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Abstract 

Researchers working on problems in engineering, computer science, biology, and the physical sciences 

are developing advanced mathematical methods for control. Technological advances have had a major 

impact on the use of new analytical methods for dealing with nonlinear problems. One of the most 

challenging parts of control theory is tuning the parameters of nonlinear systems for an optimum 

solution. In the past, metaheuristic methods were tried to address this problem. They have proved to be 

useful when dealing with complex systems. Metaheuristic optimization techniques, unlike deterministic 

algorithms, excel at addressing problems with uncertain search spaces. Optimization-based control is 

now favoured over conventional or intelligent control, and because of these aspects, a hybrid 

CSMSEOBL technique is suggested to accomplish this. Due to their ability to overcome single algorithm 

limitations without compromising their strength, hybrid techniques outperform stand-alone alternatives. 

It's a tweaked version of the SMS algorithm (state of matter search) in which Chaotic Maps and Elite 

opposition-based learning (EOBL) are combined with SMS to improve the system's efficiency and 

effectiveness. The SMS algorithm's fundamental concept is at the heart of the thermal energy motion 

system. The method is broken down into three states of matter: solid, liquid, and gas, each with its 

diversification-intensification ratio. The method begins with a gas state and progresses to a solid-state 

by changing the diversification-intensification ratio. The proposed approach is compared to 

other optimization algorithms on unimodal, multimodal, and fixed-dimension multimodal benchmark functions 

to demonstrate its efficacy. 

Proportional-integral-derivative (PID) controllers are the most commonly used controllers in process 

industries due to their accessibility, efficacy, and durability. The system becomes unstable when process 

parameters change and disturbances occur. Because of the increasing complexity of plant operations, 

adjusting the parameters of a PID controller to avoid failures and excellent transient performance has 

become more difficult in recent years. Optimal adjustment of PID parameters is now a difficult job for 

control engineers. PID Controller and its variants like FOPID and 2-DOF-PID controllers are used for 

controlling nonlinear control problems. 

To assess the performance of the developed hybrid metaheuristic algorithm simulation studies are carried 

on fifteen benchmark functions and three nonlinear control systems Continuously stirred tank reactor, 

Ball balancer, and D.C. motor.  A comparative study in terms of setpoint response analysis, convergence 

analysis, statistical analysis, and trajectory analysis with other recent existing metaheuristic algorithms 

are also presented to prove the superiority of the proposed algorithm. 
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Chapter 1 

Introduction 

1.1 Overview 

Advanced mathematical techniques for control are being developed by researchers working on issues 

in engineering, computer science, biology and the physical sciences. The application of novel analytical 

approaches for tackling nonlinear issues has been significantly influenced by technological 

advancements [1]. The state may not be entirely quantifiable in most situations involving nonlinear 

control systems, making complicated control engineering problems difficult to address. The 

employment of a variety of distinct models and ideas, a lack of parameter standardization, a lack of 

suitable control approaches, external disruptions and the greater level of nonlinearity of the equations 

that drive processes are all important challenges in the field of control technology. Another difficulty 

is the lack of understanding of the critical variables since the system's states might significantly affect 

the nature of the control design stage, allowing for excellent performance. As a result, enhanced 

forecasting, control and optimization approaches are required to ensure optimal nonlinear system 

performance. Understanding the system's control needs necessitates knowledge of the system; 

nevertheless, nonlinearities are frequently so complicated that control design for system performance 

is challenging [2]. New control techniques have developed over time to maintain optimal system 

performance that prevents interruptions, pauses, and design flaws. 

Tuning the parameters of nonlinear systems for an optimal solution is one of the most difficult aspects 

of control theory. Metaheuristic strategies have been used to solve this challenge in the past. When 

dealing with complicated systems, they have proven to be beneficial. Unlike deterministic algorithms, 

metaheuristic optimization methods excel at solving problems with uncertain search spaces. These 

optimization approaches have been utilized in practically every sector of research, technology and 

engineering to discover the best answer from several feasible solutions [3]. 

1.2 Background and Existing Challenges 

1.2.1 Optimization  

An important paradigm that is everywhere along with a wide range of utilizations is optimization. In 

practically all application areas such as mathematics, computer science, operation research, industrial 

and engineering designs, we are continually attempting to upgrade something - regardless of whether 
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to limit the expense and vitality utilization or to expand. The benefit yields execution effectiveness. In 

all actuality, assets, time and money are consistently restricted; thus, optimization is unmistakably 

progressively significant [4]. How the optimization algorithm works are shown in Figure 1.1. 

Optimization is the study of choosing the best choice among a debilitated hover of choices [1] or it 

tends to be seen as unitary of the major quantifiable mechanism in a system of dynamics in which 

judgments must be employed to enhance single or more evaluations in some affirmed set of conditions 

[6]. Each problem of optimization accompanies some decision variables, certain objective (fitness) 

functions and  few constraints [1]. A literature review of optimization algorithms reveals that there is 

no systematic classification is available. Figure 1.1 shows how an optimization algorithm work. 

Taxonomy of optimization algorithms is shown in Figure 1.2. 

                

Figure1.1. Flow chart of Optimization 

1.2.2 Existing Challenges in Optimization 

The effectiveness of an algorithm, the effectiveness and precision of a statistical simulator and 

assigning the correct methods to the stated problem are the three key challenges in simulation-driven 

optimization and modelling. 

Algorithm’s Effectiveness 

It's critical to have a good optimizer to get the best results. An optimizer is essentially an optimization 

technique that has been appropriately built to perform the required search. It may be connected and 

Actual problem

(Identification & Simplification)

Simplified Problem

(Mathematical Formulation)

Optimization Model

(Optimization Method)

Solution

(Evaluation)

Result

(Optimal Solution)
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merged with other modelling elements. No free lunch theorem states that [2], there are several 

optimization methods in the literature and no one solution is suited for all issues. 

Algorithm’s Correctness 

The selection of the appropriate optimizer or method for a particular issue is critical from an 

optimization standpoint. The kind of issue, the structure of the methodology, the desired output quality, 

the contemporary computing sources, time frame, the method’s implementation availability and the 

selection experience will all influence the algorithm selected for an optimization job [3][4]. 

Effectiveness of statistical Solver  

Any method for decreasing computing time, whether by limiting the number of assessments or 

enhancing the simulator's effectiveness, save both time and money. The major approach to reduce the 

number of objective assessments is to utilize an effective algorithm that requires a minimal number of 

evaluations [5]. 

 

Figure1.2. Taxonomy of optimization algorithm [6]. 
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1.3 Metaheuristic Optimization 

In metaheuristic algorithms meta-denotes “beyond” or “higher level”. They outperform basic 

heuristics. Local search and global exploration are used in some manner by all metaheuristic 

algorithms. The terms 'heuristics' and ‘metaheuristics' are sometimes used interchangeably by scholars. 

However, a recent trend has been to label any stochastic algorithms that include randomization and 

global exploration as metaheuristics. Metaheuristics can be an effective technique to provide 

acceptable solutions to a complicated problem through trial and error in a reasonable amount of time. 

There's no certainty that the best solution will be discovered and we have no way of knowing whether 

an algorithm will work or why it will work [7]. The goal is to create an efficient and practical algorithm 

that works the majority of the time and produces high-quality results [8]. According to [9] 

“Metaheuristic computing is an adaptive and/or autonomous methodology for computing that applies 

general heuristic rules, algorithms and processes in solving a category of computational problems.” 

Metaheuristic algorithms have two main characteristics: intensification and diversification. The 

intensification phase, also known as exploitation, searches for and identifies the best candidates or 

solutions based on the present best approaches. The diversification phase, also known as exploration, 

guarantees that the algorithm efficiently traverses the search space. A tight balance between these two 

components has a significant impact on an algorithm's overall efficiency. If the exploration is 

insufficient and the exploitation is excessive, the system may become stuck in a local optimum. Finding 

the global optimum would be extremely difficult, if not impossible, in this instance. When there is an 

excessive amount of exploration but not enough exploitation, the system may be unable to reach 

convergence. In this particular scenario, the total search performance suffers (Figure 1.3). Balancing 

these two components is a big optimization challenge in and of itself [10][11]. 

There are so-called "No free lunch theorems," which can have considerable impacts in the 

optimization field [12]. According to this, “If algorithm A outperforms algorithm B for particular 

optimization functions, then B will outperform A for all other functions”. This means if both algorithms 

A and B are averaged over all potential function space, they will perform well equally. In short, there 

is no uniformly superior algorithm [13]. 

 

Figure1.3. The balance between intensification and diversification 
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         According to [14], Metaheuristic algorithms share the following traits: 

• The algorithms are based on natural events or behaviours and they follow specific rules (e.g., 

biological evolution, physics, social behaviour). 

