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Preface

The thesis entitled “Coefficient Estimates and Special Differential Subordinations

of Certain Analytic Functions” is divided into 6 chapters. After chapter 6, the thesis

is concluded with the future scope. The aim at the beginning of each chapter provides

a brief summary of the research work done and concluding remarks at the end of each

chapter gives the highlights of that chapter. We enlist below chapter wise outline of

the research work.

Chapter 1 titled “Introduction" provides a quick overview of the topic. It covers

fundamental concepts, some essential definitions, terminologies and ideas that are

required further to achieve the objectives.

Chapter 2 titled “First Order Differential Subordinations" deals with certain differen-

tial subordination implications involving certain parameters. These implications are

achieved by finding conditions on the parameters. Furthermore, sufficient conditions

for normalized analytic function f to belong to various sub-classes of starlike functions

are obtained as an application of the derived results.

Chapter 3 titled “Certain Exact Differential Subordinations" instigates the concept of

exact differential subordinations, which is analogous to first order exact differential

equations on the real line. Mainly, this chapter involves two special type of exact differ-

ential subordinations to study the newly introduced concept and obtain the dominant

and best dominant for these differential subordinations. Certain applications to uni-

valent functions are appended to this chapter.

Chapter 4 titled “A Special Type of Ma-Minda Function" deals with the extensive

study on Ma-Minda functions based on its deep rooted conditions and it’s geometrical

aspects. Following which, a special type of Ma-Minda function Φ is introduced and

the classes S∗(Φ) and C(Φ) are defined. A newly defined subclass of starlike functions

involving a special type of Ma-Minda function 1− log(1+z) studied here for obtaining

inclusion and radius results. In addition, majorization and Bloch function norm

xi



related results are discussed.

Chapter 5 titled “Coefficient Estimates of Certain Analytic Functions", establishes

bounds of various initial coefficients, certain Hankel determinants for functions in

both type of classes, involving Ma-Minda function and the special type of Ma-Minda

function. Studied the special cases for each of the classes for certain coefficient es-

timates. The bounds obtained are all sharp, among which finding the sharp third

Hankel determinant for functions in the class associated with lemniscate of Bernoulli

is the key feature of this chapter, which was open until now.

Chapter 6 titled “A Novel Subclass of Starlike Functions" deals with defining a new

subclass S ∗
α of starlike functions involving a real part and modulus of certain expres-

sions, combined by way of an inequality. It is also inferred that this class reduces to

a class S∗(qα), involving subordination and the subordinating function qα, which is

well-known in the literature with certain interesting properties. Certain inclusion and

radius results are deduced for functions in the classes S ∗
α and S∗(qα). Furthermore,

various sharp coefficient estimates are obtained for functions in S∗(qα).

Finally, the bibliography and list of author’s publications have been given at the end

of the thesis.

xii
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Chapter 1

Introduction

This chapter presents a brief review of the past and present developments in the field of

Geometric Function Theory. As a result, the current chapter establishes a context, explains the

purpose of thesis work, and offers instruments for achieving the objectives. The aim, therefore,

is to describe the important definitions, concepts and techniques that we will need in our

upcoming chapters.

1
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1.1 Preliminaries

The theory of univalent functions traces its roots back to the early twentieth century

and has emerged as one of the most popular branches of Complex Analysis. There is

still much research being done in this area today. Since many remarkable properties

of univalent functions can be reliably derived from simple geometric considerations,

therefore the subject falls under the geometric function theory (GFT). This theory

encompasses a vast topic for which substantial literature now exists, notably those

are Duren [21], Goluzin [24], Pommerenke [83], Hayman [33], Graham and Kohr [26]

and Thomas et al. [110]. The textbook by Goodman [25] entails an encyclopedia of

univalent function theory and presents a wide range of results in the field. In fact,

a paper by Koebe [44] in 1907 laid down the foundation stone for the topic and few

years later in 1914, it was progressed by Gronwall’s proof of area theorem. Eventually

the Bieberbach conjecture which was proposed in 1916 is the turning point and root

cause for the vast literature in the field at present. A comprehensive bibliography and

topic reference on the subject have been compiled by Bernardi [10]. The books written

by Hallenbeck and MacGregor [30] and Jenkins [37] are some additional resources on

univalent functions.

A single valued function f (z), which is analytic except at most one simple pole

is said to be univalent in a domain D if it is one-one in D or if it takes no more

than one value in D. That is, whenever f (z1) = f (z2) then z1 = z2 for z1 and z2 in D.

Analytically, a univalent function has a non-zero derivative everywhere in its domain

and geometrically, it maps simple curves onto simple curves. Our interest lies in the

functions that are analytic and univalent in open unit diskD= {z ∈C : |z|< 1}. Since the

celebrated Riemann Mapping Theorem ensures that any simply connected domain

D , C is conformally equivalent to the unit disk D, we restrict the domain of these

functions to beD. The properties of univalent functions defined on simply connected

domains D and unit disk D are therefore equivalent and are expressed through the

Riemann mapping from D onto D. The selection of D as the domain of functions is

also crucial due to the fact that the only functions that are analytic and univalent in C

are of the form az+ b (a , 0).

Let H[a,n] denote the class of analytic functions f defined on D, having the form

f (z) = a+ anzn + an+1zn+1 + · · · , where n is a positive integer and a, ai ∈ C for all i ≥ n

with an , 0. Let A be the subclass of H[0,1] consisting of analytic functions, which
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are normalized by the conditions f (0) = 0 and f ′(0) = 1. Therefore, the Taylor series of

such functions will be of the form:

f (z) = z+ a2z2+ a3z3+ · · · . (1.1.1)

Note that the analytic and univalent nature of a function do not get altered by its trans-

lation, rotation or stretching (shrinking). Therefore, we generally consider the subclass

S of A, consisting of normalized analytic univalent functions of the form (1.1.1). In

fact, the classS is compact due to the normalization whereas the space of analytic and

univalent functions is not compact inD.

Let us now consider the well-known Koebe function

k(z) :=
z

(1− z)2 = z+2z2+3z3+ · · ·nzn+ · · · ∈ S, (1.1.2)

which maps the unit disk onto the entire complex plane minus the slit on the negative

real axis from −∞ to −1/4 and is the largest function in S.

1.2 Certain Classes of Analytic Functions

Let us recall certain subclasses of S that are governed by geometric conditions. A

domain D is said to be starlike with respect to ζ0, an interior point of D, if each ray

initiating from ζ0 intersects the interior of D in a domain that is either a line segment

or a ray. A domain is said to be convex if it is starlike with respect to each of its interior

point. That is, in simple words, a domain D is starlike if every point of D is visible

from ζ0 whereas it is convex, if all points of the domain are visible from each of its

point. The character of a function is decided by a domain to which it maps the unit

disk. Accordingly, if f maps unit disk onto a starlike domain with respect to ζ0, then

it is said to be starlike with respect ζ0 and if f mapsD onto a convex domain, then it

is called a convex function. If ζ0 = 0, then we simply say f is a starlike function. The

function f (z)= zexp(z), which mapsD onto a cardioid shape domain is an example of a

starlike function and 1(z) = exp(z) is an example of a convex function. The sub-classes

of S consisting of starlike and convex functions are denoted by S∗ and C, respectively.

Note that every convex function f is starlike with respect to every point in the domain

f (D), hence every convex function is a starlike function but the converse need not be

true. The well-known Koebe function k(z), given by (1.1.2) is an example of a starlike
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function which is not convex. Moreover, k(z) is a starlike function with respect to each

ζ0 > −1/4.

Closely connected to the classes S∗ and C is the Carathéodory class P, consisting of

analytic functions p of the form

p(z) = 1+p1z+p2z2+ · · · = 1+
∞∑

n=1

pnzn, (1.2.1)

having positive real part in D. The functions in class P need not be univalent. For

instance, 1+zn (n≥ 1) belongs toP but is not univalent for n≥ 2. The univalent Möbius

function

ξ(z) =
1+ z
1− z

= 1+2z+2z2+ · · · ,

works in P as Koebe function works in class S, therefore ξ(z) is the largest function

in P, which maps the unit disk onto the right half plane. The function ξ(z) maximizes

|pn| in P, however there exist an unlimited number of additional functions with pn = 2

for n ≥ 2, none of which can be produced by rotation of the other.

The relation of class P to the theory of univalent functions is studied independently

by Noshiro [76] and Warschawski [113], given as :

Theorem A. (Noshiro and Warschawski Theorem) Suppose Re(eiα f ′(z)) > 0 holds for

all z in a convex domain D for some real α. Then f (z) is univalent in D.

This result serves as a sufficient condition for univalency of analytic functions. The

analytic characterization of starlike and convex functions in terms of functions having

positive real part is given, respectively as follows:

We have f ∈ S∗ if and only if

Re
(

z f ′(z)
f (z)

)
> 0 (z ∈D),

equivalently, z f ′(z)/ f (z) ∈ P. A function f ∈ C if and only if 1+z f ′′(z)/ f ′(z) ∈ P, that is

Re
(
1+

z f ′′(z)
f ′(z)

)
> 0 (z ∈D).

Starlikeness and convexity are inherited properties in the sense that every starlike

(convex) function maps each disk |z| < r < 1 onto a starlike (convex) domain. There

is a two way bridge between the classes S∗ and C, given by the following analytic

connection, first noticed by Alexander [2] in 1915.
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Theorem B. (Alexander’s Theorem) Let f ∈A. Then f ∈ C if and only if z f ′(z) ∈ S∗.

As an interesting example for this result, we consider f (z)= z/(1−z) ∈C, which maps

D conformally onto the half plane Re(w)>−1/2. Therefore z f ′(z)= k(z)= z/(1−z)2
∈S
∗.

We now discuss one of the remarkable concepts for analytic functions in univalent

function theory, called subordination. The subordination of two functions of a complex

variable is a natural generalization of inequality of functions of a real variable. This

concept has historical roots in 1909 paper by Lindelöf [57], but a few years later is

credited to Littlewood [58, 59] and Rogosinski [93, 94] for introducing the term and

formulating its basic characteristics. This concept asserts f (z) is subordinate to 1(z),

denoted by f (z) ≺ 1(z), if f (z) = 1(ω(z)), where ω is a Schwarz function, that is, ω(0) = 0

and |ω(z)| < 1. The essential case is when the subordinating function is univalent. Let

1 be univalent in D, then f (z) ≺ 1(z) if and only if f (0) = 1(0) and f (D) ⊂ 1(D). As

a consequence, many subclasses of S in the theory of univalent functions have been

characterized by utilizing the idea of subordination (see [22, 34, 48, 65, 100]).

Let 1 and h be analytic functions of the form, respectively

1(z) = z+
∞∑

n=2

1nzn and h(z) = z+
∞∑

n=2

hnzn. (1.2.2)

Then the convolution of 1(z) and h(z) is defined as

(1 ∗h)(z) = z+
∞∑

n=2

1nhn zn.

In the honor of Hadamard, it is also known as Hadamard product of 1 and h. Using

convolution and subordination concepts, we introduce the following fundamental

class and point out that many well-known classes are special cases of this class.

A(1,h,φ) =
{

f ∈A :
( f ∗1)(z)
( f ∗h)(z)

≺ φ(z),φ is analytic univalent inD and φ(0) = 1
}
.

(1.2.3)

In 1985, Padmanabhan and Parvatham [81], considered the class A(Ka ∗ 1̃,Ka ∗ h̃,φ),

where Ka(z) = z/(1− z)a (a ∈ R), 1̃(z) := z/(1− z)2 and h̃(z) := z/(1− z) by imposing

additional conditions on φ, namely it is convex and Reφ > 0. Later in the year 1989,

Shanmugam [96] extendedA(Ka ∗ 1̃,Ka ∗ h̃,φ) toA(1 ∗ 1̃,1 ∗ h̃,φ) by considering a more

general 1 in place of Ka(z). In 1992, Ma and Minda [61] further tweaked the conditions

on φ, which we shall denote by ϕ to introduce their immensely important classes,
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namely

S
∗(ϕ) =

{
f ∈ S :

z f ′(z)
f (z)

≺ ϕ(z)
}

and C(ϕ) =
{

f ∈ S : 1+
z f ′′(z)

f ′(z)
≺ ϕ(z)

}
, (1.2.4)

where ϕ(z) has a positive real part inD, ϕ(D) is symmetric with respect to the real axis

and starlike with respect to 1 with ϕ′(0) > 0, in addition to the properties of φ given

in (1.2.3). Let the Taylor series expansion of such ϕ(z) be of the form:

ϕ(z) = 1+B1z+B2z2+B3z3+ · · · (B1 > 0). (1.2.5)

Note that S∗(ϕ) :=A(1̃, h̃,ϕ) and C(ϕ) :=A(1́, 1̃,ϕ) whenever f is univalent and 1́(z) :=

(z+ z2)/(1− z)3. Ever since Ma-Minda introduced the class S∗(ϕ), defined in (1.2.4), a

good many subclasses of starlike functions emerged out. To list a few, we have for

ϕ(z) = (1+ z)/(1− z), the above classes (1.2.4), respectively reduces to S∗, the class of

starlike univalent functions and C, the class of convex univalent functions. Over the

years, the classes defined in (1.2.4) were studied extensively for different choices of ϕ.

Prominently, for ϕ(z) := (1+Az)/(1+Bz), S∗[A,B] :=S∗((1+Az)/(1+Bz)), is the class of

Janowski starlike functions [34], where −1 ≤ B <A ≤ 1. For A = 1 and B = −1, this class

reduces to the class of normalized starlike functions, S∗[1,−1] :=S∗((1+z)/(1−z)) and

for A = 1− 2ν (0 ≤ ν < 1) and B = −1, this is the class of starlike functions of order ν,

S
∗(ν) := S∗((1+ (1−2ν)z)/(1− z)), defined as

S
∗(ν) :=

{
f ∈ S : Re

(
z f ′(z)

f (z)

)
> ν

}
.

Note that S∗ := S∗(0). Another interesting class is the class of starlike functions f of

reciprocal order ν, which satisfies the condition:

Re
(

f (z)
z f ′(z)

)
> ν (z ∈D).

The class of convex functions of order ν (0 ≤ ν < 1) is defined as

C(ν) :=
{

f ∈ S : 1+
z f ′′(z)

f ′(z)
> ν

}
.

Note thatC :=C(0). Robertson [90] introduced the classesS∗(ν) andC(ν) and functions

in either of these fail to be univalent for ν < 0. Moreover, the generalization of the result

by Alexander, given in Theorem B, is defined as: f ∈C(ν) if and only if z f ′(z) ∈S∗(ν). Let
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M(κ) andN(κ) be the sub-classes ofS consisting of the functions f which respectively,

satisfy the following

Re
(

z f ′(z)
f (z)

)
< κ and Re

(
1+

z f ′′(z)
f ′(z)

)
< κ (κ > 1;z ∈D).

Uralegaddi et al. [111] investigated the class N(κ) for 1 < κ < 4/3. For ϕ(z) :=
√

1+ z,

Sokół and Stankiewicz [105] introduced the class of analytic functions associated with

lemniscate of Bernoulli, SL∗ := S∗(
√

1+ z). Functions satisfying | log(z f ′(z)/ f (z))| < 1,

belong to the class S∗e :=S∗(ez), introduced by Mendiratta et al. [65]. For ϕ(z) :=

((1+z)/(1−z))η, S∗(ϕ) reduces to the class of strongly starlike functions of order η [11]

and is given by

SS
∗(η) := { f ∈ S : |arg(z f ′(z)/ f (z))| < ηπ/2}, (0 < η ≤ 1),

or equivalently SS∗(η) := { f ∈ S : z f ′/ f ≺ ((1+ z)/(1− z))η}. The specialty of this class

lies in the fact that it helps to study the function in terms of argument estimates. For

η = 1, it simply reduces to the class S∗. For ϕ(z) := ((1+ cz)/(1− z))(η1+η2)/2, Liu and

Srivastava [60] introduced the class

SS
∗(η1,η2) = { f ∈ S : −η2π/2 < arg(z f ′(z)/ f (z)) < η1π/2} (0 < η1,η2 ≤ 1), (1.2.6)

or equivalently

SS
∗(η1,η2) = { f ∈ S : z f ′/ f ≺ ((1+ cz)/(1− z))(η1+η2)/2

}, (1.2.7)

where η = (η1 − η2)/(η1 + η2) and c = eηπi. Since the functions belong to the class

SS
∗(η1,η2), given in (1.2.6), map the unit disk onto sectors which are not symmetric

with respect to the real axis whenever η1 , η2, we call the subordinating function ((1+

cz)/(1−z))(η1+η2)/2 as an oblique sector function. Note thatSS∗(η) :=SS∗(η,η).Sokół [102]

introduced the class S∗(qc), where qc =
√

1+ cz (0 < c ≤ 1). MacGregor [62] studied the

class R = { f ∈ A : Re f ′(z) > 0}. Let SP :=S∗(ϕPAR(z)), introduced by Rønning [95], the

class of parabolic starlike functions, where

ϕPAR(z) := 1+
2
π2

(
log

1+
√

z
1−
√

z

)2

, Im
√

z ≥ 0.

Consider the class k−ST (k ≥ 0) of k− starlike functions, which was introduced by
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Kanas and Wisniowska [39] as follows:

k−ST =
{

f ∈ S : Re
(

z f ′(z)
f (z)

)
> k

∣∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣∣} (z ∈D),

for k = 1, the above class coincides with SP and characterized by the condition

Re
(
z f ′(z)/ f (z)

)
>

∣∣∣z f ′(z)/ f (z)−1
∣∣∣ (z ∈D). Further, k−ST was generalized by adding a

parameter α and defined by a condition

Re
(

z f ′(z)
f (z)

)
> k

∣∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣∣+α (z ∈D),

denote by ST (k,α). Let us consider the domain Ωk,α = {w ∈ C : Rew > |w− 1|+ α},

whose boundary represents an ellipse for k > 0, a parabola for k = 1 and a hyperbola

for 0 < k < 1.

In 1952, Kaplan [40] introduced an interesting subclass of S containing S∗, the class

of close-to-convex functions. An analytic function f is said to be close-to-convex if for

some convex function 1, we have

Re
(

f ′(z)
1′(z)

)
> 0 (z ∈D).

The class of such functions is denoted by K . It is worth noting that 1 does not have

to be normalized and f does not have to be univalent from the start. Eventually,

every close-to-convex function is proved to be univalent. An equivalent condition for

function to be close to convex, in terms of starlike functions is given by:

An analytic function f is close-to-convex if there exists a starlike function h such that

Re
(
z f ′(z)/h(z)

)
> 0, (z ∈D). By these conditions, one can infer that every convex as

well as starlike function is close-to-convex. The chain of inclusion can be now given

as:

C ⊂ S
∗
⊂K ⊂ S.

Mocanu [69] unified the class of convex and starlike functions by considering their

combination and introduced a class of ρ− convex functions of the form f (z) = z+∑
∞

n=2 anzn, which are analytic inDwith f (z) f ′(z)/z , 0 and satisfies

Re
(
ρ

(
1+

z f ′′(z)
f ′(z)

)
+ (1−ρ)

z f ′(z)
f (z)

)
> 0.

The set of all such functions is denoted by ρ−CV. These functions are starlike and
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univalent for all real ρ. Rogosinski [92] introduced the class of typically real functions

which are analytic with real coefficients in the power series expansion (1.1.1), satisfying

si1n(Im f (z)) = si1n(Imz),

for every non real z in D. This class is denoted by TR. In picturesque language such

typically real functions are those which map the upper (lower) half ofD to the upper

(lower) half of the image domain.

1.3 Coefficient Estimates

The extremal and maximal properties of the Koebe function, belonging to S, laid the

foundation for Coefficient Conjecture in the theory of univalent functions, which was

proposed by Bieberbach in 1916, stated as follows:

Bieberbach Conjecture: Let f ∈ S be of the form (1.1.1), then |an| ≤ n (n ≥ 2). The

equality holds for all n only if f is the Koebe function or one of its rotations.

In the same year, Bieberbach proved |a2| ≤ 2 for functions of the form (1.1.1), in S,

using Gronwall Area Theorem [28]. Bieberbach came up with the conjecture largely

due to this result. Few years later only, in 1923, Löwner solved this problem for n = 3

with devising an inventive way by considering a class of functions described by a

differential equation that are dense in S. This method not only answered the Bieber-

bach problem in the case n = 3, but was also utilised to determine the sharp bounds

for the coefficients of the inverse function of f ∈ S (see [33]). Even more importantly,

de Branges employed Löwner’s theory in his famous proof of the Bieberbach Con-

jecture. In 1925, Littlewood proved that |an| < en for all n, where e ≈ 2.718. Later on

in 1955, Garabedian and Schiffer gave a proof for |a4| ≤ 4 using variational method.

In 1968 and 1969, Pederson and Ozawa independently proved that |a6| ≤ 6. Then

in 1972, Pederson and Schiffer used the Garabedian-Schiffer inequality to establish

|a5| ≤ 5. This well-known conjecture stood as a challenge for many mathematicians

until it was proved affirmatively by Louis de Branges in 1985, which is given in the

second edition of the book “Multivalent Function" by Hayman [33]. He proved the

conjecture using certain inequalities of special functions. The various attempts used

to solve this conjecture resulted in the development of several new techniques such

as convolution, subordination and others. Moreover, the proof of this conjecture and

the result itself both play a key role in various discoveries in the subject. Covering
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Theorem by Koebe is among one of these, which is stated as below:

Theorem C. (Koebe-One-Quarter Theorem). The range of every function in S con-

tains the disk {w : |w| < 1/4}.

Basically, this Theorem is a sharp version of the result proved by Koebe in the

year 1907, which states that there exist a constant k > 0 for which the disk |w| < k is

contained in the range of every function in S. Later, Bieberbach applied the bound

of the second coefficient for functions in S to obtain the value of k to be 1/4. In fact,

Bieberbach Conjecture, Koebe-One Quarter Theorem and Area Theorem account for

the first sharp results for univalent functions. Bieberbach Conjecture also leads to

some geometrical aspects of functions in S such as distortion and growth theorems.

For each n ≥ 2, Zalcman conjectured the following coefficient inequality for the class

S:

|a2
n− a2n−1| ≤ (n−1)2.

The above inequality also implies the Bieberbach Conjecture |an| ≤ n (see [12]). This

paved a way to the famous coefficient estimate problem in univalent function theory.

Coefficient Problem: If f belongs to some particular class, then finding the bounds of

coefficients of f is called the coefficient problem.

In this direction, many authors have obtained initial coefficient bounds, logarithmic

and inverse coefficient bounds for functions in various subclasses of S, one may refer

to [87,88,99,103,117]. There are certain coefficient results pertaining to the concept of

subordinations, for instance, the Rogosinski result [93], which is as follows:

n∑
k=1

|1k|
2
≤

n∑
k=1

|hk|
2, n = 1,2, · · · ,

holds whenever 1 ≺ h, where 1 and h are defined by (1.2.2). Many authors have

made remarkable contributions related to the coefficient bounds for functions in

Carathéodory class, some of which are listed below:

Lemma A. (Carathéodory Lemma.) Let p ∈ P of the form p(z) = 1+p1z+p2z2+p3z3+

· · · = 1+
∑
∞

n=1 pnzn, then

|pn| ≤ 2 (n ≥ 1).

The inequality is sharp.
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Ma and Minda [61] gave the following result:

Lemma B. [61] Let p ∈ P be of the form 1+
∞∑

n=1
pnzn. Then

|p2−vp2
1| ≤


−4v+2, v ≤ 0;

2, 0 ≤ v ≤ 1;

4v−2, v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p(z) is (1+ z)/(1− z) or one of its

rotations. If 0 < v < 1, then the equality holds if and only if p(z) = (1+ z2)/(1− z2) or

one of its rotations. If v = 0, the equality holds if and only if p(z) = (1+α)(1+ z)/(2(1−

z))+ (1−α)(1−z)/(2(1+z))(0 ≤ α ≤ 1) or one of its rotations. If v = 1, the equality holds

if and only if p is the reciprocal of one of the functions such that the equality holds in

the case of v = 0. Though the above upper bound is sharp for 0 < v < 1, still it can be

improved as follows:

|p2−vp2
1|+v|p1|

2
≤ 2 (0< v≤ 1/2) and |p2−vp2

1|+ (1−v)|p1|
2
≤ 2 (1/2≤ v< 1). (1.3.1)

In 1958, Grenander and Szegö [27] obtained the following sharp inequalities.

Lemma C. Let p ∈ P with coefficients pn as above, then

|p3−2p1p2+p3
1| ≤ 2 and |p4

1−3p2
1p2+p2

2+2p1p3−p4| ≤ 2. (1.3.2)

In 1982, Libera and Złotkiewicz [56] gave the formulae of p2, p3 and recently in

2018, Kwon et al. [52] obtained p4 in terms of p1, where p′is are the coefficients of

Carathéodory functions.

Lemma D. Let p ∈ P and of the form 1+
∞∑

n=1
pnzn. Then

2p2 = p2
1+γ(4−p2

1), (1.3.3)

4p3 = p3
1+2p1(4−p2

1)γ−p1(4−p2
1)γ2+2(4−p2

1)(1− |γ|2)η, (1.3.4)
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8p4 = p4
1+ (4−p2

1)γ(p2
1(γ2
−3γ+3)+4γ)−4(4−p2

1)(1− |γ|2)(p1(γ−1)η+γη2
− (1− |η|2)ρ),

(1.3.5)

for some ρ, γ and η such that |ρ| ≤ 1, |γ| ≤ 1 and |η| ≤ 1.

In 2015, Ravichandran and Verma [87] established another important coefficient

bound for functions in the class P.

Lemma E. [87] Let a, b, c and d satisfy the inequalities 0 < c < 1, 0 < d < 1 and

8d(1−d)((cb−2a)2+ (c(d+ c)−b)2)+ c(1− c)(b−2dc)2
≤ 4c2(1− c)2d(1−d).

If p = 1+
∑
∞

k=1 pkzk
∈ P, then

|ap4
1+dp2

2+2cp1p3− (3/2)bp2
1p2−p4| ≤ 2.

Bieberbach Conjecture holds for functions in S∗ as well, which was proved by

Nevanlinna. For functions in C, it is known that |an| ≤ 1. Following these coefficient

bounds results, many authors obtained initial coefficient estimates for functions in

various subclasses of S, see [56, 87, 88, 103].

Coefficient bounds do not limit to the estimation of initial coefficients, it also includes

finding bounds, wherein coefficients are involved such as Fekete-Szegö functional and

other Hankel determinants for certain analytic functions [16, 80, 118].

Hankel Determinants

For a function f ∈A, the qth Hankel determinant, where q, n ∈N is defined as follows:

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
. . .

...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

initially considered in [82] and has been studied by several authors. It also plays an

important role in the study of singularities (see [19]). Noor [75] studied the rate of

growth of Hq(n) as n→∞ for functions in Swith bounded boundary.

Note that the Hankel determinant H2(1) := a3−a2
2 coincides with the famous Fekete-

Szegö functional. In the year 1983, Bieberbach [25] estimated the bound of |H2(1)| for
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functions in the class S. In 1933, Fekete and Szegö, obtained the sharp bounds of

|a3−µa2
2| for f ∈ S, µ is real and the problem of finding sharp bounds for non-linear

functional |a3−µa2
2| is known as Fekete-Szegö functional bounds. Numerous papers

have been published on Fekete-Szegö inequality for various subclasses of analytic

functions, to name a few, one can refer the paper by Ma and Minda [61] and the paper

by Keogh and Merkes [43]. A brief history of Fekete-Szegö problems for the class of

starlike, convex, and close to convex functions is available in a paper by Srivastava et

al. [107]. The computation of the upper bound of |Hq(n)| for several subclasses of S

has always been a trendy problem in the field of geometric function theory. Recently,

Zaprawa [114] obtained the upper bound of |H2(n)| for the class of typically real

functions. The computation for the bound of |H2(2)|, where H2(2) := a2a4− a2
3 requires

the formulae of p2 and p3 in terms of p1, where p′is are the coefficients of the functions

in the Carathéodory class P. In the past, many authors obtained bounds of |H2(2)| for

the subclasses of analytic functions (see [9, 32, 36, 55]). Janteng et al. [35, 36] deduced

the following bounds:

|H2(2)| ≤


1 for f ∈ S∗,

1/8 for f ∈ C,

4/9 for f ∈ R.

Another type of second Hankel determinant is

H2(3) =

∣∣∣∣∣∣∣a3 a4

a4 a5

∣∣∣∣∣∣∣ = a3a5− a2
4.

Zaprawa [116] investigated this Hankel determinant H2(3) for several classes of univa-

lent functions. The estimate of the upper bound of the third order Hankel determinant,

which is given by

H3(1) =

∣∣∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣∣ = a3(a2a4− a2
3)− a4(a4− a2a3)+ a5(a3− a2

2), (1.3.6)

requires the sharp bounds of the initial coefficients (a2, a3, a4 and a5), Fekete-Szegö

functional, second Hankel determinant H2(2) and the quantity L := |a4 − a2a3|. The

first article on H3(1) came in 2010, where Babalola [8] established the upper bound of

|H3(1)| for S∗, C and R by estimating each term in (1.3.6). Later, it was in 2017 when
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these upper bounds were improved by Zaprawa [115] as:

|H3(1)| ≤


1 for f ∈ S∗,

49/540 for f ∈ C,

41/60 for f ∈ R.

He claimed these to be not sharp yet. Until now the upper bound of |H3(1)| was

obtained using triangle inequality in (1.3.6), as follows:

|H3(1)| ≤ |a3||H2(2)|+ |a4||L|+ |a5||H2(1)|,

(see [8, 46, 88, 115]). The third Hankel determinant problem became interesting only

after the well-known formula of expressing p4 in terms of p1 which was recently

obtained by Kwon et al. [52], where p′is are defined in (1.2.1). Generally, it serves as a

basic method to obtain sharp bounds in the case of third order Hankel determinant.

This technique is employed by us in chapter 5 for achieving the sharp bounds of

|H3(1)| and |H2(3)| for functions in SL∗. In fact, following the result of Kwon et al. [52],

in 2019, the authors [53] were also able to derive the bound |H3(1)| ≤ 8/9 for f ∈ S∗,

which is an improvement over the earlier bounds. In the similar direction, recently,

Kowalczyk et al. [45] and Lecko et al. [54] obtained the sharp bounds for functions in

C and S∗(1/2), respectively, as |H3(1) ≤ 4/135 and |H3(1)| ≤ 1/9.

It is also worth noting that recently, the bound of third order Hankel determinant

for functions in S∗ was further improved to 5/9 by Zaprawa et al. [118], by expressing

the coefficients of f ∈ S∗ in terms of the corresponding coefficients of the Schwarz

function. This approach differs from the usual one, wherein the coefficients of f ∈ S∗

are expressed by the corresponding coefficients of Carathéodory function.

1.4 Differential Subordinations

The concept of differential subordination helps one in finding the character of an

analytic function provided prior knowledge of the necessary geometric details related

to the function or its derivative are known. The study of differential subordination

began in 1981 with the remarkable work "Differential subordination and univalent

functions" by Miller and Mocanu [66]. While working in the field of univalent func-

tions, they began exploration in the development of this field. It all started with a 1974
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paper written jointly with Maxwell O. Reade, which has the result as: Let α be real

and p be analaytic inD, then Re
(
p(z)+α zp′(z)

p(z)

)
> 0⇒ Rep(z) > 0. This result deals with

finding the properties of a function’s range from the known range of a combination of

the function’s derivatives. A differential subordination in the complex plane is analo-

gous to that of a differential inequality on the real line. On real line f ′(x) > 0 implies

f is an increasing function. There are various differential implications in the theory

of complex-valued functions, where a function’s characterization can be found from

a differential condition. One such example is Noshiro-Warschawski, which provides

the criterion for univalence of analytic functions based on a differential condition.

There has been a dispersion of differential implications, until the recent invention

of the theory of differential subordination. Miller and Mocanu [67] discussed the

general theory of differential subordinations of first, second and third orders and is

enriched with various results related to it. This monograph furnishes the definition

of differential subordination as follows:

Definition 1.4.1. (Differential Subordination) Letψ :C2
×D→C and let h be univalent

inD. If p is analytic inD and satisfy the (first order) differential subordination

ψ(p(z),zp′(z);z) ≺ h(z), (1.4.1)

then p is called a solution of the differential subordination.

The univalent function q is called a dominant of the solution of the differential sub-

ordination, or more simply a dominant, if p ≺ q for all p satisfying (1.4.1). A univalent

dominant q̃ that satisfies q̃ ≺ q for all dominant q of (1.4.1) is called the best dominant.

Note that best dominant is unique up to the rotation ofD. The first important results

of first-order differential subordinations were dealt by Goluzin [23] and by Robin-

son [91]. This theory ushered a great change, attracting a slew of researchers to apply

this technique to the study of univalent functions. Several additional applications or

extensions of the theory began to emerge, and hundreds of publications on the subject

have emerged in the literature since then, to list a few [3, 13, 14, 50, 98, 106].

Fascinatingly, the consistent study in this topic led authors to introduce various

special types of differential subordinations. For instance, the following first-order

differential subordination

p(z)+
zp′(z)
βp(z)+γ

≺ h(z),

is called the Briot-Bouquet differential subordination, the name of which is inspired
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by the Briot-Bouquet type of differential equation of the form q(z)+ zq′(z)
βq(z)+γ = h(z). This

differential subordination has a huge number of applications in univalent function the-

ory. Following which, recently Kanas and Kowalczyk [38] discussed the general case

of the Briot-Bouquet differential subordination involved in the Bernoulli differential

equation. The authors named this special type as Briot-Bouquet-Bernoulli differen-

tial subordination. Likewise, in chapter 3, we also introduce another special type of

first-order differential subordination, namely exact differential subordinations.

Summary of the Thesis

In the present investigation, we chiefly deal with the differential subordination impli-

cations, coefficient estimates, radius and inclusion results for certain classes associated

with Ma-Minda functions or a special type of Ma-Minda functions. In this direction,

second and third chapters deal with the differential subordination implications and

their applications associated with Ma-Minda functions. In addition, we find sufficient

conditions for analytic functions to belong to various subclasses of S∗ in the second

chapter and in the third chapter, we introduce a new concept of exact differential

subordinations and obtain the best dominants of the solution of this special type of

differential subordinations. In chapter 4, we examine and study the conditions im-

posed on Ma-Minda functions and their significance. As a consequence, introduce a

special type of Ma-Minda function by changing the orientation of Ma-Minda function

and study a newly defined class involving it for certain radius and inclusion results.

