔 (0.33)

}
𝑥
(𝑘)
2 ⊕

{
𝑊 (0.5) , 𝐺 (0.25) , 𝐴𝑣𝑔 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝐺 (0.25) , 𝑉𝐺 (0.5) , 𝑃𝑅 (0.25)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝){

𝑃𝑅 (0.25) , 𝑉𝐺 (0.5) , 𝐺 (0.25)
}
𝑥
(𝑘)
1 ⊕

{
𝐴𝑣𝑔 (0.5) , 𝑊 (0.25) , 𝐺 (0.25)

}
𝑥
(𝑘)
2 ⊕

{
𝐺 (0.5) , 𝐴𝑣𝑔 (0.25) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝑃𝑅 (0.5) , 𝑉𝐺 (0.25) , 𝐺 (0.25)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝){

𝐴𝑣𝑔 (0.5) , 𝐺 (0.25) , 𝑉𝐺 (0.25)
}
𝑥
(𝑘)
1 ⊕

{
𝐴𝑣𝑔 (0.5) , 𝐺 (0.25) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
2 ⊕

{
𝐺 (0.25) , 𝐴𝑣𝑔 (0.5) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝑊 (0.25) , 𝐴𝑣𝑔 (0.5) , 𝐺 (0.25)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝){

𝐺 (0.5) , 𝑉𝐺 (0.25) , 𝑃𝑅 (0.25)
}
𝑥
(𝑘)
1 ⊕

{
𝑊 (0.5) , 𝑉𝑊 (0.25) , 𝐴𝑣𝑔 (0.25)

}
𝑥
(𝑘)
2 ⊕

{
𝑉𝐺 (0.5) , 𝑃𝑅 (0.25) , 𝐺 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝑊 (0.5) , 𝐴𝑣𝑔 (0.25) , 𝐺 (0.25)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝){

𝑉𝐺 (0.25) , 𝐺 (0.25) , 𝑃𝑅 (0.5)
}
𝑥
(𝑘)
1 ⊕

{
𝑉𝑊 (0.5) , 𝑊 (0.25) , 𝐴𝑣𝑔 (0.25)

}
𝑥
(𝑘)
2 ⊕

{
𝐴𝑣𝑔 (0.25) , 𝐺 (0.5) , 𝑉𝐺 (0.25)

}
𝑥
(𝑘)
3 ⊕

{
𝑊 (0.33) , 𝐴𝑣𝑔 (0.33) , 𝐺 (0.33)

}
𝑥
(𝑘)
4 ≥ �̂� (𝑝)∑4

𝑐=1 𝑥
(𝑘)
𝑐 = 1; 𝑥 (𝑘)𝑐 ≥ 0, 𝑐 = 1, 2, 3, 4.

(M1)

Note: Poor (P), Very weak (VW), Weak (W), Average (Avg), Good (G), Very Good (VG),

Perfect (PR). Based on the representation algorithm stated in chapter 3, we have

𝐿𝑆 =
{
𝑡1/8 : (P), 𝑡1/4 : (VW), 𝑡1/2 : (W), 𝑡1 : (Avg), 𝑡2 : (G), 𝑡4 : (VG), 𝑡8 : (PR)

}
Next, as we proceed further it is perceived that in the present case study the investor pro-

vide his preferences in respect of several multiplicative unbalanced linguistic terms on the

response alternatives 𝐴𝑐 (𝑐 = 1, 2, 3, 4) subject to the six criteria 𝐶𝑑 (𝑑 = 1, 2, 3, 4, 5, 6).
Since investors studied the overall companies’ performance based on the mentioned cri-

teria for the past four financial years (FY), i.e., 2016− 2020. Thus, the original multi-

plicative unbalanced linguistic payoff matrices for the four consecutive years are given in

Tables 4.3-4.6. It is noted that the blanks mentioned in the Tables 4.5 and 4.6 represent

that for a given FY, the companies evaluation for that particular criteria is very weak. As

a result, it can be neglected. By summing up, these four tables directly, the assessment

information in Table 4.7 can be exhibited in terms of PM-ULTSs, which is regarded as

a payoff matrix for this decision analysis problem modeled as a probabilistic unbalanced

linguistic matrix game. To understand the representation of the linguistic evaluation of

𝐴2 concerning 𝐶2, i.e.,
{
𝑉𝐺 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

}
is derived based on the analysis

made by the investor for four consecutive years that for two out of four years companies

overall assessment is very good (VG), for one out of four years is good (G), and also

for one year it is average (Avg). Next, we normalize the payoff matrix, and hence final

normalized probabilistic unbalanced linguistic matrix is given in Table 4.8.

After attaining the normalized probabilistic unbalanced linguistic payoff matrix, we can

construct the PMULLP problem (See Eqn. (M1)) for PI by using model (PMULLP1).

Next, based on the methodology presented in the previous section, the MOLLOP is de-

composed into three single objective PMULLP problem, and further based on the transfor-

mation function, the system is converted into three crisp linear optimization problems (See
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min 𝑉1 = 𝑋1
1 + 𝑋

1
2 + 𝑋

1
3 + 𝑋

1
4 subject to



0.5𝑋1
1 +0.0625𝑋1

2 +0.25𝑋1
3 +2𝑋1

4 ≥ 1
𝑋1

1 +0.165𝑋1
2 +0.25𝑋1

3 +0.5𝑋1
4 ≥ 1

2𝑋1
1 +2𝑋1

2 + 𝑋
1
3 +4𝑋1

4 ≥ 1
0.5𝑋1

1 +0.5𝑋1
2 +0.5𝑋1

3 +0.125𝑋1
4 ≥ 1

𝑋1
1 +0.25𝑋1

2 +0.2𝑋1
3 +0.25𝑋1

4 ≥ 1
𝑋1

1 +0.125𝑋1
2 +0.33𝑋1

3 +0.125𝑋1
4 ≥ 1

𝑋1
1 , 𝑋

1
2 , 𝑋

1
3 , 𝑋

1
4 ≥ 0.

(M1.1)

min 𝑉2 = 𝑋2
1 + 𝑋

2
2 + 𝑋

2
3 + 𝑋

2
4 subject to



0.5𝑋2
1 + 𝑋

2
2 +0.0625𝑋2

3 + 𝑋
2
4 ≥ 1

0.25𝑋2
1 +0.66𝑋2

2 +0.5𝑋2
3 +2𝑋2

4 ≥ 1
2𝑋2

1 +0.5𝑋2
2 +0.25𝑋2

3 + 𝑋
2
4 ≥ 1

0.5𝑋2
1 +0.125𝑋2

2 +0.5𝑋2
3 +0.5𝑋2

4 ≥ 1
𝑋2

1 +0.0625𝑋2
2 +2𝑋2

3 +0.25𝑋2
4 ≥ 1

0.5𝑋2
1 +0.125𝑋2

2 +0.66𝑋2
3 +0.5𝑋2

4 ≥ 1
𝑋2

1 , 𝑋
2
2 , 𝑋

2
3 , 𝑋

2
4 ≥ 0.

(M1.2)

min 𝑉3 = 𝑋3
1 + 𝑋

3
2 + 𝑋

3
3 + 𝑋

3
4 subject to



𝑋3
1 +0.25𝑋3

2 + 𝑋
3
3 + 𝑋

3
4 ≥ 1

𝑋3
1 +0.33𝑋3

2 +0.25𝑋3
3 +2𝑋3

4 ≥ 1
0.5𝑋3

1 +0.25𝑋3
2 + 𝑋

3
3 +0.5𝑋3

4 ≥ 1
𝑋3

1 +0.5𝑋3
2 + 𝑋

3
3 +0.5𝑋3

4 ≥ 1
2𝑋3

1 +0.25𝑋3
2 +0.5𝑋3

3 +0.5𝑋3
4 ≥ 1

4𝑋3
1 +0.25𝑋3

2 +0.132𝑋3
3 +0.5𝑋3

4 ≥ 1
𝑋3

1 , 𝑋
3
2 , 𝑋

3
3 , 𝑋

3
4 ≥ 0.

(M1.3)

Eqn. (M1.1), (M1.2), (M1.3)).

The optimal solution obtained for the mentioned problem of PI are 𝑋 (1)∗ = (2, 0, 0, 0),
𝑋 (2)∗ = (2, 0, 0.2857, 1.7143), 𝑋 (3)∗ = (0.2449, 0, 0.7347, 0.2857) and𝑉∗ = (2, 2, 1.2653).

Hence, for PI, the optimal mixed strategy is obtained as 𝑥∗1 = {1,0,0.1935}, 𝑥∗2 = 0, 𝑥∗3 =

{0,0.14285,0.5806}, 𝑥∗4 = {0,0.85715,0.2258}. After the re-translation process the opti-

mal probabilistic unbalanced linguistic value is �̂�(𝑝) =
{
𝑡1/2(0.9612), 𝑡20 (0.0387), 𝑡1/2(0)

}
.

Similarly, we can formulate the PMULLP (See Eqn. (M2)) problem for PII by using

model (PMULLP2).

min 𝜔(𝑝) =
{
𝜔 (𝑘) (𝑝 (𝑘) ) |𝑘 = 1, 2, 3

}
subject to

{
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
1 ⊕

{
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
2 ⊕

{
𝑃𝑅(0.25), 𝑉𝐺 (0.5), 𝐺 (0.25)

}
𝑦
(𝑘)
3 ⊕

{
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
4 ⊕

{
𝐺 (0.5), 𝑉𝐺 (0.25), 𝑃𝑅(0.25)

}
𝑦
(𝑘)
5 ⊕

{
𝑉𝐺 (0.25), 𝐺 (0.25), 𝑃𝑅(0.5)

}
𝑦
(𝑘)
6 ≤ 𝜔(𝑝){

𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)
}
𝑦
(𝑘)
1 ⊕

{
𝑉𝐺 (0.33), 𝐺 (0.33), 𝐴𝑣𝑔(0.33)

}
𝑦
(𝑘)
2 ⊕

{
𝐴𝑣𝑔(0.5), 𝑊 (0.25), 𝐺 (0.25)

}
𝑦
(𝑘)
3 ⊕

{
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
4 ⊕

{
𝑊 (0.5), 𝑉𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}
𝑦
(𝑘)
5 ⊕

{
𝑉𝑊 (0.5), 𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}
𝑦
(𝑘)
6 ≤ 𝜔(𝑝){

𝑊 (0.5), 𝑉𝑊 (0.25), 𝑉𝐺 (0.25)
}
𝑦
(𝑘)
1 ⊕

{
𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

}
𝑦
(𝑘)
2 ⊕

{
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
3 ⊕

{
𝐺 (0.25), 𝐴𝑣𝑔(0.5), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
4 ⊕

{
𝑉𝐺 (0.5), 𝑃𝑅(0.25), 𝐺 (0.25)

}
𝑦
(𝑘)
5 ⊕

{
𝐴𝑣𝑔(0.25), 𝐺 (0.5), 𝑉𝐺 (0.25)

}
𝑦
(𝑘)
6 ≤ 𝜔(𝑝){

𝑃𝑅(0.25), 𝑉𝐺 (0.25), 𝐺 (0.5)
}
𝑦
(𝑘)
1 ⊕

{
𝐺 (0.25), 𝑉𝐺 (0.5), 𝑃𝑅(0.25)

}
𝑦
(𝑘)
2 ⊕

{
𝑃𝑅(0.5), 𝑉𝐺 (0.25), 𝐺 (0.25)

}
𝑦
(𝑘)
3 ⊕

{
𝑊 (0.25), 𝐴𝑣𝑔(0.5), 𝐺 (0.25)

}
𝑦
(𝑘)
4 ⊕

{
𝑊 (0.5), 𝐴𝑣𝑔(0.25), 𝐺 (0.25)

}
𝑦
(𝑘)
5 ⊕

{
𝑊 (0.33), 𝐴𝑣𝑔(0.33), 𝐺 (0.33)

}
𝑦
(𝑘)
6 ≤ 𝜔(𝑝)∑6

𝑑=1 𝑦
(𝑘)
𝑑

= 1; 𝑦 (𝑘)
𝑑
≥ 0, 𝑑 = 1, 2, 3, 4, 5, 6.

(M2)

The corresponding three linear optimization problem are also given (See Eqn. (M2.1),

(M2.2), (M2.3)). After solving, the optimal solution obtained for the mentioned problem

for PII are𝑌 (1)∗ = (0.4, 0, 0, 1.6, 0, 0),𝑌 (2)∗ = (0, 0, 0, 2, 0, 0),𝑌 (3)∗ = (0, 0.2449, 0.8571,

0, 0.1633, 0) and 𝑉∗ = (2, 2, 1.2653).

Hence, for PII, the optimal mixed strategy is obtained as 𝑦∗1 = {0.2,0,0}, 𝑦
∗
2 = {0,0,0.1935},



141

max 𝑉1 = 𝑌1
1 +𝑌

1
2 +𝑌

1
3 +𝑌

1
4 +𝑌

1
5 +𝑌

1
6 subject to



0.5𝑌1
1 +𝑌

1
2 +2𝑌1

3 +0.5𝑌1
4 +𝑌

1
5 +𝑌

1
6 ≤ 1

0.0625𝑌1
1 +0.165𝑌1

2 +2𝑌1
3 +0.5𝑌1

4 +0.25𝑌1
5 +0.125𝑌1

6 ≤ 1
0.25𝑌1

1 +0.25𝑌1
2 +𝑌

1
3 +0.5𝑌1

4 +0.2𝑌1
5 +0.33𝑌1

6 ≤ 1
2𝑌1

1 +0.5𝑌1
2 +4𝑌1

3 +0.125𝑌1
4 +0.25𝑌1

5 +0.125𝑌1
6 ≤ 1

𝑌1
1 , 𝑌

1
2 , 𝑌

1
3 , 𝑌

1
4 , 𝑌

1
5 , 𝑌

1
6 ≥ 0.

(M2.1)

max 𝑉2 = 𝑌2
1 +𝑌

2
2 +𝑌

2
3 +𝑌

2
4 +𝑌

2
5 +𝑌

2
6 subject to



0.5𝑌2
1 +0.25𝑌2

2 +2𝑌2
3 +0.5𝑌2

4 +𝑌
2
5 +0.5𝑌2

6 ≤ 1
𝑌2

1 +0.66𝑌2
2 +0.5𝑌2

3 +0.125𝑌2
4 +0.0625𝑌2

5 +0.125𝑌2
6 ≤ 1

0.0625𝑌2
1 +0.5𝑌2

2 +0.25𝑌2
3 +0.5𝑌2

4 +2𝑌2
5 +0.66𝑌2

6 ≤ 1
𝑌2

1 +2𝑌2
2 +𝑌

2
3 +0.5𝑌2

4 +0.25𝑌2
5 +0.5𝑌2

6 ≤ 1
𝑌2

1 , 𝑌
2
2 , 𝑌

2
3 , 𝑌

2
4 , 𝑌

2
5 , 𝑌

2
6 ≥ 0.

(M2.2)

max 𝑉3 = 𝑌3
1 +𝑌

3
2 +𝑌

3
3 +𝑌

3
4 +𝑌

3
5 +𝑌

3
6 subject to



𝑌3
1 +𝑌

3
2 +0.5𝑌3

3 +𝑌
3
4 +2𝑌3

5 +4𝑌3
6 ≤ 1

0.25𝑌3
1 +0.33𝑌3

2 +0.25𝑌3
3 +0.5𝑌3

4 +0.25𝑌3
5 +0.25𝑌3

6 ≤ 1
𝑌3

1 +0.25𝑌3
2 +𝑌

3
3 +𝑌

3
4 +0.5𝑌3

5 +0.132𝑌3
6 ≤ 1

𝑌3
1 +2𝑌3

2 +0.5𝑌3
3 +0.5𝑌3

4 +0.5𝑌3
5 +0.5𝑌3

6 ≤ 1
𝑌3

1 , 𝑌
3
2 , 𝑌

3
3 , 𝑌

3
4 , 𝑌

3
5 , 𝑌

3
6 ≥ 0.

(M2.3)

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1 Avg G PR Avg G VG
𝐴2 W VG Avg Avg W VW
𝐴3 W W G G VG Avg
𝐴4 PR G PR W W W

Table 4.3: Unbalanced linguistic payoff matrix for the FY2016-2017

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1 Avg Avg VG Avg G G
𝐴2 G G W G W VW
𝐴3 VW G Avg Avg VG G
𝐴4 VG VG PR Avg W Avg

Table 4.4: Unbalanced linguistic payoff matrix for the FY2017-2018

𝑦∗3 = {0,0,0.6774}, 𝑦∗4 = {0.8,1,0}, 𝑦
∗
5 = {0,0,0.1291}, 𝑦∗6 = 0. After the re-translation pro-

cess the optimal probabilistic unbalanced linguistic value is 𝜔(𝑝) = { 𝑡1/2(0.9612),
𝑡20 (0.0387), 𝑡1/2(0) }.

Here, for the investor, the criteria for which 𝑦∗
𝑑
= 0 are of least significance. Analo-

gously, the alternatives with 𝑥∗𝑐 = 0 are irrelevant to the investor.

