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ABSTRACT

Booming demand, depleting natural resources, deregulation, generation capacities, and

grids are some of the factors that are a concern for energy efficiency. In Smart grid era, Demand

Side Management (DSM) plays an indispensable role in development of sustainable cities and

societies. Based on the current practice of utility system, the load shape objectives can be char-

acterized into six categories: peak clipping, valley filling, load shifting, strategic conservation,

strategic load growth, and flexible load shape. Out of these six classical approaches: “peak

clipping” and “load shifting” are most widely applicable and relevant for energy efficiency us-

ing DSM [121]. Home Energy Management System (HEMS) lies under the umbrella of DSM,

it allows residential consumers to supervise and manage the power usage of their appliances

to reduce their electricity bills. Since, residential consumers are more concerned about their

energy bills as well as comfort, energy optimization with multiple objectives grips valuable and

resourceful usage of electricity. Therefore, the usage awareness and scheduling optimization

alone have the potential to reduce consumption by 15% in private households.

The stochastic problem of scheduling optimization in HEMS involves arbitrary dynamics

of renewable energy, consumer demand, consumer behavior, and electricity price. For con-

sumers, energy storage and load scheduling can provide effective means in reducing their elec-

tricity costs. Further, the limited battery capacity, the finite optimization time period and in-

teraction with energy storage devices complicates the energy scheduling and control decisions.

DSM in HEMS using load shifting technique is a challenging optimization research problem,

where the main aim is to have optimal utilization of available energy resources while reducing

the electricity bills. Reducing the complexity of scheduling optimization helps in the judicial

use of power consumption by the effective control of smart home appliances.

The research work focuses around the development of scheduling algorithm for the con-

sumer which aims to minimize the electricity price without compromising the comfort time

period of using various home appliances. First, a comprehensive survey regarding the major

factors affecting the optimized management solution and consequent decision making in HEMS

i



has been performed. Second, a robust deep learning algorithm for solar irradiance forecasting

has been developed. It can forecast GHI value using various weather parameters in different

seasons as well as at different steps (1-step, 2-step, 12 steps ahead). Third, deep learning en-

semble model has been utilized to forecast appliances’ power utilization. Using dynamic Item

set counting (DIC) algorithm, association between multiple appliances has been determined.

Fourth, a real time scheduling algorithm has been proposed which takes into account the fore-

casted PV power, appliance power, battery constraints, various other constraints and forecast the

24- hour schedule of the appliances which minimizes the electricity price without compromis-

ing the comfort. Fifth, smart grid reliability problem has been assessed by modelling it using

graph computational model and assessing the reliability through various indices .
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Chapter 1

Introduction

1.1 Background

I N Smart grid era, Demand Side Management (DSM) plays an indispensable role in the de-

velopment of sustainable cities and societies. Booming demand, crucial natural resources,

deregulation, generation capacities, and grids are some of the factors that are a concern for

energy efficiency. The various DSM techniques are shown in Figure 1.1.

“Smart grid is a modernized version of the traditional grid that enables bidirectional flow

of energy and uses two-way communication and control capabilities that will lead to an ar-

ray of new functionalities and applications”; definition by National Institute of Standards and

Technology (NIST), USA. The smart grid armed with advanced sensors, enhanced computa-

tional power and robust communication infrastructure has inherent self-healing capability, is

consumer-friendly and is vigilant to physical and cyber attacks. HEMS lies under the umbrella

of DSM; it allows residential consumers to supervise and manage the power usage of their appli-

ances to reduce their electricity bills. Today domestic electricity use accounts for 30% of global

energy consumption. The stochastic problem of scheduling optimization in HEMS involves
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Figure 1.1: Different ways of Demand side management

arbitrary dynamics of renewable energy, consumer demand, consumer behavior, and electric-

ity price. For consumers, energy storage and load scheduling can provide effective means in

reducing their electricity costs. Furthermore, the finite battery capacity, the finite optimization

time period, and interaction with energy storage devices complicates the energy scheduling and

control decisions.

1.2 Motivation

• Demand side management (DSM) in is a very active research area in smart grid in which

there is an increased need to explore the challenges imposed by various parameters such

as PV integration, different categories of appliances, different power requirements, pric-

ing etc.

• Many works have reported the study of DSM optimization, among which very few studies

barely attempted to develop optimization algorithm for real time DSM (including various

constraints).
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• There are challenges in implementation of load shifting as difference in consumer be-

havior, pricing, appliance power usage trends, association between appliances, location,

weather etc.

• The data obtained from the new generation advanced IoT devices along with advanced

cloud integration techniques provide an opportunity to develop improved scheduling al-

gorithms for consumers which minimize electricity cost without compromising consumer

comfort.

1.3 Research objectives

In this thesis, for demand side management using load shifting, the real-time scheduling algo-

rithm using different pricing schemes has been developed. In this context, the challenges and

opportunities of DSM, solar irradiance forecasting at different time-steps and seasons, consumer

behavior learning and detection of attacks on smart grid has been discussed.

• Modeling and characterization of load of smart household appliances including their

operating cycles (TCL and ECL).

• Green energy modeling and its optimal utilization for load shifting in time varying

price environment.

• Utility Load Reshaping to optimize the energy cost envelope of consumer using

computational intelligence techniques.

• Development of Scheduling Algorithm to optimize cost and comfort trade-off of

consumer incorporating real time constraints.

• Integration of machine learning techniques to understand the usage pattern of con-

sumer smart appliances and implement self-learning algorithms to enable user com-

fort and save energy.

• Design of demand response strategy to schedule working cycles of different appli-

ances based on user load and renewable energy forecasting and its optimal utilization

to achieve reduced carbon footprint without affecting user comfort.
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These objectives are fulfilled by using cutting-edge deep learning techniques for multi-

variate solar irradiance forecasting and consumer appliances power forecasting. Then, a real-

time scheduling algorithm using the forecasting results has been proposed, which schedules the

home appliances according to consumer comfort and minimizes the electricity cost and peak-

to-average (PAR) ratio of the consumer.

1.4 Thesis outline

The subject matter of the thesis is presented in the following five chapters;

✓ Chapter-1 provides an overview of smart grid and demand side management (DSM). Dif-

ferent techniques of DSM and role of IoT in Home Energy Management System (HEMS)

has been discussed. It also emphasizes the motivation of the research and objectives.

✓ Chapter-2 elucidates the challenges and opportunities of DSM in HEMS. It discusses

the different optimization techniques used for DSM. Thorough investigations of different

parameters affecting DSM and challenges in distribution network are included in this

chapter.

✓ Chapter-3 describes the solar irradiance forecasting using self-attention based deep learn-

ing model. The training and testing phases of model, multi-step forecasting, seasonal

variations and the data sets used for this study are incorporated in this chapter.

✓ Chapter-4 discusses the consumer behavior learning model. The power forecasting of var-

ious appliances used by consumer using Ensemble deep learning model and association

between different appliances using DIC algorithm.

✓ Chapter-5 highlights the real time optimization algorithm which uses solar irradiance

forecasting and consumer behavior learning resulting the 24-hour schedule for the appli-

ances usage under different pricing schemes.

✓ Chapter-6 discusses the smart grid communication reliability issues in ICT networks and

solution using computational graph.
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✓ Chapter-7 summarizes the proposed methodologies and the discussions of the results,

including the important findings of the studies. The future scope of the research works

are proposed successively, following the conclusion on the basis of important extracts and

understanding of the subject of interest.
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Chapter 2

Overview and Challenges of DSM in

HEMS

2.1 Introduction

DSM evolved during the 1970s and can be defined as “to plan, implement and monitor activities

designed to influence customer uses of electricity in ways that will produce desired changes

in the utility’s load shape” [215, 36, 65]. DSM is beneficial for both consumers and energy

providers. It allows the active participation of consumers by reshaping its load profile through

informed decisions to have optimal energy consumption which leads to a reduction in peak load

demand and hence helps in maintaining the stability of the overall power system network [139].

This chapter discusses the following points in detail:

1. The architecture of smart home with smart devices integrated with photo-voltaic (PV) and

electric vehicle (EV).

2. A detailed description of the major factors affecting load management and control deci-

sion making in a smart home.
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Figure 2.1: IoT based Smart Home

3. A focused taxonomy for the categorization and prioritization of appliances in the smart

home.

4. A detailed review of different types of optimization techniques for the solution of load

scheduling problem.

2.2 IoT based HEMS

HEMS is the cluster of smart home appliances having in-built communication capability that

creates an environment for energy management. IoT is now becoming one of the most com-

monly used technology for communication and control of various devices confined to the Home

Area Network (HAN)/Local Area Network (LAN). The IoT based HEMS architecture is pre-

sented in Fig. 2.1. Key elements that make up the environment are described below:
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2.2.1 Smart Appliances

Smart Appliances are integrated with IoT enabled technology to interact with smart devices

such as smartphones or tablet allowing remote access to the homeowner. These appliances can

communicate wirelessly with the smart meter and participates in reducing energy consumption

by automatically adapting to changes in availability of power and dynamic tariff [76]. Vari-

ous factors that influence consumers for the purchase of smart home appliances are mentioned

in [151]. These are 1) utility of appliance; 2) consumer satisfaction; 3) cost-saving; 4) ease

of control. Privacy, control, and interoperability among smart appliances, majorly affect the

consumer purchase decision. IoT based home appliance controlling system as implemented in

[233] solves the interoperability issues and enhances user interaction with smart appliances.

2.2.2 Advance Metering Infrastructure (AMI)

AMI is an important tool empowering the customer to play an active role in the electricity con-

sumer market as it enables the bi-directional communication between smart meter installed at

consumer premises and utility grid. It is also one of the main component of IoT enabled HEMS

which is responsible for data collection, transfer, remote monitoring, privacy and security of

consumer information and displaying dynamic tariff information etc. [27]. Since AMI contains

detailed information about consumers’ data consumption habits, it imposes many security chal-

lenges related to revealing consumer lifestyle [158]. Moreover, the vulnerabilities in terms of

data theft or manipulation, power theft, cyber and physical attacks are becoming serious issues

for utility as well as law enforcement agencies [153]. These security issues and attack scenarios

have been extensively investigated in the literature. Various key establishment algorithms have

been proposed in the literature to ensure confidentiality and integrity for secure communication

between AMI and utility [157, 254, 231, 134]. However, the complexity, computational burden

and security related claims of these algorithms are still debatable.
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Table 2.1: Communication Technologies for Smart Home

Technology Spectrum Data rate Coverage range Applications Limitation

WiFi 2.4 GHz 11 Mbps 100 m Monitoring and Controlling Security, Interference

Zigbee 2.4 GHz 250 Kbps 30-50 m AMI Low data rate, Short range

WiMAX 3.5GHz Upto 75 Mbps 10-50 Km AMI, Demand response Not widespread

5G 1-6 GHz Upto 10 Gbps 1000 feet AMI, Demand response Cybersecurity

2.2.3 Smart Thermostat

A smart thermostat is a device used in thermostatically controllable loads for learning tempera-

ture preferences of consumers. It also facilitates the consumers by providing remote access and

communicates with AMI according to price signals [125]. Sensing, machine learning, and net-

work communication feature embedded in programmable thermostat makes them smart. Such

thermostats embedded with proximity, motion sensors, and its learning algorithm adapts to set

temperature according to the user’s historical preferences at different times of the day [58].

Further, the energy consumption profile based on consumer usage pattern guides the user for

efficient energy management. Google Nest learning thermostat [219], iDevices thermostat [95],

Ecobee [47] are some examples of smart thermostats available in the market.

2.2.4 Smart Plugs

A smart home plug is an electric device that makes existing home appliances to act like smart

devices. It can identify the type of attached home appliance based on the energy consumption

profile of that appliance. With the inbuilt wireless communication protocols, it can connect to

the wireless home network so that a user can measure the energy consumption and control the

electronic device plugged into the smart plug over the internet [161]. Security vulnerabilities

related to smart plugs have been discussed in [132]. TP-Link Hs110 [220], Centralite ZigBee

plug-in [167], iDevices smart plug [16] are some examples of smart plugs available in the

market.
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2.2.5 Communication Technologies

Communication between different components of a smart home is a key aspect of realizing the

smart home infrastructure [246]. Wireless communication technologies used in a smart home

are IEEE 802.11 based wireless LAN (Wi-Fi), IEEE 802.15.4 based ZigBee and IEEE 802.16

based WiMAX [227]. The upcoming 5G based IoT technology will be used as low latency com-

munication technology for smart home [148]. In the IoT enabled smart infrastructure, two types

of communication protocols are normally followed: Zigbee for the device to device communi-

cation and Wi-Fi for the device to AMI communication. Since two types of different protocols

are being followed in same premises, there are chances of interference between them. As per a

study carried out in [252], a distance of 8 m between ZigBee and Wi-Fi guarantee the reliable

operation of Zigbee regardless of the offset frequency, while 8 MHz is a safest offset frequency

for the minimum distance of 2 m. A brief comparison of all the three protocols based on oper-

ating frequency, data rate, operating range with their applications and limitations is presented

in Table 2.1.

2.3 DSM Challenges

DSM implementation using load shifting techniques depends upon some key factors like load

Profile of appliances, renewable energy generation, load categorization, dynamic pricing, and

consumer categorization while reducing the electricity bills and ensuring the system stability.

Therefore, within the given constraints and well-defined objectives, the DSM becomes a typical

optimization problem. A lot of optimization techniques have been proposed for DSM which

have their own merits and demerits. This section is devoted to discussing the major challenges

in DSM as shown in Fig. 2.2.
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Figure 2.2: DSM Challenges

2.3.1 Load Profile of Smart Appliances

Smart appliances have inbuilt sensors for communication with the smart meter about their en-

ergy and power requirements. Energy consumption patterns of various smart home appliances

give a key insight into consumer load pattern which may further be utilized for energy cost

minimization and optimal resource management. It is also a critical component for developing

accurate and efficient load management algorithms. A load profile of a smart home appliance

indicates the energy consumption dependence with time from the start of operation to its end

time. There are two different ways by which load profiles of appliances can be obtained: smart

meters and survey of consumers.

Since the load profile of appliances greatly depends on the stochastic behavioral habits

of consumers and external environment, developing a generalized DSM optimization algorithm

that works for all types of consumers is highly challenging. It is also difficult to develop a gen-

eralized forecasting algorithm that can accurately predict the power consumption of different

appliances for different consumers. Hence, the development of consumer-specific optimiza-

tion algorithm considering their comfort preferences greatly depends on their appliances’ load

profile.
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Table 2.2: Load Profile of Home Appliances

S.no Appliance Energy(KWh) Power(KW)

1 Electric Stove 4.5 1.5

2 Clothes dryer 1 0.5

3 Vacuum cleaner 3 1.5

4 Refrigerator 2.5 0.125

5 Air Conditioner 6 1.5

6 Dishwasher 2 1

7 Heater 4 1

8 Water Heater 2 1

9 Pool Pump 4 2

10 PEV 10 2.5

11 Lightening 3 0.5

12 TV 1 0.5

13 PC 1.5 0.25

14 Ironing 2 1

15 Hair Dryer 1 1

16 Others 6 1.5
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(a) Wall-AC (b) Refrigerator

(c) Water-heater

Figure 2.3: Load Profile of TCL appliances

(a) Cloth-washer (b) Cloth-dryer

(c) Dishwasher

Figure 2.4: Load Profile of controllable appliances

2.3.2 Integration of Renewable Energy

Integration of distributed small scale renewable energy system in HEMS is the key to efficient

scheduling optimization. Although promising, renewable energy is often intermittent and diffi-

cult to predict [52]. Offline storage control strategies such as BESS and rolling battery installed

in EV with bi-directional power flow capability have been utilized to curtail the power fluctu-

ations from RES. Moreover, the energy storage devices may also be very helpful in improving
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the power imbalance, power quality, reliability and harmony between loads and distributed

generated resources to have enhanced stability [253]. Besides these advantages, increased pen-

etration of solar photo voltaic in HEMS pose great challenges in the management of electricity

distribution networks. Intermittent generation may lead to difficulty in maintaining supply and

demand, voltage and frequency stability such that over voltage conditions may lead to even

power outages.

It is inevitable to note that the uncertainty of solar power and electricity tariff makes it dif-

ficult to schedule optimal residential energy demands. Several optimization algorithms based

on heuristic optimization [146], two-stage robust optimization [135] and mixed-integer linear

programming (MILP) [54] have been proposed to optimize the scheduling of distributed res-

idential energy sources. Moreover, the bi-directional capability of electric vehicle (EV) as a

battery energy storage unit has been explored for vehicle-to-home (V2H) and vehicle-to-grid

(V2G) applications [54, 55].

2.3.3 Appliance Categorization

Different appliances have different characteristics, power requirements and operating modes.

Grouping residential appliances in a suitable way based on consumer needs or behavior is im-

portant for the optimization of DSM. As per the reported studies, the authors have categorized

the smart home appliances based on their behavior and operating characteristics. However, the

same type of appliances has been categorized in a different way depending upon their research

objectives. Table 2.3 presents the taxonomy of appliance categorization as per the various stud-

ies available in the literature. For the sake of understanding the different appliances as presented

in Table 2.3 has been divided into five categories.

It can be inferred from Table 2.3 that home appliances based on their ability to participate

in DR may be divided into three groups: Fixed loads, Controllable loads and Battery-assisted

loads as shown in Fig. 2.5. The controllable loads can be further differentiated based on their

thermal characteristics and are termed as non-thermostatically controllable (Non-TCLs) and

thermostatically controllable (TCLs).
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Figure 2.5: Load Categorization

2.3.3.1 Fixed Loads

These type of loads are primarily essential loads and does not participate in DR programs.

The lights, fans, stove, TV, computer, etc fall in this category. Moreover, being a non-deferrable

load, they cannot be rescheduled. These types of load contribute to nearly 28% of the electricity

bill [239].

2.3.3.2 Controllable Loads

These loads are active participants of DSM programs. They can be further divided into two

categories:

a) Non-Thermostatically Controllable (Non-TCL) These appliances are deferrable to a

later period as most consumers do not need them immediately. Appliances such as dishwasher,

clothes dryer, washing machine fall in this category.

b) Thermostatically Controllable (TCL): These type of appliances uses thermal storage

(they can store heat in their thermal masses). By using their thermal inertia, these loads can be

deferrable to near future periods without affecting consumer comfort. Mainly, the water heater
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and HVAC system fall in this category. They almost contribute 60% of the electricity bill.

2.3.3.3 Battery Assisted Loads

These appliances consist of a battery as inbuilt energy storage. The EVs, BESS, vacuum cleaner,

notebook PC and mobiles are typical examples of such type of loads. However, only the EV

and BESS may significantly participate in DSM.

2.3.4 Constraints

The optimization problem of scheduling consists of many types of constraints. These con-

straints are both at the system level and appliance level. Constraints are addressed as follows:

2.3.4.1 Electrical Demand Supply Balance [217]:

The following equation demonstrates the electricity demand-supply balance at any hour consid-

ering power from grid and battery without considering load shifting and with consideration of

shiftable and non-shiftable load demands. Without considering Load Shifting-

Pgrid(h)−Pbatt(h) = De(h) (2.1)

Considering Load Shifting-

Pgrid(h)−Pbatt(h) = Dnsh(h)+
n=1

∑
Nsh

Dn
sh (2.2)

where Pgrid is the power transferred between main grid and HEMS(kW), Pbatt is the battery

net output power(kW), De(h) is the electrical demand at hour h(kWh), Dnsh(h) is total power

consumption of non-shift able loads at hour h(kW)and Dn
sh is the power consumption of nth shift

able load at hour h (kW).
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Table 2.3: Taxonomy for the Appliances Categorization

Appliances Category Appliances Taxonomy
Lights Fixed Loads [263],[185]
Stove Non-Deferrable [22]
Hair Dryer Essential [136]
TV General Appliances [154]
Computer Category 1 Uncontrollable Loads [51], [174]

Real-Time [21]
Model-Based [92]
Non-Reschedulable [9]

Dishwasher Deferrable Loads [263],[51]
Dryer Non-Flexible Deferrable [22]
Washing Machine Delay Sensitive Flexible [136]

Wet Appliances [154]
Category 2 Schedulable [21],[221]

Shift able [185]
curtailable [15]
Non-Interruptible [92]
Type B (Soft Load) [222]
Non-TCL [170]
Reschedulable [9]
Switching Controlled Loads [174]

HVAC Regulatable Loads [263]
Water Heater Flexible Deferrable [22]
Space Heater Delay Tolerant Flexible[136]

Thermal Appliances [154]
Category 3 TCL [51],[170]

Schedulable [21],[221],
Shift able [185] [15]
Interruptible Controllable [92]
Reschedulable [9]

Refrigerator Type A (Hard Load) [222],
Category 4 Fixed Loads [15],

Not Controlled (high Loads)[174]
EVs Battery Assisted [221]
Vacuum Cleaner Category 5 Type C (Soft Load)[222]
Notebook PC
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2.3.4.2 Temperature Constraint for TCLs [217]:

The energy scheduling for TCLs must be performed in such a way that the temperature (water

in case of EWH and room in case of HVAC) should be maintained in the predetermined range

T min,T max

during the scheduling time window when the household is occupied.

