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Abstract  

 

Security investigations on smartphone platform is an interesting field of mobile 

security. Amongst different smartphone platforms available in the smartphone 

ecosystem, Android is the most widespread platform because of its open architecture. 

Unluckily, android based smartphones have progressively turned into the key target 

of the attackers, thereby enforcing urgency for security investigations.  Vulnerabilities 

in the android smartphone platform occur due to numerous weaknesses inherent in 

the smartphone's software, hardware, OS, firmware, and applications. These 

weaknesses are exploited by the attackers to extract sensitive information by 

articulating a plethora of attacks. The rising popularity of apps has enticed attackers 

to design malicious apps (malapps) to extract critical information such as banking 

credentials, social networking passwords, official documents, contacts, etc.  

These malapps are evolving and using novel techniques to target smartphones. These 

malapps are designed to evade detection and mitigation techniques. The traditional 

detection tools trust mostly on signature-oriented approaches and hence are not able 

to recognise sophisticated malapps. Thus, there is a need to design techniques for 

improved malapp identification and classification. There is also dearth of adequate 

research on scrutinising the threats posed by malapps.  

The main aim of this study is to address these issues and offer powerful solutions. A 

lot of solutions have been proposed based on the static, dynamic, hybrid, and traffic 

analysis approaches. But designing and developing a robust framework by fusing the 

various static, dynamic, and traffic features is tiresome and demands further research. 

Therefore, it is indispensable to develop solutions encompassing both feature and 
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score level fusion that can handle the challenges in the detection of various malicious 

applications.  

Feature fusion comprises an optimal fusion of various static, dynamic, and traffic 

features resulting in a unified feature.  This unified feature is fed to the ensemble of 

parallel classifiers and their respective scores are optimally fused. The objective of this 

thesis is to suggest robust static, hybrid, and traffic-based frameworks to detect the 

vulnerabilities in smartphone platform.  

To address the issues in the static analysis, a smartphone security analysis technique 

based on the amalgamation of multiple static features followed by fusion of scores of 

three classifiers connected in parallel has been proposed. The performance of the 

proposed static analysis technique is experimentally validated using chimeric 

databases.  

But the static analysis approaches fail to detect run-time behaviours of malapps. To 

address this issue and an optimal unification of static and dynamic features for 

smartphone security analysis has been proposed. The proposed solution exploits both 

static and dynamic features for generating a highly distinct unified feature vector using 

graph-based methods. Further, a unified feature is subjected to the fuzzy-based 

classification model to distinguish benign and malicious applications. The suggested 

framework is extensively experimentally validated through both qualitative and 

quantitative analysis and results are compared with the existing solutions. 

Performance evaluation over benchmarked datasets revealed that the suggested 

solution outperforms state-of-the-art methods.  

Some malicious applications are detected solely on the traffic based characteristics. 

There are multitude of traffic features that can be exploited for detection of malapps. 
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But the fusion of complementary traffic features are not exploited till date for the 

detection of malapps.  To address the traffic analysis problem, a novel traffic feature 

based analysis framework wherein multiple traffic features are optimally combined to 

generate unified feature for the detection of unintended functionality has been 

proposed. Generated unified feature is then given to classifiers to get corresponding 

classifier scores. The score fusion method is further employed to get the final score for 

the detection of unintended functionality arising out of the malicious application. The 

robustness of the suggested framework when evaluated on the standard datasets 

outperforms contemporary techniques. 

Thus, by developing these novel techniques, all major issues regarding the smartphone 

platform security analysis have been addressed. This thesis incorporates the developed 

techniques and their performance evaluation along with future directions. 
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Chapter 1 

Introduction 

Smartphone security analysis primarily deals with the fortification of a smartphone 

from threats and vulnerabilities posed by anomalies in hardware, software, firmware, 

OS, and applications. In other words, smartphone security analysis or investigations 

mainly deals with finding out the root cause of the security breach and how far it 

compromised or threatened the security of information in the smartphone. The static, 

dynamic, hybrid, and traffic analysis techniques 1are employed for the smartphone 

security analysis. 

The static, dynamic, and hybrid analyses cater only to detecting malicious 

applications. Through traffic analysis, in addition to the malicious application, 

anomalies in the OS, firmware, and hardware are also detected. In static analysis, only 

static features are exploited for the identification of malicious applications. Those 

applications which exhibit malicious behaviour during the run time are analysed by 

dynamic analysis. Both static and dynamic features are exploited in hybrid analysis. It 

is useful for detecting malicious apps that are smart and behaves capriciously. Through 

traffic analysis, traffic features were collected and further exploited to detect the 

malwares and other anomalies in smartphones.  All the static, dynamic, and traffic 

analysis techniques have to be further explored for the smartphone security analysis 

due to the inherent nature of the vulnerabilities in the smartphone ecosystem.  
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The main cause of security breaches in smartphones is malicious apps [1]. Hence, 

smartphone security analysis can broadly be categorized as apps security analysis. 

Many smartphone platforms allow applications to be run on them. The Android, 

Windows Phone, iOS, Blackberry OS, Kai OS etc. are some of the smartphone 

platforms.  

For addressing the issues concerning various aspects of smartphone security analysis, 

we have conducted our research and developed several techniques. 

1.1   Smartphone Security Analysis 

Smartphone has now become an essential part of human life due to their myriad of 

benefits viz. telephony, social networking, banking, e-commerce, messaging, video 

teleconferencing, etc. Android OS Smartphones have captured more than 85.1% [2] of 

the market share. With its openness, popularity, and over-reliance, attacks on the 

Android platform are also engulfing. Since the Android platform permits the 

installation of apps from unconfirmed and third-party sources, it makes the 

circumstances more difficult for the users. Data kept in a smartphone (such as banking 

credentials, social networking passwords, official documents, contacts, etc.) provoke 

assailants to devise methods to obtain this critical data illicitly by employing Android 

malwares such as Trojans, backdoors, worms, botnets, spyware, aggressive adware 

and ransomware [3].  

Generally, malwares are embedded in the popular android apps by repackaging 

techniques [4] to pass these malicious apps as benign apps and make them susceptible 

to malware attacks and security vulnerabilities.  These malapps are produced to 

accomplish diverse attacks like pilfering personal info, transferring messages without 

permission, enticing users to malicious sites, and posing a grave risk to smartphone 



3 
 

operators. To elude detection, malapps are continuously evolving with many variants 

that further take a formidable challenge to identify. Also, the hackers are designing the 

malwares in a way to evade the Machine Learning (ML) classifiers [5]. As a result, 

effective and proficient detection methods are desperately needed to handle the 

growing complexity of Android malware. To tackle the numerous challenges in 

Android malapps detection, the research fraternity has produced voluminous work in 

this arena. 

There are conventionally two methods for the security analysis of smartphone 

platforms viz. Static [6] and Dynamic [7]. Researchers have also proposed a 

combination of static and dynamic methods resulting in the hybrid analysis [8] to 

identify the existence of mobile malware. 

In Static analysis, a source code walkthrough is performed to cater to software-based 

app-related vulnerabilities without the execution of the code. On the other hand, 

dynamic analysis can be performed in two different ways. One is using the execution 

of applications in a sandbox environment and the other way is through traffic analysis. 

The former method deals with software-related vulnerabilities while traffic monitoring 

assists in software as well as hardware-related vulnerabilities/issues such as hardware 

trojans etc. Also, the complexity of open source OS is very high and put a hindrance in 

the analysis of OS-related vulnerabilities through static analysis. This motivates the 

researchers to perform dynamic analysis of smartphones via traffic monitoring which 

is also the key focus of our survey. The classification of the techniques used in the 

security analysis of smartphones is illustrated in Fig 1.1.  
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Figure 1.1: Classification of Smart Phone Platform Security Analysis Techniques 

 

Smartphone traffic monitoring or traffic analysis is a Network traffic analysis. It is the 

process of recording, intercepting, reviewing, and analysing smartphone traffic to 

detect and respond to security threats. This branch of computer science deals with 

inferential methods that are responsible for converting network traces of devices into 

detailed statistics about their users, the apps installed on their devices, and the type of 

traffic/network packets or data that flows through a network. Capturing of network 

traces is done at different layers mainly the application layer, data link layer and at 

different points including within the devices or a Wi-Fi network, and contains 

encrypted content which makes the analysis more challenging. The traffic statistics 

[110] from network traffic analysis help in evaluating and understanding the 

download/upload speeds, origin, destination, size, type, the content of packets, and 

network utilization. Network utilization is basically the ratio of the amount of traffic 
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in the network to the maximum amount that a network can support. Network traffic 

analysis is also used to identify suspicious apps with the help of traffic captured.  

The static solution includes scrutinizing the app without actually running it and uses 

techniques such as disassembly, de-compilation [3]  or pattern matching, and so on. 

It is favourable because of being faster and inexpensive. However, it fails against the 

codes that use transformation, encryption, and polymorphic techniques as well as it is 

unable to detect new malware families and monitor the mal-app behaviour during 

runtime. In contrast, a dynamic solution comprises the execution of the app to take 

account of its run-time behaviour. It includes features of smartphones for instance 

CPU usage and power, and the number of processes running, to find out the existence 

of mal-behaviour. Malapps that download malware at runtime and escape static 

permission-based uncovering can be detected via network traffic. The hybrid analysis 

combines the advantages of both dynamic and static analysis techniques and can give 

in better accuracy. To detect mal-functionality in the apps, it combines run-time data 

extorted from the dynamic investigation into a static analysis algorithm.   

 As shown in Fig 1.1, the static analysis covers the hardware analysis, OS analysis, and 

App analysis. Static analysis of hardware is the identification of the hardware 

components (ROM, RAM, ICs, microcontrollers, FPGA, etc.) along with tracing circuit 

flow diagram with the aid of a multi-meter to understand how the various components 

are interconnected. It gives the idea about the basic functionality of the hardware. 

Static analysis of OS(s) and Application(s) is fundamentally a source code 

walkthrough. Static analysis of application(s) is the extraction of the 

vulnerable/distinguishing features and then devising a model using machine learning 

algorithms to detect the malwares. Under dynamic analysis, application (apps) 

analysis and traffic analysis is done. Dynamic analysis of apps is done by executing the 
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application in the sandbox environment. A sandbox is an inaccessible testing 

atmosphere that allows users to execute programs or open documents without 

disturbing the platform on which they run. Here the software vulnerabilities of the 

applications in the runtime environment are extracted. Traffic analysis [9] of 

smartphone devices also comes under dynamic analysis. Here both the software-based 

and hardware-based vulnerabilities can be studied by analysing the network traffic 

generated by the smartphones. In traffic analysis, apps are run either on a smartphone 

or the emulator, and corresponding traffic generated is captured and stored. From the 

stored traffic, traffic features are extracted to train a machine learning model to detect 

the malapps. The main aim of this research is to analyse the risks and devise the 

solution to mitigate these risks that may arise due to the daily use of the applications 

in smartphones.   

1.2 Thesis Overview  

The thesis comprises of six chapters and a brief description of these chapters is given 

below:  

Chapter 1: This chapter covers the introduction to the topic of smartphone security 

analysis. It will also contain thesis overview, research problem and the objectives of 

the research work. 

Chapter 2: This chapter covers the state-of-the-art techniques developed in existing 

research work on “Some Security investigations on Smartphone Platform”. It will also 

highlights the research gaps in the existing work that has stimulated the development 

of research objectives. In addition, evaluation metrics and benchmark datasets require 

for the performance validation of the proposed frameworks are discussed.  
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Chapter 3: This chapter highlights the details of the methodology adopted to 

accomplish the static analysis based framework. In addition, it will also cover the 

observations and discussion of results.  

Chapter 4: This chapter highlights the details of the methodology adopted to 

accomplish the hybrid analysis framework. The obtained experimental results will also 

be elaborated against the other compared state-of-the-art.  

Chapter 5: This chapter highlights the details of the methodology adopted to 

accomplish the traffic analysis based framework. The experimental results on 

benchmarked datasets were also compared with other comparable method. 

 Chapter 6: This chapter contains the brief summary of all the ideas, observations and 

contributions of the resultants obtained in each objective. Also, the future directions 

are sketched in this chapter. 

1.3 Research Motivation 

Security investigation on the smartphone platform is an imperative field of mobile 

security which mainly aim to detect malapps in the smartphone. A lot of work under 

various malapp detection framework based on static, dynamic and traffic analysis 

approaches has been proposed to keep track android malwares. But it is still open and 

challenging to detect the malapps due to code obfuscation techniques and continuous 

changing nature of the behavioural conditions of the ever evolving malwares in the 

smartphone ecosystem.  To detect such malapps, a single method of smartphone 

security analysis is not sufficient to provide robust detection solutions. Most of the 

available research work is not efficient enough to detect the sophisticated malwares. 

Hence, development of a robust and adaptive malapp detection model is paramount 

that can address these challenges. This work is motivated by the fact that multiple 
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complementary features are necessary for developing robust solutions. The feature 

level fusion followed by score level fusion of parallel classifiers is another direction 

that can be evaluated with the aim to provide better malapp detection. Furthermore, 

these detection solutions were evaluated over limited datasets only. Optimization of 

various hyper parameters can be explored to provide better recognition performance. 

Most of the static analysis approaches detect malapps either on signature based 

approaches or without unification of features. Feature unification followed by optimal 

fusion of classifiers scores needs to be investigated. Hybrid analysis based detection 

can be explored further to detect the malapps exhibiting dynamic behaviour. Some 

apps shows malicious behaviour by examining their traffic features. This problem can 

be resolved by designing and developing solutions based on traffic characteristics to 

protect the smartphone against various security threats.  Hence, detection of malapps 

having complex and sophisticated malwares becomes cumbersome with conventional 

approaches. Therefore, there is a requirement to develop a novel and proficient 

methods for detecting these types of malapps swiftly and accurately.  

1.4 Research Problem 

 

Figure 1.2: Domain of the Research Work 
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The Smartphone platform security analysis is vastly divided into five categories as 

shown in Fig.1.2 as static analysis, dynamic analysis, hybrid analysis, traffic analysis 

and hardware analysis. The scope of our proposed study is restricted to static, 

dynamic, hybrid and traffic analysis. Hardware analysis employs specialized tools and 

techniques to probe into hardware modules. This aspect of Security Analysis is not 

covered under this study. As dynamic analysis is carried out while mobile app is 

running, usually this approach is not only more complex but also has a high inclination 

towards false positive outcomes. In addition, some malware infected mobile app can 

easily intrude into the system just after their installation thus making the detection 

accuracy very low. On the other hand, Static analysis approach considers detecting 

malware in mobile apps by analyzing the source code segments. Various vulnerable 

features or resources are extracted from the application package .Vulnerable features 

such as permission calls, API calls, system monitor events, etc., can be easily obtained 

from the respective application package. Since the app is not executed, they don’t 

require a host system environment. Hence, Static approach for malware analysis is not 

only computationally economical but also more accurate and efficient. Recently, 

Hybrid approach using both static and dynamic features was also investigated for 

analysis of apps. Further, machine learning based classification techniques were 

investigated to automate and boost the process of static malware analysis. Binary 

classification methods such as Random Forest, SVM, Naive Bayesian and Rotation 

Forest etc. provide effective ways to analyze malware patterns. In spite of most of the 

research investigation in literature, most of the solutions for efficient classification of 

apps into malicious or benign are in stage of infancy. Ever threat of malicious apps 

puts great hindrance to mobile users for using apps for critical applications. But, static 

analysis is threatened by obfuscation, polymorphism. Dynamic analysis trail the 

sensitive info at run-time. Dynamic analysis is superior to static analysis but needs 
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adequately huge set of implementations to cover app’s behavior. Hence, carrying out 

dynamic investigations on resource constrained smartphones is challenging. To 

enhance the detection capability, investigators start exploiting the network traffic 

based solutions. Using network traffic resulted in amazing results in terms of 

determining concealed malwares as some malwares in malapps typically exhibits 

malicious characteristics only when connected in a network. 

1.5 Objectives of Research Work 

The objectives of this research work were to develop techniques and methods to 

address key questions in the study of Security Investigations on Smartphone Platform. 

These specific objectives are summarized as follows: 

Objective 1: 

 To review of the existing literature and comparison of the merit and demerit for   

smartphone-based platform security.  

 To create of data base with large set of benign and malign apps and  

incorporating zero day attack. 

Objective 2: 

 To design and develop  Static Analysis techniques for smartphone platform  

using multiple feature unification and optimal classification.  

 To do performance comparison with existing methods on benchmarked dataset  

containing large set of benign and malicious apps. 

Objective 3: 

 To design and develop Hybrid Analysis techniques for smartphone  

platform through optimal combination of static and dynamic features. 

 To identify feature sets and segregation of feature into different threat  
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level for platform security. Optimal tuning of classifier considering threat level 

of features. 

 To do performance comparison of proposed framework with existing methods   

             using benchmarked dataset. 

Objective 4: 

 To design and Develop traffic analysis framework for optimal combination  

of multiple features for detection of unintended functionality.  

 To do performance comparison with existing methods using online captured  

            data from ten different apps under unconstrained environment. 

 

1.6 Thesis Contribution 

In this thesis, we show that the key to effective malapps detection relies 

unification of extracted features followed by multiple classifiers, which 

eloquently delineates the performance capabilities of a framework. Through 

this set of static, dynamic and traffic features three independent frameworks 

viz. static analysis, hybrid analysis and traffic analysis have been designed and 

developed.  

The principal contributions of this thesis are: 

(i) We first introduce a realistic static feature approach for smartphone security 

analysis that incorporates multiple feature unification through cross iterative 

diffusion. To our awareness, it is the first time that this approach is introduced 

to extract unified android static features. Pragmatic and effective app security 

analysis framework is proposed wherein three ML algorithms are exploited to 

evolve a system to detect the malapps on the basis of unified feature 

representation. Further, outcomes of the ML algorithms were fused by 
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DSmT[153] algorithm to improve the accuracy achieved by individual 

classifiers. In addition, we presented a complete investigational study based on 

CICMalDroid2020[132], AMD[129] and Drebin[128] malapps database and 

comparative experimentations with state-of-the-art methods to validate the 

efficiency and proficiency of our approach. 

(ii) To detect the apps exhibiting the dynamic behaviour, we put forward a 

unique approach for optimal unification of static and dynamic features 

resulting in Unified feature (UF) for smartphone security analysis by cross 

diffusion technique. Then this UF is fed to two ML classifiers to detect the 

android malapps. Results of these classifier’s scores were combined by fuzzy 

based fusion approach for improving the performance. Lastly, we provided a 

comprehensive study founded on benchmarked databases and compare the 

results with contemporary techniques to validate the efficacy of the suggested 

framework 

(iii) To design the traffic based analysis framework, we proposed a traffic 

feature-based fusion that comprises of optimal combination of multiple traffic 

features by cross-diffusion of order and sparse graphs to produce a unified 

feature. The unified feature vector thus generated is given to the three parallel 

ML classifiers and classifiers scores obtained are fused to enhance the accuracy 

attained by separate classifiers. Presented the performance comparison with 

existing state-of-the-art methods using standard data sets available.   
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Chapter 2 

Literature Review  

In the last few years, smartphone security analysis has been widely investigated and 

reviewed. Specifically, the success of any smartphone security analysis technique is 

greatly reliant on developing an efficient and effective model. In this direction, the 

smartphone security analysis approaches have been suggested under static analysis 

framework, dynamic analysis framework hybrid analysis framework and traffic 

analysis framework. The various smartphone security analysis models are concisely 

reviewed. The most popular smartphone android platform, malwares in smartphone 

ecosystem, features exploited for detection of malwares in smartphone applications, 

fusion techniques, performance metrics, benchmarked datasets, and research gaps 

along with smartphone security analysis models were also reviewed.  

2.1    Smartphone Platform 

Smartphone platform basically comprises of hardware, an OS and software/drivers for 

a particular microprocessor. Platform host numerous applications (apps) and allow 

these apps to execute on them. 
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In this section, the overview of Android, its salient features, the architecture of 

Android OS, various malware types and the ways by which malware apps infects the 

end users are discussed.  

2.1.1 Android Overview 

Android is open source and Linux-based OS designed for smart devices i.e. mobile 

phones and tabs. Android's latest version i.e. 12L ( API level 32) [10] was released on 

7 March 2022. Google and Open Handset Alliance (OHA) developed Android which 

was launched in 2007. The Android smart devices contain lots of features and 

functionalities which includes hardware features such as audio, Bluetooth, camera, 

network, microphone, and sensors such as accelerometer, barometer, compass, 

gyroscope, and Wi-Fi. It also includes software features such as app widgets, live 

wallpapers, storage, messaging, multi-language support, browsers, media support, 

call, messaging, multitasking, external storage and so on. Android is best-selling OS in 

the world for smartphones since 2011 and for tablets since 2013. More than 3.48M 

apps were available on Google Play Store for download, as of Aug 2021. Android Apps 

are developed via SDK and using mainly JAVA programming language. For the 

development of shared library and native code, C and C++ languages are used. The 

support for development of app in Kotlin programming language was announced by 

Google in May 2017. Google Play Store is the official app store comes inbuilt in 

Android. Google Play Store allow users to browse, download and update applications 

from the house of Google. 
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2.1.1.1Android Architecture 

Android software stack has mainly four layers and is divided into five sections. The 

core architecture of the Android is depicted in Fig.2.1: 

(i) Linux Kernel 

It is the heart of android OS and is at the bottom of the android architecture. It forms 

as an abstract layer b/w the hardware devices & rest of the layers of the software stack. 

It provides services such as power management, resource access, device management, 

memory management and device drivers for hardware like the device display, camera, 

Wi-Fi, keypad and audio. 

(ii) Libraries and Android Runtime (ART) 

The pre-defined libraries include C/C++ core and Java based libraries like OpenGL, 

WebKit, FreeType, Media, SQLite. The SQLite library is responsible for database, 

FreeType handles font support, WebKit is accountable for browser support and SSL 

manages Internet security. Android Runtime environment includes components like 

core libraries and the DVM i.e. Dalvik virtual machine. DVM is just similar to JVM( 

Java Virtual Machine) but it has been optimized for mobiles. It utilizes multi-

threading and memory management, the Linux core features, which are crucial in 

JAVA. ART includes features such as Ahead-of-time (AOT) and just-in-time (JIT) 

compilation, better debugging support, optimized garbage collection (GC).  

(iii) Application Framework 

This layer provides several services to apps in the form of interfaces and Java classes. 

App developers exploit these higher-level services in their apps. Besides, it provides an 

abstraction for h/w access and manages the UI and app resources. Application 

framework includes Android API's such as locations, package managers, resources, UI, 

Content Providers (data) and telephony. 
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(iv) Applications 

It contains native apps and apps by third party developers such as browser, mail, 

gallery, SMS, contacts and clock that are created using the Application framework. For 

example, SMS app is used to deliver a message to the user specified recipient. 

 

 

Figure 2.1. Android Operating System Architecture1 

 

2.2 Smartphone Platform Malwares and vulnerabilities 

Malware is "intrusive software", specifically designed to gain unauthorized access to a 

system. These malware programs are responsible for deleting, stealing or encrypting 

sensitive data, monitoring users' activity without user's consent and altering core 

functions. Different types of malware contain unique traits and characteristics which 

are as follows:  

                                                           
1 Source: https://developer.android.com/guide/platform 
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Trojan horse is a destructive program that gains access to system by looking similar to 

an authorized program. Trojans allow personal info theft through a backdoor entry of 

malicious programs to the system. Worm spread by exploiting vulnerabilities in OS 

and hence does not require directives of malware designers. It has the ability to make 

copies of itself. Also, it offers no harm to the data or file on the system. The primary 

characteristic of a Virus is that it can execute and replicate itself. It spreads through 

infecting files or programs on the system. Virus is risky in comparison to computer 

worm as it has the ability to delete or change the files whereas a computer worm can 

just replicate itself. Viruses includes Macro viruses, File viruses, Stealth viruses, 

Polymorphic viruses [3]. Spyware may or may not require permission to get installed 

on users. Its purpose is to gather data, browsing history, observe the user activity and 

transfer to remote user. Spyware gets installed unknowingly on installing other 

freeware’s. It is similar to adware. It has the ability of downloading malware programs 

and installing on the system. Keyloggers also known as system monitors, keeps an eye 

on user activity that includes internet surfing, keystrokes and emails. Ransomware’s 

[3] purpose is infecting user device and encrypting the data in order to demand a 

money from the user to decrypt the system data. 