Finally, to rank the given alternatives we calculate the total score of the alternatives as

follows: 𝐴1 = 1.1935, 𝐴2 = 0, 𝐴3 = 0.72345, 𝐴4 = 1.08295. Hence, the four alternatives

are ordered as 𝐴1 > 𝐴4 > 𝐴3 > 𝐴2, and alternative 𝐴1 is the recommended company for

the investor to invest his money.
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𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1 G VG VG G VG PR
𝐴2 Avg Avg G Avg VW W
𝐴3 W W G Avg G -
𝐴4 G VG VG G Avg G

Table 4.5: Unbalanced linguistic payoff matrix for the FY2018-2019

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1 VG G G VG PR PR
𝐴2 W - Avg VG Avg Avg
𝐴3 VG Avg VG VG PR VG
𝐴4 G PR G Avg G Avg

Table 4.6: Unbalanced linguistic payoff matrix for the FY2019-2020

It is perceived that the game-theoretic approach to solving multi decision analysis prob-

lem having probabilistic multiplicative unbalanced linguistic information is more advan-

tageous in comparison to the methodologies given in literature in the sense that the latter

needs prior information of the weights of the given criteria, unlike our developed ap-

proach that assesses the weights as an intermediary step. In addition, compared to the

game-theoretic models with single linguistic terms [14, 15], linguistic 2-tuple informa-

tion [248, 249], the probability unbalanced linguistic information allows players not only

to provide evaluations on several linguistic terms non-uniformly distributed instead of the

single linguistic term which is symmetrically distributed as well as its probability informa-

tion. Moreover, considering the game models having linguistic 2-tuple information does

not handle an incomplete evaluation. As a result, it increases the burden and difficulty

level of the players. However, probabilistic linguistic games efficiently handle problems

with incomplete information. Also, recently Mi et al. [214] has proposed a methodol-

ogy to solve matrix game problems in terms of probabilistic linguistic information based

on symmetrically LTSs. In that paper, the authors have approximated the probabilistic

linguistic information into a classical triangular membership function. Consequently, it

leads to information loss. However, we are not converting the probabilistic linguistic in-

formation into some approximation function in our proposed method. Instead, we define

an information measure of the probabilistic linguistic term by using the bijective function

Ω and Ω−1. Thereby, avoids information loss in the final re-translation process.
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𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1

{
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}{
𝑃𝑅(0.25), 𝑉𝐺 (0.5), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.5), 𝑉𝐺 (0.25), 𝑃𝑅(0.25)

} {
𝑉𝐺 (0.25), 𝐺 (0.25), 𝑃𝑅(0.5)

}
𝐴2

{
𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

} {
𝑉𝐺 (0.25), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

}{
𝐴𝑣𝑔(0.5), 𝑊 (0.25), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝑊 (0.5), 𝑉𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}{
𝑉𝑊 (0.5), 𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}
𝐴3

{
𝑊 (0.5), 𝑉𝑊 (0.25), 𝑉𝐺 (0.25)

}{
𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

} {
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.25), 𝐴𝑣𝑔(0.5), 𝑉𝐺 (0.25)

}{
𝑉𝐺 (0.5), 𝑃𝑅(0.25), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.25), 𝐺 (0.25), 𝑉𝐺 (0.25)

}
𝐴4

{
𝑃𝑅(0.25), 𝑉𝐺 (0.25), 𝐺 (0.5)

} {
𝐺 (0.25), 𝑉𝐺 (0.5), 𝑃𝑅(0.25)

} {
𝑃𝑅(0.5), 𝑉𝐺 (0.25), 𝐺 (0.25)

} {
𝑊 (0.25), 𝐴𝑣𝑔(0.5), 𝐺 (0.25)

} {
𝑊 (0.5), 𝐴𝑣𝑔(0.25), 𝐺 (0.25)

} {
𝑊 (0.25), 𝐴𝑣𝑔(0.5), 𝐺 (0.25)

}

Table 4.7: Comprehensive probabilistic multiplicative unbalanced linguistic payoff matrix

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6
𝐴1

{
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}{
𝑃𝑅(0.25), 𝑉𝐺 (0.5), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.5), 𝑉𝐺 (0.25), 𝑃𝑅(0.25)

} {
𝑉𝐺 (0.25), 𝐺 (0.25), 𝑃𝑅(0.5)

}
𝐴2

{
𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

} {
𝑉𝐺 (0.33), 𝐺 (0.33), 𝐴𝑣𝑔(0.33)

}{
𝐴𝑣𝑔(0.5), 𝑊 (0.25), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.5), 𝐺 (0.25), 𝑉𝐺 (0.25)

}{
𝑊 (0.5), 𝑉𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}{
𝑉𝑊 (0.5), 𝑊 (0.25), 𝐴𝑣𝑔(0.25)

}
𝐴3

{
𝑊 (0.5), 𝑉𝑊 (0.25), 𝑉𝐺 (0.25)

}{
𝑊 (0.5), 𝐺 (0.25), 𝐴𝑣𝑔(0.25)

} {
𝐺 (0.5), 𝐴𝑣𝑔(0.25), 𝑉𝐺 (0.25)

}{
𝐺 (0.25), 𝐴𝑣𝑔(0.5), 𝑉𝐺 (0.25)

}{
𝑉𝐺 (0.5), 𝑃𝑅(0.25), 𝐺 (0.25)

} {
𝐴𝑣𝑔(0.33), 𝐺 (0.33), 𝑉𝐺 (0.33)

}
𝐴4

{
𝑃𝑅(0.25), 𝑉𝐺 (0.25), 𝐺 (0.5)

} {
𝐺 (0.25), 𝑉𝐺 (0.5), 𝑃𝑅(0.25)

} {
𝑃𝑅(0.5), 𝑉𝐺 (0.25), 𝐺 (0.25)

} {
𝑊 (0.25), 𝐴𝑣𝑔(0.5), 𝐺 (0.25)

} {
𝑊 (0.5), 𝐴𝑣𝑔(0.25), 𝐺 (0.25)

} {
𝑊 (0.25), 𝐴𝑣𝑔(0.5), 𝐺 (0.25)

}

Table 4.8: Comprehensive normalized probabilistic multiplicative unbalanced linguistic
payoff matrix

4.6 Conclusion

This chapter introduces the concept of PM-ULTSs, which considers the probability of

linguistic variables and the non-uniformity of linguistic labels. After then, some new oper-

ational laws for managing probabilistic unbalanced linguistic information are also devel-

oped, which could produce valid results and keep the property of operational laws closed.

Furthermore, some elementary aggregation operators to aggregate PM-ULTSs have been

constructed for further consideration. The need for these operators lies in the fact that

they are beneficial in the situation involving information that cannot be expressed with an

actual number rather the probabilistic multiplicative unbalanced linguistic information.

Finally, we have applied our proposed concept to investigate the two-player matrix game

problem having probabilistic unbalanced linguistic information allowing game theory to

accept the incomplete linguistic information, which is non-symmetrically distributed as

input. The information measure for the probabilistic multiplicative unbalanced linguistic

term is calculated to transform the probabilistic linguistic information. The information

measure is primarily based on the bijective function Ω and Ω−1 such that it avoids the

loss of information in the re-translation process. Thus, the linear optimization model for

both the players is formulated to obtain optimal game value and corresponding mixed

strategies. The calculated game value is further re-translated into the original PM-ULTS

to maintain the interpretability of the probabilistic unbalanced linguistic game. Further-

more, the validity and advantages of the probabilistic unbalanced linguistic matrix game

were verified and justified by applying it to solve real-life multi-criteria decision analysis

problems about the companies selected by a general investor to invest his sum of money

from the perspective of the game with Nature.

It is perceived that the proposed probabilistic unbalanced linguistic matrix game method-
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ology perfectly handles complicated decision-analysis problems under the probabilistic

unbalanced linguistic environment. In addition, the method is found to be consistent and

more acquirable to solve a DM problem as it is capable of generating the optimal weights

for the given alternatives in an intermedial step, unlike the other prevailing methodolo-

gies where the weights value are presupposed to be well-known a priori. The optimal

game value obtained is viewed as a PM-ULTSs that represents the uncertainty more rea-

sonably using several unbalanced linguistic terms instead of single linguistic term such

that it closely aligns human thoughts. We believe that the wide-ranging application of

our proposed concept make it promising and it is readily apparent that the present study

bring about a new view point to the uncertain linguistic matrix game solution and strategic

analysis.

Although the practical example of companies’ selection problem by a general investor

to invest his money is provided to validate the expediency and efficacy of the suggested

method, it can be extended to solve several GDM problems. In the future, one can widen

the scope of the present study to define unbalanced linguistic bimatrix games, cooperative

games in the probabilistic environment.



Chapter 5

Matrix games with interval-valued

2-tuple linguistic information

We investigate a non-cooperative 2-player zero-sum interval-valued 2-tuple fuzzy linguis-

tic (IVTFL) matrix game in this chapter1 and provide a methodology for determining the

saddle point and optimal interval-valued linguistic value of the game. In this direction,

we created an auxiliary pair of interval-valued linguistic linear programming (IVLLP)

problems that are then transformed into traditional interval linear programming (ILP)

problems to attain optimal strategy sets for both corresponding players as the solution

region that is not only completely feasible but also completely optimal. A hypothetical

example is used to demonstrate the suggested method’s applicability in the actual world.

The transformed ILP problems are solved utilizing the best-worst case (BWC) approach,

enhanced-interval linear programming (EILP) method, and linguistic linear program-

ming (LLP) technique of solving interval linguistic matrix game problems to validate the

suggested solution scheme, and lastly, the results are compared.

1The work presented in this chapter comprises the results of a research paper entitled “Methodology
for Interval-Valued Matrix Games with 2-Tuple Fuzzy Linguistic Information”. In: Sergeyev Y., Kvasov
D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer
Science. Springer, Cham. , 11974, (2020). https://doi.org/10.1007/978-3-030-40616-5_12. (Conference
Proceedings Citation Index (CPCI))
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5.1 Introduction

Non-cooperative game theory in its classical set up was introduced by Von-Neumann

and Morgenstern [268] in 1944. It asserts that every player is exposed to the game’s pre-

cisely known information. The prevailing knowledge of the game permits each player to

furnish appropriate evaluations to their utility functions corresponding to different pair of

strategies. The postulations made for the exact payoffs can be considered as the stringent

ideology in the real world scenario which involves uncertain and ambiguous informa-

tion. Imprecision and uncertainty have been incorporated in game theory by using various

frameworks like fuzzy, stochastic etc. Several researchers have contributed significantly

in enhancing the literature of fuzzy games [30,31,58,260] and stochastic games [18,146].

However, in the world of uncertainties, it is also challenging for players to express pay-

offs in terms of membership functions in fuzzy environment or probability distribution

functions in stochastic environment. To facilitate the players with effortless choice of

payoffs, a new version of matrix games under uncertainty is proposed by Arfi [14, 15]

based on linguistic fuzzy logic. To annex a new dimension to the matrix game problems

under linguistic environment, Singh et al. [248] defined matrix games with linguistic in-

formation and proposed a linguistic linear programming (LLP) approach to solve such

class of games. Singh et al. [249] further extended the matrix games to interval-valued

2TL framework to increase the level of uncertainty in game problems and adopted LLP

approach to solve it. The authors formulated a pair of auxiliary LLP problems to obtain

the linguistic lower and upper bounds of interval linguistic value of the game.

In the present chapter, we extend the work of solving interval linguistic matrix game

(ILG) problems one step forward. Here, we propose a mechanism to compare IVTFL

variables using the bounds of the intervals and subsequently, define interval linguistic

lower value (ILLV) and interval linguistic upper value (ILUV) of the matrix game by

introducing the concept of max-min and min-max principle. In the absence of pure strate-

gies, we suggest IVLLP formulation to obtain the interval linguistic value of game with

the optimal strategies of both players by transforming it to conventional ILP problem.

To validate the proposed methodology, Best Worst Case (BWC) method [17], Enhanced

Interval Linear Programming (EILP) method [350] and LLP method [249] are adopted

to solve the transformed ILP problems and provide a comparative analysis. The duality

principle of IVLLP is also taken into consideration in order to prove the equality of ILLV

and ILUV of the game for player I and II, respectively.
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The remaining chapter unfolds as follows. In subsequent section 5.2, explains a new ap-

proach to compare two IVTFL variables based on the end point approach. In section 5.3

, a zero sum interval-valued 2TL matrix game is defined with its interval linguistic lower

and upper values using max-min principle. Section 5.4 discusses interval-valued linguis-

tic linear programming approach to solve the game in absence of pure strategies with a

hypothetical illustration. The chapter concludes in Section 5.5.

5.2 Comparison of interval-valued 2-tuple fuzzy linguis-

tic variables

In literature, Zhang [338] defined the comparison of interval-valued 2TL variables using

score and accuracy values. It gives a total ordering of the linguistic intervals that does not

show analogy with classical numeric intervals [37, 38, 52, 78, 135, 215, 216, 256, 281].

So, here, we present a new comparison scheme of interval-valued 2TL variables. The

approach involves the bounds of the intervals that allows to define a partial ordering of the

linguistic intervals. Here, we consider the following cases to encompass all possible pair

of intervals.

(1) Case of Disjoint Intervals: Let 𝜇 = [(ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ), (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) )], �̃� = [(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ),
(ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) )] be two disjoint IVTFL variables. Then

𝜇 < �̃� iff (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ) < (ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ).

(2) Case of Nested Intervals : Let 𝜇 = [(ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ), (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) )], �̃� = [(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ),
(ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) )] be the two IVTFL variables such that one of the following cases occur

:

(i) If 𝑖 (𝐿) ≤ 𝑗 (𝐿) < 𝑗 (𝑈) ≤ 𝑖 (𝑈) ⇒ (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤ (ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤
(ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).

(ii) If 𝑖 (𝐿) = 𝑗 (𝐿) = 𝑗 (𝑈) = 𝑖 (𝑈)⇒ 𝛼𝑖 (𝐿) ≤ 𝛼 𝑗 (𝐿) < 𝛼 𝑗 (𝑈) ≤ 𝛼𝑖 (𝑈) such that (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤
(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤ (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).

(iii) If 𝑖 (𝐿) = 𝑗 (𝐿) < 𝑗 (𝑈) < 𝑖 (𝑈)⇒ 𝛼𝑖 (𝐿) ≤ 𝛼 𝑗 (𝐿) < 𝛼 𝑗 (𝑈) ≤ 𝛼𝑖 (𝑈) such that (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤
(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤ (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).
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(iv) If 𝑖 (𝐿) = 𝑗 (𝐿) = 𝑗 (𝑈) < 𝑖 (𝑈)⇒ 𝛼𝑖 (𝐿) ≤ 𝛼 𝑗 (𝐿) < 𝛼 𝑗 (𝑈) ≤ 𝛼𝑖 (𝑈) such that (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤
(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤ (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).

(v) If 𝑖 (𝐿) ≤ 𝑗 (𝐿) = 𝑗 (𝑈) ≤ 𝑖 (𝑈)⇒ 𝛼𝑖 (𝐿) ≤ 𝛼 𝑗 (𝐿) < 𝛼 𝑗 (𝑈) ≤ 𝛼𝑖 (𝑈) such that (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤
(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤ (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).

(vi) If 𝑖 (𝐿) ≤ 𝑗 (𝐿) < 𝑗 (𝑈) = 𝑖 (𝑈)⇒ 𝛼𝑖 (𝐿) ≤ 𝛼 𝑗 (𝐿) < 𝛼 𝑗 (𝑈) ≤ 𝛼𝑖 (𝑈) such that (ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤
(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ) ≤ (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ).

All above cases infer that the linguistic interval �̃� is contained in 𝜇, denoted as

�̃� ⊂ 𝜇. It demonstrates the inclusion property of linguistic intervals i.e. the interval

�̃� is nested within 𝜇 and cannot be ordered in respect of values.

(3) Case of Overlapped Intervals : Let 𝜇 = [(ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ), (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) )], �̃� = [(ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ),
(ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) )] be two overlapping IVTFL variables such that

(ℓ𝑖 (𝐿) , 𝛼𝑖 (𝐿) ) ≤ (ℓ 𝑗 (𝐿) , 𝛼 𝑗 (𝐿) ) < (ℓ𝑖 (𝑈) , 𝛼𝑖 (𝑈) ) ≤ (ℓ 𝑗 (𝑈) , 𝛼 𝑗 (𝑈) ),

then 𝜇 < �̃�.

For instance, consider the predefined LTS, 𝐿𝑇 = {ℓ−2 : “Very Bad” (VB),

ℓ−1 : “Bad” (B), ℓ0 : “Medium” (M), ℓ1 : “Good” (G), ℓ2 : “Very Good” (VG)}. Suppose

𝑆 = {𝜇1 = [(ℓ−2,0), (ℓ0,0)], 𝜇2 = [(ℓ−2,0.8), (ℓ−1,0.23)], 𝜇3 = [(ℓ0,0.05), (ℓ2,−0.5)], 𝜇4 =

[(ℓ−1,0),(ℓ1,0)]} be a set of IVTFL variables using the predefined LTS 𝐿𝑇 . Here, 𝜇1 and

𝜇2 are nested linguistic intervals whereas interval 𝜇1 is disjoint with 𝜇3 and overlapping

with 𝜇4, comparing which we obtain that 𝜇1 < 𝜇3, 𝜇1 < 𝜇4 but 𝜇1 and 𝜇2 can not be com-

pared. Only the inclusion property can be discussed i.e. 𝜇2 ⊂ 𝜇1. On the similar grounds,

the other pair of intervals can be compared.

In literature, Singh et al. [249] adopted the matrices formulated using lower bounds and

upper bounds of the payoff intervals to define interval-valued linguistic (IVL) value of the

game. However, the authors suggested LLP approach to solve IVL matrix game in case

of mixed strategies. Unlike the existing solution scheme, here, based on the comparison

of linguistic intervals defined in the preceding section, the value of the interval fuzzy

linguistic game is defined in the light of min-max principle and subsequently, IVLLP

problem approach is proposed to solve such games.
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5.3 A zero-sum interval-valued linguistic matrix game

Definition 5.3.1. A two-player zero-sum IVL matrix game 𝐺 𝐼𝑛𝑡 is characterized by a

quadruplet (𝑆𝑛, 𝑆𝑚, 𝐿𝑇, 𝐴𝐼𝑛𝑡),where 𝑆𝑛, 𝑆𝑚 are strategy sets for player I and II respectively

and LT= {ℓ−𝑔, . . . , ℓ0, . . . , ℓ𝑔} is the predefined SSLTS. The matrix 𝐴𝐼𝑛𝑡 =
(
[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]
)
𝑛×𝑚

;

𝑖 = 1, . . . 𝑛, 𝑗 = 1, . . . ,𝑚 is the interval-valued linguistic payoff matrix of player I in defi-

ance of player II whereas neg 𝐴𝐼𝑛𝑡 =
(
[𝑛𝑒𝑔(�̃� (𝑈)

𝑖 𝑗
), 𝑛𝑒𝑔(�̃� (𝐿)

𝑖 𝑗
)]

)
𝑛×𝑚

depicts the payoff ma-

trix of player II such that the payoffs of two players sum up to (ℓ0,0).