The chapter 5 deals with the estimation of sharp coefficient bounds for functions in

fundamental class, which specializes several well-known classes of analytic functions,

defined with the help of convolution and subordination. Consequently, many of the

bounds of our class reduce to already known bounds of some well-known classes as

a special case. The sharp bound of third order Hankel determinant for functions in

the class SL∗ is the key feature of this chapter. The last chapter deals with a newly

defined class of analytic functions by considering an inequality involving real part

and modulus of certain expressions of functions. This class implies another subclass

ofS∗, defined by the subordination having a well-known subordinating function. Fur-

thermore, derive radius and inclusion results in addition to the coefficient problems

for functions in these classes, which are under study.



Chapter 2

First Order Differential Subordinations

In this chapter, we establish sufficient conditions for normalized analytic functions to belong

to certain subclasses of starlike functions as an application of our derived differential subor-

dination implication results, namely, ψ(p) := pλ(z)(α+βp(z)+γ/p(z)+δzp′(z)/p j(z)) ≺ h(z)

( j = 1,2) implies p ≺ q, where h := ψ(q) and q belongs to the class P. This is achieved by

finding conditions on α, β, γ, δ and λ. In addition, we deduce the results related to argument

estimation of h, when q(z) = ((1+ z)/(1− z))η (0 < η ≤ 1).

17
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2.1 Introduction

The differential subordination implication results have a wide range of applications

in the theory of differential subordinations as it provides the sufficient conditions

for starlikeness or univalency of certain analytic functions. In this direction, the

Lemma 2.2.1, given by Miller and Mocanu [67] is the source of inspiration and is the

backbone of many such results. Authors, namely, Sharma and Ravichandran [98] and

Ahuja et al. [1] established certain applications of first order differential subordina-

tions. Recently, the authors Ravichandran and Kumar [85] obtained some sufficient

conditions for analytic functions p in D to satisfy certain differential subordination

and in particular to have a positive real part.

Motivated by this, we investigate certain differential subordination implications by

finding conditions on the parameters involved in it, in this chapter. We deal with the

following two admissible classes of analytic functions:

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺ h(z)

and

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺ h(z), (2.1.1)

which implies p(z) ≺ q(z), where h is univalent and q(z) ∈ P. Several authors, namely,

Cho and Kim [13, 14], Cho et al. [18], and Liu and Srivastava [60] have evolved the

concept of finding conditions on the parameters involved in the first order differential

subordinations in order to prove p(z) ≺ ((1+ z)/(1− z))η, (0 < η ≤ 1) by satisfying the

condition |arg(ψ(p(z),zp′(z))| ≤ arg(h(z)). As a consequence, we derive results related

to argument estimation of function h when q is taken to be ((1+ z)/(1− z))η.

Before we proceed to the main results, an important remark is presented below,

which is used in almost all of the proofs.

Remark 1. (i) Let the function f be analytic in a bounded domain D and continuous

on D. (ii) Suppose that u(x, y) is a real part of non-constant analytic function f on

a bounded domain D and u(x, y) is bounded below (above) in D. If either of the

conditions (i), (ii) holds, then the real part of an analytic function f attains its mini-

mum (maximum) value, on the boundary of D, by Minimum (Maximum) Modulus

Theorem.
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We provide below some examples justifying Remark 1, which are associated with a

complex variable.

Example 1. (i) Consider the function f (z) = z/(1− z), (z ∈ D). Now, to obtain the

maximum/minimum value of the real part of f (z) on the bounded domain D, either

of the above two conditions of Remark 1 should hold. Clearly, (i) fails as the function

f (z) is not continuous onD. If we take z = x+ iy (x2+ y2 < 1), then

Re f (z) =
x−x2

− y2

(1−x)2+ y2 =: f̃ (x, y).

Intuitively, the function f̃ (x, y) is unbounded when x tends to 1 and y tends or equal

to 0. Consider the following two cases where f̃ (x, y) is unbounded inD.

Case 1: Let y = 0 in f̃ (x, y), then we get

f̃ (x,0) =: f̃ (x) = x/(1−x) (−1 < x < 1),

clearly f̃ (x) is unbounded when x tends to 1. Let us now assume x = 1−h, (h→ 0) in

f̃ (x) and we obtain

lim
h→0

f̃ (1−h) = lim
h→0

1−h
h
→ +∞.

This shows that f̃ (x, y) is not bounded above inD.

Case 2: Let x = 1−h in f̃ (x, y), (h→ 0), we get

lim
h→0

f̃ (1−h, y) = lim
h→0

−h−h2+2h− y2

h2+ y2 →−1, ((1−h)2+ y2 < 1).

Therefore, f̃ (x, y) is bounded below here.

We conclude that the real part of f (z) is bounded below but not bounded above inD.

Thus, evaluating f (z) on z = eiθ guarantees to have minimum value of real part of f (z).

For z = eiθ (−π ≤ θ < π), we obtain

Re f (eiθ) = −1/2.

We infer that the minimum value of real part of f (z) is −1/2 and maximum can not be

obtained by evaluating Re f on the boundary ofD as it fails to be bounded above.

(ii) Consider the Koebe function k(z) := z/(1− z)2, clearly k(D) = C− (−∞,−1/4]. So,

the real part of a Koebe function is unbounded. We can also verify this by taking
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z = x+ iy (x2+ y2 < 1) and then we have

Rek(z) =
x−2x2+x3

−2y2+xy2

(1−x)2+ y2 =: f (x, y).

It is trivial to say that the real part of k(z) is unbounded if z tends to 1. Equivalently,

we can say f (x, y) is unbounded when x tends to 1 and y tends to or equal to 0. This

is a complex plane so x can tend to 1 from all the directions, unlike on the real plane,

where it can only tend along the real axis. Now, consider the following two cases:

Case 1: Let y = 0 in f (x, y), then we have

f (x,0) =
x−2x2+x3

(1−x)2 =: f (x).

Furthermore, we assume x = 1−h, (h→ 0) in f (x) and we deduce

lim
h→0

f (1−h) = lim
h→0

1−h
h2 → +∞.

Thus, f (x, y) is not bounded above inD.

Case 2: Let x = 1−h in f (x, y) (h→ 0), we get

lim
h→0

f (1−h, y) =
−1
y2 →−∞ ((1−h)2+ y2 < 1),

whenever y→ 0. This shows that f (x, y) is not bounded below either inD.

We conclude that the real part of k(z) is neither bounded below nor above in D.

Therefore, evaluating k(z) at z= eiθ does not guarantee to yield maximum or minimum

value of k inD. For if, we consider z = eiθ (−π ≤ θ < π), then we get

Re(z/(1− z)2) = −1/(4sin2θ) =: 1(θ).

We calculate that the maximum value of 1(θ) is −1/4, attained at θ = π/2. But this

does not imply that maxRek(z) = −1/4, as clearly we observe that the real part of k(z)

is unbounded. As a result, evaluating the real part of k(z) on the boundary ofD does

not ensure that the maximum value is obtained. This is due to the failure of both the

conditions (i) and (ii) in Remark 1 for the Koebe function.

In summary, the Remark 1 concludes that the minimum (maximum) value of the

real part of analytic function f is guaranteed, by evaluating f on the boundary of its
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domain, if either of the two conditions of the Remark is satisfied.

2.2 Differential Subordination Implications

Miller and Mocanu [67] gave the following result which is required to prove our

main findings.

Lemma 2.2.1. [67] Let q be univalent in the unit disk D and θ, φ be analytic in

a domain D containing q(D) with φ(ω) , 0 when ω ∈ q(D). Set Q(z) = zq′(z)φ(q(z))

and h(z) = θ(q(z))+Q(z). Suppose that (i) Q(z) is starlike univalent in D, and (ii)

Re(zh′(z)/Q(z)) > 0 for z ∈ D. If p is analytic in D with p(0) = q(0), p(D) ⊂ D and

satisfies

θ(p(z))+ zp′(z)φ(p(z)) ≺ θ(q(z))+ zq′(z)φ(q(z)) (2.2.1)

then p(z) ≺ q(z) and q(z) is the best dominant.

Before commencing with the main results, let us define P0, the class of all analytic

functions p, which do not vanish anywhere inD, with the normalization p(0) = 1.

Theorem 2.2.2. Let λ be a real number and α,β,γ and δ(, 0) be complex numbers.

Suppose q ∈ P0 be univalent inD and satisfy the following conditions inD.

(1) Q(z) := δzq′(z)qλ−1(z) be starlike (univalent).

(2) Re
(
αλ
δ
+
β(λ+1)
δ

q(z)+
γ(λ−1)
δq(z)

+ (λ−1)
zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
> 0.

If p ∈ P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺ qλ(z)

(
α+βq(z)+

γ

q(z)
+δ

zq′(z)
q(z)

)
,

then p(z) ≺ q(z). Furthermore, q is the best dominant.

Proof. Let θ(ω) =ωλ
(
α+βω+γ/ω

)
, ω , 0 and φ(ω) = δωλ−1. We observe that θ(ω) and

φ(ω) are analytic in C−{0}. Furthermore, φ(ω) , 0. Let Q(z) and h(z) be given by

Q(z) := zq′(z)φ(q(z)) = δzq′(z)qλ−1(z)

and

h(z) := θ(q(z))+Q(z) = qλ(z)
(
α+βq(z)+

γ

q(z)
+δ

zq′(z)
q(z)

)
.
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Then Re(zh′(z)/Q(z)) reduces to

ReH(z) =: Re
(
αλ
δ
+
β(λ+1)
δ

q(z)+
γ(λ−1)
δq(z)

+ (λ−1)
zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
, (2.2.2)

which is greater than 0 from condition (2). On substituting q(z) as p(z) in θ(q(z))+Q(z),

we obtain the required subordination (2.2.1). Also, Q(z) is given to be starlike. Now,

an application of Lemma 2.2.1, produces the result. □

The next main result deals with another type of differential subordination implica-

tion involving (2.1.1).

Theorem 2.2.3. Let α,β,γ and δ(, 0) be complex numbers and λ be a real number. Let

q ∈ P0 be univalent inD and satisfy the following conditions for z ∈D.

(1) Q(z) := δzq′(z)qλ−2(z) be starlike (univalent).

(2) Re
(
γ(λ−1)

δ
+
αλ
δ

q(z)+
β(λ+1)
δ

q2(z)+ (λ−2)
zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
> 0.

If p ∈ P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺ qλ(z)

(
α+βq(z)+

γ

q(z)
+δ

zq′(z)
q2(z)

)
,

then p(z) ≺ q(z). Furthermore, q is the best dominant.

Proof. Let ω , 0, θ(ω) be as defined in proof of Theorem 2.2.2 and φ(ω) = δωλ−2. Then

we haveθ andφ are analytic inC−{0} andφ(ω), 0. We also have Q(z)= zq′(z)φ(q(z))=

δzq′(z)qλ−2. Let h(z) be given by

h(z) := θ(q(z))+Q(z) = qλ(z)
(
α+βq(z)+

γ

q(z)
+δ

zq′(z)
q2(z)

)
.

A simple calculation yields zh′(z)/Q(z) reduces to

H(z) :=
γ(λ−1)

δ
+
αλ
δ

q(z)+
β(λ+1)
δ

q2(z)+ (λ−2)
zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

)
, (2.2.3)

clearly ReH(z) > 0, given in condition (2). On substituting p(z) in place of q(z) in

θ(q(z))+Q(z), we deduce equation (2.2.1). Also Q(z) is starlike in D. Now the result

follows immediately from Lemma 2.2.1. □

Remark 2. Let λ = α = γ = β = 0 and δ = 1, then Theorem 2.2.3 reduces to the result

obtained by Ravichandran and Kumar [85].
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2.3 Special Cases

Taking α,β,γ and δ to be real numbers in Theorem 2.2.2 and Theorem 2.2.3, we

obtain the following results. It is pertinent to mention here that, in view of part

(ii) of Remark 1, we impose certain conditions on the parameters involved in the

following results to satisfy Lemma 2.2.1. We begin this section by taking q(z) =

(1+ (1−2ν)z)/(1− z) in Theorem 2.2.2 and Theorem 2.2.3.

Corollary 2.3.1. Suppose 0 ≤ ν < 1 and p ∈ P0.

(a) Let 0 ≤ λ ≤ 1 and γδ ≤ 0. (i) For 0 ≤ ν ≤ 1/2, let (α+ νβ)/δ ≥ ν/(2(1− ν)) and

1+ 2(1− ν)β/δ > 0. (ii) For 1/2 ≤ ν < 1, let α+ νβ/δ ≥ (1− ν)/(2ν) and 2β/δ >

(ν−1)/ν2. If p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(
1+ (1−2ν)z

1− z

)λ (
α+β

(
1+ (1−2ν)z

1− z

)
+

γ(1− z)
1+ (1−2ν)z

+δ
( (1−2ν)z
1+ (1−2ν)z

+
z

1− z

))
,

then Rep(z) > ν.

(b) Let 0≤ ν < 1 and 1≤λ≤ 2. (i) For 0≤ ν≤ 1/2, let 1+2(1−ν)α/δ > 0 and (γ+να)/δ≥

ν/(2(1−ν)). (ii) For 1/2 ≤ ν < 1, let 2α/δ > (ν−1)/ν2 and (γ+να)/δ ≥ (1−ν)/(2ν).

If p satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

(
1+ (1−2ν)z

1− z

)λ (
α+

γ(1− z)
1+ (1−2ν)z

+
2δ(1−ν)z

(1+ (1−2νz))2

)
,

then we have Rep(z) > ν.

Proof. (a) Let q(z) = (1+ (1−2ν)z)/(1− z) in Theorem 2.2.2. Furthermore, we calculate

Q(z) = 2(1−ν)z/((1− z)1+λ(1+ (1−2ν)z)1−λ) and

zQ′(z)
Q(z)

= 1+ (1+λ)
( z
1− z

)
− (1−λ)

(
(1−2ν)z

1+ (1−2ν)z

)
.

A calculation gives

Re
(

zQ′(z)
Q(z)

)
=

(1−λ
2

)( ν(1−ν)
ν2+ (1−2ν)cos2(θ/2)

)
,
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for z = eiθ, where −π ≤ θ < π. Since 1−λ, ν(1−ν), ν2+ (1−2ν)cos2(θ/2) ≥ 0, it follows

that Q is starlike (univalent) inD. Also, from equation (2.2.2), we have

H(z) :=
αλ
δ
+
β(λ+1)
δ

(
1+ (1−2ν)z

1− z

)
+
γ(λ−1)

δ

(
1− z

1+ (1−2ν)z

)
+ (λ−1)

(
(1−2ν)z

1+ (1−2ν)z
+

z
1− z

)
+

(
1+

2z
1− z

)
and a simple calculation yields

ReH(z) = 1+
αλ
δ
+
β(λ+1)
δ

ν+
γ(λ−1)

δ
A(θ)−

λ+1
2
+ (λ−1)(1−2ν)B(θ) =: L(θ),

where z = eiθ (−π ≤ θ < π), A(θ) = (νsin2(θ/2))/(ν2 + (1− 2ν)cos2(θ/2)) and B(θ) =

(1− 2ν+ cosθ)/(2(1− 2ν+ cosθ+ 2ν(ν− cosθ)). Also, considering Remark 1, we need

to have

γ/δ < 1/2 and 1+2β(1−ν)/δ > 0, (2.3.1)

which is trivial as γδ ≤ 0 and 2β/δ > (ν− 1)/ν2 imply these conditions (2.3.1), respec-

tively. To complete the proof, it is enough to show that L(θ) ≥ 0. For this, we consider

the following cases:

Case 1: Consider 0 ≤ ν ≤ 1/2, clearly (1− 2ν) ≥ 0. We calculate min−π≤θ<πA(θ) = 0

and max−π≤θ<πB(θ)= 1/(2(1−ν)), which are attained at θ= 0 by the second derivative

test. Since 0 ≤ λ ≤ 1 and γδ ≤ 0, we obtain

L(θ) ≥ λ
(
α
δ
+
βν

δ
+

1−2ν
2(1−ν)

−
1
2

)
+

1
2
+
βν

δ
−

1−2ν
2(1−ν)

≥ 0,

whenever (α+βν)/δ ≥ ν/(2(1−ν)).

Case 2: Consider 1/2 ≤ ν < 1 then (1−2ν) ≤ 0. By taking the range of λ and γδ into

consideration, we calculate min−π<θ≤πB(θ) = −1/(2ν), attained at θ = π by the second

derivative test and the minimum value of A(θ) is as calculated in case 1. On further

computation, we get

L(θ) ≥ λ
(
α
δ
+
βν

δ
−

1−2ν
2ν
−

1
2

)
+

1
2
+
βν

δ
+

1−2ν
2ν

≥ 0,

whenever (α+βν)/δ ≥ (1−ν)/(2ν) and β/δ > (ν−1)/(2ν2). With this, we complete the

proof for part (a).

(b) For this result, we further assume β = 0 and let q(z) = (1+ (1− 2ν)z)/(1− z) for
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0 ≤ ν < 1 in Theorem 2.2.3, then we obtain the function Q(z) as follows:

Q(z) =
2(1−α)z

(1− z)λ(1+ (1−2ν)z)2−λ
.

Proceeding on the similar lines as in part (a), we have Q(z) starlike (univalent) in D

for 1 ≤ λ ≤ 2. If we take z = eiθ (−π < θ ≤ π), we have

Re
(
γ(λ−1)

δ
+
αλ
δ

q(z)+ (λ−2)
zq′(z)
q(z)

+1+
zq′′(z)
q′(z)

)
= 1+

γ(λ−1)
δ

+
αλ
δ
ν+ (λ−2)(1−2ν)B(θ)−

λ
2
=: S(θ),

where B(θ) is as defined in the proof of part (a). According to Remark 1, we consider

the inequality 1+2α(1−ν)/δ > 0. Now, to apply Theorem 2.2.3, we find the range of

parameters such that S(θ) ≥ 0. For this, we consider two cases:

Case 1: Consider 0 ≤ ν ≤ 1/2, then (1−2ν) ≥ 0. Since 1 ≤ λ ≤ 2, we take into account

the maximum value of B(θ) and we deduce

S(θ) ≥ λ
(
γ

δ
+
αν
δ
+

1−2ν
2(1−ν)

−
1
2

)
+1−

γ

δ
−

1−2ν
1−ν

.

It suffices to find the conditions on the parameters for which S(θ) ≥ 0. For this, either

(i) let γ/δ+αν/δ+ (1− 2ν/(2(1− ν))− 1/2 = 0, further computation yields S(θ) ≥ 0, or

(ii) take

λ ≥

γ
δ +

1−2ν
1−ν −1

γ
δ +

αν
δ +

1−2ν
2(1−ν) −

1
2

, (2.3.2)

which is a valid expression only if (γ+αν)/δ > ν/(2(1−ν)). Also, as we have 1 ≤ λ, the

inequality (2.3.2) holds if 1+2α(1−ν)/δ > 0.

Case 2: Consider 1/2 ≤ ν < 1, then (1−2ν) ≤ 0. Therefore, we take into account the

minimum value of B(θ) and we deduce

S(θ) ≥ λ
(γ
δ
+
αν
δ
−

1−2ν
2ν
−

1
2

)
+1−

γ

δ
+

1−2ν
ν

.

Proceeding as in the case 1, whenever (γ+αν)/δ ≥ (1−ν)/(2ν) and α/δ > −1/(2(1−ν)),

we have S(θ) ≥ 0.

Considering both the cases, we take α/δ≥max(−1/(2(1−ν)); (ν−1)/2ν2)= (ν−1)/(2ν2),

which completes the proof. □
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We obtain the relation between the class of starlike functions of reciprocal order ν

andN(κ) in the following corollary.

Corollary 2.3.2. Let f ∈A. A function f is starlike of reciprocal order ν if

(a) f ∈ N((3−ν)/2ν), 0 < ν ≤ 3/4.

(b) f ∈ N(ν/2(1−ν)), 3/4 ≤ ν < 1.

Proof. Let p(z)= f (z)/(z f ′(z)), β= λ= 0, γ=−δ= 1 and α=min((ν−1)/(2ν);ν/(2(ν−1)))

in Corollary 2.3.1(a), we get, if f satisfies

1+
z f ′′(z)

f ′(z)
≺

1+2(ν−1)z
1+ (1−2ν)z

−
z

1− z
=: S(z),

then Re( f (z)/(z f ′(z)))> ν. To complete the proof it suffices to show ReS(z)< (3−ν)/(2ν)

for 0 < ν ≤ 3/4 and ReS(z) < ν/(2(1−ν)) for 3/4 ≤ ν < 1. Since S(z) is bounded above,

evaluating it on the boundary ofD, we obtain

ReS(eiθ) =
1−6ν+4ν2+ cosθ

−2+4ν−4ν2−2cosθ+4νcosθ
+

1
2
=: 1(θ).

A calculation shows 1′′(θ)θ=π = (1−ν)(4ν−3)/(4ν3) and 1′′(θ)θ=0 = ν(4ν−3)/(4(ν−1)3).

(a) For 0 < ν ≤ 3/4, max−π<θ≤π1(θ) = (3−ν)/(2ν), attained at θ = π and we obtain

Re
(
1+

z f ′′(z)
f ′(z)

)
<

3−ν
2ν

,

equivalently, f ∈ N((3−ν)/(2ν)). This completes the proof for part (a).

(b) For 3/4 ≤ ν < 1, max−π≤θ<π1(θ) = ν/(2(1−ν)), attained at θ = 0 and we obtain

Re
(
1+

z f ′′(z)
f ′(z)

)
<

ν
(2(1−ν))

,

equivalently, f ∈ N(ν/2(1−ν)). This completes the proof for part (b). □

By taking ν = 0 and ν = 1/2, respectively in Corollary 2.3.1(a), we get the following

results:

Corollary 2.3.3. Let 0 ≤ λ ≤ 1, 1+2β/δ > 0, γδ ≤ 0 and αδ ≥ 0. If p ∈ P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(1+ z
1− z

)λ (
α+β

(1+ z
1− z

)
+γ

(1− z
1+ z

)
+

2δz
1− z2

)
,

then Rep(z) > 0.
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Corollary 2.3.4. Let 1+ β/δ > 0, γδ ≤ 0, −1+ (2α+ β)/δ ≥ 0 and 0 ≤ λ ≤ 1. If p ∈ P0

satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

( 1
1− z

)λ (
α+β

1
1− z

+γ(1− z)+
δz

1− z

)
,

then Rep(z) > 1/2.

By taking ν = 0 and ν = 1/2, respectively in Corollary 2.3.1(b), we have the following

results:

Corollary 2.3.5. Let 1+2α/δ > 0, γδ ≥ 0 and 1 ≤ λ ≤ 2. If p ∈ P0 satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

(1+ z
1− z

)λ (
α+γ

1− z
1+ z

+
2δz

(1+ z)2

)
,

then Rep(z) > 0.

Corollary 2.3.6. Let 1+α/δ > 0, (2γ+α)/δ ≥ 1 and 1 ≤ λ ≤ 2. If p ∈ P0 satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

( 1
1− z

)λ (
α+γ(1− z)+δz

)
,

then Rep(z) > 1/2.

Remark 3. The Corollary 2.3.3 with α = γ = 0 and λ = 1 and Corollary 2.3.5 with λ = 2,

γ = 0 independently yield the result of Nunokawa et al. [77, Theorem 1, p. 1386].

Corollary 2.3.7. If p ∈ P0 satisfies:

p(z)+
zp′(z)
p(z)

≺ R(z),

where R is the open door mapping, then p(z) ≺ (1+ z)/(1− z).

Proof. Let λ = γ = α = 0 and β = δ = 1 in Corollary 2.3.3 or by assuming λ = α = δ = 1

and γ = 0 in Corollary 2.3.5, we get

p(z)+
zp′(z)
p(z)

≺
1+ z
1− z

+
2z

1− z2 =: R(z).

This completes the proof. □

Remark 4. The above Corollary is the result obtained by Nunokawa et al. [77].
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Considering oblique sector function q in the above Theorem 2.2.2, which is defined

as

q(z) =
(1+ cz

1− z

)η1+η2
2

(0 < η1,η2 ≤ 1),

where c and η are as defined in the equation (1.2.7). We have Re(zQ′(z)/Q(z)) > 0 for

given η and λ from [60, Theorem 2, p. 711], where Q is as defined in the condition (1)

of Theorem 2.2.2. Therefore, Q(z) is starlike(univalent) inD. Let

H(z) =

αλδ + β(λ+1)
δ

(1+ cz
1− z

)η1+η2
2
+
γ(λ−1)

δ

( 1− z
1+ cz

)η1+η2
2
+

zQ′(z)
Q(z)

 ,
from condition (2) of Theorem 2.2.2 and in view of the fact that q ∈ P, which implies

1/q(z) ∈ P, we obtain

ReH(z) > αλ/δ ≥ 0,

provided β(λ+ 1)/δ, γ(λ− 1)/δ, αλ/δ ≥ 0. Therefore, both the conditions of Theo-

rem 2.2.2 get satisfied and we obtain the result as follows:

Corollary 2.3.8. Let αλ/δ ≥ 0, β(λ+1)/δ ≥ 0, γ(λ−1)/δ ≥ 0 and |λ| ≤ 2/(η1+η2), where

0 < η1,η2 ≤ 1. If p ∈ P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(1+ cz
1− z

) (η1+η2)λ
2

(
α+β

(1+ cz
1− z

)η1+η2
2
+γ

( 1− z
1+ cz

)η1+η2
2

+
η1+η2

2

(
(1+ c)z

(1+ cz)(1− z)

))
,

then p(z) ≺ ((1+ cz)/(1− z))(η1+η2)/2.

Remark 5. By taking α = γ = 0 and δ = 1, Corollary 2.3.8 is the result obtained in [60].

Letting η1 = η2 and c = 1 in the Corollary 2.3.8, we deduce the result as follows:

Corollary 2.3.9. Let αλ/δ ≥ 0, β(λ+1)/δ ≥ 0, γ(λ−1)/δ ≥ 0, 0 < η ≤ 1 and |λ| ≤ 1/η. If

p ∈ P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(1+ z
1− z

)ηλ (
α+β

(1+ z
1− z

)η
+γ

(1− z
1+ z

)η
+

2δηz
1− z2

)
=: h(z), (2.3.3)
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then p(z) ≺ ((1+ z)/(1− z))η.

By taking λ = 1 and γ = 0 in Corollary 2.3.9, we have the following result.

Corollary 2.3.10. Let αδ, βδ ≥ 0. If p ∈ P0 and

αp(z)+βp(z)2+δzp′(z) ≺ α
(1+ z
1− z

)η
+β

(1+ z
1− z

)2η
+

2δηz
1− z2

(1+ z
1− z

)η
,

then |argp(z)| < ηπ/2.

Remark 6. Corollary 2.3.10 is the result obtained by Ravichandran and Kumar [85]

for αδ, βδ > 0.

By taking η = 1 in the Corollary 2.3.9, we get the following corollary.

Corollary 2.3.11. Letαλ/δ≥ 0, β(λ+1)/δ≥ 0, γ(λ−1)/δ≥ 0 and |λ| ≤ 1. If p ∈P0 satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(1+ z
1− z

)λ (
α+β

(1+ z
1− z

)
+γ

(1− z
1+ z

)
+

2δz
1− z2

)
,

then Rep(z) > 0.

We assume β = 0 in Theorem 2.2.3 to obtain the following result. .

Corollary 2.3.12. Let αλ/δ ≥ 0, γ(λ− 1)/δ ≥ 0 , 0 < η ≤ 1 and −1 < ηλ ≤ 2. If p ∈ P0

satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

(1+ z
1− z

)ηλ (
α+γ

(1− z
1+ z

)η
+

2δηz
(1− z)1−η(1+ z)1+η

)
, (2.3.4)

then p(z) ≺ ((1+ z)/(1− z))η.

Proof. Let q(z) = ((1+ z)/(1− z))η in Theorem 2.2.3, then Q(z) is given by

Q(z) =
2δηz
1− z2

(1+ z
1− z

)η(λ−1)

and

zQ′(z)
Q(z)

= 1+
2z2

1− z2 +
2η(λ−1)z

1− z2 ,

which is bounded below for −1 < ηλ ≤ 2, so we evaluate it on the boundary of D

and we obtain Re(zQ′(z)/Q(z)) ≥ 0. Thus Q(z) is starlike (univalent) in D. Also,
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equation (2.2.3) gives

ReH(z) = Re
(
1+

γ(λ−1)
δ

+
αλ
δ

(1+ z
1− z

)η
+

2z(z+ (λ−1)η)
1− z2

)
.

A calculation shows that for z = eiθ (−π ≤ θ < π), we have

ReH(eiθ) =
γ(λ−1)

δ
≥ 0,

when αλ/δ, γ(λ−1)/δ ≥ 0. □

By taking η = 1 in Corollary 2.3.12, the result follows as:

Corollary 2.3.13. Let αλ/δ, γ(λ−1)/δ ≥ 0 and −1 < λ ≤ 2. If p ∈ P0 satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

(1+ z
1− z

)λ (
α+γ

(1− z
1+ z

)
+

2δz
(1+ z)2

)
,

then Rep(z) > 0.

Now, we deal with the argument based results when q(z) = ((1+ z)/(1− z))η in The-

orem 2.2.2 and Theorem 2.2.3. The argument estimation of the function h, when it

assumes the expression given on the right side of the subordination (2.3.3), gives the

reformulation of Corollary 2.3.9 for the case when γ = 0 and 0 ≤ λ ≤ 1/η, which we

state below:

Corollary 2.3.14. Let α, β ≥ 0 and δ > 0. If p ∈ P0 satisfies∣∣∣∣∣∣arg
(
pλ(z)

(
α+βp(z)+δ

zp′(z)
p(z)

))∣∣∣∣∣∣ < π2 ζ,
where (i) ζ = ηλ, whenever 0 ≤ η ≤ 1/2, (ii) ζ = ηλ+ 1/2, whenever 1/2 ≤ η ≤ 1 and

δη ≥ α, (iii) ζ = ηλ+2/π tan−1(δη/α), whenever 1/2 ≤ η ≤ 1 and α ≥ δη, then

|argp(z)| <
π
2
η.

Proof. Here, h(z) is defined as

h(z) :=
(1+ z
1− z

)ηλ (
α+β

(1+ z
1− z

)η
+

2δηz
1− z2

)
.

We evaluate the function h(z) at z = eiθ so as to obtain the minimum value of argh(eiθ)
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in order to complete the proof. In view of this, let us consider

h(eiθ) =
(
icot

θ
2

)ηλ (
α+β

(
icot

θ
2

)η
+ i

δη

sinθ

)
=

∣∣∣∣∣cot
θ
2

∣∣∣∣∣ηλ e±iηλπ/2
(
α+β

∣∣∣∣∣cot
θ
2

∣∣∣∣∣η e±iηπ/2+ i
δη

sinθ

)
.

Note that the ‘+′ sign comes for 0 < θ < π and the ‘−′ sign comes for −π < θ < 0. We

also notice that the real and imaginary parts of h(eiθ) are, respectively, an even and

odd function of θ. Without loss of generality, we consider 0 < θ < π. Then, we have

the following

argh(eiθ) =
π
2
ηλ+arg

(
α+β

∣∣∣∣∣cot
θ
2

∣∣∣∣∣n eiηπ/2+ i
δη

sinθ

)
=
π
2
ηλ+ tan−1

(
β|cot(θ/2)|η sin(ηπ/2)+δη/sin(θ)

α+β|cot(θ/2)|η cos(ηπ/2)

)
≥
π
2
ηλ+ tan−1

(
βsη sin(ηπ/2)+δη
α+βsη cos(ηπ/2)

)
,

forα, β≥ 0, δ > 0 and where s= |cotθ/2| such that s1 ≤ s≤ s2, with s1→ 0 and s2→∞. To

complete the proof, it suffices to show that arg(heiθ)≥ ζπ/2, equivalently which implies

|arg(pλ(z)(α+βp(z)+δzp′(z)/p(z)))|< arg(h(z)), which will yield p(z)≺ ((1+z)/(1−z))η as

pλ(z)(α+βp(z)+δzp′(z)/p(z)) ≺ h(z) implies p(z) ≺ ((1+z)/(1−z))η from Corollary 2.3.9.

Let

1(s) :=
βsη sin(ηπ/2)+δη
α+βsη cos(ηπ/2)

and we consider two cases:

Case 1: Let 0 < η ≤ 1/2, then

1(s) ≥
βsη sin(ηπ/2)

α+βsη cos(ηπ/2)
≥

βsη1 sin(ηπ/2)

α+βsη1 cos(ηπ/2)
≈ 0.

This completes the proof for the mentioned range of η in this case.

Case 2: Let 1/2 ≤ η ≤ 1, then

1(s) ≥
βsη cos(ηπ/2)+δη
α+βsη cos(ηπ/2)

=: l(s).

Now, to compute the minimum value of l(s), there arises two sub-cases, either α ≤ δη

or α ≥ δη. Firstly, let us consider δη ≥ α, then upon simplification, we arrive at that l(s)
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attains its minimum value at s = s2 and we obtain

l(s) ≥
βsη2 sin(ηπ/2)+δη

α+βsη2 cos(ηπ/2)
≈ 1.

Secondly, consider α ≥ δη, which yields that l(s) attains its minimum value at s = s1

and we obtain

l(s) ≥
βsη1 sin(ηπ/2)+δη

α+βsη1 cos(ηπ/2)
≈
δη

α
.

This completes the proof for the mentioned range of η in this case. Therefore, both the

cases yield the desired condition argh(eiθ) ≥ ζπ/2. Hence the result. □

Remark 7. For 1/2 ≤ η ≤ 1 and by taking β = 0 in Corollary 2.3.14, we get the result

obtained by Cho et al. [18], when restricting the range of η.

In the following result, we derive the argument relation between pλ(z)(α+γ/p(z)+δz

p′(z)/p2(z)) and h(z), when h assumes the expression defined by the right side of the

subordination (2.3.4), such that (2.3.4) holds for 0<η≤ 1. We further assume−1<λ≤ 0.