EWH -

T min
outlet ≤ T i

outlet ≤ T max
outlet (2.3)

where T min
outlet , T max

outlet are the minimum and maximum water outlet temperature in tank and T i
outlet

is the mixed water temperature in the tank at interval i.

HVAC-

T min
room ≤ T i

room ≤ T max
room (2.4)

where T min
room, T max

room are the minimum and maximum room temperature and T i
room is the room

temperature at interval i.

2.3.4.3 Battery Constraints [240, 91]:

Battery level should be maintained within a certain range that is recommended by its manufac-

turer. Therefore, the following constraint is imposed-

SOCmin(h)≤ SOC(h)≤ SOCmax(h) (2.5)

SOC(h) = Eh
batt/Ecap

batt (2.6)
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where SOCmin and SOCmax are the minimum and maximum State of charge of battery at hour

h, Ecap
batt is the capacity of battery (KWH) and Eh

batt is the energy in battery at any hour. Battery

maximum charging and discharging power limit can be represented as:

0 ≤
Pch

batt(h)
ηch

≤ Pch
max (2.7)

0 ≤ Pdch
batt(h) ·ηch ≤ Pdch

max (2.8)

where Pch
batt(h), Pdch

batt are battery’s charging and discharging power, Pch
max, Pdch

max are the maximum

battery’s charging and discharging power and etach, etadch are the battery’s charge and discharge

efficiency.

2.3.4.4 Charging and Discharging Constraints of EV [240]:

With Assumption that EVs can only be charged and discharged at home. Moreover, EVs are

connected to home chargers as soon as they arrive home. Therefore, constraints on charging and

discharging power applied to only time slots when an EV is parked at home as: For Charging-

0 ≤ Pch(h)≤ Pmax(h) (2.9)

For Discharging-

0 ≤ Pdch(h)≤ Pmax(h) (2.10)

where Pch, Pdch are the charging and discharging power of EV and Pmax is the maximum power

level of EV.
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2.3.4.5 Grid Constraints [240]

The energy imported from the grid at each time slot must be must be upper bounded by some

predetermined limit.

0 ≤ Pgrid(h)≤ Pmax
grid (h) (2.11)

2.3.4.6 Phase Wise Energy requirement of Appliances [211]:

Since controllable appliances such as washing machine, dishwasher have different power re-

quirement at each operation cycle. This constraint ensures each appliance operating cycle re-

ceives enough energy for its operation.

m

∑
k=1

pk
i j = Ei j,∀i, j (2.12)

where pk
i j is the energy assigned to energy phasej of appliancei during the whole period of time

slot k and Ei j is the energy requirement for energy phase j in appliance i.

2.3.4.7 Power Safety [211]:

This constraint imposes an upper limit to the total energy assigned in any time slot should be

always less than max energy from the grid.

N

∑
i=1

m

∑
j=1

ph
i j ≤ Pmax

grid (h),∀i, j (2.13)

where ph
i j is the total energy required by all running appliances at hour h and Pmax

grid is the maxi-

mum energy from grid at that hour.
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2.3.4.8 Up Time Required to finish a task [217]:

When an appliance is turned on, it should not be turned off before the corresponding task is

complete, e.g., dishwasher

Wn(h)+Wn(h+1)+ ....+Wn(h+TOPn −1)≥

(TOPn −1) · (Wn(h−1)−Wn(h−2)),∀h ∈ hn

(2.14)

where Wn(h) is the operation state of nth shift able load at hour h 1: on,0: off and TOPn is the

number of nth shiftable load’s time of operation.

2.3.4.9 Operation Ordering of Appliances [217, 171]:

it should be guaranteed that the appliances’ operation ordering will be maintained. For example,

a dryer should be operated after the washing machine has finished its duty. So, if the shiftable

load m should be operated after shiftable load n then:

startm ≥ startn +operating_durationn +gap (2.15)

2.3.5 Dynamic Pricing

In recent times, the electricity market is going through a transition phase where the reduction of

peak demand is one of the major objective while utilizing all the resources optimally. Several

incentives have been introduced worldwide to motivate the customer by offering them several

economic benefits and different electricity tariff at different load dependent intervals. Here,

dynamic pricing is an inevitable component of the household energy scheduling problem, as it

encourages the customer to shift their load from on-peak to off-peak period. Different pricing

schemes have been employed to maintain a balance between demand and supply of energy as

shown in Fig. 2.6.
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2.3.5.1 Time of Use (ToU)

ToU is cost reflective electricity pricing scheme. It reflects the cost of producing electricity at

different times of the day based on demand. ToU pricing is divided into three periods: on-

peak, when both energy demand and cost are high; mid-peak when energy demand and cost are

moderate, and off-peak when energy demand and cost are low [258].

As per the experience of ToU pricing scheme implemented in various countries such as

Bangladesh [181], Irish [39], China [199], Malaysia [94], Taiwan [204] and Ontario [7]. It

has been observed that ToU pricing strategy significantly affects the consumption pattern of

residential consumers [267, 198].

2.3.5.2 Real Time Price (RTP)

RTP policy is dependent on the instant energy consumption of the consumer [48]. This kind of

pricing scheme is very popular among the researchers as it offers enhanced economic and envi-

ronmental benefits in comparison to ToU [164]. However, a real-time energy consumption with

the varying cost is very challenging to implement as it requires customer active participation

through bi-directional communication between consumer and service provider [38]. From the

consumer perspective, it is very difficult to handle highly complex and voluminous data. On

the other hand, it poses a great challenge to the service provider as the real time retail pricing

affects the stability and volatility of power system [184].

2.3.5.3 Inclined Block Rate (IBR))

In IBR, the price is directly proportional to consumed power, i.e electricity price increases with

increased power consumption beyond a certain limit. It is used to avoid load synchronization

problems, i.e. the concentration of a large portion of energy consumption during low price

hours. Here, it is pertinent to mention that in most of the cases, IBR policy is used in com-

bination with either ToU or RTP. This is mainly done to take the benefit of both the pricing

schemes.
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2.3.5.4 Day-Ahead Pricing

The day-ahead market produces financially binding schedules for the generation and consump-

tion of electricity one day ahead of the operating day [263]. In these markets, quotes for day-

ahead delivery of electricity are submitted simultaneously for all hours in the next day [93].

The real-time market is usually more expensive and changes more sharply than the day-ahead

market [128].

2.3.5.5 Critical Peak Pricing (CPP)

CPP is a pricing scheme similar to TOU; it provides two different prices between off-peak and

peak periods to balance power demand in case it is extremely high compared with other power

demand periods [109]. FCPP is declared only on days that are forecasted to have a very high

power demand period, called a critical period (CP). This kind of pricing is normally used for

bulk power consumers e.g heavy industrial and commercial loads. Here, customers are notified

in advance of critical peak time-limited to several selected days throughout a year during which

the tariffs are expected to be much higher than average.

2.3.6 Consumer Categorization

Table 2.4: Consumer Classification

Reference Consumer Behavior

[49] Selfish Altruistic Welfare maximizers

(Individual utility maximizers) (Other users well-being maximizers) (Whole system well-being maximizers

[156] Price Optimizers Price Sensitive Price Insensitive

(price prioritized over comfort) (tradeoff between comfort and price ) (comfort prioritized over price)

[75] Eco Consumer Average Consumer Waste Consumer

(minimum power demand from the grid) (average power demand from the grid) (maximum power demand from the grid)

[85] Demand responsive Demand Unresponsive

(responsive to changes in electricity pricing ) ( Do not respond to changes in electricity price)

Consumer categorization is an imperative variable in the success of demand scheduling
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Figure 2.6: Dynamic Pricing Schemes

optimization. In order to make consumers active DR participants, their convenience should be

guaranteed, by scheduling different appliances within their time and temperature limits. Con-

sumers can be categorized based on 1) Behavior and 2) Demand. Consumer categorization

based on their behavior is shown in Table 2.4.

2.3.7 Optimization Techniques

Optimized use of resources and assets enables users to efficiently manage energy consumption

at home. Optimization is defined as the process of finding the conditions that give the maximum

benefit or minimum cost of a process [213]. Optimization objective in published studies mainly

focuses on reducing the peak-to-average ratio (PAR) in load demand and electricity cost of the

consumer without disturbing the comfort. Additionally, maintaining the privacy of consumer

data is an increasing need in the IoT era. Some researchers focus on a single objective while

others provide solutions for solving multiple objectives, that make multi-objective optimization.
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In this section, we review the various optimization techniques used in previous works. Based

on the nature of expressions for the objective function and the constraints, the classification of

optimization techniques is represented in Fig. 2.7.

Figure 2.7: Classification of HEMS Optimization Techniques

2.3.7.1 Linear Programming

Linear Programming (LP) is an optimization technique in which objective function is repre-

sented by linear relationships of decision variables, subjected to linear inequality constraints

[213]. Linear programming is said to be integer linear if all the decision variables are inte-

gers whereas Mixed-Integer Linear (MILP) if some but not all decision variables considered in

problem formulation are integers. LP problem can be expressed in matrix form as:

minimize cT x

Sub ject to Ax = b and x >= 0

where cT , A and B are constant matrices. x is the variable (unknown).

LP optimization has been applied by many researchers for energy management optimiza-

tion problems. According to the study in [38], it is the simplest technique and easily integrated

into the energy management system (EMS) of the household for demand response problems.
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MILP based model can be solved extremely fast and effectively using commercially avail-

able solvers such as CPLEX, Gurobi, Xpress and MATLAB. It can find global optimal solution

of linear problems. It can be used to solve large and complex optimization problems. Despite

these advantages, MILP formulations have some drawbacks. The non-linear constraints can-

not be directly used in this model. Also, it suffers from the risk of high-dimensionality of the

problem.

2.3.7.2 Non-Linear Programming

If any of the functions among objectives and constraints of the optimization problem is non-

linear, the problem is called non-linear programming (NLP) problem. This is the most general

form and used by many researchers in the past. The NLP optimization problem can be repre-

sented as:

minimize f (x)

Sub ject to gi(x)≤ 0, f or each i ∈ {1, ....,m}

h j(x) = 0, f or each j ∈ {1, ...., p}

x ∈ X

where n, m and p are positive integers. X is subset of Rn. f , gi(x) and h j(x) are real-valued

functions on X, with at least one of them being non-linear.

The optimization problem of electricity load scheduling considering home appliances with

different energy consumption and operation characteristics has been formulated as mixed in-

teger non-linear programming (MINLP) in Ref. [183]. Generalized benders decomposition

approach has been used to solve MINLP problem efficiently under ToU pricing scheme.
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2.3.7.3 Stochastic Optimization

Stochastic optimization is a mathematical optimization technique that deals with maximizing

or minimizing an objective function that deals with random variables or random constraints. To

solve these types of problems, structural assumptions, such as limits on the size of decision and

outcome spaces are required.

Stochastic optimization is intended to solve multi-objective decision-making problems

under the presence of uncertainties and risks. However, they often cannot handle highly con-

strained optimization problems and do not offer bounds on the solution.

Stochastic optimization models have become an important paradigm in wide range of

applications. Some of them are modelling renewable energy uncertainties [260], energy storage

scheduling [112], traffic control [102], mobile GPS applications [24].

2.3.7.4 Robust Optimization

Both stochastic and robust optimization deals with the uncertainty of data. The difference be-

tween them lies in the fact that stochastic optimization assumes that the probability distribution

of uncertain data is known/estimated. Robust optimization, on the other hand, optimizes the

worst case that can occur and does have any such assumption and therefore more suitable for

real-life optimization problems [73].

A distributed robust algorithm for monetary savings has been proposed in Ref. [261] for

consumers with little computational complexity which provides flexibility to users as well as

robust production price to the energy supplier.

The uncertain usage of manually operated appliances (MOAs) has been modeled as a ro-

bust optimization problem to avoid the risk of high electricity payment caused by MOAs’ [45].

Robust modeling helps to consider the worst-case scenario to minimize the electricity cost of

all home appliances using combined RTP-IBR. Computationally efficient inter generation pro-

jection evolutionary algorithm (IP-EA) has been utilized which is a nested heuristic algorithm

with an inner GA and outer PSO algorithm.

Some of the examples of application areas of robust optimization includes modelling profit

uncertainty of electric vehicles aggregators [10], optimum bidding strategy for compresses air
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energy systems (CAES) [40], agriculture sector [244], optimization of solar-based Organic

Rankine cycle (ORC) systems [173], Production scheduling [62].
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2.3.7.5 Meta-heuristic

Meta-heuristic algorithms are heuristic and population-based soft computing algorithm which

can find a global solution of NP-hard problems in a computationally efficient way by taking

comparatively less execution time as compared to mathematical optimization solutions [163].

Many examples illustrated in literature focusing on meta-heuristic algorithms to solve the DR

optimization problem.

The particle swarm optimizer (PSO) has been used in the central controller to optimize

the set-point temperature of TCLs based on outdoor environmental information and customer

preferences [235].

Uncertainties in electricity price and system loads are modeled as chance constraint optimization-

based model in Ref. [91]. Gradient-based PSO and two-point estimate methods are employed

to find optimum solutions.

The main advantages of meta-heuristic techniques are ease of implementation, handling

non-linear or discontinuous objectives and constraints, solving high-computational complex

problems. But the problems with using meta-heuristic algorithms are that they can converge

prematurely and get stuck in a local minimum, particularly for complex problems. These algo-

rithms are time-consuming for problems with large number of variables.

The diversified application areas of meta-heuristic algorithms include PV cell modeling

and analysis [247], optimum sizing of hybrid RESs [11], sensors temperature prediction [118],

scheduling charging of hybrid electric vehicles [13], software effort estimation [66].

2.3.7.6 Artificial Intelligence

The artificial intelligence is a field in which machines are trained to be intelligent and perform

functions related to human intelligence [127]. Many researchers in the past used artificial intel-

ligence for intelligent decision making, prediction, forecasting, and scheduling.

AI has ability to work with sparse data, parallel processing, making better decisions

through learning, pattern recognition and solving non-linear functions with arbitrary complex-

ity. It suffers from some disadvantages as well. Hardware with parallel processing power is

required to run AI models. It can work with numerical values only. Validation and verification
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Table 2.6: Different Optimization Objectives and Techniques Used with Price Variant

ObjectiveTechnique Linear Mixed integer Stochastic Robust Meta-Heuristic AI-based Game theory Others

programming Non-linear optimization optimization algorithm algorithm

Cost minimization [9]5 [170]2 [183]1 [251]2 [45]4 [156]5 [85]1 [261]2

[32]2 [229]2 [261]2 [91]2 [111]2 [224]6

[222]3 [130]2 [176] 5 [241]2 [26]8

[211]2 [194]8

[17]8

[55]2

Cost minimization and [15]2 [164]2 [232]5 [235]2 [29]8 [245]8 [143]8

Comfort maximization [196]9 [155]2 [238]2 [126]1

[255]2 [232]2 [178]1

PAR Reduction [124]2 [179]1

Cost minimization and [250]8 [193]4 [135]2 [139]5 [75]1 [208]

PAR reduction [134]7

[223]8

Cost minimization and [249]1 [20]8

Privacy preserve [185]8

1 ToU; 2 RTP; 3 IBR; 4 RTP+IBR; 5 Day ahead Price; 6 Price/unit enrgy(UTP); 7 RTP+ToU; 8 Price Function; 9 ToU+RTP+CPP.
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of AI model require extensive testing with hardware.

The application of AI has made significant progress in many fields. Some of them are

consumer comfort optimization [80], decentralize healthcare systems [138], AI-guided chatbots

[14], recommendation systems [218] and Natural language processing [116].

2.3.7.7 Game Theory

Game theory for solving optimization problems in a distributed environment is recently gaining

attention among researchers. This technique is mainly used in situations where selfish and ratio-

nal consumers need to make decisions under uncertain environmental conditions [166]. Local

energy trading (buying and selling of energy)in a smart grid environment is mainly implemented

by the game playing approach [175].

A game model with real-time price for demand response in a household equipped with

solar panels has been proposed by [214, 256]. Ref. [214] uses the model predictive control

(MPC) based approach whereas Ref. [64] uses Stackelberg game approach for real-time price-

based demand response. The Stackelberg game approach is used as a solution for energy trading

problem to maximize the sum of benefits of all participant consumers [256]. This approach

encourages active consumer participation in the demand response environment by incentivizing

them. Energy trading between competing users in a distributed environment with the integration

of renewable energy using game playing has been proposed in Ref. [194]. It reduces the effect

of reverse power flow problem by encouraging users to consume their excess generation locally.

A fair and optimal billing mechanism among consumers has been proposed using game

theory [20]. Also, a secure sum algorithm has been used to preserve the user’s privacy in a

distributed environment. A distributed privacy- friendly DSM has been proposed in Ref. [185],

which overcome the problem of information leakage by sending a noisy version of the power

demand profile.

Game Theory is a quantitative technique for solving problems where there is interdepen-

dence among decision makers and others’ to arrive at optimal strategy. Hence, it can be used

to decide the best strategy in competitive situations, therefore helps in rational decision mak-

ing. However, Game theory becomes difficult to solve when there is increase in the number of

players involved. Also, it does not tell about the winning strategy but uses only general rules of
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logic. Uncertainty in the actual field is difficult to model using this technique.

Game theory has been extensively used in literature. The application areas include setting

optimal selling price of micro grid [110], privacy preservation in IoT environment [182], Cyber-

security and cloud computing [105], manage security issues in Block chain [137], production

research and operational management [34].

2.3.8 Some brief comments related to the optimization techniques

From Table 2.5 and 2.6, it can be deduced that among mathematical programming techniques,

most of the researchers have used MILP as nature of multi-objective optimization problem. The

reason is, many commercially available solvers exist which can easily find the global optimal

solution efficiently and quickly as compared to MINLP. Efficient linearization methods have

been considered to avert the non-linear nature of the established model to a linear one. In the

case of data uncertainty category, stochastic optimization has been mainly used to solve at most

two objectives with the minimum number of constraints. On the contrary, robust optimization

(RO) approaches have been widely used to find optimal and feasible solutions for uncertain

scenarios such as uncertain usage of manually operated appliances (MOAs), user behavior un-

certainty, market price uncertainty, renewable power generation uncertainty, etc. It has also

been used to solve load scheduling problem considering many objectives and constraints. One

common critique of RO is its over-conservative solutions, given that RO in its original for-

mulation considers all potential deviations of the uncertain coefficients. The algorithms under

meta-heuristic category have been mainly compared based on their convergence rate and accu-

racy of optimal solution where PSO and GA are found to be most popular. As per study in Ref.

[81], a comparative study of GA and PSO in terms of solution quality and efficiency has been

conducted. Algorithms are tested for 12 different bench-mark functions. Results show that the

solution quality of both algorithms is 99% or more, with 99% confidence interval. However,

in terms of efficiency, PSO is found to be better than GA. As per the study conducted by Ref

[128] and [87], optimization-based DR algorithms appears to be more efficient than heuristic

algorithms in terms of computational efficiency. From Fig. 2.8 it can be deduced that mathe-

matical optimization is mostly used by researchers than all other algorithms from 2014 to till

date. It has also been found that an optimal solution obtained using heuristic algorithm could be
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local optimum solution, indicating a potential need for advanced algorithms that can guarantee

a global optimum solution. Artificial intelligence based algorithms are primarily used for learn-

ing consumer behavior, market price trend, optimize battery charging requirements. Under this

category, machine learning and deep learning algorithms have been proposed for forecasting of

renewable energy yield, load demand and market price. On the other hand, fuzzy theory have

been mainly employed to model uncertain characteristics of TCLs. As per study conducted in

Ref. [109] artificial intelligence based forecasting models have greater ability to deal with non

linearity of the input data. But, expensive hardware with parallel processing is required to use

machine learning and deep learning techniques. Game theory based algorithms mainly used for

energy trading in distributed environment. It has gained the most popularity in 2014 and still

used by many researchers. However, this algorithm is difficult to implement in large network

scenarios with many uncertainties.

Hence, depending upon the optimization problem, constraints involved, simulation sce-

narios appropriate category of optimization algorithm may be chosen.

Figure 2.8: Year-wise usage of algorithms in all categories
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2.4 DSM Implementation Challenges in distribution network

In this section, various issues related to DSM implementation with the distribution network are

described in detail.

2.4.1 Grid Constraints

The DSM implementation raises the complexity of existing power systems operation and relia-

bility because the appropriate performance of DSM requires monitoring distribution losses and

voltage imbalance issues. Moreover, the integration and utilization of DG sources also respon-

sible for the concern of voltage and frequency stability in the distribution network. Therefore, it

has become crucial to investigate the impact of inappropriate load scheduling and DG sources

integration on distribution system reliability while implementing DSM. The widespread use

of RESs introduces new challenges to power systems such as finding their optimal location,

voltage regulation, and other Power Quality (PQ) issues.

