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Abstract 

Scheduling automotive part manufacturing is a more arduous and complex task. It is a very 

backbreaker task to get an optimum schedule for any automotive part manufacturing. In 

today’s scenario, every industry and research organization need an energy-efficient system 

to cope up with the global environment. In this study, a first-time energy-efficient fuzzy 

scheduling system is developed for crankcase cover manufacturing under uncertain 

processing times. This study consists of the development of an energy-efficient fuzzy 

inference system of the four-crankcase cover (cover left side crankcase KWPG, cover left 

crankcase K38, cover crankcase 206 G, and cover right crankcase KTE) and its results are 

validated by the fuzzy set approach. Fuzzy logic provides a decision by a combination of 

the rules for selecting job priorities and route selection. This scheduling system also 

provides the trade-off between energy consumption and makespan. This study also deals 

with the identification of the best material for crankcase cover manufacturing. To satisfy 

customer needs, designers must predict the performance of all available materials and find 

out the best material for the product. Since the various materials are available in the market 

with diverse characteristics, which makes the material selection process is complex. So, 

there is an indispensable need for a proper material selection methodology. The designers 

must identify the best approach which enhanced the product performance and reduced the 

time of designing. In this study, the first-time selection of materials for a two-wheeler 

crankcase cover is done using integrated TOPSIS PROMETHEE, and MOORA model. 

The final rankings of alternatives obtained from this novel proposed model are also 

compared with each other for finding the best material for crankcase cover.  

The research also focuses on the multi-objective single-machine static scheduling problems 

of motorcycle crankcase cover. To solve these single-machine static scheduling problems, 

dispatching rules are used. Various dispatching rules used in this study are EDD, SPT, CR, 

LPT, WSPT, COVERT, and Hodgson’s algorithm. This study helps us to obtain optimal 

job prioritization of two-wheeler crankcase covers in the automobile industry. Results 

show that shifting the production system from WSPT approach scheduling to the EDD 

scheduling approach; minimizes the mean flow time, weighted mean flow time, and 

maximum lateness.  

The Automotive industry is one of the biggest emerging sectors in terms of revenue. Every 

automotive industry has an indispensable need for optimum manufacturing scheduling 

systems for generating good revenues and profits. This need can be pulled off by 
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identifying and prioritizing the scheduling parameters also. MCDM is one of the best 

techniques of operation research in selecting the best parameters or factors among the 

various alternatives. This study includes the identification and prioritization of the various 

important scheduling parameters in the Indian automotive industry. The twelve scheduling 

parameters have been identified in this study and these parameters are prioritized by the 

fuzzy-TOPSIS and DEMATEL model. These methods best deal with uncertainty and 

vagueness. The first time, fuzzy TOPSIS and DEMATEL are applied in prioritizing the 

SPs in the automobile industry. The expert’s views are gathered from the five automobile 

industries. Makespan, energy consumption, due date, and travel time are the crucial 

parameters obtained using fuzzy TOPSIS. The least important parameters obtained using 

fuzzy TOPSIS are work in process, flow time, and release date. The most influential 

parameters identified using the DEMATEL method are completion time and processing 

time. This study is very useful for all automotive industries as well as research 

organizations. This study also deals with the development of a simulation model of 

crankcase cover manufacturing. 

The simulation creates the virtual production model which is exactly like the real 

environment, and it provides future insights before laying down the actual production plant 

layout. With the help of simulation, we can simulate the complex and costly manufacturing 

system without being investing money physically and check the system’s real-life 

behavior. In this study, the modelling and simulation of two-wheeler crankcase cover 

manufacturing are done with the help of flexsim. This study deals with the development of 

a simulation model for crankcase cover manufacturing systems in the automobile industry. 

Flexsim simulation tool is used as an optimization tool for identifying the bottleneck 

present in the production line to improve the system performance and line efficiency. The 

results indicate that by eliminating the bottleneck in the production line, it increases the 

line efficiency as well as the production throughput. These results are useful for all 

industries for simulating their process or product layout. 
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Chapter-1 

INTRODUCTION 

The motorcycle as a product proves to be particularly complex during the design and 

production stages. The components of a motorcycle are comprised of several thousand 

pieces. Motorcycle customers can only have a good impression of the product once it has 

been physically seen and tried out. The distribution logistics of this product are very 

complex as well [204]. 

 

Fig.1.1 Motorcycle component network [204] 

1.1 Automotive Part Manufacturing 

Automotive part manufacturers are manufactures of pressure die casting and sheet metal 

parts, sub-assemblies, and assemblies related to automobiles, engineering, construction 

decorative, electrical accessories, and machine tools. 

These manufacturers are equipped with a wide range of machines from 120 Tons to 800 

Tons with the auto ladle, auto spray, and auto extractor along with other peripheral 

equipment for other operations, such as painting, shot blasting, heat treatment, and 

impregnation. They have set up one of the most modern CNC machine shops to supply 

fully finished ready to use components.  
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The Sheet Metal division has facilities of mechanical & hydraulic presses ranging from 10 

Tons to 250 Tons, shearing machines, welding machines, CNC pipe bending, and paint 

shop. In-house tool designing and manufacturing, tool room, and QA are the major 

strengths supporting the sheet metal plant. 

 

Fig. 1.2 Some automobile components (Super Auto India limited, 2022) 

1.2 Fuzzy Logic 

The concept of fuzzy logic was developed by Lotfi Zadeh in 1965. Lotfi Zadeh presented 

this approach, not as a control methodology. This approach can process data by providing 

only a partial set of membership i.e., incomplete, and uncertain information rather than 

crisp membership or non-membership. This approach is not used or applied as a control 

methodology till 1960 due to insufficient small capacity computers. Professor Zadeh told 

that people do not require exact, precise, certain, or numerical type input. Without this type 

of input also, they are capable of highly adaptive control. The structure of the fuzzy logic 

system consists of mainly four functional blocks i.e., rule base, fuzzifier, defuzzifier, and 

inference. The structure of the fuzzy logic system is shown in Fig. 1.3.  

The function of each block is as follows: 

• Rule base: It consists of several If-THEN fuzzy rules. The most important part of 

fuzzy is the knowledge base which combines the rule base and database. The 

database defines the membership functions of the fuzzy sets used in the fuzzy logic 

system. 
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• Fuzzifier: It is used to apply real input or exact input also called crisp input to the 

fuzzy system. This crisp input contains precise information about the specific 

information of a particular parameter. It transforms the crisp inputs into linguistic 

variables of fuzzy i.e., it converts the precise quantity to the form of imprecise 

quantity like 'small', 'medium', 'high' etc. with some degree of membership to it.  

• Inference: It is a decision-making unit that performs the inference operations on the 

rules. Output generated by inference is generally fuzzy. 

• Defuzzifier: It transforms the linguistic variables of fuzzy into crisp output or real-

world output. Output generated by inference is taken as input for the defuzzifier. 

Fig.1.3 Structure of Fuzzy logic system 

1.3 Material Selection of Crankcase Covers 

Proper material selection leads to improved product quality, cost, and productivity. Proper 

material selection is not based on single criteria or dimensions. The designers need to 

consider multiple criteria for material selection [225]. The goal of every designer is to 

select the best material for optimal design to reduce cost and enhance performance [237]. 

The accuracy of the material selection depends on designer experiences and the material 

data record used [86]. Improper selection leads to failure in customer satisfaction and 

incurs huge losses for the industry also. The designers must have detailed knowledge of all 

criteria or attributes for product development and design [146]. Initially, before the 

material selection, material screening is done with the help of the chart method, 

knowledge-based system method, or the computer-aided method [75]. 

The Material selection for crankcase cover is a complex and challenging engineering 

problem because of the large no. of alternatives with diverse properties [227]. A two-

wheeler crankcase cover is generally manufactured by the cold chamber die casting 

process. Aluminum alloys have a very good performance-to-weight ratio and are easy to 

cast. Aluminum alloys are the first choice for all the products manufactured by the die 
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casting techniques because these alloys provide superior performance to weight ratio and 

low specific gravity value. Aluminum alloys are mainly alloyed with silicon, magnesium, 

copper, iron, manganese, and zinc to enhance their properties. Eleven aluminum alloys are 

worldwide used in various die casting processes. Out of these eleven alloys, some 

aluminum alloys are difficult to cast e.g., Alloy A 360, Alloy 43, and Alloy 218. Alloy 390 

has the least machining characteristics because of the presence of high silicon in it. Six 

aluminum alloys are taken as alternatives for crankcase cover materials and seven 

attributes (brinell hardness, yield strength, % elongation, young’s modulus, ultimate tensile 

strength, fatigue strength, and material cost) is taken as criteria. The % elongation property 

represents the ductility or crash resistance of the material. This property is considered as 

beneficial criteria because more % elongation provides more safety to the passengers by 

dissipating some failure effects into plastic deformation. The young’s modulus is a 

material property representing the stiffness of a material. This property remains constant 

for isotropic material and varies for an anisotropic material. To get a more reliable result of 

material selection, most of the researchers have used more than one MCDM approach 

[133, 182, 202, 206, 273]. Many researchers have used the TOPSIS and MOORA 

methodology in various material selection problems as discussed in the literature part. 

Integrated TOPSIS MOORA methodology can be used for the new product selection [56]. 

The first time, both these approaches are applied simultaneously for material selection of 

crankcase cover in the automobile industry.  

1.4 Stratification of Scheduling Problems 

Production Scheduling is a very important decision-making process that includes the 

proper allocation of all the available resources for performing all tasks [7]. On-time 

delivery of products or services provides customer satisfaction and scheduling helps in 

achieving on-time delivery [223].  The primary objective of scheduling includes 

determining the job processing time, due date, and sequence of jobs [252]. 

Scheduling problems can be stratified into two types: [28] 

1. Static scheduling problems 

2. Dynamic scheduling problems 

Static scheduling problems consist of a fixed no. of jobs that are to be completed and it 

uses criteria called minimum makespan. Deterministic and stochastic types of solutions are 

used in both static and dynamic types of approaches. Deterministic solutions use known 

and fixed process time. These solutions use methods like methods producing optimum 

results (used for small problems) and methods using the heuristic procedure (based on 
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dispatching or sequencing rule). Stochastic solutions use variable process time. Fig.1.4 

shows the Stratification of scheduling problems. 

 

Fig. 1.4 Stratification of scheduling problems 

Methods using heuristic procedures are based on the common priority sequencing rule. 

These rules can be classified into single and multi-dimension rules. Single dimension rules 

consist of SPT, EDD, and FCFS. The due date can be calculated with computerized 

methods like MRP, or it can be determined from the customer directly.  Multi-dimension 

rules consist of critical ratio and slack per remaining operations. Fig. 1.5 shows the 

classification of the sequencing rule. 

 

Fig. 1.5 Classification of sequencing rules 

These dispatching or sequencing rules can also be classified based on priority 

determination of each job, dynamics of the information base, or maybe based on machine 

and job selection.  
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Dispatching rules can be stratified into local and global rules as shown in Fig. 1.6. Local 

rules used only limited available information, but global rules used all information present 

on the shop floor.  

 

Fig. 1.6 Sequencing rules based on the job priority determination 

Dispatching rules can be classified into static and dynamic rules as shown in Fig. 1.7. 

Static rules do not depend on time, but they depend on the machine or job data e.g., earliest 

due date, earliest release date, and weighted shortest processing time rule. The dynamic 

rule is time-dependent e.g., shortest processing time and modified due date etc. 

 

Fig. 1.7 Sequencing rules based on dynamics of the information base 

The MDD rule is a combination of EDD and SRPT which is effective in minimizing mean 

tardiness [139]. Dispatching rules can also be stratified based on job and machine selection 

as shown in Fig. 1.8. Dispatching rules based on job selection are SPT, EDD, etc. 

Utilization is lowest, number in next queue, modified due date, and TSPT are some rules 

based on machine selection [186]. 
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Fig. 1.8 Sequencing rules based on machine or job selection 

The dispatching rule gives good results only in the case of a single objective but in real 

problems, combinations of objectives are present which is tackled by a combination of 

dispatching rules. These combinations of dispatching rules are called Composite 

dispatching rules [223]. Q. Zhou et al. analysed the dynamic priority scheduling problem 

of data dissemination systems [303]. Real-life applications of Scheduling include 

manufacturing scheduling, scheduling in a service industry, scheduling in a computer 

system [223], automotive product-process innovations [105], and process integration and 

innovations [243]. 

1.5 Manufacturing process of crankcase cover 

 

Fig. 1.9 General process sequence for crankcase covers manufacturing 

 

Generally, 60% fresh aluminum brick and 40% rejected pieces are used for melting in a 

furnace. Each aluminum brick (raw material) is 5 kg.  A ladle is used to carry out the 

molten aluminum from the furnace to the PDC machine as shown in Fig. 1.10 and Fig. 

1.11. Fig. 1.9 shows the general process sequence for crankcase covers manufacturing. 
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Fig. 1.10 Ladle carrying molten aluminum  Fig. 1.11 Pressure die casting machine 

 

 

Fig. 1.12 Crankcase covers obtained through PDC machine 

Crankcase covers obtained through the PDC machine are shown in Fig. 1.12. Generally, 

the production rate of this crankcase covers is 50 parts per hour. But it varies according to 

the variation in the parts. The target production per hour for cover Lk 38 is 60. 

CNC usually vertical milling center is used for machining of these crankcase covers after 

fettling and drilling operation (as shown in Fig. 1.13). The cycle time of cover LK 38 is 5 

min 24 seconds which includes a cutting time of 3 min 28 seconds and a non-cutting time 

of 1 min 28 seconds. The cutting time to cycle time ratio for cover LK 38 is 84%. 

 

Fig. 1.13 Machining operations on VMC 
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After machining and buffing operation, pre-treatment or surface treatment processes are 

done which include some operations as given below. 

1. Degreasing 

2. Water Rinse-I 

3. Water Rinse –II 

4. Water Rinse –III 

5. Nano processes 

6. Water Rinse IV 

 

This pre-treatment process is done almost for 12 to 15 min for removing surface defects. 

Almost 150 crankcase covers can be pre-treated simultaneously in one lot. The pre-

treatment operations details are given in Table 1.1. 

Table 1.1 Pre-treatment operations 

Pretreatment Operation Medium Used Dip time ph value 

Degreasing Raw Water 5 min - 

Water Rinse-I Raw Water 1 min 7-9 

Water Rinse –II Raw Water 1 min 7-8 

Water Rinse –III DM water 1 min 6.5-7.5 

Nano processes - 3 min 3-4.5 

Water Rinse IV DM water 1 min 5-7.2 

 

 

Fig. 1.14 Masking operation 

After the pre-treatment process, the masking operation is done for covering those parts 

where there is no need for paint like in the threads of the crankcase covers. This operation 

is done before the painting operation. Fig. 1.14 shows the masking operation. The second 

last stage of crankcase covers manufacturing is the painting shop. The product remains in 

the painting shop for almost 2 hours. The painting stage includes loading, primer, base 

coat, top coat, Honda monogram PU red paint, and baking in the oven. Baking time is 10 

min and baking temperature is 90 degrees. The last stage is the inspection and packaging. 

 



10 
 

1.6 Energy Consumption scenarios in the various industries 

The energy consumption in the industrial sector is increasing tremendously every year. 

Since, last 50 years, the demand for energy consumption in this sector becomes doubled, 

and nowadays, only the industrial sector is consuming almost the world’s half energy. So, 

energy-efficient manufacturing is the need of every organization and industry [203]. 

Nowadays, every organization is facing a problem that how to convert their manufacturing 

system into an energy-efficient manufacturing system so that they can reduce energy 

consumption and can have the least adverse effect on the environment. Most of the 

researchers have used a static scheduling model in production scheduling problems for 

reducing energy consumption [251].  

Today’s research is based on decreasing the energy consumption of producing processes 

on the device level and the product stage by using the optimum schedule [145, 201]. 

Because of global warming and higher energy cost, efficient manufacturing is the need of 

every manufacturing as well as a research organization. Efficient machining and a machine 

tool are needed for reducing energy consumption within organizations [34, 120]. Almost 

37% of the world’s total energy is consumed by an industrial sector such as construction, 

machining, mining, and agriculture.  The energy-saving techniques, policies, or several 

ways are discussed by E. A. Abdelaziz et al. in their research work [3].  

This study is done for developing an energy-efficient fuzzy-based scheduling system for 

crankcase cover manufacturing. Many researchers have used the fuzzy methodology in 

various scheduling problems as discussed in the literature part. The first time, fuzzy 

approaches are applied for job prioritization and route selection of crankcase cover in the 

automobile industry.  

1.7 Modelling and simulation of crankcase cover manufacturing  

Simulation helps in the analysis of the various manufacturing system. It solved the 

problems related to resource allocation, scheduling, shop floor, material handling, storage, 

and manufacturing. Nowadays the different company provides different simulation 

software. This software reduces the production cost and provides effective resource 

allocation [33]. 

The various simulation software available in the market are Flexsim, Arena, Simul8, 

Anylogic, Witness, and Promodel. Flexsim is discrete event simulation software used for 

complex optimization problems. Flexsim is a very powerful tool used for modelling and 

simulation. This tool can be effectively used for appointment booking analysis and 

manufacturing problems. It also helps the management in hiring employees for future 
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projects and changing the work schedules. The simulation also highlights any inefficiency 

or bottleneck occurring in the system [160].  

The simulation approach can be effectively used in the design, production planning, and 

scheduling problems. These approaches help in decision-making problems and in finding 

more realistic results based on the actual dynamic conditions [96]. Flexsim consists of the 

experimenter tab of the design of experiments used for optimizing the set of solutions and 

performance of the production plant [137]. Flexsim tool can solve the multi-objective 

optimization problems and developed the hybrid simulation model which optimizes the 

various parameters such as makespan, due date, tardiness, work in process inventory and 

machine utilization, etc [232]. This tool provides a complete output report which can be 

analysed for measuring the performance of the system [210]. 

1.8 Objectives of the Thesis 

The key objectives of the thesis are given below. 

• To find out the best material for automotive part manufacturing. 

• To develop energy efficient scheduling system for automotive part manufacturing 

and to find out the best feasible routes of machining these parts. 

• To identify and prioritize the scheduling parameters in the automotive industry. 

• Prioritize the automotive parts for production operations using various dispatching 

rules and to minimize the scheduling parameters such mean flow time, weighted 

mean flow time and maximum lateness etc.  

• To develop a simulation model for automotive part manufacturing. 

1.9 Outline of the Thesis 

This thesis is organized into several chapters.  

Current chapter 1 introduces the thesis and emphasizes the need of conducting this 

research. This chapter also identifies the aim and objective of the study.  

Chapter 2 describes the literature review and past studies of various articles related to 

energy-efficient scheduling, fuzzy logic, material selection and dispatching rules, etc. It 

first represents the distribution of literature across various journals and then the literature 

review has been classified into various sub-sections. These sub-sections include literature 

based on scheduling, literature based on fuzzy logic, literature based on scheduling using 

fuzzy logic approach, literature review based on material selection, literature review based 

on the various dispatching rules, literature review based on the energy consumption 
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scenario, literature review based on the MCDM approaches, and literature review based on 

the different approaches.   

Chapter 3 explains the research methodology used in this thesis. Chapter 4 to chapter 8 

formulates and explains the various case studies. Chapter 9 describes the results and 

discussions. Finally, the last chapter concludes the results with the future scope. 
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Chapter-2 

LITERATURE REVIEW 

Many researchers employed AI techniques to solve various manufacturing problems. A 

literature review is carried out on various published papers around the globe related to 

energy-efficient scheduling and production scheduling with metaheuristic approaches. 

Major prior works have been captured to identify the research gap. 

For literature review papers from various international and reputed journals have been 

collected through the science directory, emerald, Sage, Springer, Taylor & Francis, Google 

scholar, and IEEE Explore from 1986 to 2022. During the review process, we targeted six 

main library databases that cover most of the scheduling applications, namely: Science 

Direct, Springer, Taylor & Francis, Emerald, IEEE, and Google scholar.  

We tried to collect as many papers as possible that were feasible for us. From these 305 

were separated, those were concerned with energy-efficient scheduling, production 

scheduling, Fuzzy logic their implementation, and related issues. The complete data have 

been tabulated as under regarding the distribution of papers across various journals in 

Table 2.1. 

We focused on papers published over the last decade (starting from 2004). Due to the high 

number of papers published every year, we applied the following rule: “the more recent the 

year, the higher the number of papers reviewed”, to guarantee relevant and up-to-date 

findings/remarks about energy-efficient scheduling. Fig. 2.1 gives valuable information 

regarding the number of papers reviewed per journal and Fig. 2.2 shows the number of 

papers, over the years that are reviewed and discussed in this study. 

We have classified the literature review into eight sub-sections. These sub-sections include 

literature based on scheduling, literature based on fuzzy logic, literature based on 

scheduling using fuzzy logic approach, literature review based on material selection, 

literature review based on the various dispatching rules, literature review based on the 

energy consumption scenario, literature review based on the MCDM approaches, and 

literature review based on the different approaches.   

2.1 Literature review based on Scheduling 

Whenever restricted resources must be assigned to task elements for accomplishing these 

tasks over time, scheduling problems arise. Scheduling is relevant in different disciplines 

such as project management [103], aerospace industry [100], computer science [196], and 
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personnel management [216]. Among the most prominent and important research fields in 

scheduling are production systems [224], which is also the focus of this study.  

Table 2.1 Distribution of reviewed articles in various journals 

Name of Journal No. of papers Percentage 

International Journal of Production Research 26 12.94 

Journal of Cleaner Production 14 6.97 

Computers & Industrial Engineering 11 5.47 

European Journal of Operational Research 8 3.98 

Appl. Math. Model 7 3.48 

Applied Soft Computing 6 2.99 

Applied Soft Computing 6 2.99 

Engineering Applications of Artificial Intelligence 6 2.99 

Procedia CIRP 5 2.49 

Expert System with Applications 4 1.99 

International Journal of Advanced Manufacturing Technology 4 1.99 

International Journal of Production Economics 4 1.99 

Journal of Quality in Maintenance Engineering 4 1.99 

Computer & Operation Research 3 1.49 

Journal of Intelligent Manufacturing 3 1.49 

International Journal of Quality & Reliability Management 3 1.49 

Computers & Chemical Engineering 2 1.00 

Computers & Operations Research 2 1.00 

International Journal of Computer Integrated Manufacturing 2 1.00 

Journal of Scheduling  2 1.00 

Journal of Manufacturing Systems 2 1.00 

Renewable and Sustainable Energy Reviews 2 1.00 

Fuzzy Sets Syst. 2 1.00 

CIRP J. Manuf. Sci. Technol 1 0.50 

Engineering Optimization 1 0.50 

Fuzziness and Soft Computing 1 0.50 

Information Systems 1 0.50 

International Journal of Iron and Steel Research 1 0.50 

International Journal of Productivity and Performance Management 1 0.50 

J. Ind. Eng. Manage. 1 0.50 

Journal of Advances in Management Research 1 0.50 

Journal of the Chinese Institute of Industrial Engineers 1 0.50 

Procedia Computer Science 1 0.50 

Intelligent Automation and Soft Computing 1 0.50 

Int J Syst Sci 1 0.50 
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Fig. 2.1 No. of papers reviewed per journal 

Pellegrinelli, S. et al. introduces a research activity dealing with the integration of energy 

consumption strategies in the design of work plans and distributed part programs and it 

also minimized the energy consumption during both the configuration of the pallet and the 

selection of alternative work plan [218]. Andrea Trianni et al. dealt with energy efficiency 

barriers with few empirical studies and thus promoting the most effective policies to secure 

widespread adoption of energy-efficient technologies and practices [259]. Fadi Shrouf et 

al.  provide a mathematical model to minimize the total energy consumption costs for 

single-machine scheduling, considering the continuous changes in energy prices [239].  

To thoroughly comprehend the steelmaking continuous casting Scheduling problems in the 

dynamic production environment, the concept of production scenario and its mathematical 
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description was proposed, and the dynamic characteristics of the steelmaking continuous 

process were described. 

Fig. 2.2 No. of papers reviewed per year 

 

Kostas S. et al. proposed a knowledge-based system for production scheduling using an 

ERP system. This system uses the prevailing conditions in the environment  to choose the 

most appropriate dynamic scheduling algorithm [194]. Ann Tighe et al. described the 

successful use of self-organizing fuzzy control in enhancing dynamic optimization, a 

controller is used to direct the type of optimization appropriate in each new dynamic 

problem. The system uses its experiences to determine which approach is most suitable 

under varying circumstances [256]. Shiu Hong Choi and Feng Yu Yang studied the special 

topological structure of the disjunctive graph and proposed quick value-setting algorithms 

for solving the linear programming problems commonly encountered in job-shop 

scheduling [66].  