Corollary 2.3.15. Let −1 < λ ≤ 0, α ≥ −δ > 0 and γ ≥ 0. If p ∈ P0 satisfies∣∣∣∣∣∣arg
(
pλ(z)

(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

))∣∣∣∣∣∣ < π2 ζ, (2.3.5)

where (i) ζ = −ηλ whenever 0 < η ≤ 1/2, (ii) ζ = −ηλ+ (2/π) tan−1(−δηcos(ηπ/2)/α)

whenever 1/2 ≤ η ≤ 1, then

|argp(z)| <
π
2
η.

Proof. A calculation shows that

h(eiθ) = (icotθ/2)ηλ
(
α+γ (icotθ/2)−η+ i

δη

sinθ
(icotθ/2)−η

)
= |cotθ/2|ηλe±iηλπ/2

(
α+γ|cotθ/2|−ηe∓iηπ/2

+
δη

sinθ
|cotθ/2|−ηeiπ/2(1∓η)

)
.

Note that ‘+′ sign comes for 0 < θ < π and the ‘−′ sign comes for −π < θ < 0. Also,

we observe that the real and imaginary part of h(eiθ) is an even and odd function of
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θ, respectively. So we consider here −π < θ < 0, without loss of generality. Then, we

have the following

argh(eiθ) = −
π
2
ηλ+ tan−1

 γ|cot(θ/2)|−η sin(ηπ/2)+ δη
sinθ cos(ηπ/2)

α+γ|cot(θ/2)|−η cos(ηπ/2)− δη
sinθ sin(ηπ/2)


≥ −

π
2
ηλ+ tan−1

(
γs−η sin(ηπ/2)−δηcos(ηπ/2)

α+γs−η cos(ηπ/2)

)
,

whenever α≥−δ >, γ≥ 0 and where s= |cot(θ/2)| such that s1 ≤ s≤ s2, with s1→ 0 and

s2→∞. Let 1(s) :=
(
γs−η sin(ηπ/2)−δηcos(ηπ/2)

α+γs−η cos(ηπ/2)

)
. Now, there arises two cases:

Case 1: Let 0 < η ≤ 1/2, then

1(s) ≥
(
γs−η sin(ηπ/2)

α+γs−η cos(ηπ/2)

)
≥

 γs−η2 sin(ηπ/2)

α+γs−η2 cos(ηπ/2)

 ≈ 0.

Case 2: Let 1/2 ≤ η ≤ 1, then

1(s) ≥
(
γs−η cos(ηπ/2)+δηcos(ηπ/2)

α+γs−η cos(ηπ/2)

)
=: l(s).

Since α ≥ −δ, then

l(s) ≥

γs−η2 cos(ηπ/2)+δηcos(ηπ/2)

α+γs−η2 cos(ηπ/2)

 ≈ −δηcos(ηπ/2)
α

.

Therefore, from both the cases, we get arg(h(eiθ)) ≥ ζπ/2, where ζ is as given in the

hypothesis. We observe that condition (2.3.5) concludes that the subordination (2.3.4)

holds. Also, the hypothesis of Corollary 2.3.12 gets satisfied, as a result we get

p(z) ≺ ((1+ z)/(1− z))η, equivalently |arg(p(z))| < ηπ/2. This completes the proof. □

For the following couple of results, take q(z)= eµz in Theorem 2.2.2 and Theorem 2.2.3.

Corollary 2.3.16. Let µ(, 0) be a real number such that |µ| ≤ 1 and p(z) ∈ P0.

(a) Let δ > 0, |λµ| ≤ 1 and αλ ≥ −(A+B), where we have A = β(λ+ 1)/e|µ| ≥ 0 and

B = γ(λ−1)/e|µ| ≥ 0. If p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺ eλµz (α+βeµz+γe−µz+δµz

)
,

then p(z) ≺ eµz.

(b) Let |(λ−1)µ| ≤ 1, αλ/δ ≥ 0 and γ(λ−1)/δ ≥ 0.
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If p satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺ eµλz

(
α+

γ

eµz +δ
µz
eµz

)
,

then p(z) ≺ eµz.

Proof. (a) Let q(z) = eµz in Theorem 2.2.2. Then we have Q(z) = δµzeλµz, furthermore

by taking z = x+ iy (x2+ y2 < 1), we get

Re
(

zQ′(z)
Q(z)

)
= 1+λµx.

A simple computation shows that Q(z) is starlike (univalent) inD whenever |λµ| ≤ 1.

As a result of the fact Reeµz, Ree−µz > 1/e|µ|, we deduce the following

Re
(
αλ
δ
+
β(λ+1)
δ

q(z)+
γ(λ−1)

δ
1

q(z)
+ (λ−1)

zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
= Re

(
1+λµz+

αλ
δ
+
β(λ+1)
δ

eµz+
γ(λ−1)

δ
e−µz

)
> 1+λµx+

αλ
δ
+
β(λ+1)
δ

1
e|µ|
+
γ(λ−1)

δ
1

e|µ|
=: S(x),

for A, B > 0 and δ ≥ 0. For the given range of |λµ|, here we deal with two cases:

Case 1: If −1 ≤ λµ ≤ 0, then 1+λµx > 1+λµ ≥ 0 and we obtain

S(x) >
αλ
δ
+
β(λ+1)
δ

1
e|µ|
+
γ(λ−1)

δ
1

e|µ|
. (2.3.6)

Case 2: If 0 ≤ λµ ≤ 1, then 1+λµx > 1−λµ ≥ 0 and we obtain the same equation

(2.3.6) as in the case 1.

Furthermore, we see that S(x)≥ 0 provided αλ≥ (γ−β−λ(β+γ))/e|µ|, which is trivial in

view of the conditions stated in the hypothesis. Thus the conditions of Theorem 2.2.2

now holds, hence the result.

(b) Let β = 0 and q(z) = eµz in Theorem 2.2.3. Then, Re(zQ′(z)/Q(z)) = 1+ (λ−1)µx. So,

we get Q is starlike (univalent) inDwhenever |µ(λ−1)| ≤ 1. Consider

Re
(
γ(λ−1)

δ
+
αλ
δ

q(z)+
β(λ+1)
δ

q2(z)+ (λ−2)
zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
= Re

(
γ(λ−1)

δ
+
αλ
δ

eµz+ (λ−2)µz+1+µz
)

> 1+ (λ−1)µx+
γ(λ−1)

δ
+
αλ
δ

1
e|µ|
=: S(x),
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whenever αλ/δ ≥ 0. Now we observe that S(x) ≥ 0 provided γ(λ−1)/δ ≥ 0 and which

completes the proof. □

By taking µ = 1 in Corollary 2.3.16 (a) and (b), we obtain the following result,

respectively.

Corollary 2.3.17. Let p ∈ P0.

(a) Let δ > 0, |λ|< 1 and αλ≥−(A+B), where A= β(λ+1)/e≥ 0 and B= γ(λ−1)/e≥ 0.

If p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺ eλz (α+βez,+γe−z+δz

)
,

then p(z) ≺ ez.

(b) Let |λ−1| ≤ 1, αλ/δ ≥ 0 and γ(λ−1) ≥ 0. If p satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺ eλz (α+γe−z+δze−z) ,

then p(z) ≺ ez.

In Theorem 2.2.2 and Theorem 2.2.3, we take q(z) =
√

1+ z to obtain the following

result:

Corollary 2.3.18. Let p ∈ P0.

(a) If −2 ≤ λ ≤ 2, γ(λ−1) ≥ 0, β(λ+1) ≥ 0, −(2
√

2γ+δ)/4 < α ≤ −3γ/(2
√

2),

δ >max(0;
√

2γ) and p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺ (1+ z)λ/2

(
α+β

√

1+ z+
γ
√

1+ z
+

δz
2(1+ z)

)
,

then p(z) ≺
√

1+ z.

(b) If −1 ≤ λ ≤ 3, αλ/δ ≥ 0, β(λ+1)/δ ≥ 0, −1/4 < γ/δ ≤ 0 and p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺ (1+ z)λ/2

(
α+β

√

1+ z+
γ
√

1+ z
+

δz
2(1+ z)3/2

)
,

then p(z) ≺
√

1+ z.

Proof. (a) Now, to achieve the desired result we apply Theorem 2.2.2 with q(z) =
√

1+ z. So we have Q(z) = δz(1+ z)λ/2−1/2, furthermore which yields the expression
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zQ′(z)/Q(z)= 1+(λ/2−1)(z/(1+z)).Since zQ′(z)/Q(z) is bounded only ifλ≤ 2, so to find

the upper bound we evaluate it on the boundary z= eiθ (−π≤ θ<π), which eventually

yields Re(zQ′(z)/Q(z)) = (λ+2)/4 ≥ 0 for λ ≥ −2. Clearly Q is starlike (univalent) inD.

Also, we have

Re
(
αλ
δ
+
β(λ+1)
δ

q(z)+
γ(λ−1)

δ
1

q(z)
+ (λ−1)

zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
= Re

(
1+

αλ
δ
+
β(λ+1)
δ

√

1+ z+
γ(λ−1)

δ
1
√

1+ z
+

(
λ
2
−1

) z
1+ z

)
≥ 1+

αλ
δ
+
γ(λ−1)

δ
1
√

2
+
λ
4
−

1
2
= λ

(
1
4
+
α
δ
+

γ
√

2δ

)
+

1
2
−

γ
√

2δ
=: S,

since Re(
√

1+ z) > 0, Re(1/
√

1+ z) > 1/
√

2, β(λ+1)/δ and γ(λ−1)/δ ≥ 0. Now, to com-

plete the proof, we find the conditions on the parameters such that S ≥ 0. For this, it

suffices to show that

λ ≥

γ
√

2δ
−

1
2

α
δ +

γ
√

2δ
+ 1

4

, (2.3.7)

which is a valid expression whenα>−(2
√

2γ+δ)/4 and δ> 0. Also, from the inequality

−2 ≤ λ ≤ 2, we have α ≤ −3γ/(2
√

2). So equation (2.3.7) holds true. The derived range

of α is meaningful only if δ ≥
√

2γ, which establishes part (a).

(b) The result follows from Theorem 2.2.3 by taking q(z) =
√

1+ z. Since −1 ≤ λ ≤ 3, on

the similar lines of part (a), we have Q(z) = δ(1+ z)(λ−3)/2z/2 is starlike (univalent) in

z ∈D. Also, we have

Re
(
1+

γ(λ−1)
δ

+
αλ
δ

q(z)+
β(λ+1)
δ

q2(z)+ (λ−2)
zq′(z)
q(z)

+
zq′′(z)
q′(z)

)
= Re

(
1+

γ(λ−1)
δ

+
αλ
δ

√

1+ z+
β(λ+1)
δ

(1+ z)+
λ
4
+ (λ−3)

z
2(1+ z)

)
≥ 1+

γ(λ−1)
δ

+
λ−3

4
= λ

(γ
δ
+

1
4

)
−
γ

δ
+

1
4
=: S,

for the given range of constants in the hypothesis (b). To complete the proof, we now

show S ≥ 0, which holds if

λ ≥

γ
δ −

1
4

γ
δ +

1
4

.

The above inequality holds true as −1/4 < γ/δ ≤ 0 and this completes the proof. □

The following lemmas are required to prove some subsequent results involving
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Janowski function.

Lemma 2.3.19. For −1 ≤ B < A ≤ 1, let J(z) = (1+Az)/(1+Bz) satisfies min|z|≤1 Re J(z) =

(1−A)/(1−B) and min|z|≤1 Re(1/J(z)) = (1+B)/(1+A).

Proof. Consider

Re(J(eiθ)) =
1+ (A+B)cosθ+AB

1+A2+2Acosθ
=: J̃(θ), −π < θ ≤ π,

which attains minimum value at θ=π by the second derivative test and the minimum

value is given by J̃(π) = (1−A)/(1−B). Now, consider J(−z) = (1−Az)/(1−Bz). In view

of the fact that the images of unit disk under J(z) and J(−z) are same, thus we obtain

min
|z|≤1

Re
( 1+Bz
1+Az

)
=

1+B
1+A

,

as in this case, −A takes the role of B and −B takes the role of A. This completes the

proof. □

Similarly, we can find the minimum and maximum values of the real part of the

functions (1−Bz)/(1+Bz) and z(A−B)/((1+Az)(1+Bz)), respectively, as given in the

following lemmas:

Lemma 2.3.20. For −1 ≤ B < 1, the minimum of real part of f (z) = (1−Bz)/(1+Bz) is

(1− |B|)/(1+ |B|).

Lemma 2.3.21. For −1 < B < A ≤ 1. Consider f (z) = (A−B)z/((1+Az)(1+Bz)), then

max|z|≤1 Re f (z) = (A− B)/(1+A)(1+ B), whenever (1+AB)(1−A)(1− B) > 8AB and

min|z|≤1 Re f (z) = (B−A)/((1−A)(1−B)), whenever (1+AB)(1+A)(1+B) > 8AB.

We employ the above Lemmas in our following results dealing with Janowski func-

tion in Theorem 2.2.2 and Theorem 2.2.3.

Corollary 2.3.22. Let p ∈ P0, α/δ ≥ (B−A)/((1+A)(1+B)), (1+AB)(1−A)(1−B) > 8AB,

where −1 < B < A ≤ 1, and

(a) If 0 ≤ λ ≤ 1, γδ ≤ 0, β/δ ≥ (A−B)(1−B)/((1−A2)(1+B)) and p satisfies

pλ(z)
(
α+βp(z)+

γ

p(z)
+δ

zp′(z)
p(z)

)
≺

(1+Az
1+Bz

)λ (
α+β

(1+Az
1+Bz

)
+γ

( 1+Bz
1+Az

)
+δ

(A−B)z
(1+Az)(1+Bz)

)
,
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then p(z) ≺ (1+Az)/(1+Bz).

(b) If αδ ≥ 0, 0 ≤ λ ≤ 2, (B−A)/((1+A)(1+B)) ≤ γ/δ ≤ 2(B−A)/((1+A)(1+B)) and p

satisfies

pλ(z)
(
α+

γ

p(z)
+δ

zp′(z)
p2(z)

)
≺

(1+Az
1+Bz

)λ (
α+γ

( 1+Bz
1+Az

)
+δ

(A−B)z
(1+Az)2

)
,

then p(z) ≺ (1+Az)/(1+Bz).

Proof. (a) The result is followed by taking q(z) = (1+Az)/(1+Bz) in Theorem 2.2.2. We

have Q(z) = (δz(A−B))/((1+Az)1−λ(1+Bz)1+λ), and

zQ′(z)
Q(z)

= 1+ (λ−1)
Az

1+Az
− (1+λ)

Bz
1+Bz

=: K(z).

According to Remark 1, we let −1 ≤ λ ≤ 1, which implies K(eiθ) ≥ 0. So, clearly Q(z) is

starlike (univalent) inD. Also, we have

Re
(
αλ
δ
+
β(λ+1)
δ

q(z)+
γ(λ−1)

δ
1

q(z)
+ (λ−1)

zq′(z)
q(z)

+

(
1+

zq′′(z)
q′(z)

))
= Re

(
αλ
δ
+
β(λ+1)
δ

(1+Az
1+Bz

)
+
γ(λ−1)

δ

( 1+Bz
1+Az

)
+ (λ−1)

(A−B)z
(1+Az)(1+Bz)

+
1−Bz
1+Bz

)
=: S(z).

Now, Lemma 2.3.19–Lemma 2.3.21 yield

S(z) ≥
αλ
δ
+
β(λ+1)
δ

(1−A
1−B

)
+
γ(λ−1)

δ

( 1+B
1+A

)
+ (λ−1)

(
A−B

(1+A)(1+B)

)
+

(1− |B|
1+ |B|

)
= λ

(
α
δ
+

A−B
(1+A)(1+B)

)
+
β(λ+1)
δ

(1−A
1−B

)
−

(
A−B

(1+A)(1+B)

)
+

1− |B|
1+ |B|

+
γ(λ−1)

δ

( 1+B
1+A

)
, (2.3.8)

for βδ ≥ 0 and γδ ≤ 0. To complete the proof, it suffices to prove the second condition

of Theorem 2.2.2. For this, we show equation (2.3.8) greater than or equal to 0, which

is possible when 0 ≤ λ ≤ 1, α/δ ≥ (B−A)/(1+A)(1+B) and β/δ ≥ (A−B)(1−B)/((1−

A2)(1+B)). Now, the result follows immediately.

(b) The result is obtained by taking β = 0 and q(z) = (1+Az)/(1+Bz) in Theorem 2.2.3.

So, we have

Q(z) =
δz(A−B)

(1+Az)2−λ(1−Bz)λ
,
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and
zQ′(z)
Q(z)

= 1+ (λ−2)
( Az
1+Az

)
−
λBz

1+Bz
, 0 ≤ λ ≤ 2, (2.3.9)

which is clearly bounded below for the mentioned range of λ. Thus computing

equation (2.3.9) on the boundary ofD, we get Q(z) is starlike (univalent) for the given

range of λ. Also, from condition (2) of Theorem 2.2.3, we have

ReH(z) := Re
(
γ(λ−1)

δ
+
αλ
δ

(1+Az
1+Bz

)
+ (λ−2)

(
A−Bz

(1+Az)(1+Bz)

)
+

(1−Bz
1+Bz

))
.

Now, by using Lemma 2.3.19–Lemma 2.3.21, we deduce

ReH(z) ≥
γ(λ−1)

δ
+
αλ
δ

(1−A
1−B

)
+

(1− |B|
1+ |B|

)
+ (λ−2)

(
A−B

(1+A)(1+B)

)
(αδ ≥ 0)

= λ

(
γ

δ
+

A−B
(1+A)(1+B)

)
+
αλ
δ

(1−A
1−B

)
+

1− |B|
1+ |B|

−

(
γ

δ
+

2(A−B)
(1+A)(1+B)

)
. (2.3.10)

To achieve the desired result it is required to show that equation (2.3.10) is greater

than or equal to 0, which is possible when

B−A
(1+A)(1+B)

≤
γ

δ
≤

2(B−A)
(1+A)(1+B)

.

This completes the proof. □

With λ = 1 and q(z) = ϕPAR(z) := 1+ (2/π2)(log((1+
√

z)/(1−
√

z)))2 in Theorem 2.2.2,

the result follows as:

Corollary 2.3.23. Let β/δ ≥max(0;−α/δ). If p ∈ P0 satisfies

αp(z)+βp(z)2+δzp′(z)

≺

(
1+

2
π2

(
log

1+
√

z
1−
√

z

)2 (
α+β

1+
2
π2

(
log

1+
√

z
1−
√

z

)2+ 4δ
π2

√
z

1− z
log

(
1+
√

z
1−
√

z

))
.

Proof. As we know thatϕPAR(z) is a convex function, we obtain Q(z)= δzq′(z) is starlike

(univalent) inD, by Alexander’s Theorem, which is stated in Theorem B. Also, from

condition (2) of Theorem 2.2.2, we have

ReH(z) := Re

αδ + 2β
δ

1+
2
π2

(
log

(
1+
√

z
1−
√

z

))2+1+
zq′′(z)
q′(z)

 .
Now let us assume 1(θ) = 1

2 +
2
π2 log(cot(θ/4)))2, and evaluating the above equation at
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z = eiθ (−π < θ ≤ π), we obtain

ReH(eiθ) ≥ Re
(
α
δ
+

2β
δ

(
1+

2
π2 (log(icot(θ/4)))2

))
=:
α
δ
+

2β
δ
1(θ). (2.3.11)

For θ = π, a simple calculation shows that

1′′(θ) =csc2(θ/4) log(cot(θ/4))/(4π2)+ (csc2(θ/4)sec(θ/4)2)/(4π2)

− (log(cot(θ/4)))sec2(θ/4)/(4π2) > 0.

On substituting 1(π) = 1/2, the minimum value of 1(θ) in equation (2.3.11), we get

ReH(eiθ) ≥ 0. Hence, both the conditions of Theorem 2.2.2 get satisfied. The result

follows now. □

2.4 Applications to Starlike Functions

On substituting p(z) = z f ′(z)/ f (z) in Corollaries 2.3.3, 2.3.11, 2.3.5 and 2.3.13 respec-

tively, the result follows as:

Example 2. Let f ∈ S.

(i)(a) 1+2β/δ > 0, γδ ≤ 0, αδ ≥ 0 and 0 ≤ λ ≤ 1.

(b) αλ/δ ≥ 0, β(λ+1)/δ ≥ 0, γ(λ−1)/δ ≥ 0 and |λ| ≤ 1.

If either (a) or (b) holds and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+ (β−δ)
z f ′(z)

f (z)
+δ

(
1+

z f ′′(z)
f ′(z)

))
≺

(1+ z
1− z

)λ (
α+β

(1+ z
1− z

)
+γ

(1− z
1+ z

)
+

2δz
1− z2

)
,

then f ∈ S∗.

(ii)(a) 1+2α/δ > 0, γδ ≥ 0 and 1 ≤ λ ≤ 2.

(b) αλ/δ, γ(λ−1)/δ ≥ 0 and −1 ≤ λ ≤ 2.

If either (a) or (b) holds and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+δ

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

))
≺

(1+ z
1− z

)λ (
α+γ

1− z
1+ z

+
2δz

(1+ z)2

)
,
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then f ∈ S∗.

By taking α = γ = 0 and λ = 1 in Example (2)(i)(a), we have the following result of

Ravichandran and Kumar [85].

Remark 8. [85] Let 1+2β/δ > 0. If f ∈ S and

z f ′(z)
f (z)

(
(β−δ)

z f ′(z)
f (z)

+δ

(
1+

z f ′′(z)
f ′(z)

))
≺ β

(1+ z
1− z

)2
+

2δz
(1− z)2 ,

then f ∈ S∗.

By taking λ = α = γ = 0 and δ = 1 in Example (2)(ii)(b), we have the following result

of Obradović and Tuneski [79].

Remark 9. If f ∈ S and
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
≺ 1+

2z
(1+ z)2 ,

then f ∈ S∗.

By taking p(z) = 2 f ′(z)/(2+ z), α = γ = 0 and λ = 1 in the Corollary 2.3.3, we get the

sufficient condition for f to belong to the classK , as given below.

Example 3. Let 1+2β/δ > 0. If f ∈ S satisfies

2 f ′(z)
(2+ z)2

(
2β f ′(z)−δz

)
+

2δz f ′′(z)
2+ z

≺ β
(1+ z
1− z

)2
+

2δz
(1− z)2 .

then f ∈ K .

As an application of Corollary 2.3.17, where we assume p(z)= z f ′(z)/ f (z), we deduce

the following result.

Example 4. Let f ∈ S.

(i) If δ > 0, αλ ≥ −(A+B), where A = β(λ+1)/e ≥ 0, B = γ(λ−1)/e ≥ 0 and |λ| ≤ 1 and

f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+ (β−δ)
z f ′(z)

f (z)
+δ

(
1+

z f ′′(z)
f ′(z)

))
≺ eλz (γe−z+α+βez+δz

)
,

then f ∈ S∗e.
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(ii) If |λ−1| ≤ 1, αλ/δ ≥ 0 and γ(λ−1) ≥ 0 and f satisfies

(
z f ′(z)

f (z)

)λ (
α+β

z f ′(z)
f (z)

+γ
f (z)

z f ′(z)
+δ

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

))
≺ eλz (α+βez+γe−z+δze−z) ,

then f ∈ S∗e.

The above result deals with the sufficient conditions for analytic functions to belong

to the class S∗e. Now, letting p(z) = z f ′(z)/ f (z) in the Corollaries 2.3.4 and 2.3.6, the

couple of results follow, respectively.

Example 5. Let f ∈ S.

(i) If 1+β/δ > 0, γδ ≤ 0, −1+ (2α+β)/δ ≥ 0 and 0 ≤ λ ≤ 1 and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+ (β−δ)
z f ′(z)

f (z)
+δ

(
1+

z f ′′(z)
f ′(z)

))
≺

( 1
1− z

)λ (
α+β

1
1− z

+γ(1− z)+
δz

1− z

)
,

then f ∈ S∗(1/2).

(ii) If 1+α/δ > 0, (2γ+α)/δ ≥ 1 and 1 ≤ λ ≤ 2 and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+δ

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

))
≺

( 1
1− z

)λ (
α+ (1− z)γ+δz

)
,

then f ∈ S∗(1/2).

The above result gives the sufficient conditions for analytic functions to be starlike

of order 1/2. Let λ = α = γ = 0, δ = β = 1 and λ = α = δ = 1, γ = 0, respectively

in Example (5)(i) and (ii), we obtain the following known result of Marx [64] and

Strohhäcker [109].

Remark 10. A convex function is starlike of order 1/2.

Recall, a result by Mocanu [69] for ρ−convex functions, furnished below in the

remark and is needed for the upcoming result.

Remark 11. Let ρ be an arbitrary real number, and suppose that f (z) is ρ−convex. If

ρ ≥ 1, then f (z) is convex.
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By taking λ = α = γ = 0, β = 1 and δ = ρ in Example 5(i), we deduce the result as

follows:

Corollary 2.4.1. Let 1/ρ ≥ 1 and if f satisfies

(
1−ρ

) z f ′(z)
f (z)

+ρ

(
1+

z f ′′(z)
f ′(z)

)
≺

1+ρz
1− z

,

then z f ′(z)/ f (z) ≺ 1/(1− z).

The Remark 10, Corollary 2.4.1 and Remark 11 yield the following result.

Corollary 2.4.2. A ρ−convex function is starlike of order 1/2 for ρ > 0.

As an application of Corollary 2.3.18(a) and (b), where we take p(z) = z f ′(z)/ f (z) to

obtain the following results, respectively, in Example 6.

Example 6. Let f ∈ S.

(i) If −2 ≤ λ ≤ 2, γ(λ−1) ≥ 0, β(λ+1) ≥ 0, δ >max(0,
√

2γ) and −(2
√

2γ+δ)/4 < α ≤

−3γ/(2
√

2) and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+ (β−δ)
z f ′(z)

f (z)
+δ

(
1+

z f ′′(z)
f ′(z)

))
≺ (1+ z)λ/2

(
γ
√

1+ z
+α+β

√

1+ z+δ
(

z
2(1+ z)

))
,

then f ∈ SL∗.

(ii) If −1 ≤ λ ≤ 3, αλ/δ ≥ 0, β(λ+1)/δ ≥ 0 and −1/4 < γ/δ ≤ 0 and f satisfies

(
z f ′(z)

f (z)

)λ (
α+β

z f ′(z)
f (z)

+γ
f (z)

z f ′(z)
+δ

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

))
≺ (1+ z)λ/2

(
α+β

√

1+ z+
γ
√

1+ z
+

δz
2(1+ z)3/2

)
,

f ∈ SL∗.

The above result provides the sufficient conditions for functions in S to belong to

the class SL∗. Now, by taking p(z) = z f ′(z)/ f (z) in Corollary 2.3.22(a) and (b), then we

deduce the following, which serves as the sufficient conditions for functions in S to

belong to the class S∗[A,B], involving Janowski function.

Example 7. Let f ∈ S and (1+AB)(1−A)(1−B) > 8AB (−1 < B < A ≤ 1).
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(i) If 0 ≤ λ ≤ 1, α/δ ≥ (B−A)/((1+A)(1+B)) and β/δ ≥ (A−B)(1−B)/((1−A2)(1+B))

and f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+ (β−δ)
z f ′(z)

f (z)
+δ

(
1+

z f ′′(z)
f ′(z)

))
≺

(1+Az
1+Bz

)λ (
α+ (β−δ)

(1+Az
1+Bz

)
+δ

(A−B)z
(1+Az)(1+Bz)

)
,

then f ∈ S∗[A,B].

(ii) If αδ ≥ 0, 0 ≤ λ ≤ 2 and (B−A)/((1+A)(1+B)) ≤ γ/δ ≤ 2(B−A)/((1+A)(1+B)) and

f satisfies

(
z f ′(z)

f (z)

)λ (
α+γ

f (z)
z f ′(z)

+δ

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

))
≺

(1+Az
1+Bz

)λ (
α+γ

( 1+Bz
1+Az

)
+δ

(
(A−B)z
(1+Az)2

))
,

then f ∈ S∗[A,B].

From Corollary 2.3.23, we get the following result by taking p(z) = z f ′(z)/ f (z).

Example 8. Let f ∈ S and β/δ ≥max(0;−α/δ). If f satisfies(
z f ′(z)

f (z)

)(
α+ (β−δ)

z f ′(z)
f (z)

+δ

(
1+

z f ′′(z)
f ′(z)

))
≺

1+
2
π2

(
log

1+
√

z
1−
√

z

)2(α+β1+
2
π2

(
log

1+
√

z
1−
√

z

)2+ 4δ
π2

√
z

1− z
log

(
1+
√

z
1−
√

z

))
,

then f ∈ SP.

Remark 12. By replacing p(z) = f ′(z) in each of the Corollaries of section 2.3, one can

find several univalence criterion for analytic functions, as a by-product of Noshiro-

Warschawski Theorem, stated in Theorem A.

Concluding Remarks

Our findings generalize some of the previously known results, apart from extending

the result obtained by Mocanu [69] for ρ− convex class. In literature, we come across

many subclasses of S, among which we established relation between some famous

classes such as (a) class of starlike functions of reciprocal order andN(κ); (b) ρ-convex
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class and S∗(1/2). Furthermore, obtained argument based results involving oblique

sector function, a name which is coined by us for a function
(

1+cz
1−z

)(η1+η2)/2
, where the

parameters take the values given by (1.2.7).





Chapter 3

Certain Exact Differential

Subordinations

In this chapter, we introduce the concept of exact differential subordinations in the complex

plane, which is analogous to exact differential equations on the real line. Let h be a non

vanishing convex univalent function and p be an analytic function in D. We consider the

following first order differential subordination

ψ j(p(z),zp′(z)) ≺ h(z) ( j = 1,2),

where the admissible functions ψ1 and ψ2 are given by ψ1 := (βp(z)+γ)−α
( (βp(z)+γ)
β(1−α) + zp′(z)

)
and ψ2 := 1√

γβ
arctan

(√
β
γp1−α(z)

)
+

(
1−α

βp2(1−α)(z)+γ

)
zp′(z)
pα(z) . We find the dominants as well

the best dominant (say q) of the solution of the above differential subordination satisfying

ψ j(q(z),nzq′(z)) = h(z). We prove that ψ j(q(z),zq′(z)) = h(z) is an exact differential equation

and q is a convex univalent function inD. Furthermore, we estimate the sharp lower bound of

Rep for different choices of h and as an application of our results, derive a univalence criterion

for functions inA.

47
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3.1 Introduction

In the recent times, we come across certain first order differential subordination

implications involving Ma-Minda functions (see [1, 18, 71]). This topic has attracted

consistent study, leading to numerous types of differential subordinations being intro-

duced. For instance, Briot-Bouquet differential subordination has been defined in the

literature analogous to Briot-Bouquet differential equations on real line. This differ-

ential subordination has a great deal of applications in univalent function theory. In

2005, Kanas and Kowalczyk [38] studied a special type of differential subordination,

namely Briot-Bouquet-Bernoulli differential subordination based on the combination

of Bernoulli and Briot-Bouquet differential equations on real line. Motivated by their

work, in this chapter, we introduce a new concept of exact differential subordinations

and deduce certain results pertaining to it. Furthermore, we derive some special cases

of these results by considering various choices of Ma-Minda functions.

Recall the Nevanlinna’s criterion, which states that a function f ∈A is starlike if and

only if Re(z f ′(z)/ f (z)) > 0 in D. For functions in A, the convex characterization [5]

and the univalence criterion [78, Lemma 1.1, p.10769] yield the characterization for

convex univalent functions inA as follows:

Conclusion 3.1.1. A function f ∈A is convex univalent inD if and only if

Re
(
1+

z f ′′(z)
f ′(z)

)
> 0, z ∈D. (3.1.1)

Geometrically, it is also known that a function f (z) is convex (starlike) if it maps

D onto a convex (starlike) domain. The characterization for convex functions f ∈ A,

given in Conclusion 3.1.1 can be extended to convex functions inH[a,1] as follows:

Conclusion 3.1.2. Let F(z) = a+ a1z+ a2z2+ · · · ∈ H[a,1]. Then F is convex univalent in

D if and only if it satisfies

Re
(
1+

zF′′(z)
F′(z)

)
> 0, z ∈D. (3.1.2)

Proof. Since F(z) ∈H[a,1], the function f (z) = F(z)−a
a1
∈A (a1 , 0) and we get

Re
(
1+

zF′′(z)
F′(z)

)
= Re

(
1+

z f ′′(z)
f ′(z)

)
. (3.1.3)
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Now, if we assume F is convex univalent in D, then geometrically so is the function

f (z). Thus the inequality (3.1.2) follows using Conclusion 3.1.1 and equation (3.1.3).

Conversely, let inequality (3.1.2) holds, then (3.1.1) holds true using equation (3.1.3).

Thus by Conclusion 3.1.1, we get f is convex univalent in D and geometrically so is

F(z). This completes the proof. □

The theory of differential subordinations is extensively studied in [67]. For some

more work in this direction, one may refer to [3, 51, 106]. The set of analytic and

univalent functions q̃ on D\E(q̃), where E(q̃) = {ζ ∈ ∂D : limz→ζ q̃(z) = ∞}, such that

q̃′(ζ) , 0 for ζ ∈ ∂D\E(q̃) is denoted by Q̃. The theory of admissible functions paved a

way in finding the dominants of the solutions of differential subordinations altogether

with a distinctive approach. The admissible function is defined as follows:

Definition 3.1.1. [67] LetΩ be a set inC, q̃ ∈ Q̃ and n be a positive integer. The class of

admissible functions Ψn[Ω, q̃], consists of the functions ψ : C2
×D→ C, which satisfy

the admissibility condition

ψ(r,s;z) <Ω, (3.1.4)

whenever r = q̃(ζ), s =mζq̃′(ζ), z ∈D, ζ ∈ ∂D\E(q̃) and m ≥ n.

In particular, if Ω is a simply connected domain, Ω , C and h conformally maps

D onto Ω, we denote the class Ψn[Ω, q̃] by Ψn[h, q̃]. Recently, in [47, 72, 73], authors

have studied the applications of admissibility conditions for various known classes

of starlike functions. We consider a special case of the class Ψn[Ω, q̃] by taking Ω =

{w : Rew > 0}, q̃(D) =Ω, q̃(0) = 1, E(q̃) = {1} and q̃ ∈ Q̃, wherein the above admissibility

condition, given in (3.1.4) reduces to

ψ(ρi,σ;z) <Ω,

where ρ and σ ∈ R, σ ≤ −(n/2)|1− iρ|2, z ∈D and n ≥ 1. Set Ψn{1} := Ψn[Ω, q̃] for the

above particular case.