The optimization algorithm implementing the DSM must consider the network constraints

(frequency and voltage disturbances) in the distribution network due to inappropriate scheduling

of different types of loads. The optimal locations, sizing of DG, and other grid constraints must

be taken into account while development of an appropriate optimization algorithm.

2.4.2 Incentivising Consumer Participation

Incentive based DR programs provide opportunities for consumers to reduce their energy con-

sumption during peak demand periods and encourage energy self-sufficiency. The incentives

are established by utilities, load serving entities, or regional grid operators. These incentives

may be fixed ( based on average costs) or time-varying. Diverse research has focused on devel-

oping optimal incentives or rewards for consumers participating in Incentive-based DR (IBDR)

programs. A study in Ref. [140] evaluates the usefulness of two types of incentives on con-

sumption behavior of the consumers. These two types of incentives are 1)Rebate and 2) Lucky
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Draw, which were investigated for residential, industrial and commercial customers. It was

found that, for residential customers, a 5% rebate can incentivize the customers as much as a

lucky draw with $10 payouts. The rebate was found to be a more effective method for residential

participation as compared to Lucky draw because of its low implementation cost.

However, despite many efforts in setting optimal incentives for benefit ting both service

providers and consumers, some significant limitations remain. Considering the heterogeneity

of real-world customers and their different consumption patterns, it is desirable to develop in-

novative incentive-based DR mechanisms for real-time demand response market. A scalable,

flexible, adaptive, and easy to implement comprehensive algorithm is desirable rather than con-

ventional techniques such as MILP or game theory which can describe consumers’ response

related to incentives.

2.4.3 Utility Policy and Regulatory frameworks

Utility Policies have a great impact on the rules for competition in the smart grid era. It directly

affects the market structure for businesses and consumers to take part effectively in the energy

market. It also plays a potential role in transforming energy demand. Researchers and policy-

makers, need to develop a better understanding of how energy demand might be made govern-

able, and revisions of non-energy policies to help steer long-term changes in energy demand

[188]. Both utilities and regulatory bodies should reassess the way of providing services to

consumers. New products and services need to be designed that minimize the transaction costs

of exchange. Moreover, utilities should ensure that the network operates at all times within

the specified limits as it is desirable for implementing constraint management. For some utili-

ties, constraint management is implemented through either direct communication with potential

providers or through an invitation to tenders to change their generation outputs. A flexible ex-

change strategy has been designed in Ref. [131] which ensures the network constraints are

met with minimum power variation from customers. Nonetheless, efforts need to be made to

eliminate the regulatory, business, and technology obstacles that many countries face, and to

develop successful awareness initiatives to enhance DR’s consumer acceptance. The author in

Ref. [119] studies the current policy implication on balancing demand and supply using variable

renewable energy sources (vRES) in the residential sector.
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2.5 Conclusion & Future Work

This chapter reviews the major challenges involved in the optimization problem involving DSM

using load shifting in IoT enabled HEMS. It also discusses the detailed architecture of IoT en-

abled HEMS. Different dimensions of stochastic and highly complex optimization problem

of DSM in HEMS have been highlighted while including the load profile of appliances, RES

integration, load categorization, constraints, dynamic pricing, consumer categorization, and op-

timization techniques.

Although DSM in the smart grid has been extensively studied, more research is imper-

ative to solve this problem in real-time, using efficient communication techniques, accurate

forecasting and optimization algorithms. Further, the uncertainties in the dynamics of energy

consumption pattern of the consumer, his preferences, his response to dynamic real-time pric-

ing and inaccuracy in the prediction of renewable energy make it a highly complex problem.

Future research directions are suggested for the development of a more efficient multi-objective

real-time optimization algorithm considering all the uncertainties and constraints.

Most of the researchers have focused on cost minimization, comfort maximization, PAR

reduction, and preserving the consumers’ privacy without considering the risk management.

The risk management process is a critical issue that must be addressed. Therefore, it is recom-

mended to consider the risk minimization as an additional objective to the problem formulation.

A detailed study regarding the categorization of different loads based on their operational

behavior has been presented on case to case basis. However, the standardization of load catego-

rization may greatly help in solving the optimization issue of DSM.

While it is possible to design a pricing mechanism, i.e., a control law that regulates the

interaction of wholesale markets and retail consumers. In light of this, systematic analysis of

the implications of different pricing mechanisms, inherent dynamics of the system induced by

load-shifting and storage need to be considered. Further, the characterization of the fundamen-

tal trade-offs between volatility/robustness/reliability, economic efficiency, and environmental

efficiency are important directions for future research.

Consumer participation using load shifting in the HEMS is made possible by implement-
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ing distributed generation in HEMS environment. The accurate forecasting of the energy pro-

duced by such resources may help the consumer in the efficient management of their load and

energy demand. However, planning an efficient HEMS power environment requires consider-

ation of these resources at the design stage itself. Techniques for determining optimal sizing

and accurate modeling of the PV panels, wind turbines, and battery storage are required for the

optimal utilization of available resources.

Since different types of optimization algorithms have their pros and cons, its the respon-

sibility of the developer to choose appropriate category and algorithm considering objectives,

constraints, consumer load profile, price-type, simulation scenarios, hardware availability, etc.

MILP is the most popular modeling technique among all others as it is easy to implement

and computationally inexpensive. Researchers can work upon an ensemble of different cate-

gories to develop the most suitable algorithm having all required characteristics such as ease

of use, computationally efficient, ability to model complex problems considering all types of

constraints (linear and non-linear).

The appropriate DSM implementation should also take care of challenges related with the

distribution network. The frequency and voltage stability issues, incentive management, and

Government policy requirements should be taken into consideration. Researchers should focus

on bi-directional implementation which includes appropriate locations of DGs at the residential

site and Grid related concerns.

The increasing penetration of IoT enabled devices in the HEMS environment also poses

a huge challenge in terms of handling voluminous data, its manipulation and its transfer over a

communication network. Although, fog and edge cloud computing are becoming a promising

problem solver, the issues related to security, reliability, compatibility and the interoperability

of IoT devices require consideration. Therefore, there is a need to focus on the standardization

of IoT devices to ensure efficiency and adequacy of the entire framework.
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Chapter 3

Renewable Energy Forecasting using Deep

Learning Model

3.1 Introduction

Increasing use of clean energy intensifies the development of more accurate and robust solar

irradiance forecasting models. Many countries around the world have begun replacing fossil

fuels with renewable energy sources due to their sustainable nature. 5% of the African and

2% of the Asian population have been estimated to access electricity through off-grid solar

photovoltaic systems[162]. Solar power will account for 20% of all US electricity production

by 2030, and photovoltaic utility capacity is expected to increase by 127 GW [2]. India plans

to almost double its installed total capacity for renewable energy to 40% by 2030 [5]. Although

the globally installed photovoltaic capacity (PV) is projected to exceed 8,519 GW by 2050,

providing about 25% of the worldwide electricity. China, the world’s leading photo voltaic

installer, plans to produce 1300 GW of solar power by 2050 [4]. However, the intermittent

nature of photovoltaic energy remains a great challenge, and accurate forecasting is required to
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ensure reliable power grid operation.

The era of smart grids has required the adoption of photovoltaic energy in households to

mitigate high market energy prices. Since solar PV power output is derived from solar irra-

diance, thus it generates greater interest in solar irradiance forecasting. Furthermore, it also

helps optimize demand-supply management, better economic dispatch, peak shaving, energy

arbitrage, energy market trading, and reducing uncertainty impact [30]. However, the stochastic

and intermittent nature of solar irradiance makes it inherently challenging to predict accurately.

Due to the wide applications of solar forecasting, various methods have been proposed

to solve the challenging problem. There are two types of forecasting methods proposed in the

literature: Point forecasting and Probabilistic forecasting. Point forecasting methods only tell

about the future predicted values of solar irradiance whereas probabilistic forecasting provides

both expected values and probability distributions at forecasting time points. Point forecasting

models can be classified as statistical and machine learning models. Statistical models include

Auto-regressive Moving Average (ARMA) [98], Lasso [248], and Markov models [197, 101].

Machine learning models [230] include support vector machine (SVM) [262, 19, 61], feedfor-

ward neural network (FFNN) [12, 33, 216] and Recurrent Neural Network (RNN) [212].

Previously, statistical models were widely used for time series forecasting; but, with the

advent of complexities in power systems and rapid increase of data volumes, deep learning

(DL) techniques are outperforming statistical models. These techniques work by learning the

stochastic dependency between the past and future with less computational cost.

In recent years, RNNs based on long-short-term memory (LSTM) [82] have become the de

facto solution to deal with multivariate time series data. LSTMs are effective at exploiting long-

range dependencies and handling nonlinear dynamics in time-series forecasting. In [6], LSTMs

have been used to forecast PV power output at multi-horizon (1 hour, 1 day, 1 month) using

PV power as the only input parameter on datasets of two cities in Egypt. The authors in [212]

and [180] have also used the LSTM model for solar irradiance prediction using meteorological

parameters as input to predict one hour and one month ahead solar irradiance, respectively.

Hybrid Convolutional LSTM (CNN-LSTM) model has been deployed to predict PV power in

[234] which outperforms LSTM in the next 5-minute prediction.

Recently, A Vaswani [228] proposed a Transformer deep learning model for sequence
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modeling and has achieved great success. The benefit of using the self-attention approach

on RNN models is three-fold: (i) Memory: since attention models dispense recurrence en-

tirely, they have less memory requirements compared to recurrent models (LSTM), they can

also make predictions using a very long sequence of past data, whereas LSTMs rely solely

on short-term memory to make predictions; (ii) Optimization: attention models are mathemati-

cally simpler than recurrent models; (iii) Computation: attention models are fully parallelizable,

hence they accelerate learning during training and take less computation resources compared to

recurrent models which are inherently sequential. The deep learning Transformer model has

been implemented successfully in many areas such as translation, music, and image generation

[42, 89, 169]. Some transformer-based, deep learning forecasting approaches for time-series

forecasting have recently been proposed [129, 150]. However, most of the work based on the

transformer model is limited to data sets of traffic, retail, and electricity.

To take into account the uncertainty associated with the forecast, a prediction interval

around the forecast value must also be provided. This mitigates the risk associated with point

forecasts by providing more information that would assist dispatchers in better decision-making.

A few experiments on probabilistic forecasting have been carried out in recent years. In [30]

a combined probabilistic forecasting method based on an improved Markov chain model has

been proposed for probabilistic forecasting of PV power. However, this method involves a lot

of complexity in modeling and may not be suitable for a large sample size. A probabilistic

forecasting model based on joint probability distribution function (PDF) of irradiance has been

proposed in Ref. [104]. The proposed model is predicted by numerical weather prediction

(NWP) and its applications in the electric power trading market have been extensively studied.

But the performance of NWP for solar radiation forecasting is highly variable when applied

to different locations and not suitable for short-term forecasting [115]. A quantile regression-

based probabilistic model for spatiotemporal PV forecasting has been presented in [8] for very

short term horizons (0-6 h). It uses LASSO for probabilistic forecasting on real-world test cases

with a high number of PV installations.

Therefore, the intermittency in solar irradiance and the complexity of mapping it with

weather metrics make it a typical multivariate time series forecasting problem. The outstanding

performance of the Transformer model and its capacity to comprehend complex links between

weather metrics and solar irradiance intrigues us to use the model for multi-step ahead solar
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forecasting. Also, quantile regression-based prediction interval modeling is used to calculate

the corresponding lower and upper bound for each forecasted global horizontal index (GHI)

value (point forecast).

The main innovations and contributions of this chapter are:

1. Leveraging the powerful learning ability of self-attention-based Transformer deep

learning model for forecasting solar irradiance.

2. To combat the risk of prediction, the prediction intervals (50%, 90%, 95%) have been

calculated for each predicted value using quantile regression.

3. Multi-horizon forecasting on all industry requested time horizons: Intra-hour, Hour-

ahead, Day-ahead as stated by Kostylev and Pavlovski [115].

4. The proposed algorithm is applied to the data set available on the site of the National

Renewable Energy Laboratory (NREL) and its performance is rigorously evaluated through

various prediction parameters.

Figure 3.1: Illustration of Multi horizon forecasting with Point forecasting of GHI and their

corresponding prediction intervals
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3.2 Background

3.2.1 Problem Definition

The problem of solar irradiance forecasting can be depicted as multi-variate time series fore-

casting. The time series of GHI prediction depends on multiple weather parameters (such as

temperature, humidity, clear sky index etc.). Therefore, this paper mainly deals with the robust

multi-horizon forecasting of solar irradiance as depicted in Fig. 6.1. Let S be the set of unique

entities in the data set considered. Formally, a sequence of time series S = [s1,s2, . . . . . . . . . ,sn]

defines each element sα in the data set with its associated features Xα,t ∈ and output GHIα,t ∈ at

each time step t ∈ [1,T ]. Input features can be subdivided into two categories Xα,t = [oα,t ,vα,t ]

i.e. observed inputs oα,t which are measured at each time step (e.g. weather parameters) and

vα,t time-based vectors which are assumed to be predetermined (e.g. month, day-of-the-week

at time t).

For multi-horizon forecasting, we are going to predict next τ time steps of GHI starting

from forecast time t where τ ∈ {1,2...τmax} and it can be represented by following conditional

probability distribution:

p(GHIt+1:t+τ |GHI1:t ,X1:t ,φ)

where φ denotes the learnable parameters.

To ensure the robustness of the model, prediction intervals are calculated as an indication

of likely best and worst-case values that GHI can take as illustrated in Fig. 6.1. We use quantile

regression to our multi-horizon forecasting (e.g. 50th, 90th and 95th percentiles are calculated

at each time step). The quantile forecast output can be represented as:

GHI(q, t,τ) = f (q,τ,GHIt−w:t ,ot−w:t ,vt−w:t+τ)
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Figure 3.2: Training Phase of RSAM Model

where GHI(q, t,τ) is the predicted qth sample quantile of the τ step ahead forecast at time

t. The prediction model f incorporate all past information within a finite look-back window w,

using GHI values and weather parameters (o) uptil forecast start time t and known temporal

inputs (v) across entire range.

3.3 Solar Ir radiance Forecasting Model based on Self Atten-

tion

In this section, the proposed RSAM model has been presented, which utilizes the multi-head

attention mechanism for multivariate solar time-series modeling and forecasting. The effective-

ness of RNNs has been established in solar time series prediction problems. In this paper, we

are interested in studying the efficacy of attention models for forecasting GHI values at vari-

ous time horizons, dispensing recurrence entirely. The self-attention enables the transformer

to capture both long and short-term dependencies, and different attention heads learn to focus

on different aspects of temporal patterns. These advantages have made the transformer a good

candidate for time series forecasting.
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Figure 3.3: Testing Phase of RSAM Model

The modeling process of RSAM is divided into two steps: First, forecasting GHI values at

different horizons (point forecasting); Second, determining the prediction interval for each GHI

point prediction. In the first step, the historical weather parameters have been used to forecast

solar irradiance at different time horizons using the transformer deep learning model. This step

can be further divided into three phases: 1) Data preprocessing and residual calculations, 2)

Model Training, and 3) Testing phase. In the second step, to enhance the robustness of our

proposed model, prediction intervals have been calculated using quantile regression for each

forecasted value.

3.3.1 Forecasting Model Architecture

The RSAM forecasting part uses self-attention based deep learning architecture because of its

inherent advantages over recurrent models in terms of memory, computation resources, paral-

lelizability, and simple implementation. The data preprocessing, training and testing phases of

the RSAM model are illustrated in Fig. 3.2 and described as follows:

48



3.3.1.1 Data Preprocessing & residual calculation

Data preprocessing is used to remove the seasonal and temporal dependency on GHI values.

Various types of residuals (year_residual, month_residual, day_residual, GHI_residual) are cal-

culated over the training data, that encapsulate information relatively (relative to original data).

These residuals represent yearly, monthly, daily, and time-of-day average deviation of GHI val-

ues from previous years, months, days, and time-of-day of the data set respectively. These

residuals adjust the variability (bias) in GHI values and accelerate the learning process of the

deep learning model. The following procedure describes this step in detail:

procedure DATA PREPROCESSING

y_r: year_residual

m_r: month_residual

d_r: day_residual

GHI_residual: new (processed) GHI values

Require:

t: Time [year, month, day, hour, minute]

D: Training dataset indexed by ’t’

Original GHI(t): GHI at time ’t’

Ensure: y_r,m_r,d_r,GHI_residual

for all t ∈ D do

y_r(t) = GHI(t)−AvgD(GHI)

end for

for all t ∈ D do

m_r(t) = y_r(t)−Avg(y_r(t ′)) where

t ′[month] == t[month]

end for

for all t ∈ D do

d_r(t) = m_r(t)−Avg(m_r(t ′)) where

t ′[month,day] == t[month,day]

end for

for all t ∈ D do

GHI_residual(t) = d_r(t)−Avg(d_r(t ′)) where
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t ′[month,day,hour,minute] == [month,day,hour,minute]

end for

end procedure

After training of model gets completed, the testing phase predicts GHI values at different

steps, these predicted GHI values again shifted to original GHI values by reversing the pre-

processing steps using saved “yearly”, “monthly” and “daily” residuals.

3.3.1.2 Training Phase

In this phase, training data is first divided into batches with a sequence length of m samples each.

These batches are fed as input to the Pre-Net module. In the Pre-Net module, each sample is

processed by input embedding to capture dependencies across different weather parameters and

their effect on GHI. Similar to the embedding with words in NLP, here measurements at each

time-step are mapped into a high-dimensional vector space to facilitate the actual sequence

modeling [113]. To obtain d-dimensional embeddings for I measurements at each time step

t, where d > I, the 1-D convolution layer has been employed which is parameterized by the

kernel of size 1. To incorporate the information about the temporal order of the sequence

in recurrence-free architectures, positional encoding is used. Using positional encoding, the

sequence order information has been included by mapping time step t to the same randomized

lookup table during both training and prediction. Here, the sequence order information is the

information about the relative temporal position of measurements with respect to the predicted

value. Hence, it allows the multi-head attention to learn the dependency of predicted values

on the measurements based on their relative temporal position. The positional encoding is

then added position-wise to the input embedding with the same dimension. Then, the data is

processed using the Rectified Linear Unit (ReLU) activation function. Lastly, the linear layer is

used to transform the dimensions of data to prepare it for input to the Attention module. Before

sending data to the Attention module, each sample in data is normalized using the standard

batch normalization procedure.

For sequence length m, the input to the attention module is the matrix having rows ini-

tialized with d-dimensional embeddings of the measurements at each position of the sequence

Io ∈m×d . Multi-headed self-attention module iteratively compute representations It at step t for
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all m positions in parallel using multi-headed dot-product self-attention. It works by calculat-

ing the attention score of each sample in the input sequence. To enhance accuracy in output

prediction it gives high priority and weights to specific samples having a comparatively high at-

tention score. Refer [228] for the detailed architecture of Transformer encoder. The first step in

calculating self-attention is to generate three vector representations for each input sample. So,

for each sample, a Query vector (Q), a Key vector (K), and a Value vector (V ) are created by

multiplying with their respective weight matrices as shown in equation 1. The weight matrices

are first initialized with random weights and then optimized during the training process. In the

proposed model Q, K, V all correspond to input embedding of the sequence (with positional

encoding). In the second step, attention scores are calculated by taking the scaled dot product

of the query vector with the transpose of the key vector of the respective sample. For node pair

(a,b) from a to b in consecutive hidden layers of deep learning network with node xa,xb ∈n, all

three vectors and score of their connection is calculated as follows:

Qb =W Q · xb, Ka =W K · xa, Va =WV · xa (3.1)

score = Qb ·KT
a (3.2)

where

W Q ∈
d×d

K ,W K ∈
d×d

K ,WV ∈
d×d

K

input sequence I0 ∈m×d , m is the sequence length and d represents dimensional embeddings.

These scores are then divided by the square root of the key vector dimension (Kdim) to

obtain stable gradients. Then, the softmax operation is applied to normalize the scores so that

they are all positive and add up to 1.

Attention(Q,K,V ) = so f tmax
score√

Kdim
V (3.3)

The next step is to multiply each vector value by the softmax score to maintain the values
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of the sample, to focus on and to drown out inappropriate samples. Then, all weighted value

vectors are summed up to produce the output of the self-attention layer at this position. In

multihead self-attention (MHSA), the self-attention mechanism is replicated to multiple heads

(h), allowing each head to attend different query, key, and value matrices. So, the output of the

h heads of output dimension dh are concatenated and projected to dimension dmodel as follows:

MHSA(It) =Concat(head1....headh)W o. (3.4)

where W o is the weight matrix of the learnable weights that is multiplied by the concatenated

result of all heads to produce the final result of attention. The state It is assigned to queries,

keys, and values with affine projections using learned parameter matrices:

headβ = Attention(ItW Q
β
, ItW K

β
, ItWV

β
)

The proposed model adopt h = 4 parallel heads.