 S.A. Oke and O.E. Charles-Owaba revisited the literature of preventive maintenance 

scheduling, and they solved the problem of the simultaneous scheduling of resource-

constrained preventive maintenance and operations. A case study from the shipping 

industry was used in their study [212]. Asif Raza and Mustafa Al-Turki compared the 

effectiveness of two meta-heuristics in solving the problem of scheduling maintenance 

operations and job processing on a single machine. Tabu search and simulated annealing 

are two meta-heuristic algorithms that were hybridized using the properties of an optimal 

schedule identified in the literature [229].   
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Subbaiah et al. solved scheduling problems in FMS using the sheep flock heredity 

algorithm. They considered scheduling of machines and Automated Guide Vehicles in an 

FMS environment [247]. Ashwani Dhingra and Pankaj Chandna aimed to deal with multi-

objective flow shop scheduling problems, including sequence-dependent setup time 

(SDST). Their study’s main objective is to minimize the weighted sum of total weighted 

tardiness, total weighted earliness, and makespan simultaneously. [80]. Anna Ławrynowicz 

improved the efficiency of the traditional scheduling methods and explored a more 

effective approach for solving the scheduling problem in supply networks with genetic 

algorithms (GAs). He developed two methods with GAs for detailed production scheduling 

in supply networks. The first method adopted a genetic algorithm to job shop scheduling in 

any node of the supply network. The second method was developed for collective 

scheduling using a modified genetic algorithm in an industrial cluster. The objective was to 

minimize the total makespan. These proposed methods were verified by using some 

experiments [165]. 

The application of the genetic algorithm to the multi-objective scheduling problem has 

given optimum solutions for the allocation of jobs to the machines to achieve nearly equal 

utilization of machine resources. Further, the makespan, as well as total machining time, is 

also minimized [7]. There is another type of scheduling problem is the economic lot 

scheduling problem which is an important scheduling problem that has been studied since 

the 1950s. Feasible analytical closed-form solutions were difficult to achieve. But with the 

help of heuristic algorithms, we can obtain good and acceptable solutions [48]. 

Fuzzy job-shop scheduling problems (Fuzzy JSSPs) are a class of combinational 

optimization problems are known as non-deterministic polynomial-hard problems. Salwani 

Abdullah et al. reviews the classification of Fuzzy JSSPs, constraints and objectives 

investigated in Fuzzy JSSPs, and the methodologies applied in solving Fuzzy JSSPs [4]. 

Kuroda and Wang classified fuzzy JSSPs into three main classes, namely, fuzzy JSSPs 

with the fuzzy due date, fuzzy JSSPs with fuzzy processing time, and fuzzy JSSPs with 

both fuzzy processing time and fuzzy due date [162]. 

Fuzzy flexible job-shop scheduling problems assign each operation to an appropriate 

machine and sequence the operations on the machines to minimize fuzzy makespan as its 

objective function [95]. Jing Huang et al. proposed a dispatching rule-based genetic 

algorithm with fuzzy satisfaction levels to solve the multi-objective manufacturing 

scheduling problem. The objective was to develop a decision-making platform that 

appropriately handles conflicts among different performance measures in a manufacturing 
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system. The proposed method focused on a job shop scheduling problem to minimize the 

makespan, average flow time, maximal tardiness, and total tardiness [125]. 

Many real-world manufacturing systems are characterized by limited production capacity 

and tight delivery requirements [215, 289] Consequently, the manufacturer usually has to 

reject a certain number of jobs that require long processing time but contribute little to firm 

revenue [43].  This is particularly true for make-to-order manufacturers. Such scheduling 

problems are known as machine scheduling with job rejection [236]. 

Junkai Wang et al. proposed a novel multiple-objective model for batch scheduling of an 

energy-intensive manufacturing process, e.g., heat treatment. The model minimizes energy 

consumption and total weighted tardiness while considering the arrival times of each 

workpiece and the inherent uncertainties in gas heating values, processing times, and due 

dates [268]. 

 

Fig. 2.3 World marketed energy consumption from 1980 to 2030 (ZW) [3] 

 

Castro P.M. et al. address the scheduling of continuous single-stage multiproduct plants 

with parallel units and shared storage tanks [42]. Dai M. et al. proposes an energy-efficient 

model for flexible flow-shop scheduling (FFS) [251]. Sun Hoon Kim & Young Hoon Lee 

suggested an iterative algorithm using an optimization and simulation model for the 

integration of production planning and scheduling for semiconductor fabrication. The 

proposed model can consider a flexible manufacturing system with non-identical resource 

and stochastic parameters [155]. Ali Bozorgi et al. proposed a fuzzy-game theoretic model 

for the unit maintenance scheduling problem and pointed out the peak load and cost 

coefficients, which are assumed to be known in previous models, which is not realistic. 
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They applied fuzzy values for peak load and cost coefficients, to model the problem in a 

more realistic manner [35]. 

Haijun Wen et al. developed a hybrid intelligent algorithm including random simulation 

technique, neural network, and genetic algorithms to optimize an integrated 

remanufacturing production planning and scheduling system. They also generated a 

random variable samples matrix through a random simulation technique and a trained 

neural network. The welding scheduling problem is important in welding production. To 

satisfy the needs of dynamic production, three types of dynamic events, namely, machine 

breakdown, a job with poor quality, and job release delay, are considered. Furthermore, 

controllable processing times, sequence-dependent setup times, and job-dependent 

transportation times are also considered [279]. A model for the multi-objective dynamic 

welding scheduling problem (MODWSP) is formulated by Chao Lu et al. The objectives 

are to minimize the makespan, machine load, and instability simultaneously. Secondly, 

they develop a hybrid multi-objective grey wolf optimizer (HMOGWO) to solve this 

MODWSP [185]. 

Today’s sustainable scheduling is the need of many manufacturing companies and energy 

is the main concern regarding sustainability, Christian Gahm et al. developed a research 

framework for energy-efficient scheduling [106]. A framework to analyze energy 

consumption characteristics in machining manufacturing systems from a holistic point of 

view is proposed by Li, Y., He, Y., Wang, Y., Yan, P., & Liu, X.  [171].  

Hao Luo et al. discussed the implementation of RFID technologies, which enable the shop 

floor visibility and reduce uncertainties in the real-time scheduling for hybrid flow-shop 

(HFS) production. Standard HFS approaches are difficult to be applied in real-life mold 

and die manufacturing schedules since most of them are offline scheduling. The off-line 

scheduling assumes that all jobs are available before the starting time. The information 

about all stages and machines is completely known in advance. Once a schedule is 

generated, all jobs can be continuously processed without any interruptions. The real-time 

visibility and interoperability, which are core characteristics of ubiquitous manufacturing, 

created an opportunity to minimize the uncertainty and disturbance during the production 

process and close the loop of production planning scheduling and execution [187]. 

Duflou, J.R et al. deal with energy and resource efficiency increasing methods and 

techniques in discrete part manufacturing [84]. Ripon K. Chakrabortty considered 

resource-constrained project scheduling problems with known deterministic renewable 

resource requirements but uncertain activity durations. [44].  
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According to the 5th global productivity study of the proudfoot consulting, 37% of working 

time is wasted, which is mainly due to a lack of planning and control [78]. Xu Gong et al. 

formulates a mixed-integer linear programming model for energy and labor aware 

production scheduling at the unit process level, considering all the conventional production 

constraints besides the due date [113]. Priyantha Devapriya et al. address an integrated 

production and distribution scheduling problem with a perishable product in which the 

product has a limited lifetime. A mathematical programming model based on mixed-

integer linear programming was developed and then resolved [79]. 

Today’s Research is based on reducing the energy consumption of manufacturing 

processes on the machine level and the product level by using optimum schedule [118, 

145, 201]. Also, the higher energy cost and the growing concern over global warming have 

produced greater concern toward reduction for the energy consumption. Most existing 

research on reducing manufacturing energy consumption has focused on developing more 

energy-efficient machines or machining processes at the machine and the factory level [34, 

120].    

E.A. Abdelaziz et al. presented a comprehensive literature review about industrial energy 

saving by management, technologies, and policies [3]. Artigues, C. et al. deals with 

production scheduling involving energy constraints. They proposed a two-step 

integer/constraint programming method by using an industrial case study [18]. G. May et 

al. proposed a multi-objective scheduling model based on a green genetic algorithm that is 

related to energy consumption and makespan in a job-shop system and also obtained a 

series of different Pareto front solutions for it [191]. 

Dunbing Tang et al. proposed a novel algorithm based on an improved particle swarm 

optimization approach to address the dynamic scheduling problem reducing energy 

consumption and makespan for a flexible flow shop scheduling [251]. These scheduling 

problems are more complex than static scheduling problems and they are strongly NP-hard 

[94, 288]. J. Escamilla et al. built a model based on a genetic algorithm involving energy 

consumption and makespan in an extended version of the job-shop scheduling problem 

where each machine can work at different rates [89]. Z. Jiang et al. developed a multi-

objective genetic algorithm based optimization model that minimizes makespan, 

processing cost, energy consumption and enhancing processing quality for a flexible job-

shop scheduling problem [140]. Y. Liu et al. proposed a genetic algorithm-based 

scheduling model that minimized the total non-processing electricity consumption and total 

weighted tardiness for the job shop problem [179]. 

https://www.sciencedirect.com/science/article/pii/S136403211000290X?via%3Dihub#!
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G. Mouzon et al. developed dispatching rules & multi-objective mathematical 

programming model for the minimization of the energy consumption of manufacturing 

equipment & total completion time. There can be a significant amount of energy savings 

when non-bottleneck (i.e. underutilized) machines/equipment is turned off when they will 

be idle for a certain amount of time [203]. Some researches focus on the energy 

consumption for machining manufacturing considering alternative routes with different 

energy characteristics for the same job [68, 119]. Other researches focus on the scheduling 

problem with alternative process plans in a dynamic flexible job shop [226]. 

To promote sustainability in unit manufacturing processes, S. Kara et al. proposed a mix-

integer linear programming model to perform energy-cost-aware production scheduling for 

a single machine. Coupled with a genetic algorithm, the scheduling model was further 

applied to allocating jobs to a surface grinding process [112]. Niki Kousi et al. discussed 

the implementation of a service-oriented architecture that would enable the dynamic 

scheduling of material supply operations in an assembly system, using Mobile Assistant 

Units [159]. Samuel Rosat et al. showed the strong potential of primal algorithms for the 

crew scheduling problem, which is a key challenge for large airlines [234]. 

Some researchers take the job processing time as a variable for the research on 

rescheduling in a production environment, these researchers are [178, 271, 301]. Yong-

Chan Choi (2016) focuses on a single machine scheduling problem with the sequence-

dependent setup times and energy requirements to minimize average energy consumption 

(with machining and non-machining) as well as mean tardiness for the jobs of multiple 

types with dynamic arrival over time [67]. Said Mahnut Cinar developed hierarchical fuzzy 

logic controllers to improve the energy efficiency and cutting rate stabilization of natural 

stone block-cutting machines [72]. Quan Zhou et al. introduced design scheduling 

algorithms for use in the data broadcast environment [303]. Sojung Kim et al.  proposed a 

simulation-based machine shop operations scheduling system for minimizing the energy 

cost without sacrificing productivity [154]. Reducing energy consumption is becoming a 

more and more essential consideration for sustainable manufacturing. Lei Li et al. 

proposed an operation scheduling approach for a multi-hydraulic press system to explore 

the potential of energy saving at the system level [170]. 

Chao Lu et al. investigated energy-efficient permutation flow shop scheduling 

problems with sequence-dependent setup and controllable transportation time from a real-

world manufacturing enterprise and multi-objective mathematical model considering both 

makespan and energy consumption is formulated based on a comprehensive investigation 

https://www.sciencedirect.com/science/article/pii/S0959652617300112#!
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[184]. Xiuli Wu and Yangjun Sun formulated an energy consumption model for the 

flexible job-shop scheduling problem when the two energy-saving measures are under 

consideration and a genetic algorithm based on a green scheduling heuristic is developed 

for optimizing the makespan, the energy consumption, and the numbers of turning-on/off 

machines simultaneously [285]. 

Guiliang Gong et al. proposed a multi-objective optimization mathematical model for an 

original double flexible job-shop scheduling problem, in which both workers and machines 

are flexible. This problem considers processing time indicators, green production 

indicators, and human factor indicators [110]. Xuxia Zou et al. determined production 

scheduling and vehicle routing, which are two interacted decisions, to minimize the 

maximum order delivery time, and the proposed genetic algorithm is capable of providing 

high-quality solutions by determining the two decisions simultaneously [304]. The increase 

in energy costs especially in the manufacturing system encourages researchers to pay more 

attention to energy management in different ways. Mohammad Mohsen et al. investigate a 

non-preemptive single-machine manufacturing environment to reduce total energy costs of 

a production system [5]. 

Luca Zeppetella et al. proposes two mixed-integer linear programming models (for both 

the lost sale case and the backorder case) for optimizing the production schedule by jointly 

considering capacity and production constraints, and costs on one hand, and demand 

substitution issues on the other hand [296]. Liang-Liang Fu et al. proposed mathematical 

models for decentralized scheduling problems, where a production schedule and a 

distribution plan are built consecutively. They also developed a two-phase iterative 

heuristic to solve the integrated scheduling problem [104]. Alessandro Agnetis et al. 

described a problem that finds a production schedule of the jobs, a partition of jobs into 

delivery batches, and an assignment of delivery batches to vehicles so that jobs are 

delivered within their deadlines and total costs are minimized [6].  

While finding optimal solutions for complex scheduling problems, meta-heuristics give 

good performance with affordable computational effort. This gives an edge to researchers 

when researching industrial cases such as energy-efficient production planning [107]. Paz 

Perez-Gonzalez & Jose M. Framinan focuses on two situations of scheduling arising in 

most real-life manufacturing environments. In the first case, once a set of jobs has 

been scheduled; their schedule cannot be modified (‘frozen’ schedule). This implies that, 

when the next set of jobs is to be scheduled, the resources may not be fully available. 

https://www.sciencedirect.com/science/article/pii/S0959652617326483#!
https://www.sciencedirect.com/science/article/pii/S0959652617324952#!
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Another option, the schedule of the previously scheduled jobs can be modified as long as it 

does not violate their due date [220].  

Recently many manufacturing organizations are using an automated scheduling system. 

But the design of a fast and computerized scheduling system that gives high-quality results 

and requires minimal resources is a difficult task [102]. The economic lot scheduling 

problem (ELSP) is a problem that occurs in many production situations such as bottling, 

plastic production, textile production, paper production, among other operations. Nodari 

Vakhania et al. consider the problem of scheduling a set of jobs having only two possible 

processing times on a set of unrelated parallel machines and it is a generalization of the 

much more common problem of scheduling equal-length jobs on identical machines which 

may occur in the production of two different types of products [264]. 

J. Wang et al. presented a dynamic approach to reduce tardy jobs through the integration of 

process planning and scheduling in a batch-manufacturing environment and also aims at 

developed a schedule with fewer tardy jobs with process plan solution space of the tardy 

jobs [269]. T'kindt Vincent focused on just-in-time principles and detailing how they can 

be applied to the scheduling stage of a manufacturing process using multi- criteria models 

[265]. Shlomo Karhi & Dvir Shabtay solved a single-machine flexible scheduling problem, 

to minimize resource consumption cost with a bound on scheduling plus due date 

assignment penalties where both job processing times and due dates are decision variables 

to be determined by the scheduler [147]. 

Rachid Benmansour et al. studies the single machine scheduling problem for minimizing 

the expected total weighted deviations of completion times from random common due 

dates [30]. Yan Zuo, Hanyu Gu & Yugeng Xi focuses on a job-shop scheduling problem 

with multiple constraint machines [305]. Mehmet Oguz Atan & M. Selim Akturk solves 

the single CNC machine scheduling problem with controllable processing times and 

maximizing the total profit that is composed of the revenue generated by the set of 

scheduled jobs minus the sum of total weighted earliness and weighted tardiness, tooling, 

and machining costs [21]. Xiao Wu et al. minimized the weighted sum of tardiness cost 

and extra energy consumption cost using a mixed integer linear programming model [284]. 

2.2 Literature Review based on Fuzzy logic 

Wen et al. developed a dynamic routing method using fuzzy logic based on the part-family 

formation approach. It was combined with a certainty factor procedure and help in finding 

the favorable route in multicellular FMS. They developed a simulation model for 

comparing the performance of the proposed dynamic routing approach with the fixed 
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routing approach and used only one dispatching rule i.e. FCFS in the model [280]. Yu et al. 

presented a fuzzy inference rule-based scheduling approach with multiple objectives for 

FMS. It consists of dynamic and different preference levels. Dynamic preference levels 

mean priority given to different objectives can change depending on the production 

environment conditions like many customer orders. They have considered two objectives 

absolute slack and mean flow time. It was proposed that the inference fuzzy rule had a 

robust performance working under a heavy workload [291]. 

Kostas Metaxiotis et al. discussed the key role of fuzzy logic in DSSs and presented a new 

application of FL into DSSs in various sectors and identify new challenges for further 

research [193]. A.W. Labib and M.N. Yuniarto solved the problem of real-time control and 

monitoring of a failure-prone manufacturing system in an optimum and intelligent way. 

Their study also aimed to fill the gap between production systems and maintenance 

systems. SCADA system with fuzzy logic control is used for monitoring failure-prone 

manufacturing systems [163]. 

Pratesh Jayaswal et al. provided a brief review of recent developments in applications of 

ANN, Fuzzy logic, and wavelet transform in fault diagnosis. The purpose of their work 

was to provide an approach for maintenance engineers for online fault diagnosis through 

the development of a machine condition-monitoring system [138]. Rostamzadeh and 

Sofian present a fuzzy decision-making approach for prioritizing effective 7Ms 

(Management, Manpower, Marketing, Method, Machine, Material, and Money) to improve 

production systems performance [235]. Ming-shell et al. proposed a dynamic dispatching 

strategy for multiple performance measures based on fuzzy inference. [186].  

Imtiaz Ahmed and Ineen Sultana developed a performance evaluation model using the 

fuzzy approach for all types of an organization where performance evaluation is 

significantly important for staff motivation, behavior development, attitude, 

communicating, aligning individual and organizational aims, and developing positive 

relationships between staff and management [9]. A new fuzzy formulation of EV charge 

optimization for a parking lot considering the market and EVs mobility uncertainties was 

proposed. The uncertainties of the market and EVs mobility were modelled using fuzzy 

sets [90]. 

Many membership shapes have been proposed by the researchers [168, 169, 207]. Klir et 

al. introduced the mathematical representations for several membership functions such as 

triangular, trapezoidal, Gaussian, bell-shaped membership function, etc [156]. Among the 

commonly used MFs, the triangular membership function is the popular one due to the 
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design simplicity as this is formed using straight lines. The motivation and rationale to use 

the triangular membership functions were first reported by Pedrycz [217]. Triangular 

membership functions are the specialized form of the trapezoidal membership functions, 

which have been extensively used in the literature for various applications [115, 141, 174, 

199, 205, 283].  

Tai-Sheng Su developed a fuzzy multi-objective linear programming model that 

simultaneously minimizes total costs, lead time, and CO2 emissions concerning multiple 

products and joint components. The proposed model evaluates cost-effectiveness, lead 

time, and CO2 emissions while integrating multi-products, multi-suppliers, multi-

components, joint components, and multi-machines into one remanufacturing production 

system [246]. 

Satish Tyagi et al. (2017) proposed an extended fuzzy analytic hierarchy process approach 

to determine the ranking in which any product development phase is influenced by 

socialization-externalization-combination-internalization modes [262]. 

The advantage of fuzzy set theory is in dealing with the ambiguity intrinsic to the decision-

making problems and the ability to define vague data using classes and grouping with 

boundaries [209]. 

 

Fig. 2.4 Traditional membership functions [209] 

2.3 Literature Review based on Scheduling using Fuzzy logic approach 

C. Lowe and J. D. Tedford proposed a scheduling system using fuzzy logic to solve the 

multi-criteria problem. Also, the system was designed to be implemented using readily 

available software tools and through the use of fuzzy systems [183].  

J. D. Tedford and C. Lowe developed the system, using the combined methodology of 

fuzzy logic and genetic algorithm which was tested on a discrete event simulation model. 

This system showed measurable benefits against commonly implemented dispatching 

heuristics in schedule performance [254]. 
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Whenever we use some set of resources like material, labour, and equipment for making a 

different variety of products in a given interval of time then a problem arises called 

scheduling [242]. 

S.A. Oke and O.E. Charles-Owaba addressed the simultaneous scheduling of resource-

constrained maintenance and operations and capture the uncertainty in the development of 

a model that schedules both preventive maintenance and operational activities. Fuzzy logic 

is employed to transform the human expertise into IF-THEN rules [213]. 

Restrepo I.M, Balakrishnan S. proposed a fuzzy logic-based methodology for generating 

the sequence of part movements in a multi-product batch processing through a 

computerized machine cell. [230].  

Hao-Cheng Liu and Yuehwern Yih focused on the liquid crystal injection scheduling 

problem, which is divided into two sub-problems: automated guided vehicle dispatching 

and Liquid crystal Injection machine scheduling. First, the sub-problem is solved using a 

fuzzy-based method called the self-adjusted fuzzy method and the second sub-problem is 

solved using a modified least slack time method [177]. 

Jamal Hosseini Ezzabadi et al. presenting a new integrated approach based on a model 

using fuzzy logic, AHP technique, and operations research model to improve the 

organization’s excellence level by increasing the quality of business performance 

evaluation and determining improvement projects with high priority [123]. 

Fang, K.-T., & Lin, B.M.T. addresses a scheduling problem in a multiple-machine system 

to minimize tardiness penalty and power cost [93]. Susmit Bagchi et al. (2016) proposed a 

novel estimation model based on probability and fuzzy logic to estimate the resource 

affinity pattern of a process [26]. The fuzzy set approach has been successfully applied to 

flow-shop and job-shop scheduling problems [83, 130, 131]. Also, a fuzzy approach to 

scheduling problems for software development was introduced by Wang X. and Huang W 

[275]. 

The fuzzy number approach requires the empirical acquisition of membership functions 

related to the degree that activity duration belongs to a fuzzy set duration. Besides 

experienced project team managers are usually able to specify the most and least 

possible/designated values for ready-time and deadline that can be also flexible [121].  

Heinrich Rommelfanger suggested a common representation of fuzzy numbers using a 6-

point piecewise linear membership function to ease and facilitate the acquisition of expert 

information, where a project manager has to provide 3 α-cuts and their corresponding 

activity duration intervals [233].  
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Kuo and Yang introduced the time-dependent learning effect in their work and they proved 

that the SPT dispatching rule assures an optimum schedule while minimizing total 

completion time on a single machine [161]. 

Moghaddam et al. proposed a single machine problem that has two objectives: minimizing 

the total weighted tardiness and minimizing the makespan. They constructed a fuzzy multi-

objective linear programming model to solve the problem [252]. 

In real-world scheduling, the processing time of a job cannot be known precisely, and 

hence the completion time can only be obtained ambiguously. The fuzzy job-shop 

scheduling problem considers the processing times or the due dates to be fuzzy variables 

[198]. 

Scheduling involving setup times/costs plays an important role in today’s modern 

manufacturing and service environments for the delivery of reliable products on time. The 

setup process is not a value-added factor, and hence, setup times/costs need to be explicitly 

considered while scheduling decisions are made to increase productivity, eliminate waste, 

improve resource utilization, and meet deadlines [13]. 

Wang and Liu considered the group scheduling on a single machine with deteriorating 

setup and processing times where both setup and processing times are increasing function 

of their starting times. Their primary objective is to minimize the total weighted 

completion time while the secondary objective is to minimize maximum cost. They 

presented a polynomial-time algorithm [270]. Merkert et al. discussed the main problems 

and potential benefits related to energy-efficient scheduling in industrial sectors [192]. 

A novel dynamic optimization framework is presented for integration of design, control, 

and scheduling for multi-product processes in the presence of disturbances and parameter 

uncertainty. This framework proposes an iterative algorithm that decomposes the overall 

problem into flexibility and feasibility analyses [158]. 

Yiyong Xiao & Abdullah Konak study the time-dependent vehicle routing & scheduling 

problem with CO2 emissions optimization and develop an exact dynamic programming 

algorithm to determine the optimal vehicle schedules for given vehicle routes. A hybrid 

solution approach that combines a genetic algorithm with the exact dynamic programming 

procedure is proposed as an efficient solution approach for this [286].  

Guo-Sheng Liu et al. address a fuzzy flow shop scheduling problem in a production system 

that deals with dispatching jobs to the machines and determining the job sequence and state 

transition of each machine to minimize energy consumption and tardiness [175]. 
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Juan José Palacios et al. tackled a variant of the job shop scheduling problem with 

uncertain task durations modelled as fuzzy numbers and minimize the schedule’s fuzzy 

makespan and maximize its robustness [143]. Fuzzy sets help the researchers in 

diminishing the interlude between the classical techniques and real-world user needs [82, 

281]. 

2.4 Literature review based on material selection 

The material selection problem is considered as an MCDM problem and it is solved by 

considering all multiple conflicting criteria [176]. A. S. Milani et al. applied the MCDM 

approach for material selection of plastic gear with the life cycle assessment [195]. 

Navneet Gupta also used the MADM approach for the material selection problem of thin-

film solar cells [116]. C. Bhowmik et al. adopted the TOPSIS technique for energy-

efficient material selection and used sensitivity analysis for validating the results [32]. S. 

Jajimoggala et al. utilized an MCDM approach for the material selection of impeller using 

the TOPSIS technique[136]. I. P. Okokpujie et al. utilized the AHP and TOPSIS technique 

for wind turbine blade material selection [214]. Mohammed F. Aly et al. proposed an 

integrated Fuzzy geometric mean method -TOPSIS model for material selection and design 

concept [14]. A. Kelemenis et al. adopted the TOPSIS technique for the personnel 

selection and enhanced the organization performance[148]. A. Tiwary et al. utilized the 

fuzzy TOPSIS for the parameter selection of the micro-EDM process [257].   