In smartphone security landscape, there are basically five vulnerability vectors viz. 

app, device, network interfaces, device content, and hardware related   vulnerabilities.  

2.2.1 App vulnerabilities 

Due to their shorter software development cycle, smartphone app developers 

resorted to the open source libraries, tools and packages to develop new apps. It 

resulted in numerous vulnerabilities [11] due to these developed apps. These apps 

are prone to security flaws inherent in the open source system and put confidential 

data in the smartphones at higher risk. Many people download the apps from the 
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third party resources which are not for reviewed. These apps further makes the 

confidential data vulnerable to attackers. 

2.2.2 Device vulnerabilities 

Device vulnerabilities [12] comprises of smartphone OS and firmware 

vulnerabilities.  These vulnerabilities are mitigated by the patches released from 

time to time by the OS developer. Smartphones having relatively old OS and 

firmware may not get support from the OS developer regarding patches and are 

more prone to attacks. Regular updates from the device manufacturer releases 

patches and ensures mitigation of these vulnerabilities. It is duty of the user to 

incorporate these patches to reduce the vulnerability window.  Adoption of the 

latest OS further reduces the vulnerability.  

 2.2.3 Networks vulnerabilities 

Vulnerabilities related to smartphone n/w [13]are centred on exploitable hardware 

and software flaws in the n/w interfaces. POODLE and Heartbleed are two very 

famous n/w vulnerabilities. The POODLE exerts the browser to more vulnerable 

version by relegating the browser to a relatively low strength encryption scheme. 

Heartbleed exploited SSL vulnerability that let an attacker to steal 64K of data from 

the active memory of affected systems in one cycle. 

2.2.4 Web and content vulnerabilities 

Attacker’s uses malicious photos, web pages, videos etc. to exploit OS or an app to 

gain unauthorized access to smartphone. For example, Stagefright is a s/w 

vulnerability in android OS related to mp4 files [14]. Mp4 files can be used to gain 

access to multimedia messages and download folder of smartphone. 

 

https://blog.lookout.com/heartbleed
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2.2.5 Hardware vulnerabilities 

Researchers exploits the Graphics Processing Unit (GPU) [15] in smartphones to 

snoop user's credentials by logging the keyboard. All the credentials typed were 

compromised.   GPU processes the animations corresponding to keys on keyboard.  

Attackers correctly infers which key is pressed on the key board with high detection 

accuracy.  

2.3 Issues and Challenges in Smartphone Security       
      Analysis 
 
2.3.1 Malware Survival Techniques 

The end user device is infected through Malware applications in the following ways: 

Repackaging, Code Transformation, Update attack, Drive-by-Download [3]. Mostly 

Repackaging technique [16] is used by malware designers. This technique includes 

following steps: application download, app disassembling, inserting malware payload 

to app, reassembling app and then uploading or distribute via less monitored app-

stores. Malware designers change the signature of reassembled app to prevent getting 

detected.. The second technique is Code Transformation, which is responsible for 

generating unobserved malware signatures. It includes methods such as Renaming of 

Package, Method or Class, Resource Encryption, String Encryption, Class Encryption, 

Reordering of Opcode, Insertion of Junk Code. It can be used to thwart the 

disassembly tools. In Update attack, malware designers use certain techniques to 

inject malware at runtime by attaching inflicted code to the updated version of the 

application. This technique is undetectable by static anti-malware methods. The other 

technique used by malware designers is Drive-by Download. This technique uses in-
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app advertisements, clicking malicious URL, or malicious QR-code which redirects 

users to a webpage and incites them to download malware automatically. 

 

2.3.2 Code Obfuscation Techniques 

Code obfuscation is the camouflage of the intended meaning of the code by making the 

code puzzling, purposefully equivocal and more problematic to comprehend. In this 

subsection numerous code obfuscation techniques have been discussed that are used 

to hinder the static analysis.  

2.3.2.1 No-operation Code Inclusion and Opcode Repositioning: No-operation code 

inclusion is a famous practice that alter the exe file size and dodges the signature 

database of anti-malware software. It also saves the apps semantics. But, it alters 

opcode order to change the malapp signature. Repositioning of Opcode is 

accomplished with “Go to” instructions to change the control-flow while protecting the 

semantics. These approaches are used to elude the opcode and signature oriented 

identification solutions. 

2.3.2.2 Using Reflection APIs: Sensitive Android API within the malicious 

applications are searched and exploited for its detection during static analysis.  Apps 

allows Java reflection to modify the run time behaviour of class using programmatic 

class instances by means of the literal strings. Data flow analysis was employed to 

detect the method names/ exact class. But to thwart so that automatic search for 

reflection API the literal strings were encrypted.  

2.3.2.3 Class or Package Renaming: App in Android ecosystem is recognised by its 

exclusive package name. Dalvik-bytecode protects the class and package names. 

Numerous anti-malware exploits the name of a class or package of well-known 
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malwares as signature for malapp identification. Such renaming is used to elude the 

signature based identification. 

2.3.2.4 Modifying Control-flow: Few anti-malwares software’s exploits control flow 

investigations to identify the malwares variants. Control-flow of a program can be 

altered using “Go to” instructions or by adding no operation code. Though 

insignificant, such methods elude the anti-malware software’s. 

2.3.2.5 String Encryption: Strings like comments, shell-commands and Uniform 

resource locators disclose many things about the app. To avert such static 

investigations, the strings must be encrypted.  

2.3.2.6 Class Encryption: Sensitive information like Digital Right Management which 

is used by certain anti malwares can be concealed by encrypting the complete classes.   

2.4   Features used in Smartphone Security Analysis 

Static and dynamic features [17]are exploited in smartphone security analysis. Static 

features mostly includes permissions, app components, filtered intents, API, Network 

address, operation code, hardware components, control flow graph, static taint 

analysis, file property, native code are some of the static features. Dynamic features 

mostly used in the literature comprises of system calls, network features, system 

components, battery feature, phone event, SMS event, user interaction, file operation, 

broadcast receiver, system command, API, dynamic taint analysis etc.  Traffic features 

are subset of dynamic features as traffic analysis is a form of dynamic analysis. In 

hybrid analysis, blend of static and dynamic features are used for the identification of 

malicious apps. In majority of the cases TCP based traffic features were exploited in 

determining the application, OS and hardware related vulnerabilities were 

determined. In few frameworks HTTP based feature were also exploited for 

determining the malicious apps.  
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2.5 Smartphone Security Analysis Techniques   

Smartphone security analysis comprises of static analysis, dynamic analysis, hybrid 

analysis and traffic analysis. The main purpose of the security analysis is to determine 

the vulnerabilities related to apps, software, hardware, OS, etc. in the smartphone 

ecosystem. The vulnerabilities related to apps and software are catered exclusively by 

the static analysis, dynamic analysis and hybrid analysis. The OS and hardware related 

vulnerabilities were detected by traffic analysis. Apps that exhibits malicious 

behaviour during run time are detected by dynamic analysis methods. Some of the 

apps have malwares embedded in them through repackaging techniques, these 

malwares can be determined by modelling the detection mechanism based on 

signatures if the obfuscation methods were not employed. The static analysis 

techniques were efficient in determining these apps. Hybrid analysis is amalgamation 

of both static and dynamic analysis. Traffic analysis techniques were used to determine 

the hardware and OS related vulnerabilities along with determining the malapps in 

the smartphones. The details of static, dynamic, hybrid and traffic analysis follows in 

the coming subsection. 

2.5.1    Static Analysis  

Static analysis encompasses studying the app source code by just disassembly, 

decompilation and without executing it. Specifically, it implies analysing APK file. This 

analysis consumes less resources and is fast. It is prone to obfuscation techniques and 

also to dynamically loaded code. It fails in case of encryption, code transformation and 

polymorphic malware. DAPASA, an approach for static malware detection [18] used 

sensitive subgraph analysis to detect piggybacked apps. In this, authors focused on 

distinguishable invocation patterns between the riders (malicious payloads) and the 
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carrier (host app) of sensitive API's for detection. DAPASA exhibit impactful 

performance by achieving TPR of 95 per cent and a FPR (False Positive Rate) of 0.7 

per cent. The combination of 5 features with the invocation structure, it supplements 

approaches based on API and permission. The authors [19] outlined the machine 

learning Random Forest based system which monitors system events, permissions, 

sensitive API's and use them as a feature set from APK files. It can be applied to all 

apps as the four group of features are always available and can be easily obtained. 

Additionally, it acquires key features by static analysis approach and without dynamic 

tracing. The results using 10-fold cross validation achieved accuracy of 89.81%. 

Mlifdect [20], a framework proposed by Wang et al. overcame the limitation of 

detection posed by a single classification algorithm. This static method is based on 

multiple algorithms in which 65,804 features are extracted from multilevel features 

like API calls, deployment of components from android apps and permissions. This 

includes classification model construction by Parallel machine learning and a 

technique on Probability analysis called Information fusion and Dempter Shafer 

Theory used to generate a final classification result. This framework showed 99.7 per 

cent accurate detection and achieved recall of 99.8% with 0.1% FP rate (False Positive 

rate). FP rate is the probability that a true positive will be missed by the test.  Cen et 

al. proposed probabilistic discriminative model [21] based on RLR (Regularized 

Logistic Regression). Regularised Logistic Regression is a ML algorithm that caters the 

overfitting problem and is used to predict the probability of a categorical dependent 

variable. This approach produces probabilistic output with highly precise results, uses 

API calls as a feature and also traversed problems in feature granularity, selection, 

representation and regularization. It combines app permissions and decompiled 

source code analysis to achieve better results. To address the gap of malware detection 

problem from API perspective, an automated malware detection model, Malpat [22] 
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is proposed. It tackles the problem of manual configuration of lists of features. 

Moreover, the research work is based on mining hidden patterns of malware from real 

world android apps and extracting highly sensitive API's. The experiments were 

conducted over 31185 benign apps and 15336 malicious samples. MalPat achieved high 

F1-score of 98.24% and recall rate of 0.9963. The authors in [23] build API sequence 

data sets of android apps using static analysis and uses LSTM i.e. Long Short-Term 

Memory algorithm to develop a 2-class classification model. It is a combination 

method based on CFG’s (Control Flow Graphs) and ML algorithm. CFG is the graphical 

depiction of control flow during the execution of applications. 10010 benign apps and 

10683 malicious apps were taken as a sample to conduct experiment and 

demonstrated that the model is 98.98 per cent precise in detection. 

SIGPID [24] is based on Permission usage analysis, a 3-level data pruning approach 

which extracts most significant permissions that can effectively distinguish between 

malware and goodware. It uses machine learning based classification methods and 

found that only 22 permissions are significant. SIGPID is capable of detecting 93.62 

per cent of malware effectively and also detects 91.4 per cent of the unknown malware. 

Furthermore, by this approach permission to be analysed are reduced maintaining 

accuracy and efficiency. In [25], the authors particularly focused on two ML assisted 

approaches viz. clustering & classification based on analysis of the source code and 

permission of apps. The root access is required in the permission-based approach and 

it achieves better accuracy. The source code approach uses "bag of words" model used 

in NLP and is only static approach that uses ML to scrutinize the whole code of an app 

and also involves analysis of decompiled code. Former achieved the F-Measure of 89 

per cent and latter 95.1 per cent. It supplements existing signature-based anti-malware 

methods as they only detect when proper signatures are released. Kang et al.   [26]  

used static analysis that included creator's info and proposed detection and 
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classification system for android malware. This system can analyse malicious 

behaviour and permissions in order to gain more accuracy. Similarity scoring 

algorithm is executed to classify malware into similar groups and enables faster 

detection. It shows 98 per cent accurate detection and is 90 per cent accurate in 

classification performance. CASANDRA [27] a framework based on online learning 

which addresses population drift, handles voluminous data and detects data streaming 

in at real time. In this, a novel task specific kernel (i.e. CWLK) with online learning are 

combined for detection. It achieved F-measure of 99.23 per cent. Scalability, flexibility 

and high performance are key advantages of this framework.  

DroidEnsemble [28]  leverages by using both string features (permissions, code 

patterns, API usage) and structural features (data flow graph and FCG) to effectively 

categorize the static behaviours of applications. SV, KNN, RF are used as three ML 

algorithms to evaluate performance with 1386 goodware and 1296 mal apps. The 

results depicted that string features are more efficacious. The structural features can 

be used as complementary features to compensate for insufficiency of string features. 

Overall, the accuracy achieved by group of both excel to 98.4%. In the work of [29] , 

authors presented a framework that detects android malware using multimodal deep 

learning. This method uses various features to reflect various attributes of apps. For 

feature extraction, similarity and existence-based methods have been used. The 

approach leverage by dealing with multiple feature and was evaluated over 41260 

samples to improve detection accuracy. FalDroid [30] is an automatic approach 

designed to classify android malware and select malware samples according to their 

free graphs (frequent subgraphs). 8407 malware samples were taken from 36 families 

and this method was applied achieving 94.2 per cent accuracy. A multilevel 

DroidFusion [31], model is a classifier fusion approach that enables efficient 
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combination of machine learning algorithm. The results are effective against both 

ensemble and non-ensemble base classifiers. 

Significant pairings of the permissions [32] leading to a malicious application 

detection were identified and extracted from apps. It can lead to detection of malapps 

with approximately 95.44% accuracy. For this, datasets were analysed intricately and 

edge weights are allocated to pairs of permission depending on their frequency of 

occurrence in the datasets.  

 

An ensemble [23] of three detection models based API frequency, API calls and API 

sequence was created to achieve detection accuracy of 98.98%. An automated malware 

app detection tool7 with unique ensemble learning method using permissions and API 

calls with Naïve Bayes, Decision Tree (DT), Random Tree (RT) etc. to detect malwares 

was reported with the detection rate of 99% (approx.) with very low false positives. 

Authors10 generated a feature vector that represents malware features having same 

attributes with benign applications. In this, model learning approaches and automatic 

upgrade system for malapps detection using a multimodal deep learning method was 

proposed with accuracy of 98%. Wang et al. [33] used multiple features and ensemble 

of classifiers viz. KNN, SVM, NB, CART and RF for android based malapps detection 

through majority vote fusion method. A four layered static detection model using 

MD5, malevolent permissions, dangerous permissions and intents was proposed by 

Song et. al. [34]. Authors [6] used API calls abstraction method to decrease the number 

of API calls be used as a feature and three ML algorithms (KNN, RF and SVM) were 

used for achieving detection with 98% accuracy. A technique [35] for identifying 

android based malapps to automatically detects malware by extracting the multiple 

static features such as permissions, API calls, network addresses, and mapped these 

features into a single feature space vector. Further, Linear SVM and DT algorithms 
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were employed to implement the multi-label classification. Detection accuracy of 98% 

and 63% was achieved for small size families’ malware and zero day malwares 

respectively. Oluwafemi Olukoya [36] et al. investigates a malware detection model 

based on sensitive permissions and UI based app descriptions. Investigational 

outcomes establish precision of 90%. DroidDomTree [37] excavates the tree structure 

of API calls in Android apps for identifying malapps. A tree structure of API calls 

accentuates a path flow and recognizes the layout of APIs and hence stresses the 

prominence of some APIs in an app. It accomplished detection rates varying from 

98.1% to 99.3% using eight different classifiers (J48, AD Tree, RF, RT, AdaBoost, 

Naïve Bayes, Radial Basis Function Network, K Star). Although, most of the work 

exploited either multiple classifiers or multiple features for development of solution 

for smartphone security analysis, a comprehensive solution exploiting both optimal 

combination of classifier and efficient fusion of multiple features was not investigated. 

In another dimension, model based android malware detection approach were also 

investigated. For instance, Roni Mateless [38] et al. presented a model for malapp 

detection with 97.8% detection accuracy. Decompiled source code contains API calls, 

keywords, function names, strings in human format etc. Malevolent codes vary from 

the text because of the syntax rules of compilers and to prevent detection. NLP method 

was adapted here to classify the apps. Ke Tian [16]et al. investigates a method to detect 

the repackaged apps by code heterogeneity analysis. Code structure was divided into 

various subset and each subset was classified based on the features. Each subset 

depicts dependence based region. In this partition based detection, False Positive (FP) 

rate of 2.97% and False Negative (FN) rate of 0.35%were obtained. In MAMADROID 

[6], a Markov chain based behavioural model for detecting the android malware. 

Sequences of API calls were modelled as Markov Chain. Model has achieved the F-

measure of 0.87. Qian Han28 et al. proposed malicious app detection scheme by using 
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irretrievable feature transformations so that the evading of ML classifiers by hackers 

becomes impossible. 

 

Ensemble Rotational Forest based model [39] was proposed that exploits permissions, 

permission rate, sensitive API’s etc. as key features to detect malware with accuracy of 

88.26%.  In MalResLSTM [40]  , authors presented Long Short Term Memory(LSTM) 

based method to classify malapps. Feature extracted were mapped to vector space and 

processed in the LSTM based deep learning model to achieve the accuracy of 99.32%. 

DroidDomTree24 excavates the tree structure of API calls in Android apps for 

identifying malapps. A tree structure of API calls accentuates a path flow and 

recognizes the layout of APIs and hence stresses the prominence of some APIs in an 

app. It accomplished detection rates varying from 98.1% to 99.3% using eight different 

classifiers (J48, AD Tree, RF, RT, AdaBoost, Naïve Bayes, Radial Basis Function 

Network, KStar). Although, most of the work exploited either multiple classifiers or 

multiple features for development of solution for smartphone security analysis, a 

comprehensive solution exploiting both optimal combination of classifier and efficient 

fusion of multiple features was not investigated. 

 

In sum, survey of the closely linked literature revealed that most of the above 

approaches used traditional classifiers which can detect malapps using one or more 

classifiers. Multiple classifiers using multiple features gives improved overall 

performance in comparison to the single classifier using multiple features. Also, most 

of work either focussed on optimal combination of features or optimal combination of 

classifiers. Hence, future direction of smartphone security analysis is to take benefit of 

both feature-level and score-level fusion. 
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Table 2.1 Comparison of Static Analysis Techniques. 

Author’s 

Name 

Feature 

Set 

Methodology Dataset Remarks 

Fan et al. 

[18] 

Sensitivity 

coefficient, 

total sensitive 

distance, 

tnsm1 (the 

total number 

of sensitive 

motif 

instances), 

tnsm2, tnsm3 

Based on 

invocation 

patterns of 

sensitive API’s 

RF, C4.5, KNN, 

PART 

M- Android 

Malware 

Genome 

Project[117], 

VirusShare [10] 

B- Google Play, 

Anzhi Market  

Complements permission 

based and API based 

approaches. 

 

Zhu et al. 

[19] 

sensitive API, 

permissions 

and its rate, 

monitoring 

system events 

RF based Malware 

detection 

 

 

Hemdds 

Dataset (B - 

official Android 

market & M – 

VirusShare 

[10]) 

Cost-effective alternative. 

Useful in user information 

security area. 

Narayanan 

et al. [27] 

Semantic 

features: 

subgraphs 

from CADGs 

viz.  contextual 

API 

dependency 

graphs  

Based on online 

learning 

Confidence 

Weighted 

algorithm as 

classifier 

Drebin, Google 

Play, Anzhi, 

AppChina, 

SlideMe, 

HiApk, FDroid, 

Angeeks 

Handles population drift, 

voluminous data, real time 

streaming. 

X. Wang et 

al. [20] 

android 

manifest.xml 

and 

Disassemble 

code of apps  

Feature set: 

APIC and 

CHPN 

Uses multiple 

concepts from 

information 

fusion, ML, static 

analysis. 

M- Drebin [52], 

Android 

Malware 

Genome Project 

[117] 

B- Google Play 

Run time efficiency, Low 

overhead, Lightweight 

 

Xu et al. 

[41] 

ICC related 

features  

Involves 

comprehensive 

analysis of ICC 

patterns of 

malware and 

goodware. 

B- Google Play 

Store 

M- Drebin[52] 

Useful for detecting 

“advanced malware” 

 

Cen et al. 

[21] 

Android API 

calls 

Based on 

Regularized 

C11 [42], C12 

[42], CM [43], O 

[44], OM[43] 

Integrate analysis of both 

decompiled source code as 

well as app permissions. 
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Logistic 

Regression. 

Probabilistic 

discriminative 

model 

Kang et al. 

[26] 

Serial no. info 

from 

certificates 

Uses Creators 

information 

Based on 

similarity scoring 

algorithm 

M- 

VirusShare[45], 

Contagio 

Mobile and 

Malware.lu 

B- Android 

market, 

GooglePlay 

Enables fast detection 

Wang et al. 

[28] 

String 

features viz. 

requested and 

used 

permissions, 

restricted API 

calls, code 

patterns, filter 

intents 

Structural 

features viz. 

FCG 

Uses both String 

and Structural 

features. 

SVM, KNN, RF 

B- GooglePlay, 

AnZhi[46], 

LenovoMM[47], 

Wandoujia[48]  

M- FakeInst, 

Opfake, 

FakeInstaller, 

DroidKungFu, 

GinMaster, 

Plankton 

Reduced Android software 

failures. 

Tao et al. 

[22] 

Permission 

related API’s 

Based on mining 

hidden malware 

patterns 

RF classifier 

B- BenignAll 

(consists of two 

datasets 

BenignRan & 

BenignPop) 

M- VirusShare 

Contagio  

Surpassed approaches such 

as MUDFLOW,DREBIN, 

DroidAPIMiner 

Ma et al. 

[23] 

API info from 

CFG 

Detection model 

viz.  API 

frequency, API 

sequence and API 

usage  

C4.5, DNN, LSTM 

algo 

Benign apps 

from AndroZoo 

& malwares 

from AMD  

Reduced analysis time. 

Detect unknown malware 
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Kim et al. 

[29] 

String, 

opcode, 

method API, 

component, 

method 

opcode, 

permission, 

and 

environmental 

features. 

Multimodal deep 

neural network 

model 

Malware 

samples: 

VirusShare, 

Malgenome 

project 

Benign: Google 

Play app store 

First application of 

multimodal deep learning. 

Detect even when malware 

has many features similar to 

benign apps 

Fan et al. 

[30] 

Frequent 

subgraphs, a 

novel graph-

based feature 

selected from 

FCG’s 

 

Representative 

malware selection 

Builds Frequent 

subgraphs 

SVM, KNN, C4.5, 

RF 

FalDroid-I, 

FalDroid-II, 

Drebin and 

Android 

Malware 

Genome Project 

dataset 

Concept drift problem. 

Unreliable against native 

code. 

 

Li et al. 

[24] 

Significant 

permissions  

Based on 

permission usage 

analysis 

Multi-level data 

pruning approach 

Google 

Playstore  and 

Anzhi Store [46] 

 

Efficient in detecting 

new/unknown malware 

samples. 

Effective when compared to 

existing virus scanners. 

Yerima et 

al. [31] 

Permissions, 

intents, API 

calls, possible 

external 

payloads (e.g. 

hidden .dex 

files) 

Involves Classifier 

fusion approach 

Based on 

multilevel 

architecture 

Malgenome-

215, Drebin-

215, McAfee-

350 and 

McAfee-100 

Outperformed stack 

generalization. 

Not able to handle 

multiclass problems. 

 

 

2.5.2    Dynamic Analysis  

In dynamic analysis, an app is executed in a sandboxed (protected) environment, and 

its behaviour is monitored. Unknown malware can be detected through this analysis 

and it is effective against malware obfuscation. But it consumes more computational 

power and takes a longer time than static analysis.  