• Probability distributions and random processes are used in the selection phase, which contains 

random elements. 

• They provide several control parameters to modify the search method since they are intended 

to be general-purpose solvers  

• They don't depend on a priori knowledge, which is information about the process that is 

accessible before the optimization run begins. Nonetheless, such knowledge may be beneficial 

to them (e.g., to set up control parameters). 

 

Figure 1.4.  Development Procedure of Metaheuristic Algorithms [15] 

Necessary steps which must be taken into account for the development of any metaheuristic 

algorithm are shown in Figure 1.4. 

1.3.1 Recent Metaheuristic Optimization Techniques 

The metaheuristic algorithms which are used for different nonlinear system analysis in this thesis are 

discussed below: 

A. Particle Swarm Optimization (PSO) 

Doctor Kennedy and Eberhart proposed the particle swarm optimization technique in 1995 [16]. It is a 

heuristic global optimization approach. When looking for food, the birds may scatter or congregate 

before locating a location where they can obtain food. While birds are moving from one location to 

another in quest of food, there is usually one bird that can smell the food extremely well, indicating 

that the bird is aware of the location where the food can be obtained, providing superior food resource 
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information. As they are constantly passing information, especially positive information, while looking 

for food from one location to another, the birds will inevitably migrate to the location where food can 

be obtained. In terms of the particle swarm optimization technique, solution swarms are related to bird 

swarms, with birds traveling from one location to another representing the growth of the solution 

swarm, excellent information representing the most optimist solution, and food resource representing 

the most optimist solution throughout the process [17]. 

B. Stochastic Fractal Search (SFS) Optimization 

The stochastic fractal search (SFS) algorithm [17] is a potential technological method that makes use 

of randomized fractals created using the diffusion-limited aggregation (DLA) technique. The technique 

was developed to address the shortcomings of prior metaheuristics, including premature convergence 

and poor solution quality. Within a few rounds, the SFS algorithm is capable of identifying a solution 

that has the least or most minimal error relative to the ideal solution, resulting in a considerable increase 

in solution quality and convergence time [18]. 

The diffusion and update processes are two critical components of the SFS algorithm. To meet the 

intensification(exploitation) condition, each particle initially diffuses about its present location, a 

process analogous to Fractal Search. This strategy enhances the probability of getting the global 

minima while avoiding being trapped in the local minima. The approach duplicates how, in the latter 

process, a point in a group modifies its location in response to the location of other points in the group. 

Updates are being made to procedures. To put it another way, the updating process in SFS results in 

the diversity (exploration) of metaheuristic algorithms [19]. 

C.  Cuckoo Search (CS) Optimization 

In addition to their beautiful song, Cuckoos are intriguing birds as they have active breeding 

strategies. Ani and Guira cuckoos hatch eggs in cooperative nests but may destroy other people's eggs 

to optimize the chances of their egg hatching. There are a few kinds of birds that are obligated to lay 

their eggs in other bird’s nests. The three kinds of brood parasitism are cooperative breeding, nest 

takeover and intraspecies brood parasitism. Certain host birds may come into direct combat with the 

invading cuckoos. It is possible for a host bird to either discard the eggs or abandon the nest and build 

a new one elsewhere if it recognizes that the eggs are not it's own. There are a few species of crows 

that have acquired the ability to mimic the colour and design of a few select host species' eggs to prey 

on them. A reduction in egg abandonment and an increase in reproduction are the outcomes of this. 
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Some species can deposit eggs at certain times is astounding. Cuckoo parasites like newly born 

eggs in the host bird’s nest. Cuckoo eggs hatch sooner than host eggs in general. An instinctual response 

to hatching is for a cuckoo chick's first instinct to expel its host's eggs from its nest by tossing them out 

of the nest. In [21] research has shown that to get access to more food, a cuckoo chick may mimic the 

cry of its hosts. 

Animals in nature look for food in a semi-random fashion. In general, an animal's foraging 

route is practically a random walk since the subsequent step is predicated on the present position/state 

and the likelihood of transitioning to the next place. Which path it picks is based on a probability that 

can be statistically described. Various investigations, for example, have proven that the flying 

behaviour of numerous animals and insects has displayed the basic features of Levy flights [18]. In 

general, Levy flights are random walks whose step length is determined by the Levy distribution, which 

is commonly expressed in terms of the 𝐿(𝑆)~|𝑆|1−𝛽 where 0 < 𝛽 ≤ 2  is an index [18]. 

D.  State of Matter search (SMS) Optimization 

The SMS algorithm works by simulating the states of matter phenomena. Individuals in SMS imitate 

molecules that interact with one another by employing evolutionary processes based on the thermal-

energy movement mechanism's fundamental principles. Each state of matter is considered at a distinct 

intensification-diversification ratio to create the method. The evolutionary process is split into three 

stages, each of which represents one of the three forms of matter: gas, liquid, or solid. Molecules 

(individuals) have varied mobility capabilities in each condition. The algorithm changes the intensity 

of intensification and diversification until the solid-state (pure intensification) is attained, starting with 

the gas state (pure diversification). As a consequence, the technique may significantly enhance the 

balance between diversification and intensification while retaining the evolutionary approach's strong 

search capabilities [19]. 

E.  Opposition based Learning(OBL) 

Elite opposition-based Learning is an emerging method in the domain of intelligent 

computation. Its basic concept is to compute and analyze the opposing response at the same time to 

find a feasible solution, and then pick the best one for the future generation [20]. Tizhoosh [21] 

introduced OBL,  which is essentially a machine intelligence method. It provides a more accurate 

approximation of a current candidate solution because it considers both the existing person and its 

opposing individual simultaneously. A random candidate solution is less likely than an opposing 

candidate solution to be as near to the global optimal solution as an opposing candidate strategy. 
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Opposition-based learning can effectively broaden the population's search area and increase the 

algorithm's capacity to solve problems. It is suitable for use in conjunction with an evolutionary 

algorithm. Elite individuals in a population are seen to be the best of the best. Elite individuals must 

have more meaningful knowledge to direct the group toward global optimum convergence. If the 

algorithm succeeds in achieving global convergence, the elite individuals' search area will converge to 

the global optimum individuals' search area. As a result, enhancing elite people's spatial neighborhood 

search will increase the algorithm's convergence rate and improve its global convergence ability [22]. 

F. Water Wave Optimization (WWO)  

The WWO algorithm builds search algorithms for high-dimensional global optimization problems 

using concepts from wave motions governed by wave-current–bottom interactions [27]. To address the 

optimization problem, the WWO approach efficiently balances global and local search by simulating 

wave motion and propagation, refraction, and breaking. The ideal solution for each water wave is 

related to the wave height and wavelength. The water wave has a bigger ideal solution in shallow water, 

a higher wave height, and a longer wavelength; in deep water, the water wave has a smaller optimal 

solution, a lower wave height, and a shorter wavelength [23]. 

1.3.2 Existing issues with Metaheuristic Optimization 

Finding the optimal answer to a problem is the optimization process. As a result, the primary challenge 

for metaheuristics is figuring out how to cope with this issue. Even though many metaheuristics have 

been suggested, only a handful of metaheuristics have consistently attained the required success rate. 

Population-based metaheuristics, in particular, are frequently employed because they can adapt to 

large-scale optimization issues. Metaheuristics, as previously stated, are problem-specific algorithms. 

As a result, the issue is, "What is the optimal algorithm parameter specification based on the kind and 

size of the problem search space?" Furthermore, selecting the proper metaheuristic algorithm is a 

complex thing. Recent developments seek to liberalize metaheuristic methods to overcome these 

problems. 

1.4 Nonlinear Control  

Practical systems are fundamentally nonlinear, at least across a broader range of operating conditions, 

even though many of them are supposed to 'behave' linearly close to a certain operational point at a 

slower speed under specific conventions. To represent a broad variety of physical events, nonlinear 

models are utilized. A few examples are the gravitational and electrostatic attraction, coulomb friction, 

V-I characteristics of most electrical systems, and drag on a moving vehicle [24]. 
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Nonlinear control is becoming more popular as a result of the upgrading of linear systems, the study 

of nonlinearities, the requirement to deal with parametric uncertainty and the flexibility of the 

architecture. Methods that take into consideration dynamic forces such as sensory and Coriolis forces, 

which fluctuate in speed, improve on basic techniques [30]. As a consequence, the linear control 

principles limit the speed at which a given accuracy may be achieved. It is possible to adapt to nonlinear 

forces using a simple nonlinear controller, allowing for high speeds in an extensive range of motion. 