Emma Mulliner et al. considered the comparative analysis of various MCDM approaches 

such as AHP, TOPSIS, COPRAS, the weighted sum model, and the weighted product 

model for sustainable housing affordability[206]. S. H. Mousavi-Nasab et al. adopted 

MCDM approaches such as DEA, TOPSIS, and COPRAS for material selection problems 

[202]. Stelios H. Zanakis analyzed the performance using a simulation comparison of 

ELECTRE, TOPSIS multiplicative exponential weighting, simple additive weighting, and 

AHP [294]. Metin Dagdeviren selects the best equipment among many alternatives using 

the AHP and PROMETHEE and this proper selection increases the productivity, 

flexibility, precision, and product quality [75]. 

L. Anojkumar et al. adopted the comparative MCDM analysis approach for material 

selection of pipes in the sugar industry [17]. A. Shanian et al. applied the TOPSIS 

technique for the material selection of metallic bipolar plates [237]. Mehtap Dursun et al. 

employed a fuzzy COPRAS  method for material selection for the detergent manufacturers 

[85]. M.F. Ashby et al. described that there is a material selection option is between 40,000 

to 80,000 and almost 1000 ways to process them which shows that the material selection 
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problems are complex and challenging. They also show the selection strategies for 

materials and processes [19]. P. Chatterjee et al. used the COPRAS and ARAS techniques 

for gear material selection [51]. P. Chatterjee et al. also applied the four MCDM 

techniques together for gear material selection problems. These four MCDM techniques 

are extended PROMETHEE II, COPRAS, ORESTE and OCRA methods [52]. V. M. 

Athawale et al. solved the material selection problems using UTA method. This method is 

one type of MCDM tool used for solving the various complex material selection problems 

[22]. S. Chakraborty et al. applied the three MCDM approaches such as TOPSIS, VIKOR, 

and PROMETHEE for five material selection problems. They also showed that the choices 

of the final selection depend on the criteria weights [46]. S.R. Maity et al. used the fuzzy 

TOPSIS for material selection of grinding wheel abrasive [189]. M. Ilangkumaran et al. 

adopted the hybrid MCDM approach for material selection of automobile bumper. They 

applied the fuzzy AHP, PROMETHEE I and PROMETHEE II for ranking of the materials 

[128]. S. Chakraborty considered the MOORA methodology for robot selection, flexible 

manufacturing system selection, CNC machine selection, and manufacturing process 

selection in manufacturing environments [45]. 

Material selection can also be done by utilizing the statistical tools e.g. Taguchi method, 

response surface methodology, or multiple linear regression [211]. T. A. Enab et al. used 

the finite element method for the material selection of the tibia tray component of the 

cemented artificial knee [87]. K. Fayazbakhsh et al. applied the Z-transformation in 

statistics for materials selection in mechanical design [97]. Fehim Findik et al. adopted the 

weighted property index method for the material selection problem of low weight wagon 

design [99]. Ali Jahan et al. used the linear assignment method with the MCDM approach 

for the material selection of an engineering component [135]. R. Sarfaraz Khabbaz et al. 

adopted the Fuzzy logic approach for materials selection in mechanical engineering design 

[151]. 

The past studies show that most of the researchers have successfully applied the MCDM 

approach for solving the material selection problem. After reviewing the existing literature, 

it is found a material selection of crankcase cover in the automobile industry is an 

untouched area of research. The above studies also show that TOPSIS and MOORA 

methodologies are effective in the identification and selection of the best material for a 

particular product. Therefore, the present study initially aims to identify the material 

available for the crankcase cover using experts from the automobile industry. Later, 
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TOPSIS methodology is applied for material selection of crankcase cover and its results 

are validated using the MOORA and PROMETHEE methodology. 

2.5 Literature review based on the various dispatching rules 

Production managers face difficulties in optimizing resource utilization as well as on-time 

delivery of products [7]. With these SPT, EDD, CR techniques, and other techniques, we 

can optimize resource utilization and on-time delivery together. Dispatching rules can be 

effectively used in job sequencing problems in single machine scheduling and can also 

include parameters like setup time and energy consumption [67]. Selected criteria of a 

performance play a significant role in the results obtained through these dispatching rules. 

Effective results can also be obtained through the set of manufacturing orders scheduled 

[114]. Dispatching rule-based research by various authors is shown in Table 2.2. 

Table 2.2 Dispatching rule-based research by various authors 

Authors Problem 

Type 

Factors/ Parameters Dispatching 

Rule Used 

Approach   

used 

Grabot B. et al. 

[114] 

Job-shop 

scheduling 

Lateness, Tardiness, 

Flow time, Average 

lateness 

SPT or the slack 

time rule 

Fuzzy 

simulator 

Jeong K.C. et al. 

[139] 

Real-time 

scheduling 

Mean flow time, 

Mean tardiness, 

FCFS, SPT, 

SRW, EDD, 

MDD, MOD, 

COVERT, ATC 

Real-time 

scheduling 

mechanism 

Huang J. et al. 

[125] 

Job shop 

scheduling 

Makespan, Average 

flow time, Maximal 

tardiness, Total 

tardiness 

SPT, EDD, 

LRP, LRP/OP, 

LPT, MOR, 

MRP, MRP/OP, 

and HOLD 

Genetic 

Algorithm, 

Fuzzy logic 

Lu M. S. et al. 

[186] 

Dynamic 

dispatching 

Due date, Total 

Processing time, 

mean flow time, 

mean tardiness, 

Mean earliness 

SPT, EDD, 

SPT×TOT, 

LUS, NINQ 

Fuzzy logic 

Choi Y.C. et al. 

[67] 

Dynamic 

Scheduling 

Sequence-dependent 

setup times and 

energy requirements 

ATC with 

Setups and 

Machining 

Energy 

consumption 

Dispatching 

rule-based 

scheduling 

algorithms 

 

Lu et al. studied the dynamic dispatching problem using a fuzzy approach under several 

performances affecting variables. First, the fuzzy inference rule base is developed using 

performance variables. Then, using this rule base best dispatching rule is selected [186]. 

Choi et al. considered single machine scheduling problems under energy and set up time 
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constraints with the objective of minimization of mean tardiness and energy consumption 

[67]. Pfund et al. considered unrelated parallel machine scheduling under stochastic 

uncertainty with the objective of minimization of makespan, machine utilization, finishing 

time, and over time [221]. Zuo et al. solved the job shop scheduling problem using 

scheduling methods based on several machine constraints. They first identify the constraint 

and non-constraint machines. Then, used a developed method to get a balanced solution of 

solution quality and time [305]. 

Restrepo et al. considered flexible manufacturing cell scheduling using a comparative 

approach between the fuzzy set approach and dispatching rules like SPT and WEED with 

the fuzzy strategy of the fuzzy machine and fuzzy job [230]. Mouzon et al. minimized 

energy consumption by proposing dispatching rules and utilizing a mathematical 

programming model [203]. Abd et al. utilized dispatching rules, sequencing rules, due date 

tightness, and cell utilization for the dynamic scheduling problem. These dispatching rules 

are SNQ (smallest number in queue), SIO (shortest imminent operation time), and WINQ 

(least work in queue). Cell utilization and due date are identified as the most significant 

factor for scheduling problems [2]. Atan et al. solved the single CNC machine scheduling 

problem to maximize the overall profit using the heuristic algorithm [21]. Wang Y et al. 

analyzed the performance of priority rules considering stochastic variables using a full 

factorial experiment [276]. Chiang TC et al. solved the due date-based job shop-scheduling 

problem using eighteen dispatching rules [64]. 

Dispatching rules have an advantage than other method and rules because it requires 

minimum information and computational effort [108, 153]. Kianfar et al. formulated a 

mixed-integer programming model for minimizing rejection and tardiness cost of jobs in 

the dynamic flow shop scheduling system by comparing four dispatching rules from 

literature to the new proposed four dispatching rules  [152]. If a part or job is manufactured 

before the due date, then it incurs earliness cost and if it manufactures after the due date, it 

incurs a penalty. So most of the researchers follow the objective to manufacture part or job 

as close as the due date [255]. From the above-reviewed literature, we found out that the 

common objectives in scheduling problems are to minimize the makespan, energy 

consumption, machine utilization, finishing time, overtime, setup time, rejection cost, and 

tardiness cost [67, 152, 221]. 
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2.6 Literature review based on the energy consumption scenario 

Today’s energy-efficient scheduling is the indispensable need of many manufacturing 

companies. Gahm, Denz, Dirr, & Tuma [106] developed a research framework for energy-

efficient scheduling. A framework to analyze energy consumption characteristics in 

machining manufacturing systems is given by Y. Li, He, Wang, Yan, & Liu  [171]. 

Energy saving in the industry can be done in the following ways:[3] 

1. Energy-saving by management 

2. Energy-saving by technology 

3. Energy-saving by policies and regulations 

Energy-saving by management and technology is shown in Fig. 2.5 and Fig. 2.6. 

 

Fig. 2.5 Energy-saving by management [3] 
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Fig. 2.6 Energy-saving by technologies [3] 

Energy-efficient scheduling problems (EESP) deals with the reduction of energy 

consumption parameters and all these studies are deterministic [98, 268, 278, 298]. 

Makespan and energy consumption are the main parameters in these studies which must be 

balanced to achieve an energy-efficient environment  [190]. 

Table 2.3 Summary of conducted research on EESP 

Author name Approaches Techniques Scheduling 

Type 

Parameter optimized 

J. Wang et al. [268]  Metaheuristic 

Approach 

Fuzzy Logic 

 

Batch 

scheduling  

Energy consumption, 

tardiness 

Aghelinejad et al. 

[5]  

Yan et al. [287]  

 

 

May et al. [191]  

Metaheuristic 

Approach 

Metaheuristic 

Approach 

 

Metaheuristic 

Approach 

Genetic 

Algorithm 

Genetic 

Algorithm 

 

Genetic 

Algorithm 

Production 

scheduling  

Flexible flow 

shop 

scheduling  

Job shop 

scheduling  

Energy cost   

 

Energy consumption, 

Makespan, cutting 

energy, Cutting times 

Energy consumption, 

Makespan 

Tang et al. [251]  

 

 

Fang & Lin [93] 

Metaheuristic 

Approach 

 

Metaheuristic 

Approach 

Particle 

Swarm 

Optimization 

Particle 

Swarm 

Optimization 

Flexible flow 

shop 

Scheduling  

Parallel-

machine 

scheduling  

Energy consumption, 

Makespan 

 

Tardiness penalty and 

power cost 

Garcia-Santiago et 

al. [107] 

Metaheuristic 

Approach 

Harmony 

Search  

Production 

scheduling  

Energy consumption 

Dorry [81] 

 

 

 

Lu, Gao, Li, Pan, & 

Hybrid/Cluster 

Approach 

 

 

Hybrid/Cluster 

Hybrid Fuzzy 

PSO 

Approach 

 

Hybrid 

Steelmaking- 

Continuous 

Casting 

Scheduling  

Flowshop 

Waiting time of charges 

 

 

 

Energy consumption, 
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Wang [184] 

 

Liu, Lohse, 

Petrovic, & Gindy 

[181] 

 

Mokhtari & Hasani 

[200] 

 

Jiang, Zuo, & 

Mingcheng [140] 

 

 

Wu & Sun [285] 

 

Approach 

 

Hybrid/Cluster 

Approach 

 

 

Hybrid/Cluster 

Approach 

 

Hybrid/Cluster 

Approach 

 

 

Hybrid/Cluster 

Approach 

backtracking 

search algo. 

Non 

dominant 

Sorting  

Genetic algo. 

Evolutionary  

Algorithm 

 

Non 

dominant 

Sorting  

Genetic algo. 

Green 

Scheduling 

Algorithm 

scheduling  

 

Job shop 

Scheduling  

 

 

Job-Shop 

Scheduling  

 

Job-shop 

Scheduling  

 

 

Job Shop  

Makespan 

 

Total energy 

consumption and total 

weighted tardiness 

 

Total energy cost, Total 

completion time, 

Total availability 

Energy consumption, 

Makespan, Processing 

cost 

 

Energy Consumption, 

Makespan, No. of 

turning on-off machines 

Gong, De 

Pessemier, Joseph, 

& Martens [112] 

Bruzzone, 

Anghinolfi, 

Paolucci, & Tonelli 

[40] 

L. Li, Huang, 

Zhao, & Liu [170] 

Operation 

Research 

 

Operation 

Research 

 

Operation 

Research 

Mix-integer  

programming  

 

Operation 

Scheduling 

approach 

Operation 

Scheduling 

approach 

Production 

Scheduling 

 

Flexible flow 

shops  

 

Operation 

scheduling  

Energy consumption, 

Demand response 

 

Total tardiness, 

Makespan 

 

Energy consumption, 

Makespan 

 

Chen, Zhang, 

Arinez, & Biller 

[58] 

Statistical 

Approach 

Markovian 

analysis 

Operation 

scheduling 

Energy consumption, 

Productivity 

Choi, Y.C [67] 

 

 

 

Lee S et al. [166] 

Algorithm-

Based Approach 

 

 

Algorithm-

Based Approach 

Dispatching 

rule-based 

scheduling 

algorithms 

Dynamic 

control 

algorithm 

Single 

Machine 

Scheduling  

 

Single 

Machine 

Scheduling  

Average Energy 

consumption, Mean 

tardiness 

 

Energy consumption, 

Total penalty cost 

Merkert et al. [192] 

 

 

Duflou et al. [84] 

 

 

Gahm et al. [106] 

 

Literature 

review papers 

 

Literature 

review papers 

 

Literature 

review papers 

Review Paper 

 

 

Review Paper 

 

 

Review Paper 

Energy Aware 

Scheduling 

 

Energy 

efficient  

Scheduling 

Energy 

efficient  

Scheduling 

Energy consumption, 

Energy Efficiency, 

Profit 

Energy Efficiency, 

Resource efficiency 

 

Energy demand, Energy 

supply, Energetic 

Coverage 

 

Most of the researchers have used different metaheuristic techniques to solve various 

scheduling problems. The most preferred metaheuristic techniques are fuzzy logic and 

genetic algorithm [5, 191, 268, 287]. Fuzzy logic best deals with data uncertainty and 
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incomplete information [208]. Table 2.3 summarizes the various research and articles 

related to EESP. 

Energy efficiency barriers are generally four types such as economic non-market failure, 

economic market failure, behavioral barrier, organizational barrier. Each barrier example is 

shown in Fig. 2.7 [259]. 

 

Fig. 2.7 Energy efficiency barriers [259] 

Fuzzy schedule modeling has been successfully applied in manufacturing [84, 245], project 

scheduling [300], vehicle routing problems [274], timetabling scheduling problems [24], 

and several other scheduling applications e.g. casting scheduling problems of steel making 

[81] and nurse scheduling problems in hospitals [132]. Zhang et al. [300] analyzed the real-

world project scheduling problems using the Fuzzy programming models considering the 

total crash cost as the objective function and parameters include are fuzzy duration, fuzzy 

crash time, and fuzzy completion time with possibility level 𝛼. 

The past studies show that most of the researchers have successfully applied the fuzzy 

approaches for solving the various scheduling problems. After reviewing the existing 

literature, it is found that the route selection and job prioritization of crankcase cover 

manufacturing in the automobile industry is an untouched area of research. The above 

studies also show that fuzzy-based methodologies are effective for the generation of 

optimum schedules in various industries. Therefore, the present study initially aims for job 

prioritization and route selection of the crankcase cover manufacturing using the mamdani 

fuzzy inference system. Later, the fuzzy set approach is applied for the validation of 

results. 

2.7 Literature review based on the MCDM approaches 

MCDM is a branch of operation research in dealing with complex multi-criteria or 

specifications. This technique helps in obtaining the best choice among the various 
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alternatives in these fluctuating real-world problems [56]. TOPSIS technique is one of the 

best techniques of MCDM used by the various researchers in the past studies [56, 70, 250, 

290] and this technique is combined with fuzzy logic first time by R.E Bellman et al. in 

dealing with uncertainty [29]. This method have been applied in reverse logistics [8], 

material selection [17, 189], project selection [15, 250, 253], facility location selection 

[88], warehouse location selection [20], plant location selection [70, 290], supplier 

selection [77, 142], robot selection [71, 228], maintenance management system selection 

[263], machine tool selection [292] and healthcare industry [41, 188]. 

S. Agrawal et al. utilized the fuzzy TOPSIS for prioritizing the critical factors for 

implementing reverse logistics [8]. R. Rostamzadeh et al. prioritized the 7Ms using this 

methodology for production system improvement [235]. S. Maity et al. solved the grinding 

material selection problem using Fuzzy TOPSIS [189]. L. Anojkumar et al. analyzed the 

material selection problem in the sugar industry using MCDM comparative analysis 

technique. They used the four MCDM techniques Fuzzy AHP, VIKOR, TOPSIS, and 

ELECTRE for this study [17].  

Y. Tan et al. solved the project selection problem of the construction industry using fuzzy 

TOPSIS. They showed that the fuzzy TOPSIS is a very effective tool for all the 

constructors in bidding for the appropriate project [250]. M. P. Amiri analyzed the project 

selection problem for the development of oil fields using fuzzy TOPSIS with AHP [15]. 

Construction projects are dynamic in nature and consist of high risks and uncertainty. Their 

high risks can be effectively evaluated by fuzzy TOPSIS [253].  

The warehouse location selection problem also consists of uncertainty and vagueness. M. 

Ashrafzadeh et al. utilized this approach for solving the warehouse location problem [20]. 

I. Ertugral et al. solved the facility selection location problem using Fuzzy AHP and Fuzzy 

TOPSIS in the textile industry [88]. MCDM approaches can also be successfully applied in 

solving supplier selection problem which consists of quantitative and qualitative criteria 

both.  

DEMATEL method is another effective approach that can be applied for prioritizing the 

critical parameters or risk factors in the automobile spare industry [282], project 

management [299], waste management [53], maintenance management [266], product 

design [127, 173], remanufacturing [241], service quality improvement [59, 69], supplier 

selection [65] and production process problems [261].   

Hsin-Hung Wu et al. identified the technological capability, organization, and service as 

the three most critical dimensions in the automobile spare industry using the DEMATEL 
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method. They identified the five most influential criteria among thirty criteria for 

improvement [282]. Lin Zhang et al. identified the critical risk factors in urban projects for 

controlling the flooding and water shortage using the DEMATEL method. Their finding of 

critical factors is helpful for local government and private capitals to mitigate future risks 

[299].  

Ankur Chauhan et al. identified and prioritized the barriers of waste recycling management 

using this methodology [53]. Davor Vujanovic et al. solved the vehicle fleet management 

problem and evaluated its indicators by ANP (Analytic Network Process) and DEMATEL 

method [266]. 

 DEMATEL methodology can also be used in product design. The designing of smaller 

objects is a difficult task due to its limited design capacity, but DEMATEL methods can 

effectively use in designing a smaller object. Ahmed Ibrahim Alzahrani et al. identified the 

design requirements of mobile phones using DEMATEL methods [127]. Ya-Ti Lin et al. 

identified the seven core competencies of the semiconductor industry for IC design and 

find the interrelation among them using the DEMATEL method [173].  

DEMATEL also helps in identifying the external barrier to remanufacturing [241]. This 

approach can be combined with other MCDM approaches for criteria selection for quality 

improvement [59]. Jianjie Chu et al. enhanced the air travel service quality by prioritizing 

the key service criteria using DEMATEL and gray theory [69]. Sang-Bing Tsai et al. 

solved production process problems using the combined model of DEMATEL with 

FMEA. They enhanced product quality, reliability, competitiveness, and reduced cost 

using this model [261]. 

The above studies show that scheduling parameter prioritization in the automobile industry 

is an untouched area of research and the fuzzy TOPSIS and DEMATEL methods are 

effective in the identification and prioritization of the critical parameters or risk factors of 

various industries problems. 

2.8 Literature review based on the different approaches  

Literature reviews based on different approaches like metaheuristic approaches and 

mathematical models are shown in Table 2.4 to Table 2.13. 

 



38 
 

Table 2.4 Metaheuristic approach-based scheduling classification 1 

Authors Problem Type Factors /Parameters Approach Sector  Country 

C. Lowe et al. [183] Production 
Scheduling 

Average flow time of jobs, Total time spent in system by 
set of jobs, Percentage of products completed, 

Fuzzy Logic Manufacturing New 
Zealand   

Average lateness of jobs, 
   

Fortemps, P. [101] Jobshop Scheduling Makespan, Fuzzy duration, Centre of makespan, Spread 
of makespan 

Fuzzy Approach Industry Belgium 

Ishibuchi, H. [130] Flowshop 
Scheduling 

Makespan, Maximum Tardiness, No. of machine, No. of 
Jobs, total, Flow time 

Genetic Algorithm Manufacturing Japan 

Chanas, S.  et al. [49] Single Machine 
Scheduling 

Maximum Lateness, Fuzzy Processing times, Fuzzy Due 
dates 

Lawler's Algorithm Industry Poland 

Coudert, T. [73] Production 
Scheduling  

Fuzzy Due date, Manufacturing time, Maintenance time, 
No. of activities per machine 

Fuzzy logic Manufacturing  France 

Sudiarso, A. et al. [248]  Production 
Scheduling 

Breakdowns Frequency, Mean number of parts, Optimal 
batch size, Membership Functions 

Fuzzy logic Manufacturing Indonesia 

Dubois, D. et al. [82] Fuzzy scheduling Due date, Release date, Processing time, Makespan Fuzzy Set  Manufacturing  France 

Metaxiotis, K.S. et al. 
[193] 

Production 
Scheduling 

Customer demand, High quality of products & services, 
Customer, Satisfaction, Reliable, delivery date, 

AI-based approach Manufacturing Greece 

  
High efficiency 

   

Oke, S.A. et al. [213] Preventive 
Maintenance  

Cost of production of bolts and nuts, Cost of 
maintenance of Lathe  

Fuzzy logic  Manufacturing Nigeria 

 
Scheduling  machine, Cost of operation of lathe machine 

   

C.D. Geiger et al.  [108] Single Machine 
Scheduling  

Number of Jobs, Traffic Intensity, Due Date Tightness, 
Due Date Variability 

Genetic Algorithm Industry USA 

Srinoi, P. et al. [242] Dynamic 
Scheduling 

Machine Allocated processing time, Machine priority, 
Due date, setup time, Average machine utilisation, 

Fuzzy logic Manufacturing Thailand 

  
work in process, Mean flow times  

   

Atan, M. O. et al. [21] Single CNC machine 
Scheduling  

Controllable processing times, Multiple due dates, Set 
of scheduled jobs, Total weighted earliness, 

Four-stage heuristic 
algorithm  

Manufacturing USA 

  
Weighted tardiness, Tooling and Machining costs 
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Table 2.5 Metaheuristic approach-based scheduling classification 2 

Authors Problem Type Factors /Parameters Approach Sector  Country 

Restrepo, I.M. et al.  
[230] 

Multi-objective  
Scheduling 

Total penalty, Part types, Total machine idle cost, 
Membership, function, Total processing time, 

Fuzzy logic Manufacturing Canada 

  Tardiness cost, Throughput time    
Wang, J. et al. [269] Process Planning 

and scheduling 
Lateness, Tardiness, Operation waiting time, Batch size, 
Due date, Job weight 

H Tardy Algorithm Manufacturing  Singapore 

Fattahi, P. et al. [94] Flexible job shop Schedule Efficiency, Schedule Stability, Processing time, 
Number of assigned operations to machine, Start time 
of operation 

Genetic Algorithm Industry Iran 

Ławrynowicz, A. [165] Job shop scheduling Most work remaining, Least work remaining, most 
operations remaining, Least operations remaining, 
Production plan, Total makespan, SPT, LPT 

Genetic algorithm Manufacturing Poland 

Ming-Shan Lu et al. 
[186] 

Dynamic 
dispatching 

Average arrival interval of jobs, Due date, Total 
Processing time, Mean flow time, mean tardiness 

Fuzzy logic Manufacturing China 

Agrawal, R. et al. [7] Flexible Job shop 
Scheduling 

No. of Jobs, No. of machine, Make Span time, Total 
machining time, Maximum Completion time 

Genetic Algorithm Manufacturing  India 

 Cesaret, B. et al. [43] Single Machine  
Scheduling 

Total Revenue, Sequence dependent Set up times, 
Release dates, Due dates, Tardiness 

Tabu search  Manufacturing  Turkey 

Chen, G. et al. [58]  Machine Startup & 
Shutdown 
Scheduling 

Production rate, Work in process, Machine starvation, 
Machine blockage 

Markovian Analysis, 
Greedy Algorithm 

Automotive 
Paint Shop  

USA 

Fang, K.T. et al. [93] Parallel Machine 
Scheduling 

Tardiness penalty, Power cost, No. of jobs, No. of 
machines, Due date, Completion time, Tardiness 

Particle Swarm opt. Industry Taiwan 

Hao-Cheng Liu et al.  
[177] 

Liquid Crystal 
Injection  

Automated guided vehicle dispatching, Tardiness of 
cassettes 

Self-adjusted fuzzy 
(SAF) method  

Electronics USA 

 
Scheduling 

    

Santiago, C.A.G. et al. 
[107] 

Energy efficient 
scheduling  

Energy Consumption, Energy Efficiency Harmony search  Industry Spain 
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Table 2.6 Metaheuristic approach-based scheduling classification 3 

Authors Problem Type Factors /Parameters Approach Sector  Country 

Fadi Shrouf et al. [239] Single Machine 
Scheduling  

Total Energy Consumption, No. of jobs, Processing time, 
Idle time, Turning on & off time 

Genetic Algorithm Industry Italy 

Jiang, Z. et al. [140] Job-shop 
Scheduling 

Makespan, processing cost, energy consumption, cost-
weighted processing quality, Environmental emissions 

Genetic Algorithm Industry China 

Liu, Y. et al. [180] Job Shop 
Scheduling 

Total energy consumption, Total weighted tardiness, 
Tardiness factor, Population size, Crossover probability, 

Genetic Algorithm Manufacturing UK 

  
Mutation probability 

   

Shen, X.N. et al. [238] Job shop scheduling Completion time, Due date, Operation processing time, 
Number of operations assigned to the machine, Job 
release time, Number of unprocessed and available 
operations left in job 

Evolutionary 
algorithms 

Manufacturing China 

D. Tang et al.  [251] Flexible flow shop Energy Consumption, Makespan, No. of machine, No. of 
jobs, Processing time, Setup time, Spindle Speed, 
Unload Power 

Particle Swarm opt. Manufacturing  China 

Knyazevaa, M. et al.  
[157] 

Project Scheduling Fuzzy numbers, computational time, Fuzzy plan 
Fuzzy resource allocation, Heuristic priority rules 

Fuzzy Logic Industry Russia 

May, G. et al. [191] Job Shop 
Scheduling 

Makespan, Energy Consumption Genetic algorithm  Manufacturing  USA 

Ali Bozorgi et al.  [35] Unit Maintenance 
Scheduling  

Production cost, Peak loads, Repetitive Iterations, Peak 
demand 

Fuzzy Framework Electrical Iran 

Bagchi, S. [26] Distributed 
scheduling 

Overall resource utilization, Throughput, Estimation 
intervals, Snapshot intervals, Scheduling events 

Fuzzy logic Industry Republic 
of Korea 

Khalid Abd [2] Dynamic 
Scheduling 

Sequencing rule, Dispatching rule, Cell utilisation, Due 
date tightness 

Fuzzy Logic Manufacturing Australia 

Chia-Yu Hsu et al.  
[124] 

Distributed Job 
Shop Scheduling 

No. of Jobs, Makespan, Average flow time, Computation 
time, Average no. of unsatisfied Jobs 

Fuzzy Constraint 
Directed Approach 

Manufacturing  Taiwan 

Wang, J. et al. [277] Batch scheduling Energy consumption, Total weighted tardiness, 
Processing time, Arrival time, Due dates 

Fuzzy logic Industry China 
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Table 2.7 Metaheuristic approach-based scheduling classification 4 

Authors Problem Type Factors /Parameters Approach Sector  Country 

Yan, J. et al. [287] Flexible flowshop 
Scheduling 

Cutting energy, Cutting time, Makespan, Total Energy 
Consumption 

Genetic Algorithm Manufacturing China 

Aghelinejad, M. M. et 
al. [5] 

Production 
scheduling 

Time dependent energy costs, Computational time, 
Total number of periods, Number of jobs, Processing 
time, States of the machine 

Genetic Algorithm Manufacturing France 

Chao Lu et al. [185] Dynamic scheduling  Job Release Delay, Processing times, Setup times, 
Transportation time, Makespan, Machine load 

Grey Wolf 
Optimizer 

Welding 
Industry 

China 

Wang, D. J.  et al. [267] Dynamic scheduling  Operational Cost, Cost of deviation Directed Search 
Genetic Algorithm  

Container 
Manuf. 