Cai et  al. [49] developed a dynamic app classification technique called DroidCat, using 

variety of features such as ICC(Inter Components Communication) intents and 

method calls. ICC intents provide a mechanism for data exchanging between 
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components. It proved powerful against system call, resource obfuscation, reflection, 

and run-time permissions. DroidCat attain 97 per cent F1-Measure accuracy for 

detecting or categorizing malware. MADAM [50] , a multilevel malware detector which 

detects misbehaviours of almost all apps by analysing behavioural characteristics. It 

extracts 5 set of features from 4 levels i.e. kernel, package, application & user level. 

MADAM identifies security risk by analysing permissions and meta data like download 

number and user scores at installation time, and if detected risky, the app is marked 

as 'suspicious'. Detection was done over 3 large datasets having 2800 apps and 

effectively block more than 96% of mal apps. 

Endroid [51], an approach blends dynamic analysis by employing ensemble learning, 

identifies malware family and detects android malware. Dynamic behavior such as 

app-level malicious and system level behavior are automatically extracted. It removes 

irrelevant features by adopting feature selection algorithm and selects critical features 

responsible for risky behaviors.  

CANDYMAN [52], a tool for family classification that combines deep learning (Markov 

Chains) and dynamic analysis. In this dynamic analysis, Markov chain models the 

probability between the sequence state acting as feature in classification and 

information of malware samples is excerpted as sequence of states. Using feature space 

classical machine learning algorithm was trained that included deep learning and 

imbalanced learning methods. The performance of 81.8% was achieved using dataset 

of 4442 mal samples of 24 different families.  

In sum, dynamic analysis uses features as system calls, system components and user 

interaction and is useful for segregating those vulnerabilities that exhibits 

maliciousness during runtime. 
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Table 2.2. Comparison of Dynamic Analysis Techniques. 

 

Author’s 

Name 

Feature Set Methodology Dataset Remark 

Cai et al. 

[49] 

ICC intents, 

structure and 

security relevant 

API’s 

App level profiling 

Supervised Learning 

(RF) 

AndroZoo , 

Google Play, 

VirusShare [45], 

Drebin dataset , 

Genome  

Robust against 

reflection and 

evasion techniques 

like system call 

obfuscation 

Bhatia et al. 

[53] 

Frequency of 

System call 

J48 Decision Tree and 

RF algorithm. 

System Call-based 

detection 

Android Malware 

Genome Project 

(mal apps), 

Google Play store 

(benign apps) 

Effective in 

classifying 

unbeknownst app & 

detecting and 

monitoring 

behavior of apps 

that employ 

complex 

obfuscation 

technique. 

Singh et al. 

[54] 

System Call 

behavior  

Data classification 

Technique: Decision 

Tree, RF, Gradient 

boosting trees, KNN, 

ANN, SVM and deep 

learning. 

Contagio Project 

(Parkour, 2016) 

mal apps & 

normal apps from 

Google Playstore. 

Found 31 sys calls 

from total of 337 as 

extremely good 

predictors of 

malware apps. 

Zhang et al. 

[55] 

Markov chains & 

Determinate 

System calls 

Contribution level-

based method 

Markov chain model 

construction 

SVM classifier 

Benign apps & 

malware apps 

provided by Zhou 

et al. [43] 

Reduced number of 

distinct sys calls to 

speed up the 

identification 

process. 

Yalew et al. 

[56] 

Uses Kernel 

system and API 

function calls  

Leverages the Trust 

Zone Extension 

KNN classifier 

Malware samples 

(2014-16) from 

the Contagio 

mobile repository 

& Benign from 

Google playstore  

Provides second 

layer of protection 

at run-time. 

Iqbal et al. 

[57] 

CPU, memory 

usage, Linux 

Kernel System 

calls 

4 subdetectors 

RF classifier 

AndroZoo  dataset End users are free 

to use any type and 

install any no. of 

subdetectors as per 

requirement. 

Jaiswal et 

al. [58] 

System calls  Involves System call 

analysis 

Normal game 

apps from google 

playstore & 

It observed 

permissions 

requested by 
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Behavior 

categorization: On 

basis of similarities & 

dissimilarities 

 

Malware game 

apps from the 

Virus total 

malware clone apps 

that lead to 

malicious 

behaviour. 

Feng et al. 

[51] 

Sys level trace, 

common app-

level mal 

behaviors  

Utilizes multiple set of 

dynamic features 

Uses Ensemble 

learning algorithm 

Adopts stacking 

Benign apps: 

Google playstore 

and AndroZoo  

dataset 

Malware apps: 

Drebin  dataset 

Malware behavior 

may not be 

triggered by 

MonkeyRunner 

(dynamic analysis 

paltform) + 

DroidBox  

Martin et al. 

[52] 

Incoming & 

outgoing n/w 

data, SMS sent, 

cryptographic 

operations 

circumvented 

permission and 

phone calls etc.  

Combined Dynamic 

analysis and Markov 

chains 

Utilized ML 

algorithms integrated 

with distinct 

imbalanced learning & 

deep learning 

techniques. 

Drebin  dataset Integrates dynamic 

analysis and deep 

learning approach 

for classification of 

malware family  

 

 

2.5.3    Hybrid Analysis 

Hybrid analysis involves combining static and dynamic analysis features that 

encompasses scrutinizing code and behavior of an app. It combines advantages of both 

the approaches and addresses issues akin to static analysis like inability to detect 

obfuscated, zero-day malware and dynamic code loading, it also deals with dynamic 

analysis issues such as inability to examine of all execution paths of an app. The main 

limitation of hybrid analysis is that it consumes more Android system resources and 

takes a long time to perform the analysis. 

Rehman et al. [59] presented a hybrid framework to overcome the limitation of 

signature-based methods that are not able to effectively detect polymorphic viruses 

and zero-day attacks. It examines both heuristic and signature-based analysis that can 

be used on diverse environments. In this approach two types of features are extracted 

from various android apps and are classified into 3 categories: keywords, user(s) 
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permissions from manifest.xml files and strings from other files of apps. Result 

showed that SVM in case of binaries and KNN (K Nearest Neighbour) in case of 

manifest.xml files were best suitable. In [41], authors focused on a framework based 

on deep belief network and combined static, dynamic analysis and system calls to 

extract hybrid set of features to distinguish malware app from legitimate apps.  

The proposed framework achieved 99.1% detection accuracy with the presented 

dataset. The evaluation compares various ML approaches with deep belief networks 

algorithm. Moreover, author developed complete static analysis jar which adopts 

different effective methods in an attempt to ease and speed up the static analysis by 

handling all the android apps in only one step instead of considering one app at a time 

and it is also capable enough to check the similarity between two versions of the same 

app downloaded from different markets.  

SAMADROID [60] is based on benefits and limitations of existing antimalware 

techniques. It is a 3-level hybrid system for android. It is developed by combining the 

benefits of (i) Static and Dynamic analysis (ii) Machine Learning Intelligence (iii) 

Local and remote host. It performs dynamic analysis on the device and communicates 

with the server for static analysis and detection results. The approach ensures low 

resource consumption, high detection accuracy and efficiency in terms of power and 

storage consumption.  

The authors in [61] presented a hybrid model DAMBA based on client/server 

architecture. It can detect the android malapps by constructing the directed graphs 

depicting the object reference information with 96.9% detection accuracy and a 

detection time of approximately 5 seconds. Hybrid analysis approach “mad4a” [62] 

offered by the authors for android malapp detection leveraging advantages of both the 

dynamic and static analysis methods. In this, authors pointed out some undervalued 

characteristics of android malapp that can further help the investigators to augment 
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their knowledge for detecting android malapps. In this, API calls and network logs 

were used as static and dynamic features respectively. Manzanares et al. offered a 

novel hybrid analysis method “KronoDroid” [63]that addresses the time and data 

platform source. Here, 489 static and dynamic features were used for generating 

hybrid dataset with labelled timestamps on each sample to detect the malapps with 

high accuracy. A hybrid method “DirectDroid” [64], that merges fuzzing and a novel 

app analysis procedure “on-demand forced execution” to activate concealed malicious 

behaviour. It can effectively detect malapps by the “augmenting fuzzing” technique. 

This method could not cater to obfuscated codes in the malapps. In sum, hybrid 

security analysis techniques without ML are limitedly applied for malapp detection. 

A multi-level hybrid model SAMADroid [65] for effective android based malapp 

detection was proposed. Static analysis results were determined on the remote host. 

Smartphone was used for the dynamic analysis. Machine learning algorithms Support 

Vector Machine (SVM), Random Forest (RF), Naïve Bayes(NB), and Decision Trees 

(DT) were used to train the model to detect malapps with 98.5% of TPR( True Positive 

Rate). In [66], a hybrid model using API calls and permissions was suggested. SVM 

and RF classifiers were further leveraged to achieve a true positive rate of up to 89%. 

Authors in [67] presented a model for android malapp detection with intents, 

permission, and API calls as features and compare the results with four ML classifiers 

viz. RF, NB, Gradient Boosting(GB), and DT. Accuracy of 96% and TPR of 0.85 were 

achieved with GB classifier. In [68], authors exploited static and dynamic feature 

vectors to detect malapps with 89.7% accuracy with a voting classifier-based fusion 

approach. A hybrid model [69] implemented dynamic analysis on the outcomes of 

static investigations. API calls and permissions were used as static features, while 

system calls were used as dynamic features to identify the malapps with an accuracy 

of 94.6%. Improved Bayesian classifier was used in static analysis and ensemble of 
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three classifiers viz. RF, GC Forest, and XG boost were used for dynamic analysis. A 

Hybrid method “MADAM” [50]was proposed to detect the malapps on a rooted device 

by extracting static and dynamic features. A feature vector was given to K-NN classifier 

to obtain an accuracy of 96.9%.  Dhalaria [8] et al.  proposed the hybrid framework by 

combining the static and dynamic features for the classification of malapps by creating 

the two feature oriented datasets. This method attains accuracies of 98.53% for 

malapp detection and 90.10% for its family classification. Kabakus et al. presented a 

hybrid analysis method for detecting malapps with the maximum detection accuracy 

of 99.5% when using J48 ML algorithm. Karim et al. [50]proposed a hybrid android 

smartphone botnet detection platform by exploiting the API calls, permissions as 

static features and network traffic-based dynamic features for detecting the botnets 

with high detection accuracy of 98% with RF algo. Ding et al. [70] presented a 

ResLSTM based hybrid model using static features and traffic based dynamic features 

to achieve the detection accuracy of 99%. The subsequent section elaborates on the 

proposed android malapp detection framework. In sum, ML based smartphone 

security analysis has shown promising results and were in use. But optimal combining 

of static and dynamic features were limitedly addressed. 

Kabakus et al. [71] presented a hybrid analysis method for detecting malapps with the 

maximum detection accuracy of 99.5% when using J48 ML algorithm. Karim et al. [72] 

proposed a hybrid android smartphone botnet detection platform by exploiting the 

API calls, permissions as static features and network traffic-based dynamic features 

for detecting the botnets with high detection accuracy of 98% with RF algo. Ding et al. 

[70] presented a ResLSTM based hybrid model using static features and traffic based 

dynamic features to achieve the detection accuracy of 99%.  

In sum, hybrid based smartphone security analysis shown promising results but 

optimal combining of static and dynamic features were limitedly addressed. 
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2.5.4    Traffic Analysis  

Traffic analysis [73] of smartphone devices also comes under dynamic analysis. Here 

both the software based and hardware based vulnerabilities can be studied by the 

analysing the network traffic generated by the smartphones. Coming subsections 

covers the goals of smart phone traffic analysis and the related work done in this field. 

 

2.5.4.1 Behaviour Analysis: This infers behaviour analysis of smart phone users i.e. 

user action identification, user fingerprinting and website fingerprinting.  

 

2.5.4.1.1 User Action identification includes identification of a certain action done by 

the user and inferring information related to certain action performed on his/her 

mobile device. This analysis helps the researchers in the identification of unknown 

person in social network and also to build the behavioral profiles which is a source for 

marketing strategies. Saltaformaggio et al. [74] presented a system called NetScope 

that can be deployed at network equipment’s or Wi-Fi access points for user action 

identification. It also works in case of IPsec protected traffic because it leverages IP 

headers/metadata. For evaluating the system, 35 different actions performed on 

around 22 apps on iOS and Android platform. It achieved average recall and precision 

of 76.04 per cent and 78.04 per cent respectively.  

 

2.5.4.1.2 User fingerprinting includes detection of the mobile traffic of a particular 

user. In this analysis, behavioral profile of the smart phone user can also be built by 

tracing a mobile user using the location of cellular station or Wi-Fi hotspot from the 
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connected device. Vanrykel et al.  [75] proposed a context that involves execution of 

apps, collection of traffic, inspecting the HTTP data. This also involves searching 

sensitive identifiers for investigation of user. Such identifiers are exploited for 

extracting the network traces produced by a particular mobile user from the traffic 

dataset and hence the authors presented a graph building technique. The analysis over 

1260 apps from 42 categories showed that it can relate 57 per cent of mobile users 

unencrypted network traffic. Additionally, the inadequate efficacy of ad-blocking apps 

in averting the outflow of sensitive identifiers was also detected. 

 

2.5.4.1.3 Website fingerprinting includes tracking of web pages that a smart phone 

user visits on web browser. This analysis can be helpful in revealing spiritual faith, 

concern, lifestyles, along with administrative and voluptuous alignments of user. In  

[76], Spreitzer et al. developed a fingerprinting technique that uses a Jaccard’s index-

based ML classifier. The requirement for this technique is only the volume of data 

processed by which the browser app deals and hence is not affected by encryption.  

 

2.5.4.2 System Identification: This includes identification of apps [77], PII(Personally 

Identifiable Information) leakage detection [78] and OS identification [79] which are 

defined as follows: 

 

2.5.4.2.1 Identification of App: To identify the network traffic patterns of specific apps 

consisting of a behavioral n/w fingerprint that can be figured out in unfamiliar 

network traces. It is useful for network resource managers in devising the app specific 

policy forbidding the use of certain sensitive apps (gaming, courting, social networking 

etc.) in the smartphones by the employees in the company network.   In [80], 
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Mongkolluksamee et al. built an android app identification system focused on 

combining host-based (communication patterns from graphlets) and statistics based 

(packet size distribution). Using ML, the evaluation done on real traffic of only 5 

mobile apps and gave F-measure of 0.96 by only considering 50 random packets of 

traffic in duration of 3 min. The main focus of the work was 3G traffic and tcpdump 

was used to capture the n/w traffic. In [81], Taylor et al. proposed an app identification 

technique based on ML, called as AppScanner. In this system 110 android apps were 

fingerprinted from Play Store and gave 96 per cent accurate detection. Further the 

authors studied that the mobile devices that generate the collected data, network 

traffic capturing duration and the fingerprinted apps version affects the classification 

performance. In [82], authors devised a robust approach known as Convolutional 

neural network based multi-domain learning system that can be employed to identify 

any VoIP based calling app by fusion of extracted deep features from both temporal 

domain and spectral domain. The authors in [83] proposed a traffic categorization 

method to detect smartphones apps producing such traffic (including encrypted 

traffic) using deep learning methods. 

  

2.5.4.2.2 OS Identification To determine the OS of a smartphone. This analysis serves 

as initial phase for other complex attacks against smart phone. In this analysis, the 

adversary attempts to deduce the OS to later exploit known susceptibilities for that 

particular OS of the target smartphone. In [84], Malik et al. proposed a technique that 

exploited inter-packet time from a targeted device to deduce its OS. In [85], Coull 

targeted iMessage, a message service by Apple and tried to conclude the language and 

size of the texts exchanged among the Apple servers and target users to find if iMessage 

is being used on OS X or iOS.  
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2.5.4.2.3 PII Leakage Detection: To analyze the network traffic for detection / 

preclusion of the outflow of a mobile user’s Personal Identifiable Info. PII is used to 

identify, contact or locate an individual. In [86], authors presented PrivacyGurad for 

Android platform that was developed by leveraging VPNService class provided by 

Android SDK for eavesdropping the network traffic of apps. It neither requires any 

knowledge about VPN nor root permissions from users. The authors employed it for 

noticing the outflow of sensitive data related to devices and mobile users, such as 

phone or IMEI (International Mobile Equipment Identity) number. The PrivacyGuard 

is capable of replacing leaked info with bogus data.  

 

2.5.4.3 Malware detection: To detect whether an app behaves maliciously solely on the 

basis of smartphone traffic. This analysis is capable of performing a security check of 

the app. In addition to it, the algorithm for malware detection can be rooted into anti-

virus apps that can be used further by smartphone users to verify if an installed app is 

malware or goodware. In [87], Narudin et al. made investigation in order to check if 

anomaly-based IDS is capable of detecting mal-apps on the basis of traffic analysis. 

Malware detection is defined as the method using which we identify if an app is 

malicious or goodware by scrutinizing the network traffic produced by the app. In this 

section the framework presented by many researchers for Android Malware 

Identification or detection via traffic analysis is surveyed. An app marketplace , mobile 

user or security company are mainly interested in malware identification.   

 

The wide spread adoption and success of smart phones has attracted the malware 

authors. They gain access over confidential data of target device and causes huge 

danger to users’ property. Smart phones have become the prime target of the attackers 
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due to lots of sensitive info available about the users, its ubiquity and the network 

capabilities. We surveyed dynamic detection methods based on network-level 

behaviour which accounts the app behaviour at runtime and find out the leakage of 

sensitive information and the classification of network behaviour. The studies we cited 

below involve many facets of malicious smart phone traffic analysis: 

 

TrafficAV [88] is a multi-level n/w traffic analysis approach that used ML and traffic 

analysis for detection of android malware by effectively detecting malicious traffic. It 

provides details about detection results, alongside identification of mal-apps. It 

performs traffic analysis & uncovering on server side, hence not affecting user surfing 

behaviour and minimal resource consumption of mobile devices. The technology used 

to gather n/w traffic is traffic mirroring. Further, for data analysis the gathered n/w 

traffic is directed to a server. It provides user friendly result explanation and offers 2 

detection models namely HTTP & TCP flow detection.  

 

NTPDroid [89], a hybrid framework that combined attributes i.e. network traffic and 

system permissions to create recurrent patterns normal and malware dataset for 

detection of malicious patterns. The model was trained and tested using FP-Growth 

algorithm. It has 2 phases i.e. analysis and detection phase. Analysis phase aimed to 

generate the recurrent patterns present in legitimate and mal-apps. While in detection 

phase, the 2 sets of recurrent patterns generated are used to identify mal-apps.  

In [90], authors presented a dynamic approach analyzing network traffic and 

capturing app behaviour at run time. Few n/w traffic features were extracted and 

tested on Decision tree algorithm using WEKA tool. The performance is analysed using 

accuracy, TPR, FPR (False Positive Rate) , ROC and mean absolute error.  
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Taking imbalanced learning problem into consideration, authors [91] developed a 

management and control scheme for collection of android network traffic and 

established that using n/w traffic to train ML model is a problematic imbalanced 

learning via analysis of using the collected n/w traffic. In addition, android malwares 

are detected by applying 4 imbalanced algorithms on imbalanced n/w traffic dataset. 

It showed that the combination of SVM and SMOTE performed best in all 

combinations.  

 

Taking into consideration different network flow generation by different apps using 

different operations and as well as different patterns of both benign and malicious 

flows, Cheng et al. [92] developed a model using studying of relationship involving 

behaviour patterns & network flows to detect which app leaks private info of users. It 

used RF machine learning algorithm for the classification of network flows. Further to 

improve controllability, authors designed an app called Moledroid [92] to put into 

practice network flow detection with a ML algorithm. It achieved correctness and 

exactness higher than 95 per cent. 

 

Watkins et al. [93], demonstrates network-based IDS which detects malware either 

that generates no network traffic or it is impossible to differentiate the network 

generated from genuine network traffic. This network-based tool does not engross 

dependability upon other traffic source from an app and also do not rely on 

interactions based on host-based dwelling. It does not require its installation on device 

and is competent to detect a set of malwares which is unable to produce Wi-Fi network 

traffic. The study [94] focused on identification of mal apps by using URLs visited by 

apps. This method is responsible for vectorization operations and URL segmentation 

and does not involve complicated feature engineering. It used neural network having 
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multiple views and laid emphasis on width & depth of neural network and addressed 

challenge of feature selection. Multiple views of input are automatically created using 

this proposed neural network and hence preserved rich semantic info from input and 

then distributed soft attention weights and its main emphasis is on diverse input 

features. Wei et al. [95] demonstrated learning and modelling method to analyze 

android mobile apps network behaviour. To trigger different categories of app 

behaviours, various app system and environmental factors are simulated. The 

retrieved series of network event behaviour is classified according to behaviour 

sequence combination via a Bi-LSTM. Additionally, WGAN viz. Wasserstein 

Generative Adversarial network was used to solve the trouble of time overhead, limited 

data samples and hence it increased the diversity of data. 

 

The authors [1] presented a detection method based on text semantics of network 

flows. It took HTTP flow generated via android apps as documents which is further 

processed using N-gram method from NLP, to extract text-level features. These 

features are used to develop a malware detection model. The method uses SVM 

classifier to find out whether the traffic is malicious or legitimate. It detects unknown 

samples only when it possesses some characteristics similar to mal samples in training 

phase. It constructs malware detection model by using N-gram sequence generation, 

chi-square feature selection algo and SVM algo. Zaman et al.  demonstrated a 

behaviour detection technique for detecting mobile malware that can commune with 

blacklisted domains and bypass confidential info. For this, App-URL table was created 

that record all efforts by apps for interacting with remote servers. Each entry in this 

record takes care for the app id and the URL that app makes contact with. Further, 

authors used domain blacklist and flagged the apps that make contact with any of the 

domains as malware. Nancy et al. [77] presented a technique based on network traffic 
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for detection of malware. The authors compared network traffic of malwares with that 

of benign apps and found the distinguishing features. A decision tree classifier was 

built based on the features to detect mal and benign apps. This method achieved 

accuracy of more than 90% and network traffic of malware was captured using actual 

smartphones rather than using emulators. In [96], authors analysed the n/w traffic 

features & built rule-based classifier in order to reveal android malware. Remotely 

server controlled android malware is detected by it or confidential info of the remote 

server is disclosed. In the first phase, the method includes analysing network traffic 

and identifying of distinguishing features among malware and normal traffic. In the 

second phase, rule-based classifier was built over found distinguishing features and 

accuracy was calculated by running the classifier on test data and hence it achieved 

accuracy of 93.75%. 

 

Shabtai et al. [97] presented an anomaly detection method based on behaviour to 

identify significant variations in device app n/w behaviour. It safeguards cellular 

infrastructure companies & mobile devices user from mal-apps via detecting mal-

attacks and repackaging apps. It attempted to detect malware having self-updating 

capabilities as this type of malware is not detectable using regular dynamic or static 

analysis approach. The method uses app network traffic patterns only to perform 

detection. Arora and Peddoju in [98] focused on minimizing the number of features 

by proposing an algorithm that prioritize n/w traffic features. Statistical tests are used 

in this approach to rank the attributes. The end result demonstrated that it reduced 

training and testing time and as well as gave the high detection accuracy rather using 

features collectively and hence achieved F-Measure of 0.9636 with 9 features out of 

total of 22 features. Further, the training time of 300 apps was reduced to 5.8 sec from 

11.7 sec and testing time was reduced to 17.3 sec from 25.1 sec for 230 apps. The traffic 
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was captured on actual smartphone rather than emulator. It is off-device detection and 

moreover, few samples that use obfuscation technique escape from getting detected by 

employing encryption remote server interaction. 

 

PODBot [99] is a tool based in cooperation with network traffic analysis and app 

features. It was assessed over set of botnets of famous types and gives accurate 

detection of 87 per cent in high threat and 96 per cent in very high threat. By detection 

via host, bots including which are communicated via Bluetooth or SMS channels are 

detected but for internet as communication channel, network flow and traffic analysis 

is effective in detection because of high FPR of static analysis. 