3.2 Concept of Exact Differential Subordinations

Let us recall that a first order differential equation of the type:

M(x, y)dx+N(x, y)dy = 0, (3.2.1)
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where M(x, y) and N(x, y) have continuous partial derivatives in some domain D⊂R2,

is called an exact differential equation if it satisfies ∂M
∂y =

∂N
∂x . The solution of such a

differential equation (3.2.1), is given by∫
M(x, y) dx+

∫
Ñ(y) dy = c, (3.2.2)

where c is the integration constant and Ñ(y) is equal to that part of the expression

N(x, y), which is independent of x. This concept we carry to the complex plane by

considering the following general first order differential subordination implication:

Implication A. Let ψ : C2
×D→ C be an analytic function and h be univalent in D.

For some suitable a0, if p ∈H[a0,n] satisfies

ψ(p(z),zp′(z);z) ≺ h(z),

then p ≺ q, where q be the best (a0,n)-dominant satisfying the differential equation

ψ(q(z),nzq′(z)) = h(z).

In view of the Implication A, we furnish the following definition:

Definition 3.2.1. Let ψ, p and q are as stated in the Implication A. A first order

differential subordination of the form

ψ(p(z),zp′(z);z) ≺ h(z)

is said to be exact differential subordination, if the following conditions hold:

(i) There exists M̃(z,p) and N(z,p) satisfying ∂M̃(z,p)
∂p =

∂N(z,p)
∂z such that

ψ(p(z),zp′(z)) = M̃(z,p)+N(z,p) p′(z).

(ii) When n = 1, the equation ψ(q(z),nzq′(z)) = h(z) reduces to an exact differential

equation of the form:

M(z,q) dz+N(z,q) dq = 0,

where M(z,q) := M̃(z,q)−h(z) and ∂M(z,q)
∂q =

∂N(z,q)
∂z .

In this chapter, we mainly focus on the following exact type of differential subordi-
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nations:

(βp(z)+γ)−α
(

(βp(z)+γ)
β(1−α)

+ zp′(z)
)
≺ h(z), (3.2.3)

and

1√
γβ

arctan


√
β

γ
p1−α(z)

+
(

1−α
βp2(1−α)(z)+γ

)
zp′(z)
pα(z)

≺ h(z), (3.2.4)

where p ∈ H[a0,n] for an appropriate a0 and h is a non vanishing convex univalent

function inDwith h(0) = a. We denote the expression on left side of (3.2.3) and (3.2.4)

by ψ1(p(z),zp′(z)) and ψ2(p(z),zp′(z)), respectively. The speciality of the above two

differential subordinations is that they generalize a result studied by Hallenbeck and

Ruscheweyh [31]. Using the concept of admissibility conditions, we obtain the dom-

inant and best dominant q of the solutions of the above differential subordinations,

which satisfy

ψ j(q(z),nzq′(z)) = h(z) ( j = 1,2). (3.2.5)

Now we show that the above two differential subordinations are exact. Take M̃(z,p) :=
(βp+γ)1−α

β(1−α) and N(z,p) := z
(βp+γ)α in (3.2.3), then we have ∂M̃(z,p)

∂p =
∂N(z,p)
∂z . Furthermore,

for n = 1, the equation (3.2.5) with j = 1, reduces to the following exact differential

equation in z and q:

M(z,q) dz+N(z,q) dq = 0, (3.2.6)

as ∂M(z,q)
∂q =

∂N(z,q)
∂z , where M(z,q) = (βq+γ)1−α

β(1−α) −h(z). From Definition 3.2.1, we get (3.2.3)

is an exact differential subordination. Since (3.2.6) is an exact differential equation, we

can obtain its solution analogous to (3.2.2) as follows:∫
M(z,q) dz+

∫
Ñ(q) dq = c,

where Ñ(q) is equal to that part of the expression N(z,q), which is independent of z.

Upon simplification of the above equation, we get

q(z) =

(
β(1−α)

z

∫ z
0 h(t)dt

) 1
1−α
−γ

β
. (3.2.7)

Interestingly, the above solution (3.2.7) of the exact differential equation (3.2.6) ob-

tained analogous to (3.2.2) coincides with the best dominant of the associated differ-
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ential subordinations (3.2.3), which we illustrate in the subsequent section. Now we

prove that the subordination (3.2.4) is also exact. For this, let us take

M̃(z,p) :=
1√
γβ

arctan


√
β

γ
p1−α

 and N(z,p) :=
(

1−α
βp2(1−α)+γ

)
z

pα
,

in subordination (3.2.4). We calculate that ∂M̃(z,p)/∂p = ∂N(z,p)/∂z, which reveals

that (3.2.4) satisfies the condition (i) of Definition 3.2.1. The second condition of Defi-

nition 3.2.1 also holds, as equation (3.3.14) for n = 1, reduces to the differential equa-

tion (3.2.6), with M(z,q) := (1/
√
γβ)arctan

(√
β
γq1−α

)
− h(z) and N(z,q) := (1−α)z

qα(βq2(1−α)+γ) ,

where ∂M(z,q)
∂q =

∂N(z,q)
∂z , which shows that the differential equation, given in (3.3.14) is

exact for n = 1. This clearly shows that (3.2.4) is an exact differential subordination.

Consequently, the equation (3.2.2) yields the solution for equation (3.3.14) whenever

n = 1 as follows:

q(z) =

√γ

β
tan


√
γβ

z

∫ z

0
h(t)dt


1

1−α
, (3.2.8)

which coincides with (3.3.10) for n= 1. Note that the above solution (3.2.8) of the exact

differential equation (3.2.6) also coincides with the best dominant of the associated

differential subordinations (3.2.4). In what follows, let us presume convex to mean

convex univalent.

3.3 Main Results

We employ the famous Hallenbeck and Ruscheweyh [31] result with γ = 1 to prove

our main results.

Lemma 3.3.1. [31] Let h be convex inD having h(0) = a. If P ∈H[a,n] satisfies

P(z)+ zP′(z) ≺ h(z),

then P(z) ≺Q(z) ≺ h(z), where

Q(z) =
1

nz1/n

∫ z

0
h(t)t(1/n)−1dt, (3.3.1)

is convex and is the best (a,n)−dominant.

We state below that part of the result which is relevant in proving our results.
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Lemma 3.3.2. [67] Letψ :C2
→C and h be univalent inD. Suppose that the differential

equation

ψ(q(z),nzq′(z)) = h(z)

has a solution q, with q(0)= a. Furthermore, assume q∈ Q̃ andψ∈Ψn[h,q]. If p∈H[a,n],

ψ(p(z),zp′(z)) is analytic in D, and p satisfies ψ(p(z),zp′(z)) ≺ h(z) then p ≺ q, and q is

the best (a,n)-dominant.

The following theorem deals in finding the best dominant of the exact type differ-

ential subordination (3.2.3).

Theorem 3.3.3. Suppose h be a non-vanishing convex function with h(0)= a. Let β(, 0),

γ be complex numbers and −1 ≤ α ≤ 0. If a0 = ((β(1−α)a)1/(1−α)
−γ)/β and p ∈H[a0,n]

satisfies
(βp(z)+γ)1−α

β(1−α)
+

zp′(z)
(βp(z)+γ)α

≺ h(z), (3.3.2)

then p(z) ≺ q(z) ≺H(z), where H(z) := ((β(1−α)h(z))
1

1−α −γ)/β and

q(z) =

(
β(1−α)

nz1/n

∫ z
0 h(t)t(1/n)−1dt

) 1
1−α
−γ

β
. (3.3.3)

Furthermore, H(z) and q(z) are convex inD and q is the best (a0,n)- dominant.

Proof. We first prove that q and H are convex in D. Since the function h here satisfies

the conditions of h of Lemma 3.3.1, the expression (3.3.3) becomes

q(z) =
(
β(1−α)Q(z)

)1/(1−α)
−γ

β
, (3.3.4)

where Q is given by (3.3.1). Thus q is well-defined and analytic in D as β , 0. Let

P(z) = (βp(z)+γ)1−α

β(1−α) , then P ∈H[a,n] and the subordination (3.3.2) becomes P(z)+zP′(z) ≺

h(z). The Lemma 3.3.1 yields P(z) ≺ Q(z) ≺ h(z), which implies (βp(z)+γ)1−α
≺ β(1−

α)Q(z) ≺ β(1−α)h(z). Since h(z) does not vanish in D, we have q′(z) , 0 and therefore

1+ zq′′(z)/q′(z) =: s(z) is analytic inD. The logarithmic differentiation of (3.3.4) gives

1+
zQ′′(z)
Q′(z)

= 1+
zq′′(z)
q′(z)

+A(z) =: ψ̃(s(z);z), (3.3.5)

A(z) := −αβ
zq′(z)
βq(z)+γ

=
α

α−1

(
zQ′(z)
Q(z)

)
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and we can write (3.3.5) as ψ̃(r) = r+A(z). By Lemma 3.3.1, the function Q is convex,

thus from Conclusion 3.1.2, we have Re ψ̃(s(z)) > 0. Now to prove q is convex, by

Conclusion 3.1.2, it suffices to show Res(z) > 0. To accomplish this task, we use [67,

Theorem 2.3i, p. 35] and so we need to show that ψ̃ ∈Ψn{1}. Furthermore, by using

the admissibility condition for the same, it is equivalent to prove that Re ψ̃(ρi;z) ≯ 0.

From equation (3.3.5), we obtain

Re ψ̃(ρi) = Re(ρi+A(z)) = ReA(z).

Using the fact that Q(z) , 0 for all z ∈D, we get zQ′(z)/Q(z) is analytic in D. Since

P(z) ≺Q(z), we have Q(0) = a(, 0), which implies

zQ′(z)
Q(z)

∣∣∣∣∣
z=0
= 0

and also we have Q′(z) , 0 for all z, therefore zQ′(z)/Q(z) lies on either side of the

imaginary axis. So clearly we have ReA(z) ≯ 0. Thus, q is convex in D. We compute

that

1+
zh′′(z)
h′(z)

= 1+
zH′′(z)
H′(z)

+B(z),

where

B(z) = −αβ
zH′(z)
βH(z)+γ

=
α

α−1
zh′(z)
h(z)

. (3.3.6)

In the same way as function q is proved to be convex in D, we may show that the

function H is convex inD, since zh′(z)/h(z) (h(0) = a) and zQ′(z)/Q(z) behave alike. We

now proceed to show p(z) ≺ q(z) ≺H(z) and q is the best (a0,n)- dominant. Let

ψ1(r,s) :=
(βr+γ)1−α

β(1−α)
+

s
(βr+γ)α

,

which corresponds to left hand side of the subordination (3.3.2). First we show p ≺H

by proving ψ1 ∈Ψn[h,H], or equivalently

ψ := ψ1(H(ζ),mζH′(ζ)) =
(βH(ζ)+γ)1−α

β(1−α)
+

mζH′(ζ)
(βH(ζ)+γ)α

< h(D),

whenever |ζ| = 1 and m ≥ n. From hypothesis, replacing H by its expression in terms

of h, in ψ, we obtain ∣∣∣∣∣∣arg
(
ψ−h(ζ)
ζh′(ζ)

)∣∣∣∣∣∣ = |argm| < π/2.
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As the function h(D) is convex and m ≥ 1, h(ζ) ∈ h(∂D) and ζh′(ζ) is the outer normal

to h(∂D) at h(ζ), we arrive at the conclusion that ψ < h(D) and therefore we obtain

p(z) ≺ H(z). Now, we show p ≺ q. A simple calculation shows that q, given by (3.3.3)

satisfies the following differential equation

(βq(z)+γ)1−α

β(1−α)
+

nzq′(z)
(βq(z)+γ)α

= ψ1(q(z),nzq′(z)) = h(z). (3.3.7)

Now, we apply Lemma 3.3.2 to show q is the best dominant. Without loss of generality,

we can suppose h and q are analytic and univalent onD and q′(ζ) , 0 for |ζ| = 1, which

shows that q ∈ Q̃. To complete the proof, we now showψ1 ∈Ψn[h,q]. This is equivalent

to show that

ψ́ := ψ1(q(ζ),mζq′(ζ)) =
(βq(ζ)+γ)1−α

β(1−α)
+

mζq′(ζ)
(βq(ζ)+γ)α

< h(D),

whenever |ζ| = 1 and m ≥ n. Using equations (3.3.3) and (3.3.7), we obtain

Q(ζ)+
m
n

(h(ζ)−Q(ζ)) = ψ́.

Now we have Q(z) ≺ h(z) from Lemma 3.3.1. This clearly implies Q(ζ) < h(D) and also

we know m/n ≥ 1, it is easy to observe that ψ́ < h(D). Thus the proof follows. □

Let n= 1, then the best dominant q, given in (3.3.3) coincides with the solution (3.2.7)

obtained by solving its associated exact differential equation. By taking β= 1 and γ= 0

in Theorem 3.3.3, the result follows as:

Corollary 3.3.4. Let h be a non vanishing convex function inDwith h(0)= a, −1≤ α≤ 0

and a0 = ((1−α)a)1/(1−α). If p ∈H[a0,n] satisfies

p1−α(z)
1−α

+
zp′(z)
pα(z)

≺ h(z),

then p(z) ≺ q(z) ≺H(z), where H(z) := ((1−α)h(z))
1

1−α and

q(z) =
(

(1−α)
nz1/n

∫ z

0
h(t)t(1/n)−1dt

) 1
1−α

.

Furthermore, H(z) and q(z) are convex inD and q is the best (a0,n)- dominant.

In Corollary 3.3.4, if we choose α = −1, h as any convex function with h(0) = 1 and



56

Reh(z) > 0, then we obtain the following result:

Corollary 3.3.5. Let h be a convex function with h(0) = 1 and Reh(z) > 0. If p ∈ H[1,n]

satisfies the following

p2(z)+2zp(z)p′(z) ≺ h(z),

then

p(z) ≺ q(z) =
√

Q(z), where Q(z) =
1

nz1/n

∫ z

0
h(t)t(1/n)−1dt. (3.3.8)

The function q is the best (1,n)- dominant and is convex inD.

Remark 13. The Corollary 3.3.5 improves the already known result of Miller and

Mocanu [67, Theorem 3.1e, p. 77], by additionally establishing q, given in (3.3.8)

is convex in D apart from being the best dominant. Moreover, the Corollary 3.3.4

generalizes the known result [67, Theorem 3.1e, p. 77] for all α (−1 ≤ α ≤ 0) and

extends the same by proving the convexity of the function q as well.

In the following theorem, we deal with another exact type differential subordination

associated with (3.2.4).

Theorem 3.3.6. Let β, γ(, 0) be complex numbers, −1 ≤ α ≤ 0, h be a non vanishing

convex function inD with h(0) = a, |
√
γβh(z)| < π/2 and a0 = (

√
γ/β tan(

√
γβa))1/(1−α).

If p ∈H[a0,n] satisfies

1√
γβ

arctan


√
β

γ
p1−α(z)

+
(

1−α
βp2(1−α)(z)+γ

)
zp′(z)
pα(z)

≺ h(z), (3.3.9)

then p(z) ≺ q(z) ≺H(z), where H(z) = (
√
γ/β tan(

√
γβh(z)))1/(1−α) and

q(z) =

√γ

β
tan


√
γβ

nz1/n

∫ z

0
h(t)t(1/n)−1dt


1

1−α
. (3.3.10)

Furthermore, H(z) and q(z) are convex inD and q is the best (a0,n)−dominant.

Proof. We first show that q and H are convex inD. As the function h here satisfies the

condition of h of Lemma 3.3.1, thus q reduces to

q(z) =
(√

γ

β
tan

(√
γβQ(z)

)) 1
1−α

, (3.3.11)
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where Q is defined in (3.3.1) and q is well defined and analytic in D. Let P(z) =

(1/
√
γβ)arctan

(√
β/γp1−α(z)

)
, then the subordination (3.3.9) reduces to P(z)+ zP′(z) ≺

h(z) and clearly P ∈H[a,n]. Now from Lemma 3.3.1, we have P(z) ≺Q(z) ≺ h(z), which

is equivalent to arctan
(√

β
γp1−α(z)

)
≺

√
γβQ(z) ≺

√
γβh(z).We have q′(z) , 0 as h(z) , 0

for all z ∈ D and therefore 1+ zq′′(z)/q′(z) =: 1(z) is analytic in D. The logarithmic

differentiation of the function q, given in (3.3.11) yields

1+
zQ′′(z)
Q′(z)

= 1+
zq′′(z)
q′(z)

+A(z) =: ψ̃(1(z);z), (3.3.12)

where

A(z) = −
(
α+2(1−α)β

q2(1−α)(z)
γ+βq2(1−α)(z)

)(
zq′(z)
q(z)

)

=
α

α−1

 ∞∑
k=0

(−1)k (2
√
γβQ(z))2k

(2k+1)!

−1 (
zQ′(z)
Q(z)

)
−2

√
γβ tan(

√
γβQ(z))zQ′(z), (3.3.13)

and we can write ψ̃(r) = r+A(z). By Lemma 3.3.1, the function Q is convex, thus

from Conclusion 3.1.2, we have Re ψ̃(1(z)) > 0. In order to prove q is convex, by

Conclusion 3.1.2, it suffices to show Re1(z) > 0. Now, to achieve this, we use [67,

Theorem 2.3i, p. 35], so then we only need to show ψ̃ ∈Ψn{1}. Furthermore, by using

the admissibility condition for the same, it is equivalent to show that Re ψ̃(ρi;z) ≯ 0.

From equation (3.3.12), we deduce Re ψ̃(ρi) = Re(ρi+A(z)) = ReA(z). Now, using the

fact Q(z) , 0 for all z ∈ D, we get A is analytic in D. Since P(z) ≺ Q(z), we have

Q(z) ∈H[a,1], thus

 ∞∑
k=0

(−1)k (2
√
γβQ(z))2k

(2k+1)!

−1 (
zQ′(z)
Q(z)

) ∣∣∣∣∣
z=0
= 0

and tan(
√
γβQ(z))zQ′(z)|z=0 = 0, which ensures either A(z) ≡ 0 or lies on either side

of the imaginary axis. Therefore, from equation (3.3.13), we have ReA(z) ≯ 0, which

proves q is convex inD. Similarly, we can prove the function H is convex inD as we

compute

1+
zh′′(z)
h′(z)

= 1+
zH′′(z)
H′(z)

+A(z),

where A is as defined in (3.3.13), with q being replaced by H and Q by h. We now show

p(z) ≺ q(z) ≺H(z) and q is the best (a0,n)- dominant. For this we assume the following
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expression

ψ2(r,s) :=
1√
γβ

arctan


√
β

γ
r1−α

+ (1−α)s
rα(βr2(1−α)+γ)

,

which corresponds to left hand side of the subordination (3.3.9). Now first we show

p ≺H by proving ψ2 ∈Ψn[h,H], or equivalently

ψ2(H(ζ),mζH′(ζ)) =
1√
γβ

arctan


√
β

γ
H1−α(ζ)

+ (1−α)mζH′(ζ)
Hα(ζ)(βH2(1−α)(ζ)+γ)

=: ψ < h(D),

whenever |ζ| = 1 and m ≥ n. Now, replacing H by its expression in terms of h in ψ, we

get ∣∣∣∣∣∣arctan
(
ψ−h(ζ)
ζh′(ζ)

)∣∣∣∣∣∣ = |argm| <
π
2
.

Since the function h is convex, h(ζ) ∈ h(∂D) and ζh′(ζ) is the outer normal to h(∂D) at

h(ζ), thus we obtainψ < h(D), which further implies p(z)≺H(z). A computation shows

that q, given by (3.3.10) satisfies the differential equation

1√
γβ

arctan


√
β

γ
q1−α(z)

+ (1−α)nzq′(z)
qα(z)(βq2(1−α)(z)+γ)

=: ψ2(q(z),nzq′(z)) = h(z). (3.3.14)

We apply Lemma 3.3.2 to show q is the best dominant. Without loss of generality, we

assume h and q are analytic and univalent onD and q′(ζ) , 0 for |ζ| = 1, which shows

that q ∈ Q̃. In order to complete the proof, it suffices to show ψ2 ∈Ψn[h,q], which is

equivalent to show that

ψ2(q(ζ),mζq′(ζ)) =
1√
γβ

arctan


√
β

γ
q1−α(ζ)

+ (1−α)mζq′(ζ)
qα(ζ)(βq2(1−α)(ζ)+γ)

=: ψ́ < h(D),

whenever |ζ| = 1 and m ≥ n. From equations (3.3.1) and (3.3.14), we have Q(ζ)+

(m/n)(h(ζ)−Q(ζ))= ψ́.As we have m/n≥ 1 and from Lemma 3.3.1, we have Q(z)≺ h(z),

therefore evidently, we get ψ́ < h(D). This completes the proof. □

3.4 Special Cases

For detail information on hypergeometric function, one may refer to [67, p. 5-7].

Here, we recall the definitions of a couple of hypergeometric functions which are

needed in this section. Suppose a and c are complex numbers with c , 0,−1,−2, . . . .
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The function

1F1(a,c;z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1etzdt,

is called the confluent hypergeometric function and the following

2F1(a,b,c;z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt,

is the Gaussian hypergeometric function. We now obtain the following corollary for

different choices of h in Theorem 3.3.3, when β is a real number.

Corollary 3.4.1. Let −1 ≤ α ≤ 0, β > 0 and γ be a complex number. If p ∈ H[(β(1−

α))1/(1−α)
−γ)/β,n] and ψ1(p(z),zp′(z)), given in (3.2.3), satisfies the following:

(i) ψ1 ≺ (1+Az)/(1+Bz), −1 ≤ B < A ≤ 1, with

λ1 := 2F1 (1,1/n,1+1/n;B)− A
n+1 2F1 (1,1+1/n,2+1/n;B)

(ii) ψ1 ≺ eµz, (|µ| ≤ 1), with λ2 := 1F1
(
1/n,1/n+1;−µ

)
(iii) ψ1 ≺

√
1+κz, κ ∈ [0,1], with λ3 := 2F1 (−1/2,1/n,1+1/n;κ)

(iv) −η2π
2 < argψ1 <

η1π
2 , where η = η1−η2

η1+η2
, η′ = η1+η2

2 , 0 < η1,η2 ≤ 1, and c = eηπi, with

λ4 :=
∞∑
j=0


(
η′

j

)
(−c) j

2F1(η′,1/n+ j,1+1/n+ j;−1)

1+nj

 ,
then for the above parts (i)-(iv), respectively we have Rep(z) > ζi(α,β,γ,λi), where

ζi(α,β,γ,λi) = Re(((β(1−α)λi)1/(1−α)
−γ)/β),

with i corresponding to its appropriate integral value from 1 to 4. The result is sharp.

Proof. Let h(z) = (1+Az)/(1+Bz), eµz,
√

1+κz and ((1+ cz)/(1− z))η
′

, respectively for

the parts (i)-(iv). Then from Theorem 3.3.3, clearly Rep(z) >min|z|≤1 Req(z), where q is

given by (3.3.4). Therefore, it suffices to find the minimum value of real part of Q in

each of the parts, where Q is given by (3.3.1).

(i) We have h(z) = (1+Az)/(1+Bz), then from equation (3.3.1), we get

Q(z) =
1

nz1/n

∫ z

0

(1+At
1+Bt

)
t(1/n)−1dt

=
1
n

∫ 1

0
(1+Btz)−1t(1/n)−1dt+

Az
n

∫ 1

0
(1+Btz)−1t1/ndt

= 2F1 (1,1/n,1+1/n;−Bz)+
Az

n+1 2F1 (1,1+1/n,2+1/n;−Bz) .
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Now, we have min|z|≤1 ReQ(z) =Q(−1) = λ1, where

λ1 := 2F1 (1,1/n,1+1/n;B)−
A

n+1 2F1 (1,1+1/n,2+1/n;B) .

Hence the result.

(ii) We have h(z) = exp(µz), then from equation (3.3.1) we obtain

Q(z) =
1

nz1/n

∫ z

0
eµtt1/n−1dt

= 1
n

∫ 1

0
eµtzt1/n−1dt

= 1F1
(
1/n,1/n+1;µz

)
.

Clearly, min|z|≤1 ReQ(z)=Q(−1)= λ2, where λ2 := 1F1
(
1/n,1/n+1;−µ

)
. This completes

the proof for part (ii).

(iii) Let h(z) =
√

1+κz, then from equation (3.3.1), we have

Q(z) =
1

nz1/n

∫ z

0

√

1+κt t(1/n)−1dt

=
1
n

∫ 1

0

√

1+κtz t(1/n)−1dt

= 2F1 (−1/2,1/n,1+1/n;−κz) .

Thus, we have min|z|≤1 ReQ(z) =Q(−1) = λ3, where λ3 := 2F1 (−1/2,1/n,1+1/n;κ) and

that completes the proof for part (iii).

(iv) We have h(z) =
(

1+cz
1−z

)η′
, then from equation (3.3.1), we have

Q(z) =
1

nz1/n

∫ z

0

(1+ ct
1− t

)η′
t(1/n)−1dt

=
1

nz1/n

∫ z

0

 ∞∑
j=0

(
η′

j

)
c jt(1/n+ j−1)(1− t)−η

′

dt

=
1

nz1/n

∞∑
j=0

((
η′

j

)
c j

∫ 1

0
(tz)(1/n+ j−1)(1− tz)−η

′

zdt
)

=
1
n

∞∑
j=0

((
η′

j

)
(cz) j

∫ 1

0
t(1/n+ j−1)(1− tz)−η

′

dt
)

=

∞∑
j=0


(
η′

j

)
(cz) j

2F1(η′,1/n+ j,1+1/n+ j;z)

1+nj

 .
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Now, min|z|≤1 ReQ(z) =Q(−1) = λ4, where

λ4 :=

∞∑
j=0


(
η′

j

)
(−c) j

2F1(η′,1/n+ j,1+1/n+ j;−1)

1+nj

 .
Hence the result. □

Remark 14. If A and B are replaced with each other in Corollary 3.4.1(i), then we have

min|z|≤1 ReQ(z) =Q(1). Further by taking A = 2a−1 (a ∈ [0,1)), B = 1, α = −1, β = 1 and

γ= 0, the above result reduces to the result of Miller and Mocanu [67, Corollary 3.1e.1,

p. 79].

We now obtain the following corollary for different choices of h in Theorem 3.3.6,

when β is a real number.

Corollary 3.4.2. Suppose γ(, 0) be a complex number, −1 ≤ α ≤ 0 and β > 0. If

p ∈ H[(
√
γ/β tan(

√
γβa))1/(1−α),n] and ψ2(p(z),zp′(z)), given by (3.2.4) satisfies the fol-

lowing:

(i) ψ2 ≺ (1+Az)/(1+Bz), where −1≤ B<A≤ 1 such that |
√
γβ(1+Az)/(1+Bz)|< π/2

(ii) ψ2 ≺ eµz, where |µ| ≤ 1 such that |
√
γβeµz

| < π/2

(iii) ψ2 ≺
√

1+κz, where κ ∈ [0,1] such that |
√
γβ
√

1+κz| ≤ π/2

(iv) −η2π/2 < argψ2 < η1π/2, η =
η1−η2
η1+η2

, where 0 < η1,η2 ≤ 1, and c = eηπi such that

|
√
γβ((1+ cz)/(1− z))η

′

| < π/2, (η′ = (η1+η2)/2),

then respectively, for the above parts (i)-(iv), we have Rep(z)> ξi(α,β,γ,λi)(i= 1,2,3,4),

where

ξi(α,β,γ,λi) = Re
(√
γ/β tan

(√
γβλi

)) 1
1−α

and λi is same as in Corollary 3.4.1. This result is sharp.

Proof. Here, we assume h(z) = (1+Az)/(1+ Bz), eµz,
√

1+κz and ((1+ cz)/(1− z))η
′

in Theorem 3.3.6, respectively for the above parts (i)-(iv). Then clearly, Rep(z) >

min|z|≤1 Req(z), where q(z) is defined by (3.3.11). Now, to complete the poof it suffices

to have the minimum value of ReQ(z) in each of the above parts, where Q is given

by (3.3.1). Now, Q(z) for the above parts (i)-(iv) is same as calculated in each of the

parts of Corollary 3.4.1, respectively. We directly substitute the minimum value of
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each function Q in equation (3.3.11), respectively for all the parts and the result follows

at once. □

3.5 Examples and Applications

Here below, we provide some illustrations of our results.

Example 9. If p ∈H[1,1] satisfies

p(z)+ zp′(z) ≺
1+ z
1− z

, (3.5.1)

then p(z) ≺ q(z) := −2log(1−z)
z − 1 ≺ 1+z

1−z . Moreover, q is the best (1,1)- dominant and is

convex inD.

Proof. By taking h(z) = 1+z
1−z , n = 1 and α = 0 in Corollary 3.3.4, we obtain Q(z) = q(z) =

−2(log(1− z))/z−1. Now the assertion follows at once from Corollary 3.3.4 as h(0) = 1

and h(z) , 0 for all z ∈D. Moreover, the quantities zQ′(z)/Q(z) and zh′(z)/h(z) lie on

either side of the imaginary axis as we have

Re
zQ′(z)
Q(z)

= Re
(

2(z− (−1+ z) log(1− z))
(−1+ z)(z+2log(1− z))

)
≯ 0

and

Re
zh′(z)
h(z)

=
2z

1− z2 ≯ 0,

for z ∈D, as proved in the proof of Theorem 3.3.3. □

Remark 15. The above result can also be stated as if p ∈H[1,1] satisfies the inequality

Re(p(z)+ zp′(z)) > 0, then

Rep(z) > 2log2−1

= 2F1 (1,1,2;−1)−
1
2 2F1 (1,2,3;−1) ,

which is a special case of Corollary 3.4.1(i) with A = 1, B = −1, β = 1, γ = 0 and α = 0.

Example 10. Let a0 = 2((2/3)3/4
−1). If p ∈ H[a0,1] satisfies the differential subordina-

tion
3(p(z)/2+1)4/3

2
+ zp′(z)

(
p(z)

2
+1

)1/3

≺ exp(z),
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then p(z) ≺ q(z) ≺H(z), where H(z) = 2((2ez/3)3/4
−1) and q(z) = 2((2(ez

−1)/(3z))3/4
−1).

Moreover, q is the best (a0,1)- dominant and is a convex function.

Proof. Let h(z) = exp(z), n = 1, α = −1/3, β = 1/2 and γ = 1 in Theorem 3.3.3, then

Q(z)= (ez
−1)/z. Now h here with the given constants satisfy the hypothesis of Theorem

3.3.3, the assertion follows from the same. Moreover, in accordance with the proof of

Theorem 3.3.3, we observe that

Re
zQ′(z)
Q(z)

= Re
(

1+ ez(z−1)
ez−1

)
≯ 0

and similarly the quantity Rezh′(z)/h(z) = Rez ≯ 0, therefore both the quantities lie on

either side of the imaginary axis. □

Example 11. Let a0 = ((0.5)tan(0.5))3/5. If p ∈H[a0,1] satisfies

2arctan(2p5/3(z))+
20
3

(
zp2/3(z)p′(z)
1+4p10/3(z)

)
≺

2+ z
2− z

,

then

p(z) ≺ q(z) :=
(
tan

(
−1
2
−

2
z

log
(2− z

2

))/
2
)3/5

. (3.5.2)

Moreover, the function q is the best (a0,1)-dominant and is convex inD.

Proof. Let h(z) = 2+z
2−z , n = 1, α = −2/3, β = 1 and γ = 1/4 in Theorem 3.3.6, then we get

Q(z)=−1− ((4/z) log((2−z)/z)) and q(z) is given by (3.5.2). As the function h and all the

constants satisfy the hypothesis of Theorem 3.3.6, the result follows at once. Moreover,

we observe that the quantity in (3.3.13) for the present case also lie on either side of

the imaginary axis, which is in accordance with the proof of Theorem 3.3.6. □

Next, we obtain a sufficient condition for univalence of f ∈A in the following result.

Theorem 3.5.1. Let f ∈A. If f satisfies

Re( f ′(z)+ z f ′′(z)) > 0, (3.5.3)

then f is univalent inD and in fact, Re f ′(z) > 2log2−1.

Proof. Let p(z) = f ′(z), then we have p ∈ H[1,1]. We observe that equation (3.5.3) is

equivalent to equation (3.5.1) when p(z) = f ′(z). Since p satisfies the hypothesis of
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Example 9, we obtain Re f ′(z) > 2log2− 1 > 0, therefore f is univalent by Noshiro-

Warschawski’s result, which is stated in Theorem A. □

The result by Miller and Mocanu [66] with n = 1 is stated in the following lemma.

Lemma 3.5.2. [66] Let a ∈ [0,1) and χ = χ(a) be defined as

χ =
(
2(1− a)β(1)+ (2a−1)

)1/2 ,

where β(x) =
∫ 1

0
tx−1

1+t dt. If f ∈A, then

Re f ′(z) > a⇒ Re

√
f (z)
z
> χ(a).

Corollary 3.5.3. Let f ∈A and a = 2log2−1. If f satisfies the equation (3.5.3), then

(i) Re
√

f (z)
z > χ(a).

(ii) Re
f (z)
z
> a.

Proof. (i) The proof follows directly from Theorem 3.5.1 and Lemma 3.5.2.

(ii) Let p(z) = f (z)/z, then we have p ∈ H[1,1]. Thus Remark 15 yields Re f ′(z) > 0

implies Re( f (z)/z) > a. Thus the result follows now using Theorem 3.5.1. □

Concluding Remarks

We introduced a new concept of exact differential subordinations using the idea of

exact differential equations on real line. The speciality of the two exact type of differ-

ential subordinations considered here, is that the dominants obtained in each of the

cases are convex inD. Furthermore, several examples are provided in support of our

claims. One of the highlights of this chapter is that we generalized and improved the

result obtained by Miller and Mocanu [67, Corollary 3.1e.1, p. 79].



Chapter 4

A Special Type of Ma-Minda Function

In the present chapter, we throw light on the geometrical significance of each of the conditions

of Ma-Minda functions. Consequently, we introduce and examine a special type of Ma-

Minda functions by differing the orientation of its Ma-Minda counterpart. Further, study a

newly defined subclass of starlike functions involving a special type of Ma-Minda function for

obtaining inclusion and radius results. In addition, we establish some majorization and Bloch

function norms related results.

