
i

SOME SECURITY INVESTIGATIONS ON

SMARTPHONE PLATFORM

A thesis submitted in partial fulfilment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMMUNICATION ENGINEERING

by

SUMIT KUMAR

(2K17/PhD/EC/08)

 under the supervision of

 Prof. S.Indu & Dr. Gurjit Singh Walia

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

 DELHI TECHNOLOGICAL UNIVERISTY

DELHI-110042

May 2022

ii

© DELHI TECHNOLOGICAL UNIVERSITY, DELHI, 2022

ALL RIGHTS RESERVED

iii

DELHI TECHNOLOGICAL UNIVERISTY

CERTIFICATE

This is to certify that the thesis entitled “Some Security Investigations on

Smartphone Platform” being submitted by Sumit Kumar (Reg. No.:

2K17/PhD/EC/08) for the award of degree of Doctor of Philosophy to the Delhi

Technological University is based on the original research work carried out by him. He

has worked under our supervision and has fulfilled the requirements, which to our

knowledge have reached the requisite standard for the submission of this thesis.

It is further certified that the work embodied in this thesis has neither partially nor

fully submitted to any other university or institution for the award of any degree or

diploma.

Prof. S. Indu Dr. Gurjit Singh Walia

Supervisor Supervisor

Professor Scientist ‘F’

Dept. of ECE. Scientific Analysis Group

Delhi Technological University DRDO

Prof. N.S. Raghava

Head of the Department

Dept. of Electronics and Communication

Delhi Technological University

iv

Declaration of Authorship

I hereby declare that all information in the thesis entitled “Some Security

Investigations on Smartphone Platform” has been obtained and presented in

accordance with the academic rules and ethical conducts as laid out by Delhi

Technological University. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all materials and results that are not original to this

work.

 (Sumit Kumar)

 Research Scholar

v

Acknowledgements

First and foremost, thanks to the Almighty for giving me strength and inspiration to

carry out this research work. I owe a deep sense of gratitude to all his comprehensive

soul whose divine light has enlightened my path throughout the journey of my

research.

I would like to express my sincere and heartfelt thanks to my research supervisor

Prof. S. Indu for her valuable guidance, enthusiastic encouragement and persistent

support. I am truly grateful from the core of my heart for her meticulous approach,

wonderful assistance of her perspective and fruitful discussions on the research topic.

Her careful supervision and personal attention have given me a lot of confidence and

enthusiasm, during the different stages of my doctoral investigations.

I place on record my heartfelt gratitude and sincere thanks to Dr. Gurjit Singh

Walia who has been my supervisor, advisor and mentor. He is the one whose expertise

in the field is widely acclaimed. I thank him for his valuable advice, constant support

and revered guidance. I invariably fall short of words to express my sincere gratitude

for his patience and motivation.

I express my sincere gratitude to the Prof. N.S. Raghava, Head of Electronics

and Communication Department for his endless support and cooperation. I am

also thankful to Prof. Neeta Pandey, DRC Chairman, Electronics and

Communication Department for constantly encouraging and supporting me in this

endeavour of mine.

vi

I lay my indebtedness to my current organisation where I am working, Scientific

Analysis Group, Delhi, for exhibiting a faith in me and extending cooperation during

the process of carrying out my research work along with my professional

responsibilities in the organisation. I am thankful to the Director, SAG and all staff

members of SAG, Delhi for their kind help and support during the entire period of my

research.

I dedicate this thesis to my family for their endless love, support, encouragement and

blessings throughout my academics. My father, Shri Dhani Ram not only raised and

nurtured me but also taxed himself dearly over the years for my education and

intellectual development. My mother, Smt. Pushpa has been a source of motivation

and strength during moments of despair and discouragement. I am indeed grateful to

my wife Smt. Jyoti Singh for her continuous support, care and motivation. I am also

thankful to my daughters, Shreyashi and Tushika for their immense cooperation as

I could not spare sufficient time for them due to my very busy research work.

Sumit Kumar

vii

This thesis is dedicated to my
parents.

For their endless love, support and encouragement

viii

Abstract

Security investigations on smartphone platform is an interesting field of mobile

security. Amongst different smartphone platforms available in the smartphone

ecosystem, Android is the most widespread platform because of its open architecture.

Unluckily, android based smartphones have progressively turned into the key target

of the attackers, thereby enforcing urgency for security investigations. Vulnerabilities

in the android smartphone platform occur due to numerous weaknesses inherent in

the smartphone's software, hardware, OS, firmware, and applications. These

weaknesses are exploited by the attackers to extract sensitive information by

articulating a plethora of attacks. The rising popularity of apps has enticed attackers

to design malicious apps (malapps) to extract critical information such as banking

credentials, social networking passwords, official documents, contacts, etc.

These malapps are evolving and using novel techniques to target smartphones. These

malapps are designed to evade detection and mitigation techniques. The traditional

detection tools trust mostly on signature-oriented approaches and hence are not able

to recognise sophisticated malapps. Thus, there is a need to design techniques for

improved malapp identification and classification. There is also dearth of adequate

research on scrutinising the threats posed by malapps.

The main aim of this study is to address these issues and offer powerful solutions. A

lot of solutions have been proposed based on the static, dynamic, hybrid, and traffic

analysis approaches. But designing and developing a robust framework by fusing the

various static, dynamic, and traffic features is tiresome and demands further research.

Therefore, it is indispensable to develop solutions encompassing both feature and

ix

score level fusion that can handle the challenges in the detection of various malicious

applications.

Feature fusion comprises an optimal fusion of various static, dynamic, and traffic

features resulting in a unified feature. This unified feature is fed to the ensemble of

parallel classifiers and their respective scores are optimally fused. The objective of this

thesis is to suggest robust static, hybrid, and traffic-based frameworks to detect the

vulnerabilities in smartphone platform.

To address the issues in the static analysis, a smartphone security analysis technique

based on the amalgamation of multiple static features followed by fusion of scores of

three classifiers connected in parallel has been proposed. The performance of the

proposed static analysis technique is experimentally validated using chimeric

databases.

But the static analysis approaches fail to detect run-time behaviours of malapps. To

address this issue and an optimal unification of static and dynamic features for

smartphone security analysis has been proposed. The proposed solution exploits both

static and dynamic features for generating a highly distinct unified feature vector using

graph-based methods. Further, a unified feature is subjected to the fuzzy-based

classification model to distinguish benign and malicious applications. The suggested

framework is extensively experimentally validated through both qualitative and

quantitative analysis and results are compared with the existing solutions.

Performance evaluation over benchmarked datasets revealed that the suggested

solution outperforms state-of-the-art methods.

Some malicious applications are detected solely on the traffic based characteristics.

There are multitude of traffic features that can be exploited for detection of malapps.

x

But the fusion of complementary traffic features are not exploited till date for the

detection of malapps. To address the traffic analysis problem, a novel traffic feature

based analysis framework wherein multiple traffic features are optimally combined to

generate unified feature for the detection of unintended functionality has been

proposed. Generated unified feature is then given to classifiers to get corresponding

classifier scores. The score fusion method is further employed to get the final score for

the detection of unintended functionality arising out of the malicious application. The

robustness of the suggested framework when evaluated on the standard datasets

outperforms contemporary techniques.

Thus, by developing these novel techniques, all major issues regarding the smartphone

platform security analysis have been addressed. This thesis incorporates the developed

techniques and their performance evaluation along with future directions.

xi

Table of Contents

Certificate iii

Declaration of Authorship iv

Acknowledgements v

Abstract viii

Table of Contents xi

List of Figures xiv

List of Tables xv

1. Introduction 1

1.1 Smartphone Security Analysis 2

1.2 Thesis Overview 6

1.3 Research Motivation 7

1.4 Research Problem 8

1.5 Objectives of Research Work 10

1.6 Thesis Contribution 11

2. Literature Review 13

2.1 Smartphone Platform 13

2.2 Smartphone Platform Malwares and Vulnerabilities 16

2.3 Issues and Challenges in Smartphone Platform

Security Analysis 19

2.4 Features used in Smartphone Platform

Security Analysis 21

xii

2.5 Smartphone Platform Security Analysis

Techniques 22

2.5.1 Static Analysis 22

2.5.2 Dynamic Analysis 31

2.5.3 Hybrid Analysis 34

2.5.4 Traffic Analysis 38

 2.6 Performance Metrics 52

 2.7 Benchmarked Datasets 56

 2.8 Research Gaps 57

2.9 Conclusion 59

3 Design & Development of Static Analysis Technique 61

3.1 Introduction 61

3.2 Proposed Static Analysis Technique 63

3.2.1 Feature Extraction 65

3.2.2 Feature Fusion 71

3.2.3 Optimal Classifier score fusion 73

3.3 Experimental Validation 77

3.3.1 Datasets 77

3.3.2 Qualitative Analysis 79

3.3.3 Quantitative Analysis 83

3.3.4 Overall Performance 87

3.4 Conclusion 89

4 Design & Development of Hybrid Analysis Technique 90

4.1 Introduction 90

4.2 Proposed Hybrid Analysis Technique 92

4.2.1 Static and Dynamic Feature Extraction 94

4.2.2 Static and Dynamic Feature Fusion 97

xiii

4.2.3 Fuzzy Based Score Level Fusion 101

4.3 Experimental Validation 103

4.3.1 Datasets 103

4.3.2 Qualitative Assessment 104

4.3.3 Quantitative Assessment 105

4.3.4 Overall Performance 107

4.4 Conclusion 109

5 Design & Development of Traffic Analysis Technique 110

5.1 Introduction 110

5.2 Proposed Traffic Analysis Technique 112

5.2.1 Traffic Gathering Platform 114

5.2.2 Traffic Feature Fusion 116

5.2.3 Classifier Score Fusion 120

5.3 Experimental Validation 122

5.3.1 Databases 122

5.3.2 Performance Assessment 123

5.4 Conclusion 128

6 Conclusions & Future Directions 131

6.1 Summary of Major Contributions 131

6.2 Future Directions 133

References 136

Appendix-A : List of Publications 150

Appendix-B : Biodata 151

xiv

List of Figures

1.1 Classification of Smart Phone Platform Security Analysis

Techniques 4

1.2 Domain of the research work 8

2.1 Android Operating System Architecture 16

2.2 Equal error rate (EER) 53

2.3 ROC curve 54

3.1 Proposed Smartphone Security Analysis Framework 65

3.2 Frequency distribution Analysis for extracted Eight features 79

3.3 Scatter Plots for DB1 dataset 81

3.4 Score-Distribution Plots for DB1 82

3.5 Comparison of ROC curves for proposed and comparative methods
on : (a) Database DB1 (b) Database DB2 (c) Database DB3 (d)
DatabaseDB4 85

4.1 Proposed Fusion-based Hybrid technique 93

4.2 Static and Dynamic Feature Extraction Process 95

4.3 Cumulative Frequencies for static and dynamic features 105

4.4 Score Distribution for Group2 dataset 105

4.5 Comparison of ROC curves for proposed and comparative methods
on : (a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4 106

5.1 Proposed Traffic based framework 113

5.2 Traffic Gathering Platform 114

5.3 Comparison of ROC curves for proposed and comparative methods
 on : (a) Flow set 1(b) Flow set 2(c) Flow set 3(d) Flow set 4 128

xv

List of Tables

2.1 Comparison of Static Analysis Techniques 29

2.2 Comparison of Dynamic Analysis Techniques 33

2.3 Comparison of Traffic Analysis Techniques 50

3.1 Details of API, Permission and Intent Feature 68

3.2 Databases used for experimental validation 78

3.3 Comparison of decidability values 84

3.4 Comparison of EER values for different methods 86

3.5 Comparison of Performance Metrics (PM) namely Sensitivity,
Accuracy and F1 Score for different comparable methods 86

4.1 Fuzzy Mapping Rules 102

4.2 Experimental Dataset 104

4.3 Comparative Analysis of Performance metrics i.e. Accuracy,
 Specificity, Sensitivity, F1 Score for Hybrid models and Proposed
 method 108

5.1 Extracted TCP based Traffic Features 115

5.2 Experimental Dataset 123

5.3 Performance comparison in-terms-of accuracy with existing
 methods using captured data from 20 different apps 126

5.4 Performance Metrics of Proposed method and other comparative
 methods 127

1

Chapter 1

Introduction

Smartphone security analysis primarily deals with the fortification of a smartphone

from threats and vulnerabilities posed by anomalies in hardware, software, firmware,

OS, and applications. In other words, smartphone security analysis or investigations

mainly deals with finding out the root cause of the security breach and how far it

compromised or threatened the security of information in the smartphone. The static,

dynamic, hybrid, and traffic analysis techniques 1are employed for the smartphone

security analysis.

The static, dynamic, and hybrid analyses cater only to detecting malicious

applications. Through traffic analysis, in addition to the malicious application,

anomalies in the OS, firmware, and hardware are also detected. In static analysis, only

static features are exploited for the identification of malicious applications. Those

applications which exhibit malicious behaviour during the run time are analysed by

dynamic analysis. Both static and dynamic features are exploited in hybrid analysis. It

is useful for detecting malicious apps that are smart and behaves capriciously. Through

traffic analysis, traffic features were collected and further exploited to detect the

malwares and other anomalies in smartphones. All the static, dynamic, and traffic

analysis techniques have to be further explored for the smartphone security analysis

due to the inherent nature of the vulnerabilities in the smartphone ecosystem.

2

The main cause of security breaches in smartphones is malicious apps [1]. Hence,

smartphone security analysis can broadly be categorized as apps security analysis.

Many smartphone platforms allow applications to be run on them. The Android,

Windows Phone, iOS, Blackberry OS, Kai OS etc. are some of the smartphone

platforms.

For addressing the issues concerning various aspects of smartphone security analysis,

we have conducted our research and developed several techniques.

1.1 Smartphone Security Analysis

Smartphone has now become an essential part of human life due to their myriad of

benefits viz. telephony, social networking, banking, e-commerce, messaging, video

teleconferencing, etc. Android OS Smartphones have captured more than 85.1% [2] of

the market share. With its openness, popularity, and over-reliance, attacks on the

Android platform are also engulfing. Since the Android platform permits the

installation of apps from unconfirmed and third-party sources, it makes the

circumstances more difficult for the users. Data kept in a smartphone (such as banking

credentials, social networking passwords, official documents, contacts, etc.) provoke

assailants to devise methods to obtain this critical data illicitly by employing Android

malwares such as Trojans, backdoors, worms, botnets, spyware, aggressive adware

and ransomware [3].

Generally, malwares are embedded in the popular android apps by repackaging

techniques [4] to pass these malicious apps as benign apps and make them susceptible

to malware attacks and security vulnerabilities. These malapps are produced to

accomplish diverse attacks like pilfering personal info, transferring messages without

permission, enticing users to malicious sites, and posing a grave risk to smartphone

3

operators. To elude detection, malapps are continuously evolving with many variants

that further take a formidable challenge to identify. Also, the hackers are designing the

malwares in a way to evade the Machine Learning (ML) classifiers [5]. As a result,

effective and proficient detection methods are desperately needed to handle the

growing complexity of Android malware. To tackle the numerous challenges in

Android malapps detection, the research fraternity has produced voluminous work in

this arena.

There are conventionally two methods for the security analysis of smartphone

platforms viz. Static [6] and Dynamic [7]. Researchers have also proposed a

combination of static and dynamic methods resulting in the hybrid analysis [8] to

identify the existence of mobile malware.

In Static analysis, a source code walkthrough is performed to cater to software-based

app-related vulnerabilities without the execution of the code. On the other hand,

dynamic analysis can be performed in two different ways. One is using the execution

of applications in a sandbox environment and the other way is through traffic analysis.

The former method deals with software-related vulnerabilities while traffic monitoring

assists in software as well as hardware-related vulnerabilities/issues such as hardware

trojans etc. Also, the complexity of open source OS is very high and put a hindrance in

the analysis of OS-related vulnerabilities through static analysis. This motivates the

researchers to perform dynamic analysis of smartphones via traffic monitoring which

is also the key focus of our survey. The classification of the techniques used in the

security analysis of smartphones is illustrated in Fig 1.1.

4

Figure 1.1: Classification of Smart Phone Platform Security Analysis Techniques

Smartphone traffic monitoring or traffic analysis is a Network traffic analysis. It is the

process of recording, intercepting, reviewing, and analysing smartphone traffic to

detect and respond to security threats. This branch of computer science deals with

inferential methods that are responsible for converting network traces of devices into

detailed statistics about their users, the apps installed on their devices, and the type of

traffic/network packets or data that flows through a network. Capturing of network

traces is done at different layers mainly the application layer, data link layer and at

different points including within the devices or a Wi-Fi network, and contains

encrypted content which makes the analysis more challenging. The traffic statistics

[110] from network traffic analysis help in evaluating and understanding the

download/upload speeds, origin, destination, size, type, the content of packets, and

network utilization. Network utilization is basically the ratio of the amount of traffic

5

in the network to the maximum amount that a network can support. Network traffic

analysis is also used to identify suspicious apps with the help of traffic captured.

The static solution includes scrutinizing the app without actually running it and uses

techniques such as disassembly, de-compilation [3] or pattern matching, and so on.

It is favourable because of being faster and inexpensive. However, it fails against the

codes that use transformation, encryption, and polymorphic techniques as well as it is

unable to detect new malware families and monitor the mal-app behaviour during

runtime. In contrast, a dynamic solution comprises the execution of the app to take

account of its run-time behaviour. It includes features of smartphones for instance

CPU usage and power, and the number of processes running, to find out the existence

of mal-behaviour. Malapps that download malware at runtime and escape static

permission-based uncovering can be detected via network traffic. The hybrid analysis

combines the advantages of both dynamic and static analysis techniques and can give

in better accuracy. To detect mal-functionality in the apps, it combines run-time data

extorted from the dynamic investigation into a static analysis algorithm.

 As shown in Fig 1.1, the static analysis covers the hardware analysis, OS analysis, and

App analysis. Static analysis of hardware is the identification of the hardware

components (ROM, RAM, ICs, microcontrollers, FPGA, etc.) along with tracing circuit

flow diagram with the aid of a multi-meter to understand how the various components

are interconnected. It gives the idea about the basic functionality of the hardware.

Static analysis of OS(s) and Application(s) is fundamentally a source code

walkthrough. Static analysis of application(s) is the extraction of the

vulnerable/distinguishing features and then devising a model using machine learning

algorithms to detect the malwares. Under dynamic analysis, application (apps)

analysis and traffic analysis is done. Dynamic analysis of apps is done by executing the

6

application in the sandbox environment. A sandbox is an inaccessible testing

atmosphere that allows users to execute programs or open documents without

disturbing the platform on which they run. Here the software vulnerabilities of the

applications in the runtime environment are extracted. Traffic analysis [9] of

smartphone devices also comes under dynamic analysis. Here both the software-based

and hardware-based vulnerabilities can be studied by analysing the network traffic

generated by the smartphones. In traffic analysis, apps are run either on a smartphone

or the emulator, and corresponding traffic generated is captured and stored. From the

stored traffic, traffic features are extracted to train a machine learning model to detect

the malapps. The main aim of this research is to analyse the risks and devise the

solution to mitigate these risks that may arise due to the daily use of the applications

in smartphones.

1.2 Thesis Overview

The thesis comprises of six chapters and a brief description of these chapters is given

below:

Chapter 1: This chapter covers the introduction to the topic of smartphone security

analysis. It will also contain thesis overview, research problem and the objectives of

the research work.

Chapter 2: This chapter covers the state-of-the-art techniques developed in existing

research work on “Some Security investigations on Smartphone Platform”. It will also

highlights the research gaps in the existing work that has stimulated the development

of research objectives. In addition, evaluation metrics and benchmark datasets require

for the performance validation of the proposed frameworks are discussed.

7

Chapter 3: This chapter highlights the details of the methodology adopted to

accomplish the static analysis based framework. In addition, it will also cover the

observations and discussion of results.

Chapter 4: This chapter highlights the details of the methodology adopted to

accomplish the hybrid analysis framework. The obtained experimental results will also

be elaborated against the other compared state-of-the-art.

Chapter 5: This chapter highlights the details of the methodology adopted to

accomplish the traffic analysis based framework. The experimental results on

benchmarked datasets were also compared with other comparable method.

 Chapter 6: This chapter contains the brief summary of all the ideas, observations and

contributions of the resultants obtained in each objective. Also, the future directions

are sketched in this chapter.

1.3 Research Motivation

Security investigation on the smartphone platform is an imperative field of mobile

security which mainly aim to detect malapps in the smartphone. A lot of work under

various malapp detection framework based on static, dynamic and traffic analysis

approaches has been proposed to keep track android malwares. But it is still open and

challenging to detect the malapps due to code obfuscation techniques and continuous

changing nature of the behavioural conditions of the ever evolving malwares in the

smartphone ecosystem. To detect such malapps, a single method of smartphone

security analysis is not sufficient to provide robust detection solutions. Most of the

available research work is not efficient enough to detect the sophisticated malwares.

Hence, development of a robust and adaptive malapp detection model is paramount

that can address these challenges. This work is motivated by the fact that multiple

8

complementary features are necessary for developing robust solutions. The feature

level fusion followed by score level fusion of parallel classifiers is another direction

that can be evaluated with the aim to provide better malapp detection. Furthermore,

these detection solutions were evaluated over limited datasets only. Optimization of

various hyper parameters can be explored to provide better recognition performance.

Most of the static analysis approaches detect malapps either on signature based

approaches or without unification of features. Feature unification followed by optimal

fusion of classifiers scores needs to be investigated. Hybrid analysis based detection

can be explored further to detect the malapps exhibiting dynamic behaviour. Some

apps shows malicious behaviour by examining their traffic features. This problem can

be resolved by designing and developing solutions based on traffic characteristics to

protect the smartphone against various security threats. Hence, detection of malapps

having complex and sophisticated malwares becomes cumbersome with conventional

approaches. Therefore, there is a requirement to develop a novel and proficient

methods for detecting these types of malapps swiftly and accurately.

1.4 Research Problem

Figure 1.2: Domain of the Research Work

9

The Smartphone platform security analysis is vastly divided into five categories as

shown in Fig.1.2 as static analysis, dynamic analysis, hybrid analysis, traffic analysis

and hardware analysis. The scope of our proposed study is restricted to static,

dynamic, hybrid and traffic analysis. Hardware analysis employs specialized tools and

techniques to probe into hardware modules. This aspect of Security Analysis is not

covered under this study. As dynamic analysis is carried out while mobile app is

running, usually this approach is not only more complex but also has a high inclination

towards false positive outcomes. In addition, some malware infected mobile app can

easily intrude into the system just after their installation thus making the detection

accuracy very low. On the other hand, Static analysis approach considers detecting

malware in mobile apps by analyzing the source code segments. Various vulnerable

features or resources are extracted from the application package .Vulnerable features

such as permission calls, API calls, system monitor events, etc., can be easily obtained

from the respective application package. Since the app is not executed, they don’t

require a host system environment. Hence, Static approach for malware analysis is not

only computationally economical but also more accurate and efficient. Recently,

Hybrid approach using both static and dynamic features was also investigated for

analysis of apps. Further, machine learning based classification techniques were

investigated to automate and boost the process of static malware analysis. Binary

classification methods such as Random Forest, SVM, Naive Bayesian and Rotation

Forest etc. provide effective ways to analyze malware patterns. In spite of most of the

research investigation in literature, most of the solutions for efficient classification of

apps into malicious or benign are in stage of infancy. Ever threat of malicious apps

puts great hindrance to mobile users for using apps for critical applications. But, static

analysis is threatened by obfuscation, polymorphism. Dynamic analysis trail the

sensitive info at run-time. Dynamic analysis is superior to static analysis but needs

10

adequately huge set of implementations to cover app’s behavior. Hence, carrying out

dynamic investigations on resource constrained smartphones is challenging. To

enhance the detection capability, investigators start exploiting the network traffic

based solutions. Using network traffic resulted in amazing results in terms of

determining concealed malwares as some malwares in malapps typically exhibits

malicious characteristics only when connected in a network.

1.5 Objectives of Research Work

The objectives of this research work were to develop techniques and methods to

address key questions in the study of Security Investigations on Smartphone Platform.

These specific objectives are summarized as follows:

Objective 1:

 To review of the existing literature and comparison of the merit and demerit for

smartphone-based platform security.

 To create of data base with large set of benign and malign apps and

incorporating zero day attack.

Objective 2:

 To design and develop Static Analysis techniques for smartphone platform

using multiple feature unification and optimal classification.

 To do performance comparison with existing methods on benchmarked dataset

containing large set of benign and malicious apps.

Objective 3:

 To design and develop Hybrid Analysis techniques for smartphone

platform through optimal combination of static and dynamic features.

 To identify feature sets and segregation of feature into different threat

11

level for platform security. Optimal tuning of classifier considering threat level

of features.

 To do performance comparison of proposed framework with existing methods

 using benchmarked dataset.

Objective 4:

 To design and Develop traffic analysis framework for optimal combination

of multiple features for detection of unintended functionality.

 To do performance comparison with existing methods using online captured

 data from ten different apps under unconstrained environment.

1.6 Thesis Contribution

In this thesis, we show that the key to effective malapps detection relies

unification of extracted features followed by multiple classifiers, which

eloquently delineates the performance capabilities of a framework. Through

this set of static, dynamic and traffic features three independent frameworks

viz. static analysis, hybrid analysis and traffic analysis have been designed and

developed.

The principal contributions of this thesis are:

(i) We first introduce a realistic static feature approach for smartphone security

analysis that incorporates multiple feature unification through cross iterative

diffusion. To our awareness, it is the first time that this approach is introduced

to extract unified android static features. Pragmatic and effective app security

analysis framework is proposed wherein three ML algorithms are exploited to

evolve a system to detect the malapps on the basis of unified feature

representation. Further, outcomes of the ML algorithms were fused by

12

DSmT[153] algorithm to improve the accuracy achieved by individual

classifiers. In addition, we presented a complete investigational study based on

CICMalDroid2020[132], AMD[129] and Drebin[128] malapps database and

comparative experimentations with state-of-the-art methods to validate the

efficiency and proficiency of our approach.

(ii) To detect the apps exhibiting the dynamic behaviour, we put forward a

unique approach for optimal unification of static and dynamic features

resulting in Unified feature (UF) for smartphone security analysis by cross

diffusion technique. Then this UF is fed to two ML classifiers to detect the

android malapps. Results of these classifier’s scores were combined by fuzzy

based fusion approach for improving the performance. Lastly, we provided a

comprehensive study founded on benchmarked databases and compare the

results with contemporary techniques to validate the efficacy of the suggested

framework

(iii) To design the traffic based analysis framework, we proposed a traffic

feature-based fusion that comprises of optimal combination of multiple traffic

features by cross-diffusion of order and sparse graphs to produce a unified

feature. The unified feature vector thus generated is given to the three parallel

ML classifiers and classifiers scores obtained are fused to enhance the accuracy

attained by separate classifiers. Presented the performance comparison with

existing state-of-the-art methods using standard data sets available.

13

Chapter 2

Literature Review

In the last few years, smartphone security analysis has been widely investigated and

reviewed. Specifically, the success of any smartphone security analysis technique is

greatly reliant on developing an efficient and effective model. In this direction, the

smartphone security analysis approaches have been suggested under static analysis

framework, dynamic analysis framework hybrid analysis framework and traffic

analysis framework. The various smartphone security analysis models are concisely

reviewed. The most popular smartphone android platform, malwares in smartphone

ecosystem, features exploited for detection of malwares in smartphone applications,

fusion techniques, performance metrics, benchmarked datasets, and research gaps

along with smartphone security analysis models were also reviewed.

2.1 Smartphone Platform

Smartphone platform basically comprises of hardware, an OS and software/drivers for

a particular microprocessor. Platform host numerous applications (apps) and allow

these apps to execute on them.

14

In this section, the overview of Android, its salient features, the architecture of

Android OS, various malware types and the ways by which malware apps infects the

end users are discussed.