The output of the multi-head attention is passed to a fully connected feedforward network

to obtain a vector representation for t. The purpose of the feed-forward network is to learn

about context using information from surrounding samples. In the proposed model, the inner

dimension of the feed-forward network is taken as 2048, the dimensionality of input and output

of the transformer encoder (d_model) is 20, the value of the dimensional embeddings (d) is 32,

and four stacked transformer encoders have been utilized.

The output data from the attention module is passed through a flatten layer which reshapes

the input vector to have a shape that is equal to the number of elements contained in the vector.

Concatenates all dimensions of the input vector into one output, as shown in equation 3.5:

(m,1,d_model)→ (m∗d_model) (3.5)

The output from this layer is fed to the Post-Net module, which consists of a linear layer

that is used to reshape the input to the output of size 512. Then again, the ReLU activation layer

works on these 512 values. The output from the ReLU layer is fed to the next linear layer which

transforms 512 size input to a single output. This output is combined as input for the next step
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prediction until all training batches finish their execution. The mean square error (MSE) loss

function between actual (yi) and predicted (ŷi) is used, which can be defined as:

1
n

n

∑
i=1

(yi − ŷi)
2 (3.6)

Here, the Rectified Adam Optimizer (RAdam) [133] has been used with a learning rate of

0.001 to update the model weights. The network configuration details of the RSAM model are

given in the Appendix Table ??.

3.3.1.3 Testing Phase

Testing samples in the batches of sequence length 256 are first normalized according to Batch

Normalization procedure described in the previous section. These normalized batches are then

fed to a trained RSAM model to predict the GHI at the time step t. To provide a robust estima-

tion of modeling parameters, we perform walk-forward validation. This methodology involves

moving along the time series one time step at a time by applying a moving window to available

time-series data. The forecast value of the trained RSAM model is stored or evaluated against

the actual value. Then, the next time step t +1 includes this actual expected value from the test

set for the forecast in the next time step t +2 by moving the window one step. The procedure is

repeated until the end of the data is reached. The testing process is illustrated in Fig. 3.3. For

multi-horizon forecasting, the window size is equal to the horizon interval. For example, for 12

hours ahead forecasting, the next 12 forecasted values (sliding window size = 12) are used in

input for next time step predictions.

3.3.2 Multihorizon Forecast Interval Prediction

Since GHI point predictions are subject to high uncertainty, it is equally important to measure

the potential prediction error for many commercial applications. At each time step, quantile

forecasts are predicted at 50, 90, and 95 percentile. This is achieved by training the model by
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jointly minimizing the quantile loss terms summed across all quantile outputs [? ]:

L(ω,W ) = ∑
yt∈ω

∑
q∈Q

τmax

∑
τ=1

QL{yt , ŷ{q, t − τ,τ),q}
Nτmax

, (3.7)

QL(y, ŷ,q) = q(y− ŷ)+(1−q)(ŷ− y) (3.8)

where ω is the domain of training data containing N samples, W represents weights of the

RSAM model, q = {0.50,0.90,0.95} is the output quantile value. ŷ is the predicted GHI from

the model and y is the observed GHI.

Normalized quantile losses are evaluated across the entire forecasting horizon during test-

ing phase [90].

q− risk =
2∑yt∈ω̂ ∑

τmax
τ=1 QL(yt , ŷ(q, t − τ,τ),q)

∑yt∈ω̂ ∑
τmax
τ=1 |yt |

(3.9)

where ω̂ is the domain of the test samples. Quantile forecasts are generated using linear trans-

formation of the output from the transformer model:

ŷ(q, t,τ) =Wqφ̂(t,τ)+bq (3.10)

where φ̂(t,τ) is the trained RSAM model, Wq ∈1×l , where l = 2× τ and bq ∈ are linear coef-

ficients for the specified quantile q. Note that forecasts are only generated for horizons in the

future i.e. τ ∈ {1....τmax}. The quantile output is obtained using equation 10, consisting upper

and lower limits for all quantiles. The one-step ahead quantile forecasts output are of the form:

lower− limit[ŷt+1(0.5), ŷt+1(0.9), ŷt+1(0.95)]
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upper− limit[ŷt+1(0.5), ŷt+1(0.1), ŷt+1(0.05)]

where the lower limit denotes the lower bound values on the 50, 90 and 95 quantiles and

the upper limit denotes the upper bound values on the 50, 90, and 95 quantiles. For the forecast

in 1 step, 2 step and 12 steps ahead, the number of output values is 6, 12 and 72, respectively.

3.4 Experiment Details

To validate the proposed RSAM model and its ability to improve the solar irradiance forecasting

accuracy, two experiments have been conducted. First, the point forecast results at different

intervals have been compared with reference forecast methods; Second, prediction intervals are

calculated to make the model robust.

3.4.1 Dataset

The US Department of Energy, the National Renewable Energy Laboratory (NREL), has made

solar resource maps and related environmental data available from the US and other interna-

tional locations [1]. The experiments reported in this paper are based on two locations, namely

Hotevilla (Arizona) and Jammu and Kashmir (India). The details of these data sets and the input

parameters used are presented in the Appendix Table A2.

In addition to the weather parameters mentioned in Table A2, time-series contain some

known temporal features (Year, Month, Day, Hour, Minute). Additionally, residual features

(year_residual, month_residual, day_residual, GHI_residual ) calculated at the pre-processing

step have been added to the feature space of the proposed model. Therefore, 18 features for

Hotevilla (Arizona) and 15 features for Jammu and Kashmir (India) serve as input to all models

under consideration. Solar radiations values at night hours have been removed based on filtering

method i.e. row-data for which solar zenith angle is greater than 80◦ [120]. Only hours of the
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day that are between 5:00 am and 7:30 pm is included.

3.4.2 Performance Criteria

The commonly used error metrics are: the Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), and Mean Bias Error (MBE) [84, 37, 41]. The definition of these error metrics is

given in the appendix table A1. To substantiate the quality of the forecasts, we also include a

new metric: the forecast skill proposed by [37] is given by

Forecast_skill = 1− ModelRMSE

Smart_PersistenceRMSE
(3.11)

where ModelRMSE denotes the RMSE of each forecasting method and Smart_PersistenceRMSE ,

is the RMSE of the smart persistence model. Further, a higher forecast skill score shows im-

provement in forecasting.

3.4.3 Reference forecast methods and model tuning

1) Smart Persistence Algorithm: An improved variation of persistence model, which considers

sky conditions, will remain constant over time (instead of irradiance itself). The expected value

of GHI at horizon τ can be calculated as [106]:

GHISmartPersistence(t + τ) =CSI(t)×GHIclearsky(t + τ) (3.12)

where CSI(t) is the clear-sky index correction factor, defined as:

CSI(t) =
GHI(t)

GHIclearsky(t)
(3.13)

GHIclearsky is the GHI value under cloudless conditions, which is generated by a clear-sky

model. The technique proposed by [172] has been utilized to implement the clear-sky model.

The smart persistence algorithm is used as a baseline algorithm for our proposed work.
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2) Long Short Term Memory (LSTM): It is a recurrent neural network model that has

recently gained attention in solar forecasting. The architecture of the LSTM consists of one

input layer having features depending upon the dataset (15 for India and 18 for Hotevilla). The

number of hidden neurons was set to be 32. The output layer with a linear activation function

had one neuron. Maximum epochs were set to be 50, optimizer used is Adam and the learning

rate is 0.01.

3) Attention based LSTM (A-LSTM): It is an enhanced version of the basic LSTM where

the attention mechanism has been incorporated into the LSTM model. The LSTM hidden layer

output at each time-step has been fed to the additional attention layer which calculates attention

score or weights. The attention layer produces attention_score_matrix (att_score) based on the

hidden vectors, Hv ∈κ×T where Hv = [hv1,hv2, ....hvT ] produced by LSTM given by following

equations 14 and 15:

M = tanh([WhHv]) (3.14)

att_score = so f tmax(gT M) (3.15)

where Wh ∈κ×κ , g ∈κ are parameter vectors, and gT is a transpose. κ denotes the size of hidden

layers in the LSTM network. The number of hidden neurons was set to be 32 with one hidden

layer. The output layer with a linear activation function had one neuron. Maximum epochs

were set to be 50, optimizer used is Adam and the learning rate is 0.01.

4) Convolutional Neural Network-LSTM (CNN-LSTM): It is a hybrid model combining

convolution and the LSTM model. The architecture of the CNN-LSTM algorithm consists

of three convolutional 1D (Conv1D) layers followed by the Maxpool layer, again one more

Conv1D layer. This layer is followed by the LSTM layer with one hidden layer of 32 neurons.

The output layer with a linear activation function had one output neuron. The model is trained

batchwise with a sequence length of 256. Maximum epochs were set to be 50, optimizer used

is Adam and the learning rate is 0.01.

5) Attention-based CNN-LSTM (A-CNN-LSTM): In this model, an additional attention

layer has been embedded to the existing CNN-LSTM model to implement self-attention mech-
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anism. The attention scores are calculated in same way as described in the equations 14 and

15. Since attention layer specifically give more weights to the time-steps and features affecting

output, it provides better performance against just CNN-LSTM. This model has same config-

uration as CNN-LSTM with extra attention layer. The maximum epochs were set to 50, the

optimizer used is Adam, and the learning rate is 0.01.

Hyperparameter tuning plays a significant role in every deep learning model that is imple-

mented. To identify the suitable setting for algorithmic hyper parameters, grid search has been

utilized. Appendix Table A5 contains the candidate parameter settings and optimal parameters.

These deep learning models have been trained with TITAN RTX GPU using Python 3.6 with

Pytorch library on a computer system with Intel-Core-i7 CPU.

3.5 Results and Analysis

3.5.1 Point Forecasting Analysis

Table 3.1 summarizes the forecasting results for our proposed model, which uses only weather

parameters as input. On average, the RMSE of Smart-Persistence, LSTM, A-LSTM, CNN-

LSTM, A-CNN-LSTM and RSAM is 96.23, 63.21, 59.88, 55.93, 54.56 and 52.45, respectively

on India data set. In Hotevilla, the average RMSE of Smart-Persistence, LSTM, A-LSTM,

CNN-LSTM, A-CNN-LSTM, and RSAM is 116.02, 135, 82.18, 73.07, 70.13, and 64.87, re-

spectively. The results in both locations indicate the superiority of RSAM in forecasting solar

irradiance on multiple horizons. In J&K (India) one-step ahead prediction, the RSAM model

achieves the lowest RMSE (50.82 W/m2) and MAE (26.23 W/m2) values as compared to

Hotevilla, Arizona. The relatively small deviation shown by MBE values of the RSAM model

results in a good unbiased prediction. The forecast skills displayed in Table 3.1 show consis-

tently higher scores for the RSAM model over all other comparable models. Using the attention

mechanism with sequential models (A-LSTM and A-CNN-LSTM), the models are showing

better performance as compared to the baseline models because attention has the benefit of re-

ducing the maximum path length between long range dependencies of the input and the target

value; but still the sequential nature of RNN models hinders while working with large data sets
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having multivariate time series. Therefore, the RSAM model, which is based on a non-recurrent

and parallel sequence-to-sequence transformer model, can handle the large length input of mul-

tiple time series together effectively.

For visualization, taking the (horizon = 1 step, 2 steps, 12 steps) as an example, the pre-

diction result of RSAM and other comparative models in the Hotevilla and India data sets are

shown in Figs. ??, ?? and 3.4. On analyzing these results, it can be observed that RSAM gen-

erally fits the actual data much better than other comparable models and this validates the fact

that the RSAM has better prediction performance. As the time horizon expands, the superiority

of RSAM becomes more noticeable. The main reason for the better performance of the RSAM

model compared to other comparative models is that it can handle the large length input of mul-

tiple time series together effectively. For the 12-steps ahead prediction, RSAM obtains 61.20%,

54.57% forecast skill on Hotevilla and India, respectively.

3.5.2 Seasonal Variation analysis

For season-wise performance analysis, the three seasons considered for the Hotevilla (Arizona)

are Summer (June to August), Winter (December to February), and Spring (February to May).

For India, these seasons are Summer (March to May), Monsoon (June to September), and Win-

ter (November to February). Table 3.2 and 3.3 provides a detailed seasonal analysis of all

algorithms using different accuracy metrics at all intervals on India and Hotevilla, respectively.

It can be seen from Table 3.2 that the RMSE values are less during winter, moderate in summer,

and worst during the monsoon season. This is due to low GHI values during the winter season

and variable sky conditions during the monsoon. The higher forecast skill in the monsoon is due

to the large difference in the RMSE values between smart persistence and RSAM. Similarly, in

Table 3.3 the results for the Hotevilla data set have been presented where it can be easily ob-

served that RSAM shows better forecasting accuracy on all the seasons as compared to other

reference algorithms. The RMSE values are least during winters, moderate in the spring season,

and highest during summers. This is mainly due to moderate GHI values and less variation in

the spring season than summers. In a season-wise analysis as well, RSAM performs better on

India data set as compared to Hotevilla.
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Table 3.1: Results of four evaluation metrics of the RSAM model and other comparative

models

1

RMSE (W/m2) MAE (W/m2) MBE (W/m2) Forecast Skill (%)

1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step

SITE 1:HOTEVILLA

Smart Persistence 61.54 96.47 190.05 40.78 55.98 90.7 -2.5 16.4 12.43 - - -

LSTM 72.38 162.30 170.32 57.06 50.84 139.03 16.75 10.89 2.42 -17.61 -68.23 10.38

A-LSTM 65.72 84.50 96.32 39.97 48.56 56.27 4.16 5.87 -2.65 -6.79 12.40 49.31

CNN-LSTM 61.10 74.87 83.26 40.30 44.70 55.40 -9.17 -7.59 -5.35 0.7 22.39 56.19

A-CNN-LSTM 58.98 70.64 80.77 36.12 44.11 51.67 2.87 -3.98 -2.95 4.1 26.77 57.50

RSAM 55.60 65.29 73.73 30.32 43.83 49.20 -0.63 1.01 -2.35 9.65 32.32 61.20

SITE 2: INDIA

Smart Persistence 66.20 100.76 121.73 40.98 65.2 74.5 4.2 3.08 7.43 - - -

LSTM 57.03 65.28 67.32 31.41 34.47 35.01 -1.33 -4.64 3.07 13.85 35.21 44.69

A-LSTM 55.38 61.50 62.77 29.89 32.98 33.38 2.11 1.42 3.65 16.34 38.96 48.43

CNN-LSTM 51.19 57.95 58.67 29.76 30.40 28.70 0.96 -1.11 -4.82 22.67 42.48 51.80

A-CNN-LSTM 51.00 54.23 58.47 27.53 28.25 27.98 1.82 -1.54 3.05 22.96 46.17 51.96

RSAM 50.82 51.25 55.30 26.23 27.96 27.40 -0.13 0.04 2.92 23.23 49.13 54.57

3.5.3 Quantile Interval analysis

The ability to accurately and meaningfully measure the risk associated with a forecast plays

an important role in energy risk management. To estimate the risk of q, we use q = 0.5, 0.1

and 0.05 (i.e. 1− q = 0.5, 0.9 and 0.95) to access the prediction intervals of 50%, 90% and

95%, respectively. For the worst-case scenario, i.e., 12-step ahead forecasting, the q-risk value

comes out to be 0.229 and 0.236 for India and Hotevilla, respectively. Individually, the P50

loss is 0.333 in India and 0.35 in Hotevilla. P95 loss is 0.19 and 0.276 on India and Hotevilla

respectively. The least q-loss value is at P90 which is 0.17 and 0.255 on India and Hotevilla
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Table 3.2: Season-wise results of four evaluation metrics of the RSAM model and other

comparative models on INDIA

1

RMSE (W/m2) MAE (W/m2) MBE (W/m2) Forecast Skill (%)

1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step

SUMMER

Smart Persistence 68.89 86.59 106.17 27.69 34.87 70.4 4.78 -1.2 3.90 - - -

LSTM 60.82 64.42 70.65 29.46 33.37 35.51 6.64 -2.15 1.64 11.71 25.60 33.45

A-LSTM 58.82 61.22 68.70 28.90 30.23 32.75 3.87 2.10 3.64 14.61 29.29 35.29

CNN-LSTM 55.61 57.13 58.55 27.49 28.43 28.74 1.9 -1.23 2.67 19.27 34.02 44.85

A-CNN-LSTM 54.47 56.32 57.92 27.10 27.94 28.05 2.3 -1.18 1.53 20.93 34.95 45.44

RSAM 53.45 54.02 55.47 26.93 27.03 27.84 -3.24 1.35 -1.14 22.41 37.61 47.75

WINTER

Smart Persistence 57.70 66.50 98.59 26.98 48.0 67.7 4.14 6.36 10.05 - - -

LSTM 52.25 58.61 62.21 26.27 28.57 31.31 4.71 5.50 6.69 9.44 11.86 36.90

A-LSTM 51.73 55.20 58.73 26.11 27.52 29.88 3.91 4.41 7.71 10.34 16.99 40.43

CNN-LSTM 51.01 54.45 56.36 24.42 26.72 27.62 3.47 4.75 5.09 11.59 18.12 42.83

A-CNN-LSTM 51.00 52.74 56.00 24.70 25.49 26.21 2.85 3.08 8.95 11.61 20.69 43.19

RSAM 50.9 51.45 53.50 24.39 24.56 25.82 1.08 2.24 5.18 11.78 22.63 45.73

MONSOON

Smart Persistence 72.69 95.60 134.20 38.9 46.7 83.6 11.4 15.9 13.2 - - -

LSTM 68.85 72.91 78.83 35.89 41.88 43.55 6.33 12.04 6.76 5.28 23.73 41.25

A-LSTM 64.72 70.28 75.49 32.79 36.95 39.64 10.48 12.00 8.20 10.96 26.48 43.74

CNN-LSTM 60.05 62.80 68.35 30.05 31.45 32.06 13.61 12.58 9.8 17.38 34.30 49.06

A-CNN-LSTM 58.68 60.54 68.13 29.76 30.88 31.49 8.98 10.38 9.12 19.51 36.67 49.23

RSAM 55.58 56.88 60.49 27.88 28.05 30.02 6.24 8.53 5.46 23.53 40.50 54.92
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Table 3.3: Season-wise results of four evaluation metrics of the RSAM model and other

comparative models on HOTEVILLA

1

RMSE (W/m2) MAE (W/m2) MBE (W/m2) Forecast Skill (%)

1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step 1-step 2-step 12-step

SUMMER

Smart Persistence 84.28 118.70 198.65 46.26 72.73 109.84 -6.9 0.16 -3.52 - - -

LSTM 88.72 160.23 188.02 48.32 67.33 83.14 7.26 8.76 9.78 -5.26 -34.98 5.35

A-LSTM 75.91 92.44 110.62 38.83 53.45 66.72 5.31 6.74 6.77 9.93 22.12 44.31

CNN-LSTM 70.15 86.64 91.80 35.01 41.93 54.14 4.69 4.96 6.70 16.76 27.00 53.78

A-CNN-LSTM 66.87 80.30 89.63 32.56 42.00 54.00 2.55 2.87 4.26 20.65 32.35 54.88

RSAM 60.85 70.72 84.12 24.88 41.75 52.49 1.33 2.6 2.6 27.80 40.42 57.65

WINTER

Smart Persistence 64.25 75.24 99.81 39.2 46.04 64.8 5.25 7.61 8.15 - - -

LSTM 65.97 78.29 100.90 36.14 43.65 54.75 6.05 8.80 5.90 -2.67 -4.05 -1.09

A-LSTM 63.78 73.42 80.21 40.24 42.71 50.76 5.98 9.76 3.81 0.73 6.22 19.63

CNN-LSTM 60.04 66.12 73.09 30.63 32.43 42.33 3.91 8.97 2.39 6.24 12.12 26.77

A-CNN-LSTM 56.81 59.76 70.29 31.65 33.60 42.50 3.69 3.90 5.26 11.57 20.57 29.57

RSAM 52.59 56.25 62.48 25.73 27.74 31.71 0.59 2.23 1.88 18.14 25.23 37.40

SPRING

Smart Persistence 71.63 98.73 156.2 41.7 60.3 93.88 6.4 6.19 10.8 - - -

LSTM 70.52 96.07 135.96 44.28 55.81 73.46 5.63 5.93 8.32 1.54 2.69 12.84

A-LSTM 66.75 80.44 94.65 40.32 44.89 55.55 4.87 5.01 6.80 6.81 18.52 39.40

CNN-LSTM 63.00 70.16 86.33 32.73 35.97 42.02 4.0 4.54 7.64 12.04 28.93 44.66

A-CNN-LSTM 60.68 65.49 85.23 31.56 32.59 42.55 3.45 3.99 5.39 15.28 33.66 45.43

RSAM 58.90 62.33 76.29 29.47 31.10 42.01 2.51 2.53 4.34 17.77 36.86 51.09

62



(a) Hotevilla (1-step ahead) (b) India (1-step ahead)

(c) Hotevilla (2-step ahead) (d) India (2-step ahead)

(e) Hotevilla (12-step ahead) (f) India (12-step ahead)

Figure 3.4: 1,2 and 12 step ahead predictions on Hotevilla and India

(a) Clear-sky (1 January, 2018) (b) Supercool (13 Febraury, 2018) (c) Overlapping (12 December, 2017)

Figure 3.5: Illustration of 12-step ahead forecasts with 90% prediction intervals for three cloud

types in Hotevilla
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(a) Summer (12 March, 2014) (b) Rainy (12 August, 2014) (c) Winter (6 January, 2014)

Figure 3.6: Illustration of 12-step ahead forecasts with 90% prediction intervals for three cloud

types in India

(a) LSTM (b) CNN-LSTM (c) A-LSTM

(d) A-CNN-LSTM (e) RSAM

Figure 3.7: ACF plots

respectively. Figs. 3.5 and 3.6 represent the graph of 12-step ahead predictions with three

different cloud types on both data sets with a prediction interval of 90%. It can be seen from

the graphs that prediction risk is almost covered by the width of the interval. Also, the weather

in Hotevilla is more fluctuating than in India; hence, it has a wider interval width and the same

also applies for a rainy day in India as depicted by Fig. 3.6 (b).
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3.5.4 Training time analysis

RSAM shows an overwhelming advantage of deep learning approaches in terms of time usage.