China 

Geyik, F. et al. [109] Parallel Processor  
Scheduling 

Production time, Welder Ability, Welder experience, 
Batch size, Learning effect rate, Makespan  

Fuzzy logic Welding 
Industry 

Turkey 

Amirian, H. et al. [16] Project Selection 
Scheduling  

Time-dependent profits, total cost, total unused 
resources 

Particle Swarm opt. Manufacturing  Iran 

Escamilla, J. et al. [89] Job shop scheduling Processing time, Cost, Quality, Energy efficiency, 
Makespan 

Genetic Algorithm Tin Industry Spain 

Litoiu, M. et al. [174] Real-time task 
Scheduling  

Processing times, Deadlines, Fuzzy number, Optimal 
assignment of Priorities 

Fuzzy Logic Industry Italy 

Subbaiah, K. V.  et al.  
[247] 

FMS Scheduling Makespan, Mean Tardiness, Population size, Iterations 
completed, Due Date, Lateness value 

Sheep flock heredity 
algorithm  

Industry India 

Toksan, M.D. et al.  
[258] 

Single machine 
Scheduling 

Learning effect, Fuzzy Processing time, Makespan, Total 
completion time, Total weighted completion time 

Fuzzy logic Manufacturing Turkey 

Xiao, Y. et al. [286] Green Vehicle 
routing & 
Scheduling 

Servicing customer Due-time, Customer Tardiness 
penalty coefficient, Vehicle maximum payload capacity, 
Vehicle maximum travel length 

Genetic algorithm Logistics China 

Xiuli Wu et al. [285] Flexible Job shop 
Scheduling  

Makespan, Energy consumption, Numbers of turning-
on/off machines, Processing Speed, Ideal Speed 

Genetic Algorithm Manufacturing China 

 Zou, X. et al. (2018) 
[304] 

Production 
Scheduling 

Capacity constraints, Vehicle routing, Order delivery 
time, Production Sequence 

Genetic Algorithm Manufacturing China 

 
& Vehicle routing 

    

 



42 
 

Table 2.8 Algorithm/ Mathematical model approach-based scheduling 1 
Authors Problem Type Factors /Parameters Approach/Model Sector  Country 

Dubois, D. et al.  [82] Job Shop  No. of Jobs, set of operations, Release date, Due date Mathematical Model Manufacturing France 

Kuroda, M. et al.  
[162] 

Job shop 
scheduling 

Fuzzy Due date, Fuzzy Processing times, Processing Routes Branch and  
bound Algorithm 

Manufacturing Japan 

Yu, L. et al.  [291] FMS Scheduling Decision Function, Mean absolute slack, percentage of JIT, 
Flow time, Average Arrival interval 

Multi Criteria 
Decision Making 

Manufacturing Japan 

Choi, S.H. et al. [66] Job-shop 
scheduling 

Processing time, Release time of operation, Delivery time of 
operation, Start time of operation, Makespan 

Quick value-setting 
Algorithms 

Manufacturing China 

Kuo, W.H. et al. [161] Single machine 
Scheduling  

Total completion time, Time-dependent learning effect 
job sequence 

Mathematical 
model, SPT rule 

Manufacturing Taiwan 

Oke, S.A. et al. [212] Maintenance 
Scheduling  

Total preventive maintenance scheduling cost, Production 
cost 

Mathematical Model Shipping 
Industry 

Nigeria 

Muhuri, P.K. et al.  
[205] 

Real-time task 
Scheduling  

Fuzzy deadlines, Fuzzy processing times, Membership 
functions 

Simulation  
experiments 

Industry India 

Zuo, Y. et al. [305] Job-shop 
Scheduling 

Release time, Earliest operation due date, non-constraint 
machine, Maximum lateness of jobs 

Shifting bottleneck 
Methods 

Manufacturing China 

Moghaddam, R.T. et 
al.  [252] 

Single machine  
Scheduling 

Total weighted tardiness, Makespan, Decision maker 
Objective functions, Satisfaction degrees 

Linear programming Manufacturing Iran 

Capon-Garcia, E. et al. 
[161] 

Batch Process 
Scheduling 

 Makespan, Environmental Impact, Economic Concern, Plant 
Profitability, Productivity  

Mathematical Model Industry Spain 

Castro, P.M. et al.  [42] Multiproduct 
plant Scheduling 

Electricity Price, Power Availability, Due date, Production 
level 

Mixed Integer linear 
prog. 

Manufacturing Portugal 

Fang, K. et al. [91] Flow Shop 
Scheduling 

Peak Power load, Energy Consumption, Carbon footprint,  
Makespan 

Mixed Integer Prog. Manufacturing USA 

Rajabinasab, A. et al. 
[226] 

Job shop 
scheduling 

Stochastic job arrivals, Uncertain processing times, 
Unexpected Shop utilization level, Due date tightness, 
Breakdown level, mean time to repair 

Agent-based  
approach 

Manufacturing Iran 

Vincent, T.  [265] Just-in-time 
Scheduling  

No. of jobs, No. of machines, No. of sublots per operation, 
Number of indivisible elements, Release date, Due date 

MCDM Manufacturing France 
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Table 2.9 Algorithm/ Mathematical model approach-based scheduling 2 

Authors Problem Type Factors /Parameters Approach/Model Sector  Country 

Benmansour, R. et al. 
[30] 

Single machine 
Scheduling  

Expected total weighted deviations, Completion times, 
Common due date, Stochastic breakdowns, exponentially 
distributed uptimes and downtimes, early tardy penalty 

Mathematical Model Manufacturing France 

Bruzzone, A.A.G. et al. 
[40] 

Energy Aware 
Scheduling 

Tardiness, Makespan, Peak of Power Mixed Integer Prog. Manufacturing Italy 

Kamaruddin, S. et al. 
[144] 

Production 
Scheduling 

Average throughput time, Lateness, Labour productivity, 
Production rate machine, Process capability   

ANOVA Radio Cassette 
Industry 

Malaysia 

Yao, F.S. et al. [288] Flow-shop 
Scheduling 

Time complexity, Completion Time, Makespan Polynomial 
Algorithms 

Semiconductor 
Manufacturing 

China 

Artigues, C. et al. [18] Energy Scheduling Energy, Resource, Tardiness, Total time Integer Programming Industrial France 

C. Ozguven & B. 
Sungur [216] 

Workforce 
Scheduling 

Worker’s type, Work type, Worker Cost, No. of off days, 
Shift types, No. of workers 

Integer Programming Industry Turkey 

Deming Lei et al.  
[167] 

Job-shop 
Scheduling 

Interval carbon footprint, Makespan, Uncertainty, 
Heterogeneous resources 

Lexicographical 
Method 

Manufacturing China 

Fang Fu [103] Project Scheduling  Inventory holding cost, Back-order cost Mixed Integer Prog.  Construction China 
Fang, K. et al. [92] Flow shop 

scheduling 
Makespan, Peak Power consumption, Running time, No. of 
jobs 

Mixed Integer Prog. Manufacturing USA 

Fang, K.T. et al. [93]  Parallel Machine 
Scheduling 

Tardiness penalty, Power cost, No. of jobs, No. of machines, 
Due date, Completion time, Tardiness 

Integer Programming Industry Taiwan 

Gonzalez, P. P. et al. 
[220] 

Scheduling 
Policies 

Common due dates, Scheduling policy, Total tardiness, Set 
of jobs, Makespan 

Design of 
Experiments 

Manufacturing Spain 

Luo, H. et al. [187] Dynamic 
Scheduling 

Processing time, Due Date, Makespan, Shop Floor Visibility Multi period 
hierarchical Sched. 

Manufacturing China 

Mishra, A. et al. [197] Real Time Task  
Scheduling 

Energy consumption, No. of task, No. of cores, Core speed,  
Iterations, Task Deadline 

Monte Carlo 
Algorithm 

Electronics India 

Vakhania, N. et al.  
[264] 

Scheduling 
Unrelated M/c  

Set of jobs, Processing times, Set of unrelated parallel 
machines, Makespan 

Linear Programming Manufacturing Germany 
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Table 2.10 Algorithm/ Mathematical model approach-based scheduling 3 
Authors Problem Type Factors /Parameters Approach/Model Sector  Country 

Le Liu et al. [178] Single machine 
Rescheduling 

Linear deteriorating jobs, Position-based learning effects, 
Scheduling efficiency, Job actual processing time, maximum 

Polynomial 
Solvability 

Manufacturing China 

 
  sequence disruption 

   

Gong, X. et al. [112] Single Machine 
Scheduling  

Machine state, Average power, Cycle duration, Due date, 
Electricity cost, Demand response, Energy Efficiency 

Mixed-integer linear 
Programming 

Manufacturing Belgium 

Jinwen Ou et al. [215] Parallel Machine 
Scheduling 

Job Completion time, Total Penalty of all rejected jobs 
Number of Jobs Accepted 

Worst-Case Bound Manufacturing China 

Yin, Y. et al. [289] Single machine 
Scheduling  

Total Completion Time, Total Rejection Cost, Average 
running time, Average number of states 

Improved Shabtay 
Algorithm 

Industry China 

Bennella, J.A. et al. 
[31] 

Dynamic 
Scheduling 

Runway throughput, Earliness, Lateness, Cost of fuel, Flight 
time 

Dynamic 
Programming 

Aircraft Industry UK 

Chakrabortty, R.K. et 
al.  [44] 

Project Scheduling Deterministic renewable resource, Uncertain activity 
durations, Resource Capacity, Resource usage of activity for 
resource 

Branch and Cut 
algorithm  

Industry Australia 

Kim, S.H. et al. [155] Production 
Planning  

Manufacturing lead time, the number of setup events, 
Available work-in-process (WIP) level, Feasibility, 

Linear Programming Fabrication 
Industry  

Republic of 
Korea  

and Scheduling Demand satisfaction 
   

Alessandro et al. [6] Integrated 
Production 

Fixed Departure time & Inventory holding cost, Batch 
Scheduling, Integrated logistics, Production Planning, 

Assignment Problem 
(Lexmin Algorithm) 

Manufacturing Italy 

 Scheduling Supply chain coordination    
Cheng, T.C.E. et al. 
[63] 

Flow shop 
Scheduling 

Makespan, Resource level, relocation problem, Johnson’s algorithm Manufacturing Hong Kong 

Devapriya, P. et al. 
[79] 

Production 
Scheduling 

Cost, Fleet size, Trucks’ routes, Product lifetime, Travel time, 
Capacity of each truck 

Mixed Integer Linear 
Programming 

Packaging 
Industry 

USA 

Gong, X. et al. [113] Production 
scheduling 

Energy consumption, Due Date, Labour Cost, Electricity Cost Mixed-integer linear 
Programming  

Plastic Bottle 
Manufacturing 

Belgium 

Kim, S. et al. [154] Machine shop 
Operations 

Spindle speed, Feed rate, Depth of cut, Actual Average 
Power Consumption 

Regression Analysis Manufacturing USA 

 
Scheduling 
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Table 2.11 Algorithm/ Mathematical model approach-based scheduling 4 

Authors Problem Type Factors /Parameters Approach/Model Sector  Country 

Lei Li et al. [170] Operation 
Scheduling 

Energy Consumption, start time of process, Completion time 
of process, Processing sequence number, Duration of 
operation, Duration of process, Idling time, Energy 
efficiency, Makespan 

Mathematical Model Multi-hydraulic  
press Industry 

China 

Liang-Liang Fu et al. 
[104] 

Production 
scheduling  

Job splitting, Delivery time windows, Total setup cost, 
Transportation Cost 

Mixed Integer Linear 
Programming 

Metal Packaging 
Industry 

France 

Lu, C. et al. [184] Flow Shop 
Scheduling 

Setup time, Transportation time, Energy saving, Makespan Backtracking search  
Algorithm 

Industry China 

Pfund, M. E. et al. 
[221] 

Deterministic 
Scheduling  

Makespan, Number of late jobs, Total overtime, Average 
machine finishing time, Machine utilisation 

Simulation model Printed Wiring 
Board 
Manufacturer’s  

USA 

Seokgi Lee et al. [166] Production 
Scheduling 

Due dates, Total penalty costs, Earliness, tardiness, total 
energy consumption costs 

Mixed integer  
Nonlinear prog. 

Manufacturing USA 

Toksan, M.D. et al. 
[258] 

Single machine 
Scheduling 

Position-dependent fuzzy learning effect, Fuzzy Processing 
time, Makespan, Total completion time, Total weighted 
completion time 

Mixed Integer Linear 
Programming 

Manufacturing Turkey 

Wang, Y. et al. [276] Multi-project 
scheduling 

Activity duration, Schedule quality, Robustness, Risk level, 
Priority rule 

Full Factorial 
Experiment 

Manufacturing China 

Zhai, Y. et al. [297] Dynamic 
Scheduling 

Wind energy, Wind Speed, Electricity prices, Carbon 
footprint Working power, Job Processing time, Stand-by 
power 

Time Series Models Manufacturing USA 
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Table 2.12 Hybridisation approach-based scheduling 
Authors Problem Type Factors /Parameters Approach Sector  Country 

Ishibuchi, H. et al. [131] Flow Shop 
Scheduling 

No. of Sampled Solutions, Average value of Probability 
function, Length of taboo list, Fuzzy due date 

Simulated Annealing 
Taboo Search 

General Japan 

Soon, T.H. et al. [122] Simulation Based 
Scheduling  

Lateness, Flow time, Tardiness, Resource utilization Simulation 
technique, ANN 

Manufacturing Singapore 

Tedford, J.D. et al. [254] Production  
Scheduling 

Difficulty, Run length, Priority, Machine performance, 
Machine reliability, Makespan, Flow time, Lateness, 

Fuzzy logic 
Genetic Algorithm 

Manufacturing New 
Zealand 

Asif Raza, S. et al. [229] Maintenance  
Scheduling 

Maintenance time, No. of Jobs, Continuous working 
time, Cost of Algorithm 

Tabu Search 
Simulated Annealing 

Manufacturing Canada 

Ballestin, F. & Leus, R. 
[27] 

Single machine 
Scheduling 

Stability, Job duration, Deviation between starting 
time 

Three Metaheuristic 
algorithms 

Manufacturing Spain 

Dhingra, A. et al. [80] Flow shop  
scheduling 

Set up time, No. of jobs, Total weighted tardiness, 
Total Weighted Earliness, Makespan 

Hybrid Simulated 
Annealing 

Manufacturing India 

Hsien-Chung Wu (2010) 
[283] 

Single Machine 
Scheduling  

Fuzzy earliness, Earliness, Tardiness, Fuzzy due date, 
Fuzzy processing time, Fuzzy completion time 

Fuzzy logic 
Genetic Algorithm 

Industry Taiwan 

Xiang gang, W. et al.  
[275] 

Project Scheduling Membership function, Resource cost, Capital cost, 
Activity duration, Simulation time, Population size 

Fuzzy logic 
Genetic Algorithm 

Manufacturing China 

Min Dai et al. [76] Flexible Flow shop Makespan, Total energy consumption, Idle energy  Genetic Simulated  Workshop China  
 Scheduling consumption, Energy consumption ratio Annealing algorithm 

  

Huang, J. et al. [125] Job shop 
scheduling 

Dispatching Rule, Makespan, Average flow time, 
Maximal tardiness, and total tardiness. 

Genetic Algorithm 
Fuzzy logic 

Manufacturing USA 

Chaurasia, S.N. et al. 
[54] 

Single Machine 
Scheduling 

Release dates and sequence dependent setup times 
Population size, No. of optimal Solutions 

Genetic Algorithm 
Evolutionary Algo. 

Industry India 

 Palacios, J. J. et al. [143] Job Shop 
Scheduling 

Fuzzy Makespan, Predictive Robustness Fuzzy logic 
Tabu Search 

Manufacturing Spain 

Liu, G.S. et al. [175]  Flow shop 
Scheduling  

Energy consumption, Tardiness penalty, setup time, 
Tardiness, Processing times, Due dates  

Fuzzy logic 
Genetic Algorithm 

Tire industry 
(Automotive) 

China 

Mokhtari, H. et al. [200] Flexible Job- 
Shop Scheduling 

Total completion time, Total availability of system, 
Energy consumption  

Genetic & Simulated 
Annealing Algorithm 

Manufacturing Iran 
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Wen, H. et al.  
[279] 

Production 
Planning  
& Scheduling 

Machine Processing time, Inventory cost, unit 
processing Time cost, Setting up cost, Over production 
penalty, Below production penalty 

Simulation technique 
Neural network  
& Genetic algorithms 

Manufacturing China 

Zandieh, M. et al. [295] Job shop 
scheduling 

Condition-based maintenance, Makespan, Total no. of 
Jobs, Total no. of machines, Total no. of Operations, 
Processing time 

Imperialist 
Competitive Algo. 
Simulated Annealing 

Industry Iran 

Gong, G. et al. [110] Double flexible Job 
Shop scheduling  

Processing time, Processing cost of workers, Energy 
consumption, Noise, Recycling of tool chip, Safety, Skill 
level of workers 

Hybrid Genetic  
Algorithm 

Manufacturing China 
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Table 2.13 Constraint based scheduling 

Authors Problem Type Factors /Parameters Approach Sector  Country Constraint 

Dubois, D. et al.  
[83] 

Job Shop 
Scheduling 

No. of Jobs, set of operations, Release date, 
Due date 

Mathematical 
Model 

Manufacturing France Fuzzy Constraints 

Fortemps, P. [101] Jobshop 
Scheduling 

Makespan, Fuzzy duration, Centre of 
makespan, Spread of makespan 

Fuzzy Approach Industry Belgium Precedence  

Oke, S.A. et al. 
[213] 

Preventive 
Maintenance  
Scheduling 

Cost of production of bolts and nuts, Cost of 
maintenance of Lathe machine, Cost of 
operation of lathe machine 

Fuzzy logic  Manufacturing Nigeria Resource-
constrained  

Oke, S.A. et al. 
[212] 

Preventive 
maintenance  

Total preventive maintenance scheduling 
cost, Production cost 

Mathematical 
Model 

Shipping 
Industry 

Nigeria Resource-
constrained  

scheduling 
     

Allahverdi, A. [12] Three Machine 
Flow-shop 
Scheduling 

Makespan, Setup & Processing time, Set of 
Schedule 

Computational 
Analysis 

Manufacturing Kuwait Setup & Processing 
time 

Muhuri, P.K. et al. 
[205] 

Real-time task 
Scheduling  

Fuzzy deadlines, Fuzzy processing times, 
Membership functions 

Simulation  
experiments 

Industry India Fuzzy timing 
constraints 

Xianggang, W. et 
al.  [275] 

Project 
Scheduling 

Membership function, Resource cost, Capital 
cost, Activity duration, Simulation time, 
Population size 

Fuzzy logic 
Genetic 
Algorithm 

Manufacturing China Resource-
Constrained 

Castro, P.M. et al. 
[42] 

Multiproduct 
plant scheduling 

Electricity Price, Power Availability, Due date, 
Production level  

Mixed Integer 
linear Prog. 

Manufacturing Portugal Energy 

Vincent, T. [265] Just-in-time  
Scheduling 

No. of jobs, No. of machines, No. of sublots 
per operation, Number of indivisible 
elements, Release date, Due date 

MCDM Manufacturing France Lot-streaming 
constraint 

Cesaret, B. et al. 
[43] 

Single Machine  
Scheduling 

Total Revenue, Sequence dependent Set up 
times, Release dates, Due dates, Tardiness 

Tabu search  Manufacturing  Turkey Production Capacity 
Order delivery 

Artigues, C. et al. 
[18] 

Energy 
Scheduling 

Energy, Resource, Tardiness, Total time Integer 
Programming 

Industrial France Energy 

Deming Lei et al. 
[167] 

Job-shop 
Scheduling 

Interval carbon footprint, Makespan, 
Uncertainty, Heterogeneous resources 

Lexicographical 
Method 

Manufacturing China Dual resource 
constrained 

Fang Fu [103] Project 
Scheduling  

Inventory holding cost, Back-order cost Mixed Integer  Construction China Resource 
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Fang, K. et al.  [92] Flow shop 
scheduling 

Makespan, Peak Power consumption, Mixed Integer 
Prog. 

Manufacturing USA Peak Power 
consumption 

Knyazevaa, M. et 
al. [157] 

Project 
Scheduling 

Fuzzy numbers, computational time, Fuzzy 
plan, Fuzzy resource allocation, Heuristic 
priority rules 

Fuzzy Logic Industry Russia Resource 

Bennell, J.A. et al.  
[31] 

Dynamic 
Scheduling 

Runway throughput, Earliness, Lateness, Cost 
of fuel, Flight time 

Dynamic 
Programming 

Aircraft 
Industry 

UK Time window 
constraints 

Chia-Yu Hsu et al.  
[124] 

Distributed Job 
Shop Scheduling 

No. of Jobs, Makespan, Average flow time,  
Computation time, Average no. of unsatisfied 
Jobs 

Fuzzy Constraint 
Directed 
Approach 

Manufacturing  Taiwan Set of Fuzzy 
constraint 

Cheng, T.C.E. et 
al.  [63] 

Flow shop 
Scheduling 

Makespan, Resource level, relocation 
problem 

Johnson’s 
algorithm 

Manufacturing Hong 
Kong 

Resource 
Constrained  

Devapriya, P. et 
al. [79] 

Production 
Scheduling  

Cost, Fleet size, Trucks’ routes, Product 
lifetime, Travel time, Capacity of each truck 

Mixed Integer 
Linear Prog. 

Packaging 
Industry 

USA Planning horizon 
constraint 

Seokgi Lee et al. 
[166] 

Production 
Scheduling 

Due dates, Total penalty costs, Earliness, 
tardiness, total energy consumption costs 

Mixed integer 
Nonlinear Prog.  