2.1.1 Android Overview

Android is open source and Linux-based OS designed for smart devices i.e. mobile

phones and tabs. Android's latest version i.e. 12L (API level 32) [10] was released on

7 March 2022. Google and Open Handset Alliance (OHA) developed Android which

was launched in 2007. The Android smart devices contain lots of features and

functionalities which includes hardware features such as audio, Bluetooth, camera,

network, microphone, and sensors such as accelerometer, barometer, compass,

gyroscope, and Wi-Fi. It also includes software features such as app widgets, live

wallpapers, storage, messaging, multi-language support, browsers, media support,

call, messaging, multitasking, external storage and so on. Android is best-selling OS in

the world for smartphones since 2011 and for tablets since 2013. More than 3.48M

apps were available on Google Play Store for download, as of Aug 2021. Android Apps

are developed via SDK and using mainly JAVA programming language. For the

development of shared library and native code, C and C++ languages are used. The

support for development of app in Kotlin programming language was announced by

Google in May 2017. Google Play Store is the official app store comes inbuilt in

Android. Google Play Store allow users to browse, download and update applications

from the house of Google.

15

2.1.1.1Android Architecture

Android software stack has mainly four layers and is divided into five sections. The

core architecture of the Android is depicted in Fig.2.1:

(i) Linux Kernel

It is the heart of android OS and is at the bottom of the android architecture. It forms

as an abstract layer b/w the hardware devices & rest of the layers of the software stack.

It provides services such as power management, resource access, device management,

memory management and device drivers for hardware like the device display, camera,

Wi-Fi, keypad and audio.

(ii) Libraries and Android Runtime (ART)

The pre-defined libraries include C/C++ core and Java based libraries like OpenGL,

WebKit, FreeType, Media, SQLite. The SQLite library is responsible for database,

FreeType handles font support, WebKit is accountable for browser support and SSL

manages Internet security. Android Runtime environment includes components like

core libraries and the DVM i.e. Dalvik virtual machine. DVM is just similar to JVM(

Java Virtual Machine) but it has been optimized for mobiles. It utilizes multi-

threading and memory management, the Linux core features, which are crucial in

JAVA. ART includes features such as Ahead-of-time (AOT) and just-in-time (JIT)

compilation, better debugging support, optimized garbage collection (GC).

(iii) Application Framework

This layer provides several services to apps in the form of interfaces and Java classes.

App developers exploit these higher-level services in their apps. Besides, it provides an

abstraction for h/w access and manages the UI and app resources. Application

framework includes Android API's such as locations, package managers, resources, UI,

Content Providers (data) and telephony.

16

(iv) Applications

It contains native apps and apps by third party developers such as browser, mail,

gallery, SMS, contacts and clock that are created using the Application framework. For

example, SMS app is used to deliver a message to the user specified recipient.

Figure 2.1. Android Operating System Architecture1

2.2 Smartphone Platform Malwares and vulnerabilities

Malware is "intrusive software", specifically designed to gain unauthorized access to a

system. These malware programs are responsible for deleting, stealing or encrypting

sensitive data, monitoring users' activity without user's consent and altering core

functions. Different types of malware contain unique traits and characteristics which

are as follows:

1 Source: https://developer.android.com/guide/platform

17

Trojan horse is a destructive program that gains access to system by looking similar to

an authorized program. Trojans allow personal info theft through a backdoor entry of

malicious programs to the system. Worm spread by exploiting vulnerabilities in OS

and hence does not require directives of malware designers. It has the ability to make

copies of itself. Also, it offers no harm to the data or file on the system. The primary

characteristic of a Virus is that it can execute and replicate itself. It spreads through

infecting files or programs on the system. Virus is risky in comparison to computer

worm as it has the ability to delete or change the files whereas a computer worm can

just replicate itself. Viruses includes Macro viruses, File viruses, Stealth viruses,

Polymorphic viruses [3]. Spyware may or may not require permission to get installed

on users. Its purpose is to gather data, browsing history, observe the user activity and

transfer to remote user. Spyware gets installed unknowingly on installing other

freeware’s. It is similar to adware. It has the ability of downloading malware programs

and installing on the system. Keyloggers also known as system monitors, keeps an eye

on user activity that includes internet surfing, keystrokes and emails. Ransomware’s

[3] purpose is infecting user device and encrypting the data in order to demand a

money from the user to decrypt the system data.

In smartphone security landscape, there are basically five vulnerability vectors viz.

app, device, network interfaces, device content, and hardware related vulnerabilities.

2.2.1 App vulnerabilities

Due to their shorter software development cycle, smartphone app developers

resorted to the open source libraries, tools and packages to develop new apps. It

resulted in numerous vulnerabilities [11] due to these developed apps. These apps

are prone to security flaws inherent in the open source system and put confidential

data in the smartphones at higher risk. Many people download the apps from the

18

third party resources which are not for reviewed. These apps further makes the

confidential data vulnerable to attackers.

2.2.2 Device vulnerabilities

Device vulnerabilities [12] comprises of smartphone OS and firmware

vulnerabilities. These vulnerabilities are mitigated by the patches released from

time to time by the OS developer. Smartphones having relatively old OS and

firmware may not get support from the OS developer regarding patches and are

more prone to attacks. Regular updates from the device manufacturer releases

patches and ensures mitigation of these vulnerabilities. It is duty of the user to

incorporate these patches to reduce the vulnerability window. Adoption of the

latest OS further reduces the vulnerability.

 2.2.3 Networks vulnerabilities

Vulnerabilities related to smartphone n/w [13]are centred on exploitable hardware

and software flaws in the n/w interfaces. POODLE and Heartbleed are two very

famous n/w vulnerabilities. The POODLE exerts the browser to more vulnerable

version by relegating the browser to a relatively low strength encryption scheme.

Heartbleed exploited SSL vulnerability that let an attacker to steal 64K of data from

the active memory of affected systems in one cycle.

2.2.4 Web and content vulnerabilities

Attacker’s uses malicious photos, web pages, videos etc. to exploit OS or an app to

gain unauthorized access to smartphone. For example, Stagefright is a s/w

vulnerability in android OS related to mp4 files [14]. Mp4 files can be used to gain

access to multimedia messages and download folder of smartphone.

https://blog.lookout.com/heartbleed

19

2.2.5 Hardware vulnerabilities

Researchers exploits the Graphics Processing Unit (GPU) [15] in smartphones to

snoop user's credentials by logging the keyboard. All the credentials typed were

compromised. GPU processes the animations corresponding to keys on keyboard.

Attackers correctly infers which key is pressed on the key board with high detection

accuracy.

2.3 Issues and Challenges in Smartphone Security
 Analysis

2.3.1 Malware Survival Techniques

The end user device is infected through Malware applications in the following ways:

Repackaging, Code Transformation, Update attack, Drive-by-Download [3]. Mostly

Repackaging technique [16] is used by malware designers. This technique includes

following steps: application download, app disassembling, inserting malware payload

to app, reassembling app and then uploading or distribute via less monitored app-

stores. Malware designers change the signature of reassembled app to prevent getting

detected.. The second technique is Code Transformation, which is responsible for

generating unobserved malware signatures. It includes methods such as Renaming of

Package, Method or Class, Resource Encryption, String Encryption, Class Encryption,

Reordering of Opcode, Insertion of Junk Code. It can be used to thwart the

disassembly tools. In Update attack, malware designers use certain techniques to

inject malware at runtime by attaching inflicted code to the updated version of the

application. This technique is undetectable by static anti-malware methods. The other

technique used by malware designers is Drive-by Download. This technique uses in-

20

app advertisements, clicking malicious URL, or malicious QR-code which redirects

users to a webpage and incites them to download malware automatically.

2.3.2 Code Obfuscation Techniques

Code obfuscation is the camouflage of the intended meaning of the code by making the

code puzzling, purposefully equivocal and more problematic to comprehend. In this

subsection numerous code obfuscation techniques have been discussed that are used

to hinder the static analysis.

2.3.2.1 No-operation Code Inclusion and Opcode Repositioning: No-operation code

inclusion is a famous practice that alter the exe file size and dodges the signature

database of anti-malware software. It also saves the apps semantics. But, it alters

opcode order to change the malapp signature. Repositioning of Opcode is

accomplished with “Go to” instructions to change the control-flow while protecting the

semantics. These approaches are used to elude the opcode and signature oriented

identification solutions.

2.3.2.2 Using Reflection APIs: Sensitive Android API within the malicious

applications are searched and exploited for its detection during static analysis. Apps

allows Java reflection to modify the run time behaviour of class using programmatic

class instances by means of the literal strings. Data flow analysis was employed to

detect the method names/ exact class. But to thwart so that automatic search for

reflection API the literal strings were encrypted.

2.3.2.3 Class or Package Renaming: App in Android ecosystem is recognised by its

exclusive package name. Dalvik-bytecode protects the class and package names.

Numerous anti-malware exploits the name of a class or package of well-known

21

malwares as signature for malapp identification. Such renaming is used to elude the

signature based identification.

2.3.2.4 Modifying Control-flow: Few anti-malwares software’s exploits control flow

investigations to identify the malwares variants. Control-flow of a program can be

altered using “Go to” instructions or by adding no operation code. Though

insignificant, such methods elude the anti-malware software’s.

2.3.2.5 String Encryption: Strings like comments, shell-commands and Uniform

resource locators disclose many things about the app. To avert such static

investigations, the strings must be encrypted.

2.3.2.6 Class Encryption: Sensitive information like Digital Right Management which

is used by certain anti malwares can be concealed by encrypting the complete classes.

2.4 Features used in Smartphone Security Analysis

Static and dynamic features [17]are exploited in smartphone security analysis. Static

features mostly includes permissions, app components, filtered intents, API, Network

address, operation code, hardware components, control flow graph, static taint

analysis, file property, native code are some of the static features. Dynamic features

mostly used in the literature comprises of system calls, network features, system

components, battery feature, phone event, SMS event, user interaction, file operation,

broadcast receiver, system command, API, dynamic taint analysis etc. Traffic features

are subset of dynamic features as traffic analysis is a form of dynamic analysis. In

hybrid analysis, blend of static and dynamic features are used for the identification of

malicious apps. In majority of the cases TCP based traffic features were exploited in

determining the application, OS and hardware related vulnerabilities were

determined. In few frameworks HTTP based feature were also exploited for

determining the malicious apps.

22

2.5 Smartphone Security Analysis Techniques

Smartphone security analysis comprises of static analysis, dynamic analysis, hybrid

analysis and traffic analysis. The main purpose of the security analysis is to determine

the vulnerabilities related to apps, software, hardware, OS, etc. in the smartphone

ecosystem. The vulnerabilities related to apps and software are catered exclusively by

the static analysis, dynamic analysis and hybrid analysis. The OS and hardware related

vulnerabilities were detected by traffic analysis. Apps that exhibits malicious

behaviour during run time are detected by dynamic analysis methods. Some of the

apps have malwares embedded in them through repackaging techniques, these

malwares can be determined by modelling the detection mechanism based on

signatures if the obfuscation methods were not employed. The static analysis

techniques were efficient in determining these apps. Hybrid analysis is amalgamation

of both static and dynamic analysis. Traffic analysis techniques were used to determine

the hardware and OS related vulnerabilities along with determining the malapps in

the smartphones. The details of static, dynamic, hybrid and traffic analysis follows in

the coming subsection.

2.5.1 Static Analysis

Static analysis encompasses studying the app source code by just disassembly,

decompilation and without executing it. Specifically, it implies analysing APK file. This

analysis consumes less resources and is fast. It is prone to obfuscation techniques and

also to dynamically loaded code. It fails in case of encryption, code transformation and

polymorphic malware. DAPASA, an approach for static malware detection [18] used

sensitive subgraph analysis to detect piggybacked apps. In this, authors focused on

distinguishable invocation patterns between the riders (malicious payloads) and the

23

carrier (host app) of sensitive API's for detection. DAPASA exhibit impactful

performance by achieving TPR of 95 per cent and a FPR (False Positive Rate) of 0.7

per cent. The combination of 5 features with the invocation structure, it supplements

approaches based on API and permission. The authors [19] outlined the machine

learning Random Forest based system which monitors system events, permissions,

sensitive API's and use them as a feature set from APK files. It can be applied to all

apps as the four group of features are always available and can be easily obtained.

Additionally, it acquires key features by static analysis approach and without dynamic

tracing. The results using 10-fold cross validation achieved accuracy of 89.81%.

Mlifdect [20], a framework proposed by Wang et al. overcame the limitation of

detection posed by a single classification algorithm. This static method is based on

multiple algorithms in which 65,804 features are extracted from multilevel features

like API calls, deployment of components from android apps and permissions. This

includes classification model construction by Parallel machine learning and a

technique on Probability analysis called Information fusion and Dempter Shafer

Theory used to generate a final classification result. This framework showed 99.7 per

cent accurate detection and achieved recall of 99.8% with 0.1% FP rate (False Positive

rate). FP rate is the probability that a true positive will be missed by the test. Cen et

al. proposed probabilistic discriminative model [21] based on RLR (Regularized

Logistic Regression). Regularised Logistic Regression is a ML algorithm that caters the

overfitting problem and is used to predict the probability of a categorical dependent

variable. This approach produces probabilistic output with highly precise results, uses

API calls as a feature and also traversed problems in feature granularity, selection,

representation and regularization. It combines app permissions and decompiled

source code analysis to achieve better results. To address the gap of malware detection

problem from API perspective, an automated malware detection model, Malpat [22]

24

is proposed. It tackles the problem of manual configuration of lists of features.

Moreover, the research work is based on mining hidden patterns of malware from real

world android apps and extracting highly sensitive API's. The experiments were

conducted over 31185 benign apps and 15336 malicious samples. MalPat achieved high

F1-score of 98.24% and recall rate of 0.9963. The authors in [23] build API sequence

data sets of android apps using static analysis and uses LSTM i.e. Long Short-Term

Memory algorithm to develop a 2-class classification model. It is a combination

method based on CFG’s (Control Flow Graphs) and ML algorithm. CFG is the graphical

depiction of control flow during the execution of applications. 10010 benign apps and

10683 malicious apps were taken as a sample to conduct experiment and

demonstrated that the model is 98.98 per cent precise in detection.

SIGPID [24] is based on Permission usage analysis, a 3-level data pruning approach

which extracts most significant permissions that can effectively distinguish between

malware and goodware. It uses machine learning based classification methods and

found that only 22 permissions are significant. SIGPID is capable of detecting 93.62

per cent of malware effectively and also detects 91.4 per cent of the unknown malware.

Furthermore, by this approach permission to be analysed are reduced maintaining

accuracy and efficiency. In [25], the authors particularly focused on two ML assisted

approaches viz. clustering & classification based on analysis of the source code and

permission of apps. The root access is required in the permission-based approach and

it achieves better accuracy. The source code approach uses "bag of words" model used

in NLP and is only static approach that uses ML to scrutinize the whole code of an app

and also involves analysis of decompiled code. Former achieved the F-Measure of 89

per cent and latter 95.1 per cent. It supplements existing signature-based anti-malware

methods as they only detect when proper signatures are released. Kang et al. [26]

used static analysis that included creator's info and proposed detection and

25

classification system for android malware. This system can analyse malicious

behaviour and permissions in order to gain more accuracy. Similarity scoring

algorithm is executed to classify malware into similar groups and enables faster

detection. It shows 98 per cent accurate detection and is 90 per cent accurate in

classification performance. CASANDRA [27] a framework based on online learning

which addresses population drift, handles voluminous data and detects data streaming

in at real time. In this, a novel task specific kernel (i.e. CWLK) with online learning are

combined for detection. It achieved F-measure of 99.23 per cent. Scalability, flexibility

and high performance are key advantages of this framework.

DroidEnsemble [28] leverages by using both string features (permissions, code

patterns, API usage) and structural features (data flow graph and FCG) to effectively

categorize the static behaviours of applications. SV, KNN, RF are used as three ML

algorithms to evaluate performance with 1386 goodware and 1296 mal apps. The

results depicted that string features are more efficacious. The structural features can

be used as complementary features to compensate for insufficiency of string features.

Overall, the accuracy achieved by group of both excel to 98.4%. In the work of [29] ,

authors presented a framework that detects android malware using multimodal deep

learning. This method uses various features to reflect various attributes of apps. For

feature extraction, similarity and existence-based methods have been used. The

approach leverage by dealing with multiple feature and was evaluated over 41260

samples to improve detection accuracy. FalDroid [30] is an automatic approach

designed to classify android malware and select malware samples according to their

free graphs (frequent subgraphs). 8407 malware samples were taken from 36 families

and this method was applied achieving 94.2 per cent accuracy. A multilevel

DroidFusion [31], model is a classifier fusion approach that enables efficient

26

combination of machine learning algorithm. The results are effective against both

ensemble and non-ensemble base classifiers.

Significant pairings of the permissions [32] leading to a malicious application

detection were identified and extracted from apps. It can lead to detection of malapps

with approximately 95.44% accuracy. For this, datasets were analysed intricately and

edge weights are allocated to pairs of permission depending on their frequency of

occurrence in the datasets.

An ensemble [23] of three detection models based API frequency, API calls and API

sequence was created to achieve detection accuracy of 98.98%. An automated malware

app detection tool7 with unique ensemble learning method using permissions and API

calls with Naïve Bayes, Decision Tree (DT), Random Tree (RT) etc. to detect malwares

was reported with the detection rate of 99% (approx.) with very low false positives.

Authors10 generated a feature vector that represents malware features having same

attributes with benign applications. In this, model learning approaches and automatic

upgrade system for malapps detection using a multimodal deep learning method was

proposed with accuracy of 98%. Wang et al. [33] used multiple features and ensemble

of classifiers viz. KNN, SVM, NB, CART and RF for android based malapps detection

through majority vote fusion method. A four layered static detection model using

MD5, malevolent permissions, dangerous permissions and intents was proposed by

Song et. al. [34]. Authors [6] used API calls abstraction method to decrease the number

of API calls be used as a feature and three ML algorithms (KNN, RF and SVM) were

used for achieving detection with 98% accuracy. A technique [35] for identifying

android based malapps to automatically detects malware by extracting the multiple

static features such as permissions, API calls, network addresses, and mapped these

features into a single feature space vector. Further, Linear SVM and DT algorithms

27

were employed to implement the multi-label classification. Detection accuracy of 98%

and 63% was achieved for small size families’ malware and zero day malwares

respectively. Oluwafemi Olukoya [36] et al. investigates a malware detection model

based on sensitive permissions and UI based app descriptions. Investigational

outcomes establish precision of 90%. DroidDomTree [37] excavates the tree structure

of API calls in Android apps for identifying malapps. A tree structure of API calls

accentuates a path flow and recognizes the layout of APIs and hence stresses the

prominence of some APIs in an app. It accomplished detection rates varying from

98.1% to 99.3% using eight different classifiers (J48, AD Tree, RF, RT, AdaBoost,

Naïve Bayes, Radial Basis Function Network, K Star). Although, most of the work

exploited either multiple classifiers or multiple features for development of solution

for smartphone security analysis, a comprehensive solution exploiting both optimal

combination of classifier and efficient fusion of multiple features was not investigated.

In another dimension, model based android malware detection approach were also

investigated. For instance, Roni Mateless [38] et al. presented a model for malapp

detection with 97.8% detection accuracy. Decompiled source code contains API calls,

keywords, function names, strings in human format etc. Malevolent codes vary from

the text because of the syntax rules of compilers and to prevent detection. NLP method

was adapted here to classify the apps. Ke Tian [16]et al. investigates a method to detect

the repackaged apps by code heterogeneity analysis. Code structure was divided into

various subset and each subset was classified based on the features. Each subset

depicts dependence based region. In this partition based detection, False Positive (FP)

rate of 2.97% and False Negative (FN) rate of 0.35%were obtained. In MAMADROID

[6], a Markov chain based behavioural model for detecting the android malware.

Sequences of API calls were modelled as Markov Chain. Model has achieved the F-

measure of 0.87. Qian Han28 et al. proposed malicious app detection scheme by using

28

irretrievable feature transformations so that the evading of ML classifiers by hackers

becomes impossible.

Ensemble Rotational Forest based model [39] was proposed that exploits permissions,

permission rate, sensitive API’s etc. as key features to detect malware with accuracy of

88.26%. In MalResLSTM [40] , authors presented Long Short Term Memory(LSTM)

based method to classify malapps. Feature extracted were mapped to vector space and

processed in the LSTM based deep learning model to achieve the accuracy of 99.32%.

DroidDomTree24 excavates the tree structure of API calls in Android apps for

identifying malapps. A tree structure of API calls accentuates a path flow and

recognizes the layout of APIs and hence stresses the prominence of some APIs in an

app. It accomplished detection rates varying from 98.1% to 99.3% using eight different

classifiers (J48, AD Tree, RF, RT, AdaBoost, Naïve Bayes, Radial Basis Function

Network, KStar). Although, most of the work exploited either multiple classifiers or

multiple features for development of solution for smartphone security analysis, a

comprehensive solution exploiting both optimal combination of classifier and efficient

fusion of multiple features was not investigated.

In sum, survey of the closely linked literature revealed that most of the above

approaches used traditional classifiers which can detect malapps using one or more

classifiers. Multiple classifiers using multiple features gives improved overall

performance in comparison to the single classifier using multiple features. Also, most

of work either focussed on optimal combination of features or optimal combination of

classifiers. Hence, future direction of smartphone security analysis is to take benefit of

both feature-level and score-level fusion.

29

Table 2.1 Comparison of Static Analysis Techniques.

Author’s

Name

Feature

Set

Methodology Dataset Remarks

Fan et al.

[18]

Sensitivity

coefficient,

total sensitive

distance,

tnsm1 (the

total number

of sensitive

motif

instances),

tnsm2, tnsm3

Based on

invocation

patterns of

sensitive API’s

RF, C4.5, KNN,

PART

M- Android

Malware

Genome

Project[117],

VirusShare [10]

B- Google Play,

Anzhi Market

Complements permission

based and API based

approaches.

Zhu et al.

[19]

sensitive API,

permissions

and its rate,

monitoring

system events

RF based Malware

detection

Hemdds

Dataset (B -

official Android

market & M –

VirusShare

[10])

Cost-effective alternative.

Useful in user information

security area.

Narayanan

et al. [27]

Semantic

features:

subgraphs

from CADGs

viz. contextual

API

dependency

graphs

Based on online

learning

Confidence

Weighted

algorithm as

classifier

Drebin, Google

Play, Anzhi,

AppChina,

SlideMe,

HiApk, FDroid,

Angeeks

Handles population drift,

voluminous data, real time

streaming.

X. Wang et

al. [20]

android

manifest.xml

and

Disassemble

code of apps

Feature set:

APIC and

CHPN

Uses multiple

concepts from

information

fusion, ML, static

analysis.

M- Drebin [52],

Android

Malware

Genome Project

[117]

B- Google Play

Run time efficiency, Low

overhead, Lightweight

Xu et al.

[41]

ICC related

features

Involves

comprehensive

analysis of ICC

patterns of

malware and

goodware.

B- Google Play

Store

M- Drebin[52]

Useful for detecting

“advanced malware”

Cen et al.

[21]

Android API

calls

Based on

Regularized

C11 [42], C12

[42], CM [43], O

[44], OM[43]

Integrate analysis of both

decompiled source code as

well as app permissions.

30

Logistic

Regression.

Probabilistic

discriminative

model

Kang et al.

[26]

Serial no. info

from

certificates

Uses Creators

information

Based on

similarity scoring

algorithm

M-

VirusShare[45],

Contagio

Mobile and

Malware.lu

B- Android

market,

GooglePlay

Enables fast detection

Wang et al.

[28]

String

features viz.

requested and

used

permissions,

restricted API

calls, code

patterns, filter

intents

Structural

features viz.

FCG

Uses both String

and Structural

features.

SVM, KNN, RF

B- GooglePlay,

AnZhi[46],

LenovoMM[47],

Wandoujia[48]

M- FakeInst,

Opfake,

FakeInstaller,

DroidKungFu,

GinMaster,

Plankton

Reduced Android software

failures.

Tao et al.

[22]

Permission

related API’s

Based on mining

hidden malware

patterns

RF classifier

B- BenignAll

(consists of two

datasets

BenignRan &

BenignPop)

M- VirusShare

Contagio

Surpassed approaches such

as MUDFLOW,DREBIN,

DroidAPIMiner

Ma et al.

[23]

API info from

CFG

Detection model

viz. API

frequency, API

sequence and API

usage

C4.5, DNN, LSTM

algo

Benign apps

from AndroZoo

& malwares

from AMD

Reduced analysis time.

Detect unknown malware

31

Kim et al.

[29]

String,

opcode,

method API,

component,

method

opcode,

permission,

and

environmental

features.

Multimodal deep

neural network

model

Malware

samples:

VirusShare,

Malgenome

project

Benign: Google

Play app store

First application of

multimodal deep learning.

Detect even when malware

has many features similar to

benign apps

Fan et al.

[30]

Frequent

subgraphs, a

novel graph-

based feature

selected from

FCG’s

Representative

malware selection

Builds Frequent

subgraphs

SVM, KNN, C4.5,

RF

FalDroid-I,

FalDroid-II,

Drebin and

Android

Malware

Genome Project

dataset

Concept drift problem.

Unreliable against native

code.

Li et al.

[24]

Significant

permissions

Based on

permission usage

analysis

Multi-level data

pruning approach

Google

Playstore and

Anzhi Store [46]

Efficient in detecting

new/unknown malware

samples.

Effective when compared to

existing virus scanners.

Yerima et

al. [31]

Permissions,

intents, API

calls, possible

external

payloads (e.g.

hidden .dex

files)

Involves Classifier

fusion approach

Based on

multilevel

architecture

Malgenome-

215, Drebin-

215, McAfee-

350 and

McAfee-100

Outperformed stack

generalization.

Not able to handle

multiclass problems.

2.5.2 Dynamic Analysis

In dynamic analysis, an app is executed in a sandboxed (protected) environment, and

its behaviour is monitored. Unknown malware can be detected through this analysis

and it is effective against malware obfuscation. But it consumes more computational

power and takes a longer time than static analysis.

Cai et al. [49] developed a dynamic app classification technique called DroidCat, using

variety of features such as ICC(Inter Components Communication) intents and

method calls. ICC intents provide a mechanism for data exchanging between

32

components. It proved powerful against system call, resource obfuscation, reflection,

and run-time permissions. DroidCat attain 97 per cent F1-Measure accuracy for

detecting or categorizing malware. MADAM [50] , a multilevel malware detector which

detects misbehaviours of almost all apps by analysing behavioural characteristics. It

extracts 5 set of features from 4 levels i.e. kernel, package, application & user level.

MADAM identifies security risk by analysing permissions and meta data like download

number and user scores at installation time, and if detected risky, the app is marked

as 'suspicious'. Detection was done over 3 large datasets having 2800 apps and

effectively block more than 96% of mal apps.

Endroid [51], an approach blends dynamic analysis by employing ensemble learning,

identifies malware family and detects android malware. Dynamic behavior such as

app-level malicious and system level behavior are automatically extracted. It removes

irrelevant features by adopting feature selection algorithm and selects critical features

responsible for risky behaviors.

CANDYMAN [52], a tool for family classification that combines deep learning (Markov

Chains) and dynamic analysis. In this dynamic analysis, Markov chain models the

probability between the sequence state acting as feature in classification and

information of malware samples is excerpted as sequence of states. Using feature space

classical machine learning algorithm was trained that included deep learning and

imbalanced learning methods. The performance of 81.8% was achieved using dataset

of 4442 mal samples of 24 different families.

In sum, dynamic analysis uses features as system calls, system components and user

interaction and is useful for segregating those vulnerabilities that exhibits

maliciousness during runtime.

33

Table 2.2. Comparison of Dynamic Analysis Techniques.

Author’s

Name

Feature Set Methodology Dataset Remark

Cai et al.

[49]

ICC intents,

structure and

security relevant

API’s

App level profiling

Supervised Learning

(RF)

AndroZoo ,

Google Play,

VirusShare [45],

Drebin dataset ,

Genome

Robust against

reflection and

evasion techniques

like system call

obfuscation

Bhatia et al.

[53]

Frequency of

System call

J48 Decision Tree and

RF algorithm.

System Call-based

detection

Android Malware

Genome Project

(mal apps),

Google Play store

(benign apps)

Effective in

classifying

unbeknownst app &

detecting and

monitoring

behavior of apps

that employ

complex

obfuscation

technique.

Singh et al.

[54]

System Call

behavior

Data classification

Technique: Decision

Tree, RF, Gradient

boosting trees, KNN,

ANN, SVM and deep

learning.