65
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4.1 Introduction

In the previous chapters, we chiefly dealt with the differential subordinations results

for Ma-Minda functions. However, there are problems like radius and inclusion,

which are also studied by many authors in the past, that has glorified the theory

in various possible ways, some of which are illustrated in [22, 65]. The estimation

of coefficient bounds for normalized analytic functions in the classes associated with

Ma-Minda functions has always been a trendy area of research, for instance there have

been a number of published articles in this direction [55, 68, 87, 88, 107]. Motivated

by these works, in this chapter, we examine the conditions imposed on Ma-Minda

funtions, consequently introduce a special type of Ma-Minda functions and studied it

in the direction of radius and inclusion results apart from majorization and Bloch

function norm.

We come across the following observations, enlisted below, while examining the

geometry of a function defined onD in general, which are of great use in deriving our

results:

1. A function with real coefficients is always symmetric with respect to the real

axis, but not conversely. For example, consider the functions:

f1(z) = iz, f2(z) = 1+ iz, f3(z) =
1+ iz
1− z2 ,

which are symmetric with respect to the real axis but do not have real coefficients.

The converse holds under special conditions, namely if f is symmetric with

respect to the real axis with f (0) = 0 and f ′(0) is some non zero real number, then

the function f has real coefficients. To justify our claim, consider the functions

f1, f2 and f3, where f ′i (0) is not a real number for all i = 1,2,3, therefore fi do not

have real coefficients despite being symmetric to real axis.

2. Let f (z) be an analytic function with real coefficients and f (0) = 0. Then f is

typically real if and only if its first coefficient is positive. Thus ϕ′(0) > 0 implies

ϕ−1 is typically real, where ϕ is a Ma-Minda function.

3. Geometrically, it is evident that the real part of an analytic function attains

its maximum or minimum value on the real line if and only if the function is

symmetric with respect to real axis and convex in the direction of imaginary axis.
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In the past, authors do considered functions other than Ma-Minda. For instance

Kargar et al. [41, 42] and Uralegaddi et al. [111] dealt with such functions to define

their classes. In view of the same, in this chapter, we classify functions into Ma-Minda,

non-Ma-Minda or a special type of Ma-Minda function. We now define Ma-Minda

function on the basis of its deep rooted conditions:

Definition 4.1.1. An analytic univalent function ϕ with ϕ′(0) > 0, satisfying:

A. Reϕ(z) > 0 (z ∈D)

B. ϕ(D) symmetric about the real axis and starlike with respect to ϕ(0) = 1

is called a Ma-Minda function and let M denotes the class of all such functions. Let

M̃A denotes the class of all non-Ma-Minda functions of type-A, which are obtained by

relaxing the condition in A.

Note that the functions considered by Kargar et al. [42] and Uralegaddi et al. [111]

belong to M̃A, see also [41].

The Ma-Minda function ϕ is considered as univalent and therefore ϕ′(0) , 0. Since

ϕ(D) is symmetric about the real axis and if ϕ′(0) is any non-zero real number, then

ϕ has real coefficients. To address distortion theorem, Ma-Minda perhaps restricted

ϕ′(0) to be positive instead of any non-zero real number. However, it plays no role in

establishing the coefficient, radius, inclusion, subordination, and other similar results

for the classes C(ϕ) and S∗(ϕ). This very fact, which is under gloom until now, has

been brought to daylight in this chapter, by replacing the condition ϕ′(0) > 0 with

ϕ′(0) < 0. Note that ϕ(z) and Φ(z) := ϕ(−z) both map unit disk to the same image but

with opposite orientation. Thus Φ(z) differs from its Ma-Minda counterpart by mere

a rotation and is therefore non-typically real, but still, image domain invariant and

rest all properties are intact. Such Φ(z) can be considered as a special type of Ma-Minda

function. We now premise the above notion in the following definition:

Definition 4.1.2. An analytic univalent function Φ defined on the unit disk D is said

to be a special type of Ma-Minda if ReΦ(D) > 0, Φ(D) is symmetric with respect to the

real axis, starlike with respect to Φ(0) = 1 and Φ′(0) < 0. Further, it has a power series

expansion of the form:

Φ(z) = 1+
∞∑

n=1

Cnzn = 1+C1z+C2z2+ · · · (C1 < 0). (4.1.1)

Let us denote the class of all such special type of Ma-Minda functions by M ◦.
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Recently, Altinkaya et al. [7] considered a special type of Ma-Minda function, given

by 1(z) = α(1− z)/(α− z), (α > 1) to define and study their class. Note that the classes

S
∗(Φ) and C(Φ) can be defined on the similar lines of (1.2.4), by replacing ϕ with Φ.

We introduce here a special type of Ma-Minda function, given by

ψ(z) := 1− log(1+ z) = 1− z+
z2

2
−

z3

3
+ · · · , (4.1.2)

which maps the unit disk onto a parabolic region for its boundary curve τ, see Fig-

ure 4.1. Although ϕ(D) = Φ(D), at times considering Φ is advantageous over its

counterpart ϕ, which is evident from the example 1− log(1+ z), dealt here. Therefore,

the special type of Ma-Minda functions can now be considered in defining Ma-Minda

classes for computational convenience and especially in establishing distortion and

growth bounds. We now list in Table 1, a few examples of ϕ ∈M and its counter part

Φ ∈M ◦:

ϕ(z) Φ(z)
cos
√
−z cos

√
z

√
1+ z

√
1− z

1− log(1− z) 1− log(1+ z)

Table 4.1: Examples of Ma-Minda and its counter part special type of Ma-Minda
functions.
Distortion and Growth Theorems: We define the functions dΦn(z) and tΦn(z) (n =

1,2,3, · · · ) in a similar fashion as Ma-Minda [61] defines kϕn(z) and hϕn(z), respectively.

Thus the structural formula of d′
Φn and tΦn is given by:

d′Φn(z) = exp
∫ z

0

Φ(tn)−1
t

dt and tΦn(z) = zexp
∫ z

0

Φ(tn)−1
t

dt. (4.1.3)

Here, we set dΦ := dΦ1(z) and tΦ := tΦ1(z). Ma and Minda [61] proved the distortion

and growth theorems for the functions in the classes C(ϕ) and S∗(ϕ), where ϕ ∈M .

However, these results differ for functions in M ◦, which we examine in the case of an

example ψ, given by (4.1.2) and eventually generalize it. So, let us consider the class

C(ψ), the structural formula, given in (4.1.3) yields:

d′ψ(z) = exp
∞∑

k=1

(−z)k

k2 .

A numerical computation shows that d′ψ(1/2) ≈ 0.63864 and d′ψ(−1/2) ≈ 1.79004. Let
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the function f be such that:

f ′(z) = d′ψ2 = exp
∞∑

k=1

(−1)k(z)2k

2k2 ,

clearly, f ∈ C(ψ). A numerical computation shows that | f ′(1/2)| ≈ 0.88874. Hence

d′ψ(r) ≤ | f ′(z0)| ≤ d′ψ(−r), for z0 = r =
1
2
.

Thus functions inC(ψ) violate distortion theorem bounds proved in [61], which shows

that ϕ′(0) > 0 is inevitable in obtaining the distortion theorem, given in [61].

Remark 16. Let ϕ ∈M and its counter part Φ ∈M ◦ then Φ(D) = ϕ(D), which implies

C(Φ) = C(ϕ) and S∗(Φ) = S∗(ϕ). Therefore to obtain distortion and growth theorems

for functions in C(Φ) and S∗(Φ), it suffices to replace ϕ(z) by Φ(−z), in the result [61,

Corollary 1, p. 159].

Using the above Remark and the fact d′
Φ

(z) = d′ϕ(−z), we deduce the growth and

distortion bounds for functions in M ◦ as follows:

Theorem 4.1.1. Let |z0| = r < 1.

(1) Suppose f ∈ C(Φ). Then

(i) Growth Theorem: dΦ(r) ≤ | f (z0)| ≤ −dΦ(−r).

(ii) Distortion Theorem: d′
Φ

(r) ≤ | f ′(z0)| ≤ d′
Φ

(−r).

(2) Suppose f ∈ S∗(Φ). Then

(i) Growth Theorem: tΦ(r) ≤ | f (z0)| ≤ −tΦ(−r).

(ii) Distortion Theorem: t′
Φ

(r) ≤ | f ′(z0)| ≤ t′
Φ

(−r), when we additionally assume

min
|z|=r
= |Φ(z)| = Φ(r) and max

|z|=r
|Φ(z)| = Φ(−r).

The equality holds for some non zero z0 if and only if f is a rotation of dΦ and tΦ,

respectively for (1) and (2).

We now introduce the following classes involving ψ, a special type of Ma-Minda

function:

S
∗

l :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1− log(1+ z)

}
and Cl :=

{
f ∈ S : 1+

z f ′′(z)
f ′(z)

≺ 1− log(1+ z)
}
.

Let us now establish the structural formula for functions in S∗l . By the structural

formula (4.1.3), we get a function f ∈ S∗l if and only if there exists an analytic function
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q, satisfying q(z) ≺ ψ(z) such that

f (z) = zexp
(∫ z

0

q(t)−1
t

dt
)
. (4.1.4)

Now, we provide some examples of functions in the class S∗l . For this, let us assume

ψ1(z) = 1−
z
6

, ψ2(z) =
4− z
4+ z

, ψ3(z) = 1− zsin
z
4

and ψ4(z) =
8−2z
8+ z

.

A geometrical observation leads to ψi(D) ⊂ ψ(D) (i = 1,2,3,4). Thus ψi(z) ≺ ψ(z) for

z ∈D. Now, the functions f ′i s belonging to the class S∗l corresponding to each of the

functions ψ′is are determined by the structural formula (4.1.4) as follows:

f1(z) = zexp
(
−z
6

)
, f2(z) =

16z
(4+ z)2 , f3(z) = zexp

(
4
(
1+ cos

z
4

))
and f4(z) = z−

z2

8
.

In particular, for q(z) = ψ(z) = 1− log(1+ z), the corresponding function obtained is as

follows:

f0(z) = zexp
(∫ z

0

− log(1+ t)
t

dt
)
= z− z2+

3
4

z3
−

19
36

z4+
107
288

z5+ · · · , (4.1.5)

acts as an extremal function in many cases for S∗l .

Remark 17. The distortion and growth theorems for Cl and S∗l can be obtained from

that of C(Φ) and S∗(Φ), given in Theorem 4.1.1.

4.2 Radius Problems

Besides majorization, this section chiefly focuses on estimating various radius con-

stants associated with S∗l . We begin with establishing the following bounds meant for

S
∗

l :

Theorem 4.2.1. Let f ∈ S∗l . Then we have for |z| = r < 1,

1− log(1+ r) ≤ Re
z f ′(z)

f (z)
≤ 1− log(1− r) (4.2.1)

and ∣∣∣∣∣Im z f ′(z)
f (z)

∣∣∣∣∣ ≤ tan−1
(

r
√

1− r2

)
. (4.2.2)

The bounds are sharp.
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Proof. Since f ∈ S∗l , we have z f ′(z)/ f (z) ≺ 1− log(1+ z). Thus by the definition of

subordination, we have

z f ′(z)
f (z)

= 1− log |q(z)| − iarg(q(z)), (4.2.3)

where q(z) = 1+ω(z), ω is a Schwarz function satisfying ω(0) = 0 and |ω(z)| ≤ |z|. Let

q(z) = u+ iv, then (u−1)2+v2 < 1. For |z| = r, we have

|q(z)−1| ≤ r. (4.2.4)

Squaring both sides of the above equation yields

T : (u−1)2+v2
≤ r2. (4.2.5)

Clearly T represents the equation of the disk with center: (1,0) and radius r, for which

the point (0,0) lies outside the disk T. From (4.2.4) and (4.2.5), we have

|q(z)| ≤ 1+ r and |q(z)| ≥ 1− r.

Since, logx is an increasing function on [1,∞), we have

log(1− r) ≤ log |q(z)| ≤ log(1+ r).

Thus we get the desired result (4.2.1) by considering real part in (4.2.3). If v = au,

representing the equation of tangent to the boundary of disk T, which passes through

the origin O, then the tangent and the boundary of the disk have a common point,

hence from (4.2.5), we obtain

(1+ a2)u2
−2u+1− r2 = 0.

By the definition of tangent, we get

1− (1+ a2)(1− r2) = 0, further which yields a = ±
r

√

1− r2
.

Finally, we deduce

tan−1
(
−r
√

1− r2

)
≤ argq(z) ≤ tan−1

(
r

√

1− r2

)
,
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the desired result (4.2.2) follows. □

Theorem 4.2.2. Let f ∈ S∗l . Then the followings hold:

(i) f is starlike of order ν in |z| < exp(1−ν)−1 whenever 1− log2 ≤ ν < 1.

(ii) f ∈M(κ) in |z| < 1−exp(1−κ) whenever κ > 1.

(iii) f is convex of order ν in |z|< r̃(ν)< 1 whenever 0≤ ν < 1, where r̃(ν) is the smallest

positive root of the equation:

(1− r)(1− log(1+ r))(1− log(1+ r)−ν)− r = 0, (4.2.6)

for the given value of ν.

(iv) f ∈ k−ST in |z| < r(k) whenever k > 0, where r(k) is the smallest positive root of

the equation

1+ r− e(1− r)k = 0, (4.2.7)

for the given value of k. In particular, for k = 1, f is parabolic starlike in |z| < e−1
e+1 .

(v) f is strongly starlike of order η in |z|< r(η) whenever 0< η≤ η0 ≈ 0.514674, where

r(η) =

√√√√√√√√√√√√√2

1−
1√

1+ tan2
(
tan

ηπ

2

)
. (4.2.8)

Proof. (i) Since f ∈ S∗l , we obtain the following from Theorem 4.2.1.

Re
z f ′(z)

f (z)
≥ 1− log(1+ r), |z| = r < 1,

which yields the inequality Re(z f ′(z)/ f (z))> ν,whenever 1− log2≤ ν < 1,which holds

true in the open disk of radius exp(1−ν)−1. For the function f0, given in (4.1.5) and

z0 = exp(1−ν)−1, we have Re(z0 f ′0(z)/ f0(z)) = ν. Hence this result is sharp.

(ii) From Theorem 4.2.1, we get

Re
z f ′(z)

f (z)
≤ 1− log(1− r), |z| = r < 1,

which yields the inequality Re(z f ′(z)/ f (z)) < κ, for κ > 1, that holds true in the open

disk of radius 1−exp(1−κ). For the function f0, given in (4.1.5) and z0 = exp(1−κ)−1,

we get

Re
(z0 f ′0(z)

f0(z)

)
= κ.
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Therefore, the result is sharp.

(iii) Let f ∈ S∗l . Now, f ∈ C(ν), whenever

Re
(
1+

z f ′′(z)
f ′(z)

)
> ν.

Since we have z f ′(z)/ f (z) = 1− log(1+ω(z)),where ω is a Schwarz function, we obtain

Re
(
1+

z f ′′(z)
f ′(z)

)
= Re(1− log(1+ω(z)))−Re

(
zω
′

(z)
(1+ω(z))(1− log(1+ω(z)))

)
. (4.2.9)

The function ω satisfies the following inequality, given in [74]

|ω
′

(z)| ≤
1− |ω(z)|2

1− |z|2
. (4.2.10)

Using the above inequality, (4.2.9) reduces to

Re
(
1+

z f ′′(z)
f ′(z)

)
≥

(1− r)(1− log(1+ r))2
− r

(1− r)(1− log(1+ r))
=: χ(r).

Let χ(r,ν) := χ(r)− ν = (1− r)(1− log(1+ r))(1− log(1+ r)− ν)− r. Clearly, χ(0,ν) > 0

and χ(1,ν) < 0 for all ν ∈ [0,1). Thus, there must exist r̃(ν) such that χ(r,ν) ≥ 0 for all

r ∈ [0, r̃(ν)], where r̃(ν) is the smallest positive root of the equation (4.2.6). Hence the

result.

(iv) Let f ∈ S∗l . Now, f ∈ k−ST whenever

Re(1− log(1+ω(z))) > k| log(1+ω(z))| (z ∈D),

for some Schwarz function ω. Let 1(ω(z)) := | log(1+ω(z))| = | log |1+ω(z)|+ iarg(1+

ω(z)|, ω(z) = Reit, where R ≤ |z| = r < 1 and −π < t < π. Now, consider

12(R, t) =
(1
2

log(1+R2+2Rcos t)
)2
+

(
arctan

( Rsin t
1+Rcos t

))2
,

which upon partially differentiating with respect to t, yields

h(R, t) :=
R
(
2(R+ cos t)arctan

Rsin t
1+Rcos t

− log(1+R2+2Rcos t)sin t
)

1+R2+2Rcos t
.

Then clearly, the function h(R, t) ≥ 0 for t ∈ [0,π] and h(R, t) ≤ 0 for t ∈ [−π,0]. Thus
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max−π≤t≤π1(R, t) =max{1(R,−π),1(R,π)}, which yields

| log(1+ω(z))| ≤ | log(1−R)| ≤ | log(1− r)|. (4.2.11)

The inequality (4.2.11) and Theorem 4.2.1 reveal that the result follows at once by

showing

1− log(1+ r) ≥ k| log(1− r)|,

whenever m(r,k) := 1+ r− e(1− r)k
≤ 0. Clearly, m(0,k) < 0 and m(1,k) > 0 for fixed value

of k. Thus, there must exist r(k) such that m(r,k) ≤ 0 for all r ∈ [0,r(k)], where r(k) is the

smallest positive root of the equation (4.2.7). Hence the result.

(v) Since f ∈ S∗l , we have

∣∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣∣ ≤ |arg(1− log(1+ z))|.

Now, f ∈ SS∗(η) whenever∣∣∣∣∣arg
(
1−

1
2

log((1+x)2+ y2)− iarctan
y

1+x

)∣∣∣∣∣ < ηπ2 ,
for |z| =

√
x2+ y2 < 1. Consider the function f0, given in (4.1.5) and let us assume

z0 =
1

√

1+A2
−1+ i

A
√

1+A2
,

where A = tan(tanηπ/2). We have |z0| =

√
2(1−1/(

√

1+A2) < 1, whenever η ≤ η0 and

∣∣∣arg(1− log(1+ z0))
∣∣∣ = ∣∣∣∣∣∣arg

z0 f ′0(z0)

f0(z0)

∣∣∣∣∣∣
= |arg(1− iarctan(tan(tanηπ/2)))|

=
∣∣∣arctan

(
−arctan(tan(tanηπ/2))

)∣∣∣
= arctan(arctan(tan(tanηπ/2)))

= ηπ/2.

A geometrical observation reveals that f ∈ SS∗(η) whenever |z| < r(η), where r(η) is

given by (4.2.8) and therefore the result is sharp. □

Our next result involves the concept of majorization. For any two analytic functions
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f and 1, we say f is majorized by 1 in D, denoted by f ≪ 1, if there exists an analytic

function µ(z) inD, satisfying

|µ(z)| ≤ 1 and f (z) = µ(z)1(z).

The following majorization result involves the class S∗l :

Theorem 4.2.3. Let f ∈A. Suppose that f ≪ 1 inD, where 1 ∈ S∗l . Then

| f ′(z)| ≤ |1′(z)|, for |z| ≤ r̃,

where r̃ is the smallest positive root of the following equation:

(1− r2)(1− log(1+ r))−2r = 0. (4.2.12)

Proof. Since 1 ∈ S∗l , we have z1′(z)/1(z) ≺ 1− log(1+ z). Then there exists a Schwarz

function ω(z) such that
z1′(z)
1(z)

= 1− log(1+ω(z)). (4.2.13)

Let ω(z) = Reit, R ≤ |z| = r < 1 and −π < t < π. Consider the function

h(R, t) := |1− log(1+Reit)|2 =
(
1−

1
2

log(1+R2+2Rcos t)
)2
+

(
arctan

Rsin t
1+Rcos t

)2
,

which upon differentiation with respect to t yields

ht(R, t) :=
R
(
2(R+ cos t)arctan

Rsin t
1+Rcos t

− (−2+ log(1+R2+2Rcos t))sin t
)

1+R2+2Rcos t
.

Then clearly, the function ht(R, t) ≥ 0 for t ∈ [0,π) and ht(R, t) ≤ 0 for t ∈ [−π,0]. Thus

min−π≤t<π h(R, t)= h(R,0),which yields |1− log(1+ω(z))| ≥ 1− log(1+R)≥ 1− log(1+r).

Further, condition (4.2.13) yields∣∣∣∣∣ 1(z)
1′(z)

∣∣∣∣∣ = |z|
|1− log(1+ω(z))|

≤
r

1− log(1+ r)
. (4.2.14)

By the definition of majorization, we get f (z) = µ(z)1(z), which upon differentiation,

gives

f ′(z) = µ(z)1′(z)+1(z)µ′(z) = 1′(z)
(
µ(z)+µ′(z)

1(z)
1′(z)

)
. (4.2.15)
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The function µ satisfies the inequality (4.2.10), using this for µ and substituting the

inequality (4.2.14) in (4.2.15), we obtain

| f ′(z)| ≤ K(r,ζ)|1′(z)|,

where K(r,ζ) = ζ+ r(1−ζ2)
(1−r2)(1−log(1+r)) for |µ(z)| = ζ (0 ≤ ζ ≤ 1). To achieve the result, it

suffices to show that

1−K(r,ζ) =
(1−ζ)((1− r2)(1− log(1+ r))− r(1+ζ))

(1− r2)(1− log(1+ r))
≥ 0,

equivalent to show

η(r,ζ) := (1− r2)(1− log(1+ r))− r(1+ζ) ≥ 0.

For ζ = 1, η(r,ζ) attains its minimum value, which is given by

η(r,1) =: η(r) = (1− r2)(1− log(1+ r))−2r.

Clearly, η(0) = 1 > 0 and η(1) = −2 < 0. In view of these inequalities there must ex-

ist r̃ such that η(r) ≥ 0 for all r ∈ [0, r̃], where r̃ is the smallest positive root of the

equation (4.2.12). Hence the proof. □

4.3 Inclusion Relations

In this section, we give inclusion relations between the classes S∗l and various other

subclasses of starlike functions, namely S∗(ν), SS∗(η), ST (1,b) and S∗(qc).

Theorem 4.3.1. The class S∗l satisfies the following inclusion properties:

(i) S∗l ⊂ S
∗(ν) ⊂ S∗ for 0 ≤ ν ≤ 1− log2.

(ii) S∗l ⊂ SS
∗(η) ⊂ S∗ for 2 f̃ (θ0)/π ≤ η ≤ 1, where θ0 is the smallest positive root of

the equation −2+ log(2(1+ cosθ))+θ tanθ/2 = 0 and f̃ (θ) = arg(1− log(1+ eiθ)),

θ ∈ [0,π].

(iii) S∗l ⊂ ST (1,b) for b ≤ 1−2log2.

(iv) S∗(qc) ⊂ S∗l ⊂ S
∗ for c ≤ c0, where c0 = log2(2− log2).

The above constants in each part is best possible. The pictorial representation of the

result is depicted in the following Figure 4.1.
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τ : |exp(1−w)−1| = 1

τ1 : Rew = 1− log2

τ2 : |argw| =
7029

12500
π
2

τ3 : Rew− |w−1| = 1−2log2

τ4 : |w2(z)−1| = log2(2− log2)

A = 1− log2

Figure 4.1: Boundary curves of best dominants and a subordinant of ψ(z) = 1− log(1+
z).

Proof. (i) Since f ∈ S∗l , we have z f ′(z)/ f (z) ≺ 1− log(1+ z). Theorem 4.2.1 yields the

following:

1− log2 =min
|z|=1

Re(1− log(1+ z)) < Re
z f ′(z)

f (z)
.

Hence, the result follows.

(ii) Let f ∈ S∗l . Then, we have

∣∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣∣ <max
|z|=1
|arg(1− log(1+ z))|

= max
−π≤θ≤π

∣∣∣∣∣∣arctan
(

−θ
2− log(2(1+ cosθ))

)∣∣∣∣∣∣
=: max
−π≤θ≤π

| f̃ (eiθ)|.

Due to the symmetricity of the function f̃ (θ), we consider θ ∈ [0,π] and f̃ ′(θ) = 0

yields −2+ log(2(1+ cos(θ0)))+θ0 tan(θ0/2) = 0, where θ0 ≈ 1.37502. A calculation

shows that f̃ ′′(θ)< 0, which implies max0≤θ≤π f̃ (θ)= f̃ (θ0)≈ 0.88329. Thus f ∈ SS∗(η),

for the given range of η.

(iii) Let us consider the domain Ωb := {w ∈ C : Rew > |w− 1|+ b}, whose boundary

represents a parabola, for w = x+ iy, given by:

x =
y2

2(1−b)
+

1+ b
2
,
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whose vertex is given by: ((1+b)/2,0). In order to prove the result, it suffices to show

h(θ) := Re(1− log(1+ z))− | log(1+ z)|

= 1−
1
2

log(2(1+ cosθ))−

√
1
4

log2(2(1+ cosθ))+
θ2

4
> b,

for z = eiθ. A numerical computation shows that

min
−π≤θ≤π

h(θ) = h(0) = 1−2log2.

Hence the result.

(iv) Since f ∈ S∗(qc), we have z f ′(z)/ f (z) ≺
√

1+ cz and

√

1− c =min
|z|=1

√

1+ cz < Re
z f ′(z)

f (z)
<max
|z|=1

√

1+ cz =
√

1+ c.

Similar analysis can be carried out for the imaginary part bounds and therefore by

using Theorem 4.2.1, we deduce the result. □

4.4 Further Results

We recall the set B, the space of all Bloch functions. An analytic function f is said to

be a Bloch function if it satisfies

χB( f ) = sup
z∈D

(1− |z|2)| f ′(z)| <∞. (4.4.1)

Also, B is a Banach space with the norm ||.||B defined by

|| f ||B = | f (0)|+χB( f ), f ∈ B. (4.4.2)

Now, we give below a result involving Bloch function norm for the functions in the

class S∗l .

Theorem 4.4.1. The setS∗l ⊆B. Furthermore, if f ∈S∗l , then || f ||B ≤ x, where x≈ 1.27429.

Proof. If f ∈S∗l , then z f ′(z)/ f (z)1(z) := 1− log(1+ω(z)). By the structural formula, given

in (4.1.4), we have

f (z) = zexp
(∫ z

0

1(t)−1
t

dt
)
.
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Upon differentiating f and further considering the modulus, we obtain

| f ′(z)| =|1(z)|
∣∣∣∣∣exp

∫ z

0

1(t)−1
t

dt
∣∣∣∣∣

≤|1− log(1+ω(z))|exp
(∫ z

0

| log(1+ω(t))|
|t|

dt
)
. (4.4.3)

Let t= reiθ1 andω(t)=Reiθ2 , where R≤ r= |t|< 1 and−π≤θ1,θ2 <π. Now, by using the

similar technique used in the proof of part (v) of Theorem 4.2.2 and in Theorem 4.2.3,

equation (4.4.3) reduces to

| f ′(z)| ≤ (1− log(1−R))exp
(
| log(1−R)|

∫ π

−π
eiθ1dθ1

)
≤ 1− log(1− r).

Thus we have (1−|z|2)| f ′(z)| ≤ 1(r) := (1− r2)(1− log(1− r)),which upon differentiation,

gives 1′(r)= 1−r+2r log(1−r). By taking 1′(r)= 0, yields r0 ≈ 0.453105. Now 1′′(r0)< 0,

yields max0≤r<11(r)= 1(r0)≈ 1.27429<∞.Using (4.4.1), we obtainS∗l ⊆B.We can now,

estimate the norm || f ||B for the functions in the class S∗l . By using the definition of

norm, given in (4.4.2), we have || f ||B ≤ f (0)+ 1.27429. By the normalization of the

function f , the result follows at once. □

The following theorem gives the sufficient condition for the given function 1 to

belong to the class S∗l .

Theorem 4.4.2. Let m, n ≥ 1 and 0 ≤ λ ≤ 1. Then, 1(z) = zexp(α) ∈ S∗l , where

α =
∞∑

k=1

1
k2

(
λ
( (−z)nk

n
−

(−z)mk

m

)
+

(−z)mk

m

)
.

Proof. For the given α, we have

1(z) =z
(

exp
(

(λ−1)
m

zm
(
1−

zm

4
+

z2m

9
− · · ·

)
−
λ
n

zn
(
1−

zn

4
+

z2n

9
− · · ·

)))
.

Then, we have

z1′(z)
1(z)

= 1+ (λ−1)zm
(
1−

zm

2
+

z2m

3
− · · ·

)
−λzn

(
1−

zn

2
+

z2n

3
− · · ·

)
= λ(1− log(1+ zn))+ (1−λ)(1− log(1+ zm)).

We observe that 1− log(1+ zt) ≺ 1− log(1+ z) =: ψ(z) for all t ≥ 1 and the function ψ is
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convex in |z| < 1. Thus the result follows at once when 0 ≤ λ ≤ 1. □

When m = n, the above Theorem yields the following result:

Corollary 4.4.3. Let n ≥ 1 and let α = 1
n

(∑
∞

k=1
(−z)nk

k2

)
. Then 1(z) = zexp(α) ∈ S∗l .

Theorem 4.4.4. The class S∗l is not a vector space.

Proof. For if, the classS∗l is a vector space, then this class preserves an additive property,

that is, whenever two functions belong to the class S∗l , then their sum also belongs to

the class S∗l . Let f1 and f2 ∈ S∗l . Then, using (4.1.3), we obtain

f1(z) = zexp
(∫ z

0

− log(1+ω1(t))
t

dt
)

and f2(z) = zexp
(∫ z

0

− log(1+ω2(t))
t

dt
)
, (4.4.4)

for some Schwarz functions ω1 and ω2. Now, sum of the functions, f1+ f2 to be in S∗l ,

there should exist some Schwarz function ω(z) such that

( f1+ f2)(z) = zexp
(∫ z

0

− log(1+ω(t))
t

dt
)

. (4.4.5)

Substituting equation (4.4.4) in (4.4.5), we get

ω(z) =
exp(−z(A′(z)expA(z)+B′(z)expB(z)))

expA(z)+expB(z)
−1,

where

A(z) =
∫ z

0

− log(1+ω1(t))
t

dt and B(z) =
∫ z

0

− log(1+ω2(t))
t

dt.

Then ω(0) = 0 and |ω(z)| < 1 for all A and B. If we choose ω1(z) = z and ω2(z) = z2, then

clearly f1(z) and f2(z) are the members ofS∗l . In this case,ω(z)≈ 1.03053 at z=−
(

1
2 + i2

3

)
,

which contradicts the existence of Schwarz function ω(z) satisfying |ω(z)| < 1. Hence

the assertion follows. □

The following theorem is an immediate consequence of the Growth Theorem of

S
∗(Φ).

Theorem 4.4.5. Let f ∈ S∗l . Then we have

| f (z)| ≤ |z|exp

 ∞∑
n=1

(−1)n+1

n2

 = |z|L (z ∈D),
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where L ≈ 0.822467.

Proof. In view of Remark 17, we get

tΨ(r) ≤ | f (z)| ≤ −tΨ(−r).

For |z| = r, we have

log
∣∣∣∣∣ f (z)

z

∣∣∣∣∣ ≤ ∫ r

0

log(1+ t)
t

dt ≤
∫ 1

0

log(1+ t)
t

dt =
∞∑

n=1

(−1)n+1

n2 .

The convergent nature of the series on the right side of the above equality yields the

desired result. □

Concluding Remarks

We classified Ma-Minda function based on its conditions and extensively studied all

its geometric aspects. As a result, introduced a special type of Ma-Minda function

Φ and defined the classes S∗(Φ) (and C(Φ)) on the similar lines of S∗(ϕ) ( and C(ϕ)).

Furthermore, studied a special type of Ma-Minda function, namely 1− log(1+ z) and

obtained sharp radius and inclusion results for functions in class S∗(1− log(1+ z)).

Also, the idea of non-Ma-Minda and a special type of Ma-Minda coined here can be

used as a future scope to define new classes and studied in the direction pointed out

here.





Chapter 5

Coefficient Estimates of Certain

Analytic Functions

In this chapter, we find the sharp bounds of various initial coefficients and certain Hankel

determinants for functions in A(1,h,φ), where φ is a Ma-Minda function or a special type

of Ma-Minda function. Special cases of our class A(1,h,φ), in particular SL∗ and Sl are

extensively studied for coefficient estimates.

83
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5.1 Introduction

As a consequence of the concept of non-Ma-Minda and special type of Ma-Minda

functions introduced in the previous chapter, an avenue opens up for further explo-

ration in parallel to the concept of Ma-Minda function. This chapter, deals with both

type of classes, involving Ma-Minda function and the special type of Ma-Minda function

for various coefficient related bound estimates.

We first consider a special case of our class, given by (1.2.3), involving Ma-Minda

function as follows:

M1,h(ϕ) :=
{

f ∈A :
( f ∗1)(z)
( f ∗h)(z)

≺ ϕ(z), ϕ ∈M

}
, (5.1.1)

where Taylor series expansion of 1,h is given by (1.2.2) and 1n, hn > 0 with 1n−hn > 0.

This class is studied by Murugusundaramoorthy et al. [70] and the authors have

obtained Fekete-Szegö bound for functions in the class (5.1.1). In the present chapter,

we extend the work by establishing the sharp bounds of fourth coefficient |a4|, second

Hankel determinant |a2a4 − a2
3| and the quantity |a2a3 − a4| for functions in the class

M1,h(ϕ). The importance of this class lies in unification of various subclasses of S,

discussed in detail in the upcoming section. Note that as a special case, some of our

results reduce to many earlier known results of Lee et al. [55], Mishra et al. [68] and

Singh [101], which are pointed out here.

Now, we consider the counterpartM1,h(Φ) of the classM1,h(ϕ), by simply replacing

ϕ by Φ, a special type of Ma-Minda function. By taking 1(z) = (z(1+ (2α−1)z))/(1−z)3

and h(z) = (z(1+ (α−1)z))/(1− z)2 inM1,h(Φ), we obtain the following class:

Mα(Φ) =
{

f ∈A :
z f ′(z)+αz2 f ′′(z)
αz f ′(z)+ (1−α) f (z)

≺Φ(z), (0 ≤ α ≤ 1)
}
.

Furthermore, the power series expansion of 1 and h, respectively yield

1n =


2(1+α), n = 2

3(1+2α), n = 3

4(1+3α), n = 4

and hn =


1+α, n = 2

1+2α, n = 3

1+3α, n = 4.