Manufacturing USA Energy 
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Fig. 2.8 Metaheuristic approaches-based scheduling (Total 48 Papers) 

 

Fig. 2.9 Algorithm/ Mathematical model approach-based scheduling (Total 51 Papers) 

 

Fig. 2.10 Country researchers in scheduling (Total 136 Papers) 
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Fig. 2.11 Most important parameters in scheduling (136 papers) 

 

Table 2.14 Identified research gaps with their research objectives 

Identified research Gaps  Research objectives taken for 

fulfilling the research gaps 

Material selection of automotive part 

manufacturing is also identified as new area 

of research identified from the literature 

review. 

To find out the best material for 

automotive part manufacturing  

 

Prioritization of maintenance task on 

industrial equipment, prioritization of jobs in 

FMS are touched areas of research but 

Prioritization of PDC Automotive parts using 

various dispatching rule is new area of 

research. 

Prioritize the automotive parts for 

production operations using 

various dispatching rules and to 

minimize the scheduling 

parameters such mean flow time, 

weighted mean flow time and 

maximum lateness etc 

Scheduling work like production scheduling 

in ERP System, scheduling of FMS system, 

energy efficient scheduling in bottle industry 

are covered area of research but scheduling of 

Automotive parts manufacturing is untouched 

area of research. 

To develop energy efficient 

scheduling system for automotive 

part manufacturing and to find 

out the best feasible routes of 

machining these parts. 

No previous study is found related to 

modelling and simulation of automotive part 

manufacturing. 

To develop a simulation model 

for automotive part 

manufacturing 

No case study is found on prioritizing 

scheduling parameters of automotive part 

manufacturing in Indian automotive industry.  

To identify and prioritize the 

scheduling parameters in the 

automotive industry 

 

 

0

5

10

15

20

25

30

35

40

45

50

No. of Papers



52 
 

 

Fig. 2.12 Flowchart of research work 
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Chapter-3 

RESEARCH METHODOLOGY 

3.1 Material selection methodology 

Material Selection Methodology includes the MCDM methods and optimization methods. 

MCDM method is stratified into two types, MADM and fuzzy MCDM methods. Multiple 

objective decision making, mathematical programming, computer simulation, and genetic 

algorithm come in the category of optimization methods [134]. The stratification of 

material selection methods is shown in Fig. 3.1. 

 

 

Fig. 3.1 Stratification of material selection methods [134] 

3.1.1 TOPSIS methodology 

TOPSIS methodology was proposed by Tzeng and Huang in 1981. TOPSIS is an MCDM 

tool generally used in combination with MOORA, AHP, ELECTRE, or PROMETHEE. 

The advantage offered by this technique is that it allows a tradeoff between the criteria 

where a bad result by one criteria is compensated by a good result by other criteria [211]. 

TOPSIS is a simple approach and it is superior to other MCDM techniques for the material 

selection problems because it handles qualitative as well as quantitative information [129]. 

For the proper material selection of crankcase cover, we must compare the attributes or 

properties of these crankcase cover. The seven attributes taken for this study are Brinell 

hardness, yield strength, % elongation, ultimate tensile strength, young’s modulus, fatigue 

strength, and material cost. The Six alternatives are taken which are commonly used in the 
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industries are Alloy 360, Alloy 380, Alloy A380, Alloy 383, Alloy B390, and Alloy 13. 

These material selection criteria are shown in Fig. 3.2. 

 

Fig. 3.2 Material selection criteria of TOPSIS 

MCDM methods helps in identifying the best alternative based on different criteria. 

TOPSIS is one of the best methods of MCDM in dealing with real-life problems [292]. The 

steps of TOPSIS methodology are as follows: 

Step 1 The first step is to construct a Decision Matrix based on different alternatives and 

criteria. 

𝑋 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ ⋯ 𝑥2𝑛
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
𝑥𝑚1 𝑥𝑚2 ⋯ ⋯ 𝑥𝑚𝑛]

 
 
 
 

                                                                                                  (1) 

Where i = alternative index (1, 2, 3…m) and j=criterion index (j = 1, 2, 3…n) in Eq. (1). 

Step 2 Find the normalized decision matrix (𝑅𝑖𝑗) using Eq. (2). 

𝑅𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

                                                                                                                                 (2) 

Step 3 Calculate the weighted decision matrix 𝑑𝑖𝑗using Eq. (3) 

𝑑𝑖𝑗 = 𝑤𝑗 × 𝑅𝑖𝑗                                                                                                                                                                                      (3) 

Step 4 Find the positive ideal solution 𝐴+and negative ideal solution 𝐴−. 

𝐴+ = {𝑑1
+, 𝑑2

+. . . . , 𝑑𝑛
+},𝑤ℎ𝑒𝑟𝑒: 𝑑𝑗

+ = {(𝑚𝑎𝑥 𝑖 (𝑑𝑖𝑗)𝑖𝑓𝑗 ∈ 𝐾); (𝑚𝑖𝑛 𝑖 (𝑑𝑖𝑗)𝑖𝑓𝑗 ∈ 𝐾
′)}      (4)
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𝐴− = {𝑑1
−, 𝑑2

−. . . . , 𝑑𝑛
−},𝑤ℎ𝑒𝑟𝑒: 𝑑𝑗

− = {(𝑚𝑖𝑛 𝑖 (𝑑𝑖𝑗)𝑖𝑓𝑗 ∈ 𝐾); (𝑚𝑎𝑥 𝑖 (𝑑𝑖𝑗)𝑖𝑓𝑗 ∈ 𝐾
′)}      (5)

 
 

Where, K and K' are beneficial and the non-beneficial based attributes in Eq. (4-5) [272]. 

Step 5 Calculate the separation distances (𝑆+ & 𝑆−) of each alternative from ideal and non- 

ideal solution using Eq. (6) and Eq. (7). 

𝑆+ = √∑(𝑑𝑗
+ − 𝑑𝑖𝑗)2 

𝑛

𝑗=1

                                                                                                                   (6) 

𝑆− = √∑(𝑑𝑗
− − 𝑑𝑖𝑗)

2

𝑛

𝑗=1

                                                                                                                    (7) 

Step 6 Measure the relative closeness𝐶𝑖 values using the Eq. (8) 

𝐶𝑖 =
𝑆𝑖
−

𝑆𝑖
+ + 𝑆𝑖

− , 0 ≤ 𝐶𝑖 ≤ 1                                                                                                               (8) 

Step 7 Based on the relative closeness values, ranking of alternatives is obtained. 

3.1.2 MOORA methodology 

MOORA methodology is a multi-objective optimization technique which is preferred than 

other MCDM approach because of its fast computational time. MOORA methodology 

consists of two components. The first one is the ration system developed in 2004 by 

Brauers and the other in reference point approach developed in 2006 by Brauers and 

Zavadskas. This technique is used in solving various complex decision-making problems 

[38, 45]. This technique can optimize the two or more conflicting criteria at the same time 

e.g. minimize cost and maximize profit [146]. The methodology of MOORA is as follows: 

Step 1 Find the decision matrix 𝑋 in which 𝑥𝑖𝑗  shows performance index of 𝑖𝑡ℎ 
alternative 

w.r.t 𝑗𝑡ℎ attribute, i = 1, 2, …, m and j = 1, 2, …, n in Eq. (9). 

𝑋 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ ⋯ 𝑥2𝑛
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
𝑥𝑚1 𝑥𝑚2 ⋯ ⋯ 𝑥𝑚𝑛]

 
 
 
 

                                                                                                  (9) 

Step 2 Find normalized decision matrix 𝑥𝑖𝑗
∗ using Eq. (10) 
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xij
∗ =

xij

√∑ xij
2m

i=1

, 0 < xij
∗ < 1                                                                                                          (10) 

Step 3 The overall performance score of each alternative𝑦𝑖
∗ is calculated by adding all 

beneficial criteria and subtracting the non- beneficial criteria as given in Eq. (11). 

yi
∗ =∑xij

∗

q

j=1

− ∑ xij
∗

n

j=q+1

                                                                                                                   (11) 

Here, q and (n - q) are the number of beneficial and non-beneficial criteria respectively. 

Eq.(12) can be used for giving weights to the different criteria [45, 146]. 

yi
∗ =∑wjxij

∗

q

j=1

− ∑ wjxij
∗

n

j=q+1

                                                                                                         (12) 

Step 4 The ranking of alternatives is obtained using yi
∗values from Eq. (11) and Eq. (12). 

These above four steps show the calculation of the ration system part of MOORA method. 

The reference point part is shown in step 5 and 6. 

Step 5 Determine the Tchebycheff Min–Max metric [39] 

)13(}{ *
max

min

ijj
j

i xs −  

sj is the jth coordinate of the reference point which shows those alternatives having most 

desirable performances with respect to jth criterion. For determining𝑠𝑗, Eq. (14) may be 

used. Eq. (15) can be used in case of assigning weightages to alternatives. 

)14(,{
*

*

max

min

iji

iji

x

xjs

max xij
∗    represents beneficial criteria &  𝑚𝑖𝑛 𝑥𝑖𝑗

∗  represents non-beneficial criteria. 

)15(}{ *
max

min

ijjjj
j

i xwsw −  

Step 6 Finally, selection of alternatives is done using the minimum deviation value from 

reference point [146]. 

3.1.3 PROMETHEE methodology 

PROMETHEE is an MCDM method developed by Brans et al. [36, 37]. PROMETHEE 

methodology is classified into two types PROMETHEE I and PROMETHEE II. 

PROMETHEE I is used for obtaining the partial ranking of alternatives whereas 

PROMETHEE II provides the full ranking of alternatives.  
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The aggregated preference index of ‘a’ over ‘b’ is represented by 𝜋(𝑎, 𝑏) for each 

alternative a, belonging to the set A of alternatives. The leaving flow 𝜙+(𝑎) and the 

entering flow𝜙−(𝑎) show the positive and negative dominancy of alternative ‘a’ on all 

another alternative. 

The methodology of PROMETHEE II is described as follows. 

Step 1 Normalize the evaluation matrix or decision matrix (𝑅𝑖𝑗) 

Rij =
[xij −min( xij)]

[max( xij) − min( xij)]
                                                                                                       (16) 

Rij =
[max( xij) − xij]

[max( xij) − min( xij)]
                                                                                                       (17) 

Where, i=1, 2, …, m; j=1, 2,…, n. Eq. (16) and Eq. (17) are applicable for beneficial and 

non-beneficial criteria respectively. 

Step 2 Calculate the evaluative differences of 𝑖𝑡ℎ alternative with respect to another 

alternative 

Step 3 Calculate the preference function 𝑃𝑗(𝑠, 𝑡) using Eq. (18) and Eq. (19). 

Pj(s, t) = 0      if Rsj ≤ Rtj                                                                                                                     (18) 

Pj(s, t) = (Rsj − Rtj)   ifRsj > Rtj                                                                                               (19) 

Step 4 Determine the aggregated preference function 𝜋(𝑠, 𝑡) 

π(s, t) = [
∑ WjPj(s, t)
n
j=1

∑ Wj
n
j=1

]                                                                                                            (20) 

Step 5 Calculate the leaving and the entering outranking flows 

Leaving flow for sth alternative 

ϕ+ =
1

m − 1
∑π(s, t)

m

t=1

(s ≠ t)                                                                                                    (21) 

Entering flow for sth alternative 

ϕ− =
1

m− 1
∑ π(t, s)

m

t=1

(s ≠ t)                                                                                                     (22)
 

Where, m is number of alternatives in Eq. (21) and Eq. (22) 

Step 6 Calculate the net outranking flow 𝜙(𝑠) for each alternative 

ϕ(s) = ϕ+(s) − ϕ−(s)                                                                                                                  (23) 

Step 7 Determine the ranking of alternatives based on the net outranking flow value   𝜙(𝑎). 
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3.2 Fuzzy methodology 

The concept of fuzzy logic was developed by Lotfi Zadeh in 1965. This approach can 

process data by providing a piece of incomplete and uncertain information rather than crisp 

information [260]. Most of the control system uses a fuzzy logic control-based 

methodology. Fuzzy rules used in these systems hold the performance data [256]. 

Steps in the fuzzy methodology are shown as a flowchart in Fig. 3.3. Step 1 includes the 

selection of input and output variables. Step 2 consists of the selection of membership 

functions for these variables. Step 3 includes the development of a linguistic rule base 

based on the performance data gathered from the various experts. Step 4 includes the 

defuzzification process in which linguistic variables are converted into the crisp form. 

 

Fig. 3.3 Flowchart of steps in the fuzzy methodology 

Route selection can be done in two ways in the fuzzy logic system. These two ways are the 

fuzzy set approach and the fuzzy logic system in MATLAB. 

3.2.1 Fuzzy set approach 

The route can be optimized by minimizing several factors. These factors are travel time, 

work in queue, total processing time, energy consumption, number of processing steps and 

number of machines blocked [47].  

Among these factors, we have used only four factors (travel time, work in queue, total 

processing time, and energy consumption) in our study. This factor’s contributions in terms 

of membership function are defined in Eq. (24) to Eq. (27). A membership function 𝑢1(𝑖) 

for the minimization of the total processing time (goal 1) is defined by Eq. (24). 

u1(i) =
(TPTb − TPTi)

(TPTb − TPTa)
                                                                                                                (24) 

Where 𝑇𝑃𝑇𝑖 = total processing time required for routing i, 𝑇𝑃𝑇𝑏 − 𝑇𝑃𝑇𝑎represents the 

difference between the maximum and minimum total processing time. Similarly, the 

membership functions for the minimization of total work in queue (goal 2), total travel 

time (goal 3), and total energy consumption (goal 4) are defined by Eq. (25), Eq. (26), and 
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Eq. (27) respectively. The formula for the calculation of the final membership function 

𝑢𝑎(𝑖) is given in Eq. (28). 

u2(i) =
(TWIQb − TWIQi)

TWIQb
                                                                                                         (25) 

u3(i) =
(TTTb − TTTi)

(TTTb − TTTa)
                                                                                                                (26) 

u4(i) =
(TECb − TECi)

(TECb − TECa)
                                                                                                                (27) 

ua(i) =∑[
wj

∑ wj
n
j=1

× uj(i)]                                                                                                       (28)

n

j=1

 

Where, uj(i) = membership of routing i to goal j and wj= weight of goal j.  

3.2.2 Fuzzy logic system in MATLAB 

Fuzzy logic gives the best results in case of uncertainty and any missing information. This 

technique can be effectively applied to all control problems [240]. The structure of the 

fuzzy logic system consists of a fuzzifier, defuzzifier, rule base, and an inference engine. 

Fuzzifier converts the crisp input into fuzzy input. The inference engine utilized the rule 

base to convert fuzzy input into a fuzzy output. Defuzzifier converts the fuzzy output into 

crisp output. The Structure of the fuzzy logic system is shown in Fig. 3.4 [117]. 

 

Fig. 3.4 Structure of fuzzy logic system [117] 

3.3 Fuzzy TOPSIS method for prioritizing scheduling parameters 

The basic methodology includes the following steps. 

3.3.1 Fuzzy Set theory 

This theory is based on the fuzzy set characterized by the membership function that lies 

between zero and one and deals with uncertainty, vagueness, and partial information [293]. 

A triangular fuzzy number is denoted as the triplet s = [sL, sM, sR]. The membership 

function of any triangular fuzzy number is represented by μs(x); each element x belongs to 

the universe of discourse X. This membership function μ
s
(x) is expressed in Eq. (29).  
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μs(x) =

{
 
 

 
 
      0          x < sL

x − sL

sm − sL
  sL ≤ x ≤ sM

sR − x

sR − sm
   sM ≤ x ≤ sR

       0         x > sR

                                                                                              (29) 

Where, sL, sM, sR are crisp numbers.  

3.3.2 Fuzzy TOPSIS method 

TOPSIS technique was the first time applied in the fuzzy environment for the group 

decision making in 1997 by Chen –Tung Chen. In fuzzy TOPSIS methodology, the 

linguistic variable is used with a fuzzy number on a point scale [57]. The flowchart of this 

methodology is shown in Fig. 3.5. The methodology is shown as follows:  

Step 1 Fuzzy TOPSIS starts with the establishment of a committee of decision-makers. 

Step 2 Define Linguistic Variable terms with their Fuzzy Number on the point scale. This 

scale is defined in Table 3.1 using the linguistic terms which are negative low (NLO), low 

(LO), average or arithmetic mean (AM), high (HI), and positive high (PHI). 

Table 3.1 Linguistic variable terms with their fuzzy number 

 Linguistic term Fuzzy number 

Negative low (NLO) 1,1,3 

Low (LO) 1,3,5 

Average (AM) 3,5,7 

High (HI) 5,7,9 

Positive high (PHI) 7,9,9 
 

 

Fig. 3.5 Flowchart of fuzzy TOPSIS methodology 
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Step 3 Find the decision matrix (DM) xij, xij = (aij, bij, cij) which is a fuzzy number with 

i = 1,2, . . . , n
 

number of decision maker of various automobile companies and j =

1,2, . . . , n number of scheduling parameters. 

DM =

[
 
 
 
 
 
x11 x12 ⋯ x1j ⋯ x1n
x21 x22 ⋯ x2j ⋯ x2n
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
xi1 xi2 ⋯ xij ⋯ xin
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
xm1 xm2 ⋯ xmj ⋯ xmn]

 
 
 
 
 

                                                                                 (30)
 

Step 4 Find the Normalized fuzzy decision matrix Rij 

Eq. (31) is showing a normalized decision matrix for non-beneficial criteria. For beneficial 

criteria, larger 𝑅𝑖𝑗is desirable, whereas, for cost criteria, smaller 𝑅𝑖𝑗is desirable. 

NDM = [Rij]m×n,   Rij = (
cj
∗

cij
,
cj
∗

bij
,
cj
∗

aij
)                                                                                      (31) 

Where, 
i

j cc min* =  

Step 5 Determine the weightage normalized fuzzy decision matrix V  

This matrix V is obtained by multiplying the weightage wj given to the decision makers 

with matrix Rij. 

V = vij = wj × Rij                                                                                                                           (32) 

 
Step 6 Calculate the Fuzzy positive ideal solution (FPIS) A+and Fuzzy negative ideal 

solution (FNIS) A−. 

A+ = {v1
+, v2

+. . . . , vn
+}                                                                                                                     (33)

 

A− = {v1
−, v2

−. . . . , vn
−}                                                                                                                     (34)

 
Step 7 Calculate the si

+separation from the A+ and si
−separation from the A−. 

si
+ = √∑(vj

+ − vij)2
n

j=1

        i = 1,2, . . . , m                                                                                  (35) 

si
− = √∑(vj

− − vij)2
n

j=1

         i = 1,2, . . . , m                                                                                 (36) 

Step 8 Calculate the relative closeness coefficient Cj
 

Cj =
si
+

si
+ + si

−                                                                                                                                     (37) 
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Cj = 1  if Ai = A+, Cj = 0 if Ai = A
−,

 
si
− ≥ 0 and si

+ ≥ 0,  then clearly 0 ≤ Cj ≤ 1. 

Step 9 The ranking of alternatives is obtained using relative closeness values. 

3.4 DEMATEL methodology 

DEMATEL methodology is based on the causal relationship and provides visual graphical 

relations between the complex criteria. This method also identifies the cause and effect 

groups among the various criteria [1]. It is the only method that provides visualization to 

researchers about interrelations among criteria. For providing visualization, it uses the 

basics of graph theory [127]. The flowchart of the DEMATEL methodology is shown in 

Fig. 3.6.  

 
Fig. 3.6 Flowchart of DEMATEL methodology 

 

The steps involved within the DEMATEL methodology are as follows. 

Step 1 Set up a pairwise comparison scale of the DEMATEL method 

Table 3.2 shows the comparison scale includes the terms which are represented by the 

numerical.  

Table 3.2 Comparison Scale  

 Terms Numerical 

No effect  0 

Low effect  1 

Medium effect  2 

High effect 3 

Very high effect  4 
 

Step 2 Compute the initial direct relation matrix M 

This matrix M is a n × n matrix generated from a comparison scale in terms of numerical 

and it shows the influences of all criteria on each other. M is a square matrix in which 

diagonal elements mii is zero. 
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M = [

0 m12 ⋯ m1n

m21 0 0 m2n

⋮ ⋮ ⋱ ⋮
mn1 mn2 ⋯ 0

]                                                                                                      (38) 

Step 3 Calculate the Normalized direct relation matrix U i.e., U = [Uij]n×n and 0 ≤ Uij ≤

1. This matrix can be determined from the Eq. (39) and Eq. (40). Set of elements contains 

in a system is S = {s1, s2, . . . , sn} . 

S =
1

max1≤i≤n∑ xij
n
j=1

                                                                                                                    (39) 

U = S × M                                                                                                                                         (40) 

Step 4 Determine the total relation matrix V using Eq. (41) and Eq. (42) in which identity 

matrix is denoted by 𝐼. 

V = M +M2 +⋯+Mh = M(I − Mh)(I − M)−1                                                                    (41) 

when   lim
h→∞

Mh = [0]n×n, 

V = (vij)n×n = M(I − M)
−1                                                                                                         (42) 

Step 5 Defining the sum of rows (D) and sum of column (R) in the total relation matrix 𝑉as 

vector d and r through Eq. (43) and Eq. (44).  

D = (di)n×1 = [∑vij

n

j=1

]

n×1

                                                                                                          (43) 

R = (ri)1×n = [∑vij

n

i=

]

1×n

                                                                                                           (44) 

Step 6 With the help of Eq. (43) and Eq. (44), cause and effect diagram is generated to find 

the most affected criteria/parameter.  
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Chapter-4 

Case Study-1 

Integrated TOPSIS-PROMETHEE-MOORA model for material selection of 

crankcase cover 

Material selection is an important task for designers in all industries. To satisfy customer 

needs, designers must predict the performance of all available materials and find out the 

best material for the product. Since the various materials are available in the market with 

diverse characteristics, which makes the material selection process complex. So, there is an 

indispensable need for a proper material selection methodology. The designers must 

identify the best approach which enhanced the product performance and reduced the time 

of designing. In this study, the first-time selection of materials for a two-wheeler crankcase 

cover is done using the integrated TOPSIS PROMETHEE and MOORA model. The final 

rankings of alternatives obtained from this novel proposed model are also compared with 

each other for finding the best material for crankcase cover. Six aluminum alloys (Alloy 

360, Alloy 380, Alloy A380, Alloy 383, Alloy B390, and Alloy 13) are taken as 

alternatives, and seven attributes (Brinell hardness, yield strength, % elongation, young’s 

modulus, ultimate tensile strength, fatigue strength, and material cost) are taken as criteria 

for this study. 

4.1 Application of TOPSIS-PROMETHEE-MOORA model 

In this study, seven attributes are considered, and these attributes are of different types, 

among these six attributes belong to the category of beneficial criteria and there are only 

one non- beneficial criteria. The beneficial criteria are brinell hardness, yield strength, % 

elongation, tensile strength, young’s modulus, and fatigue strength whereas the material 

cost is the non-beneficial criteria. Our aim of this study is to maximize the beneficial 

criteria and minimize the non-beneficial criteria. The conflicting criteria are optimized 

using the Integrated TOPSIS MOORA approach. Table 4.1 represents the symbol for these 

conflicting criterions and Table 4.2 shows all symbols used for different alternatives. The 

Specification parameter values of various aluminum alloys as collected from the literature 

review are shown in Table 4.3. This entire numerical value used in Table 4.3 is converted 

to an approximate score out of 10 as shown in Table 4.4. 
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Table 4.1 Crankcase cover material selection criteria 

Attributes of Crankcase Cover Symbol 

Brinell Hardness (HB) C1 

Yield Strength (MPa) C2 

Elongation [% (in 2 inches)] C3 

Tensile Strength (MPa) C4 

Young’ Modulus (GPa) C5 

Fatigue Strength (MPa) C6 

Crankcase Cover Material Cost (US $ per ton) C7 

 

Table 4.2 Crankcase cover material alternatives 

Crankcase cover materials Symbol 

Aluminum Alloy 360 A1 

Aluminum Alloy 380 A2 

Aluminum Alloy A380 A3 

Aluminum Alloy 383 A4 

Aluminum Alloy B390 A5 

Aluminum Alloy 13 A6 

 

Table 4.3 Specification parameter of various aluminum alloys 

Sl. No. C1 C2 C3 C4 C5 C6 C7 

A1 75 172 2.5 303 71 138 1490.52 

A2 80 159 3.5 317 71 138 1478.20 

A3 80 159 3.5 324 71 138 1355.02 

A4 75 152 3.5 310 71 145 1478.20 

A5 120 248 <1 317 81 138 1724.57 

A6 80 145 2.5 296 71 131 1847.75 

 

4.2 Calculation using TOPSIS-MOORA model 

Weighted normalized decision matrix using TOPSIS and MOORA model is represented in 

Table 4.5. 