Contagio Project

(Parkour, 2016)

mal apps &

normal apps from

Google Playstore.

Found 31 sys calls

from total of 337 as

extremely good

predictors of

malware apps.

Zhang et al.

[55]

Markov chains &

Determinate

System calls

Contribution level-

based method

Markov chain model

construction

SVM classifier

Benign apps &

malware apps

provided by Zhou

et al. [43]

Reduced number of

distinct sys calls to

speed up the

identification

process.

Yalew et al.

[56]

Uses Kernel

system and API

function calls

Leverages the Trust

Zone Extension

KNN classifier

Malware samples

(2014-16) from

the Contagio

mobile repository

& Benign from

Google playstore

Provides second

layer of protection

at run-time.

Iqbal et al.

[57]

CPU, memory

usage, Linux

Kernel System

calls

4 subdetectors

RF classifier

AndroZoo dataset End users are free

to use any type and

install any no. of

subdetectors as per

requirement.

Jaiswal et

al. [58]

System calls Involves System call

analysis

Normal game

apps from google

playstore &

It observed

permissions

requested by

34

Behavior

categorization: On

basis of similarities &

dissimilarities

Malware game

apps from the

Virus total

malware clone apps

that lead to

malicious

behaviour.

Feng et al.

[51]

Sys level trace,

common app-

level mal

behaviors

Utilizes multiple set of

dynamic features

Uses Ensemble

learning algorithm

Adopts stacking

Benign apps:

Google playstore

and AndroZoo

dataset

Malware apps:

Drebin dataset

Malware behavior

may not be

triggered by

MonkeyRunner

(dynamic analysis

paltform) +

DroidBox

Martin et al.

[52]

Incoming &

outgoing n/w

data, SMS sent,

cryptographic

operations

circumvented

permission and

phone calls etc.

Combined Dynamic

analysis and Markov

chains

Utilized ML

algorithms integrated

with distinct

imbalanced learning &

deep learning

techniques.

Drebin dataset Integrates dynamic

analysis and deep

learning approach

for classification of

malware family

2.5.3 Hybrid Analysis

Hybrid analysis involves combining static and dynamic analysis features that

encompasses scrutinizing code and behavior of an app. It combines advantages of both

the approaches and addresses issues akin to static analysis like inability to detect

obfuscated, zero-day malware and dynamic code loading, it also deals with dynamic

analysis issues such as inability to examine of all execution paths of an app. The main

limitation of hybrid analysis is that it consumes more Android system resources and

takes a long time to perform the analysis.

Rehman et al. [59] presented a hybrid framework to overcome the limitation of

signature-based methods that are not able to effectively detect polymorphic viruses

and zero-day attacks. It examines both heuristic and signature-based analysis that can

be used on diverse environments. In this approach two types of features are extracted

from various android apps and are classified into 3 categories: keywords, user(s)

35

permissions from manifest.xml files and strings from other files of apps. Result

showed that SVM in case of binaries and KNN (K Nearest Neighbour) in case of

manifest.xml files were best suitable. In [41], authors focused on a framework based

on deep belief network and combined static, dynamic analysis and system calls to

extract hybrid set of features to distinguish malware app from legitimate apps.

The proposed framework achieved 99.1% detection accuracy with the presented

dataset. The evaluation compares various ML approaches with deep belief networks

algorithm. Moreover, author developed complete static analysis jar which adopts

different effective methods in an attempt to ease and speed up the static analysis by

handling all the android apps in only one step instead of considering one app at a time

and it is also capable enough to check the similarity between two versions of the same

app downloaded from different markets.

SAMADROID [60] is based on benefits and limitations of existing antimalware

techniques. It is a 3-level hybrid system for android. It is developed by combining the

benefits of (i) Static and Dynamic analysis (ii) Machine Learning Intelligence (iii)

Local and remote host. It performs dynamic analysis on the device and communicates

with the server for static analysis and detection results. The approach ensures low

resource consumption, high detection accuracy and efficiency in terms of power and

storage consumption.

The authors in [61] presented a hybrid model DAMBA based on client/server

architecture. It can detect the android malapps by constructing the directed graphs

depicting the object reference information with 96.9% detection accuracy and a

detection time of approximately 5 seconds. Hybrid analysis approach “mad4a” [62]

offered by the authors for android malapp detection leveraging advantages of both the

dynamic and static analysis methods. In this, authors pointed out some undervalued

characteristics of android malapp that can further help the investigators to augment

36

their knowledge for detecting android malapps. In this, API calls and network logs

were used as static and dynamic features respectively. Manzanares et al. offered a

novel hybrid analysis method “KronoDroid” [63]that addresses the time and data

platform source. Here, 489 static and dynamic features were used for generating

hybrid dataset with labelled timestamps on each sample to detect the malapps with

high accuracy. A hybrid method “DirectDroid” [64], that merges fuzzing and a novel

app analysis procedure “on-demand forced execution” to activate concealed malicious

behaviour. It can effectively detect malapps by the “augmenting fuzzing” technique.

This method could not cater to obfuscated codes in the malapps. In sum, hybrid

security analysis techniques without ML are limitedly applied for malapp detection.

A multi-level hybrid model SAMADroid [65] for effective android based malapp

detection was proposed. Static analysis results were determined on the remote host.

Smartphone was used for the dynamic analysis. Machine learning algorithms Support

Vector Machine (SVM), Random Forest (RF), Naïve Bayes(NB), and Decision Trees

(DT) were used to train the model to detect malapps with 98.5% of TPR(True Positive

Rate). In [66], a hybrid model using API calls and permissions was suggested. SVM

and RF classifiers were further leveraged to achieve a true positive rate of up to 89%.

Authors in [67] presented a model for android malapp detection with intents,

permission, and API calls as features and compare the results with four ML classifiers

viz. RF, NB, Gradient Boosting(GB), and DT. Accuracy of 96% and TPR of 0.85 were

achieved with GB classifier. In [68], authors exploited static and dynamic feature

vectors to detect malapps with 89.7% accuracy with a voting classifier-based fusion

approach. A hybrid model [69] implemented dynamic analysis on the outcomes of

static investigations. API calls and permissions were used as static features, while

system calls were used as dynamic features to identify the malapps with an accuracy

of 94.6%. Improved Bayesian classifier was used in static analysis and ensemble of

37

three classifiers viz. RF, GC Forest, and XG boost were used for dynamic analysis. A

Hybrid method “MADAM” [50]was proposed to detect the malapps on a rooted device

by extracting static and dynamic features. A feature vector was given to K-NN classifier

to obtain an accuracy of 96.9%. Dhalaria [8] et al. proposed the hybrid framework by

combining the static and dynamic features for the classification of malapps by creating

the two feature oriented datasets. This method attains accuracies of 98.53% for

malapp detection and 90.10% for its family classification. Kabakus et al. presented a

hybrid analysis method for detecting malapps with the maximum detection accuracy

of 99.5% when using J48 ML algorithm. Karim et al. [50]proposed a hybrid android

smartphone botnet detection platform by exploiting the API calls, permissions as

static features and network traffic-based dynamic features for detecting the botnets

with high detection accuracy of 98% with RF algo. Ding et al. [70] presented a

ResLSTM based hybrid model using static features and traffic based dynamic features

to achieve the detection accuracy of 99%. The subsequent section elaborates on the

proposed android malapp detection framework. In sum, ML based smartphone

security analysis has shown promising results and were in use. But optimal combining

of static and dynamic features were limitedly addressed.

Kabakus et al. [71] presented a hybrid analysis method for detecting malapps with the

maximum detection accuracy of 99.5% when using J48 ML algorithm. Karim et al. [72]

proposed a hybrid android smartphone botnet detection platform by exploiting the

API calls, permissions as static features and network traffic-based dynamic features

for detecting the botnets with high detection accuracy of 98% with RF algo. Ding et al.

[70] presented a ResLSTM based hybrid model using static features and traffic based

dynamic features to achieve the detection accuracy of 99%.

In sum, hybrid based smartphone security analysis shown promising results but

optimal combining of static and dynamic features were limitedly addressed.

38

2.5.4 Traffic Analysis

Traffic analysis [73] of smartphone devices also comes under dynamic analysis. Here

both the software based and hardware based vulnerabilities can be studied by the

analysing the network traffic generated by the smartphones. Coming subsections

covers the goals of smart phone traffic analysis and the related work done in this field.

2.5.4.1 Behaviour Analysis: This infers behaviour analysis of smart phone users i.e.

user action identification, user fingerprinting and website fingerprinting.

2.5.4.1.1 User Action identification includes identification of a certain action done by

the user and inferring information related to certain action performed on his/her

mobile device. This analysis helps the researchers in the identification of unknown

person in social network and also to build the behavioral profiles which is a source for

marketing strategies. Saltaformaggio et al. [74] presented a system called NetScope

that can be deployed at network equipment’s or Wi-Fi access points for user action

identification. It also works in case of IPsec protected traffic because it leverages IP

headers/metadata. For evaluating the system, 35 different actions performed on

around 22 apps on iOS and Android platform. It achieved average recall and precision

of 76.04 per cent and 78.04 per cent respectively.

2.5.4.1.2 User fingerprinting includes detection of the mobile traffic of a particular

user. In this analysis, behavioral profile of the smart phone user can also be built by

tracing a mobile user using the location of cellular station or Wi-Fi hotspot from the

39

connected device. Vanrykel et al. [75] proposed a context that involves execution of

apps, collection of traffic, inspecting the HTTP data. This also involves searching

sensitive identifiers for investigation of user. Such identifiers are exploited for

extracting the network traces produced by a particular mobile user from the traffic

dataset and hence the authors presented a graph building technique. The analysis over

1260 apps from 42 categories showed that it can relate 57 per cent of mobile users

unencrypted network traffic. Additionally, the inadequate efficacy of ad-blocking apps

in averting the outflow of sensitive identifiers was also detected.

2.5.4.1.3 Website fingerprinting includes tracking of web pages that a smart phone

user visits on web browser. This analysis can be helpful in revealing spiritual faith,

concern, lifestyles, along with administrative and voluptuous alignments of user. In

[76], Spreitzer et al. developed a fingerprinting technique that uses a Jaccard’s index-

based ML classifier. The requirement for this technique is only the volume of data

processed by which the browser app deals and hence is not affected by encryption.

2.5.4.2 System Identification: This includes identification of apps [77], PII(Personally

Identifiable Information) leakage detection [78] and OS identification [79] which are

defined as follows:

2.5.4.2.1 Identification of App: To identify the network traffic patterns of specific apps

consisting of a behavioral n/w fingerprint that can be figured out in unfamiliar

network traces. It is useful for network resource managers in devising the app specific

policy forbidding the use of certain sensitive apps (gaming, courting, social networking

etc.) in the smartphones by the employees in the company network. In [80],

40

Mongkolluksamee et al. built an android app identification system focused on

combining host-based (communication patterns from graphlets) and statistics based

(packet size distribution). Using ML, the evaluation done on real traffic of only 5

mobile apps and gave F-measure of 0.96 by only considering 50 random packets of

traffic in duration of 3 min. The main focus of the work was 3G traffic and tcpdump

was used to capture the n/w traffic. In [81], Taylor et al. proposed an app identification

technique based on ML, called as AppScanner. In this system 110 android apps were

fingerprinted from Play Store and gave 96 per cent accurate detection. Further the

authors studied that the mobile devices that generate the collected data, network

traffic capturing duration and the fingerprinted apps version affects the classification

performance. In [82], authors devised a robust approach known as Convolutional

neural network based multi-domain learning system that can be employed to identify

any VoIP based calling app by fusion of extracted deep features from both temporal

domain and spectral domain. The authors in [83] proposed a traffic categorization

method to detect smartphones apps producing such traffic (including encrypted

traffic) using deep learning methods.

2.5.4.2.2 OS Identification To determine the OS of a smartphone. This analysis serves

as initial phase for other complex attacks against smart phone. In this analysis, the

adversary attempts to deduce the OS to later exploit known susceptibilities for that

particular OS of the target smartphone. In [84], Malik et al. proposed a technique that

exploited inter-packet time from a targeted device to deduce its OS. In [85], Coull

targeted iMessage, a message service by Apple and tried to conclude the language and

size of the texts exchanged among the Apple servers and target users to find if iMessage

is being used on OS X or iOS.

41

2.5.4.2.3 PII Leakage Detection: To analyze the network traffic for detection /

preclusion of the outflow of a mobile user’s Personal Identifiable Info. PII is used to

identify, contact or locate an individual. In [86], authors presented PrivacyGurad for

Android platform that was developed by leveraging VPNService class provided by

Android SDK for eavesdropping the network traffic of apps. It neither requires any

knowledge about VPN nor root permissions from users. The authors employed it for

noticing the outflow of sensitive data related to devices and mobile users, such as

phone or IMEI (International Mobile Equipment Identity) number. The PrivacyGuard

is capable of replacing leaked info with bogus data.

2.5.4.3 Malware detection: To detect whether an app behaves maliciously solely on the

basis of smartphone traffic. This analysis is capable of performing a security check of

the app. In addition to it, the algorithm for malware detection can be rooted into anti-

virus apps that can be used further by smartphone users to verify if an installed app is

malware or goodware. In [87], Narudin et al. made investigation in order to check if

anomaly-based IDS is capable of detecting mal-apps on the basis of traffic analysis.

Malware detection is defined as the method using which we identify if an app is

malicious or goodware by scrutinizing the network traffic produced by the app. In this

section the framework presented by many researchers for Android Malware

Identification or detection via traffic analysis is surveyed. An app marketplace , mobile

user or security company are mainly interested in malware identification.

The wide spread adoption and success of smart phones has attracted the malware

authors. They gain access over confidential data of target device and causes huge

danger to users’ property. Smart phones have become the prime target of the attackers

42

due to lots of sensitive info available about the users, its ubiquity and the network

capabilities. We surveyed dynamic detection methods based on network-level

behaviour which accounts the app behaviour at runtime and find out the leakage of

sensitive information and the classification of network behaviour. The studies we cited

below involve many facets of malicious smart phone traffic analysis:

TrafficAV [88] is a multi-level n/w traffic analysis approach that used ML and traffic

analysis for detection of android malware by effectively detecting malicious traffic. It

provides details about detection results, alongside identification of mal-apps. It

performs traffic analysis & uncovering on server side, hence not affecting user surfing

behaviour and minimal resource consumption of mobile devices. The technology used

to gather n/w traffic is traffic mirroring. Further, for data analysis the gathered n/w

traffic is directed to a server. It provides user friendly result explanation and offers 2

detection models namely HTTP & TCP flow detection.

NTPDroid [89], a hybrid framework that combined attributes i.e. network traffic and

system permissions to create recurrent patterns normal and malware dataset for

detection of malicious patterns. The model was trained and tested using FP-Growth

algorithm. It has 2 phases i.e. analysis and detection phase. Analysis phase aimed to

generate the recurrent patterns present in legitimate and mal-apps. While in detection

phase, the 2 sets of recurrent patterns generated are used to identify mal-apps.

In [90], authors presented a dynamic approach analyzing network traffic and

capturing app behaviour at run time. Few n/w traffic features were extracted and

tested on Decision tree algorithm using WEKA tool. The performance is analysed using

accuracy, TPR, FPR (False Positive Rate) , ROC and mean absolute error.

43

Taking imbalanced learning problem into consideration, authors [91] developed a

management and control scheme for collection of android network traffic and

established that using n/w traffic to train ML model is a problematic imbalanced

learning via analysis of using the collected n/w traffic. In addition, android malwares

are detected by applying 4 imbalanced algorithms on imbalanced n/w traffic dataset.

It showed that the combination of SVM and SMOTE performed best in all

combinations.

Taking into consideration different network flow generation by different apps using

different operations and as well as different patterns of both benign and malicious

flows, Cheng et al. [92] developed a model using studying of relationship involving

behaviour patterns & network flows to detect which app leaks private info of users. It

used RF machine learning algorithm for the classification of network flows. Further to

improve controllability, authors designed an app called Moledroid [92] to put into

practice network flow detection with a ML algorithm. It achieved correctness and

exactness higher than 95 per cent.

Watkins et al. [93], demonstrates network-based IDS which detects malware either

that generates no network traffic or it is impossible to differentiate the network

generated from genuine network traffic. This network-based tool does not engross

dependability upon other traffic source from an app and also do not rely on

interactions based on host-based dwelling. It does not require its installation on device

and is competent to detect a set of malwares which is unable to produce Wi-Fi network

traffic. The study [94] focused on identification of mal apps by using URLs visited by

apps. This method is responsible for vectorization operations and URL segmentation

and does not involve complicated feature engineering. It used neural network having

44

multiple views and laid emphasis on width & depth of neural network and addressed

challenge of feature selection. Multiple views of input are automatically created using

this proposed neural network and hence preserved rich semantic info from input and

then distributed soft attention weights and its main emphasis is on diverse input

features. Wei et al. [95] demonstrated learning and modelling method to analyze

android mobile apps network behaviour. To trigger different categories of app

behaviours, various app system and environmental factors are simulated. The

retrieved series of network event behaviour is classified according to behaviour

sequence combination via a Bi-LSTM. Additionally, WGAN viz. Wasserstein

Generative Adversarial network was used to solve the trouble of time overhead, limited

data samples and hence it increased the diversity of data.

The authors [1] presented a detection method based on text semantics of network

flows. It took HTTP flow generated via android apps as documents which is further

processed using N-gram method from NLP, to extract text-level features. These

features are used to develop a malware detection model. The method uses SVM

classifier to find out whether the traffic is malicious or legitimate. It detects unknown

samples only when it possesses some characteristics similar to mal samples in training

phase. It constructs malware detection model by using N-gram sequence generation,

chi-square feature selection algo and SVM algo. Zaman et al. demonstrated a

behaviour detection technique for detecting mobile malware that can commune with

blacklisted domains and bypass confidential info. For this, App-URL table was created

that record all efforts by apps for interacting with remote servers. Each entry in this

record takes care for the app id and the URL that app makes contact with. Further,

authors used domain blacklist and flagged the apps that make contact with any of the

domains as malware. Nancy et al. [77] presented a technique based on network traffic

45

for detection of malware. The authors compared network traffic of malwares with that

of benign apps and found the distinguishing features. A decision tree classifier was

built based on the features to detect mal and benign apps. This method achieved

accuracy of more than 90% and network traffic of malware was captured using actual

smartphones rather than using emulators. In [96], authors analysed the n/w traffic

features & built rule-based classifier in order to reveal android malware. Remotely

server controlled android malware is detected by it or confidential info of the remote

server is disclosed. In the first phase, the method includes analysing network traffic

and identifying of distinguishing features among malware and normal traffic. In the

second phase, rule-based classifier was built over found distinguishing features and

accuracy was calculated by running the classifier on test data and hence it achieved

accuracy of 93.75%.

Shabtai et al. [97] presented an anomaly detection method based on behaviour to

identify significant variations in device app n/w behaviour. It safeguards cellular

infrastructure companies & mobile devices user from mal-apps via detecting mal-

attacks and repackaging apps. It attempted to detect malware having self-updating

capabilities as this type of malware is not detectable using regular dynamic or static

analysis approach. The method uses app network traffic patterns only to perform

detection. Arora and Peddoju in [98] focused on minimizing the number of features

by proposing an algorithm that prioritize n/w traffic features. Statistical tests are used

in this approach to rank the attributes. The end result demonstrated that it reduced

training and testing time and as well as gave the high detection accuracy rather using

features collectively and hence achieved F-Measure of 0.9636 with 9 features out of

total of 22 features. Further, the training time of 300 apps was reduced to 5.8 sec from

11.7 sec and testing time was reduced to 17.3 sec from 25.1 sec for 230 apps. The traffic

46

was captured on actual smartphone rather than emulator. It is off-device detection and

moreover, few samples that use obfuscation technique escape from getting detected by

employing encryption remote server interaction.

PODBot [99] is a tool based in cooperation with network traffic analysis and app

features. It was assessed over set of botnets of famous types and gives accurate

detection of 87 per cent in high threat and 96 per cent in very high threat. By detection

via host, bots including which are communicated via Bluetooth or SMS channels are

detected but for internet as communication channel, network flow and traffic analysis

is effective in detection because of high FPR of static analysis.

In [100], the authors proposed a malware detection arrangement built on TCP traffic

that can rapidly and aptly detect malware. Here, n/w traffic produced by several apps

has been collected and enormous number of TCP flows resulted after pre-processing.

After that early packets size were extracted from TCP flow as features which is then fed

to detection model. In this method, the feature extraction time from 53108 network

flows is abridged from 39321s to 18041s (drop of 54%). This method also accomplishes

a detection rate of 97%.

The authors in [101] suggested an approach grounded on n/w packets fuzzing for

Android apps. This system acquire the communication data directed by servers to

apps, implements diverse mutation schemes to mutate the different types of novel

data, return the mutated response to apps, monitor crash information using log

monitoring tools to determine the impending security threats. Four types of problems

were exposed by using above approach. The problems comprise unresponsiveness,

crashes originated via JSON data exception, URL redirection and HTML content

47

replacement. The outcomes showed that the suggested technique aptly exposed malign

behavior of mobile applications using network information interaction.

Authors in [102], proposed a method for identifying malware based on URLs

frequented by the apps. Each URL is divided into various segments using particular

characters. The skip-gram algorithm is then used for training. The generated URL

vector is then fed into a multi-view neural network based malware detection model.

Arora [96] et al. examine the TCP based features based on traffic to shape the classifier

for Android malware with more than 90% of detection accuracy. Arora [103] et al.

came up with a hybrid model named NTPDroid (Network Traffic and Permissions

based Android malapp detection framework) , that uses permissions and traffic

features from the apps and exploits a Frequent Pattern Growth algo to generate

frequent patterns of permissions and traffic features to achieve detection accuracy of

94%. Wang [103] et al. proposed an efficient malware detection technique by using

text semantics of n/w traffic by studying each HTTP flow. These HTTP packets were

further processed by NLP (Natural Language Processing) to take out text level features

achieving an accuracy of 99.15% but the method achieves 54.81% for unknown apps in

the wild. Liu et al. [100]proposed malware detection technique built on TCP n/w

traffic, where network traffic generated by apps gets a greater number of TCP flow to

extract packet sizes as features. Results achieve 97% of detection accuracy. Ding Li et

al. [104] introduced a framework named as DroidClassifier for the identification of

HTTP header fields of n/w traffic created by malapps by using a supervised method to

train the malware dataset . Moreover, Clustering is also used to increase the

classification efficiency. The results achieve 90% of detection accuracy. Li [105] et al.

proposed a multilevel detection system named as MulAV, in which it obtains info from

n/w traffic, App’s source code, geospatial info where n/w traffic is collected by

48

TCPdump Tool. The info is further fed to ML method to train model which identifies

malapps. The result achieves a detection rate of 97.8%. Wang [105] et al. discussed a

technique to parse the HTTP packets of n/w traffic where features analyzed are packet

avg. length, number of upload and download packets, distribution of packet size etc.

Features were further extracted to obtain the pure malicious traffic dataset and this is

used to detect malwares.

 Su [106] at al.presented Android detection method that uses TCP based behavioral

characteristics to detect malapps where capturing of n/w traffic is done using NTM

(Network Traffic Monitor] tool and training is done via n/w traffic classifier. Results

achieves 99.2% and 94.2% of detection accuracy by using Random forest and J48

classifier. Zulkifli [107] et al. proposed a detection process based on n/w traffic which

registers the app behavior and considered 7 TCP based n/w traffic feature from

Contagio dumpset & Drebin dataset in which Drebin dataset achieved 98.4% of

detection accuracy on J48 decision tree algo.

 Malik [108] et al. proposed a pattern based detection method CREDROID which

identifies malapps on the basis of the Domain Name Service (DNS) queries, data it

transfers to remote server from n/w traffic logs and also protocol used for

communication for identifying the credibility of the app. Moreover, Android app can

be checked without rooting the android phone. Wang [109] et.al. proposed a malapp

detection framework exploiting the URLs(Uniform Resource Locator) visited by them.

Here the malapp detection model is based on multi-view neural-network with the

detection accuracy of 98.35. Multiple views maintain copious semantic info from

inputs for segregating the apps. Wang [110] et. al. suggested a framework for android

malapp identification leveraging both the TCP and https features. Here, the app

49

detection was done at the server side without affecting the user experience. C4.5 ML

algo is used to train the model with 8312 benign and 5560 malign apps for identifying

unknown apps with accuracy of 97.89%. Sanz [111] et. al. offered a lightweight malapp

detection framework using TCP based network features with accuracy of 90% and false

positive rate less than 3%. Here total number of 359 malapp and benign apps are used

along with two Random forest and AdaBoost ML algorithms.

Alshehri [112] et.al. proposed an innovative method to detect the repackaged apps by

investigating the network traffic behaviour of the smartphones. Here authors

exploited the request traffic generated by the apps. Total number of 8645 applications

were used for experimentation. Here the accuracy of request flows attained is 95.1%

and improvement of 18.3% of accuracy when compared with contemporary methods.

Sihag [113] et.al. proposed network packet based investigations of captured traffic of

the smartphone. Here, the authors represents the captured network packet

interactions as images. These images were given to CNN (Convolution neural network)

to achieve detection accuracy of 99.12%.

In sum, security investigations on the smartphone platform via traffic analysis covers

identification of software, hardware, OS and app related vulnerabilities. But optimal

combinations of various traffic features to create a robust solution for demands further

research.

50

Table 2.3. Comparison of Traffic Analysis Techniques

Author’

s Name

Methodology Dataset Result Remark

Esmaeili et

al. [99]

Based on app

features and

network traffic

analysis

KNN, Decision tree,

Naive Bayesian as

classifier

Drebin,

Google

Play, Café

Bazar

Precision:

high risk-87 per

cent

Very high risk-

96 per cent

Estimation for detection as

botnet is done using 3 level

of risk i.e. average or high or

very high

Zulkifli et

al. [90]

Dynamic detection

technique

Records app

behaviour at run

time

Based on network

traffic using

Decision Tree

Drebin,

Contagiod

umpset,

Google

playstore

Drebin- 98.4%

accuracy

Contagiodumpset

- 97.6%

Drebin achieved higher

accuracy in comparison to

Contagiodumpset dataset

Arora et

al.[114]

Combined network

traffic & system

permissions

Hybrid model

Genome

malware

dataset

Detction

accuracy- 94.25%

Combining permissions and

traffic features enhanced the

rate of detection

Wei et al.

[95]

Modelling and

learning method for

network behaviour

detection

Used WGAN and

Bi-LSTM

Official

Android

Market

App classification

accuracy- 96.89%

WGAN model helped in

improved accuracy of

BiLSTM by 9%

S. wang et

al. [1]

Based on text

semantics of

network flows

Used N-gram

method from NLP

SVM classifier

VirusShar

e [45],

Baidu

mobile

assistant

[115],

Google

play

Accuracy

achieved- 99.15%

Requires few samples for

good detection results.

Able to detect new

discovered malware as well.

Kandukur

u et al.

[116]

Two level hybrid

analysis approach

based on

permission vector

and network traffic

Malgenom

e project,

Google

playstore

Detection

accuracy –

95.56%

Uses less time and limited

computational resources

51

Nepal et

al. [117]

Hybrid model

based on sensitive

resource accessing

&network traffic

Google

play,

Genome

malware

project,

Droidbenc

h

Accurately

detected all 3 of

app groups of

Droidbench

dataset i.e Access

Internet,

Neverclick and

sensitive resource

Lower FPR viz. false positive

detection rate

Lashkari et

al. [118]

Five classifiers

namely RF, KNN,

DT, RT, Regression

Focuses on

dynamic behaviour

of malware

1900

benign

and mal

apps of 12

different

families

Avg Accuracy

(91.41%),

Precision

(91.24%), FPR

(0.085)

Network traffic captured via

limited user interaction with

installed apps

Pang et al

[91]

Analysis of

relationship

b/wnetwork flows

&behaviour

patterns.Random

Forest ML algo.

Google

play [49]

Achieved higher

than 95%

precision and

accuracy

Lacked comparison with

other ML methods

Wang et al

[88]

Combines network

traffic analysis with

ML (C4.5 DT)

Perform multi-level

network traffic

analysis

Drebin

[53]

Detection Rate

TCP Flow –
98.16%

HTTP Model –
99.65%

FPR

5.14% and 1.84%

Provides details about

detection results

Nancy et

al.[77]

Compared traffic of

malware with that

of normal apps

Decision tree as

classifier

Android

Malware

Genome

Project

Accuracy –

90.32%

Fails when obfuscation

techniques are employed like

encrypting the traffic used by

malware.