Real-world systems can't be approximated linearly because of rigid nonlinearities such as hysteresis, 

dead zones, stiction, Coulomb friction, stiction, saturation and backlash. Once these nonlinearities are 

predicted, nonlinear approaches can compensate for them in a way that is unparalleled in terms of 

efficacy. Model parameter uncertainty is common in real-world systems as well, due to sudden or 

gradual shifts in parameter values. The resilience or flexibility of a nonlinear controller may be able to 

deal with the consequences of model uncertainty [25]. 

1.4.1 Nonlinear Control Problems 

The nonlinear control problems which are used in this work for efficiency and efficacy analysis of 

different existing and proposed algorithms are discussed below: 

A. Continuously Stirred Tank Reactor 

The natural world is complicated having ecological and chemical networks that interact on a global 

scale. Numerous components of such systems display nonlinear dynamics and continuously stirred 

tank reactors (CSTR) are a good example of a processing unit that exhibits nonlinear dynamics, posing 

operational difficulties owing to complicated behaviour such as output operands, oscillations, and even 

instability [26]. A Continuous Stirred Tank Reactor (CSTR) is a critical unit operation in chemical 

industries with highly nonlinear behaviour and works on extensively working ranges. Chemical 

processes in a reactor are either exothermic or endothermic, requiring energy to be withdrawn or given 

to the reactor to keep a steady temperature.  

Their functioning, however, is contaminated by several ambiguities. Some of these result from 

fluctuating or incompletely known factors, such as reaction rate constants and heat transfer coefficients. 

In other circumstances, reactor operating points fluctuate, or reactor dynamics are influenced by 

changes in parameters or even the instability of closed-loop feedback systems [27]. 
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B. Ball Balancer System 

An underactuated, multivariate electromechanical, and nonlinear system may be represented by the use 

of ball balancer systems. Two servo motors operate simultaneously to regulate the position of the ball 

in a 2-DOF Ball Balancer. This is a nonlinear system. In many applications and approaches, it is one 

of the most complicated control benchmarking systems. Users may experiment with a variety of control 

methods to direct a ball towards a certain spot on a table. It's a horizontal plate with slants in both 

directions, which allows the ball to roll wherever on the plate. Nonlinear kinematics and control theory 

are shown dynamically in this system. Control algorithms and technologies are often evaluated using 

this system because of its inherent nonlinearity, instability and under-actuation [28]. 

C. DC Motor 

DC motors are commonly used as actuation elements in engineering applications due to their ease of 

speed and position control and large adjustability range. They play a critical role in a variety of 

electrical systems used in residential and industrial applications, including industrial mills, electric 

vehicles, cranes, robotics, and a variety of household products. This prominence is attributable to their 

attractive features, which include accuracy, simplicity, and continuous control. A good control strategy 

is required to run the DC motor at the right speed or torque [29]. As a result, studying DC motor 

behaviour is a worthwhile endeavour for the analysis and control of a wide plethora of different 

applications [30]. 

1.4.2 Existing Challenges 

Nature is nonlinear, therefore nonlinear methods are the easiest way to cope with it. Despite this, linear 

control has been used effectively for years. The issue with linear systems is that they may not be capable 

of accommodating recent and innovative technologies. It may be challenging to decide whether to use 

linear or nonlinear control for a certain application. Linear control has been well researched and 

industry professionals trust it. For linear systems, there are many good analytic methods available, 

including the root locus, bode plot, Nyquist stability criterion, Laplace transform, Z-transform, Fourier 

transform and many more. Nonlinear systems, on the other hand, require more sophisticated numerical 

methods, such as the Lyapunov stability criteria, the Popov criterion and singular perturbation 

techniques. For nonlinear systems, mathematical modelling may be time-consuming. Limit cycles, 

chaos and bifurcation may occur in nonlinear systems. The majority of the strategies can only guarantee 

local stability; global stability cannot be assured. 
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1.5 Hybrid Metaheuristic Algorithms 

The first two decades of metaheuristics study were defined by the use of very typical metaheuristics. 

However, it has become clear in recent years that focusing on a single metaheuristic is quite limited. 

When dealing with real-world and large-scale situations, a smart combination of a metaheuristic with 

other optimization approaches, known as a hybrid metaheuristic, may give more efficient behaviour 

and more flexibility. This may be accomplished by combining the complementing qualities of 

metaheuristics on one hand with comprehensive approaches like a branch and bound techniques or 

mathematical programming on the other [31]. Hybrid algorithms blend two or more algorithms to solve 

a specified issue simultaneously and effectively. Within a hybrid structure, intrinsic modules of 

algorithms like crossover and mutation are used to augment other algorithms. Hybrid algorithms may 

be split into two groups in terms of their scope [32]. 

Hybrids that serve many functions: To answer the same question directly, all sub-algorithms are 

applied, and distinct sub-algorithms are used at multiple stages of the search. Algorithms that combine 

local search with metaheuristics algorithms are an excellent example of this. In contrast, the global 

exploration expands the solution space, while the local search narrows the areas in which the global 

optimum may be found 

hybrids that have several purposes: The main optimization algorithm is used to solve the issue, whereas 

the sub-algorithm is used to fine-tune the parameters of the main method. It may be used to discover 

the best mutation rate in GAs, for example. To put it another way, rather than fixing the issue, PSO is 

aiding the creation of better solutions by determining which parameters are the most beneficial for 

increasing performance. Consider hyper-heuristic algorithms as a synthesis of many methods. 

Parameters are picked in hyper-heuristic techniques (either by a sub-algorithm or by a learning 

approach) [38]. 

1.5.1 Existing Challenges 

Although hybrid algorithms have the benefit of enhancing population diversification and therefore 

improving the search capacity of the generated hybrid algorithm, they do have certain limitations, as 

discussed below 

• The addition of another algorithm almost always results in a naming problem. Some 

academics call their hybrid algorithms by a variety of names.  
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• In contrast to the two architectures, the collaborative hybrid algorithm seems to generate 

more complex names. For example, the titles Hybrid GA-PSO and Mutated PSO are 

similar, even though both hybrids include GA and PSO. 

• The hybridization process typically adds additional components to the overall design of the 

hybrid algorithm. The hybrid algorithm's complexity raises as a result.   

• Since hybrid algorithms have a more sophisticated design, overhead is introduced along 

with their complexity, which is sometimes inevitable. This has an impact on overall 

performance and, as a result, reduces its robustness.  

• The majority of hybrid algorithms will increase their parameter count, making it more 

difficult to modify their settings. Furthermore, the complexity of a hybrid makes it harder 

to evaluate, obscuring the origins of such hybrids.  

Hybridization of algorithms are also somewhat more difficult to develop and therefore more prone to 

mistakes. As a consequence, while evaluating the findings of hybrid algorithms, caution is advised 

[32]. 

1.6 Motivation 

Following are some key insights from the previous research and observations that becomes the 

motivation for this research: 

•  “Everything should be made as simple as possible, but not simpler,” Einstein famously 

remarked. Less complicated algorithms are preferable. Algorithms, in the same way, should be 

as straightforward as feasible. In practice, a robust algorithm is preferred with a simpler 

architecture for simplicity of implementation while still being efficient enough for real-world 

applications. 

• The installation of new hybrids (integrative hybrids) should be simplified by having a specified 

structure. To produce long-term better hybrids, each combination should be predicated on clear 

thought, innovative characteristics, and intelligent methods. 

• The researchers developed a stable and pleasing nonlinear system response by either employing 

a regular PID controller or its more flexible variant namely, FOPID, 2-DOF-PID controller. 

The purpose of this study is to develop PID controllers with filters, as well as variations such 

as FOPID and 2-DOF-PID controllers to enhance the nonlinear system response. Additionally, 
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controllers are constructed using not just integer-order filters but also fractional-order filters. 

 

1.7 Objectives 

The key objectives of this research titled” Metaheuristic Algorithm and its applications to nonlinear 

control system “are as follows: 

• Study of different recent metaheuristic algorithms. 

• To develop a novel hybrid metaheuristic algorithm that may give a more efficient and more 

flexible behaviour for nonlinear control problems. 

• To validate the developed hybrid metaheuristic algorithm on Benchmark Functions and 

perform Trajectory Analysis, Wilcoxon rank-sum test, mean, median and Standard 

deviation values. 

• To implement the proposed algorithm and other existing metaheuristic algorithms for 

parameter tuning of the FOPID Controller for concentration and temperature control of 

continuously stirred tank reactor. 

• To implement the proposed algorithm and other existing metaheuristic algorithms for 

parameter tuning of the PID Controller for angle and position control of the Ball Balancer 

system. 

• To implement the proposed algorithm and other existing metaheuristic algorithms for 

parameter tuning of the 2-DOF-PID controller for speed control of DC motor.  

1.8 Methodology of the Research Work 

The methodology opted for this research is shown below in Figure 1.5. 