Table 4.4 Decision matrix for crankcase cover material selection 

Sl. No. C1 C2 C3 C4 C5 C6 C7 

A1 6.00 6.88 6.25 9.18 8.66 9.20 7.84 

A2 6.40 6.36 8.75 9.61 8.66 9.20 7.78 

A3 6.40 6.36 8.75 9.82 8.66 9.20 7.13 

A4 6.00 6.08 8.75 9.39 8.66 9.67 7.78 

A5 9.60 9.92 2.00 9.61 9.88 9.20 9.08 

A6 6.40 5.80 6.25 8.97 8.66 8.73 9.73 
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Table 4.5 Weighted normalized decision matrix using TOPSIS and MOORA model 

Sl. No. C1 C2 C3 C4 C5 C6 C7 

A1 0.354 0.399 0.354 0.397 0.398 0.408 0.387 

A2 0.378 0.369 0.495 0.416 0.398 0.408 0.384 

A3 0.378 0.369 0.495 0.425 0.398 0.408 0.352 

A4 0.354 0.353 0.495 0.406 0.398 0.429 0.384 

A5 0.567 0.575 0.113 0.416 0.454 0.408 0.448 

A6 0.378 0.336 0.354 0.388 0.398 0.387 0.480 
 

4.3 Calculation using PROMETHEE model 

In the PROMETHEE model, the ranking of material selection is done based on the 

aggregate preference function. The calculation of the aggregate preference function is 

depicted in Table 4.7. 

 

Table 4.6 Normalized decision matrix using PROMETHEE 

Sl. No. C1 C2 C3 C4 C5 C6 C7 

A1 0.000 0.262 0.615 0.250 0.000 0.500 0.725 

A2 0.111 0.136 1.000 0.750 0.000 0.500 0.750 

A3 0.111 0.136 1.000 1.000 0.000 0.500 1.000 

A4 0.000 0.068 1.000 0.500 0.000 1.000 0.750 

A5 1.000 1.000 0.000 0.750 1.000 0.500 0.250 

A6 0.111 0.000 0.615 0.000 0.000 0.000 0.000 

 

Table 4.7 Calculation of aggregate preference function 

Alternatives A1 A2 A3 A4 A5 A6 

A1 0.000 0.126 0.126 0.194 1.090 1.537 

A2 1.021 0.000 0.000 0.429 1.500 2.521 

A3 1.521 0.500 0.000 0.929 2.000 3.021 

A4 1.160 0.500 0.500 0.000 2.000 2.703 

A5 3.238 2.753 2.753 3.182 0.000 4.389 

A6 0.111 0.000 0.000 0.111 0.615 0.000 
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Chapter-5 

Case Study-2 

Dispatching rule-based single machine static scheduling of crankcase 

covers  

The research focuses on the multi-objective single machine static scheduling problems of 

motorcycle crankcase cover. To solve these static scheduling problems, dispatching rules 

are used. Various dispatching rules used in this study are the EDD, SPT, CR, LPT, WSPT, 

COVERT, and Hodgson’s algorithm. The objective of the paper is to sequence the 

different crankcase covers and to minimizes average flow time, an average hour early, and 

an average hour past due, etc. This study helps us to obtain optimal job prioritization of 

two-wheeler crankcase covers in the automobile industry. Results show that shifting the 

production system from WSPT approach scheduling to the EDD scheduling approach, it 

minimizes the mean flow time by 2.75%, weighted mean flow time by 27.91%, and 

maximum lateness by 21.87%. This research is very useful for all automotive industries as 

well as research organizations. 

5.1 Problem definition and formulation 

We have taken four types of crankcases covers in our study. Our main aim is to do single 

machine scheduling of this crankcase cover on the vertical milling center. These parts are 

cover left side crankcase KWPG, cover left crankcase K38, cover crankcase 206 G, and 

cover right crankcase KTE as shown in Fig. 5.1 to Fig. 5.4. 

                

Fig. 5.1  Cover left side crankcase KWPG  Fig. 5.2 Cover left crankcase K38 
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Fig. 5.3 Cover crankcase 206 G    Fig. 5.4 Cover right crankcase KTE 

5.1.1 Nomenclature 

Pj= Total Processing time of job j including setup time (hrs) 

Tj= Time duration of job j since Order arrived (hrs) 

S = Part lot Sequence 

Tb= Begin work time (hrs) 

Tfi= Finish time for lot (hrs) 

Tfl= Flow time for lot (hrs) 

𝑇𝑑= Time duration until the due date (hrs) 

Ts= Slack time remaining (hrs) 

Tsp= Scheduled customer pickup time 

Tap= Actual customer pickup time 

The= hours early 

Thpd= hours past due 

Some data is collected from the industry, and some are taken from the literature review and 

industry experts. Table 5.1 shows the data of different parts. 

Table 5.1 Data table of different parts 

Part lot 𝑇𝑗 𝑃𝑗 𝑇𝑑 

K38 2 3.5 7 

206 G 1 2 9 

KTE 7 4 20 

KWPG 9 6 28 

 

5.2 EDD Approach 

For ‘n’ jobs on a single machine, we have different priority rules FCFS, SPT, EDD, STR, 

and CR. EDD priority rule sequences the jobs by their due dates. This rule also minimizes 

the maximum lateness and maximum tardiness [255]. The calculations regarding the 

sequence of operations using the earliest due date approach are represented in Table 5.2. 
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Table 5.2 Sequence of operations using earliest due date approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

K38 2 0 3.5 3.5 5.5 7 10 6.5 3 

206 G 1 3.5 2 5.5 6.5 9 12 6.5 3 

KTE 7 5.5 4 9.5 16.5 20 23 13.5 3 

KWPG 9 9.5 6 15.5 24.5 28 30 14.5 2 

 

Mean flow time = 13.25 hrs 

Weighted mean flow time = 10.87 hrs 

Average in-process inventory = 2.19 jobs 

Mean lateness = 7.5 hrs 

No. of tardy jobs = 0 

Maximum lateness = 12.5 hrs 

5.3 SPT Approach 

SPT rule helps in minimizing the mean flow time, total waiting time, maximum waiting 

time, and total completion time, etc. It also maximizes shop floor utilization. This rule also 

provides the lowest mean finish time for a single workstation problem. But it increases 

total inventory because it finishes all work very fast compared to other rules. The 

calculations regarding the sequence of operations using the shortest processing time 

approach are represented in Table 5.3. 

Table 5.3 Sequence of operations using shortest processing time approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

206 G 1 0 2 2 3 9 10 8 1 

K 38 2 2 3.5 5.5 7.5 7 12 6.5 5 

KTE 7 5.5 4 9.5 16.5 20 25 15.5 5 

KWPG 9 9.5 6 15.5 24.5 28 30 14.5 2 

 

Mean flow time = 12.87 hrs 

Weighted mean flow time = 16.23 hrs 

Mean lateness = 7.875 hrs 

No. of tardy jobs = 0 

Maximum lateness = 12.5 hrs 
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5.4 Critical ratio approach 

The critical ratio is calculated by the ratio of time remaining before the due date and 

remaining processing time. The smallest CR goes first. For conditional mean tardiness 

which is a ratio of mean tardiness and proportion of jobs tardy, critical ratio priorities are 

effective. These approaches are used in computer software [114]. The calculations 

regarding the sequence of operations using the ‘CR’ rule are represented in Table 5.4. 

Table 5.4 Scheduling using ‘CR’ rule 

𝑆 𝑃𝑗 𝑇𝑠𝑝 𝑇𝑠 𝐶𝑅 

K38 3.5 7 3.5 2 

206 G 2 9 7 4.5 

KTE 4 20 16 5 

KWPG 6 28 22 4.67 

 

At time 2 min part K38 completed, CR values are given in Table 5.4. At time 4min part 

206 G completed, CR values are given in Table 5.5. 

Table 5.5 Cr values after part K38 completed 

𝑆 𝑃𝑗 𝑇𝑠𝑝 𝐶𝑅 

206 G 2 9 7/2=3.5 

KTE 4 20 18/4=4.5 

KWPG 6 28 26/6=4.33 

 

Table 5.6 Cr values after part K38 and 206 G completed 

𝑆 𝑃𝑗 𝑇𝑠𝑝 𝑇𝑠 

KTE 4 20 16/4=4 

KWPG 6 28 24/6=4 

 

Since they both have the same critical ratio, and we compare processing time then KTE has 

less processing time. So, at time 8 min, KTE completed, and at time 14 min KWPG will be 

completed. 

So, scheduling order will be K38 → 206G → KTE → KWPG. 
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Table 5.7 Sequence of operations using critical ratio approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

K38 2 0 3.5 3.5 5.5 7 10 6.5 3 

206 G 1 3.5 2 5.5 6.5 9 12 6.5 3 

KTE 7 5.5 4 9.5 16.5 28 30 20.5 2 

KWPG 9 11.5 6 17.5 23.5 20 23 5.5 3 

 

Mean flow time = 13 hrs 

Weighted mean flow time = 16.17 hrs 

Mean lateness = 7 hrs 

No. of tardy jobs = 0 

Maximum lateness = 10.5 hrs 

 

5.5 LPT Approach 

LPT approach is developed by Graham in 1969. Croce F Della et al. solved the identical 

parallel machine scheduling problem using the LPT rule. In the LPT rule, jobs are 

sequenced in descending order of processing times [74]. The calculations regarding the 

sequence of operations using the LPT approach are represented in Table 5.8. 

Table 5.8 Sequence of operations using LPT approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

KWPG 9 0 6 6 15 28 30 24 2 

KTE 7 6 4 10 17 20 25 15 5 

K 38 2 10 3.5 13.5 15.5 7 12 -1.5 5 

206 G 1 13.5 2 15.5 16.5 9 10 -5.5 1 

 

Mean flow time = 16 hrs 

Weighted mean flow time = 15.92 hrs 

Mean lateness = 4.75 hrs 

Mean tardiness =3.25 hrs 

No. of tardy jobs = 2 

Maximum tardiness = 6.5 hrs (job 206G & K38) 

Maximum lateness = 22 hrs 
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5.6 WSPT Approach 

In the WSPT approach, the processing time to weight ratio is calculated and jobs are 

arranged according to the increasing order of these ratios. In this study, weights are 

assigned according to scheduled customer pickup time. Table 5.9 shows the calculation of 

these ratios. The calculations regarding the sequence of operations using the WSPT 

approach are represented in Table 5.10. 

Table 5.9 Process time to weights ratio calculation 

𝑃𝑎𝑟𝑡𝑛𝑎𝑚𝑒 𝑃𝑗 𝑊𝑗 𝑃𝑗
𝑊𝑗
⁄  

K38 3.5 0.13 26.92 

206 G 2 0.17 11.76 

KTE 4 0.3 13.33 

KWPG 6 0.4 15 

 

The part sequence obtained using the WSPT approach- (206G → KTE → KWPG → K38) 

Table 5.10 Sequence of operations using the WSPT approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

206 G 1 0 2 2 3 9 10 8 1 

KTE 7 2 4 6 13 20 25 19 5 

KWPG 9 6 6 12 21 28 30 18 2 

K38 2 12 3.5 15.5 17.5 7 12 -3.5 5 

 

Mean flow time = 13.625 hrs 

Weighted mean flow time = 15.08 hrs 

Mean lateness = -7.125 hrs 

Mean tardiness = 2.125 hrs 

No. of tardy jobs = 1 

Maximum tardiness = 8.5 hrs (job K38) 

Maximum lateness = 16 hrs (job KWPG) 

5.7 COVERT Approach 

In the COVERT approach, the tardiness to processing time ratio is calculated and based on 

the largest ratio first, a part sequence is selected. This rule is very effective in minimizing 

average conditional tardiness. The lateness of job j is defined by Eq. (45). Positive lateness 

is known as tardiness. The calculations regarding the sequence of operations using the 

COVERT approach are represented in Table 5.12. 
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Lj = Tfi − Td                                                                                                                                     (45) 

Table 5.11 Calculation of COVERT ratio
 

Part lot 𝑇𝑗 𝑃𝑗 𝑇𝑑 𝑇𝑓𝑖 𝐿𝑗 
COVERT 

Ratio
 

K38 2 3.5 7 3.5 -3.5 -1 

206 G 1 2 9 5.5 -3.5 -1.75 

KTE 7 4 20 9.5 -10.5 -2.62 

KWPG 9 6 28 15.5 -12.5 -2.08 

 

Based on this ratio, the part sequence selected is (K38 → 206G → KWPG → KTE) 

Table 5.12 Sequence of operations using COVERT approach 

𝑆 𝑇𝑗 𝑇𝑏 𝑃𝑗 𝑇𝑓𝑖 𝑇𝑓𝑙 𝑇𝑠𝑝 𝑇𝑎𝑝 𝑇ℎ𝑒 𝑇ℎ𝑝𝑑 

K38 2 0 3.5 3.5 5.5 7 12 8.5 5 

206G 1 3.5 2 5.5 6.5 9 10 4.5 1 

KWPG 9 5.5 6 11.5 20.5 28 30 18.5 2 

KTE 7 11.5 4 15.5 22.5 20 25 9.5 5 

 

Mean flow time = 13.75 hrs 

Weighted mean flow time = 16.77 hrs 

Mean lateness = 7 hrs 

Maximum lateness = 16.5 (Job KWPG) 

No. of tardy jobs = 0  

5.8 HODGSON’S Algorithm 

This algorithm provides the best result in minimizing no. of tardy jobs and it is applicable 

for only those cases in which no. of tardy jobs are more than one. This algorithm sequences 

the job with the EDD sequence. In our study, we get no. of tardy jobs is zero according to 

the EDD sequence which shows optimal sequence  [164]. 
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Chapter-6 

Case Study-3 

Energy efficient fuzzy scheduling system for crankcase covers 

manufacturing 

 
Scheduling of automotive part manufacturing is more arduous and complex task. It is a 

very backbreaker task to get an optimum schedule for any automotive part manufacturing. 

In today’s scenario, every industry and research organization need an energy-efficient 

system to cope up with the global environment. In this study, a first-time energy-efficient 

fuzzy scheduling system is developed for crankcase cover manufacturing under uncertain 

processing times. This study consists of the development of an energy-efficient fuzzy 

inference system of the four-crankcase cover (cover left side crankcase KWPG, cover left 

crankcase K38, cover crankcase 206 G, and cover right crankcase KTE) and its results are 

validated by the fuzzy set approach. This study consists of three inputs each for job 

prioritization and route selection of the crankcase cover. Inputs are further divided into 

three ranges for developing 27 rules in the fuzzy logic system. Fuzzy logic provides a 

decision by a combination of the rules for selecting job priorities and route selection. This 

scheduling system also provides the trade-off between energy consumption and makespan. 

Job priority sequence obtained by both fuzzy techniques for four crankcase cover problems 

is K38 > KWPG > 206G > KTE. This study is very useful for all automotive industries as 

well as research organizations. 

6.1 Development of Mamdani fuzzy scheduling system 

Mamdani fuzzy scheduling system is used to estimate job prioritization and route selection. 

The set of output data is obtained through the given input condition in the system. The 

proposed Mamdani fuzzy scheduling system for job prioritization and route selection is 

presented in Fig. 6.1 and Fig. 6.2.  

 

Fig. 6.1 Structure of Mamdani fuzzy rule-based system for evaluating job prioritization 



75 
 

 

Fig. 6.2 Structure of Mamdani fuzzy rule-based system for route selection 

The input variables for job prioritization are identified as processing time, travel time, 

energy consumption, and the output variable is the priority. The input variables for route 

selection are identified as work in queue, processing time, energy consumption and the 

output variable is the priority. The triangular membership function is used for defining the 

output and input variables.  

In the fuzzy logic system, the inputs cycle time, due date, and energy consumption and 

have three membership functions each and each input is further divided into three states 

low, medium, and high. Thus, a total of 27 rules can be made for job prioritization. 

Similarly, the inputs work in queue, cycle time, and energy consumption for route selection 

have three membership functions and they are also divided into three states low, medium, 

and high. Thus, a total of 27 rules can also be made for route selection.  

Defuzzification is the process of linguistic values into crisp values. There are commonly 

three techniques used for defuzzification as described below [249].  

(a) Center of Gravity method  

(b) Mean of Maximum method  

(c) Height method   

6.1.1 Problem definition 

Our main problem is how to get an optimum schedule for crankcase cover manufacturing. 

For obtaining the optimum schedule, we have used the fuzzy inference system and the 

fuzzy set approach. This study consists of the scheduling of four crankcase cover namely 

cover left side crankcase KWPG, cover left crankcase K38, cover crankcase 206 G, and 

cover right crankcase KTE as shown in Fig. 5.1 to Fig. 5.4. 
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6.1.2 Assumptions made in the present work 

The following assumptions were made: 

1. Setup times are assumed to be constant.  

2. It is assumed that all the tools are available when needed. 

3.  Dynamic uncertainty is not taken into consideration i.e., the machines are not 

subject to any failure. 

4. Each workstation can process only one job at a time. 

5. There can be multiple routes possible for the jobs for sending them to different 

workstations and each route may have a different cycle time. 

6. Delays in accessing any set of information are assumed to be negligible. 

7. The Speed of all the laborers is supposed to be constant i.e., it is independent of the 

weight and size of jobs. 

8. Orders arrive in the system randomly. So, crankcase cover manufacturing processes 

are assumed Poisson distributed. 

The input variables used in the fuzzy logic system in MATLAB to identify the job priority 

are: 

(a) Processing time (20 to 40 minutes) 

(b) Travel time (2 to 10 minutes) 

(c) Energy Consumption (3 to 6 KW) 

6.2 Crankcase covers prioritization the using fuzzy logic system 

All the inputs and their corresponding ranges are entered in the FLS of MATLAB. These 

inputs are entered in the FIS editor as shown in Fig. 6.3. In the FIS editor, we can choose 

the defuzzification method. For this scheduling problem, the centroid defuzzification 

method is selected in the FIS editor.  

 

Fig. 6.3 FIS editor of job prioritization 
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All input variables for job priority are divided into three parts: small, medium, and high. 

The membership function editor for the job priorities is shown in Fig. 6.4. 

 

Fig. 6.4 Membership function editor for the job priorities 

6.2.1 Fuzzy rules for job prioritization 

Travel time, energy consumption, and processing time are the three main inputs/factors 

responsible for job prioritization. The output variable ‘priority’ is divided into nine 

categories which are minimum (MIN), negative low (NLO), low (LO), negative average 

(NAV), average (AV), positive average (PAV), high (HI), positive high (PHI), and 

maximum (MAX) shown in Fig. 6.6 [55]. The fuzzy rules for Job prioritization using these 

three inputs and one output (priority values) are given in Table 6.1. These rules are 

generated with the help of the literature review and expert views. The rule editor generated 

corresponding to these rules for Job prioritization is shown in Fig. 6.5.  

Table 6.1 Fuzzy rule table for job prioritization 

Travel 

time 

Energy consumption Processing time 

High Medium Small 

Small HI PHI MAX Small 

Medium PAV HI PHI Medium 

High MIN NLO NAV High 

Small PAV HI PHI Small 

Medium AV PAV HI Medium 

High NLO LO NAV High 

Small AV PAV HI Small 

Medium NAV AV PAV Medium 

High LO NAV AV High 
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Fig. 6.5 Rule editor window 

 

Fig.6.6 Membership function of the output variable ‘Priority’ 

6.3 Route selection calculation using fuzzy logic  

Route selection can be done in two ways in the fuzzy logic system. These two ways are as 

follows: 

1. Calculation and analysis using FLS in MATLAB 

2. Calculation using the fuzzy set approach 

 

6.3.1 Using FLS in MATLAB 

The fuzzy set approach is a manual calculation approach. We can do routing by making an 

FLS in MATLAB which takes less time than the fuzzy set approach. MATLAB approach 

is difficult to understand in comparison to the fuzzy set approach. MATLAB approach is 

simple if an equal contribution of inputs is taken. But it becomes a complex approach if we 

vary the contribution of inputs.  

6.3.2 Fuzzy rules for route selection 

Among three variables for job prioritization, two variables are the same for route selection 

(energy consumption and processing time) and the third variable is taken is work in queue. 
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Their fuzzy rule for route selection of jobs using three inputs and one output is given in 

Table 6.2. 

Table 6.2 Fuzzy rules for route selection of jobs  

Work in 

queue 

Energy consumption Processing time 

High Medium Small 

Small NAV NAV NHI Small 

Medium NLO NAV AV Medium 

High MIN NLO NAV High 

Small AV HI PHI Small 

Medium LO NAV NAV Medium 

High NLO NAV PAV High 

Small HI PHI MAX Small 

Medium PAV HI PHI Medium 

High AV PAV HI High 

 

6.3.3 Route time calculation for all Jobs 

We have taken four crankcase covers on six machine scheduling problems. Some data has 

been collected from industry and some from the literature review. The processing times of 

various crankcase cover on different machines are shown in Table 6.3. 

Table 6.3 Processing time (mins) of various crankcase cover 

M/c KWPG K38 206G KTE 

Cold chambers die casting machine 

(DCM) 

1.5 1.3 1.5 1.7 

Manual fettling (MF)/CNC fettling (CF) 0.18/0.54 0.17/0.51 0.18/0.54 0.20/0.60 

Drilling machine (DM) 0.25 0.15 0.40 0.50 

Vertical milling centre (VMC) 3.5 2 4 6 

Polishing machine/Buffing machine 

(BM) 

0.22 0.21 0.22 0.23 

Surface treatment/Painting Shop (PS) 20 19.15 22.7 23.4 

 

Fettling is the most ignored process in the casting process. Fettling can be done manually 

(files, chisel, or hammer) or with some automatic CNC machine. Large casting like cylinder 

head or cylinder block requires a CNC machine for fettling whereas small and medium 

casting like crankcase cover for two-wheeler vehicles can be fettled manually. Route time 

of all four-crankcase cover on six machines is given in Table 6.4.  

6.3.4 Fuzzy set approach 

Each goal plays a significant role in finding the optimized route. Its contribution in terms 

of the membership function is shown in Table 6.5. The maximum value of uj(i) 

corresponds to the maximum value of ua(i) shown in Table 6.6. 
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Table 6.4 Route times for various crankcase cover 

Route times of crankcase cover KWPG 

Route 

(M/C sequence) 

Work in 

queue 

 

Processing 

time (mins) 

Travel time 

(mins) 

Energy 

consumption 

(KW) 

DCM-MF-DM-VMC-BM-PS 10 25.65 6.4 5.1 

DCM-CF-DM-VMC-BM-PS 8 26.01 6.5 5.6 

DCM-VMC-DM-VMC-BM-PS 5 28.97 7.2 5.3 

Route times of crankcase cover K38 

DCM-MF-DM-VMC-BM-PS 9 23 5.7 4.6 

DCM-CF-DM-VMC-BM-PS 7 23.34 5.8 5.2 

DCM-VMC-DM-VMC-BM-PS 4 24.83 6.2 4.9 

Route times of crankcase cover 206G 

DCM-MF-DM-VMC-BM-PS 13 29 7.2 5.3 

DCM-CF-DM-VMC-BM-PS 11 29.36 7.3 5.7 

DCM-VMC-DM-VMC-BM-PS 8 32.82 8.2 5.5 

Route times of crankcase cover KTE 

DCM-MF-DM-VMC-BM-PS 15 32.03 8 5.6 

DCM-CF-DM-VMC-BM-PS 13 32.43 8.1 5.9 

DCM-VMC-DM-VMC-BM-PS 11 37.83 9.4 5.8 

 

Table 6.5 Membership function values 

Results corresponding to goal 1 Results corresponding to goal 2 

[u1(1)]KWPG 0.717 [u1(1)]K38 0.850 [u2(1)]KWPG 0.625 [u2(1)]K38 0.562 

[u1(2)]KWPG 0.699 [u1(2)]K38 0.833 [u2(2)]KWPG 0.500 [u2(2)]K38 0.437 

[u1(3)]KWPG 0.551 [u1(3)]K38 0.758 [u2(3)]KWPG 0.312 [u2(3)]K38 0.250 

[u1(1)]206G 0.550 [u1(1)]KTE 0.398 [u2(1)]206G 0.812 [u2(1)]KTE 0.937 

[u1(2)]206G 0.532 [u1(2)]KTE 0.378 [u2(2)]206G 0.687 [u2(2)]KTE 0.812 

[u1(3)]206G 0.359 [u1(3)]KTE 0.108 [u2(3)]206G 0.500 [u2(3)]KTE 0.687 

 

Results corresponding to goal 3 Results corresponding to goal 4 

[u3(1)]KWPG 0.550 [u3(1)]K38 0.462 [u4(1)]KWPG 0.700 [u4(1)]K38 0.533 

[u3(2)]KWPG 0.562 [u3(2)]K38 0.475 [u4(2)]KWPG 0.867 [u4(2)]K38 0.733 

[u3(3)]KWPG 0.650 [u3(3)]K38 0.525 [u4(3)]KWPG 0.767 [u4(3)]K38 0.633 

[u3(1)]206G 0.650 [u3(1)]KTE 0.750 [u4(1)]206G 0.767 [u4(1)]KTE 0.867 

[u3(2)]206G 0.662 [u3(2)]KTE 0.762 [u4(2)]206G 0.900 [u4(2)]KTE 0.967 

[u3(3)]206G 0.775 [u3(3)]KTE 0.925 [u4(3)]206G 0.833 [u4(3)]KTE 0.933 

 

Table 6.6 Maximum value of ua(i) for different crankcase cover 

Route 

(M/C sequence) 

KWPG K38 206G KTE 

DCM-MF-DM-VMC-BM-PS 0.648 0.602 0.695 0.738 

DCM-CF-DM-VMC-BM-PS 0.657 0.619 0.695 0.729 

DCM-VMC-DM-VMC-BM-PS 0.57 0.541 0.617 0.663 
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Chapter-7 

Case Study-4 

Modelling and simulation of crankcase cover manufacturing in the automobile 

industry 

The simulation creates the virtual production model which is exactly like the real 

environment, and it provides future insights before laying down the actual production plant 

layout. With the help of simulation, we can simulate the complex and costly manufacturing 

system without being investing money physically and check the system’s real-life 

behavior. In this study, the first time the modelling and simulation of two-wheeler 

crankcase cover manufacturing are done with the help of flexsim. This study deals with the 

development of a simulation model for crankcase cover manufacturing systems in the 

automobile industry. Flexsim simulation tool is used as an optimization tool for analyzing 

the bottleneck or performing line balancing.  