Chen et

al.[119]

Involves traffic

generation,

capturing and

behaviour

monitoring

Drebin,

Android

Malware

Genome

Project

Detection Rate

DNS Query:

69.55%

HTTP Request:

40.89%

Analysed malware traffic

only.

Arora et al.

[9]

Based on network

traffic features such

as ratio of incoming

to outgoing bytes,

Avg packet size,etc.

Uses rule-based

classifier

Android

Malware

Genome

Project

Accuracy –

93.75%

The approach is specific to

those malwares which in the

background connect to any

remote server.

52

Feizollah

et al.[120]

Based on network

traffic generated by

Android apps

Uses 2 clustering

algorithms i.e. k-

means and mini

batch k-means

MalGeno

me,

Google

play

K-means & Mini

Batch K-means :

Accuracy: 0.48,

0.62

Homogeneity:

0.008, 0.13

Completeness:

0.16, 0.18

V-Measure:

0.11, 0.15

Mini batch K-means

clustering performed better

than the other approach i.e.

k-means

2.6 Performance Metrics

To evaluate performance of smartphone security analysis framework, following

metrics are normally used:

2.6.1 False Acceptance Rate (FAR) or False Positive Rate (FPR)

FAR [121] or FPR exhibits the probability that malicious application will be treated as

benign application. It’s also known as ‘False Positive’ or ‘Type I error’. If NM be the

total number of malicious applications present and FM be the sum of malicious

applications that are incorrectly accepted as benign, then FAR is computed as

 𝐹𝑃𝑅 =
𝐹𝑀

𝑁𝑀
 (2.1)

2.6.2 False Rejection Rate (FRR) or False Negative Rate (FNR)

FRR [122] or FNR exhibits the probability that benign application will be regarded as

malign application and deprived of installation rights in the smartphone. It’s also

known as ‘False Negative’ or ‘Type II error’. If FR denotes the total number of benign

53

applications rejected and NA be total number of actual benign applications, then FNR

is calculated as

 𝐹𝑁𝑅 =
𝐹𝑅

𝑁𝐴
 (2.2)

2.6.3 Equal Error Rate (EER)

When FAR and FRR are equal then the common value is called EER [123] and is

represented as the point at which the plotted curves of FAR and FRR values intersect.

EER as shown in Fig 2.2 is also termed as Cross-over error rate between FAR and FRR.

This metric expresses the efficacy of the system in rejecting an impostor. If EER is

close to zero, then performance of the system is maximum, indicating a clear

separation between genuine and imposter.

Figure 2.2 Equal error rate (EER)

54

2.6.4 Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic (ROC) [123] curve is a 2-dimensional plot between

False Positive Rate (FPR or FAR) and True Positive Rate (TPR or FRR). In other

words, it may be defined as a plot between false match rate against the verification

rate. ROC curves as shown in Fig 2.3 is also used to compare the performance of

various smartphone security analysis techniques for different threshold values.

Figure 2.3 ROC curve2

2

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roc_
curve.svg

55

2.6.5 Decidability Index (D)

Decidability Index (D) [124] determine distance between benign and malicious score

distribution. When the malicious application distributions considerably overlap the

distributions of the benign applications, it hampers the decision capability of

framework.

2 2

2

B M

B M

D

 (2.3)

where, μB and μM are mean and σ𝐵 and σM are variances corresponding of benign and

malicious score distributions respectively.

2.6.6 Accuracy

Accuracy [125] measures number of correct predictions to the number of predictions

or input samples.

TP TN
DETECTION ACCURACY

TP FP TN FN

 (2.4)

2.6.7 Precision

Precision [126] is a metric that is calculated as the ratio of rightly anticipated positives

(malicious applications) to the total number of positives (malicious applications) that

were anticipated.

TP
PRECISION

TP FP

 (2.5)

56

2.6.8 Sensitivity or True Positive Rate

Sensitivity [125] is percentage of positives which are correctly recognized by binary

classifier.

TP
SENSITIVITY

TP FN

 (2.6)

Also, 1-FRR=TPR

2.6.9 Specificity or True Negative Rate

Specificity [125] is percentage of negatives which are correctly recognized by binary

classifier.

TN
SPECIFICITY

TN FP

 (2.7)

2.6.10 F1 Score

F1 Score [127] is weighted mean of sensitivity and precision

2
1

2

TP
F SCORE

TP FP FN

 (2.8)

2.7 Benchmarked Datasets

There are many available datasets for malicious and benign apps

DREBIN [128]: 5560 applications from different malware families.

Malware Genome [43]: 1200 malware samples

57

AMD [129]: 24,553 malware samples

Google Play [130]: Over a million benign apps.

Androzoo [131]: 84,420 malware samples

CICMalDroid2020 [132]: 17341 malware samples.

Performance evaluation of a new Smartphone Security Analysis techniques is done on

datasets which are publicly available. There are numerous datasets that embed in them

the maliciousness of different families of malwares available. Mostly, the malware

characteristics of different families are independent of each other. It is very vital to

select the right dataset which should be the amalgamation of apps from different

sources so as to cover multitude of malwares in the testing and training phase. It is

essential for the successful performance evaluation of a malicious app detection

system. But sometimes it becomes very problematic to detect the zero day malwares.

To detect these malwares, customized dataset incorporating the latest malwares are

designed by repackaging techniques. These data sets are then subjected to intensive

testing and training on the proposed detection models. Latest malwares in the

smartphone ecosystem are collected and embedded in the smartphone apps by

repackaging techniques so as to detect the zero day malwares in the smartphone

ecosystem.

2.8 Research Gaps

Based upon extensive and intensive review of the literature as discussed in section 2,

we have found research gaps in the field of smartphone based mobile platform

security. The gaps in the research are mainly concerns with the issues and challenges

58

in the mobile platform security considering static, dynamic, hybrid, traffic analysis

approaches.

Most of the attacks on the malware does not cater to zero-day detection. Future of the

malware detection will utilize the online and ensemble learning techniques to detect

the malware on the day it comes to the market. New variants of malware are found

every day, maintaining the latest patterns efficiently to catch the new trends on usage

of permissions is another sustained challenge. Application are utilizing byte code

encryption, reflection and native code to thwart static analysis is a great challenge.

Automatic reverse engineering of the application to extract the permissions is also a

big challenge. Most of the static analysis techniques does not consider the large set of

features from the decompiled apps. Source code analysis of the decompiled bytecode

is a cumbersome task as it requires more manual analysis.

Automatic generation of multiple static features from decompiled apps and their

optimal combination i.e. unification at feature level was not reported in the previous

research work. Hence the extraction of complimentary information from large data

sets of static features through some efficient technique could be investigated in future

study. Most of the work are tested and evaluated on limited set of databases for benign

and malign apps. Hence the studies need to be conducted for large sets of data base

which are updated with the latest malware and application. In addition, apps available

in most of the data sets are generated on an old version of the platform. Also, the

malware data base is not uploaded with latest malware. The static and dynamic

analysis approaches were investigated separately. There is no little work in literature

which consider both static and dynamic analysis to detect malicious behavior of

59

smartphone-based platform. Categorization of different feature into various threat

level was not carried out.

Tuning of critical parameters for optimizing the machine learning models for detection

of malwares was not addressed. Optimal combination of different features with

automatic parameter tuning and further classification using hybrid approach was not

addressed. The malware intentionally prolong the delay of infecting the application to

very long time and it is required to monitor the network traffic to an extended period

of time to detect the same by network analysis. Most of the malicious activities are

restrained due to the constrained environment. Studies has been carried out under the

constrained environment which may make the unintended functionality non-

operational. Mostly studies are focused on the encrypted traffic generated through

mobile apps which may make the analysis cumbersome. Most of the studies has been

investigated with the traffic captured from either single apps or few apps.

Generalization or adaption of analysis tool is foremost requirement. Considering the

various gaps in the research of mobile platform security and also requirement of

Defense scenario, I have formulated my research problems and objective of research

work.

2.9 Conclusion

Many benchmarked datasets viz. Google Play Store, Drebin, Androzoo, AMD,

CICMalDroid2020 etc. are proposed in the literature to evaluate the performance of

various smartphone security analysis techniques. In literature, it has been well

accepted that combining multiple complementary features extracted from the

applications enhances performance and accuracy. Our review work analyze the recent

60

trends in the field of smartphone security analysis to indicate the future directions to

the researchers. Prolific research is going on in this field to detect a reliable malware

detection approach. It has been well acknowledged that deep learning based methods

provide robust solutions but required large training data and special hardware for

their realization. To serve the ever growing demand for training data, large-datasets

have also been developed.

Performance of a security analysis of smartphone is measured in terms of performance

metrics like False Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error

Rate (EER), Receiver Operating Characteristic (ROC) Curve, Decidability Index,

Accuracy, Precision, Sensitivity, Specificity, F1 score etc. Android Malware detection

techniques are basically divided into four type(s) viz. static, conventional dynamic,

traffic-based dynamic and hybrid analysis. After extensive study, we have found many

gaps in the research. The gaps in the research are mainly concerns with the issues and

challenges in the mobile platform security considering static, dynamic, hybrid, traffic

analysis approaches.

The literature survey resulted in two research papers [133] and [134].

61

Chapter 3

Design & Development of Static
Analysis Technique

The aim of this work is to design and develop a static analysis framework for

smartphone security analysis where in a multi stage fusion approach consisting of

feature fusion and score level fusion is introduced. For this, a robust unified feature

vector is created by fusion of transformed feature matrices corresponding to multi-cue

using non-linear graph based cross-diffusion. Unified feature is further subjected to

multiple classifiers to obtain their classification scores. Classifier scores are further

optimally fused employing Dezert-Smarandache Theory (DSmT) [153].

3.1 Introduction

Static analysis for android malapps detection does not require a host system

environment as the apps are not executed. It is also the most economical, proficient

and accurate method for investigating the apps. The numerous static features [136]

like permissions, app components, filtered intent, API calls etc. are reported in the

literature. These features are extracted by disassembling the apps by APK tool19.

Permission usage was extensively exploited for development of solution for android

62

malware detection. Investigations grounded on intents and permissions of

applications are susceptible to false positive as benign applications too need sensitive

permissions making them misclassified as malapps. Techniques built on only API

calls44 frequency are inept to create connections amid the API calls to develop the

sophisticated behavioural semantics of apps, leading to poor detection rate of novel

malapps. Therefore, choosing multiple complementary features plays a significant

part in effective detection of malwares.

Here, an android based Smartphone Security Analysis paradigm has been proposed

using non-linear graph fusion and optimal fusion of classifier(s). Multiple

complementary features are deduced through extensive investigation of benchmarked

datasets. Complementary features are fused through cross-iterative graph diffusion.

Thus a unified feature is generated and fed to optimal classifier for classifying the apps

into benign or malicious with high detection accuracy. Outcomes of our results

demonstrates that proposed method has better performance in classification and

detection accuracy. In a nutshell, the following key contributions in this chapter is as

follows:

1. We suggest a static feature approach for smartphone security analysis that

incorporates multiple feature unification through cross iterative diffusion. To our

awareness, it is the first time that this approach is introduced to extract unified

android static features.

2. Pragmatic and effective app security analysis framework is proposed wherein three

ML algorithms are exploited to evolve a system to detect the malapps on the basis of

unified feature representation. Further, outcomes of the ML algorithms were fused by

DSmT algorithm to improve the accuracy achieved by individual classifiers. In

addition, we presented a complete investigational study based on CICMalDroid2020,

63

AMD and Drebin malapps database and comparative experimentations with state-of-

the-art methods to validate the efficiency and proficiency of our approach.

3.2 Proposed Static Analysis Framework

In this manuscript, multistage fusion model wherein both feature and scores are

optimally combined is proposed to achieve highly robust Android malware detection.

Overview of the proposed framework is depicted in fig 3.1. For this, we have designed

three modules viz. multi-cue feature extraction, feature unification, and optimal

classifier fusion to achieve efficient malware detection. For this, semi-automated tool

(taking the aid of APK tool) was made to extract the features from the decompiled

Android Package Kit. APK tool decompresses the *.apk files into *.dex and

AndroidManifest.xml files. Features extracted consists of API calls, Permission,

Intents, App Components, Native Code, Op Code, Hardware Feature, Network

Address. Each feature is exposed to decision tree learning for generating

corresponding similarity matrices. These matrices are subjected to normalization

procedure accompanied by filtering out the most weighted similarities in order to

generate the sparse matrices. To unify these features, unified-graph is created via

graph fusion technique based on cross-iterative diffusion. This method of enhances

the robust connections and filters out the weaker ones. Thus, unified set of features

are generated for further classification. Unified feature [137] is further subjected to

multiple classifier to make final decision about app classification.

Due to multitude of features embedded in the android apps, single ML algorithm

presents its inability to classify these apps effectively . Hence, more than one

classification algorithms are exploited to detect complex malapp. In the proposed

framework, we have chosen three ML algorithms viz. Random Forest(RF), Support

64

Vector Machine(SVM) and Naïve Bayes(NB) for classification. Also, we proposed

optimal combination of these classifier to accurately classify applications into two

classes, namely, benign and malicious. Classification algorithms are chosen to

compensate the demerits of the individual classifiers. For instance, RF is usually used

when there are more number of features than observations. Its performance is

excellent in spite of having noise in the predictor variables and it is also not vulnerable

to overfitting. Also, RF classifier is preferred for large dataset as it is not susceptible to

outliers. On the limited dataset, SVM performance is optimal for two class problem

where the data is outlier. For small dataset, NB performs optimally. It is simple and

speedy to give classification results. Here, three classifiers complements each other in

framework and synergised the performance of resultant classifier. Our approach

exploits three classifiers in parallel and the output scores of all the classifiers are fused

to synergize the overall performance for detection.

Respective classifier scores viz. rS for RF, sS for SVM, nS for NB are further

transformed into belief masses using Shafer Model [138]. Masses for the three class

focal elements are optimally combined using PCR-6 Rules [153], where classifier’s

conflicting mass is redistributed in proportion to the mass which is contributing to the

conflict. Finally, in the decision model, belief mass 6 ()pcrm B is compared with the

threshold value thrm and test app is classified into benign depending on whether

6 ()pcrm B is greater than or equal to the thrm or malign otherwise. Details of the

proposed Android malapp detection framework is presented in the next sub-sections.

65

Figure 3.1 Proposed Smartphone Security Analysis Framework. Stage1 extract

complementary information from eight multi-cue to obtain unified feature. Unified

feature is further classified using optimal fusion of three classifiers at stage 2.

3.2.1 Feature Extraction

Multiple features are extracted for given test app t along with apps from reference

dictionary, { , }q C C , C corresponds to benign apps and C corresponds to

malicious app. Reference dictionary apps are updated with time so as to incorporate

the new apps in the proposed framework to enhance its detection capability. In the

proposed approach, we have extracted eight features namely, API calls, Permission,

Intents, App Components, Native Code, Op Code, Hardware Feature, Network address

using from semi-automated tool.

66

APIs: Android OS has many APIs (Application Programming Interface) that are used

for interacting with Android smartphones. Malwares extensively used APIs to target

the Android ecosystem. API’s are present in the *.dex class of an app and can also be

found in the Smali Files of the APK. By extensive analysis of the dataset, we have

chosen 1k number of API’s listed in Table 3.1, whose frequency of occurrence is taken

as a feature value. Feature value is determined using Eq. (3.1)

1

1

1

()
k

t

A i

i

F f

 (3.1)

Where, 1()if is a function that determines the frequency of occurrence of API, 1i

denotes API positioned at thi place in Table 3.1 and t

AF is the API related feature vector

of the test app t . Similarly, API feature q

AF for reference dictionary apps are extracted

for { , }q C C .

Permissions: Android apps requests for permissions from smartphone user during the

app installation. Permissions are essentially required to protect the privacy of the users

making the permissions the most vulnerable conduit for launching attacks in the

android smartphones. In [24], authors exploited numerous permissions for malware

identification. Permissions are stored in Manifest.xml file of the app source code. In

our model, we have taken frequency of occurrence of most risky permission’s request

also as a feature vector. For this, 2k number of permissions are chosen considering

their frequency of call by various malicious apps. Feature vector related to permission

is determined using Eq. (3.2).

2

2

1

()
k

t

P i

i

F f

 (3.2)

.

67

Where, 2()if is a function that determines the frequency of occurrence of most

frequent permission, 2i denotes such permission positioned at thi place in Table 3.1

and t

PF is the permission related feature vector of the test app t .Similarly, permission

feature q

PF for reference dictionary apps are extracted for { , }q C C .

System Intents: Intent [41] is basically a message used to kick start activity in apps.

Starting a service and activity and delivering a broad cast are three basic usage of

intents. Malware writers are exploiting intents for launching numerous attacks. We

have chosen 3k number of intents (listed in Table 3.1) that are widely used to

segregate the malapps from benign apps. Therefore, Intents are taken as feature

parameter. Total count of these intents is determined using Eq. (3.3)

3

3

1

()
k

t

I i

i

F f

 (3.3)

Where, 3()if is a function that determines the frequency of occurrence of Intents 3i ,

positioned at thi place in Table 3.1 and t

IF is the intent related feature vector of 3k

number of intents of app t .Similarly, Intent feature q

IF for initially stored apps are

extracted for { , }q C C .

APP Component: App components characterise applications and they are the

conduits though which the user or system accesses an app. These components are

related by the app’s manifest file AndroidManifest.xml that describes the components

of an app and dictates the interaction mechanism. There are 4 main app components

lying in Android app i.e. Service, Activity, Broadcast Receiver, and Content Provider

in the app’s manifest file and frequency of these app components are taken as feature

parameter and is determined using Eq. (3.4)

()t

CF f AppComponent (3.4)

68

t

CF is the feature value for test app t . Similarly, app component feature q

CF for reference

dictionary apps are extracted for { , }q C C .

Table 3.1: Details of API, Permission and Intent Feature

Native code: Native code is processor specific code and does not run on the emulator.

It is used to hide malicious content in the app as this code is difficult to understand.

Therefore, another feature parameter is the total sum of these native codes in an

application. Native code feature parameter for app 𝑡 is calculated using Eq. (3.5)

()t

NF f NativeCode (3.5)

Feature Position of Feature(i) Symb
ol

API AutoSmsReceiver, BootReceiver, PhoneCallReceiver,
abortBroadcast, GetCall state,
getActiveNetworkInfo(),getDataActivity(),getDeviceId(),getNe
tworkType(), getSimOperator(), getSimSerialNumber(),
getSimState(), getSubscriberId(), classes.dex,
entry.loadClass(),getConnectionInfo(), getSupplicantState(),
setWiFiEnabled(), execHttpRequest(), Runtime.exec(),
Cipher.GetInstance(), sentTextMessage(), getMessageBody(),
getSubscriberID(), getLastKnownLocation(),
com.android.contacts()

1i

Permissi
on

Access_Network_State, set_Prefered_Application,
Access_Wi-Fi_State, Access_Fine_Location, Call_Phone,
Change_Network_State, Get_Accounts ,Internet,
Install_Packages, read_Contacts, Read_Logs,
Read_Phone_State, Read_Sms, Receive_Boot_completed,
Restart_packages, Receive_Sms,Send_Sms, Vibrate,
Write_Secure_Settings, Read_History_Bookmarks,
Update_Device_stats, Manage_Documents,
Install_Location_Provider

2i

Intents Boot_Completed, Send_To, Dial, Screen_off, Text, Send,
User_Present, Screen_On, Call, Package_Data_Cleared, Text,
Send, Quickboot_Poweron, Time_Changed, Sms_Received,
Airplane_Mode, Battery_Changed Get_Content,
Data_Sms_Received

3i

69

Similarly, native code feature q

NF for reference dictionary apps are extracted for

{ , }q C C

OP Code: An opcode or Operation Code is a machine language instruction that

stipulates the operation to be performed with CPU. Frequency of sequence of opcodes

extracted from the apps can be taken as features for malapp identification. Opcodes

are exploited by the malware writers because of their similarity to app code and

frequency of these op codes are taken as the next feature parameter and is determined

using Eq. (3.6)

()t

OF f OPCode (3.6)

t

OF is the feature value for test app 𝑡. Similarly, op code feature q

OF for reference

dictionary apps are extracted for { , }q C C

Hardware Feature: Hardware features [135] are used by Android apps to access

hardware of the android smartphone and are listed in the AndroidManifest.xml file.

Hardware features are characterized by “android. hardware” in the manifest file. In

the proposed framework, by extensive analysis of dataset, we have chosen 55 hardware

feature for generating feature parameter. The frequency of 55 hardware features in the

manifest.xml file of an app is taken as feature parameter and is determined using Eq.

(3.7)

(.)t

HF f android hardware (3.7)

t

HF is the feature value for test app t .Similarly, hardware feature q

HF for reference

dictionary apps are extracted for { , }q C C

Network Addresses: Malapps designers often wants to interact with malapps so as to

direct the user’s critical data on the smartphone to designated network addresses of

the C&C server embedded in malapps. So, network address can be taken as the feature

70

parameter. The total number of these network addresses in an application is the

network address-based feature parameter for test app 𝑡 is calculated by Eq. (3.8)

(_)t

WF f network address (3.8)

t

WF is the feature value for test app t . Similarly, network address feature q

WF for

reference dictionary apps are extracted for { , }q C C .

In sum, we have constructed eight feature descriptors as mentioned in Eq. (1) to Eq.

(8) for every test application and reference dictionary apps. Similarly, network feature

q

WF for reference dictionary apps are extracted for { , }q C C . Feature vectors

extracted using Eq.(3.1) to Eq.(3.8) are further fused to obtain unified feature. A set of

C number of benign and C number of malicious apps are stored as a reference

dictionary. In feature unification, features for test and reference dictionary apps are

extracted and subjected for creation of non-linear graph. In the graph, test app feature

act as one node and reference dictionary apps as other nodes. Following this, eight

graphs are generated for each test app t .

For each feature descriptor { , , , , , , , }t

A I P C N O H WF F F F F F F F F of test app t , we

construct graphs { , , , , , , , }t

A I P C N O H WU U U U U U U U U using an edge weight described

as the similarity between feature descriptors of two apps t and q where { , }q C C

.In this, similarity matrices
*N NU is constructed by decision tree , where 1N q .

For feature pair values (,)t qF F corresponding to t and q apps for
th feature,

similarity parameter (,)U t q is calculated by passing them through decision trees using

Eq.(3.9)

((()) (()))
(,) , [, , , , , , ,]

t q

t

f L F L F
U t q A I P C N O H W

T

 (3.9)

71

L is the set of class labels of trees grown and tT is the total number of decision trees

made. Graph generated using Eq. (3.9) are further fused using proposed cross

diffusion to achieve unified feature. Details of features unification follows in turn.

3.2.2 Feature Fusion

Multi-cue feature fusion process consists of multiple feature extraction and their

fusion using cross diffusion of extracted features. Multiple features are extracted for

achieving the high performance. Cross diffusion of features extract complementary

information to obtain highly distinct unified feature leading to creation of clear and

distinct boundary between benign and malicious class. In the proposed framework, we

have modelled multi-cue feature fusion problem as eight graphs and fused them by

iterative cross diffusion process.

Multi-cue features extracted from decompiled source code may not be linearly

associated and need non-linear based fusion technique to combine this

complementary info. To integrate multi-cues efficiently, non-linear graph based cross-

diffusion process was introduced by Wang [139] et al. Further, improved version [140]

of this work was explored for classification. In this work, complimentary info from

multi-cue data is extracted and non-linear unified graph was generated by cross

diffusion process. Classification results of [140] demonstrates that the multi-cue

information unification by non-linear graph method is more precise than linear graph

methods. Cross diffusion approach proposed by Walia [137] et al. is employed for

feature fusion in the proposed framework. This method is better than previous

methods [139] [140] and improves the detection accuracy because of the iterative

normalization of similarity matrix and updated sparse representation. Unique graph

unification approach accomplishes non-linear feature fusion with iterative

72

normalization. This keeps a robust representation of the apps (malicious or benign)

and rejects weak features that make the classifier vulnerable to unreliable results.

Similarity matrix generated using Eq. (9) for each feature graph is again normalized

using Eq.(3.10) to obtain respective normalized matrices , { , , , , , , , }
t

U A I P C N O H W

.Normalization technique sets the similarity of each app with itself as constant , and

the similarities with rest of the apps in the test set to (1-). The first row of the
t

U

 comprises the edge weights respective to test app t

1

(,)
(1) ,

((,)(,)

,

N

q

U t q
t q

U t qU t q

t q

 (3.10)

(,)U t q above is further used to derive a sparse vector depiction of the training app t

to keep the most similar features and discard the other using Eq. (3.11)

(,), () ()

0,

k U t q if U t K NN t
V

otherwise

 (3.11)

We further normalized
kV as

k

V vector using Eq. (3.12)

1

,

1

k
k

N
k

i

i

V
V

V

 (3.12)

Normalization further allocates the weights amongst the strong links giving robust

sparse depiction. Fused feature descriptor 1() N

TFF t is obtained by fusing the

different feature sparse vectors V by cross diffusion approach using Eq. (3.13), where

h is the number of features taken.

 , ,, 1

1,

1
() * * () *

1

h transpose
k k

i ii

j j

U t V U t V
h

 (3.13)

73

Where, i is the thi iteration of cross diffusion process and h =8

To enhance the effectiveness of the diffusion, modification of the recursive operation

by normalization of each row respective to the test app in the similarity matrix , 1()iU t

1N obtained after every iteration as

, 1
, 1

, 1

1

()
()

()

i
i N

i

j

U t
U t

U t

 (3.14)

Following this, normalized sparse vector , 1n iV is obtained from sparse vector , 1n iV in

the next iteration using Eq.(3.14), Eq.(3.11) and Eq.(3.12). Lastly, the mean of

adjacency list of test app for each feature descriptor , ()TU t is taken to find the fused

feature descriptor ()TFF t as given in Eq.(3.15)

8

[],

1

()

()
8

j T

j

T

U t

FF t

 (3.15)

Where, T is the final iteration of the normalization process of cross diffusion and

{ , , , , , , , }A I P C N O H W .This ()TFF t is taken as a unified feature and given as input

to train the classifier(s).Detail of unified feature classification for test app follows in

next subsection.

3.2.3 Optimal Classifier Score Fusion

Unified feature for the test app is applied to classification module for final decision.

For this we subjected the unified feature to three trained classifiers in parallel to

determine their classification scores. Proposed classification model comprises of two

phases viz. individual training classifier score estimation and optimal combination of

the individual classifier scores. For classification of test app, three classifier scores viz.

Random Forest rS and Support Vector Machine sS , Naïve Bayes nS are determined

74

when unified feature is fed to these individual trained classifier. These classifiers

scores can be combined by various score fusion approaches available in the literature

[141] [142]. In the proposed method, respective classifier scores attained are further

subjected to classifier score fusion paradigm where the obtained scores from the

classifiers are converted to respective belief masses and the conflicts amongst

individual belief is redistributed and resolved by means of DSmT based PCR-6 rules.

Scores of the different classifiers are fused using Shafer's model. For this, the frame of

discernment ,rF B M is specified by of two focal elements viz. Benign ()B and

Malicious ()M corresponding to whether the app is benign or malicious. Each

classifier in the model delivers a score about classification. The individual belief mass

is obtained by transforming the classifier score , ,r s nS S S with the aid of Denoeux

Belief System using equations (3.16) and (3.17):

() * ()j j jm B C S B (3.16)

() 1 * ()j j jm M C S B (3.17)

Where { , , }j r s n and jC is the confidence factor of individual classifier. Further, belief

masses are optimally fused by means of DsmT-based PCR-6 rules. For this conjunctive

consensus is determined using Eq. (3.18) and Eq. (3.19):

3

1

() ()rsn j

j

m B m B

 (3.18)

3

1

() ()rsn j

j

m M m M

 (3.19)

Where { , , }j r s n and ,B M corresponds to benign and malicious app respectively.