14 

 

 

Figure1.5. Research work Methodology 

Simulation is carried out using MATLAB 2018, which is powered by an Intel(R) Core (TM) 2 Duo 
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1.9 Outline of the Thesis 

After an introductory chapter that describes the basic concept of optimization along with a brief on 

metaheuristic optimization, different types of metaheuristic optimization along with various nonlinear 

control problems, further chapters of this thesis are organized in the following manner:  

Chapter 2 provides a detailed literature review of recent metaheuristic algorithms, hybrid metaheuristic 

algorithms, metaheuristic algorithms for PID controller tuning, hybrid metaheuristic algorithms for 

PID controller tuning, optimal tuning of FOPID controller for CSTR, PID controller tuning for Ball 

balancer and optimal tuning of the 2-DOF-PID controller for CSTR. 

CSMSEOBL is a unique hybrid metaheuristic algorithm that is being developed in Chapter 3. A 

hybridization of State of matter search with Chaotic maps and Elite opposition-based learning has been 

created, which is referred to as CSMSEOBL. To verify the developed method on 15 benchmark 

functions, statistical analysis, convergence analysis and the Wilcoxon test are performed. 

Chapter 4 deals with mathematical modelling of CSTR and tuning of FOPID Controller parameter by 

using the proposed hybrid algorithm CSMSEOBL, State of matter search algorithm, Cuckoo search 

algorithm and Particle swarm optimization algorithm. Error convergence analysis, and setpoint 

response analysis are done to validate the superiority of the proposed algorithm. 

Chapter 5 describes the mathematical modelling of the Ball balancer and tuning of PID Controller 

parameters by using the proposed hybrid algorithm CSMSEOBL, State of matter search algorithm, 

Stochastic Fractal search algorithm and Particle swarm optimization algorithm. Error convergence 

analysis, setpoint response and convergence analysis are done to validate the pre-eminence of the 

proposed algorithm. 

Chapter 6 deals with mathematical modelling of DC motor and tuning of 2-DOF-PID controller 

parameter by using proposed hybridization CSMSEOBL, State of matter search algorithm, water wave 

optimization and particle swarm optimization algorithm. Error convergence analysis, setpoint response 

investigation and convergence study are done to validate the superiority of the proposed hybridization. 

Chapter 7 provides the concluding remarks for all the approaches and identifies the state of possible 

directions for future research. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The challenge and goals of the current research work are described in Chapter 1. A brief literature 

review has been carried out on the following issues: 

• History of Optimization 

• Review of metaheuristic optimization algorithms 

• Review of hybrid metaheuristic optimization algorithms 

• Hybrid metaheuristic optimization algorithms used to tune PID Controller and its variants 

• Optimal control of CSTR system. 

• Optimal control of the Ball balancer system. 

• Optimal control of DC motor. 

As optimization is widespread, it is a significant paradigm having a broad array of applications. 

We try to optimize something in almost every application in the engineering and manufacturing sector, 

whether it be to reduce expenses or to increase profit, outcome, productivity and effectiveness. Every 

part of our lives, seen or unseen, covers a diverse spectrum of optimization difficulties inside its edges. 

Not only that, but any practical system, or indeed a fraction of one, may be generalized as an 

optimization system, with one or even more optimization concerns embedded within it. The major 

goals of optimization algorithms (OAs) are to make anything more and more efficient to the maximum 

degree feasible by iteratively looking for more precise and flexible solutions to the problem at hand 

[33][34]. This indicates that the problems under consideration must eventually be reconstructed in the 

context of optimization, which has two sides: first, creating a "search space" of potential solutions for 

the specified issue; second and more significantly, evaluating the obtained performance of all 

accessible solutions based on certain performance standards that should be stated prior [35][34][36]. 

Optimization is a method for finding solutions with significant nonlinearity, complexity and wide 

solution space. As a consequence of the increasing complexity, a method is required that can provide 

a high-quality solution in a reasonable period while using existing resources. The metaheuristic 

algorithm is an example of a method that has become an essential component of all optimization 

processes. Finding an optimal answer is just the last stage of an optimization process that includes 

characterizing the system mathematically, identifying restrictions, defining system attributes, and 



17 

 

finding an objective function. In a wider sense, the optimization process may be categorized into two 

types: (1) exact methods and (2) approximation methods [5][6]. The exact approach ensures the best 

possible answer, while the approximation method ensures a high-quality solution in a fair period but 

not optimality. Branch and bound approach and dynamic programming are examples of exact 

optimization techniques, whereas approximate methods include cut & plane, local search, scatter 

search, genetic algorithms and others. further Approximation algorithms and heuristic techniques are 

two types of approximate procedures. The first strategy provides proven arrangement quality and run-

time limitations, whereas the second focuses on obtaining a sensible excellent arrangement in a 

reasonable time. Calculations based on heuristics are very problem-specific. Metaheuristics are a kind 

of algorithm that demonstrates the basic heuristics in the same way that a governing system does. They 

don't specify an issue or a region and they may be used for any optimization. Glover [7] [5] coined the 

phrase "metaheuristics”.” Meta-heuristics are logically improved to get an ideal arrangement that is 

"acceptable" in a "sufficiently short" figuring time”. Because of its (i) simplicity and ease of 

implementation; (ii) lack of requirement for slope data; (iii) avoidance of neighborhood optima; and 

(iv) applicability to a broad range of problems involving different controls, meta-heuristic optimization 

aids in the resolution of a wide range of ongoing challenges. [8] 

 2.2 History of Optimization 

Table 2.1 A brief review of historical optimization 

Year Name of the Developer Features 

300BC Euclid(Greek 

Mathematician) 

The greatest area is enclosed by a square among all feasible rectangles 

having all four sides of equal length. 

100BC Heron The angle of incidence is equal to the angle of reflection 

1613 Johanes Kepler Find an optimal solution for the secretary problem 

1621 W.van Royen Law of refraction 

1637 Rene Descarates Snell’s results 

1657 Pierre de Fermat Fermat’s Principle (in any medium-light always travel in the shortest 

time) 

1685 Sir Isaac Newton To minimize the resistance to fluid motion 

1696 J.Bernoulli Development in the area of calculus. 
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Year Name of the Developer Features 

1670 Euler and Lagrange Calculus of variation 

1746 P.L.de Maupertuis Principle of least action 

1781 Gapard Monge Optimal transportation problem and sharing of resources. 

1801 Frederich Gauss Method of least square to anticipate the area of asteroid Cereas 

1806 Adrein legendre Method of least square for curve fitting 

1815 D.Riacrdo Law of diminishing return for the cultivation of land 

1847 L.A.Cauchuy gradient methods, Steepest Descent 

1906 J.Jensen The concept of convexity also introduces the concept of inequality 

1917 H.Hancock The first book on optimization named “Theory of minima and 

maxima” 

1930 Karl Menger Messenger’s problem (search for the shortest route which joins a 

definite number of points (or cities) and prairies distance is known. 

Now a day it is known as the travelling salesman problem. 

1939 L.Kantorovich Developed an algorithm for linear programming .it was used in 

economics for optimal planning of production-related issues. 

For this research, he was awarded the Nobel prize. 

1944 John von Neumann and 

O.Morgenstern 

Develop the solution for sequential decision problems also, develop 

operational research. 

1947 George Dantzig The simplex method is developed for large-scale linear programming 

problems. 

From 1939 to 1947 linear programming was developed three times but 

each time with a different formation. 

1951 Harold Kuhn and 

A.W.Tucker 

Karush-Kuhn-Tucker condition is a necessary condition for a solution 

to be optimal in the case of nonlinear programming. 

1957 Richard Bellman Develop dynamic programming and the principle of optimality. 

1960 A big explosion occurred in the field of optimization 
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All the above-discussed methods of optimization fall into the category of exact optimization 

and many of these methods when applied to real-time non-linear problems, they face the problems of 

trapping into local optima, risk of diversification, constraint handling issues etc. to overcome these 

limitations of the exact method of optimization. heuristic methods of optimization were proposed in 

the early ’70s [37]. Although heuristic methods do not guarantee the optimal solution but near-optimal 

and feasible solutions can be found in a reasonable amount of time. The heuristic method was 

introduced by G.poyla [38] in 1947 but its actual development begin after 1960. Essentially, a heuristic 

is intended to give better computational execution most of the time but at the cost of reduced accuracy 

when contrasted with traditional optimization algorithms. As heuristics are problem-specific so use 

domain-specific knowledge and are well defined only for basic problems [39]. In more exact terms, 

heuristics are methodologies utilizing promptly open, however freely accessible, data to control critical 

thinking in human creatures and machines [6]. 

The compromise standards for concluding whether to utilize a heuristic for taking care of a given issue 

incorporate the accompanying 

• Optimality is a heuristic, able to give optimal solutions among the several available best 

solutions. 

• Completeness: among multiple existing solutions, will a heuristic method be able to get all? 