 

In [100], the authors proposed a malware detection arrangement built on TCP traffic 

that can rapidly and aptly detect malware. Here, n/w traffic produced by several apps 

has been collected and enormous number of TCP flows resulted after pre-processing. 

After that early packets size were extracted from TCP flow as features which is then fed 

to detection model. In this method, the feature extraction time from 53108 network 

flows is abridged from 39321s to 18041s (drop of 54%). This method also accomplishes 

a detection rate of 97%.  

 

The authors in [101] suggested an approach grounded on n/w packets fuzzing for 

Android apps. This system acquire the communication data directed by servers to 

apps, implements diverse mutation schemes to mutate the different types of novel 

data, return the mutated response to apps, monitor crash information using log 

monitoring tools to determine the impending security threats. Four types of problems 

were exposed by using above approach. The problems comprise unresponsiveness, 

crashes originated via JSON data exception, URL redirection and HTML content 
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replacement. The outcomes showed that the suggested technique aptly exposed malign 

behavior of mobile applications using network information interaction. 

  

Authors in [102], proposed a method for identifying malware based on URLs 

frequented by the apps.  Each URL is divided into various segments using particular 

characters. The skip-gram algorithm is then used for training. The generated URL 

vector is then fed into a multi-view neural network based malware detection model. 

Arora [96] et al. examine the TCP based features based on traffic to shape the classifier 

for Android malware with more than 90% of detection accuracy. Arora [103] et al. 

came up with a hybrid model named NTPDroid (Network Traffic and Permissions 

based Android malapp detection framework) , that uses permissions and traffic 

features from the apps and exploits a Frequent Pattern Growth algo to generate 

frequent patterns of permissions and traffic features to achieve detection accuracy of 

94%. Wang [103] et al. proposed an efficient malware detection technique by using 

text semantics of n/w traffic by studying each HTTP flow. These HTTP packets were 

further processed by NLP (Natural Language Processing) to take out text level features 

achieving an accuracy of 99.15% but the method achieves 54.81% for unknown apps in 

the wild. Liu et al. [100]proposed malware detection technique built on TCP n/w 

traffic, where network traffic generated by apps gets a greater number of TCP flow to 

extract packet sizes as features. Results achieve 97% of detection accuracy. Ding Li et 

al.  [104] introduced a framework named as DroidClassifier for the identification of 

HTTP header fields of n/w traffic created by malapps by using a supervised method to 

train the malware dataset . Moreover, Clustering is also used to increase the 

classification efficiency. The results achieve 90% of detection accuracy. Li [105] et al. 

proposed a multilevel detection system named as MulAV, in which it obtains info from 

n/w traffic, App’s source code, geospatial info where n/w traffic is collected by 
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TCPdump Tool. The info is further fed to ML method to train model which identifies 

malapps. The result achieves a detection rate of 97.8%. Wang [105] et al. discussed a 

technique to parse the HTTP packets of n/w traffic where features analyzed are packet 

avg. length, number of upload and download packets, distribution of packet size etc. 

Features were further extracted to obtain the pure malicious traffic dataset and this is 

used to detect malwares.  

 

 Su [106] at al.presented Android detection method that uses TCP based behavioral 

characteristics to detect malapps where capturing of n/w traffic is done using NTM 

(Network Traffic Monitor] tool and training is done via n/w traffic classifier. Results 

achieves 99.2% and 94.2% of detection accuracy by using Random forest and J48 

classifier. Zulkifli [107] et al. proposed a detection process based on n/w traffic which 

registers the app behavior and considered 7 TCP based n/w traffic feature from 

Contagio dumpset & Drebin dataset in which Drebin dataset achieved 98.4% of 

detection accuracy on J48 decision tree algo. 

 

 Malik [108] et al. proposed a pattern based detection method CREDROID which 

identifies malapps on the basis of the Domain Name Service (DNS)  queries, data it 

transfers to remote server from n/w traffic logs and also protocol used for 

communication for identifying the credibility of the app. Moreover, Android app can 

be checked without rooting the android phone. Wang [109] et.al. proposed a malapp 

detection framework exploiting the URLs(Uniform Resource Locator) visited by them. 

Here the malapp detection model is based on multi-view neural-network with the 

detection accuracy of 98.35. Multiple views maintain copious semantic info from 

inputs for segregating the apps. Wang [110] et. al. suggested a framework for android 

malapp identification leveraging both the TCP and https features. Here, the app 
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detection was done at the server side without affecting the user experience. C4.5 ML 

algo is used to train the model with 8312 benign and 5560 malign apps for identifying 

unknown apps with accuracy of 97.89%. Sanz [111] et. al. offered a lightweight malapp 

detection framework using TCP based network features with accuracy of 90% and false 

positive rate less than 3%. Here total number of 359 malapp and benign apps are used 

along with two Random forest and AdaBoost ML algorithms. 

Alshehri [112] et.al. proposed an innovative method to detect the repackaged apps by 

investigating the network traffic behaviour of the smartphones. Here authors 

exploited the request traffic generated by the apps. Total number of 8645 applications 

were used for experimentation. Here the accuracy of request flows attained is 95.1% 

and improvement of 18.3% of accuracy when compared with contemporary methods. 

Sihag [113] et.al. proposed network packet based investigations of captured traffic of 

the smartphone. Here, the authors represents the captured network packet 

interactions as images. These images were given to CNN (Convolution neural network) 

to achieve detection accuracy of 99.12%.   

In sum, security investigations on the smartphone platform via traffic analysis covers 

identification of software, hardware, OS and app related vulnerabilities.  But optimal 

combinations of various traffic features to create a robust solution for demands further 

research. 
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Table 2.3. Comparison of Traffic Analysis Techniques 

Author’

s Name 

Methodology Dataset Result Remark 

Esmaeili et 

al. [99] 

Based on app 

features and 

network traffic 

analysis 

KNN, Decision tree, 

Naive Bayesian as 

classifier 

Drebin, 

Google 

Play, Café 

Bazar 

Precision: 

high risk-87 per 

cent 

Very high risk- 

96 per cent 

Estimation for detection as 

botnet is done using 3 level 

of risk i.e. average or high or 

very high 

Zulkifli et 

al. [90] 

Dynamic detection 

technique 

Records app 

behaviour at run 

time 

Based on network 

traffic using 

Decision Tree 

Drebin, 

Contagiod

umpset, 

Google 

playstore 

Drebin- 98.4% 

accuracy 

Contagiodumpset

- 97.6% 

 

Drebin achieved higher 

accuracy in comparison to 

Contagiodumpset dataset 

Arora et 

al.[114] 

Combined network 

traffic & system 

permissions 

Hybrid model 

Genome 

malware 

dataset  

Detction 

accuracy- 94.25% 

Combining permissions and 

traffic features enhanced the 

rate of detection 

Wei et al. 

[95] 

Modelling and 

learning method for 

network behaviour 

detection 

Used WGAN and 

Bi-LSTM 

Official 

Android 

Market 

App classification 

accuracy- 96.89% 

WGAN model helped in 

improved accuracy of 

BiLSTM by 9% 

S. wang et 

al. [1] 

Based on text 

semantics of 

network flows 

Used N-gram 

method from NLP 

SVM classifier 

VirusShar

e [45], 

Baidu 

mobile 

assistant 

[115], 

Google 

play 

Accuracy 

achieved- 99.15% 

Requires few samples for 

good detection results. 

Able to detect new 

discovered malware as well. 

 

Kandukur

u et al. 

[116] 

Two level hybrid 

analysis approach 

based on 

permission vector 

and network traffic 

 

Malgenom

e project, 

Google 

playstore 

Detection 

accuracy – 

95.56% 

Uses less time and limited 

computational resources 
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Nepal et 

al. [117] 

Hybrid model 

based on sensitive 

resource accessing 

&network traffic 

Google 

play, 

Genome 

malware 

project, 

Droidbenc

h 

Accurately 

detected all 3 of 

app groups of 

Droidbench 

dataset i.e Access 

Internet, 

Neverclick and 

sensitive resource 

Lower FPR viz. false positive 

detection rate 

Lashkari et 

al. [118] 

Five classifiers 

namely RF, KNN, 

DT, RT, Regression 

Focuses on 

dynamic behaviour 

of malware 

1900 

benign 

and mal 

apps of 12 

different 

families 

Avg Accuracy 

(91.41%), 

Precision 

(91.24%), FPR 

(0.085) 

Network traffic captured via 

limited user interaction with 

installed apps 

Pang et al 

[91] 

Analysis of 

relationship 

b/wnetwork flows 

&behaviour 

patterns.Random 

Forest ML algo. 

Google 

play [49] 

Achieved higher 

than 95% 

precision and 

accuracy 

Lacked comparison with 

other ML methods 

Wang et al 

[88] 

Combines network 

traffic analysis with 

ML (C4.5 DT) 

Perform multi-level 

network traffic 

analysis 

Drebin 

[53] 

Detection Rate 

TCP Flow – 
98.16% 

HTTP Model – 
99.65% 

FPR 

5.14% and 1.84% 

Provides details about 

detection results 

 

Nancy et 

al.[77] 

Compared traffic of 

malware with that 

of normal apps 

Decision tree as 

classifier 

Android 

Malware 

Genome 

Project 

Accuracy –

90.32% 

Fails when obfuscation 

techniques are employed like 

encrypting the traffic used by 

malware. 

Chen et 

al.[119] 

Involves traffic 

generation, 

capturing and 

behaviour 

monitoring 

 

Drebin, 

Android 

Malware 

Genome 

Project 

Detection Rate 

DNS Query: 

69.55% 

HTTP Request: 

40.89% 

Analysed malware traffic 

only. 

Arora et al. 

[9] 

Based on network 

traffic features such 

as ratio of incoming 

to outgoing bytes, 

Avg packet size,etc. 

Uses rule-based 

classifier 

Android 

Malware 

Genome 

Project 

Accuracy – 

93.75% 

The approach is specific to 

those malwares which in the 

background connect to any 

remote server. 
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Feizollah 

et al.[120] 

Based on network 

traffic generated by 

Android apps 

Uses 2 clustering 

algorithms i.e. k-

means and mini 

batch k-means 

MalGeno

me, 

Google 

play 

K-means & Mini 

Batch K-means : 

Accuracy: 0.48, 

0.62 

Homogeneity: 

0.008, 0.13 

Completeness: 

0.16, 0.18 

V-Measure: 

0.11, 0.15 

Mini batch K-means 

clustering performed better 

than the other approach i.e. 

k-means 

 

2.6 Performance Metrics 

To evaluate performance of smartphone security analysis framework, following 

metrics are normally used: 

 

2.6.1 False Acceptance Rate (FAR) or False Positive Rate (FPR) 

FAR [121] or FPR exhibits the probability that malicious application will be treated as 

benign application. It’s also known as ‘False Positive’ or ‘Type I error’.  If NM be the 

total number of malicious applications present and FM be the sum of malicious 

applications that are incorrectly accepted as benign, then FAR is computed as 

 

                          𝐹𝑃𝑅 =  
𝐹𝑀

𝑁𝑀
     (2.1) 

 

2.6.2   False Rejection Rate (FRR) or False Negative Rate (FNR) 

FRR [122] or FNR exhibits the probability that benign application will be regarded as 

malign application and deprived of installation rights in the smartphone. It’s also 

known as ‘False Negative’ or ‘Type II error’. If FR denotes the total number of benign 
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applications rejected and NA be total number of actual benign applications, then FNR 

is calculated as 

                                                           𝐹𝑁𝑅 =  
𝐹𝑅

𝑁𝐴
             (2.2) 

 

2.6.3    Equal Error Rate (EER) 

When FAR and FRR are equal then the common value is called EER [123] and is 

represented as the point at which the plotted curves of FAR and FRR values intersect. 

EER as shown in Fig 2.2 is also termed as Cross-over error rate between FAR and FRR. 

This metric expresses the efficacy of the system in rejecting an impostor. If EER is 

close to zero, then performance of the system is maximum, indicating a clear 

separation between genuine and imposter. 

 

 

 

Figure 2.2 Equal error rate (EER) 
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2.6.4    Receiver Operating Characteristic (ROC) 

Receiver Operating Characteristic (ROC) [123] curve is a 2-dimensional plot between 

False Positive Rate (FPR or FAR) and True Positive Rate (TPR or FRR). In other 

words, it may be defined as a plot between false match rate against the verification 

rate. ROC curves as shown in Fig 2.3 is also used to compare the performance of 

various smartphone security analysis techniques for different threshold values. 

 

 

Figure 2.3 ROC curve2 

                                                           
2 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roc_
curve.svg 
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2.6.5    Decidability Index (D) 

 

Decidability Index (D) [124] determine distance between benign and malicious score 

distribution. When the malicious application distributions considerably overlap the 

distributions of the benign applications, it hampers the decision capability of 

framework.  

2 2

2

B M

B M

D
 

 





         (2.3) 

where, μB and μM are mean  and σ𝐵 and σM are variances corresponding of benign and 

malicious score distributions respectively.  

 

2.6.6 Accuracy 

Accuracy [125] measures number of correct predictions to the number of predictions 

or input samples. 

TP TN
DETECTION ACCURACY

TP FP TN FN




  
  (2.4) 

 

2.6.7 Precision 

Precision [126] is a metric that is calculated as the ratio of rightly anticipated positives 

(malicious applications) to the total number of positives (malicious applications) that 

were anticipated. 

TP
PRECISION

TP FP



        (2.5) 
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2.6.8 Sensitivity or True Positive Rate 

Sensitivity [125] is percentage of positives which are correctly recognized by binary 

classifier. 

TP
SENSITIVITY

TP FN



        (2.6) 

Also, 1-FRR=TPR 

 

2.6.9 Specificity or True Negative Rate 

Specificity [125] is percentage of negatives which are correctly recognized by binary 

classifier. 

TN
SPECIFICITY

TN FP



        (2.7) 

 

2.6.10 F1 Score 

F1 Score [127] is weighted mean of sensitivity and precision 

2
1

2

TP
F SCORE

TP FP FN


 
       (2.8) 

 

 

2.7 Benchmarked Datasets 

There are many available datasets for malicious and benign apps  

DREBIN [128]:  5560 applications from different malware families. 

Malware Genome [43]:     1200 malware samples 
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AMD [129]:   24,553 malware samples 

Google Play [130]:   Over a million benign apps. 

Androzoo [131]:    84,420 malware samples 

CICMalDroid2020 [132]: 17341 malware samples. 

 

Performance evaluation of a new Smartphone Security Analysis techniques is done on 

datasets which are publicly available. There are numerous datasets that embed in them 

the maliciousness of different families of malwares available. Mostly, the malware 

characteristics of different families are independent of each other.  It is very vital to 

select the right dataset which should be the amalgamation of apps from different 

sources so as to cover multitude of malwares in the testing and training phase. It is 

essential for the successful performance evaluation of a malicious app detection 

system. But sometimes it becomes very problematic to detect the zero day malwares. 

To detect these malwares, customized dataset incorporating the latest malwares are 

designed by repackaging techniques. These data sets are then subjected to intensive 

testing and training on the proposed detection models. Latest malwares in the 

smartphone ecosystem are collected and embedded in the smartphone apps by 

repackaging techniques so as to detect the zero day malwares in the smartphone 

ecosystem. 

2.8 Research Gaps 

Based upon extensive and intensive review of the literature as discussed in section 2, 

we have found research gaps in the field of smartphone based mobile platform 

security. The gaps in the research are mainly concerns with the issues and challenges 
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in the mobile platform security considering static, dynamic, hybrid, traffic analysis 

approaches.  

 

Most of the attacks on the malware does not cater to zero-day detection. Future of the 

malware detection will utilize the online and ensemble learning techniques to detect 

the malware on the day it comes to the market. New variants of malware are found 

every day, maintaining the latest patterns efficiently to catch the new trends on usage 

of permissions is another sustained challenge. Application are utilizing byte code 

encryption, reflection and native code to thwart static analysis is a great challenge. 

Automatic reverse engineering of the application to extract the permissions is also a 

big challenge. Most of the static analysis techniques does not consider the large set of 

features from the decompiled apps. Source code analysis of the decompiled bytecode 

is a cumbersome task as it requires more manual analysis. 

 

Automatic generation of multiple static features from decompiled apps and their 

optimal combination i.e. unification at feature level was not reported in the previous 

research work. Hence the extraction of complimentary information from large data 

sets of static features through some efficient technique could be investigated in future 

study. Most of the work are tested and evaluated on limited set of databases for benign 

and malign apps. Hence the studies need to be conducted for large sets of data base 

which are updated with the latest malware and application. In addition, apps available 

in most of the data sets are generated on an old version of the platform. Also, the 

malware data base is not uploaded with latest malware. The static and dynamic 

analysis approaches were investigated separately. There is no little work in literature 

which consider both static and dynamic analysis to detect malicious behavior of 
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smartphone-based platform. Categorization of different feature into various threat 

level was not carried out. 

 

Tuning of critical parameters for optimizing the machine learning models for detection 

of malwares was not addressed. Optimal combination of different features with 

automatic parameter tuning and further classification using hybrid approach was not 

addressed. The malware intentionally prolong the delay of infecting the application to 

very long time and it is required to monitor the network traffic to an extended period 

of time to detect the same by network analysis. Most of the malicious activities are 

restrained due to the constrained environment. Studies has been carried out under the 

constrained environment which may make the unintended functionality non-

operational. Mostly studies are focused on the encrypted traffic generated through 

mobile apps which may make the analysis cumbersome. Most of the studies has been 

investigated with the traffic captured from either single apps or few apps. 

Generalization or adaption of analysis tool is foremost requirement. Considering the 

various gaps in the research of mobile platform security and also requirement of 

Defense scenario, I have formulated my research problems and objective of research 

work.  

 

2.9 Conclusion 

Many benchmarked datasets viz. Google Play Store, Drebin, Androzoo, AMD, 

CICMalDroid2020 etc. are proposed in the literature to evaluate the performance of 

various smartphone security analysis techniques. In literature, it has been well 

accepted that combining multiple complementary features extracted from the 

applications enhances performance and accuracy. Our review work analyze the recent 
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trends in the field of smartphone security analysis to indicate the future directions to 

the researchers. Prolific research is going on in this field to detect a reliable malware 

detection approach. It has been well acknowledged that deep learning based methods 

provide robust solutions but required large training data and special hardware for 

their realization. To serve the ever growing demand for training data, large-datasets 

have also been developed. 

 

Performance of a security analysis of smartphone is measured in terms of performance 

metrics like False Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error 

Rate (EER), Receiver Operating Characteristic (ROC) Curve, Decidability Index, 

Accuracy, Precision, Sensitivity, Specificity, F1 score etc. Android Malware detection 

techniques are basically divided into four type(s) viz. static, conventional dynamic, 

traffic-based dynamic and hybrid analysis. After extensive study, we have found many 

gaps in the research. The gaps in the research are mainly concerns with the issues and 

challenges in the mobile platform security considering static, dynamic, hybrid, traffic 

analysis approaches. 

The literature survey resulted in two research papers [133] and [134].  
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Chapter 3 

Design & Development of Static 
Analysis Technique  
 
The aim of this work is to design and develop a static analysis framework for 

smartphone security analysis where in a multi stage fusion approach consisting of 

feature fusion and score level fusion is introduced. For this, a robust unified feature 

vector is created by fusion of transformed feature matrices corresponding to multi-cue 

using non-linear graph based cross-diffusion. Unified feature is further subjected to 

multiple classifiers to obtain their classification scores. Classifier scores are further 

optimally fused employing Dezert-Smarandache Theory (DSmT) [153].  

 

3.1   Introduction 

Static analysis for android malapps detection does not require a host system 

environment as the apps are not executed. It is also the most economical, proficient 

and accurate method for investigating the apps. The numerous static features [136] 

like permissions, app components, filtered intent, API calls etc. are reported in the 

literature. These features are extracted by disassembling the apps by APK tool19. 

Permission usage was extensively exploited for development of solution for android 
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malware detection. Investigations grounded on intents and permissions of 

applications are susceptible to false positive as benign applications too need sensitive 

permissions making them misclassified as malapps. Techniques built on only API 

calls44 frequency are inept to create connections amid the API calls to develop the 

sophisticated behavioural semantics of apps, leading to poor detection rate of novel 

malapps. Therefore, choosing multiple complementary features plays a significant 

part in effective detection of malwares. 

Here, an android based Smartphone Security Analysis paradigm has been proposed 

using non-linear graph fusion and optimal fusion of classifier(s). Multiple 

complementary features are deduced through extensive investigation of benchmarked 

datasets. Complementary features are fused through cross-iterative graph diffusion. 

Thus a unified feature is generated and fed to optimal classifier for classifying the apps 

into benign or malicious with high detection accuracy. Outcomes of our results 

demonstrates that proposed method has better performance in classification and 

detection accuracy. In a nutshell, the following key contributions in this chapter is as 

follows: 

1. We suggest a static feature approach for smartphone security analysis that 

incorporates multiple feature unification through cross iterative diffusion.  To our 

awareness, it is the first time that this approach is introduced to extract unified 

android static features. 

2. Pragmatic and effective app security analysis framework is proposed wherein three 

ML algorithms are exploited to evolve a system to detect the malapps on the basis of 

unified feature representation. Further, outcomes of the ML algorithms were fused by 

DSmT algorithm to improve the accuracy achieved by individual classifiers. In 

addition, we presented a complete investigational study based on CICMalDroid2020, 
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AMD and Drebin malapps database and comparative experimentations with state-of-

the-art methods to validate the efficiency and proficiency of our approach. 

 

3.2 Proposed Static Analysis Framework 

In this manuscript, multistage fusion model wherein both feature and scores are 

optimally combined is proposed to achieve highly robust Android malware detection. 

Overview of the proposed framework is depicted in fig 3.1. For this, we have designed 

three modules viz. multi-cue feature extraction, feature unification, and optimal 

classifier fusion to achieve efficient malware detection. For this, semi-automated tool 

(taking the aid of APK tool) was made to extract the features from the decompiled 

Android Package Kit. APK tool decompresses the *.apk files into *.dex and 

AndroidManifest.xml files. Features extracted consists of API calls, Permission, 

Intents, App Components, Native Code, Op Code, Hardware Feature, Network 

Address. Each feature is exposed to decision tree learning for generating 

corresponding similarity matrices. These matrices are subjected to normalization 

procedure accompanied by filtering out the most weighted similarities in order to 

generate the sparse matrices. To unify these features, unified-graph is created via 

graph fusion technique based on cross-iterative diffusion. This method of enhances 

the robust connections and filters out the weaker ones. Thus, unified set of features 

are generated for further classification. Unified feature [137] is further subjected to 

multiple classifier to make final decision about app classification. 

Due to multitude of features embedded in the android apps, single ML algorithm 

presents its inability to classify these apps effectively . Hence, more than one 

classification algorithms are exploited to detect complex malapp. In the proposed 

framework, we have chosen three ML algorithms viz. Random Forest(RF), Support 
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Vector Machine(SVM) and Naïve Bayes(NB)  for classification. Also, we proposed 

optimal combination of these classifier to accurately classify applications into two 

classes, namely, benign and malicious. Classification algorithms are chosen to 

compensate the demerits of the individual classifiers. For instance, RF is usually used 

when there are more number of features than observations. Its performance is 

excellent in spite of having noise in the predictor variables and it is also not vulnerable 

to overfitting. Also, RF classifier is preferred for large dataset as it is not susceptible to 

outliers. On the limited dataset, SVM performance is optimal for two class problem 

where the data is outlier. For small dataset, NB performs optimally. It is simple and 

speedy to give classification results. Here, three classifiers complements each other in 

framework and synergised the performance of resultant classifier. Our approach 

exploits three classifiers in parallel and the output scores of all the classifiers are fused 

to synergize the overall performance for detection. 