Compared with the comparative models LSTM, CNN-LSTM, A-LSTM, and A-CNN-LSTM

which takes 0.8, 0.13 , 0.28, 0.40 seconds per step respectively. RSAM takes 0.0054 seconds

per step as the expense of each time step.The time per step for RSAM is the lowest because

it avoids the recurrent data-folding training cycle. In terms of computational complexity, the

training and testing complexity of LSTM/ CNN-LSTM is m×η2×κ while for attention-based

LSTM/CNN-LSTM it is m2×η2×κ . For the self-attention-based transformer model (RSAM),

complexity is reduced to m2 ×η ×κ . Here, m is sequence length, κ denotes number of layers

in the deep neural network and η denotes number of neurons at each layer.

3.5.5 White noise test of residuals

The differences between the expected and observed values (residuals) must be unpredictable. In

other words, no explanatory / prediction information should be contained in the error. Residuals

are useful in testing whether a model has captured all of the structure, and the only error left is

the random fluctuations in the time series that cannot be modeled. A good forecasting method

will yield residuals with the following properties: (a) Adjacent residuals should not be corre-

lated with each other (auto correlation). (b) For unbiased forecasting, the residuals should have

zero mean. The auto correlation function (ACF) is the correlation of the residuals (as a time

series) with its own lags. Fig. 3.7 represents the ACF of the residuals of LSTM, CNN-LSTM,

Attention-LSTM, Attention-CNN-LSTM, and RSAM, respectively. The blue area indicates the

values for the ACF are within 95% confidence interval for lags > 0. It can be seen that in the

LSTM ACF plot there is a residual pattern between lag 4 and lag 11 that is significantly visi-

ble. Similarly, in CNN-LSTM ACF-plot there exists a residual pattern between lag 1 and lag

6. These patterns indicate that residual autocorrelation is not random and these models have

not completely captured the structure of time-series. In the A-LSTM model, there is a small

pattern between lag 15 and lag 18. Similarly, for A-CNN-LSTM, there is small pattern between

lag 3 and lag 5. This shows that attention-based LSTM and CNN-LSTM capture structure of
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time-series better than just LSTM and CNN-LSTM, respectively. The RSAM model stratifies

the aforementioned two conditions (no pattern and mean converges to almost 0), thus can get

better forecasting results while capturing the structure of time-series.

3.6 Conclusion

In the proposed work, a robust multi-step solar irradiance prediction model has been developed

that uses Transformer deep learning model for point forecasting and quantile regression for in-

terval prediction. The actual GHI value may deviate from the forecast and, hence, knowing the

likelihood can help consumers with hedging risks. A multi-step forecast together with precise

prediction interval is essential for real-time smart grid operations. Through a rigorous analysis

of the results, it has been validated that the proposed model exhibits the best performance ac-

curacy with the least training time as compared to recurrent deep learning models (LSTM and

CNN-LSTM). For the NREL data set of two different sites with different climatic conditions,

the proposed RSAM model shows better performance both annually and season-wise. In India,

RSAM is 58.89%, 18.60%, 13.22%, 6.42%, and 3.94% more accurate (annually) than Smart-

Persistence, LSTM, Attention-LSTM, CNN-LSTM, and Attention-CNN-LSTM, respectively,

in terms of RMSE.
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Chapter 4

Appliance Power forecasting for

Consumer behavior Learning

4.1 Introduction

In the smart grid era, demand response (DR) programs are considered an increasingly valu-

able resource option for the problem of energy demand imbalance, which is always a concern

for power grid operators [71]. Load shifting regulates load flow and reduces energy cost by

rescheduling consumers’ energy consumption patterns during peak hours in response to dy-

namic prices or financial incentives. In this regard, appliance-level power forecasting can help

residential consumers respond effectively to DR programs. Accurate load forecasts of individ-

ual consumers will determine flexibility in demand and will make them aware of their energy

usage, allowing them to better manage their usage costs. In addition, it can help utilities identify

promising consumers to participate in DR programs in the power shortage scenario.

Until now, power forecasting has been performed at the house and sub-metering level.

With the advent of IoT, fine-grained load data for domestic appliances are readily available,
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allowing predictions at the appliance level. Appliance-by-appliance consumption information

will enable consumers to improve their energy efficiency. It also provides home energy automa-

tion systems to either directly control appliances or give the consumers recommendations about

the period, resulting in lower energy costs for the usage of appliances based on the learned user’s

behavioral habits from historical data. Therefore, it determines the flexibility of the appliances

to participate in DR programs. It showed that appliance-level energy usage information could

help residents save up to 12% in energy costs instead of receiving conventional monthly details

at the whole building level [56].

Brown et al. [23] incorporated individual energy profiles to implement automated en-

ergy management based on consumers’ occupancy and behavior. Since appliance-level energy

requirements depend upon the number of residents, their occupation, action, outside weather,

location, etc., determining a single algorithm that forecasts appliance power while capturing

different consumers’ behavioral patterns is challenging. However, the approaches and discus-

sions on this subject are still in the primitive stage and not mature enough because of the high

volatility of the residential load profiles.

Most previous studies are based on short-term load forecasting at the building level or

aggregate level [177], [50]. Recently, different approaches have been suggested for accurate

load forecasting of individual residential customers.

Artificial intelligence (AI) techniques support demand side flexibility (DSF), which helps

consumers play an active role in demand change programs [35]. Today, deep learning has

become one of the most popular techniques for time series forecasting [242]. Unlike shallow

learning, deep learning typically involves stacking multiple layers of the neural network and

relying on stochastic optimization to solve complex problems [225]. The Long Short-Term

Memory network (LSTM) and Gated Recurrent Unit network (GRU) are usually more potent

than traditional RNN as reported in some load forecasting tasks [117].

The LSTM deep learning model is used for short-term load forecasting at individual cus-

tomer levels in the smart grid [114],[206]. A simple back-propagation neural network compared

to LSTM has been used to predict short-term household power [114]. In [206] a pooling-based

LSTM strategy is used which utilizes multiple data from the smart meters’ load profile for

forecasting purposes. A combination of convolutional neural network (CNN) and bidirectional

LSTM (Bi-LSTM) has been utilized to predict household electric energy consumption (EECP)
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[123],[226]. A hybrid CNN-GRU model to predict short-term electricity consumption in res-

idential buildings by learning both spatial and temporal features of multi-variate time-series

[190]. A transfer learning concept and a cluster-based strategy have been utilized to train an

LSTM-based electricity forecasting model [122]. However, these models are not suitable for

real-time implementation. A two-dimensional (2D) CNN using recurrence plots has been imple-

mented for load forecasting of individual residential customers [205]. However, this technique

works specifically for time-series that repeat their states.

Many researchers focus on probabilistic forecasting models for short-term and household-

level power forecasting. A short-term probabilistic density power forecasting model based on

deep learning and quantile regression has been proposed in [77]. However, the multi-layer

perceptron (MLP) based deep learning technique is not suitable for large and complex data

sets. Probabilistic household-level load forecasting has been reported using LSTM deep neural

network [237] and hidden Markov model [99]. Most of the forecasting approaches used in

these literary works focus on individual household-level smart meter data. In contrast, the

power forecasting at the appliance level in real-time is much more sparse.

It is widely acknowledged that an ensemble of multiple deep learning models can boost

prediction efficiency and has greater generalization skills than individual models [72],[25]. The

goal of combining multiple models is to obtain a more accurate estimate than the one obtained

by a single model as the errors in aggregating diverse model predictions can be easily compen-

sated. Various successful methods have been proposed to improve load prediction accuracy by

integrating several models.

It is well known that a boosting-based ensemble is more effective in handling the time

series data set based on long-range dependencies. An ensemble method for short-term load

forecasts based on the hybrid LGBM-XGB-MLP model has been proposed in [152]. However,

the extreme learning machine (ELM) based architecture is a two-layer neural network that can-

not handle the long-term dependencies and volatility of the appliance’s power series. A hybrid

deep neural network with a fuzzy clustering approach has been utilized in [207] for hourly load

forecasting. Here, the fuzzy approach is used to group the data into multiple subsets, further

taken as input to the deep neural network model.

The CNN-LSTM model has been used in [25] for predicting energy consumption at the

residential level. The results indicate that CNN-LSTM performs better than LSTM for indi-
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vidual household load forecasting. A deep ensemble model for probabilistic load forecasting

has been developed for individual customers [26,27]. The quantile strategy combined with

the LASSO technique has been utilized [26], whereas the deep residual network (ResNet) has

been reported for forecasting day ahead [27]. However, the neural network-based deep learning

model is still a better choice. But probabilistic forecast being non-linear and non-convex, is not

suitable for real-time DR programs.

The proposed work will significantly help in the development of a scheduling optimization

algorithm for the response to real-time demand. The consumer behavior aspects can be deter-

mined only by their appliances’ power usage pattern and related association. The scheduling

algorithm using load shift shifts controllable appliances to later intervals to minimize electricity

costs without violating consumer comfort. Learning consumer behavior helps to maintain his

comfort, which means determining the earliest start time and finish time of various appliances

and their power requirements at different time slots.

The association mining further enhances behavioral learning by providing information to

the algorithm about which appliance should preferably run after the currently running appliance

(in case many appliances are ready to run). Association mining helps to provide supervised

information to the scheduling algorithm to preferably run the next appliance associated with

the currently running appliance. In this way, the proposed work is essential for developing

consumer-oriented scheduling appliances for demand response implementation.

Since the data set of household appliance power consumption is noisy and real, no indi-

vidual forecasting model can be generalized to all consumers. The energy forecasting domain

demands more robustness, higher prediction accuracy, and generalization ability for real-world

implementation. Therefore, an ensemble model combining RNNs and gradient boosting tree

capabilities for superior prediction performance has been developed and applied for appliance-

level forecasting. Hybrid Convolutional LSTM (CNN-LSTM) deep learning models are used

as base learners for the XG-Boost algorithm.

The main innovations and contributions of this work includes:

1. Development of a multistage ensemble deep learning model with powerful learning

ability for appliance-level power forecasting.

2. A 5-minute prediction time horizon has been considered for the appliance level power
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forecasting, which is more suitable for real-time demand response programs.

3. Mining of appliance-appliance associations using the Dynamic item set counting (DIC)

algorithm to determine which appliances frequently occur together.

4. The performance of the proposed model has been rigorously evaluated on publicly

available data sets, namely GREEND and UK-DALE.

4.2 Forecasting Model Architecture

A deep learning-based ensemble model has been developed to capture appliances’ stochastic

power usage at 5-minute intervals. The multistage boosting ensemble technique elevates the

base model’s predictive strength by covering large data space and minimizing the error rather

than those obtained by individual models.

The hybrid deep learning Convolutional LSTM (CNN-LSTM) has been utilized as the first

stage of our Ensemble model. The three CNN-LSTM model outputs are stacked together and

fed to the boosting stage for the final forecasted value. XGBoost, namely eXtreme Gradient

Boosting, combines trees in a boosting manner and currently provides state-of-the-art perfor-

mance amongst several prediction challenges. XGBoost allows parallel programming without

significant loss of accuracy.

The ensemble model prediction step can be divided into two phases: 1) Model Training

and 2) Testing. The training and testing phases have been illustrated in Fig. 4.1 and 4.2 respec-

tively, and described as follows:

4.2.1 Training Phase

In this phase, the ensemble model is initialized with random weights, and these weights get

updated with each training cycle.

Input Data - Training data is divided into batches with a sequence length (k) of 128

samples. These batches (n = 128) are fed as input to the convolution-1D layer. The sequence of
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Figure 4.1: Training Phase of proposed Ensemble Model

Figure 4.2: Testing Phase of proposed Ensemble Model
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training examples can be represented as (x1,y1),(x2,y2), .......(x128,y128) with xt ∈n×k and yt ∈n

for 1 ≤ t ≤ 128. xt denotes input for univariate time-series and yt denotes output.

Convolution layers - These layers can learn from the raw time-series data directly with-

out scaling or differencing and deriving interesting features from the shorter ( fixed-length)

sequence of the total time-series dataset. Two layers of Conv-1D have been utilized to give the

model a fair chance of learning features from the long noisy input data. The first layer with

64 parallel feature maps and a kernel size of 3 takes the input shape 128 × 1 and produces the

output shape of 126 × 64. This layer is used to learn basic features. The second Conv-1D layer

with same configuration has been utilized to learn more complex features. The output shape of

this layer is 124×64. The output of the convolution layer can be expressed as [266]:

Cr(t) = f (
l

∑
i=1

k

∑
j=1

x(i+ s(t −1), j)ωr(i, j)+b(r)) (4.1)

where x ∈n×k denotes the input time series or the output of the preceding layer, s denotes

the convolution stride, Cr(t) refers to the tth component of the rth feature map, ωr ∈l×k and b(r)

refers to the weights and bias of the rth convolution filter. This filter connects the jth feature

map of layer l −1 with the ith feature map of layer l.

Max Pool Layer - The pooling layer reduces the learned characteristics to 1/4 of their size

and consolidates them into the critical elements. It prevents overfitting of learned features by

taking the maximum value within the window region. With the pool size set to 2, the output

shape of this layer is 62×64. This layer output can be expressed as:

Pr(t) = max(Cr((t −1)l +1),Cr((t −1)l +2), ....,Cr(tl)) (4.2)

Flatten Layer - It reduces the feature maps to a single one-dimensional vector. The output

shape after this layer is a vector containing 3968 (62×64) values. This layer is followed by a

repeat vector layer, which converts current 2D vector of shape (none, 3968) into 3D vector with

shape (none, 1, 3968) to make it suitable to input to next LSTM layer.

LSTM Layer - The LSTM gating architecture is computationally efficient than traditional

RNNs. The selective read, write, and forget procedure followed in LSTM avoids explosive and
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vanishing gradient problems [83].

At each time step t, for input xt , each memory cell ct is updated and a hidden state ht is

generated as output according to the following equations [74]:

it = σ(Wxixt +Whixt−1 +bi),

ft = σ(Wx f xt +Wh f xt−1 +b f ),

ot = σ(Wxoxt +Whoxt−1 +bo),

ct = ft ⊕ ct−1 + it ⊕φ(Wxcxt +Whcht−1 +bc),

ht = ot ⊕φct ,

(4.3)

In the proposed model, an LSTM layer with 100 neurons has been utilized. The output vector

from this layer is of shape (none, 1, 200).

Dense Layer - It is a fully connected layer used to reduce the vector’s size. The proposed

model uses two dense layers. The first dense layer reduces the vector size of (none, 1, 200)

to (none, 1, 100). The second dense layer is the output layer, producing a single output of the

CNN-LSTM forecast with output shape (none, 1, 1).

XGBoost - XGBoost, namely, eXtreme Gradient Boosting, is an integrated learning method

that uses decision trees and random forests to make predictions. It uses boosted decision trees

to obtain final predictions using base learners. However, a gradient decent algorithm is used

to reduce the errors effectively. If F = {F1,F2,F3, ...Fm} are the set of base learners. The final

prediction can be given by

ŷi =
m

∑
t=1

Ft(xi) (4.4)

where {x1,x2,x3, ...xm} are data points. The loss function of XGBoost on tth iteration [31]:

Lt =
n

∑
i=1

l(yi, ŷi
(t−1)+ ft(xi))+λ ft (4.5)

where Lt denotes the loss in the tth iteration. l is based on the loss function of the former
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t −1 tree, yi is the label of xi, λ denotes regularization parameter, ft represents tth tree output,

l(yi, ŷi) is the training loss of xi, ŷi
(t−1) represents the prediction of the combination of all the

tree models.

The second-order expansion of Taylor is performed on the above equation to obtain the

final loss and may be represented as:

LOSS =−1
2

T

∑
j=1

w j + γT (4.6)

where w j is the prediction for node j which can be expressed by following equation:

w j =− Gi

Hi +λ
(4.7)

where Gi is ∑i∈I j gi and Hi is ∑i∈I j hi. Here, gi and hi are the first order and second order

derivative loss of predictions at previous iterations, respectively. Also, I j denotes the set of

instances belonging to node j. The smaller value of LOSS denotes the better structure of tree.

For the XGBoost module, the proposed ensemble model utilizes 45 estimators with the

learning rate set to 0.1. The depth of tree is taken as 5. The fraction of columns to be randomly

sampled for each tree, denoted by the parameter col_sample by the tree, is set to 0.3. The

objective function of regressor is set to be linear.

In the proposed ensemble forecasting method, the hybrid structure of CNN-LSTM handles

the dynamics and non-stationarities of real-world time series accurately. The output of three

discrete CNN-LSTM models is stacked together and fed to the XGBoost model. In this way, the

prediction performance gets further boosted, and better prediction results have been achieved.

For the m number of CNN-LSTM models in an ensemble, the forecast result for time

series with observations n,(y1,y2....,yn), is given by

ŷt =
m

∑
i=1

wmŷt
m f or t = 1, ....,n. (4.8)
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where ŷt
m denotes the forecast output (at the tth time stamp) obtained using the mth CNN-LSTM

model and wm is the associated weight. Each weight wm is assigned to the forecast output of the

corresponding CNN-LSTM models. Also, 0 ≤ wm ≤ 1 and ∑
m
i=1 wm = 1.

4.2.2 Testing Phase

Testing samples in the batches of sequence length 128 are fed to a trained ensemble model to

predict power at time step t. To provide a robust estimation of modeling parameters, walk-

forward validation has been performed. This methodology involves moving along the time

series one step by applying a moving window to available time-series data. The forecast value

of the trained ensemble model is evaluated against the actual value. The next time step t + 1

includes this actual expected value of the test set for the forecast on the next time step t + 2 by

further moving the next window. The procedure is repeated until the end of test data is reached.

The testing process is illustrated in Fig. ??(b).

4.2.3 Appliances’ Association Rules Extraction

The frequently associated appliances are extracted using dynamic item set counting (DIC), a

variant of the Apriori algorithm. This algorithm incorporates the dynamic change (addition and

deletion) of appliances power us-age in the database. It means it can incorporate the changing

behavioral aspect of occupants well. With this approach, a small portion of the database is ex-

tracted at each iteration, which reduces the memory overhead and improves efficiency compared

to Apriori.

This algorithm uses a support-confidence framework to extract association rules and gen-

erating frequent item sets of appliances, i.e. the set of appliances that often run together. The

correlation rule can be expressed as

X =⇒ Y [Support,Con f idence,Correlation] (4.9)

where the correlation can be measured using Lift metric that provides more insight into support-
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confidence relationship. where

Li f t(X ,Y ) =
Con f idence(X =⇒ Y )

Support(Y )
(4.10)

4.3 Experiment Details

4.3.1 Data set

The experimental study has been carried out using two popular open-access data sets for evalu-

ating the performance of the proposed ensemble model, namely, GREEND and UK-Dale. The

GREEND dataset contains appliance-wise data of eight different houses in Italy and Austria.

We utilize the data of house number 2, which is an apartment with one floor in Klagenfurt

(AT). The residents are a young couple, spending most of the daylight time at work during

weekdays and mostly being home in the evenings and weekends. The data collection module’s

plugs kit consists of a Zigbee network having nine sensing outlets, each collecting active power

measurements from the connected load.

The UK-DALE (UK Domestic Appliance Level Electricity) data set records the power

consumption of five UK houses, appliance-wise and the whole house as well. We have used 8

appliances of house number 1 for our experiment. The detailed description of both data sets is

described in Table 4.1.