Since the comparison of IVTFL variables are proposed in the preceding section, the

IVL value of the game can be defined in the subsequent manner.

Definition 5.3.2. For a given IVL matrix game 𝐺 𝐼𝑛𝑡 with payoff matrix 𝐴𝐼𝑛𝑡 , the IVL

lower value, �̃�−
𝐼𝑛𝑡

and IVL upper value, �̃�+
𝐼𝑛𝑡

of the game is defined as,

�̃�−𝐼𝑛𝑡 = max
𝑖=1,...,𝑛

min
𝑗=1,...,𝑚

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
],

�̃�+𝐼𝑛𝑡 = min
𝑗=1,...,𝑚

max
𝑖=1,...,𝑛

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] .

The IVL value, �̃� 𝐼𝑛𝑡 of the game exists when �̃�−
𝐼𝑛𝑡

= �̃�+
𝐼𝑛𝑡

= �̃� 𝐼𝑛𝑡 .

The strategy set (𝑖∗, 𝑗∗) for which these values are equal is called the saddle point of the

game and 𝑖∗, 𝑗∗ are optimal strategies of players I and II respectively.

For any IVL matrix game, the following inequality holds.

Theorem 5.3.1. Suppose �̃�−
𝐼𝑛𝑡

= [�̃�−(𝐿) , �̃�−(𝑈)] and �̃�+
𝐼𝑛𝑡

= [�̃�+(𝐿) , �̃�+(𝑈)] be the IVL lower

and upper values of an interval linguistic matrix game 𝐺 𝐼𝑛𝑡 such that both values exist.

Then, �̃�−
𝐼𝑛𝑡
≤ �̃�+

𝐼𝑛𝑡
.

Proof. We are given that �̃�−
𝐼𝑛𝑡

and �̃�+
𝐼𝑛𝑡

both exist, so for some column j and fixed row i, we

have,

min
𝑗=1,...,𝑚

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] ≤ [�̃� (𝐿)

𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
],

By taking max over 𝑖 = 1, . . . , 𝑛 on both sides, we obtain,

�̃�−𝐼𝑛𝑡 ≡ max
𝑖=1,...,𝑛

min
𝑗=1,...,𝑚

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] ≤ max

𝑖=1,...,𝑛
[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]
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⇒ �̃�−𝐼𝑛𝑡 ≤ max
𝑖=1,...,𝑛

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] .

Since the above inequality holds for any 𝑗 . Hence, we obtain the following inequality.

�̃�−𝐼𝑛𝑡 ≤ min
𝑗=1,...,𝑚

max
𝑖=1,...,𝑛

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]

Hence, �̃�−
𝐼𝑛𝑡
≤ �̃�+

𝐼𝑛𝑡
. □

Now, we exemplify the above theory using an illustration.

Example 5.3.1. Two firms need to introduce a number of essentially equivalent new prod-

ucts. In the next two months, the companies are planning to launch the products. The pay-

offs are the companies’ share, which it will acquire taking into account the months during

which production takes place. The payoffs of the companies appear in the form of IVTFL

variables from the set of predefined linguistic terms, LT =
{
ℓ−2 : “Very Low” (VL),

ℓ−1 : “Low” (L), ℓ0 : “Fair” (F), ℓ1 : “Good” (G), ℓ2 : “Very Good” (VG).
}
. The inter-

val linguistic payoff matrix for PI is given as.

𝐴 =

[
𝑉𝐿 [(𝑉𝐿,0.2), (𝐿,0.4561)]

[(𝐺,0.4),𝑉𝐺] 𝐺

]
Here,

�̃�−𝐼𝑛𝑡 = max
𝑖=1,2

min
𝑗=1,2

{
[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]
}

= max{min{𝑉𝐿, [(𝑉𝐿,0.2), (𝐿,0.4561)]},min{[(𝐺,0.4),𝑉𝐺)],𝐺}}

= max{𝑉𝐿,𝐺} = 𝐺.

Also, �̃�+𝐼𝑛𝑡 = min
𝑗=1,2

max
𝑖=1,2

{
[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]
}

= min{max{𝑉𝐿, [(𝐺,0.4),𝑉𝐺)]},max{[(𝑉𝐿,0.2), (𝐿,0.4561)],𝐺}}

= min{[(𝐺,0.4),𝑉𝐺],𝐺} = 𝐺.

Here, (2,2) is the saddle point and �̃� 𝐼𝑛𝑡 = 𝐺 is the IVL value of the matrix games. This

shows that in order to maximize the profit both the firms should launch their products in

the second month simultaneously.
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In the above example, if we replace the entry [�̃� (𝐿)11 , �̃�
(𝑈)
11 ] as [𝐹,𝐺] and [�̃� (𝐿)21 , �̃�

(𝑈)
21 ] as

𝑉𝐿, then �̃�−
𝐼𝑛𝑡

= [(𝑉𝐿,0.2), (𝐿,0.4561)], and �̃�+
𝐼𝑛𝑡

= [𝐹,𝐺], it depicts the absence of pure

strategies. The validity of Theorem 1 can also be deduced from the example as in case of

pure strategy, the equality holds whereas in another case, �̃�−
𝐼𝑛𝑡
< �̃�+

𝐼𝑛𝑡
.

To evaluate the strategy sets and optimal value of the game in absence of pure strategy,

here we define the IVLLP approach to solve such games.

5.4 Interval-valued linguistic linear programming approach

to solve interval linguistic matrix games

Suppose, we have the interval linguistic payoff matrix 𝐴𝐼𝑛𝑡 using the predefined LTS

𝐿𝑇 = {ℓ−𝑔, . . . , ℓ0, . . . , ℓ𝑔} as follows.

𝐴𝐼𝑛𝑡 =

©«
[�̃� (𝐿)11 , �̃�

(𝑈)
11 ] [�̃�

(𝐿)
12 , �̃�

(𝑈)
12 ] . . . [�̃� (𝐿)1𝑚 , �̃�

(𝑈)
1𝑚 ]

[�̃� (𝐿)21 , �̃�
(𝑈)
21 ] [�̃�

(𝐿)
22 , �̃�

(𝑈)
22 ] . . . [�̃� (𝐿)2𝑚 , �̃�

(𝑈)
2𝑚 ]

...
. . .

...
...

[�̃� (𝐿)
𝑛1 , �̃�

(𝑈)
𝑛1 ] [�̃�

(𝐿)
𝑛2 , �̃�

(𝑈)
𝑛2 ] . . . [�̃� (𝐿)𝑛𝑚 , �̃� (𝑈)𝑛𝑚 ]

ª®®®®®¬
where [�̃� (𝐿)

𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] is the payoff of player I on selecting 𝑖𝑡ℎ strategy when player II selects

the 𝑗 𝑡ℎ strategy.

Here, we may assume that each entries of the interval linguistic payoff matrix is either

[�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] < 0 or [�̃� (𝐿)

𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
] > 0. Let 𝑆𝑛 =

{
X = (𝑥1, 𝑥2, . . . , 𝑥𝑛) | 𝑥𝑖 ≥ 0,

∑𝑛
𝑖=1 𝑥𝑖 = 1

}
and 𝑆𝑚 =

{
Y = (𝑦1, 𝑦2, . . . , 𝑦𝑚) | 𝑦 𝑗 ≥ 0,

∑𝑚
𝑗=1 𝑦 𝑗 = 1

}
be the mixed strategy set for player

I and II, respectively. Then, the expected payoff of player I when player II selects 𝑗 𝑡ℎ

strategy, is taken as the weighted average of the IVL variables in the 𝑗 𝑡ℎ column i.e.

[�̃� (𝐿)1 𝑗 , �̃�
(𝑈)
1 𝑗 ]𝑥1 ⊕ . . .⊕ [�̃� (𝐿)𝑛 𝑗 , �̃�

(𝑈)
𝑛 𝑗
]𝑥𝑛.
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Hence, the required IVLLP problem for player I is given as.

max �̃�−𝐼𝑛𝑡 (IVLLP1)

subject to

[�̃� (𝐿)11 , �̃�
(𝑈)
11 ]𝑥1 ⊕ . . .⊕ [�̃� (𝐿)𝑛1 , �̃�

(𝑈)
𝑛1 ]𝑥𝑛 ≥ �̃�

−
𝐼𝑛𝑡

[�̃� (𝐿)12 , �̃�
(𝑈)
12 ]𝑥1 ⊕ . . .⊕ [�̃� (𝐿)𝑛2 , �̃�

(𝑈)
𝑛2 ]𝑥𝑛 ≥ �̃�

−
𝐼𝑛𝑡

...

[�̃� (𝐿)1𝑚 , �̃�
(𝑈)
1𝑚 ]𝑥1 ⊕ . . .⊕ [�̃� (𝐿)𝑛𝑚 , �̃� (𝑈)𝑛𝑚 ]𝑥𝑛 ≥ �̃�−𝐼𝑛𝑡

𝑥1 + 𝑥2 + . . .+ 𝑥𝑛 = 1

𝑥1, 𝑥2, . . . , 𝑥𝑛 ≥ 0.

Using the monotonicity of Δ−1 operator, the inequality constraints of above IVLLP

model can be rewritten as follows,

Δ−1( [�̃� (𝐿)11 , �̃�
(𝑈)
11 ])𝑥1 ⊕ . . .⊕Δ−1( [�̃� (𝐿)

𝑛1 , �̃�
(𝑈)
𝑛1 ])𝑥𝑛 ≥ Δ−1(�̃�−𝐼𝑛𝑡)

Δ−1( [�̃� (𝐿)12 , �̃�
(𝑈)
12 ])𝑥1 ⊕ . . .⊕Δ−1( [�̃� (𝐿)

𝑛2 , �̃�
(𝑈)
𝑛2 ])𝑥𝑛 ≥ Δ−1(�̃�−𝐼𝑛𝑡)

...

Δ−1( [�̃� (𝐿)1𝑚 , �̃�
(𝑈)
1𝑚 ])𝑥1 ⊕ . . .⊕Δ−1( [�̃� (𝐿)𝑛𝑚 , �̃� (𝑈)𝑛𝑚 ])𝑥𝑛 ≥ Δ−1(�̃�−𝐼𝑛𝑡)

and the objective function max �̃�−
𝐼𝑛𝑡
≡max Δ−1(�̃�−

𝐼𝑛𝑡
).

By taking Δ−1( [�̃� (𝐿)
𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]) = [𝑎 (𝐿)

𝑖 𝑗
, 𝑎
(𝑈)
𝑖 𝑗
], 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚, and Δ−1(�̃�−

𝐼𝑛𝑡
) =

𝑣 𝐼𝑛𝑡 , the constraints of model IVLLP1 is given as.

[𝑎 (𝐿)11 , 𝑎
(𝑈)
11 ]𝑥1 + . . .+ [𝑎 (𝐿)𝑛1 , 𝑎

(𝑈)
𝑛1 ]𝑥𝑛 ≥ 𝑣 𝐼𝑛𝑡

[𝑎 (𝐿)12 , 𝑎
(𝑈)
12 ]𝑥1 + . . .+ [𝑎 (𝐿)𝑛2 , 𝑎

(𝑈)
𝑛2 ]𝑥𝑛 ≥ 𝑣 𝐼𝑛𝑡

...

[𝑎 (𝐿)1𝑚 , 𝑎
(𝑈)
1𝑚 ]𝑥1 + . . .+ [𝑎 (𝐿)𝑛𝑚 , 𝑎 (𝑈)𝑛𝑚 ]𝑥𝑛 ≥ 𝑣 𝐼𝑛𝑡

𝑥1 + 𝑥2 + . . .+ 𝑥𝑛 = 1

𝑥1, 𝑥2, . . . , 𝑥𝑛 ≥ 0.
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Here, we assume that 0 ∉ Δ−1(�̃�−
𝐼𝑛𝑡
) = 𝑣 𝐼𝑛𝑡 .

We set, 𝑋𝑖 =
𝑥𝑖

𝑣 𝐼𝑛𝑡
, 𝑖 = 1, . . . 𝑛, and𝑉𝐼𝑛𝑡 =

1
𝑣 𝐼𝑛𝑡

=

[
1
𝑣 (𝑈)

,
1
𝑣 (𝐿)

]
. Hence, by making the above

substitutions, the model IVLLP1 is transformed into standard ILP problem for player I,

given below.

min 𝑉𝐼𝑛𝑡 = 𝑋1 + 𝑋2 + . . .+ 𝑋𝑛 (ILP1)

subject to

[𝑎 (𝐿)11 , 𝑎
(𝑈)
11 ]𝑋1 + . . .+ [𝑎 (𝐿)𝑛1 , 𝑎

(𝑈)
𝑛1 ]𝑋𝑛 ≥ [1,1]

[𝑎 (𝐿)12 , 𝑎
(𝑈)
12 ]𝑋1 + . . .+ [𝑎 (𝐿)𝑛2 , 𝑎

(𝑈)
𝑛2 ]𝑋𝑛 ≥ [1,1]

...

[𝑎 (𝐿)1𝑚 , 𝑎
(𝑈)
1𝑚 ]𝑋1 + . . .+ [𝑎 (𝐿)𝑛𝑚 , 𝑎 (𝑈)𝑛𝑚 ]𝑋𝑛 ≥ [1,1]

𝑋1, 𝑋2, . . . , 𝑋𝑛 ≥ 0.

Analogously, we can formulate an IVLLP problem for player II.

min �̃�+𝐼𝑛𝑡 (IVLLP2)

subject to

[�̃� (𝐿)11 , �̃�
(𝑈)
11 ]𝑦1 ⊕ . . .⊕ [�̃� (𝐿)1𝑚 , �̃�

(𝑈)
1𝑚 ]𝑦𝑚 ≤ �̃�

+
𝐼𝑛𝑡

[�̃� (𝐿)21 , �̃�
(𝑈)
21 ]𝑦1 ⊕ ⊕ . . .⊕ [�̃� (𝐿)2𝑚 , �̃�

(𝑈)
2𝑚 ]𝑦𝑚 ≤ �̃�

+
𝐼𝑛𝑡

...

[�̃� (𝐿)
𝑛1 , �̃�

(𝑈)
𝑛1 ]𝑦1 ⊕ . . .⊕ [�̃� (𝐿)𝑛𝑚 , �̃� (𝑈)𝑛𝑚 ]𝑦𝑚 ≤ �̃�+𝐼𝑛𝑡

𝑦1 + 𝑦2 + . . .+ 𝑦𝑚 = 1

𝑦1, 𝑦2, . . . , 𝑦𝑚 ≥ 0.

Recall 0 ∉ 𝑣 𝐼𝑛𝑡 = Δ−1(�̃�−
𝐼𝑛𝑡
). If 𝑣 𝐼𝑛𝑡 is the value of the interval linguistic game then 𝑣 𝐼𝑛𝑡 =

Δ−1(�̃�+
𝐼𝑛𝑡
).

By taking 𝑌 𝑗 =
𝑦 𝑗

𝑣 𝐼𝑛𝑡
, 𝑗 = 1, . . . ,𝑚, and as earlier we discussed that Δ−1( [�̃� (𝐿)

𝑖 𝑗
, �̃�
(𝑈)
𝑖 𝑗
]) =

[𝑎 (𝐿)
𝑖 𝑗
, 𝑎
(𝑈)
𝑖 𝑗
], the corresponding model IVLLP2 reduces to the following standard ILP

problem for player II.
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max 𝑉𝐼𝑛𝑡 = 𝑌1 +𝑌2 + . . .+𝑌𝑚 (ILP2)

subject to

[𝑎 (𝐿)11 , 𝑎
(𝑈)
11 ]𝑌1 . . .+ [𝑎 (𝐿)1𝑚 , 𝑎

(𝑈)
1𝑚 ]𝑌𝑚 ≤ [1,1]

[𝑎 (𝐿)21 , 𝑎
(𝑈)
21 ]𝑌1 + . . .+ [𝑎 (𝐿)2𝑚 , 𝑎

(𝑈)
2𝑚 ]𝑌𝑚 ≤ [1,1]

...

[𝑎 (𝐿)
𝑛1 , 𝑎

(𝑈)
𝑛1 ]𝑌1 + . . .+ [𝑎 (𝐿)𝑛𝑚 , 𝑎 (𝑈)𝑛𝑚 ]𝑌𝑚 ≤ [1,1]

𝑌1,𝑌2, . . . ,𝑌𝑚 ≥ 0.

Here, models ILP1 and ILP2 can be solved using any existing methods for solving ILP

problems to obtain the optimal mixed strategies X∗Int ∈ 𝑆
𝑛 and Y∗Int ∈ 𝑆

𝑚 along with the

interval linguistic value of the game 𝑉∗
𝐼𝑛𝑡

. It is also noteworthy that both models ILP1 and

ILP2 form a primal-dual interval linear programs in the crisp set-up.