Respective classifier scores viz. rS for RF, sS for SVM, nS  for NB are further 

transformed into belief masses using Shafer Model [138]. Masses for the three class 

focal elements are optimally combined using PCR-6 Rules [153], where classifier’s 

conflicting mass is redistributed in proportion to the mass which is contributing to the 

conflict. Finally, in the decision model, belief mass 6 ( )pcrm B is compared with the 

threshold value thrm and test app is classified into benign depending on whether 

6 ( )pcrm B is greater than or equal to the thrm  or malign otherwise. Details of the 

proposed Android malapp detection framework is presented in the next sub-sections.  
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Figure 3.1 Proposed Smartphone Security Analysis Framework. Stage1 extract 

complementary information from eight multi-cue to obtain unified feature. Unified 

feature is further classified using optimal fusion of three classifiers at stage 2. 

 
 

3.2.1 Feature Extraction 

Multiple features are extracted for given test app t along with apps from reference 

dictionary, { , }q C C   , C  corresponds to benign apps and C  corresponds to 

malicious app. Reference dictionary apps are updated with time so as to incorporate 

the new apps in the proposed framework to enhance its detection capability. In the 

proposed approach, we have extracted eight features namely, API calls, Permission, 

Intents, App Components, Native Code, Op Code, Hardware Feature, Network address 

using from semi-automated tool. 
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APIs: Android OS has many APIs (Application Programming Interface) that are used 

for interacting with Android smartphones. Malwares extensively used APIs to target 

the Android ecosystem.  API’s are present in the *.dex   class of an app and can also be 

found in the Smali Files of the APK.  By extensive analysis of the dataset, we have 

chosen 1k  number of API’s listed in Table 3.1, whose frequency of occurrence is taken 

as a feature value. Feature value is determined using Eq. (3.1) 

1

1

1

( )
k

t

A i

i

F f 


          (3.1) 

       

Where, 1( )if  is a function that determines the frequency of occurrence of API, 1i  

denotes API positioned at thi  place in Table 3.1 and t

AF  is the API related feature vector 

of the test app t  . Similarly, API feature q

AF for reference dictionary apps are extracted 

for { , }q C C  . 

Permissions: Android apps requests for permissions from smartphone user during the 

app installation. Permissions are essentially required to protect the privacy of the users 

making the permissions the most vulnerable conduit for launching attacks in the 

android smartphones. In [24], authors exploited numerous permissions for malware 

identification. Permissions are stored in Manifest.xml file of the app source code. In 

our model, we have taken frequency of occurrence of most risky permission’s request 

also as a feature vector. For this, 2k  number of permissions are chosen considering 

their frequency of call by various malicious apps. Feature vector related to permission 

is determined using Eq. (3.2).  

2

2

1

( )
k
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P i

i

F f 


          (3.2) 

.          
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Where, 2( )if  is a function that determines the frequency of occurrence of most 

frequent permission, 2i  denotes such permission positioned at thi  place in Table 3.1 

and t

PF  is the permission related feature vector of the test app t .Similarly, permission 

feature q

PF  for reference dictionary apps are extracted for { , }q C C  . 

System Intents: Intent [41] is basically a message used to kick start activity in apps. 

Starting a service and activity and delivering a broad cast are three basic usage of 

intents. Malware writers are exploiting intents for launching numerous attacks. We 

have chosen 3k  number of intents (listed in Table 3.1) that are widely used to 

segregate the malapps from benign apps. Therefore, Intents are taken as feature 

parameter. Total count of these intents is determined using Eq. (3.3) 

3

3

1

( )
k

t

I i

i

F f 


          (3.3) 

Where, 3( )if  is a function that determines the frequency of occurrence of Intents 3i , 

positioned at thi place in Table 3.1 and t

IF  is the intent related feature vector of 3k

number of intents of  app t .Similarly, Intent feature q

IF for initially stored apps are 

extracted for { , }q C C  . 

APP Component: App components characterise applications and they are the 

conduits though which the user or system accesses an app. These components are 

related by the app’s manifest file AndroidManifest.xml that describes the components 

of an app and dictates the interaction mechanism. There are 4 main app components 

lying in Android app i.e. Service, Activity, Broadcast Receiver, and Content Provider 

in the app’s manifest file and frequency of these app components are taken as feature 

parameter and is determined using Eq. (3.4) 

( )t

CF f AppComponent                                     (3.4) 
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t

CF is the feature value for test app t . Similarly, app component feature q

CF for reference 

dictionary apps are extracted for { , }q C C  . 

 

Table 3.1: Details of API, Permission and Intent Feature 
 

  

 

Native code: Native code is processor specific code and does not run on the emulator. 

It is used to hide malicious content in the app as this code is difficult to understand. 

Therefore, another feature parameter is the total sum of these native codes in an 

application. Native code feature parameter for app  𝑡 is calculated using Eq. (3.5)   

( )t

NF f NativeCode                  (3.5) 

Feature  Position of Feature(i) Symb
ol 

API AutoSmsReceiver, BootReceiver, PhoneCallReceiver, 
abortBroadcast, GetCall state, 
getActiveNetworkInfo(),getDataActivity(),getDeviceId(),getNe
tworkType(), getSimOperator(), getSimSerialNumber(), 
getSimState(), getSubscriberId(), classes.dex, 
entry.loadClass(),getConnectionInfo(), getSupplicantState(), 
setWiFiEnabled(), execHttpRequest(), Runtime.exec(), 
Cipher.GetInstance(), sentTextMessage(), getMessageBody(), 
getSubscriberID(), getLastKnownLocation(), 
com.android.contacts() 

  

1i  

Permissi
on 

Access_Network_State, set_Prefered_Application, 
Access_Wi-Fi_State, Access_Fine_Location, Call_Phone, 
Change_Network_State, Get_Accounts ,Internet, 
Install_Packages, read_Contacts, Read_Logs, 
Read_Phone_State, Read_Sms, Receive_Boot_completed, 
Restart_packages, Receive_Sms,Send_Sms, Vibrate, 
Write_Secure_Settings, Read_History_Bookmarks, 
Update_Device_stats, Manage_Documents, 
Install_Location_Provider 

 

2i  

Intents Boot_Completed, Send_To, Dial, Screen_off, Text, Send, 
User_Present, Screen_On, Call, Package_Data_Cleared, Text, 
Send, Quickboot_Poweron, Time_Changed, Sms_Received, 
Airplane_Mode, Battery_Changed Get_Content, 
Data_Sms_Received 

 

3i  
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Similarly, native code feature q

NF for reference dictionary apps are extracted for 

{ , }q C C   

OP Code: An opcode or Operation Code is a machine language instruction that 

stipulates the operation to be performed with CPU. Frequency of sequence of opcodes 

extracted from the apps can be taken as features for malapp identification. Opcodes 

are exploited by the malware writers because of their similarity to app code and 

frequency of these op codes are taken as the next feature parameter and is determined 

using Eq. (3.6) 

 

( )t

OF f OPCode             (3.6) 

t

OF is the feature value for test app 𝑡. Similarly, op code feature q

OF for reference 

dictionary apps are extracted for { , }q C C   

 

Hardware Feature: Hardware features [135] are used by Android apps to access 

hardware of the android smartphone and are listed in the AndroidManifest.xml file. 

Hardware features are characterized by “android. hardware” in the manifest file. In 

the proposed framework, by extensive analysis of dataset, we have chosen 55 hardware 

feature for generating feature parameter. The frequency of 55 hardware features in the 

manifest.xml file of an app is taken as feature parameter and is determined using Eq. 

(3.7) 

( . )t

HF f android hardware   (3.7) 

t

HF is the feature value for  test app t .Similarly, hardware feature q

HF for reference 

dictionary apps are extracted for { , }q C C   

 

Network Addresses: Malapps designers often wants to interact with malapps so as to 

direct the user’s critical data on the smartphone to designated network addresses of 

the C&C server embedded in malapps. So, network address can be taken as the feature 
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parameter. The total number of these network addresses in an application is the 

network address-based feature parameter for test app  𝑡 is calculated by Eq. (3.8)  

( _ )t

WF f network address          (3.8) 

t

WF is the feature value for test app t . Similarly, network address feature q

WF for 

reference dictionary apps are extracted for { , }q C C  . 

In sum, we have constructed eight feature descriptors as mentioned in Eq. (1) to Eq. 

(8) for every test application and reference dictionary apps. Similarly, network feature 

q

WF for reference dictionary apps are extracted for { , }q C C  . Feature vectors 

extracted using Eq.(3.1) to Eq.(3.8) are further fused to obtain unified feature. A set of 

C  number of benign and C  number of malicious apps are stored as a reference 

dictionary. In feature unification, features for test and reference dictionary apps are 

extracted and subjected for creation of non-linear graph. In the graph, test app feature 

act as one node and reference dictionary apps as other nodes. Following this, eight 

graphs are generated for each test app t . 

For each feature descriptor { , , , , , , , }t

A I P C N O H WF F F F F F F F F      of test app t , we 

construct graphs { , , , , , , , }t

A I P C N O H WU U U U U U U U U   using an edge weight described 

as the similarity between feature descriptors of two  apps  t  and  q  where { , }q C C 

.In this, similarity matrices
*N NU   is constructed by decision tree , where 1N q  . 

For feature pair values ( , )t qF F   corresponding to t  and q  apps for 
th  feature, 

similarity parameter ( , )U t q is calculated by passing them through decision trees using 

Eq.(3.9)       

(( ( )) ( ( )))
( , ) , [ , , , , , , , ]

t q

t

f L F L F
U t q A I P C N O H W

T

 

 


                 (3.9)         
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L  is the set of class labels of trees grown and tT  is the total number of decision trees 

made. Graph generated using Eq. (3.9) are further fused using proposed cross 

diffusion to achieve unified feature.  Details of features unification follows in turn. 

 

3.2.2 Feature Fusion 

 
Multi-cue feature fusion process consists of multiple feature extraction and their 

fusion using cross diffusion of extracted features. Multiple features are extracted for 

achieving the high performance. Cross diffusion of features extract complementary 

information to obtain highly distinct unified feature leading to creation of clear and 

distinct boundary between benign and malicious class. In the proposed framework, we 

have modelled multi-cue feature fusion problem as eight graphs and fused them by 

iterative cross diffusion process.  

 

Multi-cue features extracted from decompiled source code may not be linearly 

associated and need non-linear based fusion technique to combine this 

complementary info. To integrate multi-cues efficiently, non-linear graph based cross-

diffusion process was introduced by Wang [139] et al.  Further, improved version [140]  

of this work was explored for classification. In this work, complimentary info from 

multi-cue data is extracted and non-linear unified graph was generated by cross 

diffusion process. Classification results of [140] demonstrates that the multi-cue 

information unification by non-linear graph method is more precise than linear graph 

methods. Cross diffusion approach proposed by Walia [137] et al. is employed for 

feature fusion in the proposed framework. This method is better than previous 

methods [139] [140] and improves the detection accuracy because of the iterative 

normalization of similarity matrix and updated sparse representation. Unique graph 

unification approach accomplishes non-linear feature fusion with iterative 
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normalization. This keeps a robust representation of the apps (malicious or benign) 

and rejects weak features that make the classifier vulnerable to unreliable results.  

Similarity matrix generated using Eq. (9) for each feature graph is again normalized 

using Eq.(3.10) to obtain respective normalized matrices , { , , , , , , , }
t

U A I P C N O H W 

.Normalization technique sets the similarity of each app with itself as constant  , and 

the similarities with rest of the apps in the test set to (1-  ). The first row of the 
t

U 

     comprises the edge weights respective to test app t  

1

( , )
(1 ) ,

( ( , )( , )

,

N

q

U t q
t q

U t qU t q

t q



 








 


 

 

                                   (3.10) 

( , )U t q above is further used to derive a sparse vector depiction of the training app t  

to keep the most similar features and discard the other using Eq. (3.11) 

( , ), ( ) ( )

0,

k U t q if U t K NN t
V

otherwise

 



  
 


         (3.11) 

We further normalized
kV as 

k

V   vector using Eq. (3.12) 

1

,

1

k
k

N
k

i

i

V
V

V













                                                                                                                    (3.12) 

Normalization further allocates the weights amongst the strong links giving robust 

sparse depiction. Fused feature descriptor 1( ) N

TFF t   is obtained by fusing the 

different feature sparse vectors V   by cross diffusion approach using Eq. (3.13), where 

h  is the number of features taken. 

   , ,, 1

1,

1
( ) * * ( ) *

1

h transpose
k k

i ii

j j

U t V U t V
h

  




 

 
  

 
        (3.13) 
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Where, i  is the thi  iteration of cross diffusion process and h  =8 

To enhance the effectiveness of the diffusion, modification of the recursive operation 

by normalization of each row respective to the test app in the similarity matrix , 1( )iU t   

1N  obtained after every iteration as 

 

, 1
, 1

, 1

1

( )
( )

( )

i
i N

i

j

U t
U t

U t
















        (3.14) 

Following this, normalized sparse vector , 1n iV   is obtained from sparse vector , 1n iV   in 

the next iteration using Eq.(3.14), Eq.(3.11) and Eq.(3.12). Lastly, the mean of 

adjacency list of test app for each feature descriptor , ( )TU t is taken to find the fused 

feature descriptor ( )TFF t as given in Eq.(3.15) 

 
8

[ ],

1

( )

( )
8

j T

j

T

U t

FF t







        (3.15) 

Where, T  is the final iteration of the normalization process of cross diffusion and  

{ , , , , , , , }A I P C N O H W .This ( )TFF t   is taken as a unified feature and given as  input 

to train the classifier(s).Detail of unified feature classification for test app follows in 

next subsection. 

3.2.3 Optimal Classifier Score Fusion 

 
Unified feature for the test app is applied to classification module for final decision. 

For this we subjected the unified feature to three trained classifiers in parallel to 

determine their classification scores. Proposed classification model comprises of two 

phases viz. individual training classifier score estimation and optimal combination of 

the individual classifier scores. For classification of test app, three classifier scores viz. 

Random Forest rS and Support Vector Machine sS  , Naïve Bayes nS are determined 
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when unified feature is fed to these individual trained classifier. These classifiers 

scores can be combined by various score fusion approaches available in the literature 

[141] [142]. In the proposed method, respective classifier scores attained are further 

subjected to classifier score fusion paradigm where the obtained scores from the 

classifiers are converted to respective belief masses and the conflicts amongst 

individual belief is redistributed and resolved by means of DSmT based PCR-6 rules. 

Scores of the different classifiers are fused using Shafer's model. For this, the frame of 

discernment   ,rF B M is specified by of two focal elements viz. Benign ( )B   and 

Malicious ( )M  corresponding to whether the app is benign or malicious. Each 

classifier in the model delivers a score about classification. The individual belief mass 

is obtained by transforming the classifier score  , ,r s nS S S  with the aid of Denoeux 

Belief System using equations (3.16) and (3.17): 

( ) * ( )j j jm B C S B          (3.16) 

( ) 1 * ( )j j jm M C S B          (3.17) 

Where { , , }j r s n and jC  is the confidence factor of individual classifier. Further, belief 

masses are optimally fused by means of DsmT-based PCR-6 rules. For this conjunctive 

consensus is determined using Eq. (3.18) and Eq. (3.19): 

3

1

( ) ( )rsn j

j

m B m B


         (3.18) 

3

1

( ) ( )rsn j

j

m M m M


         (3.19) 

Where { , , }j r s n  and ,B M corresponds to benign and malicious app respectively. 

Total conflict amongst classifiers is obtained which consists of partial conflicting 

masses of benign and malicious scores using Eq. (3.20): 

 

( ) ( )* ( )* ( ) ( )* ( )* ( )rsn r s n r s nm B M m B m M m M m M m B m M                (3.20) 
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           ( )* ( )* ( ) ( )* ( )* ( )r s n r s nm M m M m B m M m B m B   

             
( )* ( )* ( ) ( )* ( )* ( )r s n r s nm B m B m B m B m B m M 

 

Total conflict comprises of six number of partial conflicts which are further reallocated 

amongst benign and malicious scores using Equations (3.21-3.26), where 1b  to 6b  are 

redistributed conflict masses for the benign focal element and 1m  to 6m  are 

redistributed conflict masses for the malicious focal element respectively. 

 

( )* ( )* ( )1 1

( ) ( ) ( ) ( ) ( ) ( )

r s n

r s n r s n

m B m M m Mb m

m B m M m M m B m M m M
 

  
            (3.21) 

 

( )* ( )* ( )2 2

( ) ( ) ( ) ( ) ( ) ( )

r s n

s r n r s n

m M m B m Mb m

m B m M m M m M m B m M
 

  
                    (3.22) 

 

( )* ( )* ( )3 3

( ) ( ) ( ) ( ) ( ) ( )

r s n

n s r r s n

m M m M m Bb m

m B m M m M m M m M m B
 

  
                                    (3.23) 

 

( )* ( )* ( )4 4

( ) ( ) ( ) ( ) ( ) ( )

r s n

s n r r s n

m M m B m Bb m

m B m B m B m M m M m B
 

  
                          (3.24) 

 

( )* ( )* ( )5 5

( ) ( ) ( ) ( ) ( ) ( )

r s n

r n s r s n

m B m M m Bb m

m B m B m M m B m M m B
 

  
                                   (3.25) 

 

( )* ( )* ( )6 6

( ) ( ) ( ) ( ) ( ) ( )

r s n

r s n r s n

m B m B m Mb m

m B m B m M m B m M m M
 

  
                                  (3.26) 

 
 
The final belief regarding whether the test app is benign or malign is derived by adding 

the redistribution masses and corresponding conjective consensus using equations Eq. 

(3.27) and Eq. (3.28)       

 

6 ( ) ( ) 1 2 3 4 5 6pcr rsnm B m B b b b b b b                      (3.27) 
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Algorithm 1: Proposed Smart Phone Security Analysis  
Function: Security Analysis  ( , , )S t C C   

For  kC C  do 

      S ←  [𝐶𝑘, 𝐶+, 𝐶− ] 

      derive { , , , , , , , }t

A I P C N O H WF F F F F F F F F    from Eq.(3.1-3.8) 

         for F  do  

               Derive { , , , , , , , }t

A I P C N O H WU U U U U U U U U   from Eq. (3.9) 

               normalize U  to U  using Eq. (3.10) 

     if  ( ) ( )U t k NN t     then 

                    ( , )kV U t q   

    else 

                0kV   

    end 

                normalize
kV  to 

k

V  using Eq.(3.12) 

    repeat 

                find , 1( )iU t  , using ,

k

iV   and ( )U t from Eq.(3.13)   

                      normalize , 1( )iU t   to , 1( )iU t  using Eq.(3.14) 

                          , , 1( ) : ( )i iU t U t    

     until convergence 
         end 

find ( )TFF t  using , ( )TU t Eq.(3.15) 

            find  , ,r s nS S S  using ( )TFF t  

            find ( )jm B and ( )jm M , { , , }j r s n  using Eq.(3.16) and Eq.(3.17) 

            find 𝑚𝑝𝑐𝑟6(𝐵)   using Eq.(3.18) to (3.26)  

            find ( )rsnm B , ( )rsnm M and ( )rsnm B M    from Eq.(3.18-3.20) 

            find jm and jb from Eq.(3.21-3.26) for 1,2,3,4,5,6j   

            find 6 ( )pcrm B    using Eq.(3.27)  

             if 6 ( )pcr thrm B m  

                                    return (benign) 
             else 
                                    return(malicious) 
end 
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6 ( ) ( ) 1 2 3 4 5 6pcr rsnm M m M m m m m m m                                       (3.28)   

 
 
The final belief whether test app t  is benign or malicious is determined from by 

6 ( )pcrm B or 6 ( )pcrm M  . Thereafter, decision is taken by comparing the final beliefs with 

a threshold value. If value of 6 ( )pcrm B  is greater than or equal to the threshold ( thrm ) 

value, then test app t is declared as benign otherwise it is declared as malicious. 

Algorithm 1 sum up the pseudocode for proposed framework for Smartphone Security 

Analysis. In the next section, performance evaluation of proposed method against 

other state-of-the-art malware analysis methods follows. 

3.3 Experimental Validation 
 
Experimental validation includes both qualitatively and quantitatively evaluation of 

proposed framework on the chimeric datasets as mentioned in Table 3.2. Qualitative 

evaluation is done through statistical investigation of extracted features of datasets 

and score-distribution of the classifiers. Also, quantitative analysis is done by 

numerous performance matrices viz. Accuracy, Decidability Index (DI), Equal Error 

Rate (EER), F1 Score and sensitivity. We also compared our proposed framework with 

four state-of-art methods employing static features HEMD [19], MLIF [20], DS  [141] 

and FGF [143].The details of the experimental validation follow in turn. 

3.3.1 Datasets 

 
For evaluation of proposed framework, Database (DB1 to DB5) comprising of both 

benign (B) and malign (M) apps datasets is formulated. Benign apps are acquired 

mainly from Google Play Store [130] and CICMalDroid2020 [132]. After downloading 

the benign apps, we subject them through online Virus-Total scanner that has about 

70 antivirus scanners in its arsenal. Application is tagged as benign if the antivirus 

scanner recognized it as benign, else it is considered as malign or malicious. Malicious 
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apps are collected from benchmarked datasets viz.  Drebin [128] and AMD [129] and 

CICMalDroid2020 [132] that covers the diverse families of malware. In total, 4000 

apps are collected and rearranged in the form datasets (DB1 to DB5) which is detailed 

in Table 3.2.  First, four group(DB1-DB4) of 1000 apps each from the benign and 

malicious apps is created and consolidated group of all the 4000 apps is named as 

DB5. 

Further, evaluation of the framework was performed on MATLAB 2017b on an i7, 2.2 

GHz processor having 16 GB RAM to implement proposed framework. In DB1-DB5, 

we split the dataset of apps into ten equal subsets and select a subset of apps randomly 

for testing and left over subsets is used as training apps. To overcome over fitting of 

results, 10 fold cross-validation technique is used and mean values are reported as 

results. Next section covers the experimental validation where the proposed 

framework is analysed both in terms of qualitative and quantitative analysis. 

Particulars of Qualitative analysis follows in the subsequent sub-section. 

 

Table 3.2: Databases for Experimental Validation 

        App Category    
  
Database 

Malign Apps(M) Benign Apps(B) Remarks 

 DB1 500 500 Drebin(M)  
GooglePlay(B) 

DB2 500 500 AMD(M)                
GooglePlay(B) 

 DB3 500 500 CICMalDroid2020   
(for both M&B) 

DB4 500 500 AMD(M) 
CICMalDroid2020(B) 

DB5  2000 2000 Consolidated 
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3.3.2 Qualitative Analysis 

 

Qualitative performance is evaluated for the proposed framework over the datasets. 

Qualitative performance is mainly done by comparing the score distribution analysis 

of different state-of-the-art techniques and frequency analysis of extracted features on 

the datasets. Qualitative analysis results are deliberated as follows: 

 

 

 

Figure 3.2: Frequency distribution Analysis for extracted Eight features for Database 

DB5 (x axis : Static Feature ; y axis: Frequency of occurrence of static feature). 

  

3.3.2.1 Frequency Distribution Analysis: Frequency of occurrence of eight 

complementary features are determined for different datasets. For consolidated 

dataset DB5, extracted features viz. API calls, Permission, Intents, App Components, 
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Native Code, Op Code, Hardware Feature and Network Address are plotted as bar 

charts as shown in Fig. 3.2, for benign and malicious apps, wherein benign apps total 

feature values are presented in blue colour and malapps total feature values are 

depicted as red colour bar. From the bar graph, it is apparent that the eight chosen 

features are discriminative and hence provides a great performance regarding the 

classification. 

 

3.3.2.2 Score Distribution: To evaluate the proposed optimal classifier 

performance, score scatter   distribution plots are examined for both benign and 

malicious apps. The outcomes corresponding to DB1 database are shown in Fig 3.3. 