4.3.2 Data Preprocessing

The GREEND data set’s null values are replaced with the most frequent power value for each

appliance. Then, the 1-second data is resampled to 5 minutes by taking the average of 300

samples for each appliance. Similarly, for the UK-dale dataset, the 6-second data samples per

appliance are resampled into 5 minutes by taking an average of 50 samples. The duration of

5 minutes is chosen as it is appropriate for load shifting under a real-time environment using

real-time pricing (RTP) schemes. In addition, the chosen horizon incorporates the minimum
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Table 4.1: Data sets Information

GREEND [160] UK-DALE [108]

Location Austria, Italy UK

Duration 1 year and 4 months 5 year and 5 months

House 2 1

Resolution 1 Hz 6 sec

Total Samples (5 min) 1,34,933 4,68,836

Training Samples (5 min) 1,00,481 2,81,327

Validation Samples (5 min) 8,612 37,501

Testing Samples (5 min) 34,452 1,87,509

Training Set 15-02-2014 to 09-11-2012 to

21-03-2015 15-07-2015

Testing Set 21-03-2015 to 15-07-2015 to

29-06-2015 26-04-2017

operating duration of smart household appliances. Then, the resampled data are divided into

training and testing as an 80 to 20 ratio. Out of 80% training data, again, 20% is used for

validation purposes and select appropriate hyperparameters. Table 4.1 contains details on the

number of data samples in training, testing, and validation for both data sets. The training data

are divided into batches of sequence length 128 to be used as input to the ensemble model.

Similarly, the test data is also divided into batches with a sequence length of 128 to predict the

power output of the trained ensemble model.
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4.3.3 Performance Criteria

Two standard evaluation metrics measure the ensemble model’s forecasting performance: Root

Mean Square Error (RMSE) and Mean Absolute Error (MAE). These are described as follows:

RMSE =

√
1
N

N

∑
i=1

e2
i (4.11)

MAE =
1
N

N

∑
i=1

|ei| (4.12)

where

ei = Power f orecast,i −Poweractual,i

is known as forecast error. Power f orecast,i is the forecast power of the ith sample and Poweractual,i

is the actual power of the ith sample. N is the number of samples used for measuring accuracy.

4.3.4 Reference forecast methods and model tuning

1) Feed-forward neural network (FFNN) - This is the basic form of the neural network used

for regression problems. It uses two hidden layers with 64 neurons each and the ReLU activation

function. The sequence length is set to 128. The mean square error (MSE) is used as a loss

function where the RMS prop optimizer has been incorporated. The model has been run for 20

epochs.

2) Long-short term memory (LSTM) - This belongs to the family of recurrent neural

networks (RNNs) that has recently gained attention for time series forecasting. The LSTM

architecture consists of one input layer with ten hidden neurons used with the ReLU activation

function. This layer is followed by one dense layer. Adam optimizer has been utilized to update

the weights and reduce errors in the model. The model has been run for 20 epochs with batch

size and sequence length of 128 samples.
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3) Convolutional-LSTM (CNN-LSTM) is a hybrid model that combines the convolu-

tional and LSTM models. The architecture of the CNN-LSTM algorithm consists of two con-

volutional 1D (Conv1D) layers with kernel size 3 and 64 filters. This layer is followed by the

Maxpool layer with pool size 2 and the LSTM layer with 200 hidden neurons. The output layer

with a linear activation function consists of one output neuron. The model is trained batch-

wise with a sequence length of 128, maximum epochs 20 and learning rate 0.01 with Adam

optimizer.

4) Convolutional-XGBoost (CNN-XGBoost) - It is a multistage ensemble model having

three CNN models and XGBoost. The outputs from all CNN models are stacked together and

fed to the XGBoost regressor. Each CNN model has two convolutional layers having 64 filters,

kernel size is 3 with ReLu activation. Two dense layers at the end to change the output size to

512 and 1, respectively. Then, the outputs are stacked, and the XG-Boost regressor boosts the

output to generate the final power prediction. The configuration of XG-Boost has been taken as

the proposed model for a fair comparison.

All the reference forecast methods have been tuned to the best possible hyper-parameters

for one-step ahead forecasts. The grid search method has been utilized to tune the hyper-

parameters of the proposed model. The table corresponding to hyper-parameter tuning is pre-

sented in the Appendix A5. These deep learning models have been trained with TITAN RTX

GPU using Python 3.6 with Keras 2.2.4 library on a computer system with Intel Core-i7 CPU.

4.4 Results and Analysis

The results in Tables 4.2 and 4.3 demonstrate the effectiveness of the ensemble deep learn-

ing model in improving forecast performance (in terms of both RMSE and MAE) against all

reference models on the GREEND dataset. We can categorize GREEND appliances as fixed

appliances (microwave, water kettle, radio, dryer, kitchenware, and bedside light), controllable

appliances (dishwasher and washing machine), thermostatically controllable (TCL) (Fridge).

For fixed appliances, the average RMSE of FFNN, LSTM, CNN-LSTM, CNN-XGBoost and

the proposed model is 15.93, 15.28, 14.03, 12.41 and 9.032, respectively. For controllable ap-

pliances, on average, the RMSE of FFNN, LSTM, CNN-LSTM, CNN-XGBoost and Ours is
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30.085, 48.015, 35.65, 33.13, and 27.885, respectively. There is only one TCL appliance in

GREEND whose RMSE and MAE can be seen from Tables 4.2 and 4.3, respectively.

For the UK-Dale dataset, all the appliances come under the fixed category except boiler

which is a TCL appliance. Tables 4.4 and 4.5 show the outstanding performance of the ensemble

model over all other reference models. Here, the average RMSE of fixed appliances of FFNN,

LSTM, CNN-LSTM, CNN-XGBoost, and Ours is 5.34, 4.45, 4.42, 3.80, and 2.63, respectively.

The average MAE of fixed appliances of FFNN, LSTM, CNN-LSTM, CNN-XGBoost, and

Ours is 1.91, 2.44, 1.50, 1.28, and 0.82, respectively.

For visualization, the prediction results of the Ensemble model and other comparative

models on all GREEND appliances are shown in Fig.4.3. Similarly, the prediction results of

all appliances in the UK-Dale dataset are shown in Fig.4.4. On analyzing these results, the

ensemble model generally fits the actual data much better than other comparable models, which

validates the fact that the proposed ensemble model has better prediction performance.

Results indicate that the multi-stage CNN-LSTM XGBoost ensemble performs slightly

better on the UK-Dale data set than the GREEND dataset in terms of both RMSE and MAE.

This is due to periodicity observed in appliance usage in the UK-Dale data set. For the GREEND

data set, in terms of RMSE, the proposed model performance for controllable appliances is

7.5%, 53.05%, 24.46%, 17.21% better than FFNN, LSTM, CNN-LSTM and CNN-XGBoost,

respectively. Similarly, for fixed appliances, the proposed model is 55.28%, 51.41%, 43.36%,

31.52% superior to FFNN, LSTM, CNN-LSTM, CNN-XGBoost, respectively. For the UK-

Dale dataset, on fixed appliances, the performance of the proposed model beats FFNN, LSTM,

CNN-LSTM, and CNN-XGBoost by 68%, 51.41%, 50.78%, 36.39%, respectively. The pro-

posed model of the TCL appliance shows a lower RMSE of 29.69 on UK-Dale than 43.49 on

GREEND. The working code of the proposed work can be found here [201].

The proposed model performs better than all other comparative models because the com-

bination of CNN and LSTM allows the LSTM layer to extract patterns and sequential depen-

dencies in the time series. In contrast, the CNN layer, through dilated convolutions methods

and filters, further improves this process. This approach mainly helps in granular level fore-

casting (5 min in our case). The benefit of this model is that the model can support very long

input sequences that can be read as blocks or sub sequences by the CNN model, then pieced

together by the LSTM model. Further, the performance has been enhanced by using the XG-
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Boost tree, which boosts the performance of its base models by providing high preference to

poorly estimated samples over well-estimated samples.

Table 4.2: Comparison of the proposed Ensemble model with reference forecasting models on

GREEND data set with respect to RMSE (W/m2)

FFNN LSTM CNN-LSTM CNN-XG OURS

Fridge 56.62 66.88 47.36 45.78 43.49

Dishwasher 6.23 7.45 6.22 5.95 4.15

Microwave 17.16 16.67 15.07 14.86 12.98

Water-kettle 61.68 59.76 56.27 48.76 35.55

Washing Machine 53.94 88.58 65.08 60.32 51.62

Radio 4.31 6.83 4.25 3.91 2.61

Dryer 5.56 1.16 1.14 1.11 1.09

Kitchenware 4.90 5.32 3.75 2.75 0.77

Bedside light 1.98 1.94 3.73 3.11 1.19

4.4.1 Appliances Association Analysis

For GREEND dataset, the strong association rules are exhibit by four appliances: radio, bedside

light, dishwasher, and microwave. Table 4.6 shows the association rules, with support, confi-

dence, and lift parameters with min_sup >= 0.2. Further, the energy consumption curves of

these appliances as represented in Fig. 4.5, compliments these association rules discovered and

proves their simultaneous usage by the consumer. Similarly, associations rules are generated

for UK-Dale appliances as well, as presented in Table 4.7. These associations results determine

occupants’ behavioral traits. For example, a radio is used at the bedside light, depicting the

occupant listens to the radio with the bedside light switched on. Moreover, for other occupants

of the UK-Dale house, there is a strong association found in the usage of kettle, toaster, and
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Table 4.3: Comparision of the proposed Ensemble model with reference forecasting models on

GREEND data set with respect to MAE (W/m2)

FFNN LSTM CNN-LSTM CNN-XG OURS

Fridge 24.79 51.06 28.75 26.32 22.33

Dishwasher 3.18 3.66 4.95 3.06 2.04

Microwave 8.09 7.23 4.89 3.98 2.86

Water-kettle 22.00 29.68 11.67 11.02 10.72

Washing Machine 14.35 23.93 15.94 13.56 11.97

Radio 0.96 2.19 1.33 0.93 0.66

Dryer 1.33 0.83 0.82 0.73 0.60

Kitchenware 3.23 3.10 2.76 1.85 0.62

Bedside light 0.16 0.19 0.15 0.14 0.13

kitchen light. It means that the occupant likes to use a kettle and toaster while in the kitchen.

4.4.2 Training Time Analysis

In terms of training time, the FFNN model takes 7 seconds per epoch, the LSTM model takes

600 seconds per epoch, CNN-LSTM takes 401 seconds per epoch, CNN-XGBoost takes 700

seconds per epoch, and the proposed model takes 800 seconds per epoch. Its better performance

can compensate for the more significant training time of the proposed model. The 800 seconds

per epoch are taken during training the model. Once the model is trained, it gives comparable

performance to other reference models for real-time prediction.
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Table 4.4: Comparision of the proposed Ensemble model with reference forecasting models on

UK-Dale data set with respect to RMSE (W/m2)

FFNN LSTM CNN-LSTM CNN-XG OURS

Boiler 35.19 48.80 32.24 31.06 29.69

Thermal pump 0.78 1.43 0.86 0.80 0.73

Laptop 3.29 2.64 0.96 0.90 0.88

TV 4.50 5.67 4.41 3.79 2.88

LED Lamp 0.42 0.77 0.43 0.38 0.34

Kitchen Light 13.63 13.48 14.18 12.65 10.39

Kettle 6.10 6.21 6.12 4.61 0.55

Toaster 8.70 15.55 4.00 3.53 2.69

Table 4.5: Comparision of the proposed Ensemble model with reference forecasting models on

UK-Dale data set with respect to MAE (W/m2)

FFNN LSTM CNN-LSTM CNN-XG OURS

Boiler 14.62 21.54 12.26 12.00 10.94

Thermal pump 0.29 0.70 0.49 0.38 0.25

Laptop 1.73 0.45 1.39 1.00 0.40

TV 2.12 2.19 2.20 2.04 1.57

LED Lamp 0.21 0.37 0.13 0.11 0.01

Kitchen Light 3.04 3.36 3.06 2.69 1.86

Kettle 0.39 0.39 0.87 0.74 0.35

Toaster 5.64 9.67 2.37 2.05 1.35
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Table 4.6: Association Rules on GREEND equipments

S.no. Association Rule Support Confidence Lift

1. Radio =⇒ Bedside light 0.16 0.89 1.2

2. Dishwasher =⇒ Microwave 0.21 0.93 1.5

3. Microwave =⇒ Dishwasher 0.24 0.92 1.4

4. Bedside light =⇒ Radio 0.12 0.80 1.3

Table 4.7: Association Rules on UK_DALE equipments

S.no. Association Rule Support Confidence Lift

1. Kettle, Toaster =⇒ Kitchen Light 0.20 0.90 1.6

2. Kitchen Light =⇒ Toaster 0.18 0.80 1.1

3. Solar Pump =⇒ Boiler 0.13 0.75 1.1

4. Toaster =⇒ Laptop 0.15 0.78 1.2

5. Kitchen Light =⇒ Kettle 0.19 0.92 1.5

4.5 Conclusion

Appliance-level power prediction is quite challenging due to the volatility and behavioral habits

of individual consumers. An Ensemble deep learning model has been developed to capture

the stochastic dynamics of appliances’ power time-series data. It utilizes two powerful algo-

rithms’ inherent advantages: a deep learning-based CNN-LSTM and tree-based Xtreme Gra-

dient Boosting (XG-Boost) for performance enhancement. The prediction is carried out at a

5-minute time horizon, which is best suited for load shifting under real-time pricing schemes.

In addition, the dynamic item set counting (DIC) algorithm has been used to determine which

appliances are often used together. Rigorous experimental analysis on two open-source data
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sets (GREEND and UK-Dale) verifies the Ensemble model’s outstanding performance in terms

of RMSE and MAE accuracy metrics. The percentage decrease in RMSE of the proposed en-

semble model in the GREEND data set is 32.18%, 49.54%, 27.73%, and 19.43% compared to

FFNN, LSTM, CNN-LSTM and CNN-XGBoost, respectively. For the UK-Dale data set, the

RMSE of the proposed Ensemble model is 40.58%, 65.09%, 27.17%, and 18.15%, lesser than

FFNN, LSTM, CNN-LSTM, and CNN-XGBoost, respectively.
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(a) Fridge (b) Dishwasher

(c) Microwave (d) Water-kettle

(e) Washing Machine (f) Radio

Figure 4.3: Appliance-wise power forecasting using Ensemble model on GREEND appliances
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(a) Boiler (b) Solar pump

(c) Laptop (d) Kitchen Light

(e) Kettle (f) Toaster

Figure 4.4: Appliance-wise power forecasting using Ensemble model on UK-Dale appliances
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Figure 4.5: Associations represented by Energy curves

89



Chapter 5

A Real-Time Automated Scheduling

Algorithm with PV Integration for Smart

Home Prosumers

5.1 Introduction

Household energy consumption is often a noticeable problem, as it accounts for about 35 % of

the total consumption of all activities [107]. Research conducted in [57] showed that 15% of

energy savings could be achieved by shifting the load of controllable appliances in the house-

hold. With the advent of the smart grid, household consumers are actively participating in

energy management through demand response programs. Consumers are now becoming Pro-

sumers, i.e., consuming energy from the grid and producing and sharing energy with the grid.

Moreover, there is direct communication with the grid using IoT-enabled devices [259]. The

smart home of Prosumers consists of intelligent appliances, advanced metering infrastructure

(AMI), smart thermostat, smart plugs, and wireless communication infrastructure. The schedul-
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ing optimization problem for Prosumers mainly deals with minimizing their energy cost without

affecting their comfort. In HEMS, the stochastic scheduling optimization problem involves ar-

bitrary dynamics of consumer demand, renewable energy, consumer behavior, and electricity

price.

The HEMS for demand response (DR) applications has been substantially studied by the

researchers. The DR programs can be incentive-based or price-based. Incentive-based programs

give reward to consumers for their participation in distributing load from on-peak to off-peak

hours. On the other hand, price-based programs involve different price signals to provide mon-

etary savings to the consumers. Different types of price signals include real-time price (RTP),

time-of-use (ToU), inclined block rate (IBR), critical peak pricing (CPP), and day-ahead pric-

ing [203]. Price-based programs are the main focus of researchers in the field of DR programs

for home energy management system (HEMS). The optimization algorithms proposed by re-

searchers in previous studies based on ToU pricing [126, 171], RTP price [155, 86], Combined

RTP and IBR [45], CPP [141, 147], Day-ahead price [68, 165, 79].

Our previous work in [202] comprehensively discusses the various challenges associated

with solving the complex optimization problem of load shifting in IoT-enabled DSM. The vari-

ous optimization techniques can be classified into four broad categories: mathematical program-

ming, meta-heuristics, artificial intelligence (AI), and game theory. Mathematical programming

involving mixed-integer linear programming (MILP) and non-linear programming (MINLP) is

most popular among researchers. Many current commercially available solvers can find the

optimal global solution easily, effectively, and quickly. MILP based model has been used to

minimize energy and water use and CO2 emission besides monetization for the householder

[53], cost minimization using RTP pricing [70], smart thermostat combined with scheduling

of home appliances [46]. However, MILP based model cannot work on non-linear constraints

directly.

Moreover, it suffers from the risk of the problem being high-dimensional. The meta-

heuristic algorithms have been mainly compared based on their convergence rate and accuracy

of optimal solution where particle swarm optimization (PSO) [91, 60] and genetic algorithm

(GA) [156, 145] is found to be most popular. It has also been found that the heuristic algorithm

could get stuck in local optima while finding optimal solution suggesting a possible need for

advanced algorithms that can ensure a global complete and optimal solution.
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Researchers mainly use AI-based techniques for intelligent decision making, prediction,

forecasting, and scheduling. The Reinforcement Learning (RL) architecture has been utilized

to optimally monitor entire-building Heating, ventilation, and air conditioning (HVAC) systems

for energy savings and thermal comfort [18, 189], and for learning consumers’ dissatisfaction

[243]. However, to run AI models, it is requisite to have expensive hardware with compara-

ble processing power. AI models often work with only numerical values. Moreover, extensive

testing with hardware is needed for validation and verification. The game theory methodol-

ogy is used primarily to make decisions under unpredictable environmental circumstances, i.e.,

local energy trading [175] involving selfish and rational consumers. However, the increase in

the number of players makes the use of game theory complex and challenging. Also, it uses

only general rules of logic without telling about the winning strategy. Using this approach,

uncertainty in the real field is difficult to model.

The previous studies mainly focus on the development of scheduling algorithm alone,

without really implementing in real-time scenario i.e., controlling home appliances by devel-

oping smart plugs. Moreover, a subset of home appliances was taken into account without

considering their intermediate operation cycles.

In this study, IoT-enabled smart plugs integrated with cloud infrastructure have been de-

signed to store load profiles of appliances and control their operation from the cloud. Moreover,

an efficient scheduling algorithm is developed considering integrated PV resources, maximum

possible appliances, different operating cycles of appliances, various types of other constraints

in the presence of different price signals. The scheduling algorithm runs on the cloud with a

duration of 5-min for real-time DR implementation and autonomously sends control signals to

appliances. Extensive simulations and results demonstrate that the proposed framework greatly

minimizes the consumers’ electricity cost without any change in consumption pattern.

5.2 Overview of automated IoT based energy management

An automated energy management system consists of three main components: IoT-based Node-

MCU hardware equipped with sensors and various relays, adafruit cloud, and scheduler algo-

rithm. The Node-MCU ESP8266 device has been used to measure the power of various home
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appliances and control the appliances by changing their operating state. The adafruit cloud

is used to store the measured power of different types of equipments and run the scheduler

algorithm. The scheduler algorithm solves the problem of multi-objective optimization, i.e.,

decreasing electricity cost and PAR (peak to average ratio) of the consumer while maintaining

comfort.

The framework of IoT-enabled automated scheduler has been shown in Fig. 5.1. The

power measurements from various types of home appliances (fixed, thermostatically control-

lable (TCL), and non-thermostatically controllable (non-TCL)) are measured by sensors em-

bedded in Node-MCU, then MQTT publish protocol is used to send the measurement values

to Adafruit cloud. The data collection script is run on the cloud, which creates the load profile

of each appliance according to the measured values. The automated scheduler algorithm is a

software program that takes multiple inputs and decides the schedule of all appliances for a day

in 5 min slots. The inputs of the scheduler consist of 1) Load profile of all home appliances,

2) Photo-voltaic (PV) unit output for a day, 3) Pricing scheme (RTP, ToU, CPP), 4) various

other constraints which should be satisfied for correct scheduling. The scheduling algorithm

is based on the dynamic least slack-time-based algorithm, which depends on the price-data,

outputs a schedule that uses the PV power at peak prices, and stores the extra PV power in the

battery for future use. The output of the scheduler is the schedule of all appliances for a day in

5-minute slots, which reduces the electricity cost while running all appliances according to the

consumer’s comfortable timings. The scheduling decisions of the algorithm are published on

the Adafruit cloud using a data-publish script. Using the MQTT download packet, the schedul-

ing decisions are downloaded into the Node-MCU device, which wirelessly controls (On/Off)

the home appliances according to schedule.