Table 7.1 represents the study of simulation-based papers consisting of the author’s name, 

problem type, parameter optimized, and types of simulation. Bjorklund S. et al. solved the 

real-time forecasting problem with the help of flexsim simulation software [33]. Badri M. 

A. et al. utilized the simulation modelling concept for effective operations in hospital 

emergency cells by minimizing the waiting time, cost and increase the throughput, 

resource utilization, and efficiency of the system [25]. Cheng H. C. et al. developed a 

simulation model for machined component manufacturing in a flexible manufacturing 

system. They optimized the routing sequence of operations [60].  

Peng Y. et al. applied the flexsim simulation method for improving productivity and 

reducing the cycle time in the assembly line problem [219]. Gong L. et al. developed a 

simulation model for automobile mixed assembly lines. They increased the machine 

utilization rate and efficiency and reduced the blockage rate in the assembly line [111]. 

Chandika S. et al. designed and simulated the micropump in the automobile industry using 

the INTELLISUITE software and optimized the fabrication cost [50]. Kesen S. E. et al. 

utilized the SIMAN simulation software for the analysis of the pull system to optimize the 

work-in-process inventory [149]. Lin C. K. Y. et al. developed a simulation-based heuristic 

algorithm for appointment scheduling and resource allocation [172]. Azab A. et al. utilized 

the simulation approach for minimizing waiting-time and emissions of trucks and 

enhanced the productivity of container terminals [23]. 
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Table 7.1 Study of simulation-based papers 

Authors Problem Type Factors/Parameters Type of Simulation  

Bjorklund S. et 

al. [33] 

Real-time 

forecasting problem 

Machine failure times 

 

Flexsim 

Krishna L. S. 

R. et al. [160] 

FMS Scheduling 

problem 

Makespan Flexsim 

Fauadi M. et al. 

[96] 

Warehouse logistic 

system problem 

Space utilization, use of 

equipment & tools, work 

safety 

Flexsim, Arena, and 

Promodel 

Jarernram J. et 

al. [137]   

Parallel machine 

scheduling problem  

Makespan Flexsim 

Rodrigues R. P. 

et al. [232] 

Jobshop Scheduling Makespan and machine 

utilization 

Agent-based 

simulation 

Nie X. et al. 

[210] 

Gantry crane 

scheduling problem 

Operator efficiency and 

waiting time 

Flexsim 

Badri et al. [25] Health services 

scheduling problem 

Waiting time, cost, 

throughput, resource 

utilization, and efficiency 

SLAMSYSTEM 

Cheng H. C. et 

al.[61] 

FMS Scheduling 

problem 

Routing sequence of 

operations 

Flexsim, OptQuest 

Peng Y. et al. 

[219] 

Assembly line 

problem 

Productivity and reducing 

the cycle time 

Flexsim 

Gong L. et al. 

[111] 

Assembly line 

problem 

Machine utilization rate, 

efficiency, and blockage 

rate 

Flexsim 

Chandika S. et 

al. [50] 

Micropump design 

problem 

Fabrication cost INTELLISUITE 

Kesen S. E. et 

al. [149] 

Pull system problem Work-in-process inventory SIMAN 

Lin C. K. Y. et 

al. [172] 

Appointment 

scheduling and 

resource allocation 

Resource overtime, patient 

waiting time, and waiting 

area congestion 

Simulation-based 

heuristic algorithm 

Azab A. et al. 

[23] 

Trucks appointment 

scheduling problem 

Waiting time and 

productivity of container 

terminals 

Flexsim 

Nathan Huynh 

[126] 

Trucks appointment 

scheduling problem 

Truck turn time and 

resource utilization 

Flexsim 

Kim S. et al. 

[154] 

Machine shop 

scheduling problem 

Productivity and energy 

cost 

Anylogic 

Phani K. et al. 

[222] 

Job shop scheduling 

problems  

Total processing time, 

machine utilization, and 

allocation of jobs 

Flexsim 

Steinhauer  D. 

et al. [244] 

Production planning 

Problem 

Uncertainty and robustness 

of Production planning 

GeneSim 

Wang Y. R. et 

al. [277] 

 

Logistics system 

problem 

Production efficiency Flexsim and  

Petri net 
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Krishna L. S. R. et al. used the flexsim simulation-based approach for analyzing the effect 

of buffers on a flexible manufacturing system (FMS) performance [160]. Nathan Huynh 

analyzed the effects of varying scheduling rules on the truck turn time and resource 

utilization [126]. Kim S. et al. developed the simulation-based scheduling system for 

machine shop operations of the manufacturing industry of the USA to optimize the 

productivity and energy cost [154]. Jarernram J. et al. solved the parallel machine 

scheduling problem using flexsim simulation software and optimized the makespan [137].  

Rodrigues R. P. et al. developed the hybrid simulation model and solved the multi-

objective problems to optimize the makespan and machine utilization [232]. 

Nie X. et al. optimized the operator efficiency and waiting time of the gantry crane using 

the simulation approach of flexsim and find out the best operating scheduling mode of 

gantry crane [210]. Phani K. et al. optimized the total processing time, machine utilization, 

and allocation of jobs in job shop scheduling problems using the simulation approach 

based on the flexsim [222]. Steinhauer  D. et al. presented a simulation approach for 

reducing the uncertainty for optimizing the quality and robustness of production planning 

in shipbuilding [244]. Wang Y. R. et al. utilized the flexsim and Petri net simulation model 

for optimizing the production efficiency of the logistics system of the automobile industry 

[277]. The past studies show that most of the researchers have successfully utilized the 

flexsim tool for modelling and simulation problems. It is also found from the literature 

review that the modelling and simulation of crankcase cover manufacturing in the 

automobile industry is an untouched area of research. This study initially aims to develop 

the 3D simulation model based on the generic process model. Later, the bottleneck will be 

identified, and removed for increasing production line efficiency and production 

throughput. 

7.1 Process model 

For simulating the layout of any industry, the first step is to analyze the process model. The 

next step is to convert this process model into a simulation model. Flexsim is a powerful 

tool for converting any chimerical process model into a realistic 3d simulation model. The 

crankcase cover manufacturing process consists of the processes such as the melting of raw 

material in the furnace, die casting process, fettling process, drilling process, machining 

process, buffing process, surface treatment, or painting process. The general process model 

for the crankcase cover manufacturing process is shown in Fig. 1.9. Our main aim of the 

study is to find out the bottleneck present in the production line and to eliminate this 

bottleneck to increase the line efficiency. 
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7.2 Flexsim simulation approach 

Flexsim simulation software tool is used for developing a simulation model of the 

crankcase cover manufacturing process. This tool provides a 3-D model that can be 

analyzed without establishing it in the physical form [150]. 

7.2.1 Assumptions 

The following assumptions are considered while developing a simulation model. 

(i) All machines have enough capacity to operate. 

(ii) The arrival rate of raw materials is assumed to be an exponential distribution with a 

location value of zero and a scale value of 4 minutes. 

(iii) The setup time is assumed to be a triangular distribution with min time 0.05 minutes, 

max time 0.15 minutes but most commonly time 0.01 minutes. 

(iv) The processing time is also assumed to be triangular distribution. 

Flexsim contains the four basic objects as shown in Fig. 7.1. These objects are a source, 

sink, processor, and queues [150]. 

7.2.2 Simulation model 

There are generally 3 inputs of the simulation model which are arrival rate, processing 

time, and the number of resources. The model output is generally measured in terms of 

throughput, utilization, and states. The flow items of this simulation model are crankcase 

covers. The fixed resources used in this simulation model are the source, queue, processor, 

and sink. Updating the virtual model is necessary using the company’s real database 

system from time to time. Fig. 7.2 represents the 3D simulation model of crankcase cover 

manufacturing. For running this simulation model there is a need of defining the model 

parameters. These model parameters are defined in Table 7.2 with their statistical 

distributions and values. 

 

Fig. 7.1 Basics objects of Flexsim 
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During the simulation, the reset and the run option are used in flexsim for running the 

model, and the dashboard option provides all analysis of the manufacturing system in 

terms of various charts. Analysis of the virtual model eliminates any uncertainty present in 

the production system.  

                  Table 7.2 Simulation model parameters 

Model parameters Distribution Values (mins) 

Arrival rate of raw materials Exponential 2.00 

Setup time Triangular 0.01 

Die casting machine (DCM) Triangular 1.50 

Manual fettling (MF) Triangular 0.18 

Drilling machine (DM) Triangular 0.35 

Vertical milling center 

(VMC) 

Triangular 4.00 

Buffing machine (BM) Triangular 0.22 

 

 

Fig. 7.2 Simulation model of crankcase cover manufacturing 

7.3 Elimination of bottleneck in production line 

The run speed during simulation is taken as 2401 sec. On running the simulation model for 

8-hour (28800 sec) shift, it has been observed that the bottleneck is created on the queue 4 

as shown in Fig. 7.3. The production line efficiency of this model is calculated as 51.8%. 

Fig. 7.4 is showing the throughput during 8-hour shift. It can also be seen from this 

diagram that bottleneck is present after drilling machine due to which throughput value of 

VMC is 115 as compared to 218 value of drilling machine. Since the bottleneck is created 

before VMC machine, So, add one more VMC machine in production line as shown in Fig. 

9.14. After removing this bottleneck, the production line efficiency becomes 97.29%. The 

increase in throughput value after eliminating bottleneck is also shown in Fig. 9.15. 
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Fig. 7.3 Simulation model showing bottleneck on queue 4 

 

Fig. 7.4 Throughput during 8-hour shift 
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Chapter-8 

Case Study 5 

Prioritizing scheduling parameters in automotive industry using fuzzy TOPSIS-

DEMATEL model 

The Automotive industry is one of the biggest emerging sectors in terms of revenue. Every 

automotive industry has an indispensable need for optimum manufacturing scheduling 

systems for generating good revenues and profits. This need can be pulled off by 

identifying and prioritizing the scheduling parameters. MCDM is one of the best 

techniques of operation research in selecting the best parameters or factors among the 

various alternatives. This study includes the identification and prioritization of the various 

important scheduling parameters in the Indian automotive industry. The twelve scheduling 

parameters have been identified in this study and these parameters are prioritized by the 

fuzzy TOPSIS and DEMATEL. These methods best deal with uncertainty and vagueness. 

The first time, fuzzy TOPSIS and DEMATEL are applied in prioritizing the SPs in the 

automobile industry. The expert’s views are gathered from the five automobile industries. 

Makespan, energy consumption, due date, and travel time are the crucial parameters 

obtained using Fuzzy TOPSIS. The least important parameters obtained using Fuzzy 

TOPSIS are work in process, flow time, and release date. The most influential parameters 

identified using the DEMATEL method are completion time and processing time. This 

study is valuable for every industry and research organization in the field of the automobile 

industry. 

In today’s scenario, the desideratum of every manufacturing firm is scheduling. Scheduling 

means fulfilling the different performance criteria or factors by distributing the available 

production resources over time [10]. Several operations have to be performed on the 

different sets of jobs for their completion in the scheduling problem. The different 

resources and machines are required for performing different job operations [122]. 

Production Scheduling is a very important decision-making process that includes the 

proper allocation of all the available resources for performing all tasks [7]. On-time 

delivery of products or services provides customer satisfaction and scheduling helps in 

achieving on-time delivery [223]. The primary objective of scheduling includes 

determining the job processing time, sequence, and due date of jobs [252]. The complexity 

of each production scheduling problem depends on different objectives, environmental 

conditions, and process constraints. The manufacturing schedule depends not only on 
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production but also depends on scheduling parameters [73]. Prioritizing scheduling 

parameters is the need of every industry for optimum schedule because, without an 

optimum schedule, industries can’t increase the profit and productivity on a full scale. 

Most of the industries only work in improving the work culture, surrounding conditions, 

and performance of workers and machines, etc. But for every industry, it is important to 

identify and prioritize the critical scheduling parameters or most influential scheduling 

parameters of their respective area or field. By identifying the Critical Scheduling 

parameters, we can generate the most effective scheduling system. So, there is an immense 

need of prioritizing these parameters. These parameters can be effectively prioritized using 

the MCDM approach. This study includes the identification of scheduling parameters and 

finding the criticality of these parameters in the automobile industry. 

Due to uncertainty and ambiguity in human judgment decisions, all values corresponding 

to scheduling parameters in the decision set can’t be crisp. So, some linguistic variable or 

fuzzy variable must be taken to deals with all the criteria [302]. Therefore, fuzzy TOPSIS 

methodology is used in this study for prioritizing the SPs for an optimum schedule in the 

automotive industry, and the DEMATEL method is used for identifying the most 

influential parameters and finds cause criteria and effect criteria group. DEMATEL is the 

structural modeling approach used in finding the relationship between the cause-and-effect 

criteria. Many researchers have used fuzzy TOPSIS and DEMATEL methodology 

separately in various scheduling problems as discussed in the literature part. But the first 

time, both these approaches are applied simultaneously in prioritizing the scheduling 

parameters and identify the most influential parameters for an optimum schedule in the 

automobile industry. 

8.1 Identification of Scheduling parameters for optimum schedule generation  

Twelve Scheduling parameters are identified from previous studies and industry expert’s 

reviews. These parameters are discussed as follows. Makespan is one of the strongest 

performance measures in all types of scheduling problems and it represents the total time 

to process all the jobs [223]. For minimizing the makespan, machine speed can be 

increased but it increases energy consumption. The trade-off  is required between these 

parameters [112]. Makespan or tardiness is taken as the main parameter for a single 

optimality criteria problem [231]. Flow time represents the size of the average inventory. 

Flow time can be significantly reduced by minimizing the average inventory. Lateness 

indicates the condition of completing the orders near the due date [280]. 
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Processing time depends on the starting time in machine scheduling problems. Processing 

time can be linear or exponential in time-dependent problems [62]. The release date shows 

the value before which a job cannot be processed on a machine [11]. A job must be entered 

at the release date and leaves at the due date [224]. Earliness represents the negative 

lateness and shows the condition of completing the orders earlier to the due date [11].  

8.2 Application of Fuzzy TOPSIS methodology 

Literature review and experts view from various decision-making companies help us in 

identifying the main twelve scheduling parameters for the optimum schedule in automotive 

part manufacturing companies. The twelve scheduling parameters identified are makespan, 

flow time, lateness, processing time, due date, energy consumption, earliness, travel time, 

work in process, tardiness, completion time, and release date. Profiles of the various 

crankcase automotive part manufacturing companies are illustrated in Table 8.1.   

Table 8.1 Profile of various decision-maker companies 

Companies Product 

Manufactured 

Material Annual 

Turnover 

(USD) 

No. of 

Branches 

in India 

Manufacturing 

Facility Setup 

in India 

Super Auto India 

limited (CPY 1) 

Motorcycle 

crankcase 

Aluminum 70 Lakh 3 Faridabad, 

Pune 

Shiv Shakti 

Engineering Co. 

(CPY 2) 

Ingersoll Rand 

Crank Case 
 

CIFC225 1.4 Lakh 1 Ahmedabad 

(Gujarat, India) 

Kolben 

Compressor 

Spares (India) 

Private Limited 

(CPY 3) 

Vilter 440 

Crankcase 

Steel 35 Lakh 1 Churchgate, 

Mumbai, 

Maharashtra 

Industrial Spare 

Syndicate 

Limited 

(CPY 4) 

ISS Crank 

Case for KG2 

 

Cast Iron 4.9 Lakh 1 Mori Gate, 

Delhi 

Shanirajeshwar 

Die Casting Pvt. 

Ltd. 

(CPY 5) 

Black 

Automobile 

Crankcase 

Aluminum 

Alloy 

24.5 Lakh 1 Moshi, Pune, 

Maharashtra 

 

Table 8.3 is showing the linguistic variable based decision matrix. This matrix is 

developed on the five-point linguistic scale. This linguistic scale with its fuzzy number is 

specified in Table 3.1. The fuzzy number-based decision matrix table as obtained from step 

1 is represented in Table 8.4. 

 

https://www.indiamart.com/proddetail/crank-case-13109086912.html
https://www.indiamart.com/proddetail/crank-case-13109086912.html
https://www.indiamart.com/proddetail/crank-case-for-kg2-19685754897.html
https://www.indiamart.com/proddetail/crank-case-for-kg2-19685754897.html
https://www.srdcled.com/
https://www.srdcled.com/
https://www.srdcled.com/
https://www.srdcled.com/
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Table 8.2 Scheduling parameters for optimum schedule 

Scheduling Parameters Symbol 

Makespan Mk 

Flow time Ft 

Lateness Lt 

Processing time Pt 

 Due Date Dd 

Energy consumption Ec 

Earliness E 

Travel time Tt 

Work in Process Wp 

Tardiness T 

Completion time Ct 

Release date Rd 

 

Table 8.3 Linguistic variable-based decision matrix 

 CPY 

1 

CPY 

2 

CPY 3 CPY 

4 

CPY 

5 

Mk HI HI PHI HI PHI 

Ft NLO AM LO NLO LO 

Lt LO AM LO LO AM 

Pt HI HI AM HI AM 

Dd HI PHI AM HI AM 

Ec HI AM AM LO AM 

E LO AM LO LO LO 

Tt AM HI AM HI AM 

Wp NLO AM NLO NLO LO 

T HI AM AM HI AM 

Ct LO AM AM LO AM 

Rd LO AM LO NLO LO 

 

Table 8.4 Fuzzy number-based decision matrix 

 CPY 1 CPY 

2 

CPY 

3 

CPY 

4 

CPY 

5 

Mk 5,7,9 5,7,9 7,9,9 5,7,9 7,9,9 

Ft 1,1,3 3,5,7 1,3,5 1,1,3 1,3,5 

Lt 1,3,5 3,5,7 1,3,5 1,3,5 3,5,7 

Pt 5,7,9 5,7,9 3,5,7 5,7,9 3,5,7 

Dd 5,7,9 7,9,9 3,5,7 5,7,9 3,5,7 

Ec 5,7,9 3,5,7 3,5,7 1,3,5 3,5,7 

E 1,3,5 3,5,7 1,3,5 1,3,5 1,3,5 

Tt 3,5,7 5,7,9 3,5,7 5,7,9 3,5,7 

Wp 1,1,3 3,5,7 1,1,3 1,1,3 1,3,5 

T 5,7,9 3,5,7 3,5,7 5,7,9 3,5,7 

Ct 1,3,5 3,5,7 3,5,7 1,3,5 3,5,7 

Rd 1,3,5 3,5,7 1,3,5 1,1,3 1,3,5 
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For calculating the normalized fuzzy decision matrix, we have assumed all criteria to be 

non-beneficial (cost) criteria. The matrix 𝑉 will be the same as the matrix 𝑅𝑖𝑗 because, for 

this study, equal weights are considered for all the decision-makers. Table 8.5 shows the 

matrix 𝑉with the fuzzy ideal solutions. The distances or separation from the ideal solutions 

are calculated in Table 8.6 and Table 8.7. 

Table 8.5 Matrix 𝑉with ideal solutions 

 CPY 1 CPY 2 CPY 3 CPY 4 CPY 5 

Mk 0.11,0.14,0.2 0.33,0.42,0.6 0.11,0.11,0.14 0.11,0.14,0.2 0.11,0.11,0.14 

Ft 0.33,1,1 0.42,0.6,1 0.2,0.33,1 0.33,1,1 0.2,0.33,1 

Lt 0.2,0.33,1 0.42,0.6,1 0.2,0.33,1 0.2,0.33,1 0.14,0.2,0.33 

Pt 0.11,0.14,0.2 0.33,0.42,0.6 0.14,0.2,0.33 0.11,0.14,0.2 0.14,0.2,0.33 

Dd 0.11,0.14,0.2 0.33,0.33,0.42 0.14,0.2,0.33 0.11,0.14,0.2 0.14,0.2,0.33 

Ec 0.11,0.14,0.2 0.42,0.6,1 0.14,0.2,0.33 0.2,0.33,1 0.14,0.2,0.33 

E 0.2,0.33,1 0.42,0.6,1 0.2,0.33,1 0.2,0.33,1 0.2,0.33,1 

Tt 0.14,0.2,0.33 0.33,0.42,0.6 0.14,0.2,0.33 0.11,0.14,0.2 0.14,0.2,0.33 

Wp 0.33,1,1 0.42,0.6,1 0.33,1,1 0.33,1,1 0.2,0.33,1 

T 0.11,0.14,0.2 0.42,0.6,1 0.14,0.2,0.33 0.11,0.14,0.2 0.14,0.2,0.33 

Ct 0.2,0.33,1 0.42,0.6,1 0.14,0.2,0.33 0.2,0.33,1 0.14,0.2,0.33 

Rd 0.2,0.33,1 0.42,0.6,1 0.2,0.33,1 0.33,1,1 0.2,0.33,1 

A+ 
0.33,1,1 0.42,0.6,1 0.33,1,1 0.33,1,1 0.2,0.33,1 

A- 0.11,0.14,0.2 0.33,0.33,0.42 0.11,0.11,0.14 0.11,0.14,0.2 0.11,0.11,0.14 
 

Table 8.6 Separation from each parameter to the FPIS 

 CPY 1 CPY 

2 

CPY 

3 

CPY 

4 

CPY 

5 

Mk 0.689 0.258 0.725 0.689 0.515 

Ft 0 0 0.394 0 0 

Lt 0.394 0 0.394 0.394 0.395 

Pt 0.689 0.258 0.612 0.689 0.395 

Dd 0.689 0.373 0.612 0.689 0.395 

Ec 0.689 0 0.612 0.394 0.395 

E 0.394 0 0.394 0.394 0 

Tt 0.612 0.258 0.612 0.689 0.395 

Wp 0 0 0 0 0 

T 0.689 0 0.612 0.689 0.395 

Ct 0.394 0 0.612 0.394 0.395 

Rd 0.394 0 0.394 0 0 
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Table 8.7 Separation from each parameter to the FNIS 

 CPY 1 CPY 

2 

CPY 

3 

CPY 

4 

CPY 

5 

Mk 0 0.116 0 0 0 

Ft 0.689 0.373 0.515 0.689 0.515 

Lt 0.477 0.373 0.515 0.477 0.122 

Pt 0 0.116 0.122 0 0.122 

Dd 0 0 0.122 0 0.122 
Ec 0 0.373 0.122 0.477 0.122 

E 0.477 0.373 0.515 0.477 0.515 

Tt 0 0.116 0.122 0 0.122 

Wp 0.689 0.373 0.725 0.689 0.515 

T 0 0.373 0.122 0 0.122 

Ct 0.477 0.373 0.122 0.477 0.122 

Rd 0.477 0.373 0.515 0.689 0.515 

 

8.3 Application of DEMATEL methodology 

The influence of each criterion on all other criteria is represented by the initial direct 

relation matrix in terms of numerical value as shown in Table 8.8. Data for Table 8.8 is 

collected from the literature review and industry experts. A total relation matrix is 

generated by using their equations as shown in Table 8.9. The positive and negative values 

of D-R represent the cause-and-effect criteria respectively as depicted in Table 8.10.   