Example 5.4.1. Consider the zero-sum IVTFL matrix game having interval payoffs de-

fined from the previously defined SSLTS LT= {ℓ−3 : “Very Low”(𝑉𝐿), ℓ−2 : “Low”(𝐿), ℓ−1 :

“Moderately Low”(𝑀𝐿), ℓ0 : “Average”(𝐴𝑣𝑔), ℓ1 : “Moderately High”(𝑀𝐻), ℓ2 : “High”(𝐻), ℓ3 :

“Very High”(𝑉𝐻)} with payoff matrix,

𝐴𝐼𝑛𝑡 =

(
[ (𝑉𝐿, 0.2) , (𝐿, 0) ] [ (𝐻,−0.2) , (𝑉𝐻,−0.3) ] [ (𝑀𝐻, 0.3) , (𝐻, 0.2) ] [ (𝑀𝐿,−0.13) , (𝐴𝑣𝑔, 0) ]
[ (𝑉𝐻, 0) , (𝑉𝐻, 0) ] [ (𝐻, 0) , (𝑉𝐻,−0.2) ] [ (𝐿,−0.4) , (𝑀𝐿, 0) ] [ (𝑀𝐻, 0) , (𝐻,−0.2) ]

[ (𝑀𝐻,−0.28) , (𝑀𝐻,−0.28) ] [ (𝐿, 0) , (𝑀𝐿, 0) ] [ (𝑉𝐻, 0) , (𝑉𝐻, 0) ] [ (𝑉𝐻, 0) , (𝑉𝐻, 0) ]

)

Let PI’s mixed strategies be given as x(𝐿) = (𝑥 (𝐿)1 , 𝑥
(𝐿)
2 , 𝑥

(𝐿)
3 ), 𝑥

(𝐿)
𝑖
≥ 0, 𝑖 = 1, . . . ,3,∑3

𝑖=1 𝑥
(𝐿)
𝑖

= 1, and x(𝑈) = (𝑥 (𝑈)1 , 𝑥
(𝑈)
2 , 𝑥

(𝑈)
3 ), 𝑥

(𝑈)
𝑖
≥ 0, 𝑖 = 1, . . . ,3,

∑3
𝑖=1 𝑥

(𝑈)
𝑖

= 1 for the

given interval payoff matrix, 𝐴𝐼𝑛𝑡 . In addition, PII’s mixed strategies are defined as y(𝐿) =

(𝑦 (𝐿)1 , 𝑦
(𝐿)
2 , 𝑦

(𝐿)
3 , 𝑦

(𝐿)
4 ), 𝑦

(𝐿)
𝑗
≥ 0, 𝑗 = 1, . . . ,4,

∑4
𝑗=1 𝑦

(𝐿)
𝑗

= 1, and y(𝑈) = (𝑦 (𝑈)1 , 𝑦
(𝑈)
2 , 𝑦

(𝑈)
3 ,

𝑦
(𝑈)
4 , 𝑦

(𝑈)
5 ), 𝑦

(𝑈)
𝑗
≥ 0, 𝑗 = 1, . . . ,5,

∑5
𝑗=1 𝑦

(𝑈)
𝑗

= 1.

We build models (IVLLP1 and IVLLP2) based on the suggested methodology, which are

then translated into classical ILP problems to derive optimal strategy sets for PI and PII,

respectively.
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Method 1: Best-Worst method

For Player I:

Best-sub model

min 𝑉−(𝑈) = 𝑋1 + 𝑋2 + 𝑋3

subject to

−2.8𝑋1 +3𝑋2 +2.4𝑋3 ≥ 1,

1.8𝑋1 +2𝑋2−2𝑋3 ≥ 1,

1.3𝑋1−2.4𝑋2 +3𝑋3 ≥ 1,

−1.13𝑋1 + 𝑋2 +3𝑋3 ≥ 1,

𝑋1, 𝑋2, 𝑋3 ≥ 0.

Worst-sub model

min 𝑉−(𝐿) = 𝑋1 + 𝑋2 + 𝑋3

subject to

−2𝑋1 +3𝑋2 +3𝑋3 ≥ 1,

2.7𝑋1 +2.8𝑋2− 𝑋3 ≥ 1,

2.2𝑋1− 𝑋2 +3𝑋3 ≥ 1,

0𝑋1 +1.8𝑋2 +3𝑋3 ≥ 1,

𝑋1, 𝑋2, 𝑋3 ≥ 0.

Solving these two problems, we obtain the optimal strategy of player I as 𝑥1 =

[0.3146,0.3685], 𝑥2 = [0.3149,0.3289], 𝑥3 = [0.3149,0.3575] with IVL lower value

of the game given as, 𝑣−
𝐼𝑛𝑡

= [(ℓ1,−0.33), (ℓ1,0.43)] .

For Player II:

Best-sub model

max 𝑉+(𝑈) = 𝑌1 +𝑌2 +𝑌3 +𝑌4

subject to

−2.8𝑌1 +1.8𝑌2 +1.3𝑌3−1.13𝑌4 ≤ 1,

3𝑌1 +2𝑌2−2.4𝑌3 +𝑌4 ≤ 1,

2.4𝑌1−2𝑌2 +3𝑌3 +3𝑌4 ≤ 1,

𝑌1,𝑌2,𝑌3,𝑌4 ≥ 0.

Worst-sub model

max 𝑉+(𝐿) = 𝑌1 +𝑌2 +𝑌3 +𝑌4

subject to

−2𝑌1 +2.7𝑌2 +2.2𝑌3 +0𝑌4 ≤ 1,

3𝑌1 +2.8𝑌2−1𝑌3 +1.8𝑌4 ≤ 1,

3𝑌1−1𝑌2 +3𝑌3 +3𝑌4 ≤ 1,

𝑌1,𝑌2,𝑌3,𝑌4 ≥ 0.

For player II, the optimal strategy set is 𝑦1 = [0.2077,0.2288], 𝑦2 = [0.4004,0.4422],
𝑦3 = [0.3484,0.3718], 𝑦4 = 0 with IVL upper value of the game, 𝑣+

𝐼𝑛𝑡
= [(ℓ1,−0.33), (ℓ1,0.43)] .
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Method 2: Enhanced interval-valued linear programming method

For Player I:

Sub-problem I

min 𝑉−(𝑈) = 𝑋𝑈1 + 𝑋
𝑈
2 + 𝑋

𝑈
3

subject to

−2𝑋𝑈1 +3𝑋𝑈2 +2.4𝑋𝑈3 ≥ 1,

1.8𝑋𝑈1 +2𝑋𝑈2 − 𝑋
𝑈
3 ≥ 1,

1.3𝑋𝑈1 − 𝑋
𝑈
2 +3𝑋𝑈3 ≥ 1,

0𝑋𝑈1 + 𝑋
𝑈
2 +3𝑋𝑈3 ≥ 1,

𝑋𝑈1 , 𝑋
𝑈
2 , 𝑋

𝑈
3 ≥ 0.

Sub-problem II

min 𝑉−(𝐿) = 𝑋𝐿1 + 𝑋
𝐿
2 + 𝑋

𝐿
3

subject to

−2.8𝑋𝐿1 +3𝑋𝐿2 +3𝑋𝐿3 ≥ 1,

2.7𝑋𝐿1 +2.8𝑋𝐿2 −2𝑋𝐿3 ≥ 1,

2.2𝑋𝐿1 −2.4𝑋𝐿2 +3𝑋𝐿3 ≥ 1,

−1.13𝑋𝐿1 +1.8𝑋𝐿2 +3𝑋𝐿3 ≥ 1,

𝑋𝐿1 , 𝑋
𝐿
2 , 𝑋

𝐿
3 ≥ 0.

For Player II:

Sub-problem I

max 𝑉+(𝑈) = 𝑌𝑈1 +𝑌
𝑈
2 +𝑌

𝑈
3 +𝑌

𝑈
4

subject to

−2𝑌𝑈1 +1.8𝑌𝑈2 +1.3𝑌𝑈3 ≤ 1,

3𝑌𝑈1 +2𝑌𝑈2 −𝑌
𝑈
3 +𝑌

𝑈
4 ≤ 1,

2.4𝑌𝑈1 −𝑌
𝑈
2 +3𝑌 𝐿3 +3𝑌 𝐿4 ≤ 1,

𝑌𝑈1 ,𝑌
𝑈
2 ,𝑌

𝑈
3 ,𝑌

𝑈
4 ≥ 0.

Sub-problem II

max 𝑉+(𝐿) = 𝑌 𝐿1 +𝑌
𝐿
2 +𝑌

𝐿
3 +𝑌

𝐿
4

subject to

−2.8𝑌 𝐿1 +2.7𝑌 𝐿2 +2.2𝑌 𝐿3 −1.13𝑌 𝐿4 ≤ 1,

3𝑌 𝐿1 +2.8𝑌 𝐿2 −2.4𝑌 𝐿3 −1.8𝑌 𝐿4 ≤ 1,

3𝑌 𝐿1 −2𝑌 𝐿2 +3𝑌 𝐿3 +3𝑌𝑈4 ≤ 1,

𝑌 𝐿1 ,𝑌
𝐿
2 ,𝑌

𝐿
3 ,𝑌

𝐿
4 ≥ 0.

Solving the above models, the optimal strategies of PI and PII are evaluated as 𝑥1 =

[0.3008,0.3395], 𝑥2 = [0.2726,0.3201], 𝑥3 = [0.2813,0.3196] and 𝑦1 = [0.1455,0.235],
𝑦2 = [0.3478,0.4462], 𝑦3 = [0.3102,0.3589], 𝑦4 = 0 respectively with 𝑣 𝐼𝑛𝑡 = [(ℓ1,−0.06), (ℓ1,−0.03)] .
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Method 3: Linguistic Linear Programming (LLP) Method

We split our matrix 𝐴𝐼𝑛𝑡 into linguistic lower matrix and linguistic upper matrix

to obtain interval linguistic lower and upper values of the interval linguistic matrix

game. The mathematical formulation for this problem is similar to that of BWC.

The optimal strategies obtained in respect of both players and value of the game using

various existing methodologies to solve ILP problems, are tabulated below.

For Player I :

Method 𝑥1 𝑥2 𝑥3 Optimal Value

BWC [0.3146,0.3685] [0.3149,0.3289] [0.3149,0.3575] [(ℓ1,−0.33), (ℓ1,0.43)]
EILP [0.3008,0.3395] [0.2726,0.3201] [0.2813,0.3196] [(ℓ1,−0.06), (ℓ1,−0.03)]
LLP [0.3146,0.3685] [0.3149,0.3289] [0.3149,0.3575] [(ℓ1,−0.33), (ℓ1,0.43)]

For Player II :

Method �̃�1 �̃�2 �̃�3 �̃�4 Optimal Value

BWC [0.2077,0.2288] [0.4004,0.4422] [0.3484,0.3718] 0 [(ℓ1,−0.33), (ℓ1,0.43)]
EILP [0.1455,0.235] [0.3478,0.4462] [0.3102,0.3589] 0 [(ℓ1,−0.06), (ℓ1,−0.03)]
LLP [0.2077,0.2288] [0.4004,0.4422] [0.3484,0.3718] 0 [(ℓ1,−0.33), (ℓ1,0.43)]

Here, the solution region obtained using EILP method is completely optimal and fea-

sible. However, BWC and LLP approach provides a solution region which is completely

optimal but may not be feasible. This is because it incorporates some infeasible points

within the solution set.

5.5 Conclusion

In this chapter, we have studied the 2-player zero sum IVL matrix game problems. We

proposed a new methodology for comparing two IVTFL variables and subsequently, put

forward the concept of max-min principle for defining the lower and upper value of the

interval linguistic game problem. However, in the absence of pure strategies, we designed

a new approach for evaluating the optimal strategies and value of the game. We envision

that the proposed method can easily be applied to large scale interval linguistic game

problems, manufacturing companies, large scale DM problems where the existing players

(or DMs) have conflicting objectives.





Chapter 6

Interval norm approach for solving two

player zero sum matrix games with

interval payoffs

The work of this chapter1, present a new approach that gives a unique outlook for solving

a two-player zero-sum interval-valued matrix game based on the interval matrix norm

framework. The methodology presented in our work is useful in obtaining an approxi-

mated interval game value for the corresponding zero-sum interval matrix game without

undergoing the existing process of solving traditional interval linear mathematical mod-

els. For this, we initially proceed to propose the concept of an interval 1− norm and ∞−
norm for the interval matrix game problem. Later on, based on the proposed interval norm

concept, some new results have been developed, pointing out some necessary conditions

to obtain the interval optimum boundaries for the interval game value if at all exist. Addi-

tionally, an efficient method based on the normalization concept is developed to obtain the

appropriate bounds for the largest and smallest element lying within the mixed strategy

set for the corresponding game players. Lastly, the established method is applied to the

practical numerical examples, and, a comparison of results with the traditional methods

for imprecise matrix game is provided to demonstrate the consistency and usefulness of

the proposed methodology.

1This chapter is based on a research paper entitled “Interval norm approach for solving two player zero
sum matrix games with interval payoffs” (Submitted)
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6.1 Introduction

Game theory [36] is focused with the analysis of conflicting situations with the goal

of capturing strategic behavior. Due to its adaptable character and uses in a wide range

of conflicts and problems, different types of mathematical game models have been thor-

oughly researched and successfully implemented in a variety of fields suchlike economics,

finance, computer science, sociology, political science etc. Nevertheless, due to a lack of

specific information and a player’s imprecise understanding of the situation, it is difficult

to evaluate payoffs properly in gaming situations. The players can only make educated

guesses about the payoff value. The most important and much debated topic among the

scholars is how to deal with uncertainty. Most of these complex scenarios cannot be

well represented by crisp data. Henceforth, the need for structured and accurate assess-

ment brings the existence of matrix games into the fuzzy environment (See for refer-

ence [30–32, 58, 180–184]) and stochastic environment (See for reference [?, 18, 86]).

In almost all the matrix game models defined under fuzzy or stochastic environment,

the payoffs are treated as fuzzy numbers or probabilities, with the assumption that their

membership functions/ non membership functions or else the probabilistic distribution

function have already been explained. However, in unknown situations, it is not always

possible for the game players to define the membership functions/ distribution function.

In many circumstances, the payoffs can be thought of as interval numbers, meaning that

for any fixed strategy, the players’ payoffs can fluctuate within a certain range. Therefore,

interval-valued matrix game (IMG) formulation have received boundless attention among

researchers for managing matrix game problems under uncertainty.

In the literature, many researchers have developed techniques/methods for obtaining

the solution of IMG problems. Collins [59] proposed a methodology to model uncertainty

involved in matrix games by considering IMG. In that paper, the authors extended clas-

sical matrix games’ results to fuzzily determined IMGs by utilizing an appropriate fuzzy

interval-based ranking method. Liu and Kao [186] developed a method to solve zero-sum

IMG concerning two players having payoff matrix with each entry as interval. They con-

structed a pair of 2-level mathematical programs to obtain the lower and upper bound of

the interval game value. Finally, based upon the duality theorem and further applying the

technique of variable substitution, two-level mathematical programs are amended into a

pair of classical one-level linear mathematical programs. However, the method proposed

by Liu and Kao [186] focused mainly on obtaining the bounds (i.e., both lower and up-
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per) of the interval game value of the IMG and did not suggest any particular technique

for computing corresponding optimal strategies for game participants. Additionally, the

methodology in that paper results in several additional variables and constraints in the

derived supplementary linear mathematical programming models, culminating in high

computational requirements. Nayak and Pal [222] structured a pair of ILP models for the

IMG. Authors separated the interval and chose only the lower bounds of PI’s gain-floor

and PII’s loss-ceiling as objective functions in the solving practise, and then transformed

the ILP models into classic linear mathematical models utilising interval based inequality

relations [257, 258].

Further, Li [185] modified the inappropriate formulations provided in the paper [221]

and pointed out some vital mistakes in the existing approach. Moreover, the author de-

rived the bi-objective mathematical programming models and put forward to solve the

model via lexicographic ordering technique to obtain a rational and credible solution of

the generic IMG. Later on, Li et al. [178] derived a couple of bi-objective linear mathe-

matical programming models from the established auxiliary ILP models that is primarily

based upon the defined interval inequality relations and the fuzzy based ranking index.

Here, authors’ have used the method of weighted average to solve the bi-objective lin-

ear programming mathematical models, unlike the lexicographic method suggested in the

paper [185]. Since the methodologies mentioned above are competent to address game

problems with complete-information. However, most practical problems are exposed to

uncertain situations where players often do not have sufficient information regarding pay-

offs. In such cases, the payoffs deal with uncertain payoffs that are estimated in the form

of intervals from available data. In this context, Dey and Zaman [87] proposed a robust op-

timization methodology for addressing incomplete-information for two-player zero-sum

and nonzero-sum games considering single or multiple interval inflows.

After shedding light on the dedicated literature of IMGs, it is envisaged that most of the

developed methodologies for solving two-players IMGs with either complete or incom-

plete information require the use of ILP methods or programs. However, as the interval

game matrix’s size increases, the classical methods of obtaining the solution of these

problems will become a tedious job. Moreover, in most of the ILP methods studied in

the literature (See [224]), it is foreseen that the ILP models are transformed intially into

two linear mathematical submodels by using lower bounds and upper bounds of the given

interval payoffs to obtain lower and upper bound of the interval value of the IMG sepa-

rately. As a consequence, the results for the IMG problems obtained by the authors are
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primarily based upon the bounds of the interval payoffs. Henceforth, in the current study

we focuses on proposing a rational method proficient enough to achieve an approximate

solution faster without splitting the interval payoffs into lower and upper bounds of the

given inputs.

It is also observed that while solving zero-sum IMG problem via existing ILP methods

the solution space so obtained may consist of some infeasible points and thereby becomes

inefficient in handling interval uncertainties present within the real-world system. To

eliminate the infeasibility of the solution space and providing the solution that is both

completely feasible and optimal several improvements in the methods and its sub-models

have been proposed in the past (See [224]). Nevertheless, the ILP methods increases

the computation cost and complexity of the solution space for the scenario where game

problem is having large counting of decision variables. So, to avoid the limitation of

the existing methods and further to reflect a possibility of attaining a set of potential

interval solutions for IMGs proficient enough in meeting a certain level of satisfaction,

we proposed a method in this research that uses the concept of 1− interval norm and ∞−
interval norm for the interval payoff matrix.

In our methodology, based on the novel concept of interval matrix norm, we present

a new result stating some necessary conditions to compute optimal interval boundaries

for the interval game value without solving any mathematical linear equations. Since the

computation of a mixed strategy set for corresponding game players is a significant step

within any existing game problems. So, in this regard, we present results imperative to

find the largest and smallest elements of the mixed strategy sets for the game players and

further establish the min−max/max−min interval inequality relations. It is also notable

to emphasize that the proposed interval norm concept and the proposed results are all

based on the modified interval arithmetic operations (See [102]) instead usual interval

arithmetic to attain the better solution space for the given IMG problem. Lastly, to high-

light the application of the suggested approach some numerical illustration is also given.