Scores for benign and malicious apps are determined and plotted against app number 

resulting in the scatter plot as shown in Fig 3.3.  

 

Fig 3.3(a, b, c, d) displays scatter distribution plot drawn for state-of-the-art methods 

and the proposed method respectively. From the Fig 3.3, it is clear that most of score 

are dispersed in the area from 0.4 to 0.6, which is marked as conflicting area. 

Concentration of apps scores in this range of conflict is maximum for other state-of-

the-art methods.  

 

However, using unified feature 𝑈𝐹 produced by cross iterative diffusion process and 

proposed optimal classifier, apps scores are broaden as depicted in Fig 3.3(d). Hence, 

proposed classifier is efficient as it has broadened the classifier(s) score values 

corresponding to malicious and benign apps. 
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(a)                                                                           (b) 

        

(c)                                                                        (d) 

  
 

Figure 3.3 Scatter Plots for DB1 dataset:(a) MLIF [20]  (b) HEMD [19] (c) DS [141] 

(d) Proposed Method. 

Score for database DB1 are plotted vs frequency of scores value. Overlapping of score 

values of benign and malicious apps to a large extent render the decision model 

ineffective. Overlapping of distribution scores occurs for methods [20][19][141]  and 

proposed method as shown in Fig 3.4(a), Fig 3.4(b), Fig 3.4(c) and Fig 4(d) 

respectively. Minimum overlapping of scores occurs for the proposed method as 

depicted in the Fig 4(d). 
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(a)                                                                        (b) 

                    

      (c )      (d)  

   

Figure 3.4: Score-Distribution Plots for DB1: :(a) MLIF [20]  (b) HEMD [19] (c) DS 

[141] (d) Proposed Method. 

 

Furthermore, score distribution for the state-of-the-art method and the proposed 

method are depicted Fig 3.4. As shown, score distribution in the proposed multi-stage 

fusion model in Fig 3.4 (d), has minimum overlap. It undoubtedly shows that the 

distributed scores of the proposed framework can perform better classification. 

Qualitative analysis further strengthened the Quantitative analysis of proposed 

framework. Quantitative analysis follows in the next section. 
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3.3.3 Quantitative Analysis 

 
For the suggested method, quantitative investigation is achieved via ten-fold cross 

validation on 5 databases (DB1, DB2, DB3, DB4, DB5) of dataset as listed in Table 3.2. 

For this, evaluation metrics i.e. Sensitivity, Accuracy, F1 Score, equal error rate and 

decidability index are calculated and outcomes are compared with the state-of-the-arts 

methods. 

Decidability determine distance between benign and malicious score distribution  

Sensitivity is percentage of positives which are correctly recognized by binary 

classifier. F1 Score is weighted mean of sensitivity and precision. Accuracy measures 

number of correct prediction to the number of predictions or input samples. 

Sensitivity, F1 Score and Accuracy are determined using equations as in Section 2.7, 

Chapter 2. 

Decidability index corresponding to database DB1, for various methods are calculated 

and tabulated in Table 3.3. Average decidability indexes for are calculated as 2.9544, 

3.3551, 2.7934 and 4.10152 for HEMD, MLIF, DS and FGF respectively. Proposed 

framework attained avg. decidability value of 5.4328 and same is validated by least 

overlapping of plots in Fig. 3.4(d). This comparatively higher value of decidability of 

the proposed framework in Table 3.3 is attained largely due to nonlinear feature 

fusion through cross iterative diffusion and optimal combination of classifiers score. 
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Table 3.3: Decidability Index for different Methods 
 

Dataset          HEMD MLIF  DS FGF Proposed 
Method 

DB1 2.9699 3.5197 2.5298 4.1384 5.63 

DB2       2.9167 3.3807 2.8906 4.1264 4.461 

 DB3 2.9373 3.3455 2.9636 4.0071 5.820 

DB4 2.9671 3.0686 2.7068 4.0814 5.265 

DB5 2.9812 3.4612 2.8765 4.1543 5.985 

 

 
Receiver Operating Characteristic (ROC) curves have been determined for proposed 

method, and four state-of-the-art methods. The results are depicted in Fig 3.5. ROC 

determined the performance of a classifier as its decision threshold is varied. It is 

evident from the Fig 3.5, for low False Acceptance Rate, proposed method achieves 

very high False Rejection Rate or in other terms very high true acceptance rate. There 

is also radical drop in false acceptance rate for state-of-the-art methods. Among ROC 

curves of the state-of-the-arts methods, method MLIF outperformed methods HEMD, 

DS and FGF.  It is apparent from the ROC curves that proposed framework is 

extremely precise and proficient. 

Proposed method has also been compared with other state-of-the-art methods by 

calculating the Equal Error Rate (EER) using the ROC curves. Proposed framework 

achieved very low average EER of 1.0408, whereas other methods attained 

comparatively higher EER of 7.8562, 3.7800, 8.3026 and 5.9544 for HEMD, MLIF, 

DS and FGF respectively.  Performance enhancement is attributed mainly to the non-
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linear graph fusion of eight feature vectors and optimal fusion of classifier scores by 

DSmT-based proportional conflict redistribution (PCR-6) rules where concurrent 

scores are enhanced and discordant scores are suppressed.  

      (a)                                                              (b)    

 
 

          

                                  (c )            (d )                                                                                                                                   

   

 
 

 
 

 

Figure 3.5: Comparison of ROC curves for state-of-the-art method and proposed 

method (a) DB1, (b) DB2, (c) DB3, (d) DB4  
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Table 3.4: Evaluation of Average Equal Error Rate for Different Methods.  
 
 

Dataset          HEMD MLIF  DS FGF Proposed Method 

DB1 6.9860 3.4000 9.7804    5.9940 1.2012 

DB2 8.5828 3.5000 7.0858 5.7942 0.8008 

DB3 8.1836    3.4000 6.7864 5.9940 1.1010 

DB4 7.1856 4.4000 8.6260 5.9940 1.0010 

DB5 8.3434 4.2000 9.2344 5.9962 1.1000 

 
In addition, we determine the sensitivity, accuracy and F1 Score for other state-of-art 

method and proposed method and results are tabulated in Table 3.5. 

Table 3.5: Comparison of Performance metrics (PM) namely Sensitivity, 
Accuracy and F1 Score for different comparable methods. 
 

Data
set 

 PM        HEMD MLIF  DS FGF Proposed 
Method 

DB1 

 

 

Sensitivity   0.9281 0.9660 0.9002 0.9381 0.9880 

Accuracy 0.9271 0.9650 0.9481 0.9380 0.9880 

F1 Score 0.9627 0.9827 0.9474 0.9680 0.9939 

DB2 

 

 

Sensitivity 0.9201 0.9600 0.9102 0.9401 0.9920 

Accuracy 0..9191 0.9590 0.9531 0.9400 0.9919 

F1 Score 0.9584 0.9796 0.9529 0.9691 0.9959 

DB3 

 

 

Sensitivity 0.9122 0.9660 0.9301 0.9381 0.9880 

Accuracy 0.9112 0.9650 0.9630 0.9380 0.9889 

F1 Score 0.9541 0.9827 0.9638 0.9681 0.9939 

DB4 

 

 

Sensitivity 0.9241 0.9640 0.9102 0.9401 0.9900 

Accuracy 0.9231 0.9630 0.9531 0.9400 0.9899 

F1 Score 0.9606 0.9817 0.9529 0.9691 0.9949 

 DB5 

 

 

Sensitivity 0.9064 0.9794 0.9583 0.9544 0.9945 

Accuracy 0.9110 0.9650 0.9520 0.9385 0.9898 

F1 Score 0.8220 0.9645 0.9521 0.9360 0.9898 
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On evaluation over datasets as listed in Table 3.2, avg. detection accuracy of 91.8%, 

96.3%, 95.38% and 93.89% for HEMD [19], MLIF [20], DS [141]and FGF[143] 

respectively has been accomplished. Likewise, average detection accuracy of 98.97% 

was attained for proposed method. In order to gauge the real time application of 

proposed method, we have determined time and space complexity of proposed 

method. On an average, proposed method needs 5.5 sec to evaluate test app. Also, 

proposed method extracts dimensionality reduced feature as unified feature. 

Realisation of proposed method is achieved in few KBytes of memory.  

Overall performance of the proposed framework versus details of the state-of-the-art 

methods chosen for comparison, discussed in the next section. 

3.2.4 Overall Performance  

 
Proposed smartphone security analysis framework outperforms the other comparable 

state-of-the-art methods viz. HEMD [19], MLIF [20], DS [141]and FGF [143] both in 

terms of qualitative and quantitative analysis when evaluated over datasets 

comprising of benign and malicious apps as tabulated in Table 3.2. Improvement for 

average accuracy of the proposed method by 7.14%, 2.63%, 3.59% and 5.08% for 

HEMD, MLIF, DS and FGF respectively has been achieved. An average accuracy of 

98.97% was attained for the proposed method. Our framework handles the limitations 

posed by the state-of-the-art methods by conflict resolution amongst classifiers and 

redistribution of conflicts to produce improved set of fused scores with better 

scattering as can be seen in the scattering plots in Fig 3.3. Score distribution plots in 

Fig 3.4 clearly depicts that the overlapping of malicious and benign scores is reduced 

to a great extent. Significant improvement in the average decidability index values of 

proposed model to 5.4328 as compared to 2.954, 3.355, 2.793 and 4.101 for HEMD 

[19], MLIF [20], DS [141] and FGF[143] respectively further reinforces our claim for 
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the better performance of the proposed method. This improved value of decidability 

index of the proposed framework is attained mainly due to nonlinear feature fusion 

through cross iterative diffusion and optimal combination of classifiers score values. 

Feature fusion process used in the proposed framework exploits complementary info 

from the eight individual features.   

HEMD [19] uses a set of 4 features viz. permission rate, permission, sensitive API, 

system events to detect malwares in the apps with a single RF classifier. Here, low 

accuracy is attributed to lack of feature and score fusion in the model. In Mlif, authors 

employ parallel machine learning and information fusion approach. Normal vector 

based feature transformation was employed along with DS theory and probability for 

malapps detection. Here any conflict arising between the classifier score is not 

resolved. Authors of DS proposed a multi classifier (SVM, J48, Bayes Net) and fusion 

method to identify malapps. In FGF, Xu Jianget et. al  proposed a static feature (native 

code, intent filter, reflection, root, permissions) based malapp framework using four 

ML classifiers (KNN, NB, SVM, J48). This method also achieved low detection 

accuracy due to lack of feature fusion and optimal classifier fusion. 

In a nutshell, the proposed multistage fusion framework for smartphone security 

analysis outclass other state of the art techniques. It is suitable for classifying test app 

as malicious or benign with high detection accuracy by feature fusion through cross 

iterative graph diffusion method and optimal fusion of classifier scores. Quantitative 

performance enhancement is attributed to extraction of multiple features and their 

fusion through cross diffusion. Also, our smartphone security analysis framework 

outperforms numerous limitations of state-of-the-art methods mainly due to 

extraction of complementary information and optimal fusion of classifiers to create 

clear and distinct boundary between the benign and malicious classes. 
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3.6   Conclusion 

The significant highlights of this research work are as follows: 

 

 A novel multi stage fusion approach for Smartphone Security Analysis system 

has been proposed which is founded on the amalgamation of multiple static 

features and optimal score level fusion. 

 

 The proposed technique is highly efficient to detect the wide variety of malicious 

apps in the android ecosystem.   

 

 Furthermore, multi-stage fusion stage controls optimum confidence factors for 

individual classifier. Beliefs of the classifiers are repressed for discordant and 

enhanced for concurrent classifier(s). PCR-6 rules helps in conflict resolving 

among classifier beliefs to attain improvement in final score. 

 

 Optimal score fusion applied on cross-diffused features to produce better results 

than existing state-of-the-art methods.  

 

 An average accuracy of 98.97% was attained for the proposed method. 

Performance evaluation shows that the proposed method outperforms other 

state of the art methods. Further, performance metrics viz., EER, Decidability 

index, ROC curve, F1 score, Accuracy, sensitivity etc. reveals that the proposed 

method is robust for detection of android malicious applications. 

 

         The experimental results along with other findings were published in [145]. 
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Chapter 4 

Design & Development of Hybrid 
Analysis Technique  
 
The aim of this work is to introduce novel hybrid approach for smartphone security 

analysis. The proposed solution exploits both static and dynamic features for 

generating a highly distinct unified feature vector using graph based cross-diffusion 

strategy. Further, a unified feature is subjected to the fuzzy-based classification model 

to distinguish benign and malicious applications.  

 

4.1   Introduction 

 

Smartphones are deeply rooted in the digital market due to their potential 

applications in 4G and 5G based wireless networks.  Android upheld its status as a 

leading smartphone OS universally. The profound growth of mobile technology brings 

significant measures to be incorporated in the mobile security landscape. Also, sum of 

existing apps in the Google Play repository has been increased to 3.047 million [146]. 

However, this deluge of mobile apps attracted the malice writers to infuse malwares 

in these apps for nefarious deeds and the number of new android malwares are also 

growing as 482579 [147]malware samples per month. Android malicious applications 

(malapps) proliferate due to the easiness of installing fresh apps from third-party [148] 
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sources. Amongst different mobile OS, Android is the most widespread platform 

because of its open architecture. Unluckily, android based smartphones have 

progressively turned into the key target of the attackers, thereby enforcing urgency for 

mobile app security. Sailfish OS, Postmarket OS, Ubuntu Touch, Mobian, Lune OS  etc 

are Linux based OS that are also vulnerable to malwares. But due to their limited 

presence, the attacks are also limited. 

Abundant literature is available on static and dynamic analysis to detect malapps and 

other unintended functionalities in Android apps. These malign (M) apps are normally 

camouflaged as benign (B) ones causing system impairment, financial damage, 

information seepage and can form mobile botnets. Numerous investigation 

mechanism has been suggested to identify malapps. The detection mechanism can be 

broadly characterized into static and dynamic analysis. Static analysis analyzes code 

and the manifest.xml file of the app without executing them. However, in dynamic 

analysis apps are executed and the run-time activities of the apps are analyzed for 

building solutions. However, static-analysis is thwarted by code-obfuscation and code-

polymorphism resulting in variations of malware to escape detections. Dynamic 

analysis is favourable for analyzing these types of obfuscated apps.  

To build a solution to address these issues, static and dynamic features are 

exploited by the various machine learning (ML) algo to detect the android malwares. 

The static features mostly used are permissions, app components, intents, API, 

network address, opcode, hardware component, call flow graph, static taint analysis, 

dataflow, file property, system command, and native code. The dynamic features 

frequently used are system calls, API calls, network traffic characteristics, and battery 

features. In hybrid analysis, both static and dynamic features are exploited for 

malicious app detection. We propose a hybrid solution that combines both static and 

dynamic analysis to overcome the limitations of each analysis. 
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In brief, the key contributions of our paper are concisely described as below: 

1. First, we put forward a unique approach for optimal unification of static and 

dynamic features resulting in Unified feature (UF) for smartphone security analysis by 

cross diffusion technique.  

2. Second, UF is fed to two ML classifiers to detect the android malapps. Results of 

these classifier’s scores were combined by fuzzy based fusion approach for improving 

the performance. 

3. Lastly, we provided a comprehensive study founded on benchmarked database and 

compare the results with contemporary techniques to validate the efficacy of the 

suggested framework.  

To address the issues in the detection of malapps, we have proposed a novel approach 

for protection of data. The basics of proposed approach are described in the next 

section. 

 

4.2 Proposed Hybrid Analysis Framework  

In this paper, a hybrid robust unified feature with fuzzy-based optimal score fusion 

model for android malapp detection is proposed. The outline of the suggested 

framework is described in Fig.4.1. Our framework is basically comprised of four 

building blocks namely, feature extraction (static and dynamic vector formation), 

feature fusion, classifier fusion, and eventually a decision block to attain effective 

malapp detection. Extracted dynamic features and static features are converted into 

dynamic and static feature vectors. Each dynamic and static feature vector is used for  

producing similarity graphs using the cosine similarity. Similarity graphs are further 

subjected to normalization so as to produce the normalized graphs by filtering out the 

weighted similarities. Using the reference curves for dynamic and static feature 
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vectors, we obtain refined graph for dynamic and static feature vectors. The obtained 

dynamic and static normalized and refined graphs are further cross diffused to 

produce a diffused graph corresponding to the dynamic and static feature vectors. The 

diffused graphs of dynamic and static feature vectors are fused to generate a unified 

feature which is extremely discriminatory. This discriminative unified feature is given 

to two ML classifiers so as to classify a test app into B or M. 

 

Figure 4.1: Proposed Fusion-based Hybrid technique for Smartphone Platform. 

 

Our methodology exploits two classifiers in parallel whose scores are fused using 

fuzzy-based fusion technique to enhance the overall performance. Lastly, the final 

score
fusedw  in the decision model is matched with the threshold, thrw  and test app is 

categorized into B if 
fusedw   thrw  or M otherwise. 

The description of the suggested framework follows in next subsection: 
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4.2.1 Static and Dynamic Feature Extraction 

 Description of the eight extracted feature types are as follows: 

Feature fusion block comprises static and dynamic feature vector generation after 

extracting the five static features and collection of two dynamic features. In the 

proposed model, feature fusion is basically the concatenation of static and dynamic 

feature vector diffused graphs obtained by cross-diffusion process of normalized and 

refined graphs.  

 

4.2.1.1 Feature Extraction 

Five static and two dynamic features were extracted for a given android test app t  

together with N android apps from ref. repository,  , ,r R R R   and R relates to B 

and M app respectively. The feature extraction process has been illustrated in Fig. 4.2. 

Apps in the ref. repository are updated so as to include the latest apps to improve the 

proposed model’s detection capability. Here, extraction of static-based features is done 

using the APK and Baksmali tool. APK tool converts the app into classes.dex and 

manifest.xml files. Classes.dex files are further subjected to baksmali tool to convert it 

into smali file. Static-API calls are extracted from smali file. The rest of the static 

features permissions, hardware features, app components, and intents are extracted 

from the manifest.xml file.  For dynamic features, the system runs the app on a 

sandbox environment [3] using an Android emulator. The dynamic API calls and the 

system calls were extracted from the system log files. 
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(i) Static Features: 

API: We have selected  number of API’s whose sum of frequency is the feature value 

taken. API-linked static-feature vector of test app (t) is computed as follows: 

 
1

1

a
t

AS i

i

F f A


                             

Where, function  if A  computes the frequency of API, iA . Likewise, API linked static 

feature vector r

ASF for repository apps are extracted for  ,r R R  . 

Similarly, pairs {  
1

1

p
t

Per i

i

F f P


  , r

PerF },{  
1

1

i
t

Int i

i

F f I


 , r

IntF },{ ( _ )t

CompF f App Component ,

r

CompF } and { ( _ )r

HardF f Hardware Feature  ,
r

HardF } corresponding to Requested 

Permissions, Intents Filters, APP Component and Hardware Feature were computed. 

 

 

Figure 4.2: Static and Dynamic Feature Extraction Process 
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(ii) Dynamic Features: 

System calls:  System call-linked dynamic feature vector of test app t is computed 

using Eq. (6)   

( _ )t

SysF f System Calls                

Where ( _ )f System Calls  is a function that calculates total count of system calls 

resulted by executing the app. Likewise, system calls-linked dynamic feature 
r

SysF for 

the repository apps are extracted for  ,r R R  . 

Similarly, pair { ( _ )t

AdF f API Calls ,
r

AdF } for API calls was computed. 

From the above seven feature-descriptors, we form two static and dynamic feature 

vectors as follows in Eq. (4.1) and Eq. (4.2) respectively:  

, int{ , , , )
hardStatic AS Per compF F F F F F                 (4.1) 

{ , )Dynamic Sys AdF F F                                    (4.2) 

In short, we have built seven feature-descriptor as stated for every test repository apps. 

In feature fusion, features vectors corresponding to test and repository apps are used 

for creating non-linear graph. In the generated graph, feature-vectors corresponding 

to test apps and repository apps acts as two nodes. Subsequently, graphs are created 

for each test app  corresponding to static feature vector and dynamic feature vector. 

For feature vectors, 
t

StaticF  and 
t

DynamicF of  test app t corresponding to static and 

dynamic features, we construct graphs ( , , )G V Ed w     ,where { , }Static Dynamic  , 
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w   are edge weights that act as the similarity between feature-vectors of apps t  and r  

where  ,r R R  , V  corresponds to the vertices of the generated similarity graphs, 

Ed
 corresponds to the edges of the similarity graphs that portray the association 

between the test apps and the repository apps. In the proposed framework, similarity 

matrices 
N NG

  are constructed by calculating the cosine similarity between the 

static and dynamic feature vectors of the test app and repository apps, where 1N r 

. For feature pair values  ,t rF F   corresponding to t  and r  apps, where   corresponds 

to static and dynamic feature vector. The edge weights are denoted by similarity vector

( , )w t r , and is calculated by the cosine similarity between the pair  ,t rF F  from the 

following Eq. (4.3)      

*
( , )

t r

t r

F F
w t r

F F

 



 

                                           (4.3)         

  Feature unification follows in the coming subsection. 

 

4.2.2 Static and Dynamic Feature Fusion  

Constructed static and dynamic feature vectors are fused in a way to extract 

complementary information embedded in them. This is achieved by the means of the 

suggested optimal non-linear cross-diffusion of generated refined and normalized 

graphs to create a distinct borderline between the B and M apps. To unify the multiple 

features graph-oriented cross diffusion method was presented by [137]. The results 

validate that the feature fusion via non-linear graph-based technique is better than 

linear graph-based approaches. Graph-based unification maintains a robust depiction 

of the apps and discards all the feeble features that contribute to undesirable 

classification outcomes.   
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Similarity graph created using Eq. (3) for the static and dynamic feature vectors are 

again normalized by means of “min-max normalization” to obtain the normalized 

graphs G  whose edge weights are calculated as ( )w r using Eq. (4.4) 

( , )*min( ( , ))
( , )

max( ( , )) min( ( , ))

w t r w t r
w t r

w t r w t r

 


 


                  (4.4) 

Normalized graphs G  are employed to obtain the refined graphs R , for static features 

and dynamic features vectors. A refined graph is generated to attain highly distinctive 

attributes. Normalized attributes are initially deducted out of a generated reference 

curve to make an estimated graph. There are N  normalized weights corresponding to 

apps used for training. The ideal plot of normalized feature characterized as weight 

vector ( , )w t r   can be represented as Eq(4.5):  

            

         (4.5) 

 

Static feature vectors when plotted appear as a curve, where a self-match appeared as 

a peak and the rest tends to the horizontal line. The more the match score tends to 

zero, the more dissimilar is the feature value with other apps. Capitalizing this, a curve 

Re  representing reference score values is calculated using the training apps, and 

deviance from Re  is used to attain adaptability. 
1Re N



  is produced by taking 

mean of the normalized attributes as below by Eq(4.6): 

1

( , )

Re

N

i

arrange w t i

N






 
 




                (4.6) 

1,   
( , )

0,  

if t r
w t r

otherwise
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Where t one of training apps of set N and “arrange” is a function used to arrange 

values in increasing order. This reference curve gives the estimation of training app 

attributes.   

 

G  is used to form an estimated graph for test apps, where estimated test app feature 

components are calculated  by deducting ( )w l   from Re  by Eq.(4.7) as below: 

( ),  
( )

( ) Re ( ) ,  

e
w l l m

w l
w l l m l N




 

 
 

  

             (4.7)    

 

Where, 
1e Nw

  denotes estimated test app attribute and the variable m  segregate 

the dimension of a feature vector. This method helps in generating the highly 

discriminative test app features leading to the detection of the malapps with high 

efficiency. Estimated features ( )ew l  are plotted to determine the test app’s estimated 

feature weights. Significant area under curve (SA) of the estimated feature plot is 

determined and its weight e  is calculated using Eq.(4.8).   