Because heuristics are mostly used to determine a single solution. 

• Efficiency and Definiteness's 

• Execution time [6] 

2.3 Metaheuristic Optimization 

This literature review reveals that the heuristic method of optimization is quicker compared to the exact 

method of optimization which is capable to give an exact solution but at the expanse of high 

computational time. The limitation of heuristic optimization is problem specific [6]. A heuristic is a 

method of reasoning in critical thinking that is based on trial and error. As a result, they are prone to 

falling into local optimum traps and being unable to escape [46]. Whereas A metaheuristic is a 

nonexclusive or higher-level heuristic that is more inclusive in its approach to problem resolution. 

Metaheuristic algorithms may be thought of as a kind of flexible processing that use generic heuristic 

guidelines to solve a class of computational problems [6]. Glover coined the word "metaheuristic" in 

1986. Glover defined metaheuristic as “A metaheuristic is a high-level problem-independent 

algorithmic framework that provides a set of guidelines or strategies to develop 
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heuristic optimization algorithms”. Metaheuristic term join two words “Meta” which is a Greek prefix 

meaning is “high level” with heuristic  

Metaheuristics can be an effective method to create satisfactory arrangements by experimentation with 

an intricate issue in a sensibly acceptable time [40]. Wang[9] defined metaheuristic in several ways as 

1.  “Metaheuristic computing is an adaptive computing that applies general heuristic rules in 

solving a category of computational problems.” 

2. “A metaheuristic is a generic or higher-level heuristic that is more general in problem-

solving.”[1] 

These definitions lead to a general mathematical formulation of a metaheuristic algorithm, which is 

MHA=(𝑂, 𝐴, 𝑅𝐶 , 𝑅𝐼𝑅𝑂) 

Where 

O-set of metaheuristic algorithms 

A-group of generic algorithms 

𝑅𝐶 − set of inner relations  (OXA) 

𝑅𝐼 – set of input relations 

𝑅𝑂 -set of output relations 

Characteristics of Metaheuristic Algorithms: 

• Meta-heuristics are techniques that direct the search measure. The objective is to effectively 

and efficiently investigate the search space to discover feasible or close to the optimal solution. 

• Strategies that comprise meta-heuristic calculations run from straightforward neighbourhood 

search methods to complex learning measures. 

• Metaheuristic calculations spread the arrangement space without stalling out in explicit zones 

(particularly local optima). 

• Meta-heuristic calculations are not only approximate and ordinarily non-deterministic but also 

not peculiar for a problem [41][6]. 

http://www.scholarpedia.org/article/Optimization
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• Metaheuristics can be classified based on their abstraction level. 

• Metaheuristics are relatively simple to implement in parallel. 

• Metaheuristics cover a wide range of topics, from simple local searches to complex learning 

approaches. 

• Heuristics are domain-specific knowledge that is dominated by the topmost strategy and may 

be used by a metaheuristic. 

• Advanced metaheuristics rely on guiding memory to keep track of search history [42]. 

The essential terminology in metaheuristic computing is explored here to present the notion of 

metaheuristic computing as clearly as possible. 

Definition 1. “A heuristic is a reasoning methodology in problem-solving that enables a solution to a 

problem is derived by trial-and-error and/or rule of thumb”. 

Definition 2. “A metaheuristic is a generic or higher-level heuristic that is more general in problem-

solving”. 

Definition 3. “Computing in a narrow sense is an application of computers to solve a given problem 

by imperative instructions; while in a broad sense, it is a process to implement the instructive 

intelligence by a system that transfers a set of given information or instructions into expected intelligent 

behaviours”. 

The notion of metaheuristic computing may be stated as follows based on Definitions 1 through 3. 

Definition 4. “Metaheuristic computing is an adaptive and/or autonomous methodology for 

computing that applies general heuristic rules, algorithms and processes in solving a category of 

computational problems”[9]. 

The optimum search strategy is shown in Figure 2.1 and the approach of using meta-heuristic 

algorithms to select the optimum result is shown in Figure 2.2. 
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Figure 2.1.  Flow chart of the optimum search strategy 

 

Figure 2.2  The approach of using meta-heuristic algorithms to select the optimum result [43]. 

2.3.1 Key factors of Metaheuristic Algorithms 

The balance between intensification and diversification 
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These two are elementary concepts for any metaheuristic algorithm (shown in Figure 2.3). 

Intensification and diversification are also termed exploitation, convergence and exploration, and 

diversification respectively. In Diversification, search is for the entire search space to ensure prevention 

of trapping into local optima whereas intensification searches only in the promising area of the search 

domain ensuring convergence along with optimality [44]. For a metaheuristic algorithm to be 

successful, it must strike a fair balance between intensification and diversity [41]. 

 

  (a)                                                                          (b) 

Figure 2.3. (a) Diversification and (b) Intensification of a metaheuristic algorithm [41] 

Population-based algorithm and single solution algorithm 

The next important key factor of any metaheuristic algorithm is to find whether it is a population-based 

or single solution-based algorithm. Population-based algorithms are more diversified or explorative 

and at a time numerous solutions get generated and move in direction of the optimal solution, these 

multiple solutions can be generated by re-amalgamation of various solutions or by updating each 

solution [45]. 

 Single solution-based algorithms are also termed trajectory-based algorithms, these algorithms 

are diversification oriented and get started with a single initial solution to form a trajectory to move 

towards an optimal solution [1]. 

Local search and global search metaheuristic 

Local search-based metaheuristic methodologies are more intensified in nature whereas global search 

metaheuristic shows diversified behaviour. Local search metaheuristic includes Tabu Search [46], 

iterated local search, etc. whereas global search metaheuristic includes genetic algorithm, Particle 

Swarm Optimization, etc. 
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2.4 Optimal control of CSTR 

In chemical processes, a CSTR is a popular reactor for effective mixing. Industrial uses [47], medicines 

[48]and wastewater treatment units [49] all utilized it. The requirement to maintain its temperature and 

output concentration at predetermined levels drives researchers to a computational model. The CSTR 

model is complicated and nonlinear, exhibiting both stable and oscillatory behaviour, due to its mixture 

of chemical processes and phase equilibrium. an example of analysing CSTR dynamics using the 

homotopy perturbation approach has been shown in [50] and an example of analysing the influence of 

CSTR parameters on its stability is presented in [51]. 

    A partial state feedback controller [58] was created to provide CSTR's global setpoint tracking 

control. Delbari et al. [59] evaluated and regulated CSTR parameters using adaptive general predictive 

control (GPC). With the use of an optimum disturbance rejection PID controller, Krohling and Rey 

[60] explain how to employ evolutionary algorithms to tackle bounded optimization problems in a 

servo motor system. A modified genetic algorithm was used to determine the optimal PID controller 

parameters for a variety of process types [61]. The technique for changing the control parameters of 

the dynamic plant was devised utilizing fuzzy gain scheduling [62]. Nagaraj and Murugananth [63] 

investigated PID tuning utilizing a controller based on soft computing to improve the performance of 

the process in terms of time-domain needs, setpoint tracking, and regulations. [64] developed a PID 

controller for nonlinear and unstable CSTR systems using an artificial bee colony approach, which was 

inspired by the work of Chang [63]. Using the PSO technique, Singh and Sharma developed a FOPID 

controller that demonstrates improved servo and regulatory response [65]. Jayachitra and Vinodha 

devised and applied GA-PID tuning in the CSTR process. Set-point tracking and disturbance rejection 

are possible with the use of the ISE, IAE, and ITAE cost indices in combination [66]. 

2.5 Optimal control of Ball Balancer System 

Newtonian mechanics are used to modelling the mechanism in [67]. [68] proposes that the system 

has 2-DOF using Lagrange's technique. An equilibrium model is then linearized around the nonlinear 

model to generate a state-space model [69]. The equation of Lagrange's second form is used to represent 

the structure, as shown in reference [70]. In addition, several control approaches have been used to 

stabilize the ball balancer structure [71]. Conventional PD controllers are used to regulate the nonlinear 

model in [72]. SIMC-PID and H-∞ approaches are used to control the machine in [15]. In [73], a PID 

controller, neural network, and LQR regulation were used to regulate the device. As an alternative to 

the foregoing controls, nonlinear control may be achieved using adaptive iterative learning approaches 

such as the Kalman particle filter. With each additional state variable, the number of estimates required 
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by the particle filter solution grows exponentially [76]. This is a severe downside. Traditional nonlinear 

approaches included feedback linearization, as well as partial feedback linearization [77] for 

underactuated mechanical systems, to address these concerns. Because of this procedure, the nonlinear 

system became a linear system with the same properties. 