Further, we provide insight about the comparison of the obtained results with the existing

ILP method to demonstrate the consistency and usefulness of the developed methodology.

Although a novel approach of solving a two-player ZSMG centered on the framework

of matrix norms in terms of real numbers has already been developed in the literature

(See [133]), nevertheless, solving zero-sum IMGs by using interval norms are unfamiliar

and needed to be studied. Therefore, the technique adapted in the chapter has made a

significant contribution in enriching the theory of interval matrix norms and puts forward



163

a new outlook in IMGs. The proposed method is immensely useful in the condition where

the interval game problem involves large decision variables. Consequently, obtaining an

approximated interval game value at a faster rate without explicitly solving the interval

linear mathematical models that generally increases the complexity of the problem by

increasing the constraints number.

Even though the developed methodology helps obtain the solution faster, it is significant

to note that our methodology does not endure splitting of intervals into lower and upper

bounds persisting in the existing approach. Accordingly, substantiating the viewpoint of

logic to be an interval throughout the solving process. Henceforth, facilitating players to

understand the structural behavior of the strategies within the range of admissible values.

6.1.1 Basic definitions

We first refresh some foundational definitions and results based on the interval numbers

and modified interval arithmetic operations required for this chapter.

Moore [215] initially suggests an interval number and is further studied as a superset of

the real line R by extending the domain of real number.

Definition 6.1.1. [215] An interval number is defined as �̂� = [𝑚𝐿 , 𝑚𝑈] where 𝑚𝐿 , 𝑚𝑈 ∈
R and 𝑚𝐿 ≤ 𝑚𝑈 . Here, the numbers 𝑚𝐿 and 𝑚𝑈 are termed as lower and upper bound of

the interval �̂�, respectively. If 𝑚𝐿 = 𝑚𝑈 then, �̂� is degenerate, and the interval �̂� evolves

into a crisp number.

In addition, an interval number is alternately expressed in terms of �̂� =< 𝑐(�̂�), 𝑤(�̂�) >
where, 𝑐(�̂�), 𝑤(�̂�) represents mid-point and half-width of an interval �̂�, respectively.

i.e.,

𝑐(�̂�) = 𝑚
𝐿 + 𝑚𝑈

2

and

𝑤(�̂�) = 𝑚
𝑈 − 𝑚𝐿

2
Definition 6.1.2. [215] Suppose that 𝑀𝐿 = (𝑚𝐿

𝑖 𝑗
), 𝑀𝑈 = (𝑚𝑈

𝑖 𝑗
) ∈ R𝑝×𝑞, 𝑝, 𝑞 ∈ N are two

matrices such that ∀𝑖, 𝑗 ; (𝑚𝐿
𝑖 𝑗
) ≤ (𝑚𝑈

𝑖 𝑗
). Thus, an interval matrix is given in the subsequent

form:

�̂� = [𝑀𝐿 , 𝑀𝑈] =
{
𝑀𝐿 ≤ 𝑀 ≤ 𝑀𝑈 | 𝑀 ∈ R𝑝×𝑞

}
.

The set of all 𝑝 × 𝑞 interval matrices is termed as 𝑝 × 𝑞 interval matrix spaces which is

denoted by IR𝑝×𝑞.
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Definition 6.1.3. [215] An interval number �̂� is purely positive if 𝑚𝐿 ≥ 0 and it is purely

negative if 𝑚𝑈 ≤ 0.

Further, Farhadsefat et al. [94] introduced interval matrix norms induced by generic

point matrix norms within the space of interval matrices. The following definition is

taken from [94].

Definition 6.1.4. [94] A function | | |.| | | : IR𝑝×𝑞→ R is defined as an interval matrix norm

in the space IR𝑝×𝑞 if the subsequent properties holds true:

(i) | | | �̂�| | | ≥ 0, and | | | �̂�| | | = 0 when �̂� = 0;

(ii) | | | �̂�+ �̂� | | | ≤ | | | �̂�| | | + | | |�̂�| | |;

(iii) | | |𝛼�̂�| | | = |𝛼 | | | | �̂�| | |, where 𝛼 ∈ R.

For a more detailed knowledge about interval matrix norms, one can refer to the corre-

sponding paper [94].

In literature, Moore [215] proposed an extensive study on interval arithmetic by extend-

ing ordinary arithmetic of real numbers. However, due to certain discrepancies existing

within the traditional arithmetic operations defined for the set of interval numbers, Gane-

san and Veeramani [102] introduced the newest set of interval arithmetic operations. The

modified interval arithmetic operations easily overcome the existing discrepancies and

follow distributive law.

Definition 6.1.5. [102] Suppose 𝑥 = [𝑥𝐿 , 𝑥𝑈], �̂� = [𝑦𝐿 , 𝑦𝑈] ∈ IR be any two closed and

bounded real intervals. Then, the new modified interval arithmetic operations are specified

as follows:

(i) 𝑥+ �̂� = [𝑥𝐿 , 𝑥𝑈] + [𝑦𝐿 , 𝑦𝑈] = [(𝑐(𝑥)+𝑐( �̂�))−𝜃, (𝑐(𝑥)+𝑐( �̂�))+𝜃], where 𝜃 =
(𝑦𝑈 + 𝑥𝑈) − (𝑦𝐿 + 𝑥𝐿)

2
.

(ii) 𝑥 − �̂� = [𝑥𝐿 , 𝑥𝑈] − [𝑦𝐿 , 𝑦𝑈] = [(𝑐(𝑥) − 𝑐( �̂�)) − 𝜃, (𝑐(𝑥) − 𝑐( �̂�)) + 𝜃], where 𝜃 =
(𝑦𝑈 + 𝑥𝑈) − (𝑦𝐿 + 𝑥𝐿)

2
.

(iii) 𝑥.�̂� = [𝑥𝐿 , 𝑥𝑈] [𝑦𝐿 , 𝑦𝑈] = [𝑐(𝑥)𝑐( �̂�)−𝜃, 𝑐(𝑥)𝑐( �̂�)+𝜃] where, 𝜃 =min
{
(𝑐(𝑥)𝑐( �̂�)) −𝛼, 𝛽− (𝑐(𝑥)𝑐( �̂�))

}
.

Here, 𝛼 = min(𝑥𝐿𝑦𝐿 , 𝑥𝐿𝑦𝑈 , 𝑥𝑈𝑦𝐿 , 𝑥𝑈𝑦𝑈) and 𝛽 = max(𝑥𝐿𝑦𝐿 , 𝑥𝐿𝑦𝑈 , 𝑥𝑈𝑦𝐿 , 𝑥𝑈𝑦𝑈).

(iv) 1÷𝑥 = 1
𝑥
=

1
[𝑥𝐿 , 𝑥𝑈]

=

[
1
𝑐(𝑥) −𝜃,

1
𝑐(𝑥) +𝜃

]
, where 𝜃 =min

{
1
𝑥𝑈
( 𝑥
𝑈 − 𝑥𝐿
𝑥𝑈 + 𝑥𝐿

), 1
𝑥𝐿
( 𝑥
𝑈 − 𝑥𝐿
𝑥𝑈 + 𝑥𝐿

)
}

and 0 ∉ [𝑥𝐿 , 𝑥𝑈].
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Remark 6.1.1. From (iii) it is evident that for any scalar 𝜆, 𝜆𝑥 = [𝜆𝑥𝐿 , 𝜆𝑥𝑈] whenever

𝜆 ≥ 0 and 𝜆𝑥 = [𝜆𝑥𝑈 , 𝜆𝑥𝐿] for 𝜆 < 0.

It is noteworthy that ⊙ ∈ {⊕, ⊖, ⊗, ⊘} denotes the set of existing interval arithmetic

operations whereas ∗ ∈ {+, −, ., ÷} denotes the modified interval arithmetic operations.

Moreover, 𝑥 ∗ �̂� ⊆ 𝑥 ⊙ �̂� where ∗, ⊙ represents the similar meaning mentioned above.

Also, IR =
{
𝑥 = [𝑥𝐿 , 𝑥𝑈] | 𝑥𝐿 , 𝑥𝑈 ∈ R and 𝑥𝐿 ≤ 𝑥𝑈

}
represents a set of proper intervals,

while IR = { 𝑥 = [𝑥𝐿 , 𝑥𝑈] | 𝑥𝐿 , 𝑥𝑈 ∈ R and 𝑥𝐿 > 𝑥𝑈 } represents a set of improper intervals

on the set of real numbers R. In addition, D = IR ∪ IR denotes a set of all generalized (i.e.,

both proper and improper) intervals.

Next, we discuss the concept of monadic operator “dual" proposed by Ganesan and

Veeramani [102] that we will be incorporating in our zero-sum IMG problem. The monadic

operator “dual" is proficient enough to invert the end-points of the interval in a way to ex-

press an element-to-element symmetricity between proper and improper intervals in the

space D.

Definition 6.1.6. [102] Let 𝑥 = [𝑥𝐿 , 𝑥𝑈] ∈ D be any arbitrary closed interval. Then, the

dual of an interval 𝑥 is defined as dual(𝑥) = dual[𝑥𝐿 , 𝑥𝑈] = [𝑥𝑈 , 𝑥𝐿].

Note 6.1.1. For any interval 𝑥 = [𝑥𝐿 , 𝑥𝑈], 𝑥−dual(𝑥) = [𝑥𝐿 , 𝑥𝑈]− [𝑥𝑈 , 𝑥𝐿] = [𝑥𝐿−𝑥𝐿 , 𝑥𝑈−
𝑥𝑈] = [0, 0].

Note 6.1.2. For any interval 𝑥 = [𝑥𝐿 , 𝑥𝑈], 𝑥
𝑥

=
𝑥

dual(𝑥) = [𝑥
𝐿 , 𝑥𝑈] × 1

dual( [𝑥𝐿 , 𝑥𝑈])
=

[𝑥𝐿 , 𝑥𝑈] × 1
( [𝑥𝑈 , 𝑥𝐿])

= [𝑥𝐿 , 𝑥𝑈] ×
[

1
𝑥𝐿
,

1
𝑥𝑈

]
= [1, 1].

By incorporating the concept of dual within the modified interval arithmetic operations,

it is evident that the new interval arithmetic satisfies the group properties concerning

the binary operation addition and multiplication and further, sustaining the distributive

law between intervals while preserving the inclusion monotonicity. For a more profound

knowledge, one can easily refer to the corresponding paper [102, 223].

6.1.2 Interval comparison

In this subsection, a brief notion of interval comparison to define an interval ordering

relation is presented that is beneficial to understand the proposed concept given in the

paper. Extensive research on comparing distinct intervals lying within interval space, i.e.,

IR, is provided in Sengupta et al. [258] and Nayak and Pal [221].
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Definition 6.1.1. Let 𝑥 = [𝑥𝐿 , 𝑥𝑈], �̂� = [𝑦𝐿 , 𝑦𝑈] ∈ IR be any two closed intervals. Let

AI(𝑥 ≤ �̂�) = (𝑐( �̂�) − 𝑐(𝑥))(𝑤(𝑥) +𝑤( �̂�)) be an acceptability index function. Then, consider the follow-

ing cases:

Case 1 (Disjoint subintervals). 𝑥 < �̂� whenever AI(𝑥 < �̂�) ≥ 1 and 𝑥𝑈 < 𝑦𝐿 , 𝑐(𝑥) < 𝑐( �̂�).

Case 2 (Partial overlapping Subintervals). 𝑥 < �̂� whenever 0 <AI(𝑥 < �̂�) < 1 and 𝑦𝐿 < 𝑥𝑈 ,

𝑐(𝑥) < 𝑐( �̂�).

Case 3 (Nested subintervals). 𝑥 ⊂ �̂� whenever 𝑦𝐿 ≤ 𝑥𝐿 < 𝑥𝑈 ≤ 𝑦𝑈 .

It is noted that from case 1 and 2, the comparison between the interval is crisply defined.

However, in case 3, the comparison between the interval is not crisply defined because

interval 𝑥 is completely contained within the interval �̂�.

Moreover from the case of nested subintervals, it can be certainly viewed that when

𝑦𝐿 < 𝑥𝐿 then some values within the interval �̂� are less than and some are greater than

with the possible values in 𝑥. Next, if 𝑦𝐿 = 𝑥𝐿 and 𝑥𝑈 < 𝑦𝑈 then every plausible value of

�̂� is greater than 𝑥. Lastly, if 𝑥𝑈 = 𝑦𝑈 and 𝑦𝐿 < 𝑥𝐿 then every plausible value of �̂� is lower

than 𝑥 . Therefore, 𝑥 is nested within �̂� but, it is not possible to define an ordering relation

between intervals 𝑥 and �̂�.

6.2 Mathematical formulation of zero-sum interval-valued

matrix games

The present section mainly discusses the mathematical formulation of the two-player

zero-sum IMG under the pure strategy and the absence of pure strategy.

6.2.1 Zero-sum interval-valued matrix games under pure strategy

Definition 6.2.1. A two-player zero-sum IMG 𝐼𝐺 𝐼𝑛𝑡 is expressed by a triplet (𝑆𝑝, 𝑆𝑞, �̂� 𝐼𝑛𝑡),
where 𝑆𝑝, 𝑆𝑞 represents the strategy sets for PI and PII respectively. The matrix �̂� 𝐼𝑛𝑡 =(
[𝑔𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
]
)
𝑝×𝑞

; 𝑖 = 1, . . . 𝑝, 𝑗 = 1, . . . , 𝑞 is the given interval-valued payoff matrix of

PI disregard of PII and opposite of each interval input of the payoff matrix �̂� 𝐼𝑛𝑡 , i.e.,

opp(�̂� 𝐼𝑛𝑡) = (−dual(�̂� 𝐼𝑛𝑡)) =
(
[−𝑔𝐿

𝑖 𝑗
, −𝑔𝑈

𝑖 𝑗
]
)
𝑝×𝑞

expresses the interval payoff matrix of

PII such that the addition of the payoffs of two players is [0, 0] .
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Since the interval comparison is plausible, therefore interval game value can be defined

consecutively in the subsequent manner.

Definition 6.2.2. For a given IMG, 𝐼𝐺 𝐼𝑛𝑡 having payoff matrix �̂� 𝐼𝑛𝑡 , the lower interval

game value, �̂�−
𝐼𝑛𝑡

as well as upper interval game value, �̂�+
𝐼𝑛𝑡

is defined as,

�̂�−𝐼𝑛𝑡 = max
𝑖=1,...,𝑝

min
𝑗=1,...,𝑞

[𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ],

�̂�+𝐼𝑛𝑡 = min
𝑗=1,...,𝑞

max
𝑖=1,...,𝑝

[𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] .

The existence of interval game value, �̂� 𝐼𝑛𝑡 is plausible whenever �̂�−
𝐼𝑛𝑡

= �̂�+
𝐼𝑛𝑡

= �̂� 𝐼𝑛𝑡 .

The strategy set (𝑖∗, 𝑗∗) corresponding which the value of the game mentioned-above

are equal is termed as the saddle point of the interval game, and the index 𝑖∗, 𝑗∗ represents

optimal strategies of the players I and II respectively.

However, it is noteworthy that the above equality does not always hold despite both the

values exist. Therefore, the following inequality is summarized.

Theorem 6.2.1. (see [178]) For any IMG �̂� 𝐼𝑛𝑡 , the inequality �̂�−
𝐼𝑛𝑡
≤ �̂�+

𝐼𝑛𝑡
is valid.

Next, we evaluate the sets of strategy and interval optimal game value in the nonexis-

tence of pure strategy. In this direction, the ILP approach is developed and is considered

to be one of the most peculiar method to solve such games primarily based on the new

modified interval arithmetic operations (as shown in definition 6.1.5).

6.2.2 Interval-valued linear programming approach to solve interval

matrix games

Let us consider the IMG with the following interval payoff matrix �̂� 𝐼𝑛𝑡 .

�̂� 𝐼𝑛𝑡 =

©«
[𝑔𝐿11, 𝑔

𝑈
11] [𝑔𝐿12, 𝑔

𝑈
12] . . . [𝑔𝐿1𝑞 , 𝑔

𝑈
1𝑞]

[𝑔𝐿21, 𝑔
𝑈
21] [𝑔𝐿22, 𝑔

𝑈
22] . . . [𝑔𝐿2𝑞 , 𝑔

𝑈
2𝑞]

...
. . .

...
...

[𝑔𝐿
𝑝1, 𝑔

𝑈
𝑝1] [𝑔

𝐿
𝑝2, 𝑔

𝑈
𝑝2] . . . [𝑔𝐿𝑝𝑞 , �̃�𝑈𝑝𝑞]

ª®®®®¬
where [𝑔𝐿

𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] is the payoff of PI choosing 𝑖𝑡ℎ strategy when PII chooses the 𝑗 𝑡ℎ strategy.

Throughout the paper, we will attempt to assume that each inflows of the IMG is either

[𝑔𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] < 0 or [𝑔𝐿

𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] > 0. Let 𝑆𝑝 =

{
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑝) | 𝑥𝑖 ≥ 0,

∑𝑝

𝑖=1 𝑥𝑖 = 1
}

and

𝑆𝑞 =

{
𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑞) | 𝑦 𝑗 ≥ 0,

∑𝑞

𝑗=1 𝑦 𝑗 = 1
}

be the mixed strategy set for the corre-

sponding PI and PII, respectively. Then, the expected payoff of PI whenever PII chooses
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𝑗 𝑡ℎ strategy, is stipulated as follows: [𝑔𝐿1 𝑗 , 𝑔
𝑈
1 𝑗 ]𝑥1 + . . .+ [𝑔𝐿𝑝 𝑗 , 𝑔𝑈𝑝 𝑗 ]𝑥𝑝 where the operation

‘+’ is taken to be as modified interval arithmetic operation defined in definition 6.1.5.