(5.1.2)

Set Sl(α) :=Mα(ψ), where ψ(z) = 1− log(1+ z). Now, S∗l := Sl(0) and Cl := Sl. We
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obtain here the sharp bounds of initial coefficients such as a2, a3, a4 and a5, Fekete-

Szegö functional and second Hankel determinant for functions in Sl(α).

5.2 Coefficient Bounds for Functions inM1,h(ϕ) and

M1,h(Φ)

In this section, we establish sharp bounds of various initial coefficients and certain

Hankel determinants for functions inM1,h(ϕ) andM1,h(Φ). Since the results obtained

here involve the general Ma-Minda functionϕ and a general special type of Ma-Minda

functionΦ, so generalize many earlier well-known results. As a special case ofM1,h(ϕ)

andM1,h(Φ), we study the classes SL∗ and Sl(α), respectively for certain coefficient

estimates.

Evidently the classM1,h(ϕ) unifies various subclasses of S for different choices of 1

and h. A few of the same are enlisted in the table below for ready reference:

Mg,h(ϕ) (f ∗g)(z)/(f ∗h)(z) g(z) h(z)

S
∗(ϕ)

z f ′(z)
f (z)

z
(1− z)2

z
1− z

S
∗
s(ϕ)

2z f ′(z)
f (z)− f (−z)

z
(1− z)2

z
1− z2

Cs(ϕ)
(2z f ′(z))′

( f (z)− f (−z))′
z(1+ z)
(1− z)3

z(1+ z2)
(1− z2)2

Mα(ϕ)
z f ′(z)+αz2 f ′′(z)
αz f ′(z)+ (1−α) f (z)

z(1+ (2α−1)z)
(1− z)3

z(1+ (α−1)z)
(1− z)2

Table 5.1: Various subclasses of S involving general ϕ for different choices of 1 and h
inM1,h(ϕ).

Note that S∗s(ϕ) and Cs(ϕ) are respectively, the class of starlike functions and convex

functions with respect to symmetric points. A function f ∈ S is in the class S∗s(ϕ) if it

satisfies
2z f ′(z)

f (z)− f (−z)
≺ ϕ(z), z ∈D

and is in the class Cs(ϕ) if it satisfies

(2z f ′(z))′

( f (z)− f (−z))′
≺ ϕ(z), z ∈D.
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We recall that the Taylor series expansion of ϕ(z) = 1+
∑
∞

i=1 Bizi (B1 > 0) and Φ(z) =

1+
∑
∞

i=1 Cizi (C1 < 0).

Murugusundaramoorthy et al. [70, Theorem 2.1, p. 250] in their work obtained the

result of Fekete-Szegö functional bound for functions in the class M1,h(ϕ). Since

M1,h(Φ(z)) =M1,h(ϕ(z)), we state below the parallel result for functions inM1,h(Φ(z))

by simply replacing each Bi by (−1)iCi.

Theorem 5.2.1. If f ∈M1,h(Φ), then

|a3−µa2
2| ≤



C2

13−h3
−

µC2
1

(12−h2)2 +
(12h2−h2

2)C2
1

(13−h3)(12−h2)2 , µ ≤ κ1;

−C1

13−h3
, κ1 ≤ µ ≤ κ2;

−C2

13−h3
+

µC2
1

(12−h2)2 −
(12h2−h2

2)C2
1

(13−h3)(12−h2)2 , µ ≥ κ2,

where

κ1 =
(12−h2)2(C2+C1)+h2(12−h2)C2

1

(13−h3)C2
1

and κ2 =
(12−h2)2(C2−C1)+h2(12−h2)C2

1

(13−h3)C2
1

.

The result is sharp for f satisfying:

( f ∗1)(z)
( f ∗h)(z)

=



Φ(z), µ < κ1 or µ > κ2;

Φ(z2), κ1 < µ < κ2;

Φ(Ψ(z)), µ = κ1;

Φ(−Ψ(z)), µ = κ2,

for some 1 and h, whereΨ(z) =
z(z+η)
1+ηz

(0 ≤ η ≤ 1).

Remark 18. We find that the bound of Fekete-Szegö |a3 −µa2
2| ≤ B1/2(13 − h3) when

σ1 ≤µ≤ σ2, as stated in [70, Theorem 2.1, p. 250], is incorrect and it should be |a3−µa2
2| ≤

B1/(13−h3), which is appropriately corrected in Theorem 5.2.1 for our case.

The next result deals with the sharp second Hankel determinant bound for functions

inM1,h(ϕ), which generalizes many earlier known results.

Theorem 5.2.2. Let f ∈M1,h(ϕ) and either

(13−h3)2
≤ L or L < (13−h3)2

≤ 2L (5.2.1)
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holds, where L = (12−h2)(14−h4). Then

|a2a4− a2
3| ≤



B2
1

(13−h3)2 , when X holds ;

|M|
(12−h2)4(13−h3)2(14−h4)

, when Y1 or

Y2 holds ;

B2
1(|T|+B1(13−h3)2(12−h2)−2B1(12−h2)2(14−h4))2

4S(13−h3)2(14−h4)

+
B2

1

(13−h3)2 , when Z holds,

where,

X : |M| −B2
1(12−h2)4(14−h4) ≤ 0 and |T|+B1(13−h3)2(12−h2)−2B1(12−h2)2(14−h4) ≤ 0,

(5.2.2)

Y1 : |T|+B1(13−h3)2(12−h2)−2B1(12−h2)2(14−h4) ≥ 0 and 2|M| −B1|T|(12−h2)2

−B2
1(13−h3)2(12−h2)3

≥ 0,

Y2 : |M| −B2
1(12−h2)4(14−h4) ≥ 0 and |T|+B1(13−h3)2(12−h2)

−2B1(12−h2)2(14−h4) ≤ 0,

Z : |T|+B1(13−h3)2(12−h2)−2B1(12−h2)2(14−h4) > 0 and 2|M| −B1|T|(12−h2)2

−B2
1(13−h3)2(12−h2)3

≤ 0, (5.2.3)

with S := −(|M| −B1|T|(12−h2)2
−B2

1(13−h3)2(12−h2)3+B2
1(12−h2)4(14−h4)),

M := B4
1

(
−h2

2(12−h2)2(14−h4)+ (13−h3)
(
1213h2

2−13h3
2+1

2
2h2h3−312h2

2h3

+2h3
2h3+ (13−h3)(−12h2

2+h3
2)
))
−B2

2(12−h2)4(14−h4)+B1B3(13−h3)2

(12−h2)3+B2
1B2

(
(13−h3)(12−h2)2

(
13h2+12h3−2h2h3−2h2(12−h2)(14−h4)

))
(5.2.4)
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and

T := 2B2(12−h2)2(14−h4)+2B2
1h2(12−h2)(14−h4)−B2

113h2(13−h3)

−B2
112h3(13−h3)+2B2

1h2h3(13−h3)−2B2(13−h3)2(12−h2). (5.2.5)

Proof. The series expansion of the functions f , 1 and h yield

( f ∗1)(z)
( f ∗h)(z)

=1+ a2(12−h2)z+ (a3(13−h3)+ a2
2h2(h2−12))z2+ (a4(14−h4)

− a2(a2
2h2

2(−12+h2)+ a3(13h2+12h3−2h2h3)))z3+ · · · . (5.2.6)

Here, we define a function p in P as follows:

p(z) =
1+ω(z)
1−ω(z)

= 1+p1z+pzz2+ · · · . (5.2.7)

Then, we have ω(z) = p(z)−1
p(z)+1 , clearly is a Schwarz function. Since ( f ∗ 1)(z)/( f ∗ h)(z) ≺

ϕ(z), we get
( f ∗1)(z)
( f ∗h)(z)

= ϕ(ω(z)). (5.2.8)

Now using (5.2.6), (1.2.5) and expression of ω in terms of p in (5.2.8), we get

a2 =
B1p1

2(12−h2)
, a3 =

B2p2
1(12−h2)−B1(p2

1−2p2)(12−h2)+B2
1p2

1h2

4(12−h2)(13−h3)

and

a4 =
1

8(12−h2)(13−h3)(14−h4)

(
p1(−2B2p2

1+B3p2
1+4B2p2)(12−h2)(13−h3)

+B3
1p3

1h2h3−B2
1p1(p2

1−2p2)
(
13h2+ (12−2h2)h3

)
+B1

(
p3

1

(
12(13+ (B2−1)h3)

+h2
(
(B2−1)13+h3−2B2h3

))
−4p1p2(12−h2)(13−h3)+4p3(12−h2)(13−h3)

))
.

Let us assume p1 =: p ∈ [0,2] and applying Lemma D, we deduce

a2a4− a2
3 :=

1
16(12−h2)4(13−h3)2(14−h4)

(
p4M−p2γ(4−p2)(12−h2)2B1T

− (4−p2)2γ2B2
1(12−h2)4(14−h4)−p2γ2(4−p2)B2

1(13−h3)2(12−h2)3

+2B2
1p(4−p2)(13−h3)2(12−h2)3η(1− |γ|2)

)
,
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where T and M are given by (5.2.5) and (5.2.4), respectively. Applying triangular

inequality in the above equation with the assumption that x := |γ|, we obtain

|a2a4− a2
3| ≤

1
16(12−h2)4(13−h3)2(14−h4)

(
|M|p4+p2(4−p2)x2B2

1(13−h3)2(12−h2)3)

+2B2
1(13−h3)2(12−h2)3p(4−p2)(1−x2)+B2

1(12−h2)4(14−h4)(4−p2)2x2

+B1|T|p2x(4−p2)(12−h2)2
)
=: G(p,x).

The function G(p,x) is an increasing function of x in the closed interval [0,1], when

either of the conditions in (5.2.1) hold. Thus max0≤x≤1 G(p,x) = G(p,1) =: F(p). On

solving further, F(p) becomes

F(p) =
1

16(12−h2)4(13−h3)2(14−h4)

((
|M| −B1(12−h2)2

(
B1(12−h2)2(14−h4)− |T|

−B1(12−h2)(13−h3)2
))

p4+4B1(12−h2)2
(
|T|+B1(12−h2)(13−h3)2

−2B1(12−h2)2(14−h4)
)
p2+16B2

1(12−h2)4(14−h4)
)

=:
1

16(12−h2)4(13−h3)2(14−h4)

(
Ap4+Bp2+C

)
. (5.2.9)

We recall that

max
0≤t≤4

(At2+Bt+C) =


C, B ≤ 0,A ≤ −B

4 ;

16A+4B+C, B ≥ 0, A ≥ −B
8 or B ≤ 0, A ≥ −B

4 ;
4AC−B2

4A
, B > 0, A ≤ −B

8 .

(5.2.10)

Now, simply (5.2.10) yields the desired result when applied on (5.2.9). □

Remark 19. We notice that the bound evaluated in [55, Theorem 1, p. 3] for the case

(3), reproduced below:

|a2a4− a2
3| ≤

B2
1

12

3|4B1B3−B4
1−3B2

2| −4B1|B2|+4B2
1− |B2|

2

|4B1B3−B4
1−3B2

2| −2B1|B2| −B2
1

 ,
has a typographical error and the corrected form will be:

|a2a4− a2
3| ≤

B2
1

12

3|4B1B3−B4
1−3B2

2| −4B1|B2| −4B2
1− |B2|

2

|4B1B3−B4
1−3B2

2| −2B1|B2| −B2
1

 .
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Remark 20. In view of the first case (and fourth case with α = 1) of Table 5.1, Theo-

rem 5.2.2 reduces to the result obtained by Lee et al. [55] which provides the sharp

second Hankel determinant bound for functions in Ma-Minda class S∗(ϕ) (and C(ϕ)).

Remark 21. The second Hankel determinant bound for functions in the classM1,h(Φ)

can be obtained from Theorem 5.2.2 by replacing each Bi by (−1)iCi.

The following couple of corollaries can be obtained from Theorem 5.2.2, in view of

second and third cases of Table 5.1, respectively.

Corollary 5.2.3. Let f ∈ S∗s(ϕ). Then we have

|a2a4− a2
3| ≤



B2
1/4, when X holds;

|M|/256, when Y1 or Y2 holds ;
B2

1

4
−

B2
1(|T| −24B1)2

64(|M| −4B1|T|+32B2
1)
, when Z holds,

where M = 16B2
1B2−64B2

2+32B1B3, T = 16B2−4B2
1 and

X : |M| −64B2
1 ≤ 0 and |T| −24B1 ≤ 0.

Y1 : |M| −2B1|T| −16B2
1 ≥ 0 and |T| −24B1 ≥ 0.

Y2 : |M| −64B2
1 ≥ 0 and |T| −24B1 ≤ 0.

Z : |M| −2B1|T| −16B2
1 ≤ 0 and |T| −24B1 > 0.

Corollary 5.2.4. Let f ∈ Cs(ϕ). Then we have

|a2a4− a2
3| ≤



B2
1/36, when X holds;

|M|/147456, when Y1 or Y2 holds ;
B2

1

36
−

B2
1(|T| −368B1)2

2304(|M| −16B1|T|+1792B2
1)
, when Z holds,

where M = 128(9B2
1B2−32B2

2+18B1B3), T = 8(28B2−9B2
1) and,

X : |M| −4096B2
1 ≤ 0 and |T| −368B1 ≤ 0.

Y1 : |M| −8B1|T| −1152B2
1 ≥ 0 and |T| −368B1 ≥ 0.

Y2 : |T| −368B1 ≤ 0 and |M| −4096B2
1 ≥ 0.

Z : |T| −368B1 > 0 and |M| −8B1|T| −1152B2
1 ≤ 0.
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Remark 22. Note that the second Hankel determinant bound for the functions in the

classes S∗s(Φ) and Cs(Φ) can be obtained similarly to the Corollaries 5.2.3 and 5.2.4,

respectively by replacing each Bi by (−1)iCi.

The class M1,h(ϕ) reduces to various subclasses of S (see Table 5.1), which are

generalized subclasses involving ϕ and these can be further specialized for different

choices ofϕ. In view of this, Theorem 5.2.2, besides being sharp, is of major importance

in this chapter for it reduces to many previously known bounds of second Hankel

determinant for various subclasses of S associated with specific function in place of

ϕ, as illustrated in the following Table. Let ξ(z) := 1+z
1−z and ξν(z) := 1+(1−2ν)z

1−z .

g(z) h(z) ϕ(z) Mg,h(ϕ) |a2a4−a2
3|

≤

Refer-
ence

z(1+ z)
(1− z)3

z
(1− z)2 ξ(z) C 1/8 [36]

z
(1− z)2

z
1− z2 ξ(z) S

∗
s 1 [68]

z(1+ z)
(1− z)3

z(1+ z2)
1− z2 ξ(z) Cs 1/9 [68]

√
1+ z SL

∗ 1/16 [88]

z
(1− z)2

z
1− z

ξν(z) S
∗(ν) 1−ν2 [110](1+ z

1− z

)β
SS
∗(η) η2 [110]

Table 5.2: Various subclasses of S for particular values of 1, h and ϕ inM1,h(ϕ).

Here we require the function H(q1,q2), given in [6, Lemma 3], to establish our results

in what follows. Expressing the fourth coefficient a4 and a2a3 − a4 for the function

f ∈M1,h(ϕ) in terms of the Schwarz function ω(z) = 1+ω1z+ω2z2+ · · · , we obtain the

bounds as follows:

|a4| ≤
B1

14−h4
H(q1,q2), (5.2.11)

where

q1 =
2B2(12−h2)(13−h3)+B2

1(13h2+12h3−2h2h3)

B1(12−h2)(13−h3)
(5.2.12)

and

q2 =
B3(12−h2)(13−h3)+B3

1h2h3+B1B2(13h2+12h3−2h2h3)

B1(12−h2)(13−h3)
. (5.2.13)
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Also

|a2a3− a4| ≤
B1

14−h4
H(q1,q2), (5.2.14)

where

q1 =
2B2(12−h2)2(13−h3)+B2

1(12−h2)(−14+13h2+12h3−2h2h3+h4)

B1(12−h2)2(13−h3)
(5.2.15)

and

q2 =
1

B1(12−h2)2(13−h3)

(
B3(12−h2)2(13−h3)+B1B2(12−h2)(−14+13h2+12h3−2h2h3

+h4)+B3
1h2(−14+12h3−h2h3+h4)

)
. (5.2.16)

Remark 23. Note that the bound of fourth coefficient and |a2a3− a4| for functions in

M1,h(Φ) can be obtained from (5.2.11) and (5.2.14), respectively by replacing each Bi

by (−1)iCi.

5.3 About SL∗, a Special Case ofM1,h(ϕ)

As a special case of the classM1,h(ϕ), here we consider the subclassSL∗ [105], given

by

SL
∗ :=

{
f ∈ S :

z f ′(z)
f (z)

≺

√

1+ z, z ∈D
}
,

where 1(z) = z/(1− z)2, h(z) = z/(1− z) and ϕ(z) =
√

1+ z. Evidently, if we choose

ω = z f ′(z)/ f (z) then the analytic characterization of the class SL∗ can be expressed as

|ω2
−1|< 1, which indeed is the interior of the right loop of the lemniscate of Bernoulli,

with the boundary equation γ1 : (u2+v2)2
−2(u2

−v2)= 0. In 2009, Sokół [103] obtained

the sharp bounds of the initial coefficients a2, a3 and a4 for functions in this class,

further it is conjectured that |an+1| ≤ 1/(2n) whenever n ≥ 1, with the extremal function

f satisfying z f ′(z)/ f (z) =
√

1+ zn. Later Ravichandran and Verma [87] gave the proof

for the sharp estimate of the fifth coefficient with the extremal function for functions

in SL∗ using the characterization of positive real part functions in terms of certain

positive semi-definite Hermitian form. Sokół [104] also dealt the radius problems

for the class SL∗. Recently Ali et al. [4] have examined the radius of starlikeness

associated with the lemniscate of Bernoulli. Some differential subordination results
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involving lemniscate of Bernoulli are studied in [3, 50].

Forϕ(z)=
√

1+ z, we have B1 = 1/2, B2 =−1/8, B3 = 1/16, B4 =−5/128 and B5 = 7/256,

where B′is are the coefficients of ϕ(z).

Remark 24. For functions in the class SL∗, Raza and Malik [88] obtained the Fekete-

Szegö functional bound, which is a special case of the result obtained in [70, Theo-

rem 2.1, p. 250].

In view of the first case of Table 5.1 forϕ(z)=
√

1+ z, Theorem 5.2.2, equations (5.2.11)

and (5.2.14), respectively yield the following couple of examples.

Example 12. Let f ∈ SL∗. Then

|a2a4− a2
3| ≤

1
16
.

Thus Theorem 5.2.2 generalizes the result obtained by Raza and Malik [88].

Example 13. Let f ∈ SL∗. Then

(i) |a4| ≤ 1/6

(ii) |a2a3− a4| ≤ 1/6.

The result is Sharp.

Remark 25. The above Examples are the results obtained in [88] for functions in the

class SL∗.

5.3.1 Sharp Bounds of Hankel Determinants H3(1) and H2(3)

In 2013, Raza and Malik [88] obtained the sharp bounds of |H2(1)| and |H2(2)| and

the upper bound of |H3(1)| for functions in the class SL∗. Thus the sharp estimate of

|H3(1)| and |H2(3)| for SL∗ was open until now.

The upper bound of |H3(1)| was proved to be 43
576 (see [88]), which has been even-

tually improved in this section to a sharp estimate of 1
36 . We use the novel idea of

incorporating the recently derived formula for the fourth coefficient of Carathéodory

functions, in place of the routine triangle inequality to achieve the sharp bounds of

the Hankel determinants H3(1) and H2(3) for functions in the well-known class SL∗.

Theorem 5.3.1. If f ∈ SL∗, then we have

|H3(1)| ≤
1
36
. (5.3.1)
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The bound is sharp.

Proof. Let f ∈ SL∗ then from [87, p. 509], we have

a2 =
p1

4
, a3 =

1
8

p2−
3

64
p2

1, a4 =
1

12
p3−

7
96

p1p2+
13
768

p3
1 (5.3.2)

and

a5 = −
1

16

( 49
384

p4
1−

17
24

p2
1p2+

1
2

p2
2+

11
12

p1p3−p4

)
. (5.3.3)

On simplifying the equation (1.3.6), we get

H3(1) = 2a2a3a4− a3
3− a2

4+ a3a5− a2
2a5. (5.3.4)

Since the class P is invariant under the rotation, the value of p1 lies in the interval

[0,2]. Let p := p1 and substituting the above values of a′is in (5.3.4), we obtain

H3(1) =
1

2359296

(
689p6

−3368p4p2+3520p3p3+24064pp2p3+3008p2p2
2

−16128p2p4−13824p3
2−16384p2

3+18432p2p4

)
.

Using the equalities (1.3.3)-(1.3.5) and upon simplification, we arrive at

H3(1) =
1

2359296

(
ν1(p,γ)+ν2(p,γ)η+ν3(p,γ)η2+ψ(p,γ,η)ρ

)
.

Where ρ, η, γ ∈D,

ν1(p,γ) := 29p6+944p2γ2(4−p2)2
−640p2γ3(4−p2)2

−2304γ3(4−p2)2+128p2γ4(4−p2)2

−116p4γ(4−p2)+752p4γ2(4−p2)−3456p2γ2(4−p2)−864p4γ3(4−p2),

ν2(p,γ) := (4−p2)(1− |γ|2)
(
224p3+3456p3γ+ (4−p2)(2432pγ−512pγ2)

)
,

ν3(p,γ) := (4−p2)(1− |γ|2)
(
4096(4−p2)−512|γ|2(4−p2)+3456p2γ

)
,

ψ(p,γ,η) := (4−p2)(1− |γ|2)(1− |η|2)
(
−3456p2+4608γ(4−p2)

)
.

Furthermore, by taking x := |γ|, y := |η| and using the fact |ρ| ≤ 1, we have

|H3(1)| ≤
1

2359296

(
|ν1(p,γ)|+ |ν2(p,γ)|y+ |ν3(p,γ)|y2+ |ψ(p,γ,η)|

)
≤ S(p,x, y),
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where

S(p,x, y) :=
1

2359296

(
s1(p,x)+ s2(p,x)y+ s3(p,x)y2+ s4(p,x)(1− y2)

)
(5.3.5)

with

s1(p,x) := 29p6+944p2x2(4−p2)2+640p2x3(4−p2)2+2304x3(4−p2)2+128p2x4(4−p2)2

+116p4x(4−p2)+752p4x2(4−p2)+3456p2x2(4−p2)+864p4x3(4−p2),

s2(p,x) := (4−p2)(1−x2)(224p3+ (4−p2)(2432px+512px2)+3456p3x),

s3(p,x) := (4−p2)(1−x2)(4096(4−p2)+512x2(4−p2)+3456p2x),

s4(p,x) := (4−p2)(1−x2)(3456p2+4608x(4−p2)).

Now we need to maximize S(p,x, y) in the closed cuboid T : [0,2]× [0,1]× [0,1]. We

establish this by finding the maximum values in interior of the six faces, on the twelve

edges and in the interior of T.

I. First we proceed with interior points of T. Let (p,x, y) ∈ (0,2)× (0,1)× (0,1). In an

attempt to find the points where maximum value is attained in the interior of T, we

partially differentiate equation (5.3.5) with respect to y and on algebraic simplification,

we get

∂S
∂y
=

1
73728

(4−p2)(1−x2)(8y(x−1)(4(4−p2)(x−8)+27p2)

+p(4x(4−p2)(19+4x)+p2(7+108x))).

Now ∂S
∂y = 0 yields

y =
p(4x(4−p2)(19+4x)+p2(7+108x))

8(x−1)(4(4−p2)(8−x)−27p2)
=: y0.

For the existence of critical points, y0 should lie in the interval (0,1), which is possible

only when

p3(7+108x)+4px(4−p2)(19+4x)+32(1−x)(8−x)(4−p2) < 216p2(1−x) (5.3.6)

and 27p2 > 4(4−p2)(8−x). Now, to find solutions for these equations, we proceed by

hit and trial method. If we assume p tends to 2, then equation (5.3.6) holds for all

x< 101
216 . In fact, we observe for all x ∈

(
101
216 ,1

)
, there does not exist any p ∈ (0,2) such that
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equation (5.3.6) holds. Now, if we assume x tends to 0, then equation (5.3.6) holds for

all p > 1.48946. In fact, a numerical computation shows that for p ∈ (0,1.48946), there

does not exist any x ∈ (0,1) such that equation (5.3.6) holds. Thus (1.48946,2)×
(
0, 101

216

)
is the domain for the solutions of equation (5.3.6). Now, further calculation shows

that ∂S
∂p

∣∣∣
y=y0
, 0 in (1.48946,2)×

(
0, 101

216

)
. Hence the function S has no critical point in

(0,2)× (0,1)× (0,1).

II. Here we consider interior of all the six faces of the cuboid T.

On the face p = 0, S(p,x, y) reduces to

r1(x, y) := S(0,x, y) =
2(1−x2)(y2(x−1)(x−8)+9x)+9x3

576
, (5.3.7)

where x, y ∈ (0,1). We note that r1 has no critical point in (0,1)× (0,1) since

∂r1

∂y
=

y(1−x2)(x−1)(x−8)
144

, 0, x, y ∈ (0,1). (5.3.8)

On the face p = 2, S(p,x, y) reduces to

S(2,x, y) =
29

36864
, x, y ∈ (0,1). (5.3.9)

On the face x = 0, S(p,x, y) reduces to

S(p,0, y) =
128y2(512−364p2+59p4)+224p3y(4−p2)+13824p2

−3456p4+29p6

2359296

=: r2(p, y), p ∈ (0,2) and y ∈ (0,1). (5.3.10)

We solve ∂r2
∂y = 0 and ∂r2

∂p = 0 to determine the points where maxima occur. On solving
∂r2
∂y = 0, we get

y = y1 := −
7p3

8(128−59p2)
. (5.3.11)

For the given range of y, we should have y1 ∈ (0,1), which is possible only if p > p0,

p0 ≈ 1.47292. A computation shows that ∂r2/∂p = 0 implies

256y2(−182+59p2)−112y(−12p+5p3)+87p4
−6912p2+13824 = 0. (5.3.12)

Substituting the value of y as y1 from equation (5.3.11) in (5.3.12) and upon simplifi-
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cation, we obtain

75497472−107347968p2+51265024p4
−8426096p6+95167p8 = 0. (5.3.13)

A numerical computation shows that the solution of (5.3.13) in the interval (0,2) is

p ≈ 1.39732. Thus r2 has no critical point in (0,2)× (0,1).

On the face x = 1, S(p,x, y) reduces to

r3(p, y) := S(p,1, y) =
36864+22784p2

−7920p4+9p6

2359296
, p ∈ (0,2). (5.3.14)

Solving ∂r3
∂p = 0, we get a critical point at p =: p0 ≈ 1.2008. A simple calculation shows

that r3 attains its maximum value ≈ 0.0225817 at p0.

On the face y = 0, S(p,x, y) reduces to

S(p,x,0) =
1

2359296

(
29p6+ (4−p2)((4−p2)(944p2x2+640p2x3

−2304x3+4608x

+128p2x4)+116p4x+752p4x2+864p4x3+3456p2x2
)
=: r4(p,x).

A computation shows that

∂r4

∂x
=

1
2359296

(
(8192p2

−576p4+512p6)x3+ (30720p2
−4992p4

−672p6)x2

+ (30208p2
−9088p4+384p6)x+73728−36864p2+5072p4

−116p6
)
,

∂r4

∂p
=

1
2359296

(
(4096p−4096p3+768p5)x4+ (3840p−6656p3

−1344p5)x3+ (30208p

−18176p3+1152p5)x2+ (−73728p+20288p3
−696p5)x+1344p−13824p3+174p5

)
.

A numerical calculation shows that there does not exist any solution for the system of

equations ∂r4
∂x = 0 and ∂r4

∂p = 0 in (0,2)× (0,1).

On the face y = 1, S(p,x, y) reduces to

S(p,x,1) =
1

2359296

(
29p6+ (4−p2)(116p4x+752p4x2+3456p2x2+864p4x3+ (1−x2)

(224p3+3456p2x+3456p3x)+ (4−p2)((1−x2)(2432px+512px2+4096

+512x2)+944p2x2+640p2x3+2304x3+128p2x4))
)
=: r5(p,x).
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Proceeding on the similar lines as in the previous case for face y = 0, again there is no

solution for the system of equations ∂r5
∂x = 0 and ∂r5

∂p = 0 in (0,2)× (0,1).

III. Now we calculate the maximum values achieved by S(p,x, y) on the edges of

cuboid T.

Considering the equation (5.3.10), we have

t1(p) := S(p,0,0) = (29p6
−3456p4+13824p2)/2359296.

It is easy to verify that the function t′1(p) = 0 for p =: λ0 = 0 and p =: λ1 ≈ 1.43285 in the

interval [0,2]. We observe that λ0 is the point of minima and the maximum value of

t1(p) is ≈ 0.00596162, attained at λ1. Hence

S(p,0,0) ≤ 0.00596162, p ∈ [0,2].

Evaluating the equation (5.3.10) at y= 1, we obtain t2(p) := S(p,0,1)= (65536−32768p2+

896p3 + 4096p4
− 224p5 + 29p6)/2359296. It is easy to verify that t′2(p) is a decreasing

function in [0,2], hence attains its maximum value at p = 0. Thus

S(p,0,1) ≤ S(0,0,1) ≤
1
36
, p ∈ [0,2].

In view of the equation (5.3.10) and by straightforward calculation, the maximum

value of S(0,0, y) is attained at y = 1. This implies

S(0,0, y) ≤ S(0,0,1) =
1

36
, y ∈ [0,1].

As equation (5.3.14) is independent of x, we have

S(p,1,1) = S(p,1,0) = t3(p) := (9p6
−7920p4+22784p2+36864)/2359296.

Now, t′3(p) = 45568p− 31680p3 + 54p5 = 0 for p =: λ2 = 0 and p =: λ3 ≈ 1.2008 in the

interval [0,2], where λ2 is a point of minima and t3(p) attains its maximum value at

λ3. We conclude that

S(p,1,1) = S(p,1,0) ≤ 0.0225817, p ∈ [0,2].

Substituting p = 0 in equation (5.3.14), we obtain S(0,1, y) = 1/64. The equation (5.3.9)
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is independent of all the variables p, x and y. Thus the value of S(p,x, y) on the edges

p = 2, x = 1; p = 2, x = 0; p = 2, y = 0 and p = 2, y = 1, respectively, is given by

S(2,1, y) = S(2,0, y) = S(2,x,0) = S(2,x,1) = 29/36864, x, y ∈ [0,1].

Equation (5.3.10), yields S(0,0, y) = y2/36. A simple computation shows that

S(0,0, y) ≤
1
36
, y ∈ [0,1].

Using equation (5.3.7), we get t4(x) := S(0,x,1) = (16−14x2+9x3
−2x4)/576. A simple

computation shows that the function t4 is decreasing in [0,1] and hence attains its

maximum value at x = 0. Thus

S(0,x,1) ≤ S(0,0,1) =
1

36
, x ∈ [0,1].

Once again, by using equation (5.3.7), we get t5(x) := S(0,x,0)=−x(x2
−2)/64. Perform-

ing a simple calculation, we get t′5(x) = 0 for x =: x0 =
√

2/
√

3 and for 0 ≤ x < x0, t5 is

an increasing function and for x0 < x ≤ 1, it’s a decreasing function. Thus it attains

maximum value at x0. Hence

S(0,x,0) ≤ S(0,x0,0) = 0.0170103, x ∈ [0,1].

In view of the cases I-III, the inequality (5.3.1) holds. Let the function f :D→ C be

as follows

f (z) = zexp

∫ z

0

√

1+ t3−1
t

dt

 = z+
z4

6
+ · · · . (5.3.15)

The sharpness of bound |H3(1)| is justified by an extremal function f given by (5.3.15),

which belongs toSL∗. For this function f , we have a2 = a3 = a5 = 0 and a4 = 1/6, which

clearly shows that |H3(1)| = 1/36 using equation (5.3.4). This completes the proof. □

We now estimate the bound for the Hankel determinant H2(3).

Theorem 5.3.2. Let f ∈ SL∗. Then we have

|H2(3)| ≤
1
36
. (5.3.16)

The result is sharp.
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Proof. We proceed here on the similar lines as in the proof of Theorem 5.3.1. Now,

substituting the equalities (5.3.2)-(5.3.3) in H2(3) = a3a5− a2
4. and with the assumption

p1 =: p ∈ [0,2], we deduce

H2(3) =
1

1179648

(
103p6

−712p4p2−4608p3
2+1984p2p2

2+5888pp2p3

−160p3p3−8192p2
3−3456p2p4+9216p2p4

)
. (5.3.17)

Using the equalities (1.3.3)-(1.3.5) and simplifying the terms in the expression (5.3.17),

we get

H2(3) =
1

1179648

(
ζ1(p,γ)+ζ2(p,γ)η+ζ3(p,γ)η2+ξ(p,γ,η)ρ

)
,

where ρ, η and γ ∈D,

ζ1(p,γ) := −5p6
−80p2γ2(4−p2)2+64p2γ4(4−p2)2+160p2γ3(4−p2)2

−4p4γ(4−p2)

−104p4γ2(4−p2)+576p2γ2(4−p2)+144p4γ3(4−p2),

ζ2(p,γ) := 16p(4−p2)(1− |γ|2)(−5p2
−36p2γ−16γ2(4−p2)−20γ(4−p2)),

ζ3(p,γ) := 64(4−p2)(1− |γ|2)(−32(4−p2)−4γ2(4−p2)−9p2γ),

ξ(p,γ,η) := 576(4−p2)(1− |γ|2)(1− |η|2)(p2+4γ(4−p2)).