Total conflict amongst classifiers is obtained which consists of partial conflicting

masses of benign and malicious scores using Eq. (3.20):

() ()* ()* () ()* ()* ()rsn r s n r s nm B M m B m M m M m M m B m M (3.20)

75

 ()* ()* () ()* ()* ()r s n r s nm M m M m B m M m B m B

()* ()* () ()* ()* ()r s n r s nm B m B m B m B m B m M

Total conflict comprises of six number of partial conflicts which are further reallocated

amongst benign and malicious scores using Equations (3.21-3.26), where 1b to 6b are

redistributed conflict masses for the benign focal element and 1m to 6m are

redistributed conflict masses for the malicious focal element respectively.

()* ()* ()1 1

() () () () () ()

r s n

r s n r s n

m B m M m Mb m

m B m M m M m B m M m M

 (3.21)

()* ()* ()2 2

() () () () () ()

r s n

s r n r s n

m M m B m Mb m

m B m M m M m M m B m M

 (3.22)

()* ()* ()3 3

() () () () () ()

r s n

n s r r s n

m M m M m Bb m

m B m M m M m M m M m B

 (3.23)

()* ()* ()4 4

() () () () () ()

r s n

s n r r s n

m M m B m Bb m

m B m B m B m M m M m B

 (3.24)

()* ()* ()5 5

() () () () () ()

r s n

r n s r s n

m B m M m Bb m

m B m B m M m B m M m B

 (3.25)

()* ()* ()6 6

() () () () () ()

r s n

r s n r s n

m B m B m Mb m

m B m B m M m B m M m M

 (3.26)

The final belief regarding whether the test app is benign or malign is derived by adding

the redistribution masses and corresponding conjective consensus using equations Eq.

(3.27) and Eq. (3.28)

6 () () 1 2 3 4 5 6pcr rsnm B m B b b b b b b (3.27)

76

Algorithm 1: Proposed Smart Phone Security Analysis
Function: Security Analysis (, ,)S t C C

For kC C do

 S ← [𝐶𝑘, 𝐶+, 𝐶−]

 derive { , , , , , , , }t

A I P C N O H WF F F F F F F F F from Eq.(3.1-3.8)

 for F do

 Derive { , , , , , , , }t

A I P C N O H WU U U U U U U U U from Eq. (3.9)

 normalize U to U using Eq. (3.10)

 if () ()U t k NN t then

 (,)kV U t q

 else

 0kV

 end

 normalize
kV to

k

V using Eq.(3.12)

 repeat

 find , 1()iU t , using ,

k

iV and ()U t from Eq.(3.13)

 normalize , 1()iU t to , 1()iU t using Eq.(3.14)

 , , 1() : ()i iU t U t

 until convergence
 end

find ()TFF t using , ()TU t Eq.(3.15)

 find , ,r s nS S S using ()TFF t

 find ()jm B and ()jm M , { , , }j r s n using Eq.(3.16) and Eq.(3.17)

 find 𝑚𝑝𝑐𝑟6(𝐵) using Eq.(3.18) to (3.26)

 find ()rsnm B , ()rsnm M and ()rsnm B M from Eq.(3.18-3.20)

 find jm and jb from Eq.(3.21-3.26) for 1,2,3,4,5,6j

 find 6 ()pcrm B using Eq.(3.27)

 if 6 ()pcr thrm B m

 return (benign)
 else
 return(malicious)
end

77

6 () () 1 2 3 4 5 6pcr rsnm M m M m m m m m m (3.28)

The final belief whether test app t is benign or malicious is determined from by

6 ()pcrm B or 6 ()pcrm M . Thereafter, decision is taken by comparing the final beliefs with

a threshold value. If value of 6 ()pcrm B is greater than or equal to the threshold (thrm)

value, then test app t is declared as benign otherwise it is declared as malicious.

Algorithm 1 sum up the pseudocode for proposed framework for Smartphone Security

Analysis. In the next section, performance evaluation of proposed method against

other state-of-the-art malware analysis methods follows.

3.3 Experimental Validation

Experimental validation includes both qualitatively and quantitatively evaluation of

proposed framework on the chimeric datasets as mentioned in Table 3.2. Qualitative

evaluation is done through statistical investigation of extracted features of datasets

and score-distribution of the classifiers. Also, quantitative analysis is done by

numerous performance matrices viz. Accuracy, Decidability Index (DI), Equal Error

Rate (EER), F1 Score and sensitivity. We also compared our proposed framework with

four state-of-art methods employing static features HEMD [19], MLIF [20], DS [141]

and FGF [143].The details of the experimental validation follow in turn.

3.3.1 Datasets

For evaluation of proposed framework, Database (DB1 to DB5) comprising of both

benign (B) and malign (M) apps datasets is formulated. Benign apps are acquired

mainly from Google Play Store [130] and CICMalDroid2020 [132]. After downloading

the benign apps, we subject them through online Virus-Total scanner that has about

70 antivirus scanners in its arsenal. Application is tagged as benign if the antivirus

scanner recognized it as benign, else it is considered as malign or malicious. Malicious

78

apps are collected from benchmarked datasets viz. Drebin [128] and AMD [129] and

CICMalDroid2020 [132] that covers the diverse families of malware. In total, 4000

apps are collected and rearranged in the form datasets (DB1 to DB5) which is detailed

in Table 3.2. First, four group(DB1-DB4) of 1000 apps each from the benign and

malicious apps is created and consolidated group of all the 4000 apps is named as

DB5.

Further, evaluation of the framework was performed on MATLAB 2017b on an i7, 2.2

GHz processor having 16 GB RAM to implement proposed framework. In DB1-DB5,

we split the dataset of apps into ten equal subsets and select a subset of apps randomly

for testing and left over subsets is used as training apps. To overcome over fitting of

results, 10 fold cross-validation technique is used and mean values are reported as

results. Next section covers the experimental validation where the proposed

framework is analysed both in terms of qualitative and quantitative analysis.

Particulars of Qualitative analysis follows in the subsequent sub-section.

Table 3.2: Databases for Experimental Validation

 App Category

Database

Malign Apps(M) Benign Apps(B) Remarks

 DB1 500 500 Drebin(M)
GooglePlay(B)

DB2 500 500 AMD(M)
GooglePlay(B)

 DB3 500 500 CICMalDroid2020
(for both M&B)

DB4 500 500 AMD(M)
CICMalDroid2020(B)

DB5 2000 2000 Consolidated

79

3.3.2 Qualitative Analysis

Qualitative performance is evaluated for the proposed framework over the datasets.

Qualitative performance is mainly done by comparing the score distribution analysis

of different state-of-the-art techniques and frequency analysis of extracted features on

the datasets. Qualitative analysis results are deliberated as follows:

Figure 3.2: Frequency distribution Analysis for extracted Eight features for Database

DB5 (x axis : Static Feature ; y axis: Frequency of occurrence of static feature).

3.3.2.1 Frequency Distribution Analysis: Frequency of occurrence of eight

complementary features are determined for different datasets. For consolidated

dataset DB5, extracted features viz. API calls, Permission, Intents, App Components,

80

Native Code, Op Code, Hardware Feature and Network Address are plotted as bar

charts as shown in Fig. 3.2, for benign and malicious apps, wherein benign apps total

feature values are presented in blue colour and malapps total feature values are

depicted as red colour bar. From the bar graph, it is apparent that the eight chosen

features are discriminative and hence provides a great performance regarding the

classification.

3.3.2.2 Score Distribution: To evaluate the proposed optimal classifier

performance, score scatter distribution plots are examined for both benign and

malicious apps. The outcomes corresponding to DB1 database are shown in Fig 3.3.

Scores for benign and malicious apps are determined and plotted against app number

resulting in the scatter plot as shown in Fig 3.3.

Fig 3.3(a, b, c, d) displays scatter distribution plot drawn for state-of-the-art methods

and the proposed method respectively. From the Fig 3.3, it is clear that most of score

are dispersed in the area from 0.4 to 0.6, which is marked as conflicting area.

Concentration of apps scores in this range of conflict is maximum for other state-of-

the-art methods.

However, using unified feature 𝑈𝐹 produced by cross iterative diffusion process and

proposed optimal classifier, apps scores are broaden as depicted in Fig 3.3(d). Hence,

proposed classifier is efficient as it has broadened the classifier(s) score values

corresponding to malicious and benign apps.

81

(a) (b)

(c) (d)

Figure 3.3 Scatter Plots for DB1 dataset:(a) MLIF [20] (b) HEMD [19] (c) DS [141]

(d) Proposed Method.

Score for database DB1 are plotted vs frequency of scores value. Overlapping of score

values of benign and malicious apps to a large extent render the decision model

ineffective. Overlapping of distribution scores occurs for methods [20][19][141] and

proposed method as shown in Fig 3.4(a), Fig 3.4(b), Fig 3.4(c) and Fig 4(d)

respectively. Minimum overlapping of scores occurs for the proposed method as

depicted in the Fig 4(d).

82

(a) (b)

 (c) (d)

Figure 3.4: Score-Distribution Plots for DB1: :(a) MLIF [20] (b) HEMD [19] (c) DS

[141] (d) Proposed Method.

Furthermore, score distribution for the state-of-the-art method and the proposed

method are depicted Fig 3.4. As shown, score distribution in the proposed multi-stage

fusion model in Fig 3.4 (d), has minimum overlap. It undoubtedly shows that the

distributed scores of the proposed framework can perform better classification.

Qualitative analysis further strengthened the Quantitative analysis of proposed

framework. Quantitative analysis follows in the next section.

83

3.3.3 Quantitative Analysis

For the suggested method, quantitative investigation is achieved via ten-fold cross

validation on 5 databases (DB1, DB2, DB3, DB4, DB5) of dataset as listed in Table 3.2.

For this, evaluation metrics i.e. Sensitivity, Accuracy, F1 Score, equal error rate and

decidability index are calculated and outcomes are compared with the state-of-the-arts

methods.

Decidability determine distance between benign and malicious score distribution

Sensitivity is percentage of positives which are correctly recognized by binary

classifier. F1 Score is weighted mean of sensitivity and precision. Accuracy measures

number of correct prediction to the number of predictions or input samples.

Sensitivity, F1 Score and Accuracy are determined using equations as in Section 2.7,

Chapter 2.

Decidability index corresponding to database DB1, for various methods are calculated

and tabulated in Table 3.3. Average decidability indexes for are calculated as 2.9544,

3.3551, 2.7934 and 4.10152 for HEMD, MLIF, DS and FGF respectively. Proposed

framework attained avg. decidability value of 5.4328 and same is validated by least

overlapping of plots in Fig. 3.4(d). This comparatively higher value of decidability of

the proposed framework in Table 3.3 is attained largely due to nonlinear feature

fusion through cross iterative diffusion and optimal combination of classifiers score.

84

Table 3.3: Decidability Index for different Methods

Dataset HEMD MLIF DS FGF Proposed
Method

DB1 2.9699 3.5197 2.5298 4.1384 5.63

DB2 2.9167 3.3807 2.8906 4.1264 4.461

 DB3 2.9373 3.3455 2.9636 4.0071 5.820

DB4 2.9671 3.0686 2.7068 4.0814 5.265

DB5 2.9812 3.4612 2.8765 4.1543 5.985

Receiver Operating Characteristic (ROC) curves have been determined for proposed

method, and four state-of-the-art methods. The results are depicted in Fig 3.5. ROC

determined the performance of a classifier as its decision threshold is varied. It is

evident from the Fig 3.5, for low False Acceptance Rate, proposed method achieves

very high False Rejection Rate or in other terms very high true acceptance rate. There

is also radical drop in false acceptance rate for state-of-the-art methods. Among ROC

curves of the state-of-the-arts methods, method MLIF outperformed methods HEMD,

DS and FGF. It is apparent from the ROC curves that proposed framework is

extremely precise and proficient.

Proposed method has also been compared with other state-of-the-art methods by

calculating the Equal Error Rate (EER) using the ROC curves. Proposed framework

achieved very low average EER of 1.0408, whereas other methods attained

comparatively higher EER of 7.8562, 3.7800, 8.3026 and 5.9544 for HEMD, MLIF,

DS and FGF respectively. Performance enhancement is attributed mainly to the non-

85

linear graph fusion of eight feature vectors and optimal fusion of classifier scores by

DSmT-based proportional conflict redistribution (PCR-6) rules where concurrent

scores are enhanced and discordant scores are suppressed.

 (a) (b)

 (c) (d)

Figure 3.5: Comparison of ROC curves for state-of-the-art method and proposed

method (a) DB1, (b) DB2, (c) DB3, (d) DB4

86

Table 3.4: Evaluation of Average Equal Error Rate for Different Methods.

Dataset HEMD MLIF DS FGF Proposed Method

DB1 6.9860 3.4000 9.7804 5.9940 1.2012

DB2 8.5828 3.5000 7.0858 5.7942 0.8008

DB3 8.1836 3.4000 6.7864 5.9940 1.1010

DB4 7.1856 4.4000 8.6260 5.9940 1.0010

DB5 8.3434 4.2000 9.2344 5.9962 1.1000

In addition, we determine the sensitivity, accuracy and F1 Score for other state-of-art

method and proposed method and results are tabulated in Table 3.5.

Table 3.5: Comparison of Performance metrics (PM) namely Sensitivity,
Accuracy and F1 Score for different comparable methods.

Data
set

 PM HEMD MLIF DS FGF Proposed
Method

DB1

Sensitivity 0.9281 0.9660 0.9002 0.9381 0.9880

Accuracy 0.9271 0.9650 0.9481 0.9380 0.9880

F1 Score 0.9627 0.9827 0.9474 0.9680 0.9939

DB2

Sensitivity 0.9201 0.9600 0.9102 0.9401 0.9920

Accuracy 0..9191 0.9590 0.9531 0.9400 0.9919

F1 Score 0.9584 0.9796 0.9529 0.9691 0.9959

DB3

Sensitivity 0.9122 0.9660 0.9301 0.9381 0.9880

Accuracy 0.9112 0.9650 0.9630 0.9380 0.9889

F1 Score 0.9541 0.9827 0.9638 0.9681 0.9939

DB4

Sensitivity 0.9241 0.9640 0.9102 0.9401 0.9900

Accuracy 0.9231 0.9630 0.9531 0.9400 0.9899

F1 Score 0.9606 0.9817 0.9529 0.9691 0.9949

 DB5

Sensitivity 0.9064 0.9794 0.9583 0.9544 0.9945

Accuracy 0.9110 0.9650 0.9520 0.9385 0.9898

F1 Score 0.8220 0.9645 0.9521 0.9360 0.9898

87

On evaluation over datasets as listed in Table 3.2, avg. detection accuracy of 91.8%,

96.3%, 95.38% and 93.89% for HEMD [19], MLIF [20], DS [141]and FGF[143]

respectively has been accomplished. Likewise, average detection accuracy of 98.97%

was attained for proposed method. In order to gauge the real time application of

proposed method, we have determined time and space complexity of proposed

method. On an average, proposed method needs 5.5 sec to evaluate test app. Also,

proposed method extracts dimensionality reduced feature as unified feature.

Realisation of proposed method is achieved in few KBytes of memory.

Overall performance of the proposed framework versus details of the state-of-the-art

methods chosen for comparison, discussed in the next section.

3.2.4 Overall Performance

Proposed smartphone security analysis framework outperforms the other comparable

state-of-the-art methods viz. HEMD [19], MLIF [20], DS [141]and FGF [143] both in

terms of qualitative and quantitative analysis when evaluated over datasets

comprising of benign and malicious apps as tabulated in Table 3.2. Improvement for

average accuracy of the proposed method by 7.14%, 2.63%, 3.59% and 5.08% for

HEMD, MLIF, DS and FGF respectively has been achieved. An average accuracy of

98.97% was attained for the proposed method. Our framework handles the limitations

posed by the state-of-the-art methods by conflict resolution amongst classifiers and

redistribution of conflicts to produce improved set of fused scores with better

scattering as can be seen in the scattering plots in Fig 3.3. Score distribution plots in

Fig 3.4 clearly depicts that the overlapping of malicious and benign scores is reduced

to a great extent. Significant improvement in the average decidability index values of

proposed model to 5.4328 as compared to 2.954, 3.355, 2.793 and 4.101 for HEMD

[19], MLIF [20], DS [141] and FGF[143] respectively further reinforces our claim for

88

the better performance of the proposed method. This improved value of decidability

index of the proposed framework is attained mainly due to nonlinear feature fusion

through cross iterative diffusion and optimal combination of classifiers score values.

Feature fusion process used in the proposed framework exploits complementary info

from the eight individual features.

HEMD [19] uses a set of 4 features viz. permission rate, permission, sensitive API,

system events to detect malwares in the apps with a single RF classifier. Here, low

accuracy is attributed to lack of feature and score fusion in the model. In Mlif, authors

employ parallel machine learning and information fusion approach. Normal vector

based feature transformation was employed along with DS theory and probability for

malapps detection. Here any conflict arising between the classifier score is not

resolved. Authors of DS proposed a multi classifier (SVM, J48, Bayes Net) and fusion

method to identify malapps. In FGF, Xu Jianget et. al proposed a static feature (native

code, intent filter, reflection, root, permissions) based malapp framework using four

ML classifiers (KNN, NB, SVM, J48). This method also achieved low detection

accuracy due to lack of feature fusion and optimal classifier fusion.

In a nutshell, the proposed multistage fusion framework for smartphone security

analysis outclass other state of the art techniques. It is suitable for classifying test app

as malicious or benign with high detection accuracy by feature fusion through cross

iterative graph diffusion method and optimal fusion of classifier scores. Quantitative

performance enhancement is attributed to extraction of multiple features and their

fusion through cross diffusion. Also, our smartphone security analysis framework

outperforms numerous limitations of state-of-the-art methods mainly due to

extraction of complementary information and optimal fusion of classifiers to create

clear and distinct boundary between the benign and malicious classes.

89

3.6 Conclusion

The significant highlights of this research work are as follows:

 A novel multi stage fusion approach for Smartphone Security Analysis system

has been proposed which is founded on the amalgamation of multiple static

features and optimal score level fusion.

 The proposed technique is highly efficient to detect the wide variety of malicious

apps in the android ecosystem.

 Furthermore, multi-stage fusion stage controls optimum confidence factors for

individual classifier. Beliefs of the classifiers are repressed for discordant and

enhanced for concurrent classifier(s). PCR-6 rules helps in conflict resolving

among classifier beliefs to attain improvement in final score.

 Optimal score fusion applied on cross-diffused features to produce better results

than existing state-of-the-art methods.

 An average accuracy of 98.97% was attained for the proposed method.

Performance evaluation shows that the proposed method outperforms other

state of the art methods. Further, performance metrics viz., EER, Decidability

index, ROC curve, F1 score, Accuracy, sensitivity etc. reveals that the proposed

method is robust for detection of android malicious applications.

 The experimental results along with other findings were published in [145].

90

Chapter 4

Design & Development of Hybrid
Analysis Technique

The aim of this work is to introduce novel hybrid approach for smartphone security

analysis. The proposed solution exploits both static and dynamic features for

generating a highly distinct unified feature vector using graph based cross-diffusion

strategy. Further, a unified feature is subjected to the fuzzy-based classification model

to distinguish benign and malicious applications.

4.1 Introduction

Smartphones are deeply rooted in the digital market due to their potential

applications in 4G and 5G based wireless networks. Android upheld its status as a

leading smartphone OS universally. The profound growth of mobile technology brings

significant measures to be incorporated in the mobile security landscape. Also, sum of

existing apps in the Google Play repository has been increased to 3.047 million [146].

However, this deluge of mobile apps attracted the malice writers to infuse malwares

in these apps for nefarious deeds and the number of new android malwares are also

growing as 482579 [147]malware samples per month. Android malicious applications

(malapps) proliferate due to the easiness of installing fresh apps from third-party [148]

91

sources. Amongst different mobile OS, Android is the most widespread platform

because of its open architecture. Unluckily, android based smartphones have

progressively turned into the key target of the attackers, thereby enforcing urgency for

mobile app security. Sailfish OS, Postmarket OS, Ubuntu Touch, Mobian, Lune OS etc

are Linux based OS that are also vulnerable to malwares. But due to their limited

presence, the attacks are also limited.

Abundant literature is available on static and dynamic analysis to detect malapps and

other unintended functionalities in Android apps. These malign (M) apps are normally

camouflaged as benign (B) ones causing system impairment, financial damage,

information seepage and can form mobile botnets. Numerous investigation

mechanism has been suggested to identify malapps. The detection mechanism can be

broadly characterized into static and dynamic analysis. Static analysis analyzes code

and the manifest.xml file of the app without executing them. However, in dynamic

analysis apps are executed and the run-time activities of the apps are analyzed for

building solutions. However, static-analysis is thwarted by code-obfuscation and code-

polymorphism resulting in variations of malware to escape detections. Dynamic

analysis is favourable for analyzing these types of obfuscated apps.

To build a solution to address these issues, static and dynamic features are

exploited by the various machine learning (ML) algo to detect the android malwares.

The static features mostly used are permissions, app components, intents, API,

network address, opcode, hardware component, call flow graph, static taint analysis,

dataflow, file property, system command, and native code. The dynamic features

frequently used are system calls, API calls, network traffic characteristics, and battery

features. In hybrid analysis, both static and dynamic features are exploited for

malicious app detection. We propose a hybrid solution that combines both static and

dynamic analysis to overcome the limitations of each analysis.

92

In brief, the key contributions of our paper are concisely described as below:

1. First, we put forward a unique approach for optimal unification of static and

dynamic features resulting in Unified feature (UF) for smartphone security analysis by

cross diffusion technique.

2. Second, UF is fed to two ML classifiers to detect the android malapps. Results of

these classifier’s scores were combined by fuzzy based fusion approach for improving

the performance.

3. Lastly, we provided a comprehensive study founded on benchmarked database and

compare the results with contemporary techniques to validate the efficacy of the

suggested framework.

To address the issues in the detection of malapps, we have proposed a novel approach

for protection of data. The basics of proposed approach are described in the next

section.

4.2 Proposed Hybrid Analysis Framework

In this paper, a hybrid robust unified feature with fuzzy-based optimal score fusion

model for android malapp detection is proposed. The outline of the suggested

framework is described in Fig.4.1. Our framework is basically comprised of four

building blocks namely, feature extraction (static and dynamic vector formation),

feature fusion, classifier fusion, and eventually a decision block to attain effective

malapp detection. Extracted dynamic features and static features are converted into

dynamic and static feature vectors. Each dynamic and static feature vector is used for

producing similarity graphs using the cosine similarity. Similarity graphs are further

subjected to normalization so as to produce the normalized graphs by filtering out the

weighted similarities. Using the reference curves for dynamic and static feature

93

vectors, we obtain refined graph for dynamic and static feature vectors. The obtained

dynamic and static normalized and refined graphs are further cross diffused to

produce a diffused graph corresponding to the dynamic and static feature vectors. The

diffused graphs of dynamic and static feature vectors are fused to generate a unified

feature which is extremely discriminatory. This discriminative unified feature is given

to two ML classifiers so as to classify a test app into B or M.

Figure 4.1: Proposed Fusion-based Hybrid technique for Smartphone Platform.

Our methodology exploits two classifiers in parallel whose scores are fused using

fuzzy-based fusion technique to enhance the overall performance. Lastly, the final

score
fusedw in the decision model is matched with the threshold, thrw and test app is

categorized into B if
fusedw thrw or M otherwise.

The description of the suggested framework follows in next subsection:

94

4.2.1 Static and Dynamic Feature Extraction

 Description of the eight extracted feature types are as follows:

Feature fusion block comprises static and dynamic feature vector generation after

extracting the five static features and collection of two dynamic features. In the

proposed model, feature fusion is basically the concatenation of static and dynamic

feature vector diffused graphs obtained by cross-diffusion process of normalized and

refined graphs.

4.2.1.1 Feature Extraction

Five static and two dynamic features were extracted for a given android test app t

together with N android apps from ref. repository, , ,r R R R and R relates to B

and M app respectively. The feature extraction process has been illustrated in Fig. 4.2.

Apps in the ref. repository are updated so as to include the latest apps to improve the

proposed model’s detection capability. Here, extraction of static-based features is done

using the APK and Baksmali tool. APK tool converts the app into classes.dex and

manifest.xml files. Classes.dex files are further subjected to baksmali tool to convert it

into smali file. Static-API calls are extracted from smali file. The rest of the static

features permissions, hardware features, app components, and intents are extracted

from the manifest.xml file. For dynamic features, the system runs the app on a

sandbox environment [3] using an Android emulator. The dynamic API calls and the

system calls were extracted from the system log files.

95

(i) Static Features:

API: We have selected number of API’s whose sum of frequency is the feature value

taken. API-linked static-feature vector of test app (t) is computed as follows:

1

1

a
t

AS i

i

F f A

Where, function if A computes the frequency of API, iA . Likewise, API linked static

feature vector r

ASF for repository apps are extracted for ,r R R .

Similarly, pairs {
1

1

p
t

Per i

i

F f P

 , r

PerF },{
1

1

i
t

Int i

i

F f I

 , r

IntF },{ (_)t

CompF f App Component ,

r

CompF } and { (_)r

HardF f Hardware Feature ,
r

HardF } corresponding to Requested

Permissions, Intents Filters, APP Component and Hardware Feature were computed.

Figure 4.2: Static and Dynamic Feature Extraction Process

96

(ii) Dynamic Features:

System calls: System call-linked dynamic feature vector of test app t is computed

using Eq. (6)

(_)t

SysF f System Calls

Where (_)f System Calls is a function that calculates total count of system calls

resulted by executing the app. Likewise, system calls-linked dynamic feature
r

SysF for

the repository apps are extracted for ,r R R .

Similarly, pair { (_)t

AdF f API Calls ,
r

AdF } for API calls was computed.

From the above seven feature-descriptors, we form two static and dynamic feature

vectors as follows in Eq. (4.1) and Eq. (4.2) respectively:

, int{ , , ,)
hardStatic AS Per compF F F F F F (4.1)

{ ,)Dynamic Sys AdF F F (4.2)

In short, we have built seven feature-descriptor as stated for every test repository apps.

In feature fusion, features vectors corresponding to test and repository apps are used

for creating non-linear graph. In the generated graph, feature-vectors corresponding

to test apps and repository apps acts as two nodes. Subsequently, graphs are created

for each test app corresponding to static feature vector and dynamic feature vector.

For feature vectors,
t

StaticF and
t

DynamicF of test app t corresponding to static and

dynamic features, we construct graphs (, ,)G V Ed w ,where { , }Static Dynamic ,

97

w are edge weights that act as the similarity between feature-vectors of apps t and r

where ,r R R , V corresponds to the vertices of the generated similarity graphs,

Ed
 corresponds to the edges of the similarity graphs that portray the association

between the test apps and the repository apps. In the proposed framework, similarity

matrices
N NG

 are constructed by calculating the cosine similarity between the

static and dynamic feature vectors of the test app and repository apps, where 1N r

. For feature pair values ,t rF F corresponding to t and r apps, where corresponds

to static and dynamic feature vector. The edge weights are denoted by similarity vector

(,)w t r , and is calculated by the cosine similarity between the pair ,t rF F from the

following Eq. (4.3)

*
(,)

t r

t r

F F
w t r

F F

 (4.3)

 Feature unification follows in the coming subsection.

4.2.2 Static and Dynamic Feature Fusion

Constructed static and dynamic feature vectors are fused in a way to extract

complementary information embedded in them. This is achieved by the means of the

suggested optimal non-linear cross-diffusion of generated refined and normalized

graphs to create a distinct borderline between the B and M apps. To unify the multiple

features graph-oriented cross diffusion method was presented by [137]. The results

validate that the feature fusion via non-linear graph-based technique is better than

linear graph-based approaches. Graph-based unification maintains a robust depiction

of the apps and discards all the feeble features that contribute to undesirable

classification outcomes.