Therefore, the requisite ILP problem for the corresponding game PI is defined as fol-

lows.

max �̂�−𝐼𝑛𝑡 (ILP1)

[𝑔𝐿11, 𝑔
𝑈
11]𝑥1 + . . .+ [𝑔𝐿𝑝1, 𝑔

𝑈
𝑝1]𝑥𝑝 ≥ �̂�

−
𝐼𝑛𝑡

[𝑔𝐿12, 𝑔
𝑈
12]𝑥1 + . . .+ [𝑔𝐿𝑝2, 𝑔

𝑈
𝑝2]𝑥𝑝 ≥ �̂�

−
𝐼𝑛𝑡

...

[𝑔𝐿1𝑞, 𝑔
𝑈
1𝑞]𝑥1 + . . .+ [𝑔𝐿𝑝𝑞, 𝑔𝑈𝑝𝑞]𝑥𝑝 ≥ �̂�−𝐼𝑛𝑡

𝑥1 + 𝑥2 + . . .+ 𝑥𝑝 = 1

𝑥1, 𝑥2, . . . , 𝑥𝑝 ≥ 0.

Since 0 ∉ �̂�−
𝐼𝑛𝑡

.

Therefore, we can set, �̂�𝑖 =
𝑥𝑖

�̂�−
𝐼𝑛𝑡

, 𝑖 = 1, . . . 𝑝, and �̂�𝐼𝑛𝑡 =
1
�̂�−
𝐼𝑛𝑡

. Next, by making the

aforementioned substitutions, the model ILP1 is evolved into a generic ILP problem for

PI, defined below.

min 𝑉𝐼𝑛𝑡 = 𝑋1 + 𝑋2 + . . .+ 𝑋𝑝 (ILP2)

subject to

[𝑔𝐿11, 𝑔
𝑈
11]𝑋1 + . . .+ [𝑔𝐿𝑝1, 𝑔

𝑈
𝑝1]𝑋𝑝 ≥ [1,1]

[𝑔𝐿12, 𝑔
𝑈
12]𝑋1 + . . .+ [𝑔𝐿𝑝2, 𝑔

𝑈
𝑝2]𝑋𝑝 ≥ [1,1]

...

[𝑔𝐿1𝑞, 𝑔
𝑈
1𝑞]𝑋1 + . . .+ [𝑔𝐿𝑝𝑞, 𝑔𝑈𝑝𝑞]𝑋𝑝 ≥ [1,1]

𝑋1, 𝑋2, . . . , 𝑋𝑝 ≥ 0.
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Analogously, an ILP problem in regards to PII, can be easily formulated as follows.

min �̂�+𝐼𝑛𝑡 (ILP3)

subject to

[𝑔𝐿11, 𝑔
𝑈
11]𝑦1 + . . .+ [𝑔𝐿1𝑞, 𝑔

𝑈
1𝑞]𝑦𝑞 ≤ �̂�

+
𝐼𝑛𝑡

[𝑔𝐿21, 𝑔
𝑈
21]𝑦1 + . . .+ [𝑔𝐿2𝑞, 𝑔

𝑈
2𝑞]𝑦𝑞 ≤ �̂�

+
𝐼𝑛𝑡

...

[𝑔𝐿𝑝1, 𝑔
𝑈
𝑝1]𝑦1 + . . .+ [𝑔𝐿𝑝𝑞, 𝑔𝑈𝑝𝑞]𝑦𝑞 ≤ �̂�+𝐼𝑛𝑡

𝑦1 + 𝑦2 + . . .+ 𝑦𝑞 = 1

𝑦1, 𝑦2, . . . , 𝑦𝑞 ≥ 0.

Recall 0 ∉ �̂�+
𝐼𝑛𝑡

.

By taking 𝑌 𝑗 =
𝑦 𝑗

�̂�+
𝐼𝑛𝑡

, 𝑗 = 1, . . . , 𝑞, we obtain the following generic ILP problem for PII.

max 𝑉𝐼𝑛𝑡 = 𝑌1 +𝑌2 + . . .+𝑌𝑞 (ILP4)

subject to

[𝑔𝐿11, 𝑔
𝑈
11]𝑌1 . . .+ [𝑔𝐿1𝑞, 𝑔

(𝑈)
1𝑞 ]𝑌𝑞 ≤ [1,1]

[𝑔𝐿21, 𝑔
𝑈
21]𝑌1 + . . .+ [𝑔𝐿2𝑞, 𝑔

𝑈
2𝑞]𝑌𝑞 ≤ [1,1]

...

[𝑔𝐿𝑝1, 𝑔
𝑈
𝑝1]𝑌1 + . . .+ [𝑔𝐿𝑝𝑞, 𝑔𝑈𝑝𝑞]𝑌𝑞 ≤ [1,1]

𝑌1,𝑌2, . . . ,𝑌𝑞 ≥ 0.

Here, the obtained models ILP1 and ILP4 can be solved easily by utilizing any pre-

vailing methods designed for solving ILP problems (See [224]) to find the optimal mixed

strategies �̂�∗
𝐼𝑛𝑡
∈ 𝑆𝑝 and𝑌 ∗

𝐼𝑛𝑡
∈ 𝑆𝑞 along with the interval game value �̂�∗

𝐼𝑛𝑡
. It is worth notic-

ing that both the pair of models ILP1 and ILP2 form an interval version of primal-dual

problems within the crisp sense.

However, it is envisioned that the problem of IMG with a large number of variables

increases the size of the interval payoff matrix. As a result, solving the ILP problem with

the prevailing methods is a tedious job. Henceforth, in the subsequent section, we present

a methodology to overcome the existing limitation of the conventional ILP approach and

present a new perspective of IMGs within the ambit of interval game theory.
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6.3 Proposed Method

The basics of matrix norm method to solve two-player classical ZSMGs is given in

section 2.1.1. However, in the present section, we present a novel approach to obtain the

required optimum inequalities of the interval game value based on the concept of interval

version of 1− norm and ∞− norm. After this, we establish results to find the largest and

smallest element of the players’ mixed strategy set without solving the pair of auxiliary

ILP problems structured for PI and PII (as shown in the previous section).

It is customary to conjectured PI as a row player (maximizing Player) and PII as a

column player (minimizing Player). Moreover, we examine this game in terms of the row

player, i.e., PI. However, our approach can readily be defined for PII.

In literature, Meyer [209] developed extensive research on matrix norms and have pro-

posed the concept of 1− norm and ∞− norm based on a set of real numbers R. Analo-

gously, we attempt to amplify the notion of point-based 1− norm and ∞− norm into its

interval version, unlike the induced interval matrix norm.

Definition 6.3.1. For �̂�𝐼𝑛𝑡 ∈ IR𝑝×𝑞, we define interval 1− norm and interval ∞− norm in

the following manner:

• | | | �̂�𝐼𝑛𝑡 | | |1 = max 𝑗
∑
𝑖 | [𝑎𝐿𝑖 𝑗 , 𝑎𝑈𝑖 𝑗 ] | represents the greatest absolute column sum;

• | | | �̂�𝐼𝑛𝑡 | | |∞ = max𝑖
∑
𝑗 | [𝑎𝐿𝑖 𝑗 , 𝑎𝑈𝑖 𝑗 ] | represents the greatest absolute row sum.

As a particular instance, it is worth noting that the following result’s inequalities are

given in a crisp sense. It is customary to posits that each inputs of the interval payoff

matrix is crisply comparable (i.e., either the entries are disjoint intervals or overlapped

intervals). Consequently, the following lemma points out the interval game inequalities

emphasizing the crispness of the suitable interval comparisons.

Lemma 6.3.1. Let �̂� 𝐼𝑛𝑡 be a 𝑝× 𝑞 real interval valued game matrix and �̂� = [𝑣𝐿 , 𝑣𝑈] rep-

resents the interval game value for IMG. Then,
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≤ �̂� ≤ || |�̂� 𝐼𝑛𝑡 | | |1 for �̂� > 0,

−|| |�̂� 𝐼𝑛𝑡 | | |1 ≤ �̂� ≤
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
for �̂� < 0.

where ℎ̂ = max
1≤𝑖≤𝑝,𝑖≠𝑟

∑𝑞

𝑗=1 �̂� | [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] | and | | |�̂� 𝐼𝑛𝑡 | | |∞ =

∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] | for fixed 𝑟 and

| | |�̂� 𝐼𝑛𝑡 | | |1 =
∑𝑝

𝑖=1 | [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
] | for fixed 𝑡.
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Proof. Consider the interval valued game matrix �̂� 𝐼𝑛𝑡 . Throughout the proof, we repre-

sent �̂�+ > [0, 0] for positive interval game value �̂� and �̂�− < [0, 0] for negative interval

game value �̂�. We now consider the subsequent cases:

Case 1 For �̂�+ > [0, 0]:
Let | | |�̂� 𝐼𝑛𝑡 | | |∞ =

∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] | for fixed 𝑟. From the definition it follows that

𝑞∑︁
𝑗=1
| [𝑔𝐿𝑟 𝑗 , 𝑔𝑈𝑟 𝑗 ] | ≥ max

𝑞∑︁
𝑗=1
| [𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] |

for 𝑖 = 1, 2, . . . , 𝑝 and 𝑖 ≠ 𝑟

⇒ 1 ≥
max

∑𝑞

𝑗=1 | [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] |∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] |

⇒ �̂�+ ≥ ℎ̂∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] |

where, ℎ̂ = max
1≤𝑖≤𝑝,𝑖≠𝑟

𝑞∑︁
𝑗=1
�̂�+ | [𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] |

Therefore,
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≤ �̂�+ (6.3.1)

Clearly, the interval game value is evaluated as �̂�+ =
∑𝑝

𝑖=1 𝑥𝑖 [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] for any fixed

j. Here, 𝑥𝑖 represents the probability assigned to each element of the mixed strategy

set of Player I. Then, it follows that �̂�+ ≤ ∑𝑝

𝑖=1 | [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] | ∀ 𝑗 . After taking max on

both sides we obtain,

�̂�+ ≤ || |�̂� 𝐼𝑛𝑡 | | |1 (6.3.2)

From equation 6.3.1 and 6.3.2 we obtain
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≤ �̂�+ ≤ || |�̂� 𝐼𝑛𝑡 | | |1.

Case 2 For �̂�− < [0, 0]:

From case 1 we have 1 ≥
max

∑𝑞

𝑗=1 | [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] |

| | |�̂� 𝐼𝑛𝑡 | | |∞
. Now, since the present case deals

with �̂�−. Hence, we obtain the following inequality
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≥ �̂�−, where ℎ̂ =

max
1≤𝑖≤𝑝,𝑖≠𝑟

∑𝑞

𝑗=1 �̂�
− | [𝑔𝐿

𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] |. Next, to obtain the other inequality we consider the re-

lation �̂�− =
∑𝑝

𝑖=1 𝑥𝑖 [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
] for any fixed 𝑡. Contrastingly, −|[𝑔𝐿

𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] | ≤ −|[𝑔𝐿

𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] |𝑥𝑖

as 𝑥𝑖 ∈ [0, 1]. Therefore, the inequality �̂�− ≥∑𝑝

𝑖=1(−𝑥𝑖 [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
]) ≥ −∑𝑝

𝑖=1 | [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
] | ≥

−|| |�̂� 𝐼𝑛𝑡 | | |1 is valid since
∑𝑝

𝑖=1 | [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
] | ≤ max

1≤ 𝑗≤𝑞

∑𝑝

𝑖=1 | [𝑔
𝐿
𝑖𝑡
, 𝑔𝑈

𝑖𝑡
] | = | | |�̂� 𝐼𝑛𝑡 | | |1. Hence,

the result follows.
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□

Before we give the next result, we provide the subsequent definition useful in the main

theorem.

Definition 6.3.2. For �̂� 𝐼𝑛𝑡 ∈ IR𝑝×𝑞 an interval valued game matrix, let | | |�̂� 𝐼𝑛𝑡 | | |∞ have the

sum of absolute values of the 𝑠𝑡ℎ entries of the row. Then, the matrix �̂�𝐼𝑛𝑡 ∈ IR(𝑝−1)×𝑞

obtained after deleting 𝑠𝑡ℎ row of the matrix �̂� 𝐼𝑛𝑡 is termed as a row-wise interval induced

matrix of �̂� 𝐼𝑛𝑡 . Analogously, if | | |�̂� 𝐼𝑛𝑡 | | |1 represents sum of absolute values of the 𝑡𝑡ℎ

column entries. Then, the matrix �̂�𝐼𝑛𝑡 ∈ IR(𝑝×(𝑞−1) obtained after deleting 𝑡𝑡ℎ column of

the matrix �̂� 𝐼𝑛𝑡 is termed as column-wise interval-valued induced matrix of �̂� 𝐼𝑛𝑡 .

Theorem 6.3.1 (Main Theorem). Let �̂� 𝐼𝑛𝑡 ∈ IR𝑝×𝑞 be an interval payoff matrix for the

two-person zero sum IMG and �̂� be an interval value of the game. Then,

(i)
| | |�̂�𝐼𝑛𝑡 | | |∞
| | |�̂� 𝐼𝑛𝑡 | | |∞

≤ |�̂� | ≤ | | |�̂� 𝐼𝑛𝑡 | | |1 whenever |�̂� | = | [𝑣𝐿 , 𝑣𝑈] | ≥ 1;

(ii)
1

| | |�̂� 𝐼𝑛𝑡 | | |1
≤ |�̂� | ≤ | | |�̂� 𝐼𝑛𝑡 | | |∞

| | |�̂�𝐼𝑛𝑡 | | |∞
whenever |�̂� | = | [𝑣𝐿 , 𝑣𝑈] | ≤ 1 and |�̂� | = | [𝑣𝐿 , 𝑣𝑈] | ≠ 0.

where �̂�𝐼𝑛𝑡 is represented as the row-wise induced matrix of �̂� 𝐼𝑛𝑡 .

Proof. Consider the interval valued game matrix �̂� 𝐼𝑛𝑡 . Without loss of generality, we

presuppose that | | |�̂� 𝐼𝑛𝑡 | | |∞ =
∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] | for fixed 𝑟. From the definition it follows

that
𝑞∑︁
𝑗=1
| [𝑔𝐿𝑟 𝑗 , 𝑔𝑈𝑟 𝑗 ] | ≥ max

𝑞∑︁
𝑗=1
| [𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] | for 𝑖 = 1, 2, . . . , 𝑝 and 𝑖 ≠ 𝑟.

Therefore, 1 ≥
max

∑𝑞

𝑗=1 | [𝑔
𝐿
𝑖 𝑗
, 𝑔𝑈

𝑖 𝑗
] |∑𝑞

𝑗=1 | [𝑔
𝐿
𝑟 𝑗
, 𝑔𝑈

𝑟 𝑗
] |

, �̂� ≤ || |�̂� 𝐼𝑛𝑡 | | |1 for positive interval game value �̂� and

−|| |�̂� 𝐼𝑛𝑡 | | |1 ≤ �̂� for negative interval game value �̂�.

Case 1 For �̂� > [0, 0]:

(a) Whenever �̂� ≥ 1, then by using lemma 6.3.1 we have,
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≤ �̂� ≤ || |�̂� 𝐼𝑛𝑡 | | |1

(b) Whenever �̂� ∈ (0, 1], we assume
1
�̂�

= [𝑣𝐿 , 𝑣𝑈] ⇒ �̂� =
1
�̂�
≥ 1. Therefore, by

using (𝑎) we obtain
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
≤ �̂� ≤ || |�̂� 𝐼𝑛𝑡 | | |1 by making suitable arrange-

ments we get the desired result, i.e.,
1

| | |�̂� 𝐼𝑛𝑡 | | |1
≤ |�̂� | ≤ | | |�̂� 𝐼𝑛𝑡 | | |∞

ℎ̂
.

Case 2 For �̂� < [0, 0]:
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(a) Whenever �̂� ≤ −1, then by using lemma 2.4.1 we have, −|| |�̂� 𝐼𝑛𝑡 | | |1 ≤ �̂� ≤
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
.

(b) Whenever �̂� ∈ [−1, 0), we assume
1
𝑡
= [𝑣𝐿 , 𝑣𝑈] ⇒ 𝑡 =

1
�̂�
≤ −1. Therefore, by

using (𝑎) we obtain −|| |�̂� 𝐼𝑛𝑡 | | |1 ≤ 𝑡 ≤ −
ℎ̂

| | |�̂� 𝐼𝑛𝑡 | | |∞
by making suitable arrange-

ments we get the desired result, i.e.,
1

| | |�̂� 𝐼𝑛𝑡 | | |1
≤ |�̂� | ≤ | | |�̂� 𝐼𝑛𝑡 | | |∞

ℎ̂
.

Here, ℎ̂ has the same definition given in previous lemma 6.3.1.

Now, from the inequalities obtained above and by making certain arrangements the

result follows directly.

□

Remark 6.3.1. From the above result, we obtain the boundaries for the interval game

value. Since it is requisite to analyze the interval game value from the viewpoint of each

player. As a result, we acquire two distinct inequalities for the same interval version of

the game value. It is noteworthy that we aim to obtain optimal boundaries for the interval

game value. Therefore, it suffices to compare each inequality obtained for both the PI and

PII, respectively, and thereby choose the best optimal boundaries for the game value such

that the original interval game value falls within the ambit of optimum range.

It is pointed out that the results offered by the main theorem 6.3.1 may not be sufficient

to solve the IMG of order 2 × 2 as they are easily solvable via generic ILP methods.

However, it is preferable to utilize these inequalities for an IMG of bigger size so that

we can have an impression about the approximated interval game value without explicitly

solving the auxiliary pair of interval linear mathematical models, i.e., ILP1 and ILP3.

Hence, reducing the computational cost and time complexity of the game problem.

Next, we proceed to establish a result that points out some necessary conditions to

obtain the boundaries for the largest and smallest elements in the mixed strategy set. For

simplicity notation, we refer 𝑥max and 𝑥min for the largest and the smallest elements of the

mixed strategy set of the players, respectively.