 

 1

1

1
t

N

i
i

SA
e N

SA







 
 
  
 
 
  


                      (4.8) 

Where,  
i

SA
 and  

t
SA

 are the SA of the thi  app used for training and of the 

test app t  in the estimated graph respectively. This area signifies feature efficacy. 

                To generate a Refined Graph
tR  , its edge weights ( )rw l  are calculated by 

reorganizing ( )ew l  by means of Eq.(4.9). 
tR   resulted in the robust connections among 

vertices of graph and all the feeble connections are significantly reduced. 
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 ( ) ( )
e

r ew l w l


                                                                                                          (4.9) 

Where  is pre-estimated constant used to achieve adaptiveness. 

Normalized and refined graphs for static features and dynamic features vectors are 

further exploited in the cross diffusion process.  

Static features and dynamic features vectors possess distinctive and complementary 

information for the segregation of apps into B or M. Therefore, the cross-diffusion of 

static feature vector normalized graph and the dynamic feature vector refined graph 

and vice-versa results in boosting up of the robust connections along with filtering out 

the weaker connections leading to better accuracy. 

In the proposed framework, G  and R  are fused via non-linear cross 

diffusion scheme resulting in the fused graphs D  with edge-weights calculated using 

Eq.(4.10) 

   
1,

2
* * *

F T
diffused r

j

j j

w w w w
F

 
 

 
  

 
                                                                      (4.10) 

Where F  is the total number of feature vectors and T  above represents 

transposition. In our framework, 2F   as we have taken only two feature vectors i.e. 

static and dynamic feature vector.    

        The diffused edge weights diffusedw  are further used to form a unified feature vector 

U  by means of Eq.(4.11). 

 
2

1

1
( ) * diffused

j

j

U t w
F 

 
  

 
                                                                                  (4.11) 

 

Where 1j   corresponds to static feature vector, 2j  corresponds to dynamic feature 

vector and   is the pre-estimated constant used to achieve adaptiveness. Details of 

the classifier fusion follows next. 
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 4.2.3 Fuzzy Based Score Level Fusion  

Vector U generated is given to the two classifiers in parallel. Classification scores 

obtained are again fused. To achieve this, the U is inputted to two ML classifiers viz. 

SVM and RF. Their respective classification scores (SVM) and (RF) are determined. In 

the proposed framework, the obtained classifier(s) scores are optimally fused using 

the fuzzy-based score fusion method. In the proposed method, a fuzzy-based score-

fusion method has been suggested to improve the segregation of apps.  Fuzzy [149] 

fusion is basically combining scores of two ML algorithms in a natural way to 

determine valuable info and to boost the performances of the individual algorithm. In 

the suggested method, the fuzzy logic conditions are formulated by a group of twenty-

five fuzzy rules as stated in Tab.1 under Section 3.2. The classifiers scores are combined 

in a way so as to boost the concurrent classifier scores, suppress the discordant 

classifier scores. The proposed fusion model attains a precise decision boundary 

between B and M apps. Here, we have defined the fuzzy set as signifying very large, 

large, medium, small, very small values of the classifier’s score. Membership value for 

the classification score is calculated as elements of a fuzzy set by means of Eq. (4.12-

4.16) 
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1
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1 VL VL
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e
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( )

1
( )

1 VS VS
VS m x f

x
e
 

 


                                (4.16) 

 

Where 36VLm  , 0.84VLf  , 0.13Lf  , 0.7Ln  , 0.13Mf  , 0.5Mn  , 0.12Sf  , 0.3Sn  , 

0.14VSf  , 36VSm    are linguistic variable values attained from the training phase and 

 ,r sx S S .These values are chosen so that concordant classifiers scores are boosted 

and discordant classifier scores are suppressed concurrently. The functional mapping 

,u vT  between the RF and SVM classifiers scores are tabulated in Table 4.1, where u  and 

v  are fuzzy set values allocated to each score value. This mapping guarantees an 

accurate decision boundary-line for segregating the malapps. 

 

Table 4.1: Fuzzy Mapping Rules ,u vT    

u    v                                                       VL L M S VS 

VL VL VL L L L 

L VL VL M M M 

M L M M S VS 

S L M S VS VS 

VS L M VS VS VS 

 

Fuzzy fused output is further converted to the optimal crisp value using the center of 

gravity (COG) technique for defuzzification [150]. Crisp variable value using COG for 

a pair of elements u  and v  in the fuzzy set is calculated using Eq. (4.17) 

 

,

,

,

( )

( )

u v

u v

u v

T

u v
T

T

u v

x x

COG
x









                  (4.17) 
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where value of ,u vT   is taken from Table 4.1 and  ,r sx S S  . The weighted mean of the 

COG values over the pair of elements u , v   is used for the estimation of the final fused 

weight of the classifiers scores [Eq.(4.18)]  

,,

, ,

*

( )

u vu v T

u v
fused

u v r s

u v

COG

w
S S









                 (4.18) 

where ,u v  is fuzzy control rule calculated using Eq.(4.19) 

, min( ( ), ( ))u v p r q sS S                  (4.19) 

The 
fusedw  is compared with the thrw  to determine whether a given app is M or B 

depending on whether
fused thrw w  or vice-versa (

fused thrw w ). Experimental results and 

discussions follows in the subsequent subsection.  

4.3. Experimental Validation 

Experimental results comprise of the assessment of the suggested framework on the 

benchmarked datasets containing (B) and (M) apps as mentioned in Table 4.2. 

Comparisons of the results with other state-of-art methods employing static and 

dynamic features were also reported.  

4.3.1. Datasets  

B apps are taken from CICMalDroid2020 [132] Dataset and Google Play Store [130] 

and M apps are collected from CICMalDroid2020 [132], AMD [129], Androzoo [131], 

and Drebin [128]covering the multitude of malwares from different families. 2000 B 

and 2000 M apps are selected from these datasets and rearranged in Table 4.2 as 

Group1, Group2, Group3, Group4, & Group5. The balanced and unbalanced datasets 

can be used for experimentation purpose. Here, we have used balanced datasets for 

experimentation.   
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     Table 4.2: Experimentation Dataset 

   App kind 

 

Dataset 

Malign 

Apps(M) 

Benign 

Apps(B) 

Comments 

Group1 500 500 Androzoo(M) [131]  

GooglePlay(B)  [130] 

Group2 500 500 AMD(M) [129] 

CICMalDroid2020(B) [132] 

aGroup3 500 500 CICMalDroid2020(M)  [132]  

GooglePlay(B) [130] 

Group4 500 500 Drebin(M) [128]  

GooglePlay(B) [130] 

 

 

Group5  2000 2000 Consolidated 

 

Experimental validation of the framework was accomplished by means of MATLAB 

2018a installed on i7, 2.7 GHz CPU with 16 GB RAM. Ten-fold cross-validation method 

was employed by randomly subdividing the dataset into ten equal parts and using one 

for testing and the rest for training. The final result is the average of the results 

obtained from five datasets as in Table 4.2. 

4.3.2 Qualitative Assessment 

Cumulative Frequency Analysis: Qualitative assessment for the suggested 

framework is performed by plotting the cumulative frequencies (CF) [as shown in Fig 

4.2] of the various static and dynamic features selected for M and B apps. The CF of 

the features in the M apps is directly proportional to the threat level of that particular 

feature for platform security. Also, score distributions of the two best state-of-the-art 

techniques and the suggested framework is shown in Fig.4.4. It is apparent from 

Fig.4.4 that the suggested framework performs better than the other two methods 
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because of the minimum overlap of the scores. Quantitative assessment of the 

proposed framework follows in the sub-section. 

 

Figure 4.3. Cumulative Frequencies for five static and two dynamic features for        

                    Group 5 Dataset. Y-axis represents the cumulative frequencies of features. 

 

(a)                                                      (b)                                                (c) 

                    

Figure 4.4 Score Distribution for Group2 dataset of (a) Proposed Method (b) Arshad 

et al. [60]    (c) Hussain et al. [67] 

 

 4.3.3 Quantitative Assessment 

Quantitative assessment of the suggested method was realized using the standard 

evaluation benchmark viz. sensitivity, specificity, F1 Score, detection accuracy via ten-

fold cross validation over datasets as mentioned in Table 4.1. The suggested method 
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was also compared with respect to running time against different state-of-the-art 

methods. Evaluation matrices results are also compared with the two state-of-the-arts 

techniques viz. [67][60] and two self-proposed techniques. Specificity, Sensitivity, F1 

Score, and Accuracy are calculated using equation as in Section 2.7 in Chapter 2. 

ROC curve is also drawn as depicted in Fig 4.5 to assess the binary classifier. ROC is 

an overall index portraying sensitivity and specificity. 

To test the robustness and to evade overfitting issues, 10-fold cross-validation is 

employed to estimate the performance of the suggested model. The investigational 

outcomes are displayed in Table 4.3.  

 

(a)                                                                             (b) 

                        

(c)                                                                                (d) 

                          

Figure 4.5: ROC curves comparison for the proposed method (red) and two best 

state-of-the-art methods (Arshad et al. (blue) and Hussain et al. (black)) for (a) 

Group1, (b) Group 2, (c) Group 3, (d) Group 4. 
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4.3.4 Overall Performance 

 

It has been observed that for the suggested framework the mean value of the result of 

the Accuracy, Specificity, Sensitivity, and F1 measure for the proposed framework are 

98.62%, 98.634%, 99.30%, and 0.9916 respectively. The maximum value of the 

accuracy, specificity, sensitivity, and F1 score is 98.80%, 98.80%, 98.81%, and 0.9940 

respectively.  

         The suggested technique outperforms the other hybrid-based state-of-the-art 

techniques when assessed on datasets as tabularized in Table 4.2. Enhancement for a 

mean value of detection accuracy of the suggested technique by 1.402%, 2.914%, over 

[60], and [67] respectively have been realized. Self-proposed techniques are also 

included to show the proper justification for the choice of ML algorithms in the optimal 

classifier. The enhancement of average detection accuracy of 2.674% and 3.274% have 

been achieved by the proposed method over two self-proposed methods RF+UF and 

SVM+UF. 

 

The run time of different state-of-the-art approaches is also compared with the 

proposed approach. To calculate the running time of different methods, we first built 

and learned their corresponding detection model. These detection models were then 

fed with the 200 random apps for analysis. Our proposed method attains an amazing 

average analysis performance of 5.6 seconds per app. Similarly, the average analysis 

performance of [60], and [67] comes out to be 6.1 seconds and 6.7 seconds 

respectively. Hence, our proposed method outclassed other methods in respect of 

detection time, detection accuracy, and efficacy in real-life apps scenarios.   
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Table 4.3: Comparative Analysis of Performance metrics i.e. Accuracy, Specificity, 

Sensitivity, F1 Score for Hybrid models and Proposed method.  

 

 

 

 

 

 

Dataset Performan

ce Metrics                                

Arshad 

et al. 

Hussain 

 et al. 

RF+UF SVM+ 

UF 

Proposed 

Method 

GROUP 1 

 

Accuracy 0.9781 0.9480 0.9580 0.9540 0.9860 

Specificity 0.9786 0.9481 0.9560 0.9560 0.9859  

Sensitivity 0.9775 0.9480 0.9600 0.9520 0.9861 

F1 Score 0.9886 0.9733 0.9581 0.9539 0.9930 

GROUP 2 

 

 

Accuracy 0.9760 0.9640 0.9590 0.9530 0.9840 

Specificity  0.9759 0.9641 0.9600 0.9520 0.9839 

Sensitivity 0.9757 0.9639 0.9580 0.9540 0.9842 

F1 Score 0.9869 0.9817 0.9590 0.9530 0.9919 

GROUP 3 

 

 

Accuracy 0.9670 0.9600 0.9600 0.9520 0.9880 

Specificity 0.9680 0.9600 0.9660 0.9540 0.9878 

Sensitivity 0.9660 0.9600 0.9540 0.9500 0.9881 

F1 Score 0.9827 0.9776 0.9598 0.9519 0.9940 

GROUP 4 

 

 

Accuracy 0.9660 0.9560 0.9610 0.9550 0.9860 

Specificity 0.9659 0.9558 0.9640 0.9560 0.9861 

Sensitivity 0.9661 0.9561 0.9580 0.9540 0.9858 

F1 Score 0.9827 0.9775 0.9609 0.9550 0.9930 

GROUP 5 

 

 

Accuracy 0.9738 0.9573 0.9593 0.9533 0.9870 

Specificity 0.9650 0.9540 0.9600 0.9540 0.9880 

Sensitivity 0.9825 0.9605 0.9585 0.9525 0.9860 

F1 Score 0.9740 0.9574 0.9592 0.9532 0.9870 



109 
 

 

 

4.4  Conclusion 

 

The significant highlights of this research work are as follows: 

 

 A novel hybrid framework has been proposed for smartphone security analysis. 

 Here, the optimal combination of static and dynamic features by cross-diffusion 

followed by fuzzy-based score level fusion was proposed.  

 In the suggested framework, we have used five static and two dynamic features 

to form static and dynamic feature vectors. These feature vectors are further 

fused after the formation of normalized and refined graphs through the non-

linear graph diffusion method. 

  The fused feature vector is then given to an optimal classifier comprising of RF 

and SVM classifiers. A remarkable benefit of our method is that it can extract the 

static and dynamic features in each app almost in real-time. In sum, the 

unification of static and dynamic feature achieve highly distinct features.  

 Adoption of fuzzy-based fusion of classifier scores not only create clear boundary 

but also achieve optimal performance.  

 Our technique has accomplished mean value of accuracy, specificity, sensitivity, 

and F1 score as 98.62%, 98.634%, 98.604 %, and 99.16% respectively when 

estimated on datasets as enumerated in Table 4.2. Experimental results reveal 

that our technique outstrips other state-of-the-art methods.  

 

The experimental results along with other findings were published in [151]. 
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Chapter  5   

Design & Development of Traffic 
Analysis Technique  
 

 The aim of this work is to develop a novel traffic-based framework that exploits the 

TCP based network traffic features for the detection of unintended functionality has 

been proposed.  Here, a unified feature (UF) is created by graph-based cross-diffusion 

of generated order and sparse matrices corresponding to the network traffic features. 

Generated unified feature is then given to three classifiers to get corresponding 

classifier scores. The classifiers score are further fused by score fusion process to detect 

the unintended functionality.   

 

5.1   Introduction  

Smartphones are replacing the conventional mobiles as well as computational devices 

due to its portability and ease of handling almost everything ranging from storing the 

private data to making the banking transactions. Due to its widespread Smartphones 

are replacing the conventional mobiles as well as computational devices due to its 

portability and ease of handling almost everything ranging from storing private data 

to making banking transactions. Smartphones having Android OS are extensively 

familiar and have wide usage due to its open architecture and the assortment of apps 

it affords. As per the recent information by IDC (International Data Corporation), the 
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market-share of android smartphones is 83.8% till March’ 2021 and it will grow to 

85% till March’2025. Due to its widespread usage, we are deluged with a variety of 

smartphones apps that makes our life simple and easier. Flooding of these apps tempts 

attackers to design variety of malapp (malicious applications) directed toward 

smartphones to steal private information. Mobile devices including Smartphones 

generated about 54.8 % of worldwide web traffic [152] and analyzing this traffic leads 

to incredible results in detecting malapps. Analyzing traffic is accomplished by 

studying the patterns in the network traffic. Numerous traffic features were extracted 

from the network traffic patterns. Mainly Hypertext Transfer Protocol (HTTP) and 

Transmission Control Protocol (TCP) are two types of traffic that is prevalent in the 

smartphone ecosystem.  Features extracted from HTTP and TCP are exploited in 

detecting the malapps. The HTTP header features could not detect the malapps in the 

encrypted traffic and TCP based detection models are impervious to encrypted traffic. 

Therefore, TCP flow-based detection methods are mainly exploited in detecting 

malapps. 

Two widely used malware detection methods employed by researchers pivots around 

static and dynamic analysis. The amalgamation of these widely used detection 

methods is also exploited by some researcher’s resulting in hybrid analysis. Most of 

the modern malwares depend on n/w interfaces to intercommunicate with attackers, 

therefore the n/w traffic based analysis technique is most suitable to detect android 

malapps. Static investigation based detection techniques failed to detect apps having 

code obfuscation, and conventional dynamic investigation based detection needs is 

quite cumbersome. N/w traffic based dynamic detection excerpts detection attributes 

from n/w traffic and uses Machine Learning (ML) techniques to categorize mobile 

apps. Our detection prototype is based on TCP based features.  

In short, following are the main contributions: 
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1. We have proposed a traffic feature based fusion that comprises of optimal 

combination of multiple traffic features by cross diffusion of order and sparse 

graphs to produce a unified feature. 

2. The unified feature vector generated is given to the three parallel ML classifiers 

and classifiers scores are fused to further enhance the accuracy attained by 

separate classifiers. Performance comparison with state-of-the-art methods 

were also performed.  

 

5.2 Proposed Traffic Analysis Framework  

The proposed traffic analysis framework for smartphone security analysis mainly 

comprised of mainly two stages i.e. feature unification and optimal fusion of the scores 

of three classifiers. Fig. 5.1 elucidates the overview of the suggested security analysis 

system. The suggested framework consists of four blocks namely, traffic feature 

extraction and vector formation, feature-fusion, classifier score-fusion, and a decision 

sub-block to accomplish efficient malapp detection. Extracted traffic features are 

converted into three traffic feature vectors. All the three traffic feature vectors are used 

for constructing similarity graphs by the means of cosine similarity. Similarity graphs 

are again converted to normalised graphs by using anchored normalization technique. 

Normalised graphs are again used to form the sparse and order graphs. These obtained 

sparse and order graphs are further cross diffused as to generate three fused traffic 

feature vectors. The three fused feature vectors are further concatenated to form the 

highly distinct unified feature vector. This distinct unified feature is discriminatory 

and given to three classifiers. The scores obtained from these classifiers are again 

optimally combined to classify a given test app. 
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In our method, we have used three classifiers viz. Random Forest (RF), k-Nearest 

Neighbour (KNN), and Support Vector Machine (SVM) for apps categorization. Also, 

we have leveraged modified PCR-5 rules for score fusion. Finally, in decision block 

score 5PCRw
 is matched with threshold thw

 and particular test app is categorized into 

benign if 5PCRw  thw
 or otherwise malign. 

 

Minutiae of suggested model is as follows: 

 

 

 

Figure 1. Proposed Traffic based framework for Smartphone Security Analysis.  

 

Because of the numerous attributes encapsulated in the android based smartphone 

apps, individual ML algo shows its incompetence to categorize these apps accurately. 

Therefore, it is recommended to employ more than one ML in the detection of 

malapps. In the suggested method, we have employed three ML algo’s viz. RF, SVM, 

and KNN for categorisation of apps. These three ML algo’s are selected so as to 

improve the overall detection accuracy and offset the shortcomings of the single 
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classifiers. RF performs superbly when the dataset is large & it is not susceptible to 

outliers. SVM performs better in the limited dataset and it is optimal for binary 

classification. If there is no training period, then KNN performs best. It is simple, 

speedy and, time efficient. In the proposed framework, three classifiers supplement 

each other to improve the overall accuracy. 

5.2.1 Traffic Gathering Platform 

The traffic gathering platform is used to collect the malign and benign traffic data 

produced by malign and benign apps, respectively. A firewall is installed on the 

platform to guarantee its security. Fig. 5.2 shows our methodology for traffic 

gathering.  

 

 

 
 

Figure 5.2. Traffic Gathering Platform 
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Table 5.1: Extracted TCP based Traffic Features 

Feature 
Symbol 

Feature Description 

1F  Avg. no. of bytes sent 

2F  Avg. no. of bytes received 
3F  Total no. of headers bytes sent 

4F  Avg. no. of bytes per second 
5F  Ratio of the no. of incoming to outgoing bytes  
6F  Avg. no. of packet sent per second 
7F  Avg. no. of packet received per second 
8F  Ratio of the no. of incoming to no. of outgoing 

packets 
9F  Std. deviation of the packet- size sent 
10F  Standard deviation of the packet- size received 

11F  Avg. no. of packet sent per flow  

12F  Avg. no. of packet received per flow  
13F  Avg. no. of bytes sent per flow  

14F  Avg. no. of bytes received per flow  
15F  Std. deviation of the length of flow 

                

The traffic gathering platform comprises four constituents, i.e., the control server, 

traffic collection module, app repository having downloaded malign and benign apps, 

and TCP traffic storage module containing only filtered TCP flows. These four 

components converse with the aid of LAN switch. The control server is controlling the 

traffic gathering job in the platform by assigning the job to the different modules. The 

apps from the apps repository are directed to the traffic collection module, where the 

android virtual machine (AVM) is used to run the apps and collect the corresponding 

traffic. The collected traffic is further directed to the TCP traffic storage module, where 

only TCP flows are stored and the rest of the traffic is filtered out. Here android 

emulators are used to install and run apps on AVM. AVM comprises of packed android 

s/w stack and it runs just like a physical smartphone. Apps are run on an emulator. 

Emulator is restarted to fuel the malign apps to generate malicious behaviour in the 

network traffic. A script in the python was written to extract the features from the TCP 

flows. The TCP features used are tabulated in Table 5.1. 
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5.2.2 Traffic Feature-Fusion 

It comprises of three traffic vector creation after extracting the fifteen traffic features. 

These created traffic-feature vectors are again fused by optimal combination via non-

linear cross-diffusion of created sparse and order graphs to draw complementary 

information and to create a highly discriminatory unified feature for classifying a test 

app.  

5.2.2.1 Feature Extraction 

Fifteen traffic features were extracted for a test app t  along with N apps from reference 

dictionary, { , }d D D  , D  comprises of  benign apps and D comprises of  malign 

app. Traffic feature extraction procedure shown in Fig 5.2. Reference dictionary apps 

are constantly renewed with most recent apps to improve the detection ability of the 

framework. The vectors formed are as follows: 

1 { 1, 2, 3, 4, 5}V F F F F F                  (5.1) 

2 { 6, 7, 8, 9, 10}V F F F F F                  (5.2) 

3 { 11, 12, 13, 14, 15}V F F F F F                 (5.3) 

 

We have built three feature vectors as stated in Eq. (5.1)-Eq. (5.3) for each test app and 

reference apps. In feature-fusion, traffic-features vectors for reference and test apps 

are utilized for graph formation. Test app’s traffic-feature vectors represents one node 

and reference app’s traffic-feature vector represents other node. Consequently, non-

linear graphs are formed for all test app 𝑡 corresponding to three traffic feature vector. 

For traffic feature vectors, 1

tV , 2

tV  and 3

tV   of  test app t  corresponding to three traffic-

based features, we construct graphs ( , , )G Ver E w     , where {1,2,3}

corresponding  to three traffic-based features and w   are edge weights acting as 
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similarity betwixt traffic-feature vectors of apps t  and d  where { , }d D D  , Ver  

correlates to the vertices of the created similarity graphs, E  correlates to the edges of 

the similarity graphs that characterize the association between test apps and the 

reference apps. n nG   are constructed by cosine similarity between the three 

traffic-feature vectors of the test app t  and  reference apps d . For feature set values

 ,t dV V  , where {1,2,3}  corresponds to three traffic-feature vector, the similarity 

edge weights are symbolized by vector ( , )w t r ,  and is derived by the cosine similarity 

between the pair  ,t dV V   from the following Eq.(5.4)      

*
( , ) t d

t d

V V
w t d

V V

 


 
                                     (5.4)         

  Details of traffic-feature unification presented in subsequent subsection. 

  

 

  

5.2.2.2 Feature Unification  
 

Three traffic feature vectors created are fused in a way so as to extract complementary 

info in them by optimal non-linear cross-diffusion of generated sparse and order 

graphs. Features unification via cross-diffusion technique19 was offered and its results 

confirm that the feature fusion by non-linear graphs techniques are significantly 

accurate than linear graph-centred approaches. Graph-built unification retains robust 

features of apps and rejects all the frail features that adds to misclassification.  