98

Similarity graph created using Eq. (3) for the static and dynamic feature vectors are

again normalized by means of “min-max normalization” to obtain the normalized

graphs G whose edge weights are calculated as ()w r using Eq. (4.4)

(,)*min((,))
(,)

max((,)) min((,))

w t r w t r
w t r

w t r w t r

 (4.4)

Normalized graphs G are employed to obtain the refined graphs R , for static features

and dynamic features vectors. A refined graph is generated to attain highly distinctive

attributes. Normalized attributes are initially deducted out of a generated reference

curve to make an estimated graph. There are N normalized weights corresponding to

apps used for training. The ideal plot of normalized feature characterized as weight

vector (,)w t r can be represented as Eq(4.5):

 (4.5)

Static feature vectors when plotted appear as a curve, where a self-match appeared as

a peak and the rest tends to the horizontal line. The more the match score tends to

zero, the more dissimilar is the feature value with other apps. Capitalizing this, a curve

Re representing reference score values is calculated using the training apps, and

deviance from Re is used to attain adaptability.
1Re N

 is produced by taking

mean of the normalized attributes as below by Eq(4.6):

1

(,)

Re

N

i

arrange w t i

N

 (4.6)

1,
(,)

0,

if t r
w t r

otherwise

99

Where t one of training apps of set N and “arrange” is a function used to arrange

values in increasing order. This reference curve gives the estimation of training app

attributes.

G is used to form an estimated graph for test apps, where estimated test app feature

components are calculated by deducting ()w l from Re by Eq.(4.7) as below:

(),
()

() Re () ,

e
w l l m

w l
w l l m l N

 (4.7)

Where,
1e Nw

 denotes estimated test app attribute and the variable m segregate

the dimension of a feature vector. This method helps in generating the highly

discriminative test app features leading to the detection of the malapps with high

efficiency. Estimated features ()ew l are plotted to determine the test app’s estimated

feature weights. Significant area under curve (SA) of the estimated feature plot is

determined and its weight e is calculated using Eq.(4.8).

 1

1

1
t

N

i
i

SA
e N

SA

 (4.8)

Where,
i

SA
 and

t
SA

 are the SA of the thi app used for training and of the

test app t in the estimated graph respectively. This area signifies feature efficacy.

 To generate a Refined Graph
tR , its edge weights ()rw l are calculated by

reorganizing ()ew l by means of Eq.(4.9).
tR resulted in the robust connections among

vertices of graph and all the feeble connections are significantly reduced.

100

 () ()
e

r ew l w l

 (4.9)

Where is pre-estimated constant used to achieve adaptiveness.

Normalized and refined graphs for static features and dynamic features vectors are

further exploited in the cross diffusion process.

Static features and dynamic features vectors possess distinctive and complementary

information for the segregation of apps into B or M. Therefore, the cross-diffusion of

static feature vector normalized graph and the dynamic feature vector refined graph

and vice-versa results in boosting up of the robust connections along with filtering out

the weaker connections leading to better accuracy.

In the proposed framework, G and R are fused via non-linear cross

diffusion scheme resulting in the fused graphs D with edge-weights calculated using

Eq.(4.10)

1,

2
* * *

F T
diffused r

j

j j

w w w w
F

 (4.10)

Where F is the total number of feature vectors and T above represents

transposition. In our framework, 2F as we have taken only two feature vectors i.e.

static and dynamic feature vector.

 The diffused edge weights diffusedw are further used to form a unified feature vector

U by means of Eq.(4.11).

2

1

1
() * diffused

j

j

U t w
F

 (4.11)

Where 1j corresponds to static feature vector, 2j corresponds to dynamic feature

vector and is the pre-estimated constant used to achieve adaptiveness. Details of

the classifier fusion follows next.

101

 4.2.3 Fuzzy Based Score Level Fusion

Vector U generated is given to the two classifiers in parallel. Classification scores

obtained are again fused. To achieve this, the U is inputted to two ML classifiers viz.

SVM and RF. Their respective classification scores (SVM) and (RF) are determined. In

the proposed framework, the obtained classifier(s) scores are optimally fused using

the fuzzy-based score fusion method. In the proposed method, a fuzzy-based score-

fusion method has been suggested to improve the segregation of apps. Fuzzy [149]

fusion is basically combining scores of two ML algorithms in a natural way to

determine valuable info and to boost the performances of the individual algorithm. In

the suggested method, the fuzzy logic conditions are formulated by a group of twenty-

five fuzzy rules as stated in Tab.1 under Section 3.2. The classifiers scores are combined

in a way so as to boost the concurrent classifier scores, suppress the discordant

classifier scores. The proposed fusion model attains a precise decision boundary

between B and M apps. Here, we have defined the fuzzy set as signifying very large,

large, medium, small, very small values of the classifier’s score. Membership value for

the classification score is calculated as elements of a fuzzy set by means of Eq. (4.12-

4.16)

()

1
()

1 VL VL
VL m x f

x
e

 (4.12)

2

2

()

()

L

L

x n

f

L x e

 (4.13)

2

2

()

()

M

M

x n

f

M x e

 (4.14)

2

2

()

()

S

S

x n

f

S x e

 (4.15)

102

()

1
()

1 VS VS
VS m x f

x
e

 (4.16)

Where 36VLm , 0.84VLf , 0.13Lf , 0.7Ln , 0.13Mf , 0.5Mn , 0.12Sf , 0.3Sn ,

0.14VSf , 36VSm are linguistic variable values attained from the training phase and

 ,r sx S S .These values are chosen so that concordant classifiers scores are boosted

and discordant classifier scores are suppressed concurrently. The functional mapping

,u vT between the RF and SVM classifiers scores are tabulated in Table 4.1, where u and

v are fuzzy set values allocated to each score value. This mapping guarantees an

accurate decision boundary-line for segregating the malapps.

Table 4.1: Fuzzy Mapping Rules ,u vT

u v VL L M S VS

VL VL VL L L L

L VL VL M M M

M L M M S VS

S L M S VS VS

VS L M VS VS VS

Fuzzy fused output is further converted to the optimal crisp value using the center of

gravity (COG) technique for defuzzification [150]. Crisp variable value using COG for

a pair of elements u and v in the fuzzy set is calculated using Eq. (4.17)

,

,

,

()

()

u v

u v

u v

T

u v
T

T

u v

x x

COG
x

 (4.17)

103

where value of ,u vT is taken from Table 4.1 and ,r sx S S . The weighted mean of the

COG values over the pair of elements u , v is used for the estimation of the final fused

weight of the classifiers scores [Eq.(4.18)]

,,

, ,

*

()

u vu v T

u v
fused

u v r s

u v

COG

w
S S

 (4.18)

where ,u v is fuzzy control rule calculated using Eq.(4.19)

, min((), ())u v p r q sS S (4.19)

The
fusedw is compared with the thrw to determine whether a given app is M or B

depending on whether
fused thrw w or vice-versa (

fused thrw w). Experimental results and

discussions follows in the subsequent subsection.

4.3. Experimental Validation

Experimental results comprise of the assessment of the suggested framework on the

benchmarked datasets containing (B) and (M) apps as mentioned in Table 4.2.

Comparisons of the results with other state-of-art methods employing static and

dynamic features were also reported.

4.3.1. Datasets

B apps are taken from CICMalDroid2020 [132] Dataset and Google Play Store [130]

and M apps are collected from CICMalDroid2020 [132], AMD [129], Androzoo [131],

and Drebin [128]covering the multitude of malwares from different families. 2000 B

and 2000 M apps are selected from these datasets and rearranged in Table 4.2 as

Group1, Group2, Group3, Group4, & Group5. The balanced and unbalanced datasets

can be used for experimentation purpose. Here, we have used balanced datasets for

experimentation.

104

 Table 4.2: Experimentation Dataset

 App kind

Dataset

Malign

Apps(M)

Benign

Apps(B)

Comments

Group1 500 500 Androzoo(M) [131]

GooglePlay(B) [130]

Group2 500 500 AMD(M) [129]

CICMalDroid2020(B) [132]

aGroup3 500 500 CICMalDroid2020(M) [132]

GooglePlay(B) [130]

Group4 500 500 Drebin(M) [128]

GooglePlay(B) [130]

Group5 2000 2000 Consolidated

Experimental validation of the framework was accomplished by means of MATLAB

2018a installed on i7, 2.7 GHz CPU with 16 GB RAM. Ten-fold cross-validation method

was employed by randomly subdividing the dataset into ten equal parts and using one

for testing and the rest for training. The final result is the average of the results

obtained from five datasets as in Table 4.2.

4.3.2 Qualitative Assessment

Cumulative Frequency Analysis: Qualitative assessment for the suggested

framework is performed by plotting the cumulative frequencies (CF) [as shown in Fig

4.2] of the various static and dynamic features selected for M and B apps. The CF of

the features in the M apps is directly proportional to the threat level of that particular

feature for platform security. Also, score distributions of the two best state-of-the-art

techniques and the suggested framework is shown in Fig.4.4. It is apparent from

Fig.4.4 that the suggested framework performs better than the other two methods

105

because of the minimum overlap of the scores. Quantitative assessment of the

proposed framework follows in the sub-section.

Figure 4.3. Cumulative Frequencies for five static and two dynamic features for

 Group 5 Dataset. Y-axis represents the cumulative frequencies of features.

(a) (b) (c)

Figure 4.4 Score Distribution for Group2 dataset of (a) Proposed Method (b) Arshad

et al. [60] (c) Hussain et al. [67]

 4.3.3 Quantitative Assessment

Quantitative assessment of the suggested method was realized using the standard

evaluation benchmark viz. sensitivity, specificity, F1 Score, detection accuracy via ten-

fold cross validation over datasets as mentioned in Table 4.1. The suggested method

106

was also compared with respect to running time against different state-of-the-art

methods. Evaluation matrices results are also compared with the two state-of-the-arts

techniques viz. [67][60] and two self-proposed techniques. Specificity, Sensitivity, F1

Score, and Accuracy are calculated using equation as in Section 2.7 in Chapter 2.

ROC curve is also drawn as depicted in Fig 4.5 to assess the binary classifier. ROC is

an overall index portraying sensitivity and specificity.

To test the robustness and to evade overfitting issues, 10-fold cross-validation is

employed to estimate the performance of the suggested model. The investigational

outcomes are displayed in Table 4.3.

(a) (b)

(c) (d)

Figure 4.5: ROC curves comparison for the proposed method (red) and two best

state-of-the-art methods (Arshad et al. (blue) and Hussain et al. (black)) for (a)

Group1, (b) Group 2, (c) Group 3, (d) Group 4.

107

4.3.4 Overall Performance

It has been observed that for the suggested framework the mean value of the result of

the Accuracy, Specificity, Sensitivity, and F1 measure for the proposed framework are

98.62%, 98.634%, 99.30%, and 0.9916 respectively. The maximum value of the

accuracy, specificity, sensitivity, and F1 score is 98.80%, 98.80%, 98.81%, and 0.9940

respectively.

 The suggested technique outperforms the other hybrid-based state-of-the-art

techniques when assessed on datasets as tabularized in Table 4.2. Enhancement for a

mean value of detection accuracy of the suggested technique by 1.402%, 2.914%, over

[60], and [67] respectively have been realized. Self-proposed techniques are also

included to show the proper justification for the choice of ML algorithms in the optimal

classifier. The enhancement of average detection accuracy of 2.674% and 3.274% have

been achieved by the proposed method over two self-proposed methods RF+UF and

SVM+UF.

The run time of different state-of-the-art approaches is also compared with the

proposed approach. To calculate the running time of different methods, we first built

and learned their corresponding detection model. These detection models were then

fed with the 200 random apps for analysis. Our proposed method attains an amazing

average analysis performance of 5.6 seconds per app. Similarly, the average analysis

performance of [60], and [67] comes out to be 6.1 seconds and 6.7 seconds

respectively. Hence, our proposed method outclassed other methods in respect of

detection time, detection accuracy, and efficacy in real-life apps scenarios.

108

Table 4.3: Comparative Analysis of Performance metrics i.e. Accuracy, Specificity,

Sensitivity, F1 Score for Hybrid models and Proposed method.

Dataset Performan

ce Metrics

Arshad

et al.

Hussain

 et al.

RF+UF SVM+

UF

Proposed

Method

GROUP 1

Accuracy 0.9781 0.9480 0.9580 0.9540 0.9860

Specificity 0.9786 0.9481 0.9560 0.9560 0.9859

Sensitivity 0.9775 0.9480 0.9600 0.9520 0.9861

F1 Score 0.9886 0.9733 0.9581 0.9539 0.9930

GROUP 2

Accuracy 0.9760 0.9640 0.9590 0.9530 0.9840

Specificity 0.9759 0.9641 0.9600 0.9520 0.9839

Sensitivity 0.9757 0.9639 0.9580 0.9540 0.9842

F1 Score 0.9869 0.9817 0.9590 0.9530 0.9919

GROUP 3

Accuracy 0.9670 0.9600 0.9600 0.9520 0.9880

Specificity 0.9680 0.9600 0.9660 0.9540 0.9878

Sensitivity 0.9660 0.9600 0.9540 0.9500 0.9881

F1 Score 0.9827 0.9776 0.9598 0.9519 0.9940

GROUP 4

Accuracy 0.9660 0.9560 0.9610 0.9550 0.9860

Specificity 0.9659 0.9558 0.9640 0.9560 0.9861

Sensitivity 0.9661 0.9561 0.9580 0.9540 0.9858

F1 Score 0.9827 0.9775 0.9609 0.9550 0.9930

GROUP 5

Accuracy 0.9738 0.9573 0.9593 0.9533 0.9870

Specificity 0.9650 0.9540 0.9600 0.9540 0.9880

Sensitivity 0.9825 0.9605 0.9585 0.9525 0.9860

F1 Score 0.9740 0.9574 0.9592 0.9532 0.9870

109

4.4 Conclusion

The significant highlights of this research work are as follows:

 A novel hybrid framework has been proposed for smartphone security analysis.

 Here, the optimal combination of static and dynamic features by cross-diffusion

followed by fuzzy-based score level fusion was proposed.

 In the suggested framework, we have used five static and two dynamic features

to form static and dynamic feature vectors. These feature vectors are further

fused after the formation of normalized and refined graphs through the non-

linear graph diffusion method.

 The fused feature vector is then given to an optimal classifier comprising of RF

and SVM classifiers. A remarkable benefit of our method is that it can extract the

static and dynamic features in each app almost in real-time. In sum, the

unification of static and dynamic feature achieve highly distinct features.

 Adoption of fuzzy-based fusion of classifier scores not only create clear boundary

but also achieve optimal performance.

 Our technique has accomplished mean value of accuracy, specificity, sensitivity,

and F1 score as 98.62%, 98.634%, 98.604 %, and 99.16% respectively when

estimated on datasets as enumerated in Table 4.2. Experimental results reveal

that our technique outstrips other state-of-the-art methods.

The experimental results along with other findings were published in [151].

110

Chapter 5

Design & Development of Traffic
Analysis Technique

 The aim of this work is to develop a novel traffic-based framework that exploits the

TCP based network traffic features for the detection of unintended functionality has

been proposed. Here, a unified feature (UF) is created by graph-based cross-diffusion

of generated order and sparse matrices corresponding to the network traffic features.

Generated unified feature is then given to three classifiers to get corresponding

classifier scores. The classifiers score are further fused by score fusion process to detect

the unintended functionality.

5.1 Introduction

Smartphones are replacing the conventional mobiles as well as computational devices

due to its portability and ease of handling almost everything ranging from storing the

private data to making the banking transactions. Due to its widespread Smartphones

are replacing the conventional mobiles as well as computational devices due to its

portability and ease of handling almost everything ranging from storing private data

to making banking transactions. Smartphones having Android OS are extensively

familiar and have wide usage due to its open architecture and the assortment of apps

it affords. As per the recent information by IDC (International Data Corporation), the

111

market-share of android smartphones is 83.8% till March’ 2021 and it will grow to

85% till March’2025. Due to its widespread usage, we are deluged with a variety of

smartphones apps that makes our life simple and easier. Flooding of these apps tempts

attackers to design variety of malapp (malicious applications) directed toward

smartphones to steal private information. Mobile devices including Smartphones

generated about 54.8 % of worldwide web traffic [152] and analyzing this traffic leads

to incredible results in detecting malapps. Analyzing traffic is accomplished by

studying the patterns in the network traffic. Numerous traffic features were extracted

from the network traffic patterns. Mainly Hypertext Transfer Protocol (HTTP) and

Transmission Control Protocol (TCP) are two types of traffic that is prevalent in the

smartphone ecosystem. Features extracted from HTTP and TCP are exploited in

detecting the malapps. The HTTP header features could not detect the malapps in the

encrypted traffic and TCP based detection models are impervious to encrypted traffic.

Therefore, TCP flow-based detection methods are mainly exploited in detecting

malapps.

Two widely used malware detection methods employed by researchers pivots around

static and dynamic analysis. The amalgamation of these widely used detection

methods is also exploited by some researcher’s resulting in hybrid analysis. Most of

the modern malwares depend on n/w interfaces to intercommunicate with attackers,

therefore the n/w traffic based analysis technique is most suitable to detect android

malapps. Static investigation based detection techniques failed to detect apps having

code obfuscation, and conventional dynamic investigation based detection needs is

quite cumbersome. N/w traffic based dynamic detection excerpts detection attributes

from n/w traffic and uses Machine Learning (ML) techniques to categorize mobile

apps. Our detection prototype is based on TCP based features.

In short, following are the main contributions:

112

1. We have proposed a traffic feature based fusion that comprises of optimal

combination of multiple traffic features by cross diffusion of order and sparse

graphs to produce a unified feature.

2. The unified feature vector generated is given to the three parallel ML classifiers

and classifiers scores are fused to further enhance the accuracy attained by

separate classifiers. Performance comparison with state-of-the-art methods

were also performed.

5.2 Proposed Traffic Analysis Framework

The proposed traffic analysis framework for smartphone security analysis mainly

comprised of mainly two stages i.e. feature unification and optimal fusion of the scores

of three classifiers. Fig. 5.1 elucidates the overview of the suggested security analysis

system. The suggested framework consists of four blocks namely, traffic feature

extraction and vector formation, feature-fusion, classifier score-fusion, and a decision

sub-block to accomplish efficient malapp detection. Extracted traffic features are

converted into three traffic feature vectors. All the three traffic feature vectors are used

for constructing similarity graphs by the means of cosine similarity. Similarity graphs

are again converted to normalised graphs by using anchored normalization technique.

Normalised graphs are again used to form the sparse and order graphs. These obtained

sparse and order graphs are further cross diffused as to generate three fused traffic

feature vectors. The three fused feature vectors are further concatenated to form the

highly distinct unified feature vector. This distinct unified feature is discriminatory

and given to three classifiers. The scores obtained from these classifiers are again

optimally combined to classify a given test app.

113

In our method, we have used three classifiers viz. Random Forest (RF), k-Nearest

Neighbour (KNN), and Support Vector Machine (SVM) for apps categorization. Also,

we have leveraged modified PCR-5 rules for score fusion. Finally, in decision block

score 5PCRw
 is matched with threshold thw

 and particular test app is categorized into

benign if 5PCRw thw
 or otherwise malign.

Minutiae of suggested model is as follows:

Figure 1. Proposed Traffic based framework for Smartphone Security Analysis.

Because of the numerous attributes encapsulated in the android based smartphone

apps, individual ML algo shows its incompetence to categorize these apps accurately.

Therefore, it is recommended to employ more than one ML in the detection of

malapps. In the suggested method, we have employed three ML algo’s viz. RF, SVM,

and KNN for categorisation of apps. These three ML algo’s are selected so as to

improve the overall detection accuracy and offset the shortcomings of the single

114

classifiers. RF performs superbly when the dataset is large & it is not susceptible to

outliers. SVM performs better in the limited dataset and it is optimal for binary

classification. If there is no training period, then KNN performs best. It is simple,

speedy and, time efficient. In the proposed framework, three classifiers supplement

each other to improve the overall accuracy.

5.2.1 Traffic Gathering Platform

The traffic gathering platform is used to collect the malign and benign traffic data

produced by malign and benign apps, respectively. A firewall is installed on the

platform to guarantee its security. Fig. 5.2 shows our methodology for traffic

gathering.

Figure 5.2. Traffic Gathering Platform

115

Table 5.1: Extracted TCP based Traffic Features

Feature
Symbol

Feature Description

1F Avg. no. of bytes sent

2F Avg. no. of bytes received
3F Total no. of headers bytes sent

4F Avg. no. of bytes per second
5F Ratio of the no. of incoming to outgoing bytes
6F Avg. no. of packet sent per second
7F Avg. no. of packet received per second
8F Ratio of the no. of incoming to no. of outgoing

packets
9F Std. deviation of the packet- size sent
10F Standard deviation of the packet- size received

11F Avg. no. of packet sent per flow

12F Avg. no. of packet received per flow
13F Avg. no. of bytes sent per flow

14F Avg. no. of bytes received per flow
15F Std. deviation of the length of flow

The traffic gathering platform comprises four constituents, i.e., the control server,

traffic collection module, app repository having downloaded malign and benign apps,

and TCP traffic storage module containing only filtered TCP flows. These four

components converse with the aid of LAN switch. The control server is controlling the

traffic gathering job in the platform by assigning the job to the different modules. The

apps from the apps repository are directed to the traffic collection module, where the

android virtual machine (AVM) is used to run the apps and collect the corresponding

traffic. The collected traffic is further directed to the TCP traffic storage module, where

only TCP flows are stored and the rest of the traffic is filtered out. Here android

emulators are used to install and run apps on AVM. AVM comprises of packed android

s/w stack and it runs just like a physical smartphone. Apps are run on an emulator.

Emulator is restarted to fuel the malign apps to generate malicious behaviour in the

network traffic. A script in the python was written to extract the features from the TCP

flows. The TCP features used are tabulated in Table 5.1.

116

5.2.2 Traffic Feature-Fusion

It comprises of three traffic vector creation after extracting the fifteen traffic features.

These created traffic-feature vectors are again fused by optimal combination via non-

linear cross-diffusion of created sparse and order graphs to draw complementary

information and to create a highly discriminatory unified feature for classifying a test

app.

5.2.2.1 Feature Extraction

Fifteen traffic features were extracted for a test app t along with N apps from reference

dictionary, { , }d D D , D comprises of benign apps and D comprises of malign

app. Traffic feature extraction procedure shown in Fig 5.2. Reference dictionary apps

are constantly renewed with most recent apps to improve the detection ability of the

framework. The vectors formed are as follows:

1 { 1, 2, 3, 4, 5}V F F F F F (5.1)

2 { 6, 7, 8, 9, 10}V F F F F F (5.2)

3 { 11, 12, 13, 14, 15}V F F F F F (5.3)

We have built three feature vectors as stated in Eq. (5.1)-Eq. (5.3) for each test app and

reference apps. In feature-fusion, traffic-features vectors for reference and test apps

are utilized for graph formation. Test app’s traffic-feature vectors represents one node

and reference app’s traffic-feature vector represents other node. Consequently, non-

linear graphs are formed for all test app 𝑡 corresponding to three traffic feature vector.

For traffic feature vectors, 1

tV , 2

tV and 3

tV of test app t corresponding to three traffic-

based features, we construct graphs (, ,)G Ver E w , where {1,2,3}

corresponding to three traffic-based features and w are edge weights acting as

117

similarity betwixt traffic-feature vectors of apps t and d where { , }d D D , Ver

correlates to the vertices of the created similarity graphs, E correlates to the edges of

the similarity graphs that characterize the association between test apps and the

reference apps. n nG are constructed by cosine similarity between the three

traffic-feature vectors of the test app t and reference apps d . For feature set values

 ,t dV V , where {1,2,3} corresponds to three traffic-feature vector, the similarity

edge weights are symbolized by vector (,)w t r , and is derived by the cosine similarity

between the pair ,t dV V from the following Eq.(5.4)

*
(,) t d

t d

V V
w t d

V V

 (5.4)

 Details of traffic-feature unification presented in subsequent subsection.

5.2.2.2 Feature Unification

Three traffic feature vectors created are fused in a way so as to extract complementary

info in them by optimal non-linear cross-diffusion of generated sparse and order

graphs. Features unification via cross-diffusion technique19 was offered and its results

confirm that the feature fusion by non-linear graphs techniques are significantly

accurate than linear graph-centred approaches. Graph-built unification retains robust

features of apps and rejects all the frail features that adds to misclassification.

Similarity graphs created using Eq.(4) for three traffic feature vectors are further

normalized using an anchor avg stdA A A , where avgA
 and

stdA are average and

standard deviation of malicious score distribution for traffic feature vector. We

consider only malicious scores for calculating the anchor. The normalized graphs N ,

118

whose edge weights matrix jw

, where {1,2,....., }, {1,2,3}j n are constructed by

Eq. (5.5)

min()
,

2(min())

0.5 ,
max()

j

j

j

j

j

j

w w
w A

A w
w

w A
w A

w A

 (5.5)

The obtained normalized graphs transformed to obtain the sparse S and order O

graphs. Sparse graphs guarantee robustness to noise while boosting the strong info

and suppressing the weak info corresponding to each traffic feature vector. Sparse

graph, { , , }S Ver E is built using KNN by Eq. (5.6)

 , |

0,

j j
N

w w KNN

Otherwise

 (5.6)

 Where, is the parameter controlling the sparseness of graph. Edges corresponding

to reference apps that are similar to the test apps are retained and the rest of the edges

are removed to ensure robustness to noise. To discriminate the significant reference

apps from the insignificant ones, each of the reference apps is assigned weight

according to its order. Therefore, order(s) are assigned to each reference app on the

basis of its similarity with test app, which is calculated by the edge weight between the

test app and reference app in the normalized graph. The order graph

{ , , }O Ver E having the weight matrix is constructed by Eq.(5.7) :

(), {1,2,... }jorder w j n
 (5.7)

, where function order, allocates order(s) to each reference app.

119

The generated order and sparse graphs are further cross diffused to reinforce the

strong connections between different traffic feature vectors and suppress the feeble

connections. Order graphs averts biasness and sparse graphs guarantees elimination

of any outlier behaviour. Cross diffusion [Eq.(9)] basically comprised of addition of

sparse graphs of two other feature vector to form
t [Eq.(5.8)], where

t is the tht

element of the set and subsequently their multiplication with order graph of the

feature vector with
t .

t Y

Y

 where { } { }tY (5.8)

t t t {1,2,3} , where denotes logical AND (5.9)

 As can be seen in Fig 5.1, we add the sparse graph of two other feature vectors and

then multiply it with the order graph of the feature vector turn by turn to generate

three fused vectors. Eq.(5.9) can be further represented [Eq.(10,11,12)] in the form of

fused vectors (
1 2 3

, ,V V VF F F) , sparse vectors (
1 2 3

, ,V V VS S S) and order vectors (

1 2 3

, ,V V VO O O) as follows:

1 2 3 1

()V V V VF S S O (5.10)

2 3 1 2

()V V V VF S S O (5.11)

3 1 2 3

()V V V VF S S O (5.12)

The above fused feature vectors
1VF ,

2VF and
3VF are concatenated to form the unified

feature vector, U by Eq.(5.13)

1 2 3V V VU F F F (5.13)

This unified feature vector is given to three parallel classifier(s) and their scores are

fused to classify apps. Details of Optimal classifier-fusion follows in the next sub-

section.

120

 5.2.3 Classifier Score-Fusion

Created U is fed to three classifiers connected in parallel. Obtained classification scores

[sS (SVM), rS (RF),
kS (KNN)] are again fused by the classifier score fusion technique.

There are various score fusion techniques reported in literature. Here we have chosen

the PCR-5 [153]to solve the highly contradictory scores of the three classifiers. PCR-5

is used to solve ambiguous problems in multi-sensor score fusion. Android app

detection is certainly ambiguous problem as we are uncertain whether the app is

malicious or not. In the suggested model, three classifiers are selected and the fusion

of the output of these classifiers can be modelled as multi-sensor score fusion problem

as their outputs are independent of each other. Therefore, Android app detection

satisfy all the conditions of PCR-5 theory. In our framework, frame of discernment

has two elements and corresponding to benign and malign. Classifier scores [

sS , rS ,
kS] are converted individual Basic Belief assignments or belief masses by the

Eq.(5.14) below:

() ()

() 1 ()

i i i

i i i

m C S

m C S

 (5.14)

Where (, ,)i s r k &
iC denotes confidence measure of the single classifier.

These belief masses are combined by PCR-5 rules. Conjunctive consensus among the

classifiers is assessed by Eq. (5.15) and Eq. (5.16)

() ()* ()* ()srk s r km m m m (15)

() ()* ()* ()srk s r km m m m (16)

121

Overall conflict among the classifiers is estimated by Eq. (5.17). It comprises of six

partial conflicts-masses.