Theorem 6.3.2. Let �̂� 𝐼𝑛𝑡 ∈ IR𝑝×𝑞 be an IMG with all entries positive of the interval payoff

matrix. Then,

𝑥max ≥ max


∑𝑝

𝑖=1 �̂�𝑖 𝑗

(𝑝−1).| | |�̂� | | |1
| 𝑗 = 1, 2, . . . , 𝑞 and

∑︁
𝑖

�̂�𝑖 𝑗 ≠ | | |�̂� | | |1
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𝑥min ≤
1

𝑝−1
−

max
{ ∑𝑝

𝑖=1 �̂�𝑖 𝑗

(𝑝−1).| | |�̂� | | |1
| 𝑗 = 1, 2, . . . , 𝑞 and

∑
𝑖 �̂�𝑖 𝑗 ≠ | | |�̂� | | |1

}
𝑝−1

where �̂�𝑖 𝑗 = [𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] and �̂� > [0, 0].

Proof. Consider the interval payoff matrix IR𝑝×𝑞

�̂� 𝐼𝑛𝑡 =

©«
�̂�11 �̂�12 . . . �̂�1𝑞
�̂�21 �̂�22 . . . �̂�2𝑞
...

. . .
...

...

�̂�𝑝1 �̂�𝑝2 . . . �̂�𝑝𝑞

ª®®®®¬
where each entry of payoff matrix �̂�𝑖 𝑗 = [𝑔𝐿𝑖 𝑗 , 𝑔𝑈𝑖 𝑗 ] ∈ IR and �̂�𝑖 𝑗 > [0, 0].

Without loss of generality, we attempt to presume that ∥| |�̂� 𝐼𝑛𝑡 | | |1 = �̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟
for any arbitrary fixed 𝑟. Then, according to the definition it follows that

(
�̂�1𝑟 + �̂�2𝑟 + . . .+

�̂�𝑝𝑟
)
𝑥max ≥ �̂�1𝑡 + �̂�2𝑡 + . . .+ �̂�𝑝𝑡 , where 𝑡 = 1, 2, . . . , 𝑟 −1, 𝑟 +1, . . . , 𝑞.

i.e., we have the following set of inequalities

(
�̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟

)
𝑥max ≥ �̂�11 + �̂�21 + . . .+ �̂�𝑝1,(

�̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟
)
𝑥max ≥ �̂�12 + �̂�22 + . . .+ �̂�𝑝2,

...(
�̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟

)
𝑥max ≥ �̂�1(𝑟−1) + �̂�2(𝑟−1) + . . .+ �̂�𝑝(𝑟−1)(

�̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟
)
𝑥max ≥ �̂�1(𝑟+1) + �̂�2(𝑟+1) + . . .+ �̂�𝑝(𝑟+1)

...(
�̂�1𝑟 + �̂�2𝑟 + . . .+ �̂�𝑝𝑟

)
𝑥max ≥ �̂�1𝑞 + �̂�2𝑞 + . . .+ �̂�𝑝𝑞



(q-1)

Since 𝑥1+𝑥2+ . . .+𝑥𝑝 = 1 =⇒ 𝑥1+𝑥2+ . . .+𝑥max+𝑥min+ . . .+𝑥𝑝 = 1 =⇒ 𝑥1 + 𝑥2 + . . .+ 𝑥max + . . .+ 𝑥𝑝︸                             ︷︷                             ︸
p-1

=

1− 𝑥min.

∥| |�̂� 𝐼𝑛𝑡 | | |1(𝑝−1)𝑥max ≥ �̂�1𝑡 + �̂�2𝑡 + . . .+ �̂�𝑝𝑡 , where 𝑡 = 1, 2, . . . , 𝑟 −1, 𝑟 +1, . . . , 𝑞. Now, by

taking max on both sides and rearranging the terms we obtain,

𝑥max ≥ max


∑𝑝

𝑖=1 �̂�𝑖 𝑗

(𝑝−1).| | |�̂� | | |1
| 𝑗 = 1, 2, . . . , 𝑞 and

∑︁
𝑖

�̂�𝑖 𝑗 ≠ | | |�̂� | | |1
 (6.3.3)

Next, in order to show the boundaries for 𝑥min, we consider the following equation:

𝑥1 + 𝑥2 + . . .+ 𝑥max + 𝑥min + . . .+ 𝑥𝑝 = 1
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⇒ 𝑥1 + 𝑥2 + . . .+ 𝑥min + . . .+ 𝑥𝑝︸                             ︷︷                             ︸
p-1

= 1− 𝑥max

⇒ (𝑝−1)𝑥min = 1− 𝑥max

⇒ 𝑥max = 1− (𝑝−1)𝑥min.

Now, by using the equation 2.4.3 we obtain

1− (𝑝−1)𝑥min ≥ max

{ ∑𝑝

𝑖=1 �̂�𝑖 𝑗

(𝑝−1).| | |�̂� | | |1
| 𝑗 = 1, 2, . . . , 𝑞

}
,

and
∑
𝑖 �̂�𝑖 𝑗 ≠ | | |�̂� | | |1. After rearranging the terms we obtain the desired inequality and

hence the theorem. □

Remark 6.3.2. It is important to point out that our novel approach helps calculate the

approximate interval value of the game that must fall within the optimal boundaries of

the game value that we have obtained using theorem 6.3.1. Also, the elements of the

mixed strategy set are selected by taking consideration of the inequalities acquired by

using theorem 6.3.2

Remark 6.3.3. It is worthwhile to emphasis that by giving careful consideration to the

required bounds obtained for 𝑥max and 𝑥min based on theorem 6.3.2 we arbitrarily select

an appropriate value for 𝑥max and 𝑥min, respectively. The remaining elements of the mixed

strategy set for the players are hereafter decided in a manner that it must satisfy the prin-

cipal of probability theory, i.e., all the strategies for the player sums up to 1.

Before we address a numerical example in the subsequent section to illustrate the utiliza-

tion of a novel approach for the IMGs, we provide a solution algorithm for the zero-sum

IMGs to obtain the required optimal solution. It is noted that the subsequent algorithm is

given for the row player (i.e., PI); however, one may use for the column player (i.e., PII)

as well.

Consider the model ILP1 for Player I.

Step 1 Check each entry of the interval payoff matrix i.e., �̂�𝑖 𝑗 ∈ IR. If any entry �̂�𝑖 𝑗 < 0

then add a suitable constant �̂�𝑎𝑟𝑏 to each entry of �̂�𝑖 𝑗 so that �̂� 𝐼𝑛𝑡 becomes a positive

matrix.

Step 2 Calculate the boundaries for interval game value using theorem 6.3.1.

Step 3 Choose appropriate value for 𝑥max and 𝑥min depending on the related inequality

given in theorem 6.3.2.
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Step 4 Determine the suitable value for the remaining strategies one by one, arbitrarily

based on the fact that an interval is a non-decreasing function.

Step 5 Evaluate approximate value of the IMG �̂�𝑎𝑝𝑝 by randomly selecting any column of

the given payoff matrix.

Step 6 Compare the �̂�𝑎𝑝𝑝 with the original interval game value �̂� obtained by solving IMG

problem via ILP method.

Remark 6.3.4. It is well known that IMGs is formulated as a union of numerous point-

based matrix game problem. Therefore, it is worth emphasizing that if for any arbitrary

value of 𝑥 ∈ [𝑥𝐿 , 𝑥𝑈] = 𝑥, the approximate interval value of the game �̂�𝑎𝑝𝑝 is not efficiently

computable, consequently giving some absurd relation. Then, we may conclude that our

IMG problem possesses a weak optimal solution. On the contrary, for all 𝑥 ∈ [𝑥𝐿 , 𝑥𝑈] = 𝑥,

if the interval game value is efficiently computable and satisfies the obtained boundary

relation, then the given IMGs problem possess a strong optimal solution.

6.4 Application of Interval matrix games

Traditional game theory has been applied to practical decision problems in management,

finance, business, economics, and other fields. The subsequent example is derived from

the study, and it shows how the results and proposed approach well suited for any zero-

sum IMGs when applied to evaluate the impact of the unprecedented COVID-19 pandemic

situation on the share price of the telecommunications industry.

Example 6.4.1. (A case study)

The contagious spread of the anomalous COVID-19 pandemic has jeopardized the en-

tire world and transformed the global outlook unexpectedly. This pandemic is not merely

a concern of global health but also a rapid global economic recession too. The rapid

spread of COVID-19 has made countries impose restrictions on the movement of daily

lives. Consequently, it requires people to spend more time staying at home and more

data utilization for work as well as leisure, results in a momentous impact on the tele-

com sector. It is inconceivable to imagine a world without a mobile connection having a

high-speed internet facility in the present situation. More than 50 percent of the world’s

population are connected to mobile connection. The emergence of the 5th generation

mobile network (5G) in telecommunications is considered a new kind of communication
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revolution planned to connect virtually everyone and everything. Therefore, it is going to

be a worthwhile and much-needed business in the immediate future.

Based on the significance and impact of the COVID-19 pandemic on the telecommu-

nication industry, we present a case study to envisage how share prices of the telecom-

munication companies got affected due to this pandemic situation. Here, we consider the

list of seven telecommunication companies (i.e., PII) whose share prices got affected due

to the pandemic situation (i.e., PI), which is categorized into a fixed number of financial

years (FYs). Since there is uncertainty in the company’s stock price, a single stock value

cannot perfectly model the payoff value for any FY. Henceforth, it is more reasonable and

adequate to presuppose that each payoff must belongs to some interval.

For this numerical instance, it is presupposed that the variation of the stock prices for

the listed companies can be modeled under the assumption that the pandemic situation

(i.e., PI) is a rational "player" that will select an optimal strategy. Suppose that the options

(i.e., strategies) for this PI are given as follows: before pandemic situation (FY2019) 𝑥1,

during pandemic situation (FY2020) 𝑥2 and after pandemic situation (FY2021) 𝑥3. For

the companies , the options (i.e., strategies) are as follows: “Bharti Airtel” �̂�1, “Reliance

Communication” �̂�2, “Vodafone idea limited” �̂�3, “Tata communications” �̂�4, “Tata tele-

service” �̂�5, “Suyog telematics” �̂�6 and “OnMobile Global” �̂�7. In this case, a stock value

in the FY for the given company cannot be accurately modeled by a precise value. Hence,

a matrix game problem with interval-valued payoffs (i.e., IMG) can appropriately present

the overview of the game from both players’ perspectives.

Consider the subsequent interval payoff matrix for this situation, in which the normal-

ized percentage of stock value for each company in the supplied FYs is presented in

interval format:

�̂�𝐼𝑛𝑡 =

©«
�̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 �̂�7

�̂�1 [2.69, 4.86] [0, 0.14] [0.03, 0.23] [2.6, 8.26] [0.02, 0.05] [1.9, 5.24] [0.26, 0.5]
�̂�2 [3.81, 6.12] [0, 0.04] [0.02, 0.13] [2.06, 12.4] [0.02, 0.09] [2.47, 4.67] [0.13, 0.68]
�̂�3 [5, 7.43] [0.02, 0.06] [0.04, 0.14] [9.3, 20] [0.07, 0.55] [3.61, 5.49] [0.5, 1.54]

ª®®®¬
where the interval [2.69,4.86] represents that the normalized percentage amount of the

stock value for the given company, “Bharti Airtel” is between 2.69% and 4.86% when it

is before pandemic situation (i.e., FY2019). Other interval entries in the interval payoff

matrix can be annotated analogously.

Now, the decision-maker tries to estimate the expected range of the stock value in the

normalized percentage form. Namely, the lower and upper bounds of the interval-type

value of the IMG need to be determined to analyze the change in the share prices of the
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telecommunication companies due to the pandemic situation.

We firstly solve the IMG problem for row player (i.e., PI). In this case, | | |�̂� 𝐼𝑛𝑡 | | |1 =

[13.96,40.66], | | |�̂� 𝐼𝑛𝑡 | | |∞ = [18.54,30.49] and corresponding row wise induced inter-

val matrix of �̂� 𝐼𝑛𝑡 is given by | | |�̂�𝐼𝑛𝑡 | | |∞ = [8.51,23.13]. Then, according to the theo-

rem 2.4.1, the boundaries for the approximated interval game value is calculated as fol-

lows:
1

| | |�̂� 𝐼𝑛𝑡 | | |1
≤ |�̂� | ≤ | | |�̂� 𝐼𝑛𝑡 | | |∞

| | |�̂�𝐼𝑛𝑡 | | |∞
whenever |�̂� | = | [𝑣𝐿 , 𝑣𝑈] | ≤ 1;

⇒ 1
[13.96,40.66] ≤ [𝑣

𝐿 , 𝑣𝑈] ≤ [18.54,30.49]
[8.51,23.13] .

Based on the modified interval arithmetic the above mentioned inequality transforms

into [0.02,0.055] ≤ [𝑣𝐿 , 𝑣𝑈] ≤ [0.7416,2.2002].

We now calculate the boundaries for 𝑥max and 𝑥min by utilizing Theorem 2.4.2. Here,

𝑝 = 3 since �̂� 𝐼𝑛𝑡 ∈ IR3×7.

𝑥max

≥max { [11.5,18.41]
(2).[13.96,32.94] ,

[0.02,0.24]
(2) [13.96,32.94] ,

[0.09,0.5]
(2) [13.96,32.94] ,

[0.11,0.69]
(2).[13.96,32.94] ,

[7.98,15.4]
(2).[13.96,32.94] ,

[0.89,2.72]
(2).[13.96,32.94] }

⇒ 𝑥max ≥max { [0.1748,0.4622], [0.0003,0.0053], [0.0014,0.0112], [0.0017,0.0153], [0.1213,0.3767],

[0.0135,0.0633] }

⇒ 𝑥max ≥ [0.1748,0.4622]

⇒ 𝑥𝐿max ≥ 0.1748, 𝑥𝑈max ≥ 0.4622 and 𝑥𝐿max ≤ 𝑥𝑈max.

Now, 𝑥min ≤ 0.5−[0.0874,0.2311], then the required bound for 𝑥min is 𝑥min ≤ [0.2689,0.4126].
Based on the remark 2.4.3, we randomly select the value of strategies as 𝑥min = 0, 𝑥1 =

[0,0.4126], 𝑥max = [0.1748,1]. In addition, it is worth pointing out that the plausible dis-

tributions of the interval strategies value do not make any major difference to the interval

value of the game as far as the value lies within the optimum range.

Now, since we aim to find out an approximate interval value of the game, the value must

fall within the optimum boundaries we have obtained above. Therefore, one can choose

any arbitrary column for evaluating the approximate interval game value. However, in this

scenario we select first column of the payoff matrix �̂� 𝐼𝑛𝑡 to obtain the approximate inter-

val game value, i.e., �̂�𝑎𝑝𝑝 = 0[2.69,4.86] + [0,0.4226] [3.81,6.12] + [0.1748,1] [5,7.43] =
[0,1.473].

We next solve the IMG problem for the column player. The required interval ma-

trix norms are | | |�̂�𝑇
𝐼𝑛𝑡
| | |1 = [18.54,30.49], | | |�̂�𝑇

𝐼𝑛𝑡
| | |∞ = [13.96,40.66] and | | |�̂�𝑇

𝐼𝑛𝑡
| | |∞ =

[11.5,18.41]. Here, ‘𝑇’ represents transpose of matrix �̂� 𝐼𝑛𝑡 . Now, based on Theo-
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rem 2.4.1 we obtain
1

[18.54,30.49] ≤ |�̂� | ≤
[13.96,40.66]
[11.5,18.41] ⇒ [0.03,0.048] ≤ |�̂� | ≤ [0.7608,2.8852].

Analogously, we can obtain the boundaries for �̂�max and �̂�min by using Theorem 2.4.2.

Therefore, �̂�max ≥ max { [0.0413,

0.1273], [0.047,0.1682] } ⇒ �̂�max ≥ [0.047,0.1682] and �̂�min ≤ [0.172,0.1922]. Anal-

ogously, as mentioned-above we randomly select the strategy scenario as �̂�max = [0.8,1],
�̂�min = 0, �̂�1 = [0,0.1], �̂�2 = [0,0.001], �̂�3 = 0 = �̂�4, �̂�5 = [0,0.02].

We choose column 1 to obtain interval approximated game value for Player II, �̂�𝑎𝑝𝑝 =

0+ [0,0.1] [0,0.14] + [0,0.001] [0.03,0.23] + [0,0.02] [1.9,5.24] + [0.8,1] [0.26,0.5] = [0.2,0.48].
On comparing the boundaries of interval game value for PI and PII, respectively we envis-

aged that the boundaries of the interval game value corresponding to the PI is optimum.

The next example is a particular case of zero-sum IMGs where each inputs of the in-

terval payoff matrix is a degenerate interval. The subsequent zero-sum game problem

is taken from the corresponding paper [147] where it is solved by using classical linear

programming approach. Moreover, the same matrix game problem is also given in the

paper [133] where it is solved by using novel norm approach. Here, we are considering

the same problem and will present it as an application of our proposed algorithm.

Example 6.4.2. Consider the following payoff matrix 𝐺

𝐺 =
©«

0.4298 0.4298 0.9253 0.9253 0.0936 0.5293
0.4073 0.6989 0.4073 0.4804 0.5311 0.7425
0.7208 0.5616 0.5616 0.4726 0.7625 0.1954

ª®¬
Initially, we solve the game problem from the side of defender (row player). Since

the method of computation for obtaining the boundaries for the approximated value of

the game is similar to the method provided in the corresponding paper [133]. Therefore,

we proceed to apply our novel approach to find out the bounds of the largest and smallest

element of the mixed strategy set and the selection of the remaining element of the strategy

set are obtained by keeping in mind the remark 6.3.3.

Based on the definition of 1− norm and∞− norm we know that | |𝐺 | |1 = 1.8942, | |𝐺 | |∞ =

3.3331. Also, in this scenario 𝑝 = 3. Therefore, the boundaries for 𝑥∗max and 𝑥∗min can be

depicted successively in the similar fashion as given in the previous example.