Similarity graphs created using Eq.(4) for three traffic feature vectors are further 

normalized using an anchor avg stdA A A     , where avgA
 and 

stdA  are average and 

standard deviation of malicious score distribution for   traffic feature vector. We 

consider only malicious scores for calculating the anchor. The normalized graphs N , 
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whose edge weights matrix jw


, where {1,2,....., }, {1,2,3}j n      are constructed by 

Eq. (5.5) 

 

min( )
,

2( min( ))

0.5 ,
max( )

j

j

j

j

j

j

w w
w A

A w
w

w A
w A

w A

 

 

 


 

 

 

 



 

       

      (5.5) 

The obtained normalized graphs transformed to obtain the sparse S and order O

graphs. Sparse graphs guarantee robustness to noise while boosting the strong info 

and suppressing the weak info corresponding to each traffic feature vector. Sparse 

graph, { , , }S Ver E    is built using KNN by Eq. (5.6) 

 

 , |

0,

j j
N

w w KNN

Otherwise



 





 

 


        (5.6)  

 Where,   is the parameter controlling the sparseness of graph. Edges corresponding 

to reference apps that are similar to the test apps are retained and the rest of the edges 

are removed to ensure robustness to noise. To discriminate the significant reference 

apps from the insignificant ones, each of the reference apps is assigned weight 

according to its order. Therefore, order(s) are assigned to each reference app on the 

basis of its similarity with test app, which is calculated by the edge weight between the 

test app and reference app in the normalized graph. The order graph 

{ , , }O Ver E     having the weight matrix is constructed by Eq.(5.7) : 

( ), {1,2,... }jorder w j n
           (5.7) 

, where function order, allocates order(s) to each reference app. 
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The generated order and sparse graphs are further cross diffused to reinforce the 

strong connections between different traffic feature vectors and suppress the feeble 

connections. Order graphs averts biasness and sparse graphs guarantees elimination 

of any outlier behaviour. Cross diffusion [Eq.(9)] basically comprised of addition of 

sparse graphs of two other feature vector to form
t [Eq.(5.8)], where 

t is the tht

element of the set  and subsequently their multiplication with order graph of the 

feature vector with 
t . 

t Y

Y

   where { } { }tY                    (5.8) 

t t t      {1,2,3}   , where denotes logical AND            (5.9) 

  As can be seen in Fig 5.1, we add the sparse graph of two other feature vectors and 

then multiply it with the order graph of the feature vector turn by turn to generate 

three fused vectors. Eq.(5.9) can be further represented [Eq.(10,11,12)] in the form of 

fused vectors (
1 2 3

, ,V V VF F F ) , sparse vectors (
1 2 3

, ,V V VS S S ) and order vectors (

1 2 3

, ,V V VO O O ) as follows: 

1 2 3 1

( )V V V VF S S O                  (5.10) 

2 3 1 2

( )V V V VF S S O                   (5.11) 

3 1 2 3

( )V V V VF S S O                  (5.12) 

The above fused feature vectors
1VF ,

2VF  and 
3VF are concatenated to form the unified 

feature vector, U by Eq.(5.13)  

1 2 3V V VU F F F                    (5.13) 

 

This unified feature vector is given to three parallel classifier(s) and their scores are 

fused to classify apps. Details of Optimal classifier-fusion follows in the next sub-

section. 
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 5.2.3 Classifier Score-Fusion  

 

Created U is fed to three classifiers connected in parallel. Obtained classification scores 

[ sS (SVM), rS (RF),
kS  (KNN)] are again fused by the classifier score fusion technique. 

There are various score fusion techniques reported in literature. Here we have chosen 

the PCR-5 [153]to solve the highly contradictory scores of the three classifiers. PCR-5 

is used to solve ambiguous problems in multi-sensor score fusion. Android app 

detection is certainly ambiguous problem as we are uncertain whether the app is 

malicious or not. In the suggested model, three classifiers are selected and the fusion 

of the output of these classifiers can be modelled as multi-sensor score fusion problem 

as their outputs are independent of each other. Therefore, Android app detection 

satisfy all the conditions of PCR-5 theory. In our framework, frame of discernment 

has two elements   and   corresponding to benign and malign. Classifier scores [

sS , rS ,
kS ]  are converted individual Basic Belief assignments or belief masses by the 

Eq.(5.14) below: 

 
( ) ( )

( ) 1 ( )

i i i

i i i

m C S

m C S

   

    
        (5.14) 

 

Where ( , , )i s r k  & 
iC  denotes confidence measure of the single classifier.  

 

These belief masses are combined by PCR-5 rules. Conjunctive consensus among the 

classifiers is assessed by Eq. (5.15) and Eq. (5.16) 

( ) ( )* ( )* ( )srk s r km m m m            (15) 

( ) ( )* ( )* ( )srk s r km m m m            (16) 
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Overall conflict among the classifiers is estimated by Eq. (5.17). It comprises of six 

partial conflicts-masses. 

( ) ( )* ( )* ( ) ( )* ( )* ( )

( )* ( )* ( ) ( )* ( )* ( )

( )* ( )* ( ) ( )* ( )* ( )

srk s r k r s k

k s r s r k

r s k k s r

m m m m m m m

m m m m m m

m m m m m m

         

       

      

    (5.17) 

 

Six partial conflicts masses are further redistributed using PCR-5 rules in ratio to 

masses assisting to these partial-conflicts. The values of ip  and iq are contribution to 

Benign and Malign masses following reallocation of partial conflicts, where i =1,…,6  

and are determined by Eqs. (5.18-5.23) 

 

 1 1
( )* ( )* ( )

( ) ( )* ( ) ( ) ( )* ( )

s r k

s r k s r k

m m mp q

m m m m m m

  
 

      
    (18)  

2 2
( )* ( )* ( )

( ) ( )* ( ) ( ) ( )* ( )

r s k

r s k r s k

m m mp q

m m m m m m

  
 

      
     (19) 

3 3 ( )* ( )* ( )

( ) ( )* ( ) ( ) ( )* ( )

k s r

k s r k s r

p q m m m

m m m m m m

  
 

      
     (20) 

4 4
( )* ( )* ( )

( )* ( ) ( ) ( ) ( )* ( )

s r k

r k s s r k

m m mp q

m m m m m m

  
 

      
     (21) 

5 5 ( )* ( )* ( )

( )* ( ) ( ) ( ) ( )* ( )

r s k

s k r r s k

p q m m m

m m m m m m

  
 

      
     (22) 

6 6 ( )* ( )* ( )

( )* ( ) ( ) ( ) ( )* ( )

k s r

s r k k s r

p q m m m

m m m m m m

  
 

      
     (23) 
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Approximated contributions ip  and iq where i =1,…,6 are add on to their respective 

conjunctive consensus. The final belief of the app being benign 5 ( )PCRm    and that of 

app being malign 5 ( )PCRm   are determined by Eq. (5.24) and Eq. (5.25) respectively. 

6

5

1

( ) ( )PCR srk i

i

m m p


            (5.24) 

6

5

1

( ) ( )PCR srk i

i

m m q


            (5.25) 

 

The decision about the given test app t  is taken after comparison of the 5 ( )PCRm  with 

thm . If 5 ( )PCR thm m   , then the t  is acknowledged as benign else it is taken as malign. 

Algo1 summarizes the pseudocode for proposed framework.  

 
 

5.3 Experimental Validation 

 
Quantitative analysis on various performance matrices like Precision, Accuracy, F1 

Score, Specificity, and Sensitivity was performed on the suggested and two other state-

of-the-art methods. Their ROC plots were also drawn for comparison. Following are 

the details of the evaluation process.    

 

5.3.1 Databases 

 
 

We have chosen about 3000 samples of malign apps and benign apps each 

downloaded from the benchmarked datasets. Using these apps and our traffic 

gathering platform, we have generated and captured the traffic filtering the TCP flows. 

We have selected only those apps from the datasets that produces the network traffic 

and filtered out the TCP based flows. Subsequently, traffic features as tabulated in 
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Table 5.1 were extracted from these flows using the script written in python. We have 

selected about 500 feature-flow vectors each corresponding to benign and malign 

flows from the total extracted flows corresponding to DB1, DB2, DB3, and DB4 

datasets. Integrating these feature-flow vectors forms 2000 benign and malign 

feature-flows vector each. Further, we have applied ten-fold cross-validation 

procedure for training and testing done on five sets of feature-flow sets to reduce the 

biasness and variance and finally average values are taken as results. All investigations 

were done on MATLAB R2018a installed on 16GB RAM, i7, and 2.7 GHz processor. 

 

Table 5.2: Experimentation Dataset 

 

App Type 

Dataset 

Malign

Apps 

(M) 

Benign

Apps 

(B) 

Source 

DataBase(DB)1 750 750 Androzoo(M) [131] 

GooglePlay(B) [130] 

DataBase(DB)2 750 750 AMD(M) [129] 

CICMalDroid2020(B) [132] 

DataBase(DB)3 750 750 CICMalDroid2020(M) [132] 

GooglePlay(B) [130] 

DataBase(DB)4 750 750 Drebin(M) [128] 

GooglePlay(B) [130] 

 

 

 5.3.2 Performance Assessment 

Performance of the suggested technique was realized by the means of TCP features 

extracted from TCP flows corresponding to malign and benign apps as in Table 5.2 and 

calculating evaluation matrices through ten-fold cross validation. The proposed 

scheme was also compared with respect to training time and mean-time-to-detect 
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(MTTD) against three state-of-the-art approaches. Here, MTTD is the time taken to 

detect malapps. Evaluation matrices results are also compared with three state-of-the-

arts techniques FED [154] , MMD [110] ,and LWN [111] . Detection Accuracy, F1 Score, 

Specificity, Sensitivity, and Precision are calculated using equations in Section 2.7, 

Chapter 2. 

 

ROC curves for the proposed method and comparative methods FED, MMD, and LWN 

for flow sets corresponding to datasets DB1, DB2, DB3 and DB4 are depicted in Fig 5.3. 

The experimental results are presented in Table 5.3. It has been observed that the 

mean value of F score, detection accuracy, sensitivity, specificity and precision for the 

proposed framework are 0.98742, 98.74%, 99.04%, 98.44%, and 98.456% 

respectively. The highest value of the F score, detection accuracy, sensitivity, specificity 

and precision is 0.9890, 98.90%, 99.80%, 99.60, and 98.61 respectively.  

 

Proposed technique outshines similar state-of-the-art traffic-based methods when 

evaluated on extracted TCP features as presented in Table 5.4. Enhancement for mean 

accuracy of suggested scheme by 6.28%, 4.34%, and 2.3% over LWN, FED, and MMD 

respectively have been achieved. This enhanced value of accuracy of the suggested 

framework was attained by optimal combination traffic features using cross diffusion 

strategy and fusion of classifier(s) score using DSmT based PCR-5 rule to form a clear-

cut border for differentiating malign apps from benign apps. The suggested method 

was also compared with respect to MTTD of different state-of-the-art techniques. To 

calculate the MTTD of contemporary methods, learned models were fed with the 250 

arbitrary apps for investigation. Our proposed method attains an amazing average 

analysis performance of 5.8 seconds per app. Similarly, the average analysis 

performance of LWN, FED, and MMD comes out to be 6.5 seconds, 7.3 seconds, and 



125 
 

6.9 seconds respectively. Hence, our proposed method outshined other methods in 

respect of detection time, detection accuracy, and efficacy in real-life apps scenarios. 

MTTD also confirms that suggested framework detects the apps with high accuracy in 

reasonable time. 

  
The trained model is further tested on the network flows captured from the 20 

different apps under unconstrained environment using the real smartphones instead 

of emulators and the performance comparison was done with our framework versus 

three different state-of-the-art methods viz. LWN , FED , and MMD and one self-

proposed method RF+UF i.e. unified feature fed to the random forest algorithm. From 

Table 5.3, average accuracy obtained when the random apps are tested on LWN, FED, 

and MMD and RF+UF, and proposed method is 85.75%, 84.30%, 88.82%, 89.90%, 

and 95.10% respectively. 

Performance comparison in terms of accuracy with existing methods using online 

captured data from 20 different apps chosen from the diverse sources are shown in 

Table 5.3. Here, we have taken Smart phone Samsung Galaxy S9 having android OS 

with 8 GB RAM and 64 GB storage for generating the network traffic. Our frame work 

detects the apps that generates the flows similar to one generated during the training 

phase with high accuracy.  
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Table 5.3. Performance comparison in-terms-of accuracy with existing methods 
using captured data from 20 different apps. 
 
 

 

 

Apps  UF+RF LWN  FED MMD Proposed 

Method 

                                          Accuracy  

AccuRadio 0.8900 0.8300 0.8500 0.8900 0.9400 

Maps 0.8700 0.8100 0.8400 0.8100 0.9100 

WhatsApp 0.8600 0.8200 0.8100 0.8700 0.9300 

Outlook 0.8300 0.8100 0.8300 0.8500 0.9100 

Mail 0.7800 0.8400 0.8500 0.8400 0.9300 

Netflix 0.9000 0.7700 0.8900 0.9100 0.9500 

Twitter 0.9300 0.7500 0.7600 0.9200 0.9400 

Facebook 0.9100 0.9000 0.8700 0.9300 0.9500 

Youtube 0.8800 0.8600 0.8800 0.9200 0.9700 

Gmail 0.9200 0.9300 0.8900 0.9500 0.9600 

DroidDream 0.8100 0.8400 0.9000 0.9200 0.9800 

DroidKungFu1 0.8700 0.8800 0.9300 0.9400 0.9600 

Buzz 0.8200 0.8400 0.9100 0.8900 0.9400 

BlueScanner 0.8500 0.8400 0.9400 0.9300 0.9800 

Plankton 0.8200 0.8500 0.9200 0.9100 0.9600 

WallpaperGirls 0.8100 0.8200 0.8300 0.8600 0.9300 

StylePhotoColl-

age 

0.8700 0.8400 0.9100 0.9200 0.9400 

PrivateSms 0.8300 0.8500 0.9400 0.8700 0.9900 

PartMessage 0.8800 0.9000 0.9500 0.8900 0.9700 

IdeaSecurity 0.8200 0.8800 0.9000 0.9600 0.9800 
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Table 5.4.   PM for Proposed methods and other comparative methods. 
 

 
 

Dataset Performance 

Metrics(PM)                                

LWN  FED MMD Proposed 

Method 

DB1 FLOWSET  

 

Accuracy 0.9250 0.9440 0.9620 0.9880 

Specificity 0.9100 0.9280 0.9540 0.9960 

Sensitivity 0.9400 0.9600 0.9700 0.9800 

F1 Score 0.9261 0.9449 0.9623 0.9879 

Precision 0.9126 0.9302 0.9547 0.9959 

DB2 FLOWSET  

 

Accuracy 0.9230 0.9380 0.9630 0.9890 

Specificity  0.9060 0.9360 0.9660 0.9860 

Sensitivity 0.9400 0.9400 0.9600 0.9920 

F1 Score 0.9243 0.9381 0.9629 0.9890 

Precision 0.9091 0.9363 0.9658 0.9861 

DB3 FLOWSET  

 

Accuracy 0.9260 0.9440 0.9630 0.9881 

Specificity 0.9140 0.9420 0.9460 0.9780 

Sensitivity 0.9380 0.9460 0.9800 0.9980 

F1 Score 0.9269 0.9441 0.9636 0.9881 

Precision 0.9160 0.9422 0.9478 0.9784 

DB4 FLOWSET 

 

Accuracy 0.9220 0.9460 0.9660 0.9870 

Specificity 0.8860 0.9260 0.9560 0.9780 

Sensitivity 0.9580 0.9660 0.9760 0.9960 

F1 Score 0.9247 0.9471 0.9663 0.9871 

Precision 0.8937 0.9288 0.9569 0.9784 

INTEGRATED 

FLOWSET  

Accuracy 0.9270 0.9480 0.9680 0.9850 

Specificity 0.9405 0.9455 0.9645 0.9840 

Sensitivity 0.9133 0.9505 0.9715 0.9860 

F1 Score 0.9260 0.9481 0.9681 0.9850 

Precision 0.9388 0.9458 0.9647 0.9840 
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Figure 5.3: ROC curves comparison for the proposed method and comparative 

methods MMD, FED, LWN for flow sets corresponding to datasets DB1, DB2, DB3 and 

DB4.  

 
 

5.4  Conclusion  

The significant highlights of this research work are as follows: 

 A novel traffic analysis framework is presented wherein multiple TCP-based 

traffic features were optimally combined by diffusing the features by graph 

based cross diffusion leading to the formation of a unified feature vector. 
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 It has been observed that the mean value of F score, detection accuracy, 

sensitivity, specificity and precision for the proposed framework are 0.98742, 

98.74%, 99.04%, 98.44%, and 98.456% respectively.  

 The highest value of the F score, detection accuracy, sensitivity, specificity and 

precision is 0.9890, 98.90%, 99.80%, 99.60, and 98.61 respectively.  

 Proposed technique outshines similar state-of-the-art traffic-based methods 

when evaluated on extracted TCP features as presented in Table 5.4. 

Enhancement for mean accuracy of suggested scheme by 6.28%, 4.34%, and 

2.3% when compared with LWN, FED, and MMD methods respectively have 

been achieved. This enhanced value of accuracy of the suggested framework was 

attained by optimal combination traffic features using cross diffusion strategy 

and fusion of classifier(s) score using DSmT based PCR-5 rule to form a clear-

cut border for differentiating malign apps from benign apps.  

 The suggested method was also compared with respect to MTTD of different 

state-of-the-art techniques. To calculate the MTTD of contemporary methods, 

learned models were fed with the 250 arbitrary apps for investigation. Our 

proposed method attains an amazing average analysis performance of 5.8 

seconds per app. Similarly, the average analysis performance of LWN, FED, and 

MMD comes out to be 6.5 seconds per app, 7.3 seconds per app, and 6.9 seconds 

per app respectively. Hence, our proposed method outshined other methods in 

respect of detection time, detection accuracy, and efficacy in real-life apps 

scenarios. MTTD also confirms that suggested framework detects the apps with 

high accuracy in reasonable time. 
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 Average accuracy obtained when the random apps are tested on LWN, FED, 

and MMD and RF+UF, and proposed method is 85.75%, 84.30%, 88.82%, 

89.90%, and 95.10% respectively. 

 

The experimental results along with other findings were published in [155]. 

. 

  



131 
 

 
Chapter 6 
 
Conclusions & Future Directions 
 

This chapter will summarize the major contributions and achievements that come out 

of the present work. Despite the significant contributions, no research is said to be 

complete unless it directs to a few topics for future research. Hence, the potential work 

that can be explored further is briefly discussed as directions to future work in the 

Section. 6.2. The summary of the major contributions follows in the coming 

subsection. 

 

6.1 Summary of Major Contributions 

 

The essence of this thesis work was to design and develop efficient techniques for 

smartphone security analysis. In order to address the limitations of various aspects in 

this field, several innovative methods have been suggested under current work which 

are summarized as follows: 

 Challenges faced in the identification of malapps in the smartphones motivated 

us to develop an efficient multi-fusion based android malapp detection method 

based on static analysis. In our methodology, eight static features are exploited 

for development of solution. Our multi-fusion technique is a two stage fusion 

approach. In first stage, deduced static features are fused into a single unified 

robust vector through extraction of the complementary information from eight 

features using non-linear graph unification. In second stage, optimal classifiers 
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are used for classification of an app. Proposed framework has been designed to 

make classification robust to noise and hence help in drastically improving the 

score distribution. Classification is performed by training RF, SVM, and NB 

classifiers followed by classifier scores fusion using PCR-6 rule that resolved 

conflicts amongst classifiers besides redistributing the conflicts efficiently. 

Qualitative investigations of outcomes disclosed that proposed optimal classifier 

broadened the score-distribution of malign and benign apps. Moreover, our 

method has attained average accuracy of 98.97%, average equal error rate of 

1.04%, average F1 score value of 0.9936 and average sensitivity value of 0.9905 

when evaluated over benchmarked datasets. Quantitative analysis of suggested 

method vs. state-of-the-art techniques reveal that proposed method outperforms 

all of them. 

 To tackle the challenges of effective detection of ever-evolving android malapps, 

we suggested a novel hybrid malapp detection scheme. Here, the optimal 

combination of static and dynamic features by cross-diffusion followed by 

fuzzy-based score level fusion was proposed. In the suggested framework, we 

have used five static and two dynamic features to form static and dynamic 

feature vectors. These feature vectors are further fused after the formation of 

normalized and refined graphs through the non-linear graph diffusion method. 

The fused feature vector is then given to an optimal classifier comprising of RF 

and SVM classifiers. A remarkable benefit of our method is that it can extract 

the static and dynamic features in each app almost in real-time. In sum, the 

unification of static and dynamic feature achieve highly distinct features. 

Adoption of fuzzy-based fusion of classifier scores not only create clear 

boundary but also achieve optimal performance. Our technique has 

accomplished mean value of accuracy, specificity, sensitivity, and F1 score as 
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98.62%, 98.634%, 98.604 %, and 99.16% respectively when estimated on 

datasets. Experimental results reveal that our technique outstrips other state-

of-the-art methods. 

 The precipitous increase in the number of android malicious apps drive mobile-

users to take extra security precautions, and makes the malapp detection a 

significant challenge. With the aim of detecting the android malapps, we 

suggested an android traffic based framework to detect android malapps. In our 

framework, fifteen TCP-based features were extracted to build the solution. 

Extracted features were optimally combined by diffusing the features by graph 

based cross diffusion leading to the formation of a unified feature vector. The 

unified feature vector was again given to three classifiers viz. SVM, RF, and 

KNN. The classifiers scores obtained were further fused by PCR-5 rules. Our 

method has accomplished the average detection accuracy, average F1 score, 

average precision, and average sensitivity of when assessed on the traffic 

features extracted from the flows corresponding to benchmarked dataset apps. 

Comparison of the evaluation matrices of proposed framework with other state-

of-the-art approaches shows that suggested framework is better. Our system 

can also categorize the encrypted traffic successfully.      

 

6.2 Future Directions  

 

In this thesis, numerous smartphone security analysis frameworks were investigated 

and explored in detail to provide novel contribution in this area. But there are some 

research dimensions that arise out of the current work which demand future study. 
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These dimensions are summarized as directions to future work and are enlisted as 

follows: 

 The main reason for misclassification is non-inclusion of some dynamic 

features and other structure related static features in our model. Therefore, we 

will extend our framework to improve the detection efficiency by including 

these features. Also, training on more datasets covering the different families of 

malware from diverse sources will solve under-fitting and overfitting problems 

in detection.  

 HTTPS-based dynamic features in addition to TCP features are to be 

incorporated to improve detection accuracy. Furthermore, training on more 

datasets comprising diverse malware families will further add robustness to the 

framework. 

 Other popular smartphone platform like iOS must explored in future. 

  Investigations on smart devices other than smartphones like smart cars, smart 

thermostats, smart locks, smart refrigerators, smart watches, smart bands, 

smart key chains etc. and other miniature devices like sensors etc. prone to 

malwares may be taken up in future. Also, 5G and 6G compatible smart devices 

must be taken up in the future.  

 Many ML algorithm are susceptible to spoofing, poisoning, inversion, and 

impersonate attacks. The countermeasures for these attacks may be 

incorporated in the future. 

 The new-fangled malwares deteriorates the detection capabilities of the 

framework. Future framework will be developed to improve the zero day 

identification ability. Also, framework scalability on large datasets of apps 
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should be verified. Tools handling the big data with fast processing should be 

utilised. 

 Advanced ML techniques like deep learning technology must be exploited in the 

frameworks. Reinforcement learning, a form of deep learning shows incredible 

results in dynamic frameworks to segregate the malwares. Transferred learning 

is another technique to cater the problem of limited samples in families. 

Crowdsourcing should be employed to solve malware family detection issues. 

 

 This study further demands the possibility of analysis on other benchmarked 

databases and execution of other performance evaluation metrics.  
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