() ()* ()* () ()* ()* ()

()* ()* () ()* ()* ()

()* ()* () ()* ()* ()

srk s r k r s k

k s r s r k

r s k k s r

m m m m m m m

m m m m m m

m m m m m m

 (5.17)

Six partial conflicts masses are further redistributed using PCR-5 rules in ratio to

masses assisting to these partial-conflicts. The values of ip and iq are contribution to

Benign and Malign masses following reallocation of partial conflicts, where i =1,…,6

and are determined by Eqs. (5.18-5.23)

 1 1
()* ()* ()

() ()* () () ()* ()

s r k

s r k s r k

m m mp q

m m m m m m

 (18)

2 2
()* ()* ()

() ()* () () ()* ()

r s k

r s k r s k

m m mp q

m m m m m m

 (19)

3 3 ()* ()* ()

() ()* () () ()* ()

k s r

k s r k s r

p q m m m

m m m m m m

 (20)

4 4
()* ()* ()

()* () () () ()* ()

s r k

r k s s r k

m m mp q

m m m m m m

 (21)

5 5 ()* ()* ()

()* () () () ()* ()

r s k

s k r r s k

p q m m m

m m m m m m

 (22)

6 6 ()* ()* ()

()* () () () ()* ()

k s r

s r k k s r

p q m m m

m m m m m m

 (23)

122

Approximated contributions ip and iq where i =1,…,6 are add on to their respective

conjunctive consensus. The final belief of the app being benign 5 ()PCRm and that of

app being malign 5 ()PCRm are determined by Eq. (5.24) and Eq. (5.25) respectively.

6

5

1

() ()PCR srk i

i

m m p

 (5.24)

6

5

1

() ()PCR srk i

i

m m q

 (5.25)

The decision about the given test app t is taken after comparison of the 5 ()PCRm with

thm . If 5 ()PCR thm m , then the t is acknowledged as benign else it is taken as malign.

Algo1 summarizes the pseudocode for proposed framework.

5.3 Experimental Validation

Quantitative analysis on various performance matrices like Precision, Accuracy, F1

Score, Specificity, and Sensitivity was performed on the suggested and two other state-

of-the-art methods. Their ROC plots were also drawn for comparison. Following are

the details of the evaluation process.

5.3.1 Databases

We have chosen about 3000 samples of malign apps and benign apps each

downloaded from the benchmarked datasets. Using these apps and our traffic

gathering platform, we have generated and captured the traffic filtering the TCP flows.

We have selected only those apps from the datasets that produces the network traffic

and filtered out the TCP based flows. Subsequently, traffic features as tabulated in

123

Table 5.1 were extracted from these flows using the script written in python. We have

selected about 500 feature-flow vectors each corresponding to benign and malign

flows from the total extracted flows corresponding to DB1, DB2, DB3, and DB4

datasets. Integrating these feature-flow vectors forms 2000 benign and malign

feature-flows vector each. Further, we have applied ten-fold cross-validation

procedure for training and testing done on five sets of feature-flow sets to reduce the

biasness and variance and finally average values are taken as results. All investigations

were done on MATLAB R2018a installed on 16GB RAM, i7, and 2.7 GHz processor.

Table 5.2: Experimentation Dataset

App Type

Dataset

Malign

Apps

(M)

Benign

Apps

(B)

Source

DataBase(DB)1 750 750 Androzoo(M) [131]

GooglePlay(B) [130]

DataBase(DB)2 750 750 AMD(M) [129]

CICMalDroid2020(B) [132]

DataBase(DB)3 750 750 CICMalDroid2020(M) [132]

GooglePlay(B) [130]

DataBase(DB)4 750 750 Drebin(M) [128]

GooglePlay(B) [130]

 5.3.2 Performance Assessment

Performance of the suggested technique was realized by the means of TCP features

extracted from TCP flows corresponding to malign and benign apps as in Table 5.2 and

calculating evaluation matrices through ten-fold cross validation. The proposed

scheme was also compared with respect to training time and mean-time-to-detect

124

(MTTD) against three state-of-the-art approaches. Here, MTTD is the time taken to

detect malapps. Evaluation matrices results are also compared with three state-of-the-

arts techniques FED [154] , MMD [110] ,and LWN [111] . Detection Accuracy, F1 Score,

Specificity, Sensitivity, and Precision are calculated using equations in Section 2.7,

Chapter 2.

ROC curves for the proposed method and comparative methods FED, MMD, and LWN

for flow sets corresponding to datasets DB1, DB2, DB3 and DB4 are depicted in Fig 5.3.

The experimental results are presented in Table 5.3. It has been observed that the

mean value of F score, detection accuracy, sensitivity, specificity and precision for the

proposed framework are 0.98742, 98.74%, 99.04%, 98.44%, and 98.456%

respectively. The highest value of the F score, detection accuracy, sensitivity, specificity

and precision is 0.9890, 98.90%, 99.80%, 99.60, and 98.61 respectively.

Proposed technique outshines similar state-of-the-art traffic-based methods when

evaluated on extracted TCP features as presented in Table 5.4. Enhancement for mean

accuracy of suggested scheme by 6.28%, 4.34%, and 2.3% over LWN, FED, and MMD

respectively have been achieved. This enhanced value of accuracy of the suggested

framework was attained by optimal combination traffic features using cross diffusion

strategy and fusion of classifier(s) score using DSmT based PCR-5 rule to form a clear-

cut border for differentiating malign apps from benign apps. The suggested method

was also compared with respect to MTTD of different state-of-the-art techniques. To

calculate the MTTD of contemporary methods, learned models were fed with the 250

arbitrary apps for investigation. Our proposed method attains an amazing average

analysis performance of 5.8 seconds per app. Similarly, the average analysis

performance of LWN, FED, and MMD comes out to be 6.5 seconds, 7.3 seconds, and

125

6.9 seconds respectively. Hence, our proposed method outshined other methods in

respect of detection time, detection accuracy, and efficacy in real-life apps scenarios.

MTTD also confirms that suggested framework detects the apps with high accuracy in

reasonable time.

The trained model is further tested on the network flows captured from the 20

different apps under unconstrained environment using the real smartphones instead

of emulators and the performance comparison was done with our framework versus

three different state-of-the-art methods viz. LWN , FED , and MMD and one self-

proposed method RF+UF i.e. unified feature fed to the random forest algorithm. From

Table 5.3, average accuracy obtained when the random apps are tested on LWN, FED,

and MMD and RF+UF, and proposed method is 85.75%, 84.30%, 88.82%, 89.90%,

and 95.10% respectively.

Performance comparison in terms of accuracy with existing methods using online

captured data from 20 different apps chosen from the diverse sources are shown in

Table 5.3. Here, we have taken Smart phone Samsung Galaxy S9 having android OS

with 8 GB RAM and 64 GB storage for generating the network traffic. Our frame work

detects the apps that generates the flows similar to one generated during the training

phase with high accuracy.

126

Table 5.3. Performance comparison in-terms-of accuracy with existing methods
using captured data from 20 different apps.

Apps UF+RF LWN FED MMD Proposed

Method

 Accuracy

AccuRadio 0.8900 0.8300 0.8500 0.8900 0.9400

Maps 0.8700 0.8100 0.8400 0.8100 0.9100

WhatsApp 0.8600 0.8200 0.8100 0.8700 0.9300

Outlook 0.8300 0.8100 0.8300 0.8500 0.9100

Mail 0.7800 0.8400 0.8500 0.8400 0.9300

Netflix 0.9000 0.7700 0.8900 0.9100 0.9500

Twitter 0.9300 0.7500 0.7600 0.9200 0.9400

Facebook 0.9100 0.9000 0.8700 0.9300 0.9500

Youtube 0.8800 0.8600 0.8800 0.9200 0.9700

Gmail 0.9200 0.9300 0.8900 0.9500 0.9600

DroidDream 0.8100 0.8400 0.9000 0.9200 0.9800

DroidKungFu1 0.8700 0.8800 0.9300 0.9400 0.9600

Buzz 0.8200 0.8400 0.9100 0.8900 0.9400

BlueScanner 0.8500 0.8400 0.9400 0.9300 0.9800

Plankton 0.8200 0.8500 0.9200 0.9100 0.9600

WallpaperGirls 0.8100 0.8200 0.8300 0.8600 0.9300

StylePhotoColl-

age

0.8700 0.8400 0.9100 0.9200 0.9400

PrivateSms 0.8300 0.8500 0.9400 0.8700 0.9900

PartMessage 0.8800 0.9000 0.9500 0.8900 0.9700

IdeaSecurity 0.8200 0.8800 0.9000 0.9600 0.9800

127

Table 5.4. PM for Proposed methods and other comparative methods.

Dataset Performance

Metrics(PM)

LWN FED MMD Proposed

Method

DB1 FLOWSET

Accuracy 0.9250 0.9440 0.9620 0.9880

Specificity 0.9100 0.9280 0.9540 0.9960

Sensitivity 0.9400 0.9600 0.9700 0.9800

F1 Score 0.9261 0.9449 0.9623 0.9879

Precision 0.9126 0.9302 0.9547 0.9959

DB2 FLOWSET

Accuracy 0.9230 0.9380 0.9630 0.9890

Specificity 0.9060 0.9360 0.9660 0.9860

Sensitivity 0.9400 0.9400 0.9600 0.9920

F1 Score 0.9243 0.9381 0.9629 0.9890

Precision 0.9091 0.9363 0.9658 0.9861

DB3 FLOWSET

Accuracy 0.9260 0.9440 0.9630 0.9881

Specificity 0.9140 0.9420 0.9460 0.9780

Sensitivity 0.9380 0.9460 0.9800 0.9980

F1 Score 0.9269 0.9441 0.9636 0.9881

Precision 0.9160 0.9422 0.9478 0.9784

DB4 FLOWSET

Accuracy 0.9220 0.9460 0.9660 0.9870

Specificity 0.8860 0.9260 0.9560 0.9780

Sensitivity 0.9580 0.9660 0.9760 0.9960

F1 Score 0.9247 0.9471 0.9663 0.9871

Precision 0.8937 0.9288 0.9569 0.9784

INTEGRATED

FLOWSET

Accuracy 0.9270 0.9480 0.9680 0.9850

Specificity 0.9405 0.9455 0.9645 0.9840

Sensitivity 0.9133 0.9505 0.9715 0.9860

F1 Score 0.9260 0.9481 0.9681 0.9850

Precision 0.9388 0.9458 0.9647 0.9840

128

Figure 5.3: ROC curves comparison for the proposed method and comparative

methods MMD, FED, LWN for flow sets corresponding to datasets DB1, DB2, DB3 and

DB4.

5.4 Conclusion

The significant highlights of this research work are as follows:

 A novel traffic analysis framework is presented wherein multiple TCP-based

traffic features were optimally combined by diffusing the features by graph

based cross diffusion leading to the formation of a unified feature vector.

129

 It has been observed that the mean value of F score, detection accuracy,

sensitivity, specificity and precision for the proposed framework are 0.98742,

98.74%, 99.04%, 98.44%, and 98.456% respectively.

 The highest value of the F score, detection accuracy, sensitivity, specificity and

precision is 0.9890, 98.90%, 99.80%, 99.60, and 98.61 respectively.

 Proposed technique outshines similar state-of-the-art traffic-based methods

when evaluated on extracted TCP features as presented in Table 5.4.

Enhancement for mean accuracy of suggested scheme by 6.28%, 4.34%, and

2.3% when compared with LWN, FED, and MMD methods respectively have

been achieved. This enhanced value of accuracy of the suggested framework was

attained by optimal combination traffic features using cross diffusion strategy

and fusion of classifier(s) score using DSmT based PCR-5 rule to form a clear-

cut border for differentiating malign apps from benign apps.

 The suggested method was also compared with respect to MTTD of different

state-of-the-art techniques. To calculate the MTTD of contemporary methods,

learned models were fed with the 250 arbitrary apps for investigation. Our

proposed method attains an amazing average analysis performance of 5.8

seconds per app. Similarly, the average analysis performance of LWN, FED, and

MMD comes out to be 6.5 seconds per app, 7.3 seconds per app, and 6.9 seconds

per app respectively. Hence, our proposed method outshined other methods in

respect of detection time, detection accuracy, and efficacy in real-life apps

scenarios. MTTD also confirms that suggested framework detects the apps with

high accuracy in reasonable time.

130

 Average accuracy obtained when the random apps are tested on LWN, FED,

and MMD and RF+UF, and proposed method is 85.75%, 84.30%, 88.82%,

89.90%, and 95.10% respectively.

The experimental results along with other findings were published in [155].

.

131

Chapter 6

Conclusions & Future Directions

This chapter will summarize the major contributions and achievements that come out

of the present work. Despite the significant contributions, no research is said to be

complete unless it directs to a few topics for future research. Hence, the potential work

that can be explored further is briefly discussed as directions to future work in the

Section. 6.2. The summary of the major contributions follows in the coming

subsection.

6.1 Summary of Major Contributions

The essence of this thesis work was to design and develop efficient techniques for

smartphone security analysis. In order to address the limitations of various aspects in

this field, several innovative methods have been suggested under current work which

are summarized as follows:

 Challenges faced in the identification of malapps in the smartphones motivated

us to develop an efficient multi-fusion based android malapp detection method

based on static analysis. In our methodology, eight static features are exploited

for development of solution. Our multi-fusion technique is a two stage fusion

approach. In first stage, deduced static features are fused into a single unified

robust vector through extraction of the complementary information from eight

features using non-linear graph unification. In second stage, optimal classifiers

132

are used for classification of an app. Proposed framework has been designed to

make classification robust to noise and hence help in drastically improving the

score distribution. Classification is performed by training RF, SVM, and NB

classifiers followed by classifier scores fusion using PCR-6 rule that resolved

conflicts amongst classifiers besides redistributing the conflicts efficiently.

Qualitative investigations of outcomes disclosed that proposed optimal classifier

broadened the score-distribution of malign and benign apps. Moreover, our

method has attained average accuracy of 98.97%, average equal error rate of

1.04%, average F1 score value of 0.9936 and average sensitivity value of 0.9905

when evaluated over benchmarked datasets. Quantitative analysis of suggested

method vs. state-of-the-art techniques reveal that proposed method outperforms

all of them.

 To tackle the challenges of effective detection of ever-evolving android malapps,

we suggested a novel hybrid malapp detection scheme. Here, the optimal

combination of static and dynamic features by cross-diffusion followed by

fuzzy-based score level fusion was proposed. In the suggested framework, we

have used five static and two dynamic features to form static and dynamic

feature vectors. These feature vectors are further fused after the formation of

normalized and refined graphs through the non-linear graph diffusion method.

The fused feature vector is then given to an optimal classifier comprising of RF

and SVM classifiers. A remarkable benefit of our method is that it can extract

the static and dynamic features in each app almost in real-time. In sum, the

unification of static and dynamic feature achieve highly distinct features.

Adoption of fuzzy-based fusion of classifier scores not only create clear

boundary but also achieve optimal performance. Our technique has

accomplished mean value of accuracy, specificity, sensitivity, and F1 score as

133

98.62%, 98.634%, 98.604 %, and 99.16% respectively when estimated on

datasets. Experimental results reveal that our technique outstrips other state-

of-the-art methods.

 The precipitous increase in the number of android malicious apps drive mobile-

users to take extra security precautions, and makes the malapp detection a

significant challenge. With the aim of detecting the android malapps, we

suggested an android traffic based framework to detect android malapps. In our

framework, fifteen TCP-based features were extracted to build the solution.

Extracted features were optimally combined by diffusing the features by graph

based cross diffusion leading to the formation of a unified feature vector. The

unified feature vector was again given to three classifiers viz. SVM, RF, and

KNN. The classifiers scores obtained were further fused by PCR-5 rules. Our

method has accomplished the average detection accuracy, average F1 score,

average precision, and average sensitivity of when assessed on the traffic

features extracted from the flows corresponding to benchmarked dataset apps.

Comparison of the evaluation matrices of proposed framework with other state-

of-the-art approaches shows that suggested framework is better. Our system

can also categorize the encrypted traffic successfully.

6.2 Future Directions

In this thesis, numerous smartphone security analysis frameworks were investigated

and explored in detail to provide novel contribution in this area. But there are some

research dimensions that arise out of the current work which demand future study.

134

These dimensions are summarized as directions to future work and are enlisted as

follows:

 The main reason for misclassification is non-inclusion of some dynamic

features and other structure related static features in our model. Therefore, we

will extend our framework to improve the detection efficiency by including

these features. Also, training on more datasets covering the different families of

malware from diverse sources will solve under-fitting and overfitting problems

in detection.

 HTTPS-based dynamic features in addition to TCP features are to be

incorporated to improve detection accuracy. Furthermore, training on more

datasets comprising diverse malware families will further add robustness to the

framework.

 Other popular smartphone platform like iOS must explored in future.

 Investigations on smart devices other than smartphones like smart cars, smart

thermostats, smart locks, smart refrigerators, smart watches, smart bands,

smart key chains etc. and other miniature devices like sensors etc. prone to

malwares may be taken up in future. Also, 5G and 6G compatible smart devices

must be taken up in the future.

 Many ML algorithm are susceptible to spoofing, poisoning, inversion, and

impersonate attacks. The countermeasures for these attacks may be

incorporated in the future.

 The new-fangled malwares deteriorates the detection capabilities of the

framework. Future framework will be developed to improve the zero day

identification ability. Also, framework scalability on large datasets of apps

135

should be verified. Tools handling the big data with fast processing should be

utilised.

 Advanced ML techniques like deep learning technology must be exploited in the

frameworks. Reinforcement learning, a form of deep learning shows incredible

results in dynamic frameworks to segregate the malwares. Transferred learning

is another technique to cater the problem of limited samples in families.

Crowdsourcing should be employed to solve malware family detection issues.

 This study further demands the possibility of analysis on other benchmarked

databases and execution of other performance evaluation metrics.

136

References

[1] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting Android Malware

Leveraging Text Semantics of Network Flows,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5,

pp. 1096–1109, May 2018, doi: 10.1109/TIFS.2017.2771228.

[2] “IDC, Smartphone Market Share, 2020,” 2020. https://www.idc.com/promo/smartphone-

market-share/os (accessed Feb. 20, 2021).

[3] P. Faruki et al., “Android security: A survey of issues, malware penetration, and defenses,” IEEE

Commun. Surv. Tutorials, vol. 17, no. 2, pp. 998–1022, 2015, doi:

10.1109/COMST.2014.2386139.

[4] S. Rastogi, K. Bhushan, and B. B. Gupta, “Android Applications Repackaging Detection

Techniques for Smartphone Devices,” Phys. Procedia, vol. 78, no. December 2015, pp. 26–32,

2016, doi: 10.1016/j.procs.2016.02.006.

[5] Q. Han, V. S. Subrahmanian, and Y. Xiong, “Android Malware Detection via (Somewhat) Robust

Irreversible Feature Transformations,” IEEE Trans. Inf. Forensics Secur., vol. 15, no. iii, pp.

3511–3525, 2020, doi: 10.1109/TIFS.2020.2975932.

[6] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An Efficient Android Malware Detection System Based

on Method-Level Behavioral Semantic Analysis,” IEEE Access, vol. 7, pp. 69246–69256, 2019,

doi: 10.1109/ACCESS.2019.2919796.

[7] H. Hasan, B. Tork Ladani, and B. Zamani, “MEGDroid: A model-driven event generation

framework for dynamic android malware analysis,” Inf. Softw. Technol., vol. 135, pp. 1–23, 2021,

doi: 10.1016/j.infsof.2021.106569.

[8] M. Dhalaria and E. Gandotra, “A Hybrid Approach for Android Malware Detection and Family

Classification,” Int. J. Interact. Multimed. Artif. Intell., vol. In Press, no. In Press, p. 1, 2020,

doi: 10.9781/ijimai.2020.09.001.

[9] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network traffic analysis in

android based mobile devices,” Proc. - 2014 8th Int. Conf. Next Gener. Mob. Appl. Serv. Technol.

NGMAST 2014, pp. 66–71, 2014, doi: 10.1109/NGMAST.2014.57.

[10] M. McLaughlin, “"Android Versions Guide: Everything You Need to Know”.”

137

https://www.lifewire.com/android-versions-4173277.

[11] J. Gao, L. Li, P. Kong, T. F. Bissyande, and J. Klein, “Understanding the Evolution of Android

App Vulnerabilities,” IEEE Trans. Reliab., vol. 70, no. 1, pp. 212–230, 2021, doi:

10.1109/TR.2019.2956690.

[12] T. Alladi, V. Chamola, B. Sikdar, and K. K. R. Choo, “Consumer IoT: Security Vulnerability Case

Studies and Solutions,” IEEE Consum. Electron. Mag., vol. 9, no. 2, pp. 17–25, 2020, doi:

10.1109/MCE.2019.2953740.

[13] R. Afzal and R. K. Murugesan, “Implementation of a Malicious Traffic Filter Using Snort and

Wireshark as a Proof of Concept to Enhance Mobile Network Security,” 2022.

[14] R. M. Abdullah, A. Z. Abualkishik, N. M. Isaacc, A. A. Alwan, and Y. Gulzar, “An investigation

study for risk calculation of security vulnerabilities on android applications,” Indones. J. Electr.

Eng. Comput. Sci., vol. 25, no. 3, pp. 1736–1748, 2022, doi: 10.11591/ijeecs.v25.i3.pp1736-1748.

[15] B. Yang, R. Chen, K. Huang, J. Yang, and W. Gao, “Eavesdropping User Credentials via GPU

Side Channels on Smartphones,” in International Conference on Architectural Support for

Programming Languages and Operating Systems - ASPLOS, 2022, pp. 285–299, doi:

10.1145/3503222.3507757.

[16] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of Repackaged Android Malware

with Code-Heterogeneity Features,” IEEE Trans. Dependable Secur. Comput., vol. 17, no. 1, pp.

64–77, 2020, doi: 10.1109/TDSC.2017.2745575.

[17] W. Wang et al., “Constructing Features for Detecting Android Malicious Applications: Issues,

Taxonomy and Directions,” IEEE Access, vol. 7, pp. 67602–67631, 2019, doi:

10.1109/ACCESS.2019.2918139.

[18] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “DAPASA: Detecting Android Piggybacked

Apps Through Sensitive Subgraph Analysis,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 8,

pp. 1772–1785, 2017, doi: 10.1109/TIFS.2017.2687880.

[19] H. J. Zhu, T. H. Jiang, B. Ma, Z. H. You, W. L. Shi, and L. Cheng, “HEMD: a highly efficient

random forest-based malware detection framework for Android,” Neural Comput. Appl., vol.

30, no. 11, pp. 3353–3361, Dec. 2018, doi: 10.1007/s00521-017-2914-y.

[20] X. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect: Android malware detection based on parallel

machine learning and information fusion,” Secur. Commun. Networks, vol. 2017, 2017, doi:

10.1155/2017/6451260.

138

[21] L. Cen, C. S. Gates, L. Si, and N. Li, “A Probabilistic Discriminative Model for Android Malware

Detection with Decompiled Source Code,” IEEE Trans. Dependable Secur. Comput., vol. 12, no.

4, pp. 400–412, 2015, doi: 10.1109/TDSC.2014.2355839.

[22] G. Tao, Z. Zheng, S. Member, Z. Guo, and M. R. Lyu, “MalPat : Mining Patterns of Malicious and

Benign,” IEEE Trans. Reliab., pp. 1–15, 2017, doi: 10.1109/TR.2017.2778147.

[23] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A Combination Method for Android Malware

Detection Based on Control Flow Graphs and Machine Learning Algorithms,” IEEE Access, vol.

7, no. c, pp. 21235–21245, 2019, doi: 10.1109/ACCESS.2019.2896003.

[24] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant Permission Identification for

Machine-Learning-Based Android Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14,

no. 7, pp. 3216–3225, 2018, doi: 10.1109/TII.2017.2789219.

[25] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android malware

classification,” Comput. Electr. Eng., vol. 61, pp. 266–274, 2017, doi:

10.1016/j.compeleceng.2017.02.013.

[26] H. Kang, J. W. Jang, A. Mohaisen, and H. K. Kim, “Detecting and classifying android malware

using static analysis along with creator information,” Int. J. Distrib. Sens. Networks, vol. 2015,

2015, doi: 10.1155/2015/479174.

[27] A. Narayanan, S. Member, M. Chandramohan, and S. Member, “Context-Aware , Adaptive , and

Scalable Android,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 1, no. 3, pp. 157–175, 2017.

[28] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, “DroidEnsemble: Detecting Android

Malicious Applications with Ensemble of String and Structural Static Features,” IEEE Access,

vol. 6, no. c, pp. 31798–31807, 2018, doi: 10.1109/ACCESS.2018.2835654.

[29] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning method for android

malware detection using various features,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp.

773–788, 2019, doi: 10.1109/TIFS.2018.2866319.

[30] M. Fan et al., “Android malware familial classification and representative sample selection via

frequent subgraph analysis,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 8, pp. 1890–1905,

2018, doi: 10.1109/TIFS.2018.2806891.

[31] S. Y. Yerima and S. Sezer, “DroidFusion: A Novel Multilevel Classifier Fusion Approach for

Android Malware Detection,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 453–466, 2019, doi:

10.1109/TCYB.2017.2777960Y.

139

[32] A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android Malware Detection Using Permission

Pairs,” IEEE Trans. Inf. Forensics Secur., vol. 15, no. 8, pp. 1968–1982, 2020, doi:

10.1109/TIFS.2019.2950134.

[33] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android malicious apps and

categorizing benign apps with ensemble of classifiers,” Futur. Gener. Comput. Syst., vol. 78, pp.

987–994, 2018, doi: 10.1016/j.future.2017.01.019.

[34] J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan, and L. Wang, “An integrated static detection and

analysis framework for android,” Pervasive Mob. Comput., vol. 32, pp. 15–25, 2016, doi:

10.1016/j.pmcj.2016.03.003.

[35] J. Qiu et al., “A3CM: Automatic Capability Annotation for Android Malware,” IEEE Access, vol.

7, pp. 147156–147168, 2019, doi: 10.1109/ACCESS.2019.2946392.

[36] O. Olukoya, L. Mackenzie, and I. Omoronyia, “Security-oriented view of app behaviour using

textual descriptions and user-granted permission requests,” Comput. Secur., vol. 89, p. 101685,

2020, doi: 10.1016/j.cose.2019.101685.

[37] S. Alam, S. A. Alharbi, and S. Yildirim, “Mining nested flow of dominant APIs for detecting

android malware,” Comput. Networks, vol. 167, p. 107026, 2020, doi:

10.1016/j.comnet.2019.107026.

[38] R. Mateless, D. Rejabek, O. Margalit, and R. Moskovitch, “Decompiled APK based malicious

code classification,” Futur. Gener. Comput. Syst., vol. 110, pp. 135–147, 2020, doi:

10.1016/j.future.2020.03.052.

[39] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng, “DroidDet: Effective and robust

detection of android malware using static analysis along with rotation forest model,”

Neurocomputing, vol. 272, pp. 638–646, 2018, doi: 10.1016/j.neucom.2017.07.030.

[40] A. Alotaibi, “Identifying Malicious Software Using Deep Residual Long-Short Term Memory,”

IEEE Access, vol. 7, pp. 163128–163137, 2019, doi: 10.1109/ACCESS.2019.2951751.

[41] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based Malware Detection on Android,” IEEE

Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1252–1264, 2016, doi:

10.1109/TIFS.2016.2523912.

[42] H. Peng et al., “Using probabilistic generative models for ranking risks of Android apps,” Proc.

ACM Conf. Comput. Commun. Secur., pp. 241–252, 2012, doi: 10.1145/2382196.2382224.

[43] Y. Zhou, X. Jiang, and A. Nazish, “Dissecting Android Malware : Characterization and Evolution

140

Summarized by : Nazish Asad,” Proc. - IEEE Symp. Secur. Priv., no. 4, pp. 95–109, 2011.

[44] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level features for robust malware

detection in android,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 127

LNICST, pp. 86–103, 2013, doi: 10.1007/978-3-319-04283-1_6.

[45] “VIRUS SHARE 2020.” [Online]. Available: https://virusshare.com.

[46] “Anzhi market 2020.” [Online]. Available: http://www.anzhi.com.

[47] “Lenovomm market 2020.” [Online]. Available: http://www.lenovomm.com.

[48] “Wandoujia market 2020.” [Online]. Available: http://www.wandoujia.com.