𝑥∗max ≥ max
{

1.5579
(2)1.8942 ,

1.6903
(2)1.8942 ,

1.8783
(2)1.8942 ,

1.3872
(2)1.8942 ,

1.4672
(2)1.8942

}
𝑥∗max ≥ 0.4958.
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𝑥∗min ≤ 0.5− 0.4958
2 . Thus, 𝑥∗min ≤ 0.2521.

After obtaining suitable inequalities for 𝑥∗max and 𝑥∗min we must randomly select the

appropriate value for the strategy 𝑥∗max and 𝑥∗min. Also, to calculate the approximate value

of the game 𝑣𝑎𝑝𝑝, we need to decide the values of the remaining element of the mixed

strategy set by keeping in mind the remark 6.3.3.

Therefore, after making the routine computations in this scenario we consecutively se-

lect the desired value for the strategies as 𝑥∗min = 0.2021, 𝑥∗1 = 0.3021 and 𝑥∗max = 0.4958.

However, it is worthwhile to point out that the plausible distributions of the strategies

value do not make any major difference onto the value of the game as far as the value

lies within the optimum range. Since we can randomly chose any arbitrary column of

the given payoff matrix in order to calculate the approximate game value. Henceforth,

in this perspective, we calculate the value of the game by choosing first column i.e.,

𝑣𝑎𝑝𝑝 = (0.4298×0.2021) + (0.4073×0.3021) + (0.7208×0.4958) = 0.5673.

Next, we estimate the approximate value of the game from the side of attacker (column

player). So, in this context we first obtain the bounds for 𝑦∗max and 𝑦∗min successively as

follows (here, 𝑝 = 6 since 𝐺𝑇 ∈ R6×3).

𝑦∗max ≥ max
{

3.2675
(5)3.3331 ,

3.2745
(5)3.3331

}
𝑦∗max ≥ 0.1965.

𝑦∗min ≤ 0.5− 0.09825. Thus, 𝑦∗min ≤ 0.4. Since 𝑦∗min ≤ 𝑦
∗
max. Thus, 𝑦∗min ≤ 0.1965. As in

this case we have 6 elements in the strategy set therefore we choose the values as follows:

𝑦∗min = 0.0714, 𝑦∗1 = 0.1104, 𝑦∗2 = 0.1524, 𝑦∗3 = 0.1211, 𝑦∗4 = 0.1448 and 𝑦∗max = 0.3999.

Now, in order to calculate the approximate value of the game we prefer to select second

column. Therefore, 𝑣𝑎𝑝𝑝 = (0.4073× 0.0714) + (0.6989× 0.1104) + (0.4073× 0.1524) +
(0.4804×0.1211) + (0.5311×0.1448) + (0.7425×0.3999) = 0.6003.

6.4.1 Comparative analysis

In the literature, Li [179] have proposed a linear programming method to solve IMG

problems and further provide a comparison of the solution obtained via other existing

methods. From the analysis, the author concluded that linear programming approach is

peculiar over other methods and offer a more reliable and rational solution. Therefore, in

the present section we give a comparison of results obtained by using our novel approach

with the ILP method.

We consider the IMG problem (as shown in Example 6.4.1) and solve it using the ex-
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isting ILP method. For this, we firstly constructed a pair of auxiliary interval linear math-

ematical models. In light of the models (See ILP1 and ILP3) presented in section 6.2.2,

we convert it into the generic ILP models (ILP2 and ILP4). Since we know that several

methods exist for solving ILP problems for instance Best-Worst case ILP method [17],

Enhanced ILP method [350] and so on (See [224]). However, many of these methods of-

fer a solution space that may be infeasible or may lose some of the optimal points. So, in

order to eliminate the infeasible part from the solution space several ameliorated methods

have been proposed.

Improved interval linear programming (IILP) method (See [224]) is one of the improved

method that sufficiently handles the interval uncertainties and further eliminate infeasible

region from the solution space, thereby, providing solution that is both absolutely feasible

and optimal. Here, in this scenario, we solve the zero-sum IMG problem after trans-

forming into generic ILP model by using IILP method. Hence, the following are two

sub-models for the PI and PII.

For Player I:

sub model 1

min 𝑉−(𝑈) = 𝑋1 + 𝑋2 + 𝑋3

subject to

4.86𝑋1 +6.12𝑋2 +7.43𝑋3 ≥ 1,

0.14𝑋1 +0.04𝑋2 +0.06𝑋3 ≥ 1,

8.26𝑋1 +12.4𝑋2 +20𝑋3 ≥ 1,

0.05𝑋1 +0.09𝑋2 +0.55𝑋3 ≥ 1,

5.24𝑋1 +4.67𝑋2 +5.49𝑋3 ≥ 1,

0.5𝑋1 +0.68𝑋2 +1.54𝑋3 ≥ 1,

𝑋1, 𝑋2, 𝑋3 ≥ 0.

sub model 2

min 𝑉−(𝐿) = 𝑋1 + 𝑋2 + 𝑋3

subject to

2.69𝑋1 +3.81𝑋2 +5𝑋3 ≥ 1,

0𝑋1 +0𝑋2 +0.02𝑋3 ≥ 1,

0.03𝑋1 +0.02𝑋2 +0.04𝑋3 ≥ 1,

2.6𝑋1 +2.06𝑋2 +9.3𝑋3 ≥ 1,

0.02𝑋1 +0.02𝑋2 +0.07𝑋3 ≥ 1,

1.9𝑋1 +2.47𝑋2 +3.61𝑋3 ≥ 1,

0.26𝑋1 +0.13𝑋2 +0.5𝑋3 ≥ 1,

𝑋1, 𝑋2, 𝑋3 ≥ 0.

Solving the above two linear mathematical problems and by making suitable substi-

tutions, the optimal strategy of PI is obtained as follows: 𝑥1 = [0,0.845], 𝑥2 = [0,0],
𝑥3 = [0.1552,1] and the corresponding interval value of the game is �̂� = [0.02,0.1276].
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For Player II:

Sub model 1

max 𝑉+(𝑈) = 𝑌1 +𝑌2 +𝑌3 +𝑌4 +𝑌5 +𝑌6 +𝑌7

subject to

4.86𝑌1 +0.14𝑌2 +0.23𝑌3 +8.26𝑌4 +0.05𝑌5 +5.24𝑌6 +0.5𝑌7 ≤ 1,

6.12𝑌1 +0.04𝑌2 +0.13𝑌3 +12.4𝑌4 +0.09𝑌5 +4.67𝑌6 +0.68𝑌7 ≤ 1,

7.43𝑌1 +0.06𝑌2 +0.14𝑌3 +20𝑌4 +0.55𝑌5 +5.49𝑌6 +1.54𝑌7 ≤ 1,

𝑌1,𝑌2,𝑌3,𝑌4,𝑌5,𝑌6,𝑌7 ≥ 0.

Sub model 2

max 𝑉+(𝐿) = 𝑌1 +𝑌2 +𝑌3 +𝑌4 +𝑌5 +𝑌6 +𝑌7

subject to

2.69𝑌1 +0𝑌2 +0.03𝑌3 +2.6𝑌4 +0.02𝑌5 +1.9𝑌6 +0.26𝑌7 ≤ 1,

3.81𝑌1 +0𝑌2 +0.02𝑌3 +2.06𝑌4 +0.02𝑌5 +2.47𝑌6 +0.13𝑌7 ≤ 1,

5𝑌1 +0.02𝑌2 +0.04𝑌3 +9.3𝑌4 +0.07𝑌5 +3.61𝑌6 +0.5𝑌7 ≤ 1,

𝑌1,𝑌2,𝑌3,𝑌4,𝑌5,𝑌6,𝑌7 ≥ 0.

Solving the above two linear mathematical problems and by making suitable substitu-

tions, the optimal strategy of Player II is obtained as follows: �̂�1 = [0,0], �̂�2 = [0.8622,1],
�̂�3 = 0, �̂�4 = 0, �̂�5 = [0,0.1379], �̂�6 = 0, �̂�7 = 0 and the corresponding interval value of the

game is �̂� = [0.02,0.1276]. Based on the values of �̂� 𝑗 ( 𝑗 = 1,2,3,4,5,6,7), it is observed

that “Reliance Communications” have the maximum share price growth among the other

listed telecommunication companies. Moreover, the solution space so obtained for the

interval game problem is both optimal and feasible.

Now, we analyze the results obtained for the IMG problem by using our new algorithm

(See Section 6.3) and existing interval linear programming method (See Section 6.2). We

postulate the following points:

(i) The new algorithm is centered on the interval norm methodology, that facilitates

the game players to evaluate approximate interval game value without explicitly

solving the pair of auxiliary interval linear mathematical models as solved above.

Henceforth, it is considered the most significant advantage part of our new approach

to a certain extent.

(ii) In example 6.4.1, considering the case of row player, the approximated interval

game value obtained by using our algorithm is �̂�𝑎𝑝𝑝 = [0,0.1473] and the original

optimal game value is �̂� = [0.02,0.1276]. Therefore, the calculation of the absolute

error is given as |�̂�−dual(�̂�𝑎𝑝𝑝) | = | [0.02,0.1276] − ([0.1473,0]) | ⇒ |𝑣𝐿 − 𝑣𝐿𝑎𝑝𝑝 | =
0.02 and |𝑣𝑈 − 𝑣𝑈𝑎𝑝𝑝 | = 0.02. Analogously, the approximated interval game value

obtained for the case of column player is �̂�𝑎𝑝𝑝 = [0.2,0.483] and the absolute error

calculation in this scenario is |𝑣𝐿 − 𝑣𝐿𝑎𝑝𝑝 | = 0.18 and |𝑣𝑈 − 𝑣𝑈𝑎𝑝𝑝 | = 0.3. It is envi-

sioned that the better-approximated interval game value is obtained for the case of

row player, which is more nearer to the actual interval game value. Henceforth, the
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proposed method is showing consistent results with the existing methods.

(iii) In the paper, Izgi and Özkaya [133] has proposed a novel method for calculating

bounds for the maximum and minimum element of the strategy set based on the

original value of the game (See theorem 2.1.2). However, as the matrix size in-

creases, it is not always feasible for the game players to know about the new games’

original value. Therefore, to overcome this limitation, we propose a method primar-

ily based on normalization to determine the reasonable bounds for the largest and

smallest element of the strategy set for both the players.

(iv) In example 6.4.2, the original value of the game is given as 𝑣 = 0.5791 (See [147])

for both the players. Therefore, for the case of row player the absolute error is |𝑣−
𝑣𝑎𝑝𝑝 | = |0.5791− 0.5673| = 0.01. Also, for the case of column player the absolute

error is |𝑣− 𝑣𝑎𝑝𝑝 | = |0.5791−0.0.6003| = 0.02. It is foreseen that the absolute error

so obtained is quite small in both cases. Hence, the proposed method is showing

consistency with the results existing in the corresponding paper [133].

(v) The new algorithm is competent enough to solve large-scale IMG problems without

solving mathematical equations, thereby diminishing the computational cost. Also,

our new algorithm reduces the time complexity, which is otherwise considered a

tedious process for large-scale IMG problems.

(vi) In this algorithm, the approximated interval game value evaluated for the row and

column player, more precisely maximizing and minimizing player, follows the re-

lation �̂�𝑎𝑝𝑝 ≤ �̂�𝑎𝑝𝑝. Henceforth, showing similarity with the existing results (as

shown in [185]).

6.5 Conclusion

In this chapter, we anticipate a new viewpoint to handle interval uncertainties by solving

two-player zero-sum IMG problems via the interval matrix norm method. We propose

a notion of a 1− interval norm and ∞− interval norm that builds up an analogy with

the existing notion of point matrix norm defined for real numbers. Some results and

theorems are stated and proved to find optimal boundaries for the interval game value

depending on the norm concept. Furthermore, we exhibit a result facilitating the game

players to obtain lower and upper bounds of the mixed strategy set’s biggest and smallest

element, respectively. The result so devised is based on the normalization concept, which
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is different from the result proposed in the paper ( See Theorem 2.1.2), consequently,

useful in providing bounds for the IMG problem whose game value is not known priorly.

Moreover, the approximated interval game value obtained in a row and column player

scenario satisfies the generic interval inequalities, showing the similarity with existing

interval linear programming methods. Finally, a case study on how the rapid spread of

COVID-19 situation has affected the stock prices of the telecommunication industries

and comparison of results with the existing method show that the proposed methodology

demonstrates consistent results and is proficient in promoting studies in imprecise matrix

games.

Since all the traditional methods developed in the past are well-versed to solve IMGs,

the IILP method is the most popular method and has given more accurate results. On the

contrary, our proposed method suffices to find an approximate interval game value faster,

omitting to solve a linear interval equation system, which will be a tedious process for a

bigger size matrix game. It is easily foreseen from the discussion and comparison that

the present study is substantially distinct from the existing works of the IMGs. Although

the proposed method has shown consistent results with the existing method, some issues

need to be fixed. Firstly, in our method, we randomly select an appropriate value for the

mixed strategy set elements satisfying the boundary conditions. As a consequence, it is

not always a reliable method in a large scale IMG problem involving a large number of

decision variables. So, our future work will focus on resolving this issue and providing

an improved interval norm method that proficiently finds a better interval solution lying

near the exact optimal solution of the IMG. In recent times, some methodologies for ad-

dressing an imprecise game problem with multiple interval inputs (See [87]) have been

developed based on the ILP approach. So, our research will continue in this direction,

thereby extending the proposed method’s utility to address imprecise game problems hav-

ing incomplete information or multiple interval inputs.



Summary and future scope of the work

Many practical situations certainly deal with uncertainty and vagueness and further in-

crease the complexity of the problem. Using probabilistic models to deal with such un-

certainty has resulted in unsatisfactory results. There are different computational models

based on the linguistic term set to accomplish CWW processes; among them, the 2TL

model CWW has produced successful results without any information loss and is addi-

tionally applicable in complicated situations. It has been extensively applied in decision-

making and many other related areas due to its accuracy and simplicity.

In this thesis, we have focused our comprehensive study primarily on computation with

2TL variables in the field of game theory and decision science. We have analyzed both the

abstract and practical aspects of the 2TL model and further worked to design algorithms

and various operational laws under the framework of the 2-tuple linguistic variable so

that it can be efficiently applied in complicated decision problems. In chapter 2, we laid

the foundation of 2TL group theory where we have developed a formal methodology that

claims the 2TL term set, i.e., 𝐿𝑇 ≡ 𝐿𝑇 × [−1
2 ,

1
2 ] forms a direct group under the binary

operation ‘◦’ and later on developed an isomorphic relation between the 2TL direct group

and the interval [−𝑛,𝑛]. Subsequently, in the chapter, some of the properties of 2TL group

isomorphism and homomorphism are discussed, and the concept of linguistic kernels,

cosets, normal subgroups, and factor groups are introduced. We also propose some novel

algebraic operational laws for the 2TL term set. Finally, the strength of the proposed

abstract concept is presented in terms of bipolar linguistic graphs and linguistic matrix

games.

Chapter 3 has formulated a novel approach to handling unbalanced linguistic infor-

mation wherein linguistic information is presupposed to be asymmetrically and non-

uniformly distributed. Further, we have designed an algorithm to represent semantics to

the unbalanced linguistic terms and afterward developed a 2TL model for ULTS based on

the concept of minimum distance measure. Two numerical illustrations are also provided

185
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to validate and demonstrate the usability of the suggested model in the physical realm.

Further, chapter 4 extends the concept of ULTS proposed in the previous chapter to

introduce the notion of PM-ULTSs, which considers the probability of linguistic vari-

ables and the non-uniformity of linguistic labels. After then, some new operational laws

for managing probabilistic unbalanced linguistic information are also developed, which

could produce valid results and keep the property of operational laws closed. Furthermore,

some elementary aggregation operators to aggregate PM-ULTSs have been constructed

for further consideration. Additionally, the proposed concept is applied to investigate the

two-player constant sum matrix game problem having probabilistic unbalanced linguistic

information allowing game theory to accept the incomplete linguistic information, which

is non-symmetrically distributed as input. The successful application of the proposed

technique in the real-life decision analysis problem highlights its efficiency and compe-

tency.

Chapter 5 is dedicated to studying matrix games under an IVL framework. We have

designed a methodology to solve a 2-player zero-sum IVL matrix game problem to acquire

the lower and upper value of the interval linguistic game problem. In this connection, We

initially develop a novel approach for comparing two IVTFL variables and subsequently

put forward a new method for evaluating the optimal strategies and value of the game.

Chapter 6 presents a new viewpoint to handle interval uncertainties by solving two-

player zero-sum IMG problems via the interval matrix norm method. We propose a notion

of a 1− interval norm and∞− interval norm that builds up an analogy with the existing no-

tion of point matrix norm defined for real numbers. Finally, a case study on how the rapid

spread of COVID-19 has affected the stock prices of the telecommunication industries

has been presented. Comparing results with the existing method shows that the proposed

methodology demonstrates consistent results and is proficient in promoting studies of im-

precise matrix games.

Since the inception of the 2TL model, it is foreseen that the model has gained con-

siderable attention among other LCMs. It provides flexibility and eases the experts to

incorporate vagueness and uncertainty due to subjective human thinking in decision situ-

ations. Although the 2TL framework has ubiquitous applications in multiple fields, there

still are some challenges persisting with the model and, hence, there is a scope of ad-

vancement. The work presented in this thesis can be extended to explore more complex

decision problems having linguistic information. In the future, the dimension of 2-tuple

linguistic group theory can be extended to the ULTS thereby, enhancing the importance
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of classical group theory in the uncertainty domain. To complete the novel 2-tuple un-

balanced linguistic computational model, one can give an exhaustive study relevant to the

aggregation operators. It is perceived that game theory under a linguistic environment has

a great scope. Therefore, the proposed probabilistic unbalanced linguistic matrix game

methodology can be furthered to study bi-matrix unbalanced linguistic games and coop-

erative games. In recent times, some methodologies for addressing an imprecise game

problem with multiple interval inputs (See [87]) have been developed based on the clas-

sical ILP approach. So, the research can be continued to extend the proposed methods

given in the thesis to address imprecise game problems with incomplete information or

multiple interval inputs.
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