By taking x := |γ|, y := |η| and using the fact |ρ| ≤ 1, we get

|H2(3)| ≤
1

1179648

(
|ζ1(p,γ)|+ |ζ2(p,γ)|y+ |ζ3(p,γ)|y2+ |ξ(p,γ,η)|

)
≤ F(p,x, y),

F(p,x, y) :=
1

1179648

(
q1(p,x)+q2(p,x)y+q3(p,x)y2+ q4(p,x)(1− y2)

)
(5.3.18)

with

q1(p,x) := 5p6+80p2x2(4−p2)2+64p2x4(4−p2)2+160p2x3(4−p2)2+4p4x(4−p2)

+104p4x2(4−p2)+576p2x2(4−p2)+144p4x3(4−p2),

q2(p,x) := 16p(4−p2)(1−x2)(5p2+36p2x+16x2(4−p2)+20x(4−p2)),

q3(p,x) := 64(4−p2)(1−x2)(32(4−p2)+4x2(4−p2)+9p2x),

q4(p,x) := 576(4−p2)(1−x2)(p2+4x(4−p2)).
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In order to complete the proof, we need to maximize the function F(p,x, y) in the

closed cuboid T : [0,2]× [0,1]× [0,1]. For this, we find the maximum values of F in T

by considering all the twelve edges, interior of the six faces and in the interior of T.

I. We proceed with interior points of T. Let us assume (p,x, y) ∈ (0,2)× (0,1)× (0,1). To

determine the points where the maximum value occur in the interior of T, we partially

differentiate equation (5.3.18) with respect to y and we obtain

∂F
∂y
=

1
73728

(4−p2)(1−x2)(8y(x−1)(4(4−p2)(x−8)+9p2)

+p(4x(4−p2)(5+4x)+p2(5+36x))).

Now, ∂F
∂y = 0 yields

y =
p(4x(4−p2)(5+4x)+p2(5+36x))

8(x−1)(4(4−p2)(8−x)−9p2)
=: y1.

Now, y1 should lie in the interval (0,1) for the existence of the critical points. Thus we

have

p3(5+36x)+4px(4−p2)(5+4x)+32(1−x)(8−x)(4−p2) < 72p2(1−x) (5.3.19)

and 4(4− p2)(8− x) < 9p2. We use hit and trial method to obtain solution for these

inequalities. If p tends to 2, then equation (5.3.19) holds for all x < 31
72 . In fact, we

observe for every x ∈
[

31
72 ,1

)
, there does not exist any p ∈ (0,2) such that (5.3.19) holds.

Let us now assume x tends to 0, then equation (5.3.19) holds for all p> 1.79154. In fact, a

numerical computation shows that for p ∈ (0,1.79154], there does not exist any x ∈ (0,1)

such that equation (5.3.19) holds. Thus (1.79154,2)×
(
0, 31

72

)
is the domain for the

solutions of equation (5.3.19). Now, furthermore calculation shows that ∂F
∂p

∣∣∣
y=y1
, 0 in

(1.79154,2)×
(
0, 31

72

)
. Therefore, we conclude F has no critical point in (0,2)×(0,1)×(0,1).

II. Now, we consider the interior of all the six faces of the cuboid T.

On the face p = 0,

k1(x, y) := F(0,x, y) =
1−x2

288

(
y2(x−1)(x−8)+9x

)
, x, y ∈ (0,1). (5.3.20)

A simple calculation shows that ∂k1/∂y = ∂r1/∂y. Thus equation (5.3.8) implies k1 has

no critical point in (0,1)× (0,1).
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On the face p = 2,

F(2,x, y) =
5

18432
, x, y ∈ (0,1). (5.3.21)

On the face x = 0, F(p,x, y) reduces to F(p,0, y), given by

k2(p, y) :=
64y2(512−292p2+41p4)+80p3y(4−p2)+2304p2

−576p4+5p6

1179648
, (5.3.22)

p ∈ (0,2) and y ∈ (0,1). On solving ∂k2
∂y = 0, we get

y =
5p3

8(41p2−128)
=: y1. (5.3.23)

For the given range of y, y1 should lie in the interval (0,1), which holds only if p > p0,

p0 ≈ 1.7669. The computation shows that ∂k2
∂p = 0 implies

y2(5248p2
−18688)+40y(12p−50p3)+2304−1152p2+15p4 = 0. (5.3.24)

Let p > p0 and substituting equation (5.3.23) in (5.3.24) and performing lengthy calcu-

lation, we deduce

1048576−1196032p2+449216p4
−57582p6+615p8 = 0. (5.3.25)

The numerical computation shows that the solution of (5.3.25) for p ∈ (0,2) is p =: p0 ≈

1.35957. Thus k2 has no critical point in (0,2)× (0,1).

On the face x = 1,

k3(p) := F(p,1, y) =
7168p2

−2000p4+57p6

1179648
, p ∈ (0,2). (5.3.26)

To attain maximum value of k3, we solve ∂k3/∂p = 0 and get critical point at p =: p0 ≈

1.39838. Simple calculation shows that k3 attains its maximum value ≈ 0.00576045 at

p0.

On the face y = 0,

F(p,x,0) =
1

1179648

(
5p6+ (4−p2)((4−p2)(2304x(1−x2)+80p2x2+160p2x3+64p2x4)

+4p4x+576p2x2+104p4x2+144p4x3+576p2(1−x2)
)
=: k4(p,x).
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A complex computation shows that

∂k4

∂p
=

1
589824

(
2304p−1152p3+15p5+ (−18432p+4640p3

−12p5)x+ (1280p−448p3

−72p5)x2+ (20992p−6016p3+48p5)x3+ (1024p−1024p3+192p5)x4
)

and

∂k4

∂x
=

1
294912

(
(p2
−4)((−256p2+64p4)x3+ (6912−2208p2+12p4)x2

+ (−160p2
−12p4)x−2304+576p2

−p4)
)
.

The numerical computation shows that there does not exist any solution for the system

of equations ∂k4
∂p = 0 and ∂k4

∂x = 0 in (0,2)× (0,1).

On the face y = 1, F(p,x, y) reduces to F(p,x,1) given by

k5(p,x) :=
1

1179648

(
5p6+ (4−p2)((4−p2)(80p2x2+64p2x4+160p2x3

+ (1−x2)(256px2+320px+256(8+x2)))+4p4x+104p4x2

+576p2x2+144p4x3+ (1−x2)(80p3+576p3x+576p2x))
)
.

Proceeding on the similar lines as in the previous case on the face y = 0, again, the

system of equations ∂k5/∂p = 0 and ∂k5/∂x = 0 have no solution in (0,2)× (0,1).

III. We now consider the maximum values attained by F(p,x, y) on the edges of the

cuboid T:

In view of the equation (5.3.22), we have F(p,0,0)= l1(p) := 5p6
−576p4+2304p2)/1179648.

It is easy to compute that l′1(p) = 0 for p =: λ0 = 0 and p =: λ1 ≈ 1.43351 in the interval

[0,2], where λ0 is the point of minima and λ1 is the point of maxima. Hence

F(p,0,0) ≤ 0.00198843, p ∈ [0,2].

Again, considering the equation (5.3.22), we obtain F(p,0,1)= l2(p) := (32768−16384p2+

320p3+2048p4
−80p5+5p6)/1179648. Now, we note that l2 is a decreasing function in

[0,2] and hence attains its maximum value at p = 0. Thus

F(p,0,0) ≤ F(0,0,0) = 1/36, p ∈ [0,2].
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Now, we observe that the equation (5.3.26) does not depend on the value of y, hence

we get F(p,1,1)= F(p,1,0)= l3(p) := (7168p2
−2000p4+57p6)/1179648. It is easy to verify

that the function l3 has two critical points at p = 0 and p =: λ2 ≈ 1.39838 in the interval

[0,2], where the maximum value is attained at λ2. Thus

F(p,0,0) = F(p,1,0) ≤ 0.0057645, p ∈ [0,2].

On substituting p = 0 in (5.3.26), we get F(0,1, y) = 0. In view of equation (5.3.21),

which is independent of all the variables p, x and y, the value of F(p,x, y) on the edges

p = 2, x = 0; p = 2, x = 1; p = 2, y = 0 and p = 2, y = 1, respectively, is given by

F(2,0, y) = F(2,1, y) = F(2,x,0) = F(2,x,1) = 5/18432, x, y ∈ [0,1].

Evaluating equation (5.3.22) at p= 0, we get l4(y) := F(0,0, y)= y2/36. It is easy to verify

that l4 is an increasing function of y and hence attains maximum value at y= 1 in [0,1].

Thus

F(0,0, y) ≤ F(0,0,1) =
1
36
, y ∈ [0,1].

Using equation (5.3.20), we get l5(x) := F(0,x,1) = (8−7x2
−x4)/288. Since l5 is decreas-

ing function in [0,1], it attains maximum value at x = 0. Thus

F(0,x,1) ≤ F(0,0,1) =
1

36
, x ∈ [0,1].

Substituting y = 0 in equation (5.3.20), we obtain the function F(0,x,0) = l6(x) := x(1−

x2)/32. A simple calculation shows that the function l′6(x) = 0 at x =: x0 =
√

3/3 and it

is increasing in (0,x0) and decreasing in (x0,1). Hence it attains the maximum value at

x = x0. Thus we conclude

F(0,x,0) ≤

√
3

144
, x ∈ [0,1].

Taking into account all the cases I-III, the inequality (5.3.16) holds. For the function

given in (5.3.15), which belongs to the class SL∗, a3 = a5 = 0 and a4 = 1/6. Thus

|H2(3)| = 1/36 for this function, which also proves the result is sharp. This completes

the proof. □
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5.3.2 Further Results

In the following theorem, we obtain the Zalcman coefficient inequality for n = 3 for

functions in the class SL∗.

Theorem 5.3.3. Let f ∈ SL∗. Then

|a2
3− a5| ≤

1
8
.

The estimate is sharp.

Proof. Using equations (5.3.2) and (5.3.3), we get

a2
3− a5 =

125
12288

p4
1−

43
768

p2
1p2+

3
64

p2
2+

11
192

p1p3−
1

16
p4. (5.3.27)

Applying Lemma E with a = 125/768, b = 43/72, c = 11/24 and d = 3/4 in the equation

(5.3.27), we obtain

|a2
3− a5| ≤

1
8
.

Let the function f :D→ C, be defined as follows:

f (z) = zexp

∫ z

0

√

1+ t4−1
t

dt

 = z+
z5

8
+ · · · . (5.3.28)

The equality holds for the function given in (5.3.28), which belongs to SL∗ as a3 = 0

and a5 = 1/8, which contributes to the sharpness of the inequality. This completes the

proof. □

Now, we derive the necessary and sufficient condition for a function f ∈ S to belong

to the class SL∗ in the following theorem, involving the convolution concept.

Theorem 5.3.4. A function f ∈ S is in the class SL∗ if and only if

1
z
(

f ∗Ht(z)
)
, 0, (z ∈D) (5.3.29)

where

Ht(z) =
z

(1− z)(1−S(t))

( 1
1− z

−S(t)
)
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and

S(t) =
√

t+ i
(
±

√
√

1+4t− (t+1)
)
, (0 < t < 2).

Proof. Define p(z) = z f ′(z)/ f (z). As we know p(0) = 1, to prove the result, it suffices to

show that f ∈ SL∗ if and only if p(z) < γ1, where

γ1 = {(u2+v2)2
−2(u2

−v2) = 0}.

By taking u2 = t, we can give the parametric representation of the curve γ1 as follows

S(t) =
√

t+ i
(
±

√
√

1+4t− (t+1)
)
, (0 < t < 2).

For f ∈ S, we have

z
(1− z)2 ∗ f (z) = z f ′(z) and

z
1− z

∗ f (z) = f (z). (5.3.30)

Using the above equations (5.3.29) and (5.3.30), we get

1
z
(

f ∗Ht(z)
)
=

f (z)
z(1−S(t))

(
z f ′(z)

f (z)
−S(t)

)
, 0,

which clearly shows that z f ′(z)/ f (z) , S(t). Hence 1/(z( f ∗Ht(z))) , 0 if and only if

p(z) < γ1 if and only if f ∈ SL∗. □

Theorem 5.3.5. The function

Θ(z) =
z

1−ρz
, (z ∈D)

belongs to the class SL∗ if |ρ| ≤ 1/4.

Proof. By the definition of the classSL∗, it suffices to show that the following inequality

holds for the given range of ρ. ∣∣∣∣∣∣∣
(

1
1−ρz

)2

−1

∣∣∣∣∣∣∣ < 1. (5.3.31)

The above inequality (5.3.31) holds whenever

|2ρz−ρ2z2
| < 1+ |ρz|2−2Re(ρz),
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which in turn holds if

2|ρz| ≤ 1−2|ρz|,

which holds if |ρ| ≤ 1
4 . Hence the function Θ(z) ∈ SL∗. □

5.4 About Sl(α), a Special Case ofM1,h(Φ)

Here to study a special case of the classM1,h(Φ), we choose a subclass Sl(α), given

by

Sl(α) =
{

f ∈A :
z f ′(z)+αz2 f ′′(z)
αz f ′(z)+ (1−α) f (z)

≺ 1− log(1+ z), (0 ≤ α ≤ 1)
}
,

where 1(z) = z/(1−z)2, h(z) = z/(1−z) and Φ(z) = ψ(z) := 1− log(1+z). In the following

example, we establish a Fekete-Szegö result for the class Sl(α), obtained by taking the

aforesaid values of Φ(z), 1(z) and h(z) in Theorem 5.2.1.

Example 14. Let f ∈ Sl(α). Then

|a3−µa2
2| ≤



3
4(1+2α)

−
µ

(1+α)2 , µ ≤
(1+α)2

4(1+2α)
=: κ1;

1
2(1+2α)

,
(1+α)2

4(1+2α)
≤ µ ≤

5(1+α)2

4(1+2α)
;

µ

(1+α)2 −
3

4(1+2α)
, µ ≥

5(1+α)2

4(1+2α)
=: κ2.

The result is sharp.

Proof. Since f ∈ Sl(α) =Mα(ψ(z)), we have C1 = −1, C2 = 1/2 and C3 = −1/3. The

result follows from Theorem 5.2.1 by substituting the values of 1′is and h′is from (5.1.2).

Equality holds whenever f satisfies:

( f ∗1)(z)
( f ∗h)(z)

=



1− log(1+ z), µ < κ1 or µ > κ2;

1− log(1+ z2), κ1 < µ < κ2;

1− log
(
1+ z(z+η)

1+ηz

)
, µ = κ1;

1− log
(
1− z(z+η)

1+ηz

)
, µ = κ2.

□
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Example 15. Let f ∈ Sl(α). Then

(i) |a3− a2
2| ≤

1
2(1+2α)

, (ii) |a3| ≤
3

4(1+2α)
.

These inequalities are sharp.

The proof directly follows from Example 14.

Example 16. Let f ∈ Sl(α). Then

|a2a4− a2
3| ≤


1

4(1+2α)2 , 0 ≤ α ≤ 2+
√

15
11 ;

31α4+136α3
−14α2

−24α−3
2(61α2−20α−5)(1+α)(1+3α)(1+2α)2 ,

2+
√

15
11 ≤ α ≤ 1.

Proof. For f ∈Mα(ψ), we have C1 = −1, C2 = 1/2 and C3 = −1/3. Furthermore, note

thatMα(ϕ(z))=Mα(ϕ(−z))=Mα(Φ(z)). Thus using Theorem 5.2.2 and Remark 21, we

obtain

M =
1

12
(1+α)3(61α2

−20α−5) and T = −(1+5a+17α2+13α3).

To get the desired estimate, we now consider the following cases:

(i) For 0 ≤ α ≤ (2+
√

15)/11, it is easy to verify that M and T satisfy the inequalities

given in (5.2.2), respectively.

(ii) For (2+
√

15)/11 < α ≤ 1, it is easy to verify that the inequalities (5.2.3) hold true

for M and T.

Now, the assertion follows at once from Theorem 5.2.2. □

Example 17. Let f ∈ Sl(α), then

(i) |a4| ≤
19

36(1+3α)
(ii) |a2a3− a4| ≤

1
3(1+3α)

.

The result is sharp.

Proof. For f ∈Mα(ψ), we have C1 = −1, C2 = 1/2, C3 = −1/3.

(i) The equations (5.2.12), (5.2.13) and Remark 23 yield q1 = −5/2 and q2 = 19/12. The

result follows from (5.2.11) and extremal functions f , up to rotations can be obtained

when f satisfies
z f ′(z)+αz2 f ′′(z)
αz f ′(z)+ (1−α) f (z)

= 1− log(1+ z).
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(ii) Upon replacing each Bi by (−1)iCi in (5.2.15) and (5.2.16), we get

q1 = −
5α2+3α+1

(1+α)(1+2α)
and q2 =

19α2
−12α−4

6(1+α)(1+2α)
.

Here we observe that q1 and q2 belong to D2, which is given in [6, Lemma 3]. Therefore

the extremal functions f , up to rotations can be obtained when f satisfies

z f ′(z)+αz2 f ′′(z)
αz f ′(z)+ (1−α) f (z)

= 1− log(1+ z3).

This completes the proof. □

Theorem 5.4.1. Let f ∈ Sl(α). Then, we have |a5| ≤ 107/(288(1+ 4α)). The result is

sharp.

Proof. The equations (5.1.2), (5.2.6), (5.2.7) and (5.2.8) with ψ(z) in place of ϕ(z), yield

a5 in terms of p1, p2, p3 and p4 as follows

|a5| =
1

4(1+4α)

∣∣∣∣∣ 695
1152

p4
1−

27
16

p2
1p2+

1
2

p2
2+

13
12

p1p3−
1
2

p4

∣∣∣∣∣
=:

1
8(1+4α)

∣∣∣∣∣P+ 1
6

p1Q−
1

24
p2

1R
∣∣∣∣∣

≤
1

8(1+4α)

(
|P|+

1
6
|p1||Q|+

1
24
|p1|

2
|R|

)
,

where P = p4
1−3p2

1p2+p2
2+2p1p3−p4, Q = p3−2p1p2+p3

1 and R = p2− (23/24)p2
1. Since

|P|, |Q| ≤ 2 from (1.3.2) and |R| ≤ 2 from (1.3.1), we obtain

|a5| ≤
1

8(1+4α)

(
2+

2
3
+

1
12
|p1|

2
−

1
576
|p1|

4
)
.

Let us assume G(p1) := |p1|
2/12− |p1|

4/576. Then, the formula given in (5.2.10) yields

the bound when A = −1/576, B = 1/12 and C = 0. By taking p1 = 1, p2 = 2, p3 = −2/3

and p4 = −1/64, we obtain the result is sharp. □

Using Examples 15–Theorem 5.4.1, we can estimate the bound for H3(1) for functions

in the class Sl(α), which is stated below in the following theorem:
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Theorem 5.4.2. Let f ∈ Sl(α). Then |H3(1)| ≤ 1(α), where

1(α) =
949+11388α+52493α2+114974α3+117180α4+42568α5

1728(1+4α)(1+3α)2(1+2a)4
,

when 0 ≤ α ≤ 2+
√

15
11 and

1(α) =
1

1728(1+α)(1+4α)(1+3α)2(1+2α)3(61α2−20α−5)

(
−5069−76035α−385994α2

−619570α3+831511α4+3545777α5+3327024α6+1298324α7
)
,

when 2+
√

15
11 ≤ α ≤ 1.

Remark 26. By taking α = 0 and 1, we get all the above bounds for the classes S∗l and

Cl, respectively.

Theorem 5.4.3. Let f ∈ S∗l . Then

|H3(1)| ≤
1
9

The result is sharp.

The proof of the above Theorem is on the similar lines of proof of Theorem 5.3.1. Thus

we just give an outline of the proof, which is as follows:

For functions in S∗l , we have

H3(1) =
1

663552

(
157p6

−1404p4p2+5184p2p2
2−10368p3

2−1056p3p3+10368pp2p3

−18432p2
3−5184p2p4+20736p2p4

)
.

We apply Lemma D on the above equation and further maximizes the obtained func-

tion S(p,x, y), by taking x := |γ|, y := |η| in the closed cuboid T : [0,2]× [0,1]× [0,1] by

considering twelve edges, interior of the six faces and in the interior of T. We calculate

that there is no critical point in the interior of T. The maximum value of S, among

all the twelve edges and the six faces, is attained on the edges S(p,0,1), S(0,x,1) and

S(0,0, y). Let the function f :D→ C, be defined as follows:

f (z) = zexp
(∫ z

0

− log(1+ t3)
t

dt
)
= z−

z4

3
+ · · · , (5.4.1)

clearly which belongs to S∗l and the equality holds for this function as a2 = a3 = a5 = 0
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and a4 = −1/3.

As we know the function z is univalent inD, we have zn
≺ z, which further implies

1+zn
≺ 1+z (n≥ 1).Now, there exists a Schwarz functionω(z) such that 1+zn = 1+ω(z).

Since |z| < 1 and |ω(z)| < 1, we can view 1+ z and 1+ω(z) as a shifted unit disk. Thus

the branch of the log function is well defined and we can write:

1− log(1+ zn) = 1− log(1+ω(z)).

Hence 1− log(1+zn) ≺ 1− log(1+z) for all n ≥ 1. Let us define a function fn in the class

A as:

fn(z) = z+ a2,nz2+ a3,nz3+ · · · = z+
∞∑

m=2

am,nzm.

We consider the subclass S∗l,n of S∗l consisting of the functions fn satisfying

z f ′n(z)
fn(z)

= 1− log(1+ zn) (n ≥ 1),

which upon simplification yields

z f ′n(z) = fn(z)(1− log(1+ zn)).

Further, we have
∞∑

m=1

 ∞∑
k=1

(−1)k am,n

k
znk+m

 = ∞∑
k=1

(k−1) ak,n zk,

where a1,n = 1. On comparing the coefficients of like power terms on either side of the

above equation, we get a special pattern due to which we conjecture the following:

Conjecture 5.4.4. Let fn ∈ S∗l,n. Then for m ≥ 1, we have

|am,n| ≤ |am,1|.

Concluding Remarks

The classM1,h(ϕ) unifies various sub-classes of analytic functions, mentioned here. We

have obtained generalized sharp bound of second Hankel determinant for functions

in the class M1,h(ϕ) and our results reduce to many earlier known bounds. In this

chapter, using the novel idea of incorporating the recently derived formula for the

fourth coefficient of Carathéodory functions, in place of the routine triangle inequality



112

to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well-

known class SL∗, stands out as an important theme. In fact, we improve the bound

|H3(1)| to a sharp estimate of 1/36 from 43/576 for functions in SL∗. Following

our work, recently some authors such as Kumar and Kamaljeet [48], Kumar et al. [49],

Riaz et al. [89] and Wang et al. [112] used the same technique and similar arrangements

of the expressions to obtain their results.



Chapter 6

A Novel Subclass of Starlike Functions

In the past, several subclasses of starlike functions are defined involving real part and modulus

of certain expressions of functions under study, combined by way of an inequality. In a similar

way, here we introduce a new class S ∗
α , consisting of normalized analytic univalent function

f in the open unit diskD, satisfying

Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣∣1+ z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)
−α

∣∣∣∣∣ (0 ≤ α < 1).

Evidently, S ∗
α ⊂ S

∗, the class of starlike functions. We first establish S ∗
α ⊂ S

∗(qα), the class

of analytic function f satisfying z f ′(z)/ f (z) ≺ qα(z), where qα is an extremal function in

many cases. We obtain certain inclusion and radius results for both the classes S ∗
α and

S
∗(qα). Furthermore, we estimate the bounds of logarithmic coefficients, inverse coefficients

and Fekete-Szegö functional for functions in S∗(qα).

113
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6.1 Introduction

In the recent past, the class S∗(ϕ) has been studied extensively for various choices

of Ma-Minda function ϕ and enough discussion has been made on the topic in the

previous chapters. In this direction, the present chapter is no more an exception, as

it deals with a subclass S∗(ϕ) by considering a specific function in place of ϕ, which

is the solution of a differential subordination obtained by reformulating a differential

inequality. Until recently, it has become a common practice of several authors con-

sidering inequalities involving real part and modulus of certain expressions of w to

define their classes, where w can be z f ′/ f , f/z, 1+ z f ′′/ f ′ or f ′(z). A few such are

mentioned below:

Inequalities Authors
Rew > k|w−1| (0 < k ≤ 1) Sim et al. [100]

Rew > |w−1| Rønning [95]∣∣∣∣∣∣zw′−w2

w2 −1

∣∣∣∣∣∣ < b (0 < b ≤ 1) Silverman [99]∣∣∣∣∣w− 1
w

∣∣∣∣∣ < 2 Raina and Sokół [84]

Re(1+ zw′/w) ≥ |w−1| Mahzoon et al. [63]

Table 6.1: Certain types of inequalities involving w, considered by various authors in
the literature.

Motivated by the above works, in a similar way, here we define our class by means

of an inequality with the expressions of w and zw′/w as follows:

Rew >

∣∣∣∣∣zw′

w
−α

∣∣∣∣∣ (0 ≤ α < 1).

In the present investigation, we choose w = z f ′/ f for our study, which yields the

following subclass of S∗.

Definition 6.1.1. Let S ∗
α denotes the class of functions f ∈ S such that

Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣∣1+ z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)
−α

∣∣∣∣∣ (0 ≤ α < 1), (6.1.1)

clearly S ∗
α ⊆ S

∗. Note that the other choices of ω are still open and can be explored

in a similar way. The identity function f (z) = z satisfies the inequality (6.1.1) for all

0≤ α < 1, hence S ∗
α is non-empty. For α= 0, set S ∗ :=S ∗

0 . We deduce S ∗
α as a subclass
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of another fascinating class of starlike functions, in the following section, by showing

f ∈S ∗
α implies

z f ′(z)
f (z)

≺ qα(z),

where qα is given by (6.2.2). While studying the class S ∗
α , we encountered the function

qα, which was first introduced by MacGregor [62] and is further explored in this

chapter in context of our class S ∗
α . Note that qα(z) plays a key role in establishing the

MacGregor’s result [62], that every convex function of order α is starlike of order m,

where

m =


2α−1

2−22(1−α)
α , 1/2,

1
log4

, α = 1/2.

Apart from this, MacGregor [62] also proved qα(z) is univalent and

min
|z|≤1

Reqα(z) = qα(−1), (6.1.2)

one can refer [67] as well for the same. We obtain certain sharp coefficient bounds for

functions in S∗(qα) and discuss many inclusion and radius results pertaining to the

classes S∗(qα) and S ∗
α .

6.2 Class S ∗
α

We begin this section by showing existence of certain analytic functions other than

identity function in S ∗
α .

Example 18. Let fγ(z) = z+γz2. If |γ| < r0, where r0 is the smallest such r < 1 satisfying

the equation:

α2(2r−1)2(r−1)3
−33r2+57r3

−48r4+16r5+2α(r−1)2r(2r−1)

+ (2r−1)(r−1)(α+ r−3αr+2αr2)(2−4r)+9r = 1 (0 ≤ α < 1),

then fγ ∈S ∗
α . Moreover, r0 ∈ (0,1/4].

Proof. We know fγ ∈ S whenever |γ| ≤ 1/2, thus r0 ∈ (0,1/2]. A simple calculation

yields
z f ′γ(z)

fγ(z)
=

1+2γz
1+γz

and 1+
z f ′′γ (z)

f ′γ(z)
−

z f ′γ(z)

fγ(z)
=

γz
(1+γz)(1+2γz)

.
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Let γz = reiθ, 0 ≤ r ≤ 1/2 and θ ∈ [−π,π). Now, to prove the result, we show the

following inequality holds:

Re
(

1+2reiθ

1+ reiθ

)
>

∣∣∣∣∣∣ reiθ

(1+ reiθ)(1+2reiθ)
−α

∣∣∣∣∣∣ (0 ≤ α < 1),

which is equivalent to show

h(α,r,x) :=−

√
α2+ r2

−6αr2+9α2r2+4α2r4+2α(−1+3α)r(1+2r2)x+4α2r2(2x2
−1)

1+9r2+4r4+6(r+2r3)x+4r2(2x2−1)

+
1+3rx+2r2

1+ r2+2rx
> 0,

where x := cosθ. The function h is increasing with respect to x ∈ [−1,1], thus it suffices

to show

h(α,r,−1) =
2r−1
r−1

−

√
α2+ r2

−6αr2+13α2r2+4α2r4
−2α(−1+3α)r(1+2r2)

1+13r2+4r4−6(r+2r3)

=: h(α,r) > 0. (6.2.1)

We observe that h(α,0) > 0 and h(α,1/2) < 0. In fact, graphically we observe h(α,r) ≤

0 for all α if r ≥ 1/4. Since h is a continuous function of r, there must exist r0 ∈

(0,1/4], which is a smallest positive root of h(α,r) = 0 by Intermediate value property.

Consequently (6.2.1) holds for 0< r< r0. Therefore, we conclude that fγ ∈S ∗
α whenever

|γ| < r0. □

Theorem 6.2.1. Let f ∈S ∗
α for 0 ≤ α < 1. Then

z f ′(z)
f (z)

≺ qα(z) :=


(1−2α)z

(1− z)(1− (1− z)1−2α)
, α , 1/2

−z
(1− z) log(1− z)

, α = 1/2.
(6.2.2)

Proof. Let us define p(z) = z f ′(z)/ f (z). Then equation (6.1.1) reduces to

Rep(z) >
∣∣∣∣∣zp′(z)

p(z)
−α

∣∣∣∣∣
≥Re

(
α−

zp′(z)
p(z)

)
,

which yields Re
(
p(z)+ zp′(z)

p(z)

)
> α.Using the subordination concept, we write the above
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inequality as follows:

p(z)+
zp′(z)
p(z)

≺
1+ (1−2α)z

1− z
(0 ≤ α < 1). (6.2.3)

From [67, Theorem 3.3 d, p. 109], we have

q(z)+
zq′(z)
q(z)

=
1+ (1−2α)z

1− z
, (6.2.4)

where q is the best dominant of the subordination (6.2.3). On solving equation (6.2.4),

we obtain

q(z) =
(

z
(1− z)2(1−α)

)(∫ z

0
(1− t)−2(1−α)dt

)−1

(α , 1/2)

and for α = 1/2

q(z) =
( z
1− z

)(∫ z

0

dt
1− t

)−1

.

Hence the result follows. □

We consider a function f ∈A and further suppose

z
f ′(z)

:= z+
∞∑

n=2

cnzn and
z

f (z)
:= 1+

∞∑
n=1

bnzn, (6.2.5)

where bn ∈R and cn ≥ 0.

Theorem 6.2.2. Let f ∈ S be of the form (6.2.5), belong to S ∗
α . Then

∞∑
n=2

(n+α−2)cn < (1−α).

Proof. Here, f ∈S ∗
α of the form (6.2.5), gives∣∣∣∣∣1+ z f ′′(z)

f ′(z)
−

z f ′(z)
f (z)

−α

∣∣∣∣∣ < Re
(

z f ′(z)
f (z)

)
. (6.2.6)

A simple computation yields

z
(

z
f (z)

)′
=

z
f (z)
−

(
z

f (z)

)2

f ′(z)

and

z
(

z
f ′(z)

)′
=

z
f ′(z)

−

(
z

f ′(z)

)2

f ′′(z).
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Now, to prove the result, we substitute the above equations in the inequality (6.2.6)

and deduce

∣∣∣∣∣∣∣∣∣∣∣∣1−
z
(

z
f ′(z)

)′
z

f ′(z)

+

z
(

z
f (z)

)′
z

f (z)

−α

∣∣∣∣∣∣∣∣∣∣∣∣ < Re


z

f (z)
− z

(
z

f (z)

)′
z

f (z)


if and only if∣∣∣∣∣∣1− 1+

∑
∞

n=2 ncnzn−1

1+
∑
∞

n=2 cnzn−1
+

∑
∞

n=1 nbnzn

1+
∑
∞

n=1 bnzn −α

∣∣∣∣∣∣ < Re
(
1−

∑
∞

n=1 nbnzn

1+
∑
∞

n=1 bnzn

)
.

Now if z ∈D is real and tends to 1− through reals, then from the above inequality we

deduce
1+

∑
∞

n=2 ncn

1+
∑
∞

n=2 cn
< 2−α.

Therefore, the results follows now. □

By using Theorem 6.2.1, we define another interesting subclass of S∗ as follows:

Definition 6.2.1. Let S∗(qα) denote the class of analytic functions f ∈ S, satisfying

z f ′(z)
f (z)

≺ qα(z) (z ∈D, 0 ≤ α < 1). (6.2.7)

It is clear from Theorem 6.2.1, S ∗
α ⊂ S

∗(qα), therefore S∗(qα) is non-empty. Since S ∗
α

reduces to S∗(1/2) for α = 0, it generalizes a subclass of S.

6.3 About S∗(qα) and Coefficient Estimates

A function f ∈ S∗(qα) if and only if there exists an analytic function s, satisfying

s(z) ≺ qα(z) such that

f (z) = zexp
∫ z

0

s(t)−1
t

dt. (6.3.1)

Specifically, for s(z) = qα(z), the structural formula (6.3.1) yields

fα(z) =



1− (1− z)2α−1

2α−1
, α ,

1
2

;

− log(1− z), α =
1
2
.

(6.3.2)
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Then the Taylor series of fα(z) (0 ≤ α < 1) is given as follows

fα(z) = z+ (1−α)z2+ (3−5α+2α2)
z3

3
+ (6−13α+9α2

−2α3)
z4

6
+ · · · .

Also, it can be expressed as the following

f (z) = z+
∞∑

n=2


∏n

j=2( j−2α)

n!
zn

 (0 ≤ α < 1),

which is an extremal function for many cases of S∗(qα). Interestingly, fα(z) is also the

extremal function for several results such as distortion and coefficient bounds for the

class C(α) (see [21, 67]).

Remark 27. Using the proof of Theorem 6.2.1, we deduce

p(z)+
zp′(z)
p(z)

≺
1+ (1−2α)z

1− z
⇒ p(z) ≺ qα(z),

which further yields

1+
z f ′′(z)

f ′(z)
≺

1+ (1−2α)z
1− z

⇒
z f ′(z)

f (z)
≺ qα(z). (6.3.3)

The function fα(z), given by (6.3.2) is an extremal function for the above differential

subordination implication. This result (6.3.3) is initially proved by MacGregor [62]

and later in [67, p. 113–115], using the following :

min
|z|≤1

(
Reqα(z)

)
= qα(−1) =


2α−1

2−22(1−α)
, α , 1/2

1
log4

, α = 1/2,
(6.3.4)

min|z|≤r Reqα(z) = qα(−r) and max|z|≤r Reqα(z) = qα(r).