[49] H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: Effective android malware detection and

categorization via app-level profiling,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 6, pp.

1455–1470, 2019, doi: 10.1109/TIFS.2018.2879302.

[50] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient

Behavior-based Android Malware Detection and Prevention,” IEEE Trans. Dependable Secur.

Comput., vol. 15, no. 1, pp. 83–97, 2018, doi: 10.1109/TDSC.2016.2536605.

[51] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware detection system

with ensemble learning,” IEEE Access, vol. 6, no. c, pp. 30996–31011, 2018, doi:

10.1109/ACCESS.2018.2844349.

[52] A. Martín, V. Rodríguez-Fernández, and D. Camacho, “CANDYMAN: Classifying Android

malware families by modelling dynamic traces with Markov chains,” Eng. Appl. Artif. Intell.,

vol. 74, no. July 2017, pp. 121–133, 2018, doi: 10.1016/j.engappai.2018.06.006.

[53] T. Bhatia and R. Kaushal, “Malware detection in android based on dynamic analysis,” 2017 Int.

Conf. Cyber Secur. Prot. Digit. Serv. Cyber Secur. 2017, 2017, doi:

10.1109/CyberSecPODS.2017.8074847.

[54] L. Singh and M. Hofmann, “Dynamic behavior analysis of android applications for malware

detection,” ICCT 2017 - Int. Conf. Intell. Commun. Comput. Tech., vol. 2018-Janua, no. 2013,

pp. 1–7, 2018, doi: 10.1109/INTELCCT.2017.8324010.

[55] S. Zhang and X. Xiao, “CSCdroid: Accurately Detect Android Malware via Contribution-Level-

Based System Call Categorization,” Proc. - 16th IEEE Int. Conf. Trust. Secur. Priv. Comput.

Commun. 11th IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Conf. Embed. Softw. Syst., no.

1, pp. 193–200, 2017, doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.237.

[56] S. D. Yalew, G. Q. Maguire, S. Haridi, and M. Correia, “T2Droid: A trustzone-based dynamic

141

analyser for android applications,” Proc. - 16th IEEE Int. Conf. Trust. Secur. Priv. Comput.

Commun. 11th IEEE Int. Conf. Big Data Sci. Eng. 14th IEEE Int. Conf. Embed. Softw. Syst., no.

Vm, pp. 240–247, 2017, doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.243.

[57] S. Iqbal and M. Zulkernine, “SpyDroid: A Framework for Employing Multiple Real-Time

Malware Detectors on Android,” MALWARE 2018 - Proc. 2018 13th Int. Conf. Malicious

Unwanted Softw., pp. 33–40, 2019, doi: 10.1109/MALWARE.2018.8659365.

[58] M. Jaiswal, Y. Malik, and F. Jaafar, “Android gaming malware detection using system call

analysis,” 6th Int. Symp. Digit. Forensic Secur. ISDFS 2018 - Proceeding, vol. 2018-Janua, pp.

1–5, 2018, doi: 10.1109/ISDFS.2018.8355360.

[59] Z. U. Rehman et al., “Machine learning-assisted signature and heuristic-based detection of

malwares in Android devices,” Comput. Electr. Eng., vol. 69, pp. 828–841, 2018, doi:

10.1016/j.compeleceng.2017.11.028.

[60] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid: A Novel 3-

Level Hybrid Malware Detection Model for Android Operating System,” IEEE Access, vol. 6, pp.

4321–4339, 2018, doi: 10.1109/ACCESS.2018.2792941.

[61] W. Zhang, H. Wang, H. He, and P. Liu, “DAMBA: Detecting Android Malware by ORGB

Analysis,” IEEE Trans. Reliab., vol. 69, no. 1, pp. 55–69, 2020, doi: 10.1109/TR.2019.2924677.

[62] A. T. Kabakus and I. A. Dogru, “An in-depth analysis of Android malware using hybrid

techniques,” Digit. Investig., vol. 24, pp. 25–33, 2018, doi: 10.1016/j.diin.2018.01.001.

[63] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “KronoDroid: Time-based hybrid-featured

dataset for effective android malware detection and characterization,” Comput. Secur., vol. 110,

p. 102399, 2021, doi: 10.1016/j.cose.2021.102399.

[64] X. Wang, Y. Yang, and S. Zhu, “Automated Hybrid Analysis of Android Malware through

Augmenting Fuzzing with Forced Execution,” IEEE Trans. Mob. Comput., vol. 18, no. 12, pp.

2768–2782, 2019, doi: 10.1109/TMC.2018.2886881.

[65] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid: A Novel 3-

Level Hybrid Malware Detection Model for Android Operating System,” IEEE Access, vol. 6, pp.

4321–4339, Jan. 2018, doi: 10.1109/ACCESS.2018.2792941.

[66] W. C. Kuo, T. P. Liu, and C. C. Wang, “Study on android hybrid malware detection based on

machine learning,” 2019 IEEE 4th Int. Conf. Comput. Commun. Syst. ICCCS 2019, pp. 31–35,

2019, doi: 10.1109/CCOMS.2019.8821665.

142

[67] S. J. Hussain, U. Ahmed, H. Liaquat, S. Mir, N. Z. Jhanjhi, and M. Humayun, “IMIAD:

Intelligent malware identification for android platform,” 2019 Int. Conf. Comput. Inf. Sci. ICCIS

2019, pp. 1–6, 2019, doi: 10.1109/ICCISci.2019.8716471.

[68] D. C. Alejandro Martín, Raúl Lara-Cabrera, “Android malware detection through hybrid features

fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid dataset,” Inf.

Fusion, vol. 52, no. 2019, pp. 128–142, 2020, doi: https://doi.org/10.1016/j.inffus.2018.12.006.

[69] Q. Fang, X. Yang, and C. Ji, “A hybrid detection method for android malware,” Proc. 2019 IEEE

3rd Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, no. Itnec, pp. 2127–

2132, 2019, doi: 10.1109/ITNEC.2019.8729017.

[70] C. Ding, N. Luktarhan, B. Lu, and W. Zhang, “A hybrid analysis-based approach to android

malware family classification,” Entropy, vol. 23, no. 8, 2021, doi: 10.3390/e23081009.

[71] A. T. KABAKUŞ, “Hybroid: A Novel Hybrid Android Malware Detection Framework,” Erzincan

Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 14, no. 1, pp. 331–356, 2021, doi:

10.18185/erzifbed.806683.

[72] A. Karim, V. Chang, and A. Firdaus, “Android botnets: A proof-of-concept using hybrid analysis

approach,” J. Organ. End User Comput., vol. 32, no. 3, pp. 50–67, 2020, doi:

10.4018/JOEUC.2020070105.

[73] M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor, “The dark side(-Channel) of Mobile Devices: A

survey on network traffic analysis,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2658–

2713, 2018, doi: 10.1109/COMST.2018.2843533.

[74] B. Saltaformaggio et al., “Eavesdropping on fine-grained user activities within smartphone apps

over encrypted network traffic,” 10th USENIX Work. Offensive Technol. WOOT 2016, 2016.

[75] E. Vanrykel, G. Acar, M. Herrmann, and C. Diaz, “Leaky birds: Exploiting mobile application

traffic for surveillance,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 9603 LNCS, pp. 367–384, 2017, doi: 10.1007/978-3-662-

54970-4_22.

[76] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting data-usage statistics for

website fingerprinting attacks on android,” WiSec 2016 - Proc. 9th ACM Conf. Secur. Priv.

Wirel. Mob. Networks, pp. 49–60, 2016, doi: 10.1145/2939918.2939922.

[77] Nancy, “Android Malware Detection using Decision Trees and Network Traffic,” Int. J. Comput.

Sci. Inf. Technol., vol. 7, no. 4, pp. 1970–1974, 2016, [Online]. Available:

143

http://ijcsit.com/docs/Volume 7/vol7issue4/ijcsit2016070467.pdf.

[78] E. Papadogiannaki and S. Ioannidis, “A Survey on Encrypted Network Traffic Analysis

Applications, Techniques, and Countermeasures,” ACM Comput. Surv., vol. 54, no. 6, 2021, doi:

10.1145/3457904.

[79] I. Voronov and K. Gnezdilov, “Determining OS and Applications by DNS Traffic Analysis,” Proc.

2021 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2021, pp. 72–76, 2021, doi:

10.1109/ElConRus51938.2021.9396085.

[80] S. Mongkolluksamee, V. Visoottiviseth, and K. Fukuda, “Combining communication patterns &

traffic patterns to enhance mobile traffic identification performance,” J. Inf. Process., vol. 24,

no. 2, pp. 247–254, 2016, doi: 10.2197/ipsjjip.24.247.

[81] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust Smartphone App Identification via

Encrypted Network Traffic Analysis,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 1, pp. 63–

78, 2018, doi: 10.1109/TIFS.2017.2737970.

[82] Y. Huang, B. Li, M. Barni, and J. Huang, “Identification of VoIP Speech with Multiple Domain

Deep Features,” IEEE Trans. Inf. Forensics Secur., vol. 15, no. c, pp. 2253–2267, 2020, doi:

10.1109/TIFS.2019.2960635.

[83] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted traffic classification using

deep learning: Experimental evaluation, lessons learned, and challenges,” IEEE Trans. Netw.

Serv. Manag., vol. 16, no. 2, pp. 445–458, Jun. 2019, doi: 10.1109/TNSM.2019.2899085.

[84] N. Malik, J. Chandramouli, P. Suresh, K. Fairbanks, L. Watkins, and W. H. Robinson, “Using

network traffic to verify mobile device forensic artifacts,” 2017 14th IEEE Annu. Consum.

Commun. Netw. Conf. CCNC 2017, pp. 114–119, 2017, doi: 10.1109/CCNC.2017.7983091.

[85] S. E. Coull and K. P. Dyer, “Traffic Analysis of Encrypted Messaging Services,” ACM SIGCOMM

Comput. Commun. Rev., vol. 44, no. 5, pp. 5–11, 2014, doi: 10.1145/2677046.2677048.

[86] Y. Song and U. Hengartner, “PrivacyGuard: A VPN-based platform to detect information leakage

on android devices,” SPSM 2015 - Proc. 5th Annu. ACM CCS Work. Secur. Priv. Smartphones

Mob. Devices, co-located with CCS 2015, pp. 15–26, 2015, doi: 10.1145/2808117.2808120.

[87] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine learning classifiers

for mobile malware detection,” Soft Comput., vol. 20, no. 1, pp. 343–357, 2016, doi:

10.1007/s00500-014-1511-6.

[88] S. Wang et al., “TrafficAV: An effective and explainable detection of mobile malware behavior

144

using network traffic,” 2016 IEEE/ACM 24th Int. Symp. Qual. Serv. IWQoS 2016, 2016, doi:

10.1109/IWQoS.2016.7590446.

[89] A. Arora and S. K. Peddoju, “NTPDroid: A Hybrid Android Malware Detector Using Network

Traffic and System Permissions,” Proc. - 17th IEEE Int. Conf. Trust. Secur. Priv. Comput.

Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust. 2018, pp. 808–813, 2018, doi:

10.1109/TrustCom/BigDataSE.2018.00115.

[90] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah, “Android malware detection based on

network traffic using decision tree algorithm,” Adv. Intell. Syst. Comput., vol. 700, pp. 485–494,

2018, doi: 10.1007/978-3-319-72550-5_46.

[91] Y. Pang et al., “Finding Android Malware Trace from Highly Imbalanced Network Traffic,” in

Proceedings - 2017 IEEE International Conference on Computational Science and Engineering

and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and

EUC 2017, Aug. 2017, vol. 1, pp. 588–595, doi: 10.1109/CSE-EUC.2017.108.

[92] Z. Cheng, X. Chen, Y. Zhang, S. Li, and Y. Sang, “Detecting Information Theft Based on Mobile

Network Flows for Android Users,” 2017 IEEE Int. Conf. Networking, Archit. Storage, NAS 2017

- Proc., 2017, doi: 10.1109/NAS.2017.8026853.

[93] L. Watkins, A. L. Kalathummarath, and W. H. Robinson, “Network-based detection of mobile

malware exhibiting obfuscated or silent network behavior,” CCNC 2018 - 2018 15th IEEE Annu.

Consum. Commun. Netw. Conf., vol. 2018-Janua, pp. 1–4, 2018, doi:

10.1109/CCNC.2018.8319162.

[94] S. Wang et al., “Deep and Broad Learning Based Detection of Android Malware via Network

Traffic,” 2018 IEEE/ACM 26th Int. Symp. Qual. Serv. IWQoS 2018, 2019, doi:

10.1109/IWQoS.2018.8624143.

[95] S. Wei, P. Jiang, Q. Yuan, and J. Wang, “Mobile Application Network Behavior Detection and

Evaluation with WGAN and Bi-LSTM,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON,

vol. 2018-Octob, no. 61472189, pp. 44–49, 2019, doi: 10.1109/TENCON.2018.8650372.

[96] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network traffic analysis in

android based mobile devices,” in Proceedings - 2014 8th International Conference on Next

Generation Mobile Applications, Services and Technologies, NGMAST 2014, Dec. 2014, pp. 66–

71, doi: 10.1109/NGMAST.2014.57.

[97] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici, “Mobile

145

malware detection through analysis of deviations in application network behavior,” Comput.

Secur., vol. 43, pp. 1–18, 2014, doi: 10.1016/j.cose.2014.02.009.

[98] A. Arora and S. K. Peddoju, “Minimizing network traffic features for Android mobile malware

detection,” Jan. 2017, doi: 10.1145/3007748.3007763.

[99] S. Esmaeili and H. R. Shahriari, “PodBot: A New Botnet Detection Method by Host and Network-

Based Analysis,” ICEE 2019 - 27th Iran. Conf. Electr. Eng., pp. 1900–1904, 2019, doi:

10.1109/IranianCEE.2019.8786432.

[100] A. Liu, Z. Chen, S. Wang, L. Peng, C. Zhao, and Y. Shi, “A fast and effective detection of mobile

malware behavior using network traffic,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018,

vol. 11337 LNCS, pp. 109–120, doi: 10.1007/978-3-030-05063-4_10.

[101] L. Liu, X. Huang, A. Zhou, P. Jia, and L. Liu, “Fuzzing the Android Applications with

HTTP/HTTPS Network Data,” IEEE Access, vol. 7, pp. 59951–59962, 2019, doi:

10.1109/ACCESS.2019.2915339.

[102] S. Wang et al., “Deep and broad URL feature mining for android malware detection,” Inf. Sci.

(Ny)., vol. 513, pp. 600–613, Mar. 2020, doi: 10.1016/j.ins.2019.11.008.

[103] A. Arora and S. K. Peddoju, “NTPDroid: A Hybrid Android Malware Detector Using Network

Traffic and System Permissions,” in Proceedings - 17th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications and 12th IEEE International

Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018, Sep. 2018, pp.

808–813, doi: 10.1109/TrustCom/BigDataSE.2018.00115.

[104] Z. Li, L. Sun, Q. Yan, and W. Srisa-an, “DroidClassi fi er : Ef fi cient Adaptive Mining of

Application-Layer Header for Classifying Android Malware,” vol. 1, pp. 597–616, 2017, doi:

10.1007/978-3-319-59608-2.

[105] Q. Li et al., MulAV: Multilevel and explainable detection of android malware with data fusion,

vol. 11337 LNCS, no. 2016. Springer International Publishing, 2018.

[106] X. Su, J. Lin, F. Shen, and Y. Zheng, Two-phases detection scheme: Detecting android malware

in android markets, vol. 842. Springer International Publishing, 2019.

[107] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah, “Android malware detection based on

network traffic using decision tree algorithm,” in Advances in Intelligent Systems and

Computing, 2018, vol. 700, pp. 485–494, doi: 10.1007/978-3-319-72550-5_46.

146

[108] J. Malik and R. Kaushal, “CREDROID: Android malware detection by network traffic analysis,”

in PAMCO 2016 - Proceedings of the 2nd MobiHoc International Workshop on Privacy-Aware

Mobile Computing, Jul. 2016, pp. 28–36, doi: 10.1145/2940343.2940348.

[109] S. Wang et al., “Deep and broad URL feature mining for android malware detection,” Inf. Sci.

(Ny)., vol. 513, pp. 600–613, 2020, doi: 10.1016/j.ins.2019.11.008.

[110] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A mobile malware detection method

using behavior features in network traffic,” J. Netw. Comput. Appl., vol. 133, pp. 15–25, May

2019, doi: 10.1016/j.jnca.2018.12.014.

[111] I. J. Sanz and M. A. Lopez, “A Lightweight Network-based Android Malware Detection System,”

pp. 695–703, 2020.

[112] M. Alshehri, “APP ‑ NTS : a network traffic similarity ‑ based framework for repacked Android

apps detection,” no. Aleieldin 2018, pp. 1–10, 2021.

[113] V. Sihag, G. Choudhary, M. Vardhan, P. Singh, and J. T. Seo, “PICAndro : Packet InspeCtion-

Based Android Malware Detection,” vol. 2021, 2021.

[114] A. Arora and S. K. Peddoju, “NTPDroid: A Hybrid Android Malware Detector Using Network

Traffic and System Permissions,” Proc. - 17th IEEE Int. Conf. Trust. Secur. Priv. Comput.

Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust. 2018, pp. 808–813, 2018, doi:

10.1109/TrustCom/BigDataSE.2018.00115.

[115] “Baidu Mobile Assistant 2020.” [Online]. Available: https://shouji.baidu.com/.

[116] S. Kandukuru and R. M. Sharma, Android malicious application detection using permission

vector and network traffic analysis, vol. 2017-Janua. 2017.

[117] S. Nepal and M. V Ramakrishna, “NeSeDroid- Android Malware Detection Based on Network

Traffic and Sensitive Resource Accessing,” in Proceedings of the International Conference on

Data Engineering, 1999, pp. 22–31, doi: 10.1007/978-981-10-1678-3.

[118] A. H. Lashkari, A. F. Akadir, H. Gonzalez, K. F. Mbah, and A. A. Ghorbani, “Towards a network-

based framework for android malware detection and characterization,” Proc. - 2017 15th Annu.

Conf. Privacy, Secur. Trust. PST 2017, no. Cic, pp. 233–242, 2018, doi:

10.1109/PST.2017.00035.

[119] Z. Chen et al., “A first look at android malware traffic in first few minutes,” Proc. - 14th IEEE

Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2015, vol. 1, pp. 206–213, 2015, doi:

10.1109/Trustcom.2015.376.

147

[120] A. Feizollah, N. B. Anuar, R. Salleh, and F. Amalina, Comparative study of k-means and mini

batch k-means clustering algorithms in android malware detection using network traffic

analysis. 2015.

[121] C. H. Kim, “Security analysis of YKHL distance bounding protocol with adjustable false

acceptance rate,” IEEE Commun. Lett., vol. 15, no. 10, pp. 1078–1080, 2011, doi:

10.1109/LCOMM.2011.080811.111299.

[122] S. Sumriddetchkajorn and Y. Intaravanne, “Data-nonintrusive photonics-based credit card

verifier with a low false rejection rate,” Appl. Opt., vol. 49, no. 5, pp. 764–771, 2010, doi:

10.1364/AO.49.000764.

[123] M. E. Schuckers, Receiver Operating Characteristic Curve and Equal Error Rate. 2010.

[124] G. O. Williams, “Use of d’ as a `decidability’ index,” IEEE Annu. Int. Carnahan Conf. Secur.

Technol. Proc., pp. 65–69, 1996.

[125] W. Zhu, N. Zeng, and N. Wang, “Sensitivity, specificity, accuracy, associated confidence interval

and ROC analysis with practical SAS® implementations.,” Northeast SAS Users Gr. 2010 Heal.

Care Life Sci., pp. 1–9, 2010.

[126] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware detection using ensemble

learning,” IET Inf. Secur., vol. 9, no. 6, pp. 313–320, 2015, doi: 10.1049/iet-ifs.2014.0099.

[127] H. Huang, H. Xu, X. Wang, and W. Silamu, “Maximum F1-score discriminative training criterion

for automatic mispronunciation detection,” IEEE/ACM Trans. Audio Speech Lang. Process.,

vol. 23, no. 4, pp. 787–797, 2015, doi: 10.1109/TASLP.2015.2409733.

[128] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin: Effective and

Explainable Detection of Android Malware in Your Pocket,” no. February, pp. 23–26, 2014, doi:

10.14722/ndss.2014.23247.

[129] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of current android

malware,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 10327 LNCS, pp. 252–276, 2017, doi: 10.1007/978-3-319-60876-1_12.

[130] “GOOGLE PLAY STORE, 2021.” [Online]. Available: https://play.google.com/store.

[131] L. Li et al., “AndroZoo++: Collecting millions of android apps and their metadata for the

research community,” arXiv, pp. 468–471, 2017.

[132] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani, “Dynamic Android

Malware Category Classification using Semi-Supervised Deep Learning,” Comput. IEEE 6th Int.

148

Conf. Cloud Big Data Comput. IEEE 5th Cybe, pp. 515–522, 2020, doi: 10.1109/DASC-PICom-

CBDCom-CyberSciTech49142.2020.00094.

[133] S. Kumar, S. Indu, and G. S. Walia, “Recent Advances in Android Malware Detection- A Survey.,”

2020. Proc. - First Int. Conf. on Communication , Computing and Signal Processing, NIT,

Jalandhar, Punjab,India

[134] S. Kumar, S. Indu, and G. S. Walia, “Smartphone Traffic Analysis: A Contemporary Survey of

the State-of-the-Art,” in Advances in Intelligent Systems and Computing, 2021, vol. 1262, pp.

325–343, doi: 10.1007/978-981-15-8061-1_26.

[135] Hardware Features, https://developer.android.com/ guide/topics/manifest/uses-feature-

element#hw-features (visited on May 20,2022)

[136] López, Christian Camilo et. al. “Features to Detect Android Malware.” 2018 IEEE Colombian

Conference on Communications and Computing (COLCOM) (2018): 1-6.

[137] G. S. Walia, H. Ahuja, A. Kumar, N. Bansal, and K. Sharma, “Unified Graph-Based Multicue

Feature Fusion for Robust Visual Tracking,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2357–2368,

2020, doi: 10.1109/TCYB.2019.2920289.

[138] T. Denœux and M.-H. Masson, “Dempster-Shafer Reasoning in Large Partially Ordered Sets:

Applications in Machine Learning,” pp. 39–54, 2010, doi: 10.1007/978-3-642-11960-6_5.

[139] B. Wang, J. Jiang, W. Wang, Z. H. Zhou, and Z. Tu, “Unsupervised metric fusion by cross

diffusion,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2997–3004,

2012, doi: 10.1109/CVPR.2012.6248029.

[140] T. Tong, K. Gray, Q. Gao, L. Chen, and D. Rueckert, “Multi-modal classification of Alzheimer’s

disease using nonlinear graph fusion,” Pattern Recognit., vol. 63, pp. 171–181, 2017, doi:

10.1016/j.patcog.2016.10.009.

[141] Y. Du, X. Wang, and J. Wang, “A static Android malicious code detection method based on multi-

source fusion,” Secur. Commun. Networks, vol. 8, no. 17, pp. 3238–3246, Nov. 2015, doi:

10.1002/sec.1248.

[142] F. Xiao, “A new divergence measure for belief functions in D–S evidence theory for multisensor

data fusion,” Inf. Sci. (Ny)., vol. 514, no. xxxx, pp. 462–483, 2020, doi:

10.1016/j.ins.2019.11.022.

[143] X. Jiang, B. Mao, J. Guan, and X. Huang, “Android Malware Detection Using Fine-Grained

Features,” Sci. Program., vol. 2020, 2020, doi: 10.1155/2020/5190138.

149

[144] X. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect: Android malware detection based on parallel

machine learning and information fusion,” Secur. Commun. Networks, vol. 2017, 2017, doi:

10.1155/2017/6451260.

[145] S. Kumar, S. Indu, and G. S. Walia, “An Efficient Multistage Fusion Approach for Smartphone

Security Analysis,” Def. Sci. J., vol. 71, no. 4, pp. 476–490, 2021, doi: 10.14429/dsj.71.15077.

[146] “Statista, Application in Google Playstore.,” 2020.

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-

play-store/ (accessed Feb. 20, 2021).

[147] “Statista, Development of new Android malware worldwide from June 2016 to March 2020,”

2020. https://www.statista.com/statistics/680705/global-android-malware-volume/

(accessed Feb. 20, 2021).

[148] “CrowdStrike Mobile Threat Report.,” 2020. https://www.crowdstrike.com/blog/mobile-

threat-report-2019-trends-and-recommendations/ (accessed Feb. 20, 2020).

[149] Y. Bai and D. Wang, “Fundamentals of Fuzzy Logic Control — Fuzzy Sets, Fuzzy Rules and

Defuzzifications BT - Advanced Fuzzy Logic Technologies in Industrial Applications,” pp. 17–36,

2006.

[150] M. Mizumoto, “Defuzzification methods,” Handb. Fuzzy Comput., pp. 1–7, 2004, doi:

10.1887/0750304278/b438c24.

[151] S. Kumar, S. Indu, and G. S. Walia, “Optimal Unification of Static and Dynamic Features for

Smartphone Security Analysis,” Intell. Autom. Soft Comput., vol. 33, no. 4, 2022, doi:

10.32604/iasc.2022.024469.

[152] “Percentage of Mobile Device Traffic, 2021, Statistica.”

https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-

devices/ (accessed Jul. 06, 2021).

[153] J. Smarandache, Florentin & Dezert, Advances and Applications of DSmT for Information

Fusion, American Research Press, 4. 2015.

[154] A. Liu, Z. Chen, S. Wang, L. Peng, C. Zhao, and Y. Shi, A fast and effective detection of mobile

malware behavior using network traffic, vol. 11337 LNCS, no. 2016. Springer International

Publishing, 2018.

[155] S. Kumar, S. Indu, and G. G. . Walia, “A Novel Traffic based Approach for Smartphone Security

Analysis,” Def. Sci. J., vol. 72, no. 2, 2022, doi: 10.14429/dsj.72.17522.

150

Appendix-A

List of Publications

1. Sumit Kumar, S. Indu, Gurjit Singh Walia (2021), “An Efficient

Multistage Fusion Approach for Smartphone Security analysis”,

Defence Science Journal, SCIE, Vol. 71(4), pp 476-490,

DOI:10.14429/dsj.71.15077

2. Sumit Kumar, S. Indu, Gurjit Singh Walia (2022), “Optimal

Unification of Static and Dynamic Features for Smartphone

Security Analysis”, Journal of Intelligent Automation and Soft

Computing, SCIE, Vol. 35(1), pp 1035-1051

DOI: 10.32604/iasc.2022.024469.

3. Sumit Kumar, S. Indu, Gurjit Singh Walia (2022), “A Novel Traffic

based Framework for Smartphone Security Analysis” Defence

Science Journal, SCIE , vol. 72(3), pp 371-382,

DOI: 10.14429/dsj.72.17522.

4. Sumit Kumar, S. Indu, Gurjit Singh Walia (2020), “Smartphone

Traffic Analysis: A Contemporary Survey of the State-of-the-Art”,

International Conference on Mathematics and Computing - (ICMC-2020)

DOI: 10.1007/978-981-15-8061-1_26 44

5. Sumit Kumar, S. Indu, Gurjit Singh Walia (2020), “Recent Advances

in Android Malware Detection- A Survey”, International Conference

on Communication, Computing and Signal Processing - (CCSP 2020)

(Presented and Accepted for Publication.)

151

 Appendix-B

Biodata

Sumit Kumar completed his B.E (First class with distinction) and M.E (First

class with distinction) degrees in Electronics and Communication Engineering

from Delhi College of Engineering, Delhi University, Delhi in 1996 and

2004 respectively. Presently, he holds the position of Scientist ‘F’ in Scientific

Analysis Group, DRDO, Ministry of Defence, Government of India. He has

worked in the field of Mobile Security, Secure Communication, Machine

Learning and Hardware Analysis. He has prepared more than 50 technical

reports. He joined Delhi Technological University, New Delhi as a part time

Ph.D. Scholar in Electronics and Communication department under the

supervision of Prof. S.Indu and Dr. Gurjit Singh Walia in 2017. His

current research focuses on smartphone security analysis. He has proposed

various robust and efficient methods in this research area.