There must be a control strategy that can achieve steady-state activity for all the above-

described systems, due to the difficulties involved in controlling underactuated systems. An important 

benchmark system for underactuated systems is the ball and plate technique. In general, control system 

designers and operators find it difficult to develop and operate systems for ball and beam balancing 

control because of the system's high degree of nonlinearity and instability The underlying dynamics 

and control theory for all ball and beam systems [78][79][80] is the same. There are two possible ways 

for the ball to go concerning the center of the beam: it may travel in either of two directions, left or 

right. the ball's acceleration and placement are controlled by an electrically powered servomotor that 

is connected to the beam [52]. 

For one-to-one management of the ball on the plate framework, the nonlinear PID controller has 

been explored in classical control [82]. As the PID reaction is organized utilizing the extended 

Kalman—Yanukovych—Popov lemma (GKYPL) approach, it improves in terms of the relentless state 

response when compared to a standard PID [83]. Numerous researchers have utilized a mix of trial and 

error and the Ziegler Nichols technique to optimize the process's efficiency within reasonable 

restrictions [84][85]. To address these issues, a novel control approach based on fuzzy logic has been 

developed, combining a hybrid fuzzy controller with model-based PID [86][87]. The fuzzy controller 

is effective at rejecting disturbances and has no steady-state error. The Lyapunov dependability 

hypothesis was used to acquire an explicit control rule and swiftly regulate performance [88]. On ball 

and plate systems, interference rejection controllers [89] and metaheuristic optimization algorithms 

[90] were proven to achieve the requisite tracking efficiency. MPC i.e. Model Predictive Controller 

was also often utilized in ball balancers due to benefits for time-varying references [91]. The primary 

disadvantage of these techniques are that they result in a longer settling time and high peak overshoot. 

Additionally, various intelligent and hybrid controllers were used to obtain self-balancing, trajectory 

detection, and position monitoring for the ball-plate system, including fuzzy [92], PSO-based fuzzy-

neural controller [93], and fuzzy-neural controller [93]. The system is controlled in [94] using a PID 

controller, as well as a neural network using LQR control. A comparison of LQR subspace stability 

and integrated error metric strategies is seen in [53].[54] [19] uses the SA and CSA heuristic tuning 

approaches to tune the controller. To tune the PID controller, GA and DE algorithms are used and 

output is evaluated using error criteria in [55]. LQR parameters are tuned using GA for process 

control[56]. [57] proposed a multi-objective PSO to develop SIRMs coupled fuzzy controllers for ball 
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beam structure and inverted pendulum using convergence and divergence operators. The PID controller 

is often utilized in practical engineering applications, even though numerous control techniques exist 

for achieving self-balancing control of ball balancer systems. There are several advantages to using a 

PID controller, such as its simple construction, high dependability, and stable performance. Classic 

PID controllers, on the other hand, have a problem with parameter tuning, which is a major 

disadvantage. 

There are several methods for tuning PID parameters that can be found in the literature. Various 

intelligent methods such as fuzzy [58] and neural network [59], genetic [60] and evolutionary 

algorithms [61] are used to tune PID controller parameters. 

2.7 Optimal control of DC Motor 

PID controllers are the most commonly used controllers in process industries because of their 

simplicity, efficacy and durability. The system becomes unstable when process parameters change and 

disturbances occur. PID tuning is often done manually in all types of processes and manual tuning is a 

time-consuming procedure [62]. Over the last few years, Zeigler–Nichols tuning has become 

increasingly popular; nevertheless, this approach requires a prior understanding of the plant model. 

System stability necessitates the use of auto-tuning techniques. According to the literature, traditional 

PID controller tuning strategies including manual tuning, Ziegler Nichols, and Cohen–Coon 

procedures are unable to optimize complex higher-order processes for optimal performance. [63]. 

As we go forward into a new era, the intelligent control scheme has shifted from a traditional 

approach to a new phase based on optimization [64]. Finding the optimum PID controller parameters 

may be considered an optimization issue. The process of finding the decision variables of a function to 

reduce or increase its values is known as optimization. Non-linear limitations, huge computational 

charges, non-convex, complex and the massive number of solution spaces constitute the majority of 

real-world issues [65]. As a result, addressing problems with a high variety of parameters and 

constraints is time-consuming and difficult [66][67]. Second, using traditional numerical approaches 

results in numerous local optimal solutions that do not guarantee the best response [68]. Metaheuristic 

optimization methods, which are capable of tackling such complicated problems, are proposed to 

address these issues [69]. There has recently been a surge of attention in evolving 

metaheuristic optimization methods Because of their adaptability, accessibility, lower mathematical 

complexity and prevention of local optima. When we talk about adaptability, we're talking about the 

ability to apply such methods to a wide range of technical issues. For many complicated tasks, such 

algorithms produce adequate outcomes [70]. It's easy since it's based on natural events such as 
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evolutionary biology to complete a task, physical phenomena and other evolutionary activities. These 

nature-inspired powerful metaheuristic algorithms are used to address NP-hard issues including 

engineering optimization [71], economic load dispatch [72], multi-objective and many-objective 

optimization [73][74]. Metaheuristics are simple to set up, help developers to replicate natural 

behaviour, modify or develop new metaheuristics and blend metaheuristics from different sources. 

overall, an algorithm developer needs to know and comprehend how to portray the problem. 

Furthermore, most metaheuristics contain processes that do not need derivation. Metaheuristics, in 

contrast to gradient-based optimization methods, optimize the problems at random. Metaheuristics are 

used to solve issues in a stochastic manner [75]. Particle swarm optimization (PSO) [76], differential 

evolution (DE) [77], artificial flora [78], krill herd  [79], state of matter search [80], bird mating [81], 

jaguar [82],pufferfish [83],elephant herding [84] and monarch butterfly optimization (MBO)[85], are 

some of the well-known approaches in this field which have been used for PID controller parameter 

tuning. 

Dineva et al. reviewed soft computing models in the design and control of rotating electrical 

equipment. The study examined the applicability of several optimization methods to rotating electrical 

equipment [129]. The use of GA to improve the PID controller settings for brushless DC motor speed 

regulation is recommended [130]. Using DE and PSO-based PID parameters tweaking, DC motor 

dynamic stability may be improved [131]. Additionally, an existing method has been compared with 

BBO's unique migration model for tuning PID parameter settings to govern the DC motor [132]. In 

[133], a DC motor's speed may be controlled using the SFS algorithm. With the help of the SFS 

algorithm and the ITAE, the PID controller gains were fine-tuned. The SFS-PID strategy with ITAE 

cost function outperformed existing approaches in terms of rising time, adaption time, and overshoot 

when compared. DC motor position control was studied by Afra, Aidin, and Jafar [102] utilizing ICA 

(Imperialist Competitive Algorithm) [134] and ZN approaches [135]. Firefly Algorithm and PI 

controller were presented in [136] to regulate the DC motor, while a modified IWO (Invasive Weed 

Optimization) approach based on chaotic systems was proposed in [137] to tackle the problems of 

erroneous selection of standard deviation variables. Dual-line PSO-PID controllers have been 

developed to regulate the speed of DC motors [138]. During their investigation, they used the PSO 

algorithm twice. Algorithm selection of DC motor specs and PID controller parameter adjustments 

were the first two steps in the process. 

 According to the "no-free-lunch" theory [86], no metaheuristic technique is ideal for all 

situations and there are always improvements to be made. Hybrid methods outperform stand-alone 

alternatives due to their capacity to overcome individual algorithm constraints without diminishing 

their strength. PSO method is used to choose the ZN parameters for regulating the PID controller 
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for controlling the BLDC motor speed. The best values of PID controller parameters were determined 

by combining PSO and ZN [87].  The BFA-PSO algorithms are used to find the optimal PID controller 

settings for a BLDC motor. To enhance the performance of the PSO algorithm, BFA is utilized [141]. 

The PSO algorithm was used to transfer social information while the BFA was used to find new 

solutions via exclusion and dispersion [143]. The previous study has shown that hybridized procedures 

outperform stand-alone strategies as it chooses the right algorithmic traits to improve on other 

strategy’s flaws. The hybrid technique may also balance diversity and intensity. A combination of 

diversification and intensification guarantees that the algorithm hits all desirable areas within the search 

zone. To identify the best answer for a particular problem, these elements must be fine-tuned [88]. 

2.8 Identified Research gaps 

• The benefits of metaheuristics have been frequently described in the literature, despite their 

lack of theoretical grounding. However, to fully utilize the metaheuristics, a few common 

concerns must be solved 

• It's crucial to understand that the number of algorithm parameters has a direct impact on the 

algorithm's complexity and the number of parameter relations, which makes analysis more 

difficult. 

• The relevance of tuning metaheuristics is well recognized in scientific literature since the 

effective application of metaheuristics to actual problems necessitates the discovery of a good 

starting parameter setting, which is a time-consuming and difficult operation. 