5.2.1 Load Profile of Smart Appliances

Table 5.1 [155] represents typical load specifications of different types of appliances. Appli-

ances can be categorized into two types: electrical controllable (ECL) and thermostatically

controllable (TCL). The table specifies the earliest start time (EST) and latest finish time (LFT)

of all appliances. The window is the difference between LFT and EST, which tells about the

maximum duration an appliance can be delayed. Since some appliances operate in different
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Table 5.1:

Load specification of Home Appliances [155]

S.no Appliance Type Pow (KW) Duration (h) EST (h) LFT (h) Window (h)

1 Washing machine ECL 1.7 2 8 11 3

2 Dish washer ECL 1.6 1 8 16 8

3 Dryer ECL 2.4 1 12 17 5

4 Microwave ECL 1.6 1 6 8 2

5 Oven ECL 2.4 2 14 18 4

6 Cooker hood ECL 0.25 1 16 18 2

7. Refrigerator TCL 0.185 24 0 24 24

8 Water Heater TCL 1.6 24 0 24 24

9 AC TCL 1.35 12 12 24 12

10 TV ECL 0.24 6 18 24 6

11 Desktop ECL 0.4 2 20 24 10

12 Iron ECL 2.5 1.5 5 15 10

13 Laptop ECL 0.2 5 18 24 6

14 Vaccum cleaner ECL 2.3 1.5 7 18 11

15 Sensors ECL 0.03 24 0 24 24

16 Radio Player ECL 0.22 1.5 6 8 2

17 Illumination ECL 0.6 6 17 24 7

18 Others ECL 3.5 4 0 24 24
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Table 5.2:

Different Types of Prices [195]

Case Non-peak Peak (9-12 AM) Critical Peak (6-8 PM)

Base case Tarriff: 0.05 /kWh

ToU 0.049 /kWh 0.08 /kWh 0.16 /kWh

CPP 0.08 /kWh 0.118 /kWh

RTP

0.048, 0.045, 0.043, 0.043, 0.044, 0.046, 0.054, 0.064

0.081, 0.080, 0.070, 0.060, 0.053, 0.052, 0.054, 0.059, 0.067

0.093, 0.091, 0.083, 0.060, 0.054, 0.053, 0.050 /kWh
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Figure 5.1: Framework of the IoT enabled automated scheduler

Figure 5.2: Typical PV output

phases, consuming different power in each phase; therefore, each phase has been considered

individually. The different operating phases with power requirements and operational time of

controllable appliances have been described in different tables. The operating phases of con-
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trollable appliances namely, dishwasher, washing machine, and dryer has been described in

Table A6[210], Table A7[210], and Table A8[210] respectively. While designing the schedul-

ing algorithm, these appliances operating cycles have been taken into account for efficiency

purposes.

5.2.2 Integration of Renewable Energy

The power generated by the PV source at each time slot t can be represented as PPV (t) where

t ∈ {1,2, ...,24}. The typical PV output taken for this study is presented in Fig. 5.2. The 24

hour PV power can be forecasted for designing more efficient and real-time scheduling. Our

previous work [200] on forecasting solar irradiance (GHI) can be used to forecast robust GHI

at any location.

5.2.3 Constraints

The scheduling optimization problem discussed in the literature includes several constraints.

Such constraints are both at the level of the system and the level of the appliance. Constraints

will be discussed as follows:

5.2.3.1 Balancing Electrical Demand Supply

The demand supply balance is the major concern for the grid operators which is directly affected

by consumer behavior. Without considering Load Shifting-

Pgrid(h)−Pbatt(h) = Dp(h) (5.1)

Considering Load Shifting-

Pgrid(h)−Pbatt(h) = Dns(h)+
n=1

∑
Nsh

Dn
sh (5.2)
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5.2.3.2 Maintaining temperature for TCLs [88]

Within scheduling time window, the temperature range of TCLs (EWH and HVAC) should be

maintained in preset range T min,T max provided the household occupancy.

HVAC-

T min
room ≤ T i

room ≤ T max
room (5.3)

EWH -

T min
out ≤ T i

out ≤ T max
out (5.4)

5.2.3.3 Battery related Constraints [91]

The state of charge (SOC) of the battery should be preserved within a predetermined range for

its efficient and long use. Hence, the following constraint is needed -

Batt_SOCmin(h)≤ Batt_SOC(h)≤ Batt_SOCmax(h) (5.5)

Batt_SOC(h) = Batt_E(h)/Battcap (5.6)

Battery maximum charging and discharging power limit can be represented as:

0 ≤
Pch

batt(h)
δch

≤ Pch
max (5.7)

0 ≤ Pdch
batt(h) ·δch ≤ Pdch

max (5.8)
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5.2.3.4 Grid Constraints

At any time slot, the energy provided by the grid should be non-negative and bounded by upper

limit.

0 ≤ Pgrid(h)≤ Pmax
grid (h) (5.9)

5.2.3.5 Phase Wise Energy requirement of Appliances

The controllable appliances (washing-machine, dishwasher, dryer) should receives enough power

for their particular operating cycle.

m

∑
k=1

pk
i j = Ei j,∀i, j (5.10)

5.2.3.6 Power Limit Constraint

At a given time slot, the total power used by all operating devices should always be less than

the maximum energy from the grid.

N

∑
i=1

m

∑
j=1

ph
i j ≤ Pmax

grid (h),∀i, j (5.11)
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5.2.3.7 Operating Cycle Constraint

A running appliance cannot be turned off at a given time slot until the corresponding operating

cycle is completed, e.g., dishwasher

Wn(h)+Wn(h+1)+ ....+Wn(h+TOCn −1)≥

(TOCn −1) · (Wn(h−1)−Wn(h−2)),∀h ∈ hn

(5.12)

5.2.3.8 Operation Ordering of Appliances

The ordering of appliances should be preserved. A dryer can, for example, be run after the

washing machine has done its task. Therefore, if the shiftable load is handled after a shiftable

load, then:

Wm(h+TOCn)+Wm(h+1+TOCn)+ .......

+Wm(h+TOCn +TOCm)≥ (TOCm −1)

·(Wn(h−1)−Wn(h−2)),∀h ∈ hn

(5.13)

5.3 Problem Formulation

5.3.1 Energy Consumption Model

Table 5.1 indicates all appliances can be categorized into ECLs and TCLs. The ECL appliances

can be further categorized into fixed and controllable depending upon their flexibility for partic-

ipating in the scheduling algorithm. The fixed appliances are also known as must-run because

their operation cannot be delayed further. In contrast, the controllable appliances (dishwasher,

washing machine) can be shifted (fully or operation cycle) for a run at later intervals.

The total energy consumed at each time slot t by all types of appliances can be calculated
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by the following equation:

Ptotal(t) = PFixed(t)+PControllable(t)+PTCLs(t) (5.14)

5.3.2 Energy Cost Model

The cost of energy is calculated by multiplying energy consumed by appliances with the price

at that period.

C =
T

∑
t=1

(Powtotal(t)× pricet) (5.15)

C =
T

∑
t=1

N

∑
i=1

Powi × pricet ×Kopt
i,t × lt (5.16)

where T is total number of periods in scheduling cycle, lt is length of each time period, N is total

number of appliances, Powi stands for rated power of ith appliance, pricet is electricity price in

period t, Kopt
i,t is operation status of ith appliance after optimization. Different types of electric

tariffs exist for defining energy pricing over a day such as Time of use (ToU), Day-ahead price

(DAP), Real-time price (RTP), Critical peak pricing (CPP).

5.3.3 Inconvenience

Consumer inconvenience is directly related to advance or delay in the appliance running behav-

ior. The length of advance or delay time can be calculated using the following equation:

I =
N

∑
i=1

T

∑
t=1

(Kopt
i,t −Kb

i,t) (5.17)

where Kb
i,t stands for baseline on/off status.

101



The objective function for scheduling algorithm will be minimizing both energy cost and

inconvenience. Also, peak to average (PAR) value should be as least as possible for an optimal

scheduling decision.

Ob j = min(C)+min(I)+min(PAR) (5.18)

5.4 Proposed Automated Scheduling Algorithm

The multi-objective scheduling optimization problem of minimizing the electricity cost of con-

sumers and PAR (peak-to-average ratio) with maximum comfort is highly complex. An auto-

mated and dynamic algorithm has been developed using modified least slack time to solve the

stochastic problem involving so many constraints, different categories of appliances, stochastic

PV output, and different pricing scenarios.

Four different types of lists are created, namely, task_list containing all the appliances

to be scheduled, PV − power containing output power of the PV source at different times of

the day, price_list storing price information at different durations of the day, ready_list storing

appliances which are ready to run at a particular instant. The different parameters considered

for each appliance are maintained in a separate data structure. These lists can be represented as

follows:

task_list = {appliance1,appliance2, ...appliancen}

where for each appliance, its data structure contains following information:

appliance_struct = {id,appliance_type,earliest_start_time,

latest_ f inish_time, total_duration, pow_rq,

no_o f _operating_cycles,slack_time}

PV − power = PPV (t) where t ∈ {1,2, ...,24}

price_list = pricet where t ∈ {1,2, ...,24}
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If multiple appliances are ready to run at some instant t then ready_list is initialized with

all ready appliances in order of their priority (highest priority first). The priority of all ready

appliances has been calculated using the dynamic slack time algorithm.

5.4.1 Appliance’ State Change Procedure

The state of an appliance based on the time taken by its operating cycles has been described in

this section.

Assuming the particular operating cycle of appliance takes n time slots. The operating

state of appliance A at a time slot t:

χ
A
t = (rA

t ,d
A
t )

where rA
t denotes number of remaining operating cycles of appliance A, dA

t indicates the num-

ber of time-slots for appliance A operation can be delayed and χA
t ∈ {0,1} indicates whether

appliance A has been scheduled to run at timeslot t.

The state of appliance A at time t+1, (χA
t+1 )depends upon its current state χA

t , appliance_type

and operating decision made by scheduling algorithm by taking price and PV power at time t

into consideration.

procedure SCHEDULING ALGORITHM

n: Number of appliances in ready_list

Powi: Power required to run appliance i

Pwr: Total power consumption of accepted requests from the grid (initialized with 0)

Pwr_max: Maximum power consumption threshold

pricemax: Maximum price threshold

Require:

initialize ready_list as R with n appliances

Ensure: 24-hour schedule of all appliances with 5 min time slots

for t ∈ {1,2, ...,288} do

for each appliance Ai ∈ R do
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if (pricet ≥ pricemax) AND (Batt_SOC(t)≥ Batt_SOCmin) then

Run appliance Ai

change state(Ai)= running

Remove Ai from R

Batt_SOC(t) = Batt_SOC(t)−Pow(Ai)

else if pricet ≤ pricemax then

Run appliance Ai

change state(Ai)= running

Remove Ai from R

Pwr = Pwr+Pow(Ai)

else if SOCbattery ≤ SOCmin & PPV (t)≥ 0 then

change battery state to charging

else

change state (Ai)= waiting

end if

end for

end for

for all Ai ∈ waiting state do

if latest_ f inish_time(Ai)− t ≥ 0 then

slack(Ai)++

else

run appliance Ai

Pwr = Pwr+Pow(Ai)

end if

end for

end procedure

The slack time parameter of all the appliances gets updated at every time slot according to

the following parameter:

slack(or priority) = remaining time to latest_ f inish_time(Ai) - remaining execution time.

The above scheduling algorithm runs the appliance if the price at a particular time slot is

less than the threshold price or if sufficient power is available in the battery to run the appliance
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(when prices are higher). At the peak time of day (11 am - 3 pm), the PV power is used to

charge the battery so that it can be used to run appliances in the late evening and night time.

The consumer comfort is maintained using the slack parameter, which takes care of the latest

finish time of the appliance and increases the appliance’s priority accordingly.

The scheduling algorithm has been run and executed using Python on Anaconda platform.

The code of algorithm can be found in [201].

5.5 Case Study

In this section, simulation studies are carried out to verify the effectiveness of the proposed

algorithm. Eighteen different types of appliances are considered as mentioned in Table 5.1.

There are three TCLs and fifteen different ECLs devices. There are some controllable devices

with different operating cycles: washing machine, dishwasher, and dryer. TCLs devices can

be controlled by shifting their temperature as their operation cannot be delayed for comfort

maintenance. The load shifting decision greatly depends on the pricing scheme. All the different

pricing schemes are utilized for simulation purpose.

As illustrated in Table 5.2, the base case uses a fixed rate tariff for electricity. The tariff is

equivalent to the average of the RTP hourly rates. As a result, the base case accurately represents

the function of the HEM mechanism without taking into account any demand response program

(DRP). In TOU case, the off-peak tariff is 50% lower than the peak tariff, while the critical peak

tariff is 50% higher than the off-peak tariff. A CPP scenario is also considered, in which a high

electricity rate (e.g., 118 /KWh) is applied to consumption during critical peak hours.

It is assumed that the household contains a PV source of 5KW, while the impact of varying

PV size is also analyzed. Increasing the size of PV and battery directly affects the cost reduc-

tion. The generation of a mentioned PV system has been forecasted based on solar irradiance

available at a particular location. We utilized the forecasted GHI as per our previous work [200]

to calculate the power produced by PV systems of varying sizes. Providing the least upper

bound and greatest lower bound on forecasted values provides the robust forecasting estimate

that effectively handles the stochastic nature of solar irradiance. The typical PV power output

at location India as per Fig 5.2 has been utilized for simulation purposes.
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The load profiles of different types of appliances have been recorded for two months at an

interval of 5 minutes. The self-developed low-cost smart plug has been used for this purpose.

The recorded load profiles are stored on Adafruit Cloud. Then, from these load profiles, the

earliest start time and latest finish time of all appliances have been extracted, which is used

as input to the scheduling algorithm running on the cloud. The consumer comfort-oriented

scheduling algorithm checks the various constraints, the state of various appliances, current

price, and send signals (on/off) to the smart plug, the operating instructions of the appliance

according to their priority and power requirement.

The proposed algorithm adjusts itself according to specific consumer behavior i.e. the

power consumption pattern of the appliances. For example, the smart plugs initially record the

power requirement of various smart home appliances for two months. The current scheduling

decisions are based on the consumer behavioral habits extracted from this data. A different deep

learning algorithm has been utilized for this purpose. The behavioral habits may change with

time, seasons, and various other factors reflected in the power consumption data obtained on

the cloud. The changes in the operation pattern of various appliances are continuously tracked,

which provides the changes in the load profile of each appliance to the scheduling algorithm.

Hence, the scheduling algorithm decisions change/adapt to the change in the behavior of the

consumer.

Figure 5.3: 24 hour (5-min slots) schedule of all appliances with RTP pricing scheme
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Figure 5.4: 24 hour (5-min slots) schedule of all appliances with ToU pricing scheme

5.6 Results and Analysis

5.6.1 Cost Reduction Analysis

The reduction in the electricity consumption cost can be analyzed using different pricing schemes

for consumers using PV sources at their homes. It can be seen from Fig. 5.3, all the 18 differ-

ent types of appliances mentioned in Table 5.1 are scheduled for a day using the RTP pricing

scheme at 5 min interval. The proposed autonomous scheduling system sends operating in-

structions to each appliance using an IoT device according to the schedule obtained using the

scheduling algorithm. Using a PV source of 5KW and a battery of 5KW, our proposed schedul-

ing algorithm results in a cost-saving of up to 40% under the RTP pricing scheme. it can be

seen that some appliances are running together at the same time-consuming energy from the

grid. The negative power taken by appliances represents running using PV resource or battery

thereby reducing the electricity bill. The PAR reduction has been automatically achieved since

appliances’ operation has been shifted to later periods at peak pricing. Under the time of use

(ToU) pricing scheme as depicted in Fig.5.4, the cost-saving achieved comparable to the base

case is up to 45%. Moreover, under the critical peak pricing (CPP) scheme, up to 48% cost

saving has been achieved.
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It can be observed from Fig. 5.4 that during peak hours (9 to 11 am) when the electricity

price is at the higher side, our algorithm uses a battery to run many appliances depending on the

availability of SOC. Meanwhile, since the availability of PV power is typically high from 9 am

to 3 pm, it’s a good time to charge the battery and use it to run ready appliances at peak period

to minimize the PAR and electricity cost. Similarly, at the critical peak time (6 pm to 8 pm), the

electricity price is highest. Again, the ready appliances are operated using a battery following

the constraints mentioned in equations 5.5 and 5.6. At a non-peak period, around 6 am to 8

am, the energy from the grid is utilized to operate appliances; hence the peak in electricity

consumption from grid can be seen at that time. In this way, 45% cost saving has been achieved

as compared to the base case.

The sudden price increase can be observed in the RTP pricing scheme from 8 am (0.081)

to 10 am (0.070). The scheduling graph in Fig.5.3 shows the negative and positive power

consumption for some appliances from 9 am to 10 am (108 - 120 slots). It means that the

algorithm utilizes a battery to run a current operating cycle of the dishwasher Table A6 and

grid power for the washing machine Table A7. The SOC of the battery is not sufficient to

run both the appliances concurrently as it is utilized at night. Again from 5 pm to 7 pm, the

price is highest, the available SOC of battery has been utilized to operate ready appliances. For

some appliances, the operation has been delayed depending on the high price and low SOC

availability. The priority of each delayed appliance is increased to run it on urgent mode when

its latest finish time comes nearer. In this way, 40% cost reduction is achieved using in RTP

case.

5.6.2 Appliances Flexibility Analysis for DR

The house DR potential greatly depends on the flexibility of smart appliances. The ’flexibility’

of appliance ’A’ can be calculated as Pow(A)×window(A). Here, the window of appliance

refers to the difference between latest finish time (LFT) and earliest start time (EST) of the ap-

pliance. There are 18 different types of appliances are considered in this study. Their operation

time determines the behavioral habits of the consumer. The flexibility of various appliances has

been represented in Fig. 5.6. The TCL appliance ’AC’ shows greater flexibility as the consumer

starts using it at noon and continues its use up to the night. It is easy to maintain comfortable
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room temperature by changing its setpoint to some extent. Around 9 am, the consumer concur-

rently operates multiple controllable appliances. The dishwasher, washing machine, and oven

tend to be operated together. It increases the DR potential as they can be operated by running

them in intervals, according to the power required by their different operating cycles. In the

afternoon, the flexibility of the house is quite poor because only one appliance (dryer) is in use

together with a long operation time appliance (AC).

Because of the power use and the owners’ habits, the versatility of appliances belonging

to the same category but for different users can greatly vary. However, there is an exception in

the case of refrigerators that operate all day for most consumers. The implication is that, unlike

refrigerators, it would be impractical to build a single user behavior model for such appliances.

Figure 5.5: Smart Plug

Figure 5.6: Flexibility of various appliances
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5.6.3 Consumer Comfort Analysis

The multi-objective optimization targets both electricity cost reduction without affecting con-

sumer comfortable operation timing of appliances’. All the appliances, including their operation

cycles, have been scheduled by setting their priority according to their latest finish time as per

Table 5.1. The scheduling algorithm design takes the utmost care of preparing all appliances

within their time window. There is no comfort violation observed while appliances have been

scheduled with different types of pricing schemes. However, the flexibility of appliances plays

a significant role here. Greater the size of the time window of appliances 5.1 implies greater

flexibility and greater comfort to the consumer.

The decisions of the proposed automated scheduling algorithm are based on many differ-

ent parameters and constraints. The cost-saving relies heavily on the availability of PV power

and consumer power usage patterns. Learning the behavioral pattern of consumers significantly

helps the algorithm adapt to the new operation time of appliances’.

The smart plug developed for saving load profiles of different appliances can be seen in

Fig. 5.5. In this figure, the smart plug is attached to the laptop charger, recording the power

requirement to the cloud and sending scheduling decisions (on/off) at any instant to the device

as well.

5.7 Conclusion & Future Work

This chapter describes an autonomous load shifting model for prosumers under a real-time envi-

ronment by considering uncertainties of user behavior, PV output, various other constraints. The

bottom-up approach deals with the design and development of a complete cost minimization so-

lution for prosumers. The load profiles of all home appliances are gathered using self-created

smart plugs based on IoT architecture. The least slack time-based scheduling algorithm that

runs on the cloud schedules all home appliances, reducing electricity cost without consumer

annoyance. Various types of constraints and different operating cycles of appliances have been

taken into account for real-time implementation. Moreover, the flexibility of various appliances
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to participate in the DR program proves the user behavior uncertainty. The average cost saving

on different pricing schemes RTP, ToU, CPP is 40%, 45%, 48%, respectively. This performance

has been recorded by strictly maintaining consumer behavioral habits.
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Chapter 6

Graphical Computational Model for

Smart Grid Reliability Assessment

6.1 Introduction

The power system is one of the most important infrastructures or critical infrastructure (CI), as

it is reliant on almost all other infrastructures [67]. The reliability of information and commu-

nication technology (ICT) plays a major role in the smooth functioning of the smart grid. The

smart grid is the smarter version of the power grid that involves the combination of traditional

power grid and new ICT. Therefore, to construct a cyber physical system (CPS), that is, a smart

grid, ICT is a crucial addition to conventional power system modules, allowing for improved

flexibility and functionality. Although ICT systems improve functionality, they also lead to

failures, such as unseen failures in protection systems, as seen in recent power outages. It also

brings with it new challenges, including cyber attacks.