 

Table 8.8 Initial direct relation matrix (M) 

 Mk Ft Lt Pt Dd Ec E Tt Wp T Ct Rd 

Mk 0 4 3 0 3 3 3 1 2 3 4 1 

Ft 4 0 3 0 3 3 3 1 3 3 3 0 

Lt 1 1 0 0 3 0 4 0 0 2 3 2 

Pt 4 4 3 0 1 3 3 0 1 3 4 0 

Dd 1 1 3 1 0 0 4 3 0 1 3 4 

Ec 3 3 0 4 0 0 0 2 0 1 4 0 

E 1 1 2 0 1 0 0 0 1 4 3 2 

Tt 4 4 3 0 1 2 3 0 1 2 3 0 

Wp 3 3 2 1 0 3 1 4 0 3 3 0 

T 1 1 1 0 1 0 4 0 0 0 3 2 

Ct 4 4 3 3 1 1 2 1 3 3 0 1 

Rd 0 0 3 0 4 1 3 0 0 3 3 0 
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Table 8.9 Total relation matrix 

 Mk Ft Lt Pt Dd Ec E Tt Wp T Ct Rd 

Mk 0.3174 0.4464 0.4275 0.1262 0.3443 0.2794 0.4891 0.1808 0.2398 0.4652 0.5682 0.2232 

Ft 0.4395 0.3105 0.4159 0.1217 0.3332 0.2772 0.4757 0.1812 0.2655 0.4538 0.5265 0.1848 

Lt 0.1987 0.1987 0.1914 0.0640 0.2470 0.0872 0.3650 0.0753 0.0939 0.2818 0.3458 0.1929 

Pt 0.4565 0.4565 0.4255 0.1244 0.2789 0.2882 0.4859 0.1388 0.2128 0.4685 0.5712 0.1816 

Dd 0.2611 0.2611 0.3578 0.1149 0.1953 0.1254 0.4376 0.1956 0.1235 0.3184 0.4270 0.2851 

Ec 0.3680 0.3680 0.2572 0.2358 0.1834 0.1588 0.2926 0.1724 0.1460 0.3146 0.4674 0.1221 

E 0.1933 0.1933 0.2447 0.0607 0.1711 0.0874 0.2173 0.0703 0.1226 0.3332 0.3317 0.1778 

Tt 0.4195 0.4195 0.3928 0.1057 0.2558 0.2339 0.4460 0.1237 0.1941 0.3955 0.4892 0.1630 

Wp 0.4071 0.4071 0.3633 0.1479 0.2174 0.2796 0.3831 0.2654 0.1604 0.4300 0.4992 0.1529 

T 0.1738 0.1738 0.1946 0.0538 0.1561 0.0756 0.3222 0.0593 0.0821 0.1812 0.3045 0.1666 

Ct 0.4569 0.4569 0.4328 0.2152 0.2839 0.2306 0.4621 0.1768 0.2765 0.4728 0.4421 0.2137 

Rd 0.1660 0.1660 0.2918 0.0695 0.2792 0.1149 0.3386 0.0778 0.0876 0.3109 0.3499 0.1302 
 

Table 8.10 Calculation of prominence vector and relation vector 

 Diagram 

Notations 

D R D+R D-R 

Mk C1 4.1076 3.8578 7.9654 0.2498 

Ft C2 3.9853 3.8578 7.8431 0.1275 

Lt C3 2.3418 3.9952 6.3370 -1.6534 

Pt C4 4.0887 1.4397 5.5284 2.6490 

Dd C5 3.1026 2.9455 6.0481 0.1571 

Ec C6 3.0865 2.2382 5.3247 0.8483 

E C7 2.2034 4.7154 6.9188 -2.5120 

Tt C8 3.6387 1.7174 5.3561 1.9213 

Wp C9 3.7134 2.0048 5.7182 1.7086 

T C10 1.9436 4.4260 6.3696 -2.4824 

Ct C11 4.1204 5.3226 9.4430 -1.2022 

Rd C12 2.3824 2.1939 4.5763 0.1885 

 

Estimate the threshold value (α=0.2689) of the total relation matrix. Then, compare all the 

matrix values with it and marked bold those values whose value is greater than threshold 

values. In the DEMATEL method, values with the highest prominence vector and relation 

vector are the most influential criteria. Completion time (C11) and processing time (C4) 

are the most influential criteria identified from the causal diagram as shown in Fig. 8.1.  
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Fig. 8.1 Causal diagram 
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Chapter 9 

Results and Analysis 

9.1 Results and discussion (CASE STUDY-1) 

Steps 1 and 2 are common in TOPSIS and MOORA methodology which give the same 

value of decision matrix and normalized decision matrix as given in Tables 3 and 4 

respectively. In this study, equal weightage is given to all the criteria. Thus, the weighted 

normalized decision matrix for Crankcase Cover Material Selection is the same as the 

normalized decision matrix. For the calculation of ranking of the alternatives using the 

TOPSIS technique, separation distances of alternatives (S+& S−) from the positive ideal 

and negative ideal solution is calculated using Eq. (6) and Eq. (7). Based on these 

separation distance values, the relative closeness of each alternative to the ideal solution 𝐶𝑖 

is determined using Eq. (8). The final ranking using the TOPSIS methodology (A3 > A2 >

A4 > A1 > A5 > A6) is obtained using the decreasing order of these 𝐶𝑖 values. The 

performance score obtained for each alternative via the TOPSIS technique are 58.7%, 

58%, 55.7%, 45.5%, 45.4%, and 39.7%.  For the calculation of ranking of alternatives 

using the MOORA methodology, first ∑ xij
∗q

j=1  value is obtained by adding weighted 

normalized values of six beneficial criteria which are brinell hardness, yield strength, % 

elongation, ultimate tensile strength, young’s modulus, and fatigue strength. 

Similarly, ∑ xij 
∗n

j=q+1 represents the material cost which is a non-beneficial criterion in this 

study. The final ranking of crankcase cover (A3 > A5 > A2 > A4 > A1 > A6) is decided 

by the overall performance score which is represented by 𝑦𝑖
∗. Since the number of 

beneficial criteria is more than the number of non-beneficial criteria, so the overall 

performance score becomes positive. The final ranking of crankcase cover using the 

reference point approach is A3 = A2 > A1 > A4 > A6 > A5. PROMETHEE approach 

shows the final ranking A5 > A3 > A4 > A2 > A1 > A6. All the above approaches except 

PROMETHEE represents the aluminum alloy A380 (𝐴3) is the best material for crankcase 

cover. Fig. 9.1 shows the final ranking of alternatives using the TOPSIS, MOORA, 

reference point approach, and PROMETHEE. The final ranking of alternatives obtained 

using these approaches are shown in Table 9.1 to Table 9.4. 
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Table 9.1 Ranking of the alternatives using TOPSIS method 

Alternatives S+ S- Ci Ranking 

A1 0.3189 0.2668 0.4555 4 

A2 0.2880 0.3979 0.5802 2 

A3 0.2860 0.4076 0.5876 1 

A4 0.3149 0.3973 0.5578 3 

A5 0.3943 0.3286 0.4546 5 

A6 0.3677 0.2421 0.3970 6 
 

Table 9.2 Ranking of the alternatives using MOORA method 

Alternatives 

∑𝑥𝑖𝑗
∗

𝑞

𝑗=1

 ∑ 𝑥𝑖𝑗
∗

𝑛

𝑗=𝑞+1

 
𝑦𝑖
∗ Ranking 

A1 2.311 0.387 1.924 5 

A2 2.464 0.384 2.080 3 

A3 2.473 0.352 2.121 1 

A4 2.436 0.384 2.052 4 

A5 2.534 0.448 2.086 2 

A6 2.242 0.480 1.762 6 

 

Table 9.3 Ranking of alternatives using reference point approach 

Sl. No. C1 C2 C3 C4 C5 C6 C7 Pi Rank 

A1 0.213 0.176 0.141 0.028 0.056 0.021 0.035 0.213 2 

A2 0.189 0.206 0.000 0.009 0.056 0.021 0.032 0.206 1 

A3 0.189 0.206 0.000 0.000 0.056 0.021 0.000 0.206 1 

A4 0.213 0.222 0.000 0.019 0.056 0.000 0.032 0.222 3 

A5 0.000 0.000 0.382 0.009 0.000 0.021 0.096 0.382 5 

A6 0.189 0.239 0.141 0.037 0.056 0.042 0.128 0.239 4 

 

Table 9.4 Ranking of alternatives using PROMETHEE 

Alternatives 𝜙+(𝑠) 𝜙−(𝑠) 𝜙(𝑠) Ranking 

A1 0.6148 1.4100 0.7952 5 

A2 1.0941 0.7758 0.3182 4 

A3 1.5941 0.6758 0.9182 2 

A4 1.3724 0.9691 0.4033 3 

A5 3.2629 1.4412 1.8218 1 

A6 0.1675 2.8339 2.6664 6 
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Fig. 9.1 Rankings of the alternatives for material selection 

This study proposed the seven-step procedure for the material selection of crankcase cover 

using the TOPSIS methodology. Results of TOPSIS methodology concluded that the 

aluminum alloy A380 (A3) is the best material for the two-wheeler crankcase cover in the 

automobile industry. This result is validated by the MOORA and reference point approach 

with greater accuracy. 

MOORA approach is very simple and easy to implement as compared to the other MCDM 

approaches. MOORA approach does not give accurate results when large numbers of 

qualitative attributes are present.  

Limitations of this type of study are uncertainty in the decision-making process arises due 

to uncertainties in the input data and it is also difficult to show the performance of most 

alternatives by single numerical data. TOPSIS technique does not consider the correlation 

of the attributes. The proposed integrated model is a simple, easy to implement, and 

efficient tool for the decision-makers. This novel TOPSIS-PROMETHEE-MOORA 

method can also be utilized for other material selection problems in the automobile 

industry. The results obtained in this study are valuable for all automobile industries and 

research organizations. This study can be further extended by applying other remaining 

MCDM approaches. 

9.2 Results and discussion (Case Study-2) 

Table 9.5 shows the part sequence obtained from various dispatching rules. This table also 

describes the parameters optimized by different dispatching rules. Table 9.6 describes the 

dispatching rule-based priority rule summary for crankcase cover prioritization. Figure 16 
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shows the priority rule chart. Based on Table 9.6 and Fig. 9.2 to Fig. 9.6, different results 

can be concluded. 

Table 9.5 Part Sequence obtained from various dispatching rules 

Dispatching rule Part sequence Parameters minimized 

EDD K38 → 206G → KTE → KWPG Maximum lateness and 

tardiness 

SPT 206G → K38 → KTE → KWPG Average flow time  

CR K38 → 206G → KTE → KWPG Conditional mean tardiness 

LPT KWPG → KTE → K38 → 206G Average hours early 

WSPT 206G → KTE → KWPG → K38 Mean flow time and mean 

finish time 

COVERT K38 → 206G → KWPG → KTE Average conditional tardiness 

Hodgson’s Algorithm K38 → 206G → KTE → KWPG No. of tardy Jobs 

 

Table 9.6 Priority rule summary  

Rule Mean flow 

time 

Weighted  

mean flow 

time 

Mean  

tardi-

ness 

Mean 

lateness 

 

Maximum 

lateness 

Average 

hours 

Early 

No. of 

tardy 

Jobs 

EDD 13.25 10.87 0.00 -7.50 -12.50 10.25 0.00 

SPT 12.87 16.23 0.00 -7.87 -12.50 11.12 0.00 

CR 13.00 16.17 0.00 -7.00 -10.50 9.75 0.00 

LPT 16.00 15.92 3.25 -4.75 -22.00 8.00 2.00 

WSPT 13.625 15.08 2.12 -7.12 -16.00 10.37 1.00 

COVERT 13.75 16.77 0.00 -7.00 -16.50 10.25 0.00 

 

Among all priority rules, the SPT approach minimizes average flow time but sometimes it 

increases the inventory cost also. The critical ratio approach provides a balanced schedule 

having a moderate value of average flow time and due date. Critical ratio priorities are 

effective for conditional mean tardiness. EDD approach provides better customer 

satisfaction because it delivers the product to the customer on time, and it minimizes the 

weighted mean flow time also. In our study, we have shifted our production system from 

the WSPT approach scheduling to the EDD scheduling approach. EDD scheduling 

approach minimizes the mean flow time by 2.75%, weighted mean flow time by 27.91%, 

and maximum lateness by 21.87%. From overall this study, the best part sequence 

K38→206G→KTE→KWPG is obtained from the EDD rule which helps us in achieving 

on-time delivery and customer satisfaction. The limitation of the research is that these 

dispatching rules generally provide low-quality solutions because of lack of flexibility, so 

they should be used with some mathematical or simulation models to obtain high-quality 
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solutions [125]. This study can be further extended by applying other remaining advanced 

dispatching rule approaches. 

 

Fig. 9.2 Variation of mean flow time 

 

 

Fig. 9.3 Variation of weighted mean flow time  

 

 

Fig. 9.4 Variation of mean lateness  
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Fig. 9.5 Variation of maximum lateness 

 

 

Fig. 9.6 Variation of average hours early 

 

 

Fig. 9.7 Rule viewer window for crankcase cover prioritization 
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9.3   Results and discussion (Case Study-3) 

Rule viewer is a platform of the fuzzy graphical tool in which inputs can be varied for the 

corresponding outputs. Rule viewer for crankcase cover prioritization is shown in Fig. 9.7. 

 9.3.1 Impacts of all inputs on job prioritization and route selection  

The Surface Viewer is another fuzzy graphical tool that examines the output surface of a 

fuzzy scheduling system for any one or two inputs. The Surface viewer for crankcase cover 

prioritization is shown in Fig. 9.8 to Fig. 9.10 and for route selection of crankcase cover is 

shown in Fig. 9.11 to Fig. 9.13. 

Fig. 9.8 shows higher priority values of job prioritization for low values of energy 

consumption and travel time. This diagram also shows that energy consumption has an 

inverse relation with the priority whereas the priority is high for low values of travel time, 

and it remains constant for a particular range and then suddenly decreases for the high 

value of travel time. In Fig. 9.9, we can observe the moderate values of priority for high 

values for travel time and processing time and high values of priority for low values of 

travel time and processing time. Travel time and processing time have an almost similar 

impact on priority. Fig. 9.10 depicts the impacts of processing time and energy 

consumption on priority and this variation is like Fig. 9.8. Fig. 9.11 and Fig. 9.12 describe 

the scheduling parameter’s impact on the route selection. Travel time and WIQ effects on 

the priority show a similar variation with processing time and WIQ on the priority. Fig. 9.9 

depicts the high values of route selection priority on the low values of processing time and 

travel time and moderate values of priority on the high values of processing time and travel 

time. 

 

 

Fig. 9.8 Impact of energy consumption and travel time on job prioritization 
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Fig. 9.9 Impact of travel time and processing time on job prioritization 

 

Fig. 9.10 Impact of processing time and energy consumption on job prioritization 

 

Fig. 9.11 Impact of travel time and WIQ on crankcase cover route selection 
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Fig. 9.12 Impact of processing time and WIQ on crankcase cover route selection 

 

Fig. 9.13 Impact of processing time and travel time on crankcase cover route selection 

9.3.2 Route Priority for all Jobs using FLS  

Route priority of four crankcase cover obtained by a fuzzy logic system is given in Table 

9.7 

Table 9.7 Crankcase cover priority using fuzzy logic approach 

Route 

(M/C sequence) 

KWPG K38 206G KTE 

DCM-MF-DM-VMC-BM-PS 0.585 0.625 0.553 0.516 

DCM-CF-DM-VMC-BM-PS 0.514 0.563 0.5 0.469 

DCM-VMC-DM-VMC-BM-PS 0.553 0.606 0.48 0.165 

 

9.3.3 Results obtained using Fuzzy Set Approach 

This approach is based on the calculation of membership function values. Based on the 

maximum final membership function values, route selection is done which is shown in 
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Table 9.8. The final sequence obtained by the fuzzy logic system and fuzzy set approach is 

shown in Table 9.9 

Table 9.8 Crankcase cover route selection using the fuzzy set approach 

Crankcase Cover uj(i)max  

KWPG 0.657 

K38 0.619 

206G 0.695 

KTE 0.738 

 

Table 9.9 Final sequence obtained by fuzzy logic system and fuzzy set approach 

Final sequence obtained by fuzzy logic 

approach in MATLAB 

Final sequence obtained by fuzzy set approach 

Crankcase 

cover 

 Optimum Route 

(M/C sequence) 

Crankcase 

cover 

 Optimum Route 

(M/C sequence) 

KWPG DCM-MF-DM-VMC-BM-PS KWPG DCM-MF-DM-VMC-BM-PS 

DCM-CF-DM-VMC-BM-PS 

K38 DCM-MF-DM-VMC-BM-PS K38 DCM-MF-DM-VMC-BM-PS 

DCM-CF-DM-VMC-BM-PS 

206G DCM-MF-DM-VMC-BM-PS 206G DCM-MF-DM-VMC-BM-PS 

DCM-CF-DM-VMC-BM-PS 

KTE DCM-MF-DM-VMC-BM-PS KTE DCM-MF-DM-VMC-BM-PS 

 

For KWPG, K38, and 206G, maximum final membership values for both routes (DCM-

MF-DM-VMC-BM-PS, DCM-CF-DM-VMC-BM-PS) are approximately the same. So, 

both sequences are shown as optimum routes in Table 9.9. Some of the sequences are 

shown in bold because these are the same sequences that we get using a fuzzy logic 

approach in MATLAB which is verifying our result.  

All maximum priority value is obtained corresponding to the machine sequence (DCM-

MF-DM-VMC-BM-PS). Results show the industry must use manual fatling operation 

rather than CNC or VMC machine for energy-efficient scheduling. Job priority sequence 

obtained by both fuzzy techniques for four crankcase cover problem= {K38, KWPG, 

206G, KTE}. 

This study considered the fuzzy logic system for solving the energy-efficient crankcase 

cover process scheduling problem under uncertain processing times. With the help of the 

fuzzy logic system in MATLAB, we had done the job prioritization and route selection of 

crankcase cover manufacturing. The fuzzy rule table is generated for this prioritization 

based on the different linguistic inputs. Using the fuzzy rule table, the Mamdani fuzzy 

scheduling system was also developed. This scheduling system provides the trade-off 

between energy consumption and makespan. Finally, an optimized schedule is obtained 
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using FLS and their results are further validated by the fuzzy set approach. These results 

are valuable for production engineers and supervisors in all automotive industries.  

As future research, another metaheuristic approach like a genetic algorithm or particle 

swarm optimization can also be applied to this same problem with variable setup time and 

dynamic uncertainty.  

9.4 Results and discussion (Case Study-4) 

There are various ways to eliminate this bottleneck such as increasing the interarrival time 

of source1, decreasing the setup time/processing time or adding some more machines in 

production line. The most preferable method for line balancing is adding more machines in 

production lines. Since the bottleneck is created before VMC machine, So, add one more 

VMC machine in production line as shown in Fig. 7.4. After removing this bottleneck, the 

production line efficiency becomes 97.29%. The increase in throughput value after 

eliminating bottleneck is also shown in Fig. 7.5. 

 

 
Fig. 9.14 Simulation model after removing bottleneck 

 

 
Fig. 9.15 Throughput after removing bottleneck 

 

9.5 Results and discussion (Case Study-5) 

9.5.1 Results using the Fuzzy TOPSIS approach 

𝑆+,𝑆− and 𝐶𝑗 values are calculated using Eq. (6-8). Based on 𝐶𝑗 values, priority values are 

given. Table 9.10 shows the Priority Matrix Based on Closeness Coefficient Values. The 

most important SPs obtained is makespan and the least important SPs is work in process. 
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Table 9.10 Priority matrix based on closeness coefficient values 

 S+ S- Cj Priority 

Mk 2.876 0.116 0.961 1 

Ft 0.394 2.781 0.124 11 

Lt 1.577 1.964 0.445 8 

Pt 2.643 0.36 0.880 3 

Dd 2.758 0.244 0.918 2 

Ec 2.09 1.094 0.656 6 

E 1.182 2.357 0.333 9 

Tt 2.566 0.36 0.876 4 

Wp 0 2.991 0 12 

T 2.385 0.617 0.794 5 

Ct 1.795 1.571 0.533 7 

Rd 0.788 2.569 0.234 10 

 

9.5.2 Results using DEMATEL approach 

Optimum Scheduling plays a major role in the effective manufacturing system. This 

scheduling can only be done by identifying the scheduling parameters. This study provides 

the methodology of identifying and prioritizing the twelve SPs for automotive part 

manufacturing. The most important four SPs identified for optimum scheduling using 

fuzzy TOPSIS are makespan, due date, processing time, and travel time. The least 

important SPs identified using fuzzy TOPSIS are work in process, flow time, and release 

date. Cause criteria factors are more crucial than the effect criteria factors. So, all 

industries and research organizations must give more attention to these factors because 

cause criteria group improvement has a significant effect on the improvement of the effect 

criteria group. Results reveal that the completion time and processing time are the most 

influential criteria in optimum scheduling. This study is useful for all automotive part 

manufacturers as well as automobile-based research organizations. This study is based on 

the automobile crankcase cover with five-point linguistic scale.  

For further research, the fuzzy VIKOR, and fuzzy PROMETHEE can be applied, and 

comparison analysis can be done for the same problem. Future research can be carried out 

by taking any other automotive part with five or more linguistic scales and for a more 

generalized scheduling model, the number of experts can also be increased. 
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Chapter 10 

Conclusions and Future Scope 

10.1 Conclusions 

There is a total of five case studies that we have conducted; results have been summarized 

as follows. 

• Case study 1 is related to the material selection of crankcase cover, in which 

MCDM techniques have been used to find out the best material for crankcase cover 

based on some beneficial and non-beneficial criteria. Results of TOPSIS 

methodology concluded that the aluminum alloy A380 is the best material for the 

two-wheeler crankcase cover in the automobile industry. This result is validated by 

the MOORA and reference point approach with greater accuracy. 

• Case study 2 deals with the dispatching rule-based single machine static scheduling 

of crankcase cover manufacturing. In this study, we have shifted our production 

system from the WSPT approach scheduling to the EDD scheduling approach. 

EDD scheduling approach minimizes the mean flow time by 2.75%, weighted 

mean flow time by 27.91%, and maximum lateness by 21.87%. From overall this 

study, the best part sequence K38→206G→KTE→KWPG is obtained from the 

EDD rule which helps us in achieving on-time delivery and customer satisfaction. 

• Case study 3 considers the development of an energy-efficient fuzzy scheduling 

system for crankcase covers manufacturing. The optimum route obtained from this 

system is DCM-MF-DM-VMC-BM-PS and DCM-CF-DM-VMC-BM-PS. Results 

also show that the industry must use manual fatling operation rather than CNC or 

VMC machine for energy-efficient scheduling. Job priority sequence obtained by 

both fuzzy techniques for four crankcase cover problem= {K38, KWPG, 206G, 

KTE}. This study considered the fuzzy logic system for solving the energy-

efficient crankcase cover process scheduling problem under uncertain processing 

times. This scheduling system provides the trade-off between energy consumption 

and makespan. These results are valuable for production engineers and supervisors 

in all automotive industries.  

• Modelling and simulation of crankcase cover manufacturing in the automobile 

industry is done in case study 4. The results indicate that by eliminating the 

bottleneck in the production line, it increases the line efficiency as well as the 

production throughput. Initially production line efficiency is just 51.8 % when 
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bottleneck is present at queue 4. By adding one more vertical milling centre in the 

production line, we eliminated this queue 4 bottleneck and increases not only 

throughput but also line efficiency to 97.29%. 

• Prioritizing scheduling parameters in the automotive industry using fuzzy TOPSIS-

DEMATEL model is conducted in case study 5. The most important four SPs 

identified for optimum scheduling using fuzzy TOPSIS are makespan, due date, 

processing time, and travel time. The least important SPs identified using fuzzy 

TOPSIS are work in process, flow time, and release date. Makespan (C1), flow 

time (C2), processing time (C4), due date (C5), energy consumption (C6), travel 

time (C8), work in process (C9), and release date (C12) are classified into cause 

criteria group, whereas effect criteria group consists of lateness (C3), earliness 

(C7), tardiness (C10), and completion time (C11). Cause criteria factors are more 

crucial than the effect criteria factors. So, all industries and research organizations 

must give more attention to these factors because cause criteria group improvement 

has a significant effect on the improvement of the effect criteria group. 

• This thesis titled “Prioritization and Efficient Route Selection in Automotive Parts 

Manufacturing” has been studied in detail and after effective five case studies, it is 

concluded that the developed scheduling system which uses optimum scheduling 

parameters provides the trade-off between energy consumption and makespan. 

Identification of best material through MCDM model also enhances this production 

system performance and developed simulation model enhances the quality of 

solutions obtained through dispatching rule based static scheduling. These results 

are valuable for the production engineers and the supervisors in all automotive 

industries. 

10.2 Recommendations for industries 

• Case study 1 recommends using aluminium alloy A380 material for the 

manufacturing of crankcase cover because it optimizes the seven attributes (Brinell 

hardness, yield strength, % elongation, young’s modulus, ultimate tensile strength, 

fatigue strength, and material cost) using integrated MCDM model. Case study 2 

recommends shifting the production system from WSPT approach to EDD 

approach to minimizes the mean flow time, weighted mean flow time and 

maximum lateness. If industry wants to expand its plant, case study 4 model based 

on modelling and simulation will help in eliminating the bottleneck and optimizes 

the throughput and line efficiency whereas, case study 5 recommend using this 
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machine sequence DCM-MF-DM-VMC-BM-PS and job sequence {K38, KWPG, 

206G, KTE} for optimizing the energy consumption and makespan. 

10.3 Future Scope 

Following issues can be addressed in the future course of research. 

• In this thesis, chapter 4 includes the comparative analysis using integrated TOPSIS 

-PROMETHEE-MOORA model for the material selection of crankcase cover. In 

all these MCDM techniques, if we changed the input values then result of ranking 

can also varies. So, to check the robustness of a MCDM model in the presence of 

uncertainty, we need sensitivity analysis. This analysis helps us in finding the 

effects of uncertainties w.r.t the criterion on the selection problems. This MCDM 

based comparative analysis model work can be extended with sensitivity analysis. 

This material selection work is focused on seven attributes only. However, this 

work can be extended with some other attributes such as corrosion rate, 

machinability, fracture toughness, izod impact, and charpy impact etc. In this 

material selection work, equal weights of attributes have been considered. The 

weights can be calculated with the MCDM approaches such as fuzzy AHP or 

entropy method etc. 

• In case study 2, the dispatching rule-based single machine static scheduling of 

crankcase cover manufacturing is done. This work can be extended for hybrid flow 

shop with the hybrid dispatching rules such as SST+EDD, SST+SPT, SST+CR, 

and SST+MST or hybridization of dispatching rules and genetic algorithm used for 

advanced complex problems. Case study 3 considers the development of an energy-

efficient fuzzy scheduling system for crankcase covers manufacturing. Type 1 

fuzzy system deals with the fixed membership function, whereas type 2 fuzzy 

systems also incorporate the uncertainty in membership function. So, this study is 

extended with type 2 fuzzy for the measurement of the uncertainty. 
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