• Much theoretical research on the study of landscapes (i.e., the topological structure across 

which search is carried out) of various optimization problems has revealed that not only 

different issues but also different instances of the same issue refer to different topologies. 

• Another area of study that should be highlighted by researchers is the combination of 

deterministic and metaheuristic algorithms. Some researchers have looked at combining the 

two and the findings suggest that it leads to a faster convergence rate. 

• Parallel computing is another recent technology that should be highlighted while using 

metaheuristics [89]. 

Measures to eliminate the research gap 

As evolution develops, some selection mechanism based on the fitness landscape drives 

solutions to grow more and more similar to one another, resulting in solutions being more similar to 

one another. Selection is the process through which evolution moves ahead. Good solutions are selected 

based on their fitness, which is normally judged by objective criteria in most situations. For multi-agent 
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populations to adapt and react to changes in the objective landscape, selection pressure is applied, 

causing the system to converge towards specific states or solutions. Nonlinear systems, as well as 

benchmark functions, have been studied using convergence analysis to provide a framework for 

investigating metaheuristic convergence and efficiency. Algorithms are chosen which has fewer 

parameters to adjust. 
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Chapter 3 

Chaotic State of Matter Search with Elite Opposition Based Learning 

(CSMSEOBL): A Hybrid Metaheuristic Algorithm 

3.1 Introduction 

The origin of metaheuristic optimization algorithms is the emulation of different types of biological, 

physical, social and other natural phenomena. The process of finding new points in search space is 

exploration while the process of refining those searched points is exploitation which is required to 

improve the quality of the solution. Pure exploration enhances the opportunities of finding the new 

potential solution but decreases the precision whereas pure exploitation refines the existing solution 

but can be stuck in local optima so the success of any metaheuristic algorithm depends on the balance 

between exploration and exploitation in search space. 

To solve the global optimization issue, the States of Matter Search (SMS) method is applied. 

When molecules come into contact with one other, they use the principle of thermal-energy mobility, 

which increases population diversity and prevents particles from being absorbed in local minima. 

Exploration and exploitation are balanced by SMS algorithm. The process of optimization is divided 

into three stages that simulate three states of matter: solid, liquid and gaseous phase. Molecule shows 

different performances for different states of matter. The process starts with the gas state which shows 

pure exploration i.e., molecules experience rigorous movement and collision after that algorithm alters 

the strength of exploration and exploitation, and the next state i.e., the liquid state is reached in which 

movement of molecules decreases and in the last pure exploitation state i.e., solid-state is reached in 

which the particles experience a strong bond that movement of molecules is completely constrained. 

Chaos theory has been widely used for NP-hard problems [90] and many metaheuristic 

algorithms have been hybridized on chaos concept successfully like PSO [91][92], FA [93], GSA [94], 

BBO [95], Krill herd [96], Cuckoo Search [97] [98]and PSO-Krill herd [99]. Chaos is a volatile value 

layout for optimization problems that are highly sensitive to the initial condition. In this paper concept 

of chaos theory is hybridized with an SMS algorithm to define some random variables to stimulate the 

convergence of SMS. 

Most of the metaheuristic algorithms face the problem of falling into local optima so to increase 

the exploration capability oppositional-based learning (OBL) was introduced by H. R. Tizhoosh. While 

associating the concept of OBL with other metaheuristic algorithm exploration capabilities can be 
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enhanced by combining the benefit of global search capability with accelerated convergence rate [100]. 

In OBL to get a better solution current population and its opposite population are considered at the 

same point in time. There has been continuous research on this algorithm showing that the opposite 

population gives better results as compared to random numbers for a global solution and further it is 

investigated that Elite Oppositional Based Learning gives better results in terms of convergence time 

and exploration capability [101][102] as compared to OBL. Elite oppositional numbers are defined at 

the centre point of search space and these numbers are closer to the global optima as compared to the 

general opposite number. 

Problems with optimization include the fact that there are various other, so-called "local" 

solutions, which may be closer to the achieved target value than the stated one. As these solutions are 

not seen as global solutions, they may lead to confinement which results in the existence of the local 

solution. Also, optimization methods face another major challenge: convergence. It is not required that 

an algorithm capable of avoiding local solutions also delivers superior convergence to global optima. 

As a result, the major obstacle of an optimization algorithm is to handle real-world issues with these 

two conflict trade-offs [103]. No optimization method can handle all optimization problems, according 

to the No Free Lunch theorem [104]. This information will encourage academics from a variety of 

fields to collaborate on the development of a novel optimization technique [105] [106] [103] or modify 

the existing algorithms [107] [98] [108] [109] [110] [111]. 

In the present study, the SMS algorithm is hybridized with Chaotic Maps and EOBL which 

results in an improved algorithm called “Chaotic State of Matter Search with Elite Opposition Based 

learning” and has been applied to 14 benchmark functions. The use of chaotic maps results in a 

stimulated convergence rate of SMS. Different types of one-dimensional chaotic maps are used to 

define some random variables of SMS. The benefits of using CSMSEOBL can be described as 

follows:(1) As chaotic maps are self-explanatory so do not enhance the complexity of SMS, (2) 

Increased performance and, (3) an increase in the exploration capability of CSMS. 

3.2 State of Matter Search Algorithm 

The State of Matter Search Algorithm (SMS) is a nature-inspired evolutionary algorithm that can solve 

MIMO-style global optimization problems. It works on the principle of thermal energy motion. This 
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algorithm simulates three states of matter: solid, liquid and gas, each with a different diversification-

intensification ratio. SMS is a method of searching for states of matter. 

 

Figure3.1. The evolution process of the State of Matter Search Algorithm [80] 

3.2.1 States of matter transition 

States are defined by different phases that a matter can take. More broadly there are three states of 

matter. The gas state is the first stage of the SMS algorithm where the effect of intermolecular force is 

small because particles have enough kinetic energy so the distance between the molecules is high. The 

gas state represents 50% of the algorithm's total iterations, and particle movement is denoted by 

“𝛼”.The second state in the SMS algorithm is a liquid state where molecules have more restrictive 

intermolecular forces in comparison to the gas state.40% of the total no. of iterations are comprised of 

the liquid state and particle movement is represented by “𝛽”.The last stage is Solid-state where 

molecules are bonded with enough strong force so that molecules can’t move freely hence solid has a 

definite shape and a force is required to change its shape. The remaining 10% of the total no. of 

iterations is comprised of solid-state and particle movement is represented by “𝛾”. All parameters “𝛼”, 

“𝛽” and “𝛾” are updated during each stage of the SMS algorithm and permit SMS to control the way 

molecules move in each stage (Figure 3.1). 

3.2.2 Definition of molecule movement operators 

As the algorithm progress, the position of search agents acting as molecules gets changed in n-

dimensional space. The principle of motion of thermal energy is similar to the movement of molecules. 

Three factors are responsible for a molecule's movement i.e. (1) Attraction force (2) Collision and (3) 

some random phenomenon. These all factors (or behaviours) have been executed by defining different 

operators i.e., direction vector, collision and the random position operators, these all represent the 

operation of actual physics laws [19]. 
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3.2.3 Direction Vector 

The direction vector operator represents the change in molecule position as the process progress. An 

n-dimensional direction vector 𝐝𝑖  is assigned to each n-dimensional molecule 𝐩𝑖 from the population, 

P. This direction vector controls the movement of a particle. The range of direction vector is chosen 

randomly within [-1,1]. Many attraction forces are experimented with by the molecule with the system 

evolution. Molecules are moved towards the best position so far to execute the attraction phenomenon. 

For each molecule new direction vector is given by: 

𝒅𝑖
𝑘+1 = 𝒅𝑖

𝑘 (1 −
𝑘

𝑔𝑒𝑛
) 0.5 + 𝒂𝑖 (3.1) 

𝒂𝑖 =
(𝒑𝑏𝑒𝑠𝑡 − 𝒑𝑖)

‖𝒑𝑏𝑒𝑠𝑡 − 𝒑𝑖‖
 

where,  

𝐚𝑖-Attraction unitary vector 

𝐩𝑏𝑒𝑠𝑡 - The best molecule in population P 

𝐩𝑖 – Molecule 𝑖  of population P 

𝑘-Current iteration number 

𝑔𝑒𝑛-Total number of iterations 

As the evolution process progresses the importance of the previous direction decreases and this 

algorithm gets less susceptible to early convergence also particle search neighborhood thoroughly. 