The functionalities of cyber components have been assumed perfectly reliable in the con-

ventional reliability assessment phase. For conventional power grids where there was only
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minimal cyber-physical interdependence, this assumption might be rational. However, modern

power grid reliability is more reliant on the availability of cyber-enabled functions with the

growing deployment of cyber infrastructure. To achieve more practical results, it is important to

include cyber malfunctions in the assessment of power system reliability. The impact of cyber

malfunctions on the reliability of composite power systems is investigated in this subject, which

is referred to as "cyber-physical reliability" [78].

The efficiency of the power distribution system is calculated using indices such as the av-

erage system interruption period index (SAIDI) and the average system interruption frequency

index (SAIFI)[63]. Using analytical or modeling methods, these indicators can be evaluated.

Analytical methods use mathematical models that are typically large and inefficient, but

are used to analyze large-scale systems of complex schemes. Simulation methods based on the

Monte Carlo method, on the other hand, take into account the actual procedure and random

actions of network components. It takes into account component failure history as well as

maintenance time data [44]. Embedded or non component-dependent faults, such as cold load

pickup (CLPU), are not typically included in the estimates of these indices. As a consequence,

these measurements can not accurately represent real device behaviour.

The Markov model [264], Reliability Block Diagram (RBD) [96, 209], fault-tree analy-

sis [43], failure propagation studies [187], and state-mapping techniques [186] are some of the

other works relevant to evaluating the direct cyber-to-power effect on system reliability. The

majority of previous works necessitate a large amount of computational effort, and the compu-

tational time increases exponentially with the scale of the system under investigation.

The graph-theoretical approach to the smart grid is a solution to the above challenges.

The aim of graphical approaches is to classify the nodes and edges that are most vulnerable to

attacks and failures due to human error. The graphical reliability model takes into account both

electrical (transmission line impedance) and reliability indices (probability of failure in network

components). Reliability graphs were encoded in binary decision diagrams (BDD) to reduce the

complexity of storage and computation [28]. Another valuable method for reliability analysis

is Bayesian networks.

There are several other aspects and factors that affect the overall reliability of the network.

Many techniques have been developed to determine the importance of a part in a network. An
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analytical method based on state matrix which including different uncertainties of PHEV has

been introduced in [142]. The criticality reliability importance to quantify the degree of impact

of key component failures on system failure, mainly for fault diagnosis has been suggested

in [236]. The redundancy value metric, which seeks to determine the incremental reliability

growth of a system when an additional redundant variable is introduced. This metric is very

useful for deciding the best degree of redundancy in reliability design [257]. The improvement

potential (IP) to estimate the change in system efficiency when a part is perfectly improved

[268]. Risk mitigation and risk achievement are the most widely used risk value indicators,

which imply the contribution of a particular component to overall risk [103]. The Bayesian

reliability value method was proposed to determine the weakest component that is more likely

to be the cause of system failure [265].

However, since these approaches are heavily based on cause-and-effect relationships, they

are unsuccessful in assessing the overall reliability of large interconnected ICT-EP systems and

in examining the role of cyber infrastructure. As a consequence, a scalable but realistic tool

is needed to assess the risk of interconnected system failure due to the reliability of the ICT

system and to identify essential cyber components.

First, a graphical model is used to provide the structural significance of the ICT compo-

nents within a Supervisory Control and Data Acquisition (SCADA) system. Second, a new

metric named Network Accuracy Indicator (NAI) is developed to quantify the system’s reliabil-

ity. The Network Reliability Deterioration Worth (NRDW) index is used to rank the criticality

of each node in the corresponding graphical model providing system reliability. Finally, simu-

lations are performed on an IEEE 14-bus test case to prove that the proposed approach correctly

tests the system’s reliability parameters.
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6.2 PROPOSED METHOD

6.2.1 Graphical modeling of Reliability Graph

To assess the risk of network failures, the network configuration is first plotted on a Reliability

Graph, which is a pair of sets (V, E) where V = V1,V2,V3...Vm is the set of all vertices and

E = E1,E2,E3...En is the set of all edges, with m and n being the number of nodes and edges,

respectively. The paths in the graph can be broken out to understand the time constraints of

a power system control action. The edge weight (Ew) has been assigned to each edge of the

graph, and the vertex weight (Vw) has been assigned to each vertex, indicating the latency at

each transmission path and component, respectively. The power system’s latency threshold can

be used to determine the possible transmission paths between a source and a target node.

The reliability of route from source node to target node with N number of nodes is the

product of the each node’s reliability along the path, where each node fails independently with

failure rate fn. The reliability of the path is given by the following equation:

Rpath =
N

∏
n=1

rn =
n

∏
n=1

1− fn (6.1)

where rn and fn determine the reliability and failure rate of node n, respectively.

(a) IEEE-14 bus system (b) Graphical model of IEEE-14 bus system

Figure 6.1: IEEE-14 bus system and its equivalent graph
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Fig. 6.1 shows the IEEE-14 bus system and its equivalent graphical representation.

6.2.2 Reliability Analysis

Power system reliability is an important concern in the planning, construction, and operation of

power distribution systems. Electric power utilities are expected to provide their customers with

uninterrupted electrical service at the lowest possible cost while ensuring a reasonable level of

service quality.

The value of reliability is demonstrated by the fact that it can be used to express the cost of

service outages. The quality of service rendered by a distribution system can be calculated by

its reliability indices, which can be enhanced by automating its feeder and related components,

resulting in the desired reduction in power interruptions. Reliable power delivery networks are

those that achieve a high degree of reliability.

A variety of studies have taken a systemic approach to smart grid stability, taking into

account, to varying degrees, the effects of cyber network disturbances. The Dijkstra’s algorithm

has been used in graphical model to find reliability of each path [168]. However, ’shortest paths’

may not be adequate to quantify the level of reliability of the system.

6.2.3 NETWORK ACCURACY INDICATOR (NAI)

To fix this problem, the Network Accuracy Indicator (NAI) has been introduced, which is based

on complex Network Theory (CNT), and an algorithm for evaluating it is shown in Fig. 4. For

a complete power system monitoring and control action, the depth-first search (DFS) has been

used to explore all possible pathways between source node and target node. Then, the routes

denoted by pc that fulfil the latency requirements for a given power source has been filtered

out. Subsequently, for all px ∈ pc, the sum of the natural logarithm of the reliability value of

each cut chv within the path px is determined. Finally, the NAI of the network is measured by
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equation 6.2.

NAI =
1

N(N −1)

R

∏
x=1

1
∏h,v∈VR − logchv

(6.2)

where R is the total number of routes that meet the latency criteria and N is the total

number of ICT components.

6.3 IMPORTANT MEASURES

For quantifying overall reliability of the power system, it is essential to discover metrics that

quantify the relative importance of each node in the network. The two metrics, namely, Struc-

tural Importance (SI) and Total System Efficiency (TSE), have been used for this purpose. These

are described in detail in following subsection.

6.3.1 STRUCTURAL IMPORTANCE

A component’s structural importance (SI) is determined by the system’s dependence on that

component as well as the value it brings to the network’s total efficiency (TSE). The structural

value is calculated by the ratio of the difference between TSE(N) and TSE(N-I), which are the

Total System’s Efficiency with and without node I to TSE(N).

T SE =
1

N(N −1) ∏
i, j∈VR

1
di j

(6.3)

SI =
T SE(N)−T SE(N − I)

T SE(N)
(6.4)

where N denotes the total number of nodes in the network, and di j is the shortest path

distance between node i and node j.
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6.3.2 Network Reliability Deterioration Worth

Risk Achievement Worth (RAW), which calculates the refinement of a component’s reliability

to one to the overall device reliability, is one of the most commonly utilised punitive measure

in nuclear power plant factories. Here, in power system network, it is important to deduce net-

work reliability in terms of risk introduced by each component. Therefore, Network Reliability

Deterioration Worth (NRDW) is defined by the following equation-

NRDW = NAI(1 f )/NAI (6.5)

where NAI stands for Network Accuracy Indicator in a normal state, and NRI(1f) stands

for Network Misfiring Rate Indicator when the component’s misfiring rate is one (i.e., The

component is failed). The component’s castigation is then measured as shown in Equation 5,

where NAI(1f) is when the component’s failure rate is one. When the NRDW is compared to

the structural importance (SI) of a component, it can be deduced that the NRDW offers much

better results than the pure structural index SI for locating the prime component in a network.

6.4 SIMULATION SETUP

Simulation is used in reliability modelling to classify nodes where the grid has the highest

probability of system-level failure and to determine the system’s overall criticality. The custom

simulator based on PSAT [191], an open-source power system simulation environment has been

utilized. The simulator sends a data file that describes the topology of the power grid and the

requirements of the cyber infrastructure. The IEEE-14 bus system is used as a case study as it

is a compact system with a small number of buses and transmission lines. It was important to

begin with a small system in order to obtain a better understanding of the system’s operation

dynamics when line contingencies and distributed generation (DG) sources are implemented.

The proposed method does not require a lot of computing power. The experiment we conducted

can easily be applied to larger systems, such as the IEEE 57 or IEEE 118 bus systems, giving

us a greater understanding of the dynamics of larger systems.

118



Table 6.1: All available paths from source to target.

Path No. Path Reliability Latency

1 1-2 0.81 3ms

2 1-5-2 0.729 4ms

3 1-5-4-2 0.6561 5ms

4 1-5-4-3-2 0.59049 3ms

5 1-5-6-11-10-9-7-4-2 0.387420 4ms

6 1-5-6-11-10-9-7-4-3-2 0.3486784 5ms

7 1-5-6-12-13-14-9-7-4-2 0.3486784 3ms

8 1-5-6-12-13-14-9-7-4-3-2 0.3138105 4ms

9 1-5-6-13-14-9-7-4-2 0.3874204 5ms

10 1-5-6-13-14-9-7-4-3-2 0.3486784 3ms
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Figure 6.2: NRDW index of each node

Figure 6.3: Comparing NRDW index of each node
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Figure 6.4: NRDW values after removal of critical node 5

Figure 6.5: Comparing NRDW index after removal of critical Node 5

6.4.1 Case Study

The IEEE 14-bus test case is a simplified representation of the American Electric Power grid in

February 1962. It has 14 buses, 5 engines, and 11 loads in total. The system’s comprehensive121



data can be found in [100].

6.4.2 Reliability Analysis

The failure rate of each node and the latency of each communication channel are initialized

after the IEEE 14 bus system is modeled in its subsequent graph. The reliability of all N-node

routes from the source to the target node is determined after this initialization. The node 1 is

used as the source and node 2 as the target node in the case study.

The routing strategies and their total latencies are presented in 6.1, taking into account

that the source node has a processing time of 1 sec, the target node’s data collection time and

command execution time are also 1 sec, and other nodes manage signals instantly. The 6.1

signifies that there are 10 different paths available from source node 1 to destination node 2. All

paths have different reliability values chv. Also, all displayed paths fulfill the latency criteria, as

its value has been provided with corresponding paths.

The NAI of the IEEE 14 bus system is determined using equation 6.2, it comes out to be

0.11.

6.4.3 NRDW analysis

After that, each component’s NRDW index is determined using equation 5. The NRDW index

of each node in the system graph is shown in Fig.6.2.

When the findings in Fig.6.3 are contrasted, the structural significance of node 5 and its

effect on the system becomes apparent. Node 8 on the other hand, is not included in any of the

routes and thus has no effect on the system’s reliability.

Fig. 6.4 depicts the network effect of eliminating the most important node 5. The system’s

reliability index NAI decreases to 0.0102 from 0.1000 after node 5 is withdrawn, suggesting a

90% reduction in reliability. As a consequence, the criticality of node 5 can be deduced from

the preceding observations. Node 9 is now the system’s most important node, as seen from Fig.

6.5. After removal of critical node 5 we can see that there is only a single path from source i.e.
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node 1 to the target node 2, so all nodes will have a negligible impact on the criticality of the

system. This can be observed through the below graph. And since the critical node is also the

node after removal of which, the system becomes the most fragmented, we observe that node 9

is the new critical node of the system.

6.5 Conclusion

The graphical computational model has been developed to signify the structural importance

of the ICT components. The model is computationally inexpensive and easy to deploy and

efficient in visualizing the contribution of each node in network reliability. The contributions

are twofold: First, the overall network reliability has been calculated using network accuracy

indicator (NAI) metric. Second, relative importance of each node in the network has been

analyzed using structural importance (SI) and network reliability deterioration worth (NRDW).

Simulations on standard IEEE-14 bus system demonstrate the most and least important node in

contribution to the network reliability according to the NAI calculations. Then, the results of

the network overall reliability after removal of the most important node have been discussed. It

has been shown that removing the node with maximum NRDW can greatly affect the overall

reliability of the network. The graphical model and the metrics introduced in the manuscript

greatly help in assessing the reliability of the power network.
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Chapter 7

Summary and Conclusions

Smart grid is a concept of integrating intelligent electronic devices with the existing power

system network to make it more efficient and smarter, with built-in self-healing capabilities. It

integrates new-age technologies at generation, transmission, and distribution levels of Power

grid, thereby enhancing energy efficiency. Demand-side management plays significant role

in smart grid functionality which helps the consumers to bring down the electricity cost by

reducing the peak load demand through judicial use of electricity using DSM tools.

This work focuses on solving optimization problem of scheduling smart home appliances

using load shifting. Firstly, the challenges related to DSM has been discussed in detail. The

main challenges includes load profile of appliances, RES integration, load categorization, con-

straints, dynamic pricing, consumer categorization, and optimization techniques. HEMS com-

prising smart appliances and PV panel with greater control on electricity consumption is the

integral part of the proposed optimization solution. Smart home consumers can monitor and

control the energy consumption and production of energy, thereby manually controlling the

energy usage within household.

The automated optimization algorithm has been proposed that minimizes electricity cost,

maximizes comfort, and reduces PAR with consideration of consumer privacy. The proposed
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algorithm solves the problem using different types of pricing scheme, accurate forecasting of

appliances’ power, and solar irradiance using deep learning techniques. The highly complex

stochastic problem involving uncertainties of consumer behavior, different types of appliances,

power requirement patterns, and PV power has been solved in different pricing scenarios. The

least slack time based algorithm has been used which output 24 hour schedule of the smart

home appliances using PV power stored in battery at peak time period.

For optimization algorithm to work accurately, there are some pre-requisites. First, solar

irradiance is forecasted based on weather parameters so that the PV power produced by the

PV panel can be determined in advance. This PV power is stored in the battery and is used

to run appliances when the price of electricity is high. This helps the scheduling algorithm to

take correct decisions to run home appliances. Secondly, Consumer behavior learning is the

vital part for making scheduling decisions. Different smart home consumers have varied kind

of appliances and habits. To take scheduling decisions, the power requirement and association

between appliances need to be determined. This greatly helps to maintain the comfort of the

consumer by running appliances according to the time preferred by the consumer.

In this thesis, different algorithms have been devised to solve the DSM multiobjective opti-

mization problem using load shifting.Three major algorithms have been presented to solve vari-

ous problems namely, solar irradiance forecasting, appliances’ power forecasting, and schedul-

ing optimization algorithm, respectively. The algorithms have been proposed and validated

using publicly available data sets and compared with other state-of-art algorithms. The results

obtained from these approaches have been meticulously presented with the detailed discussions

in their respective sections.

• A robust multi-step solar irradiance forecasting using Transformer deep learning model.

To make the model robust, interval prediction is performed using quantile regression. An-

nually as well as season-wise performance of the RSAM model is superior as compared

to other RNN-based models.

• An Ensemble deep learning algorithm has been proposed to estimate the appliance power

requirement of the smart home consumer. Furthermore, the appliance-appliance associa-

tion has been determined using the Dynamic Item Set counting algorithm. In this way, it

provides a complete solution to consumer behavior patterns.

125



• An optimization algorithm using least slack time based algorithm has been proposed

to solve multi-objective optimization problem of minimizing electricity cost without af-

fecting the comfort of consumer. The performance of the proposed algorithm has been

demonstrated under different request patterns, PV generation, and pricing scenarios.

• At final, graphical computation model has been developed and different metrics are de-

vised to quantify system’s reliability assessment in ICT networks.

• An extensive survey of different optimization techniques has been carried out to solve

the problem of multi-objective energy management. All different types of practical chal-

lenges imposed while implementing DSM using load shifting for IoT enabled home en-

ergy management systems (HEMS) have been discussed in detail. It helps the researchers’

community utilize, explore, and contribute to the further development of advanced and

realistic optimization algorithms for DSM implementation.

7.1 Scope for future research

• The more flexible optimization algorithm development incorporating EVs, more appli-

ances, and selling extra power back to grid.

• More generalized algorithm can be developed for consumer behavior learning which can

manage consumer behavior by learning more parameters.

• DSM implementation should also take care of challenges related with the distribution net-

work. The frequency and voltage stability issues, incentive management, and government

policy requirements should be taken into consideration.
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Appendix

Table A1: Accuracy Metrics

Name Acronym & Formulae

Forecast error (ei) ei = GHI f orecast,i −GHIactual,i

RMSE
√

1
N ∑

N
i=1 e2

i

MAE 1
N ∑

N
i=1 |ei|

MBE 1
N ∑

N
i=1 ei
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Table A2: Data-set Information

Parameters Dataset-1 Dataset-2

Location Arizona India

Latitude 36.33 28.35

Longitude -110.74 76.55

Weather Parameters Dew point , cloud

type, wind speed

and direction ,

relative humidity

, precipitable wa-

ter, temperature,

pressure, solar

zenith angle

DNI, dew point,

temperature,

pressure, wind

direction, wind

speed

Climate Type Semi-Arid Subtropical

Size 20 years 14 years

Training Set 1-1-1998 to 31-

12-2017

1-1-2000 to 31-

12-2013

Testing Set 1-1-2018 to 31-

12-2018

1-1-2014 to 31-

12-2014

Data Resolution Half-Hourly Hourly
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Table A3: Optimal Hyper-parameters of RSAM model

Parameters Values Search Range

Training Steps 50 {40, 50, 100}

Dropout rate 0.1 {0.1, 0.2, 0.3}

Mini Batch Size 256 {64, 128, 256}

Sequence Length 256 {64, 128, 256}

Learning Rate 0.001 {0.0001, 0.001, 0.01 }

FFN Size 2048 {512, 1024, 2048 }

Number of Heads 4 {1, 4, 6}
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Table A4: Network Configuration of RSAM model (India)

Layers Input Vector Output Vector

Pr
e-

N
et Input Embedding [1, 256, 15] [1, 256, 32]

Positional Encoding [1, 256, 32] [1, 256, 32]

ReLU [1, 256, 32] [1, 256, 32]

Linear [1, 256, 32] [1, 256, 20]

Batch Normalization [1, 256, 20] [1, 20, 256]

A
tte

nt
io

n Transformer Encoders (4) [256, 1, 20] [256, 1, 20]

Flatten [256, 1, 20] [1, 5120]

Po
st

-N
et

Linear [1, 5120] [1, 512]

ReLU [1, 512] [1, 512]

Linear [1, 512] [1, 1]
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Table A5: Optimal Hyper parameters of Ensemble model

Parameters Values Search Range

Training Steps 50 {40, 50, 100}

Kernel size 3 {2, 3, 4}

Pool Size 2 {2, 3, 4}

LSTM layer size 100 {50, 100, 120}

Learning Rate 0.01 {0.0001, 0.001, 0.01 }

Estimators Size 45 {30, 45, 55 }

Tree depth 5 {3, 5, 6}

Table A6:

Dishwasher Operating Cycles Specifications

Energy Phase Min. Power (W) Max. Power (W) op. time (min)

pre-wash 16.0 140 14.9

wash 751.2 2117.8 32.1

1st rinse 17.3 132.4 10.1

drain 1.6 136.2 4.3

2nd rinse 572.3 2143 18.3

drain & dry 1.7 2.3 52.4
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Table A7:

Washing Machine Operating Cycle Specifications

Energy Phase Min. Power (W) Max. Power (W) op. time (min)

movement 27.2 2100 26

pre-heating 5 300 6.6

heating 206.5 2200 59.7

maintenance 11.0 200 19.9

cooling 10.8 500 10

1st rinse 10.3 700 10.4

2nd rinse 9.9 700 10.3

3rd rinse 23.6 1170 19.8

Table A8:

Dryer Technical Specifications

Energy Phase Min. Power (W) Max. Power (W) op. time (min)

drying 120.5 1454 120.8
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