It is important to note that an analytic univalent function qα(z) is a Ma-Minda function,

as qα(0)= 1, Reqα(z)> 0 (0≤ α < 1) and some further calculation reveals q′α(0)> 0. Also,

the Taylor series of qα(z) is given as follows:

qα(z)= 1+ (1−α)z+ (3−4α+α2)
z2

3
+ (2−3α+α2)

z3

2
+ (45−72α+26α2+2α3

−α4)
z4

45
+ · · · ,

which shows the function is symmetric with respect to the real axis as it has real coeffi-

cients. For detailed analysis for the geometry of functions defined onD, see Chapter 4.
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Furthermore, the function qα(z) is starlike with respect to qα(0) = 1, as we calculate

Re
(

eiθq′α(eiθ)
qα(eiθ)−1

)
> 0 (−π ≤ θ < π, 0 ≤ α < 1),

by performing a highly complex computation using Mathematica 11.0, which other-

wise is not easy manually. Thus qα(z) is a Ma-Minda function as it satisfies all the

conditions meant for the same. The Figure 6.1 depicts qα(D) for various α ∈ [0,1).
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Figure 6.1: Image of unit diskD under the function qα(z) for various α.

Observation: It is clear that q0(z) is a convex function but it is not the case for every

qα. In fact, using Mathematica 11.0, the graph of Re
(
1+ zq′′α (z)

q′α(z)

) ∣∣∣∣∣
z=eiθ

(−π ≤ θ < π), is not

positive for some α ∈ (0,1). Thus we coin below a problem which is open at present.

Open Problem: Find the range of α in (0,1) for which qα(D) is convex.

Based on certain subordination results proved in [61], we have f (z)/z ≺ fα(z)/z and

the following:

Theorem 6.3.1. Let f ∈ S∗(qα) and |z0| = r < 1. Then

(i) Distortion Theorem: f ′α(−r) ≤ | f ′(z0)| ≤ f ′α(r), where

f ′α(r) = (1− r)2(α−1).
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(ii) Growth Theorem: − fα(−r) ≤ | f (z0)| ≤ fα(r), where

fα(r) =


1− (1− r)2α−1

2α−1
, α , 1/2;

− log(1− r), α = 1/2.

(iii) Rotation Theorem: |arg( f (z0)/z0)| ≤max|z|=r arg( fα(z)/z).

Equality holds at some z0 , 0 if and only if f is a rotation of fα.

Remark 28. It is noteworthy that these growth, distortion and rotation results also

hold in the case of C(α) [25, Theorem 1, p. 139] as well. It is due to the fact that the

classes S∗(qα) and C(α) have the same extremal function fα(z).

Now, we proceed with various coefficient estimates for functions in S∗(qα). Using

Fekete-Szegö bound, given in [70], we obtain sharp bound |a2| ≤ 1−α for functions in

S
∗(qα) and the following:

Theorem 6.3.2. Let f ∈ S∗(qα). Then we have

|a3− ta2
2| ≤



(3−2α)(1−α)
3

− t(1−α)2, t ≤
3−4α

6(1−α)
(1−α)

2
,

3−4α
6(1−α)

≤ t ≤
9−4α

6(1−α)

t(1−α)2
−

(3−2α)(1−α)
3

, t ≥
9−4α

6(1−α)
.

The result is sharp.

We omit the proof as it is a straightforward substitution. By taking t = 0 and 1,

respectively in the above result, we have

Corollary 6.3.3. Let f ∈ S∗(qα). Then we have

(i) |a3| ≤


(2α−3)(α−1)

3
, α ≤ 3/4

1−α
2
, α ≥ 3/4.

The result is sharp and the extremal function is given by fα(z), given by (6.3.2)

for α ≤ 3/4 and f̃α(z) =
√

(1−z2)2a−1
−1

2a−1 for α ≥ 3/4.

(ii) |a3− a2
2| ≤

1−α
2

.

The result is sharp for f̃α(z), as defined in the above part (i) for α , 1/2 and

f1/2(z) :=
√

log(1− z2) for α = 1/2.
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Recall that the inverse of a function f (z) = z+
∑
∞

n=2 anzn
∈ S is given by f−1( f (z)) = z,

z ∈D and f ( f−1(w)) = w (|w| < r0, r0 ≥ 1/4), for which

f−1(w) = w− a2w2
− (2a2

2− a3)w3
− (5a2

3−5a2a3+ a4)w4+ · · · . (6.3.5)

Corollary 6.3.4. Let f ∈ S∗(qα) and the inverse be given by f−1(w) = w+
∑
∞

n=2 bnwn.

Then

(i) |b2| ≤ 1−α,

(ii) |b3| ≤


2(1−α)2

−
(3−2α)(1−α)

3
, 0 ≤ α ≤ 3/8

1−α
2
, 3/8 ≤ α ≤ 1.

The inequalities are sharp.

Proof. On comparing the coefficients of f−1, given in Taylor series expansion (6.3.5)

with that in the hypothesis, we get |b2|= |a2| ≤ (1−α), for which fα(z) acts as an extremal

function. We find |b3|= |2a2
2−a3| and now the result follows at once from Theorem 6.3.2,

when t = 2. □

The logarithmic coefficients βn for functions f ∈A is given by:

log
f (z)
z
=

∞∑
n=1

2βnzn (z ∈D).

In the literature, the sharp bound |βn| ≤ 1/n (n ≥ 1) for functions in S∗ is already

proved and equality holds for the Koebe function. Here we derive the bounds of |βn|

for functions in the class S∗(qα). For this, let us define a set

E(α) = {α ∈ [0,1) : qα(D) is convex }.

Theorem 6.3.5. Let f ∈ S∗(qα) (α ∈ E(α)). Then, we have

|βn| ≤
1−α
2n

.

The inequality is sharp.

Proof. For f ∈ S∗(qα), we have, z f ′(z)/ f (z) ≺ qα(z), equivalent to

z
(
log

f (z)
z

)′
≺ qα(z)−1,
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which further yields
∞∑

n=1

2nβnzn
≺

∞∑
n=1

Bnzn =: qα(z)−1.

Applying Rogosinski’s result [94], we obtain 2n|βn| ≤ |B1| := 1−α.Hence the result. □

The following result gives the necessary and sufficient condition for functions in

S
∗(qα) in terms of convolution .

Theorem 6.3.6. A function f ∈ S belongs to S∗(qα) if and only if it satisfies

1
z

(
f (z) ∗

z−λz2

(1− z)2

)
, 0 (z ∈D), (6.3.6)

where

λ := λ(θ) =


1−2α

(1−2α)− (e−iθ−1)(1− (1− eiθ)1−2α)
, α , 1/2(

1− (1− e−iθ) log(1− eiθ)
)−1

, α = 1/2,
(θ ∈ [−π,π)).

Proof. Let α , 1/2. Then from Definition 6.2.1, we have f ∈ S∗(qα) if and only if it

satisfies the subordination (6.2.7), or equivalently

z f ′(z)
f (z)

,
(1−2α)eiθ

(1− eiθ)(1− (1− eiθ)1−2α)
(z ∈D,θ ∈ [−π,π)),

further which yields

f ′(z) ,
(

(1−2α)eiθ

(1− eiθ)(1− (1− eiθ)1−2α)

)
f (z)
z
.

Also, it can be expressed as

1
z

(
z f ′(z)−

(1−2α)eiθ

(1− eiθ)(1− (1− eiθ)1−2α)
f (z)

)
, 0. (6.3.7)

As we recall

z f ′(z) = f (z) ∗
z

(1− z)2 and f (z) = f (z) ∗
z

1− z
,

(6.3.7) becomes

1
z

 f (z) ∗
z− (1−2α)eiθ

(1−eiθ)(1−(1−eiθ)1−2α) (z− z2)

(1− z)2

 , 0,

which upon simplification reduces to (6.3.6). In a similar way, the result follows for
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α = 1/2. □

Now, using the convolution properties, we have

1
z

(
f (z) ∗

z−λz2

(1− z)2

)
=

1
z
(
(1−λ)z f ′(z)+λ f (z)

)
.

Substituting the above equation in (6.3.6) along with the Taylor series expansion of

f ∈A, we deduce the following result:

Corollary 6.3.7. A function f ∈ S belongs to S∗(qα) if and only if it satisfies

1 ,
∞∑

n=2

ρ(θ)anzn−1 :=



∞∑
n=2

(e−iθ
−1)(1− (1− eiθ)1−2α)n− (1−2α)

(1−2α)− (e−iθ−1)(1− (1− eiθ)1−2α)
anzn−1, α , 1/2

∞∑
n=2

(1− e−iθ) log(1− eiθ)n−1
1− (1− e−iθ) log(1− eiθ)

anzn−1, α = 1/2.

Consequently, the next result follows.

Corollary 6.3.8. If f ∈ S satisfies

∞∑
n=2

|ρ(θ)||an| < 1,

then f ∈ S∗(qα).

6.4 Inclusion Relations

We establish below inclusion relations of class S ∗
α with some well-known classes of

analytic functions.

Theorem 6.4.1. Let 0 ≤ α < 1, then S ∗
α ⊂ C(α).

Proof. Let f ∈S ∗
α , then inequality (6.1.1) yields

Re
(

z f ′(z)
f (z)

)
> −Re

(
1+

z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)
−α

)
,

which upon a straightforward calculation yields

Re
(
1+

z f ′′(z)
f ′(z)

)
> α.
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This completes the proof. □

Silverman [99] introduced the class

Gb :=
{

f ∈A :
∣∣∣∣∣1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
−1

∣∣∣∣∣ < b, 0 < b ≤ 1
}
.

In the following result we show the relation between the classes Gb and S∗q.

Theorem 6.4.2. S∗q ⊂ G1.

Proof. Since S∗q := S∗q(0), we have α = 0. Let f ∈ S∗q, then inequality (6.1.1) becomes

Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣∣1+ z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)

∣∣∣∣∣ ,
which implies ∣∣∣∣∣z f ′(z)

f (z)

∣∣∣∣∣ > ∣∣∣∣∣1+ z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)

∣∣∣∣∣ ,
therefore, we have ∣∣∣∣∣∣

(
1+ z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)

)
−1

∣∣∣∣∣∣ < 1.

Hence the result. □

In the following result, we deal with Mocanu’s ρ− convex class [69].

Theorem 6.4.3. Let f ∈ S∗q, then f is −1-convex function.

Proof. Let f ∈ S∗q, then we have

Re
(

z f ′(z)
f (z)

)
> Re

(
1+

z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)

)
,

if and only if

Re
(
2

z f ′(z)
f (z)

−

(
1+

z f ′′(z)
f ′(z)

))
> 0.

This completes the proof. □

The known inclusion S ∗
α ⊂ S

∗(qα) and (6.3.4) directly yield the following result.
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Corollary 6.4.4. We have S ∗
α ⊂ S

∗(qα) ⊂ S∗(γ) whenever 0 ≤ γ ≤ 2α−1
2(1−21−2α) for α , 1/2,

or whenever 0 ≤ γ ≤ 1/ log4 for α = 1/2.

LetQ(α) := { f ∈A : Re
(

f (z)/z
)
> α} (0≤ α < 1). RecallS∗(1/2)⊂Q(1/2) from [67, p. 57]

and the constant 1/2 is the best possible. The following result deals with inclusion

relation associating the class Q(α).

Theorem 6.4.5. Let f ∈ S∗(qα). Then we have

Re
f (z)
z
> γ(α) :=



3−2α−22(1−α)

4−2α−3(21−2α)
, α , 1/2

2(1− log4)
2−3log4

, α = 1/2,

(6.4.1)

which also implies S ∗
α ⊂ S

∗(qα) ⊂ Q(γ(α)).

Proof. For brevity, let us denote γ := γ(α). We observe that 0 < γ ≤ 1/2 for 0 ≤ α < 1.

Let us define an analytic function p with p(0) = 1 as

p(z) =
1

1−γ

(
f (z)
z
−γ

)
,

which upon simplification gives

z f ′(z)
f (z)

= ξ(p(z),zp′(z)) := 1+
(1−γ)zp′(z)

(1−γ)p(z)+γ
,

where

ξ(r,s) := 1+
(1−γ)s

(1−γ)r+γ
.

Let α′ := 2α−1
2(1−21−2α) (α , 1/2) and otherwise α′ := 1

log4 . As f ∈ S∗(qα), then Corollary 6.4.4

yields

ξ(p(z),zp′(z)) ⊂ {w ∈ C : Rew > α′} =:Ωα′ .

Let λ,τ ∈R be such that λ ≤ −1
2 (1+τ2). Then we have

Re{ξ(iτ,λ)} = Re
(
1+

λ(1−γ)
(1−γ)iτ+γ

)
= 1+

λγ(1−γ)
(1−γ)2τ2+γ2

≤ 1−
(
γ(1−γ)

2

)(
(1+τ2)

(1−γ)2τ2+γ2

)
= 1−

γ(1−γ)
2

h(τ2), (6.4.2)
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where

h(τ2) :=
(1+τ2)

(1−γ)2τ2+γ2 ,

is a decreasing function of τ2 for all γ, so we deduce the following

1
(1−γ)2 ≤ h(τ2) ≤

1
γ2 .

Using the above inequality in (6.4.2), we obtain

Re{ξ(iτ,λ)} ≤ 1−
γ(1−γ)
2(1−γ)2 =

2−3γ
2(1−γ)

= α′.

This clearly shows that Re{ξ(iτ,λ)} < Ωα′ . Now, from [67, Theorem 2.3i., p. 35], we

conclude Rep(z) > 0 for z ∈D. Therefore, we obtain S∗(qα) ⊂Q(γ(α)). In addition, the

fact S ∗
α ⊂ S

∗(qα) completes the proof. □

6.5 Radius Problems

The purpose of this section is to estimate various radius constants associated with

S ∗
α and S∗(qα).

Theorem 6.5.1. Let f ∈ SL∗. Then f ∈S ∗
α whenever |z| < r̃(α) < 1, where r̃(α) is the

smallest positive root of

2(1− r)(
√

1− r−α)− r = 0 (0 ≤ α < 1). (6.5.1)

The result is sharp.

Proof. For f ∈ SL∗, there exists a Schwarz function ω(z) = Reit (0 ≤ R ≤ r = |z| < 1;0 ≤

t < 2π) such that
z f ′(z)

f (z)
=

√
1+ω(z).

A computation shows

min
|ω(z)|=R

Re
(√

1+ω(z)
)
=
√

1−R ≥
√

1− r (6.5.2)

and the following from Schwarz Pick inequality

|z||ω′(z)|
1− |ω(z)|

≤
|z|(1+ |ω(z)|)

1− |z|2
≤
|z|

1− |z|
. (6.5.3)
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To prove the result, it suffices to show (6.1.1) holds. Therefore we consider

Re
(√

1+ω(z)
)
−

∣∣∣∣∣ zω′(z)
2(1+ω(z))

−α

∣∣∣∣∣ ≥ Re
(√

1+ω(z)
)
−α−

|z||ω′(z)|
2(1− |ω(z)|)

≥

√

1− r−α−
(

r
2(1− r)

)
, (6.5.4)

using the inequalities (6.5.2) and (6.5.3) with |z|= r. A calculation reveals (6.5.4) further

becomes greater than 0 provided r < r̃(α). For sharpness, let us consider a function

f̃ (z) =
4zexp(2(

√
1+ z−1))

(1+
√

1+ z)2
,

belonging to SL∗. Let α be given by (6.5.1), then equality holds in (6.1.1) for f̃ (z) at

z = −r̃(α). □

Theorem 6.5.2. Let f ∈ S∗l . Then f ∈ S ∗
α whenever |z| < r̃(α) < 1, where r̃(α) is the

smallest positive root of

(1− log(1+ r))(1− r)(1− log(1+ r)−α)− r = 0 (0 ≤ α < 1).

Proof. For f ∈ S∗l , we have

z f ′(z)
f (z)

= 1− log(1+ω(z)),

where ω(z) = Reit (0 ≤ R ≤ r = |z| < 1;0 ≤ t < 2π). To prove the result, it suffices to show

Re(1− log(1+ω(z)))−
∣∣∣∣∣ −zω′(z)
(1+ω(z))(1− log(1+ω(z)))

−α

∣∣∣∣∣ > 0.

We also have
min|ω(z)|=R Re(1− log(1+ω(z)))

and min|ω(z)|=R |1− log(1+ω(z))|
= 1− log(1+R) ≥ 1− log(1+ r),

(see Chapter 4). By taking these inequalities and (6.5.3) with |z| = r, we obtain∣∣∣∣∣ −zω′(z)
(1+ω(z))(1− log(1+ω(z)))

−α

∣∣∣∣∣ ≤ |z||ω′(z)|
(1− |ω(z)|)|1− log(1+ω(z))|

+α

≤
r

(1− r)(1− log(1+ r))
+α,



129

which further shows

Re(1− log(1+ω(z)))−
∣∣∣∣∣ −zω′(z)
(1+ω(z))(1− log(1+ω(z)))

−α

∣∣∣∣∣ ≥ (1− r)(1− log(1+ r))2
− r

(1− r)(1− log(1+ r))
−α,

greater than 0 provided r < r̃(α). □

Theorem 6.5.3. Let f ∈ S∗e. We have f ∈ S ∗
α in |z| < r̃(α), where r̃(α) is the smallest

positive root of 
4(1− r2)(e−r

−α)− (1+ r2)2 = 0, 0 ≤ α < 0.246646

e−r
−α− r = 0, 0.246646 ≤ α < 1.

(6.5.5)

Proof. For f ∈S∗e, we have z f ′(z)/ f (z)= eω(z), where |ω(z)|=R≤ r= |z|.A straightforward

calculation gives

min
|ω(z)|=R

Re
(
eω(z)

)
= e−R

≥ e−r.

The following is the well-known inequality [20] for the derivative of Schwarz function

|ω′(z)| ≤


1, |z| ≤

√
2−1

(1+ r2)2

4r(1− r2)
, |z| ≥

√
2−1.

(6.5.6)

Now we show inequality (6.1.1) holds, by proving Re(eω(z))− |zω′(z)−α| > 0. For this,

we consider the following with |z| = r and further applying (6.5.6), we obtain

Re(eω(z))− |zω′(z)−α| ≥ Re(eω(z))−α− |z||ω′(z)| ≥


e−r
−α− r, r ≤

√
2−1

e−r
−α−

(1+ r2)2

4(1− r2)
, r ≥

√
2−1,

(6.5.7)

greater than 0 provided r < r̃(α), given in (6.5.5). Note that r̃(α) ∈ (
√

2− 1,1] for

α < 0.246646 and r̃(α) ∈ (0,
√

2−1] for α ≥ 0.246646. This proves the result. □

Recent literature studies have detailed some new subclasses of S∗, which are ob-

tained by choosing different ϕ in S∗(ϕ), amongst, noteworthy are, S∗SG [22], for

ϕ(z) = 2/(1+ e−z), S∗S [17], obtained by taking ϕ(z) = 1+ sinz and S∗C, first studied

in [97] for ϕ(z) = 1+4z/3+2z2/3.

Theorem 6.5.4. Let f ∈ S∗SG. We have f ∈S ∗
α in |z| < r̃(α), where r̃(α) is the smallest



130

positive root of
4(1− r2)(1+ e−r)(2−α(1+ er))− (1+ r2)2(1+ er) = 0, 0 ≤ α < 0.546407

(1+ e−r)(2−α(1+ er))− r(1+ er) = 0, 0.546407 ≤ α < 1.

Proof. For f ∈ S∗SG, we have z f ′(z)/ f (z) = 2/(1+ e−ω(z)), for some Schwarz function

ω(z) = Reit, (0 ≤ R ≤ r = |z| < 1;0 ≤ t < 2π). To prove the result, it suffices to show (6.1.1)

holds for f in consideration here. Therefore we consider the following

Re
( 2
1+ e−ω(z)

)
−

∣∣∣∣∣∣zω′(z)e−ω(z)

1+ e−ω(z)
−α

∣∣∣∣∣∣ ≥ Re
( 2
1+ e−ω(z)

)
−α−

|z||ω′(z)|
|1+ eω(z)|

(6.5.8)

From [22], we have

min
|ω(z)|=R

Re
( 2
1+ e−ω(z)

)
=

2
1+ eR ≥

2
1+ er

and a computation shows that min|ω(z)|=R |1+ eω(z)
| = 1+ e−R

≥ 1+ e−r. Using these

inequalities in right side of the inequality (6.5.8) and further applying (6.5.6) with

|z| = r, (6.5.8) finally reduces to

Re
( 2
1+ e−ω(z)

)
−

∣∣∣∣∣∣zω′(z)e−ω(z)

1+ e−ω(z)
−α

∣∣∣∣∣∣ ≥


2
1+ er −α−

( r
1+ e−r

)
, r ≤

√
2−1

2
1+ er −α−

(
(1+ r2)2

4(1− r2)(1+ e−r)

)
, r ≥

√
2−1,

which is greater than 0 provided r < r̃(α). Note that for α < 0.546407, r̃(α) ∈ (
√

2−1,1]

and for α ≥ 0.546407, r̃(α) ∈ (0,
√

2−1]. This completes the proof. □

Theorem 6.5.5. Let f ∈ S∗S.Then f ∈S ∗
α in |z| < r̃(α), where r̃(α) is the smallest positive

root of

(1− sinr)(1− sinrcoshr−α)− rcoshr = 0 (0 ≤ α < 1).

Proof. Let f ∈ S∗S. Then for some Schwarz function ω(z) = Reit (0 ≤ R ≤ r = |z| < 1;0 ≤

t < 2π), we have z f ′(z)/ f (z) = 1+ sin(ω(z)). To prove the result, we show (6.1.1) holds

for f considered here. For this we consider

Re(1+ sin(ω(z)))−
∣∣∣∣∣zω′(z)cos(ω(z))

1+ sin(ω(z))
−α

∣∣∣∣∣ ≥ Re(1+ sin(ω(z)))−α−
|z||ω′(z)||cos(ω(z))|
|1+ sin(ω(z))|

.

(6.5.9)
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A calculation shows that Re(1+ sin(ω(z))) = 1+ sin(Rcos t)cosh(Rsin t) and

sin(Rcos t) ≥ −sinR and cosh(Rsin t) ≤ cosh(R).

Thus we have, Re(1+ sin(ω(z))) ≥ 1− sinRcoshR ≥ 1− sinrcoshr. Also

max
|ω(z)|=R

|cos(ω(z))| = coshR ≤ coshr and min
|ω(z)|=R

|1+ sin(ω(z)| = 1− sinR ≥ 1− sinr.

Using these inequalities in right side of the inequality (6.5.9) and further apply-

ing (6.5.6) with |z| = r, (6.5.9) eventually reduces to

Re(1+ sin(ω(z)))−
∣∣∣∣∣zω′(z)cos(ω(z))

1+ sin(ω(z))
−α

∣∣∣∣∣ ≥ 1− sinrcoshr−α−
( rcoshr
1− sinr

)
> 0,

provided r < r̃(α) ≤
√

2−1 for every 0 ≤ α < 1. □

Theorem 6.5.6. Let f ∈ S∗C and 0 ≤ α < 3/4. Then f ∈S ∗
α in |z| < r̃(α), where r̃(α) is the

smallest positive root of

(3−2r2)(1− r2
−2α)−6

√

3r(1+ r) = 0 (0 ≤ α < 3/4).

Proof. For f ∈ S∗C, there exists a Schwarz function ω(z) = Reit (0 ≤ R ≤ r = |z| < 1;0 ≤ t <

2π) such that z f ′(z)/ f (z) = 1+ 4ω(z)+2ω2(z)
3 . We consider

Re
(
1+

4ω(z)+2ω2(z)
3

)
−

4
3

∣∣∣∣∣∣∣∣∣∣∣
zω′(z)(1+ω(z))

1+
4ω(z)+2ω2(z)

3

−α

∣∣∣∣∣∣∣∣∣∣∣
≥ Re

(
1+

4ω(z)+2ω2(z)
3

)
−

4α
3
−

4
3


|z||ω′(z)|(1+ |ω(z)|)∣∣∣∣∣∣1+ 4ω(z)+2ω2(z)

3

∣∣∣∣∣∣

 . (6.5.10)

Let

κ(R, t) := Re
(
1+

4ω(Reit)+2ω2(Reit)
3

)
.

Then a calculation shows that κt(R, t) = 0 at either R = 0 or t = 0, π, arccos(−1/(2R)).

Evaluating κ(R, t) at these values of R and t, we obtain

min
0<R≤r

κ(R, t) = κ(R,arccos(−1/(2R))) =
2
3

(
1−R2

)
≥

2
3

(
1− r2

)
and κ(0, t) = 1.



132

Similarly, we calculate

min
|ω(z)|=R,0

∣∣∣∣∣∣1+ 4ω(z)+2ω2(z)
3

∣∣∣∣∣∣ = 3−2R2
√

27
≥

3−2r2
√

27
(r , 0) and

∣∣∣∣∣∣1+ 4ω(z)+2ω2(z)
3

∣∣∣∣∣∣
∣∣∣∣∣∣
R=0

= 1.

Using these inequalities in right side of the inequality (6.5.10) and further apply-

ing (6.5.6) with |z| = r, (6.5.10) finally reduces to

Re
(
1+

4ω(z)+2ω2(z)
3

)
−

4
3

∣∣∣∣∣∣∣∣∣∣∣
zω′(z)(1+ω(z))

1+
4ω(z)+2ω2(z)

3

−α

∣∣∣∣∣∣∣∣∣∣∣≥


2
3

(1− r2)−
4α
3
−

4
√

3r(1+ r)
3−2r2 r , 0

1−
4α
3

r = 0,

which is greater than 0 provided r < r̃(α) ≤
√

2−1 and 0 ≤ α < 3/4. □

Remark 29. Interestingly in Theorem 6.5.5–Theorem 6.5.6, the respective root r̃(α) lies

in (0,
√

2−1].

We now proceed to establish radius constants associated with S∗(qα).

Theorem 6.5.7. Let f ∈ S∗(qα) (0 ≤ α < 1). Then the followings hold:

(i) f is starlike of order γ in |z| < r̃ whenever the following (a) or (b) holds.

(a) 2α−1
2(1−21−2α) < γ < 1 for α , 1/2, where r̃ is the smallest such r < 1 satisfying the

equation

(2α−1)r−γ(1+ r)(1− (1+ r)1−2α) = 0.

(b) 1
log4 < γ < 1 for α = 1/2, where r̃ is the smallest such r < 1 satisfying the

equation

r−γ(1+ r) log(1+ r) = 0.

(ii) Let β > 1 then f ∈M(β) in |z|< r0 if there exists r0, the smallest such r< 1 satisfying

the equation

(1−2α)r−β(1−r)(1−(1−r)1−2α)= 0 (α, 1/2) or r+β(1−r)(log(1−r))= 0 (α= 1/2),

else r0 = 1.

Proof. Let f ∈ S∗(qα). Then f satisfies the subordination (6.2.7).

(i) Let α , 1/2. Thus we have

Re
z f ′(z)

f (z)
≥

(2α−1)r
(1+ r)(1− (1+ r)1−2α)

=: ρ(r,α), |z| = r < 1.
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We find r ∈ [0,1) such that ρ(r,α) > γ for given α and γ. Let us assume ρ̃(r,α,γ) :=

(2α−1)r/((1+r)(1−(1+r)1−2α))−γ. Now, we observe ρ̃(0,α,γ)= 1−γ> 0 and ρ̃(1,α,γ)=
2α−1

2(1−21−2α) − γ < 0 for every γ in the given range. So, there must exist r̃ such that

ρ̃(r,α,γ) ≥ 0 for all r ∈ (0, r̃], where r̃ is as defined in the hypothesis. Similarly we can

prove the result for α = 1/2. This completes the proof for part (i).

(ii) Let α , 1/2. We have

Re
z f ′(z)

f (z)
≤

(1−2α)r
(1− r)(1− (1− r)1−2α)

=: µ(r,α), |z| = r < 1.

Now, to find r ∈ [0,1) such that µ(r,α)−β < 0 for given α and β, let us assume

µ̃(r,α,β) :=
(1−2α)r

(1− r)(1− (1− r)1−2α)
−β.

Clearly, µ̃(0,α,β)< 0 and suppose r̃ := 1−ϵ, (ϵ≈ 0), then µ(r̃,α)> 0, which implies either

µ̃(r̃,α,β) < 0 or µ̃(r̃,α,β) > 0 depending on the value of β. Thus, there must exist r0 such

that µ̃(r,αβ) ≤ 0 for all r ∈ (0,r0], where r0 is as defined in the hypothesis. On similar

lines, proof follows for α = 1/2 and that concludes the proof of part (ii). □

Remark 30. In Theorem 6.5.7(i), we exclude the case when 0 ≤ γ ≤ 2α−1
2(1−21−2α) for α , 1/2

and 0 ≤ γ ≤ 1
log4 for α = 1/2 as for these ranges of γ, the result holds in |z| < 1 and it

becomes the inclusion result instead, given in Corollary 6.4.4.

Theorem 6.5.8. Let f ∈ S∗(qα) and β ≥ 1. Then for |z| < r̃, we have∣∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣∣ < β,

where γ := γ(α), given by (6.4.1) and r̃ is the smallest such r < 1 satisfying the equation

2(1−γ)r−β(1− r)(1− |1−2γ|r) = 0.

Proof. As f ∈ S∗(qα), thus from (6.4.1), we deduce the following

f (z)
z
=

1+ (1−2γ)ω(z)
1−ω(z)

,

for some Schwarz function ω(z). Logarithmic differentiation of the above equation

yields
z f ′(z)

f (z)
−1 =

2(1−γ)zω′(z)
(1+ (1−2γ)ω(z))(1−ω(z))

.
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Using the triangle inequality on the modulus of above equation, we get∣∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣∣ ≤ 2(1−γ)|z||ω′(z)|

(1− |1−2γ||ω(z)|)(1− |ω(z)|)
(6.5.11)

Upon applying the Schwarz-Pick inequality

|ω′(z)| ≤
1− |ω(z)|2

1− |z|2
(z ∈D)

and |ω(z)| ≤ |z| in equation (6.5.11), we deduce∣∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣∣ ≤ 2(1−γ)|z|(1+ |z|)

(1− |1−2γ||z|)(1− |z|2)

=
2(1−γ)r

(1− |1−2γ|r)(1− r)
=: u(r,γ).

Now to show u(r,γ)−β < 0. For this consider, ũ(r,γ,β) := 2(1−γ)r−β(1−r)(1−|1−2γ|r).

We observe ũ(0,γ,β) = −β < 0 and ũ(1,γ,β) = 2(1− γ) > 0. Thus, there must exist r̃

such that ũ(r,γ,β) ≤ 0 for all r ∈ [0, r̃], where r̃ is defined in the hypothesis. Hence the

result. □

Remark 31. Since S ∗
α ⊂ S

∗(qα), Theorem 6.5.7 and Theorem 6.5.8 hold even for S ∗
α ,

however, they need not be sharp.

Concluding Remarks

A new class S ∗
α involving real part and modulus of certain expression of functions,

combined by way of an inequality has been defined here. The class under consider-

ation also implies a subclass of starlike functions S∗(qα), where qα(z) is a well-known

function and has certain interesting properties. The coefficient bounds obtained are

all sharp. The radius results for S ∗
α is deduced in an interesting manner using the

famous Schwarz Pick inequality. For instance, we considered f to be in various classes

such asSL∗,S∗e,S∗SG,S∗S andS∗C and then obtain the largest |z|= r< 1 for which f ∈S ∗
α .
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Future Scope

• The idea of exact differential subordinations introduced by us is new and novel.

Here, it has been dealt for first order differential subordinations and can be

extended for higher differential subordinations.

• The concept of non-Ma-Minda and a special type of Ma-Minda functions, which

are introduced here are of great use and pave a way for further explorations in

parallel to the concept of Ma-Minda function.

• The classes S∗(Φ), C(Φ), S∗l , Cl,M1,h(ϕ) andMα(Φ) studied here are all special

cases ofA(1,h,φ) and it leaves ample scope open for further studies in special-

izing the class for different choices of 1 and h together with altered conditions

on φ.

• The estimation of sharp third order Hankel determinant for functions in subclass

SL
∗ of S could induce the curiosity to make an attempt for further finding the

sharp bound of higher order Hankel determinants such as fourth order for

functions in various subclasses of S.

• The sharp bound of third order Hankel determinant can be obtained for various

subclasses of starlike functions related to Ma-Minda functions such as 1+ sinz,

exp(z) and 1+z
1−z , etc by using the fourth coefficient formula of Carathéodory

functions.

– In fact we are working in this direction and using the same technique, we

have achieved the sharp bound of |H3(1)| for functions in S∗. This problem

has been in the trend since many years as various attempts was made by

several authors and eventually we established the sharp result as 4/9. Thus

the bound obtained is an improvement over the value 5/9, recently proved

in [118].

• Here, we investigated a new subclass ofSby choosingω= z f ′/ f in the expression

Reω >
∣∣∣ zω′
ω −α

∣∣∣ . As a future task, we can replace ω by f/z, 1+ z f ′′/ f ′ or f ′ to

define various other new classes of analytic functions and study in a similar way

as done here. Also, we can consider other combinations of ω and its derivatives

to define new subclasses of S and study.
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[79] M. Obradovič and N. Tuneski, On the starlike criteria defined by Silverman,

Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 (2000), no. 181, 59–64.
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[108] H. M. Srivastava, D. Răducanu and P. Zaprawa, A certain subclass of ana-

lytic functions defined by means of differential subordination, Filomat 30 (2016),

no. 14, 3743–3757.

[109] E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37

(1933), no. 1, 356–380.

[110] D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent functions, De Gruyter

Studies in Mathematics, 69, De Gruyter, Berlin, 2018.

[111] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with

positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.

[112] Z.-G. Wang, M. Raza, M. Arif and K. Ahmad, On the third and fourth Hankel

determinants for a subclass of analytic functions, Bull. Malays. Math. Sci. Soc. 45

(2022), no. 1, 323–359.



146

[113] S. E. Warschawski, On the higher derivatives at the boundary in conformal

mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310–340.

[114] P. Zaprawa, Second Hankel determinants for the class of typically real functions,

Abstr. Appl. Anal. 2016 (2016), Art. ID 3792367, 7 pp.

[115] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,

Mediterr. J. Math. 14 (2017), no. 1, Paper No. 19, 10 pp.

[116] P. Zaprawa, On Hankel determinant H2(3) for univalent functions, Results Math.

73 (2018), no. 3, Paper No. 89, 12 pp.

[117] P. Zaprawa, Initial logarithmic coefficients for functions starlike with respect to

symmetric points, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 62, 13 pp.
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