Velocity  𝑣𝑖 of each molecule is given by 

𝒗𝑖 =  𝒅𝑖 ∗ 𝑣𝑠𝑡                                                             (3.2) 

where, 

𝑣𝑠𝑡 - Starting velocity 

𝑣𝑠𝑡 =
∑ (𝑏𝑗

ℎ−𝑏𝑗
𝑙)𝑛

𝑗=1

𝑛
∗ 𝛽        (3.3) 

𝑏𝑗
ℎ-Upper bound of j parameter 
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𝑏𝑗
𝑙- Lower bound of j parameter 

𝛽 ∈ [0,1] 

Position update equation for every molecule is given by 

𝑝𝑖,𝑗
𝑘+1 = 𝑝𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ 𝜌 ∗ (𝑏𝑗
ℎ − 𝑏𝑗

𝑙) (3.4) 

where 0.5 ≤ 𝜌 ≤ 1 

Collision 

Whenever molecules interact with each other and the distance between two molecules is smaller than 

the present value collision occurs. If‖𝐩𝑖 − 𝐩𝑞‖ < r, a collision occurs between “i” and “q”. When a 

collision occurs then particles are updated according to 𝐝𝑖 = 𝐝𝑞and vice-versa. The radius of collision 

is given by 

𝑟 =
∑ (𝑏𝑗

ℎ−𝑏𝑗
𝑙𝑛

𝑗=1 )

𝑛
∗ 𝛼 (3.5) 

where 𝛼 ∈ [0,1] 

As molecules start to get closer collision operator forces the molecules to change their position and 

this controls the preterm convergence of the algorithm. 

Random Position 

The random position operator allows the change in molecule position by using a feasible criterion 

within the search space. 

                                       𝑝𝑖,𝑗
𝑘+1 = {

𝑏𝑗
𝑙 + 𝑟𝑎𝑛𝑑 ∗ (𝑏𝑗

ℎ − 𝑏𝑗
𝑙)  𝑤𝑖𝑡ℎ  𝑝(𝐻)

𝑝𝑖,𝑗
𝑘+1𝑤𝑖𝑡ℎ  𝑝(1 − 𝐻 )                           

 (3.6) 

where “rand” is a random number varying from 0 to 1. 

If R is lesser than P a random position of the molecule is generated otherwise there is no alteration in 

the molecule. 

 

 

 

 



35 

 

Element updation 

If the current best molecule is compared “𝐩𝑏𝑒𝑠𝑡
𝑘 ” with previous best individual “𝐩𝑏𝑒𝑠𝑡

𝑘−1 ” and 𝐩𝑏𝑒𝑠𝑡
𝑘  is 

better than 𝐩𝑏𝑒𝑠𝑡
𝑘−1  than 𝐩𝑏𝑒𝑠𝑡is updated with “𝐩𝑏𝑒𝑠𝑡

𝑘 ” otherwise no change. The process repeats until all 

the iterations are not over and the final result will be evaluated in the last iteration step. 

 

Figure 3.2. Flowchart of SMS Algorithm 
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Here General procedure has been described in Section 3.2 already (Figure 3.2). 

3.3 Chaotic maps 

Chaotic maps form a different type of optimization algorithm i.e., chaotic optimization algorithm 

(COA) based on randomization. It uses chaotic variables instead of random variables (which are 

generally used in optimization algorithms) main properties associated with chaos concepts are the non-

recurrence of parameter value and extent approach to randomness, which results in increased speed of 

convergence [35]. The dynamic property guarantees that algorithms create a diversity of solutions and 

explore diverse landscapes in the search space, while ergodicity and non-recurrence speed up the 

search. Chaotic optimization improves the diversity of movement patterns while simultaneously 

speeding up the process. Because chaos theory shares the same features as metaheuristic algorithms, 

that’s why it's been integrated with them. A bounded nonlinear system having ergodic and stochastic 

characteristics is termed chaos [112]. It is quite responsive to the starting state and specifications. Ten 

different types of chaotic maps have been described in Table 3.1 and the realization of these maps has 

been shown in Figure 3.3. 

Table 3.1 Chaotic Maps 

Map No. Name Definition Of Chaotic Map Range 

1 Chebyshev 𝑥𝑘+1 = 𝑐𝑜𝑠(𝑘 𝑐𝑜𝑠−1(𝑥𝑘)) (0,1) 

2 Circle 

𝑥𝑖+1 = 𝑚𝑜𝑑 (𝑥𝑖 + 𝑏 − (
𝑎

2𝜋
) 𝑠𝑖𝑛(2𝜋𝑥𝑘) , 1) 

𝑎 = 0.5, 𝑏 = 0.2 

(0,1) 

3 Gauss 𝑥𝑖+1 =     {

     1                     𝑥𝑖 = 0   
1

𝑚𝑜𝑑(𝑥𝑖,1)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(0,1) 

 

4 Iterative 𝑥𝑘+1 = 𝑠𝑖𝑛 (
𝑎𝜋

𝑥𝑘
) , 𝑎 ∈ (0.1) (0,1) 

5 Logistic 𝑥𝑖+1 = 𝑎𝑥𝑖(1 − 𝑥𝑖), 𝑎 = 4 (0,1) 

6 Sine 
𝑎

 4
𝑠𝑖𝑛 (𝜋𝑥𝑘) ; 1< 𝑎 < 4 (0,1) 

7 Singer 𝑥𝑖+1 = 𝜇(7.86𝑥𝑖 − 23.31𝑥𝑖
2 + 28.75𝑥𝑖

3 − 13.302875𝑥𝑖
4), 𝜇 = 1.07 (0,1) 

8 Sinusoidal 𝑥𝑖+1 = 𝑎𝑥𝑖
2 𝑠𝑖𝑛(𝜋𝑥𝑖) , 𝑎 = 2.3 (0,1) 
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Map No. Name Definition Of Chaotic Map Range 

9 Piecewise 

𝑥𝑘

𝑃
 ;  0 ≤ 𝑥𝑘 < 𝑃 

𝑥𝑘− − 𝑃

0.5 − 𝑃
 ;  𝑃 ≤ 𝑥𝑘 < 0.5 

1 − 𝑃 − 𝑥𝑘−

  0.5 − 𝑃
 ;  0.5 ≤ 𝑥𝑘 < 1 − 𝑃 

1 − 𝑥𝑘−

  𝑃
 ;  1 − 𝑃 ≤ 𝑥𝑘 < 1 

(0,1) 

10 Tent 𝑥𝑖+1 =  {

𝑥𝑖

0.7
      𝑥𝑖 < 0.7

10(1 − 𝑥𝑖)

3
𝑥𝑖 ≥ 7

 (0,1) 

 

 

Figure 3.3.  Different types of Chaotic maps: a. circle map b. gauss map c. logistic map d. piecewise 

map e. sine map f. singer map g. sinusoidal map h. tent map 

3.4 Elite Oppositional Based Learning Algorithm 

In ancient Chinese philosophy, the main opposing notion was initially represented in the Yin-Yang 

symbol (Figure 3.4) [113]. This sign represents the notion of duality, in which black and white represent 

Yin (responsive, femininity, gloomy, inactive power) and Yang (productive, manliness, dazzling, 

dynamic power). In addition, Classical Greek components of nature arrangements (Figure 3.5) depicted 

opposing notions such as fire (warm and dry) vs. water (cold and moist) and earth (cold and dry) vs. 
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air (warm and moist). Nature components and their mirror images are represented by the terms cold, 

hot, wet and dry. The opposing notion appears to be used to convey the concept of numerous things or 

circumstances in the actual world. Employing the opposing idea simplifies the description of many 

things. East, west, south and north are paired opposites that cannot be defined independently and can 

only be described in terms of each other. As a result, the computational opposition idea [21] was 

influenced by the real-world opposition notion [114]. 

 

Figure 3.4. The Yin-Yang symbol first stated the notion of opposites [115] 

 

Figure 3.5. The Greek classical components are used to describe natural phenomena [115]. 

EOBL plays a significant role in searching for global optima because it enhances the 

exploration ability of the SMS algorithm by introducing a new population. OBL is the pre-requisite for 

EOBL so first OBL is explained. The fundamental premise of OBL is that it generates a solution that 

is opposed to the present solution, and then both solutions are assessed at the same time, with the 

superior solution moving on to the next iteration [102].  

Let 𝑥 = {𝑥1, 𝑥2, … … . . 𝑥𝑗} is a point in the current population and j is the dimension of search space,𝑥𝑗 ∈

[𝑎𝑗 , 𝑏𝑗] where, 𝑎𝑗 = min {𝑥𝑖𝑗} and 𝑏𝑗 = max {𝑥𝑖𝑗}. The opposite point is defined as follows: 

𝑥�̃� = 𝑎𝑗 + 𝑏𝑗 − 𝑥𝑗  (3.7) 
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In OBL there are many chances that the generated solution is not better than the current search 

space to find the global optima so a new strategy is introduced which is EOBL. In this strategy elite 

individual in the current population is 𝑥𝑒 = {𝑥𝑒1, 𝑥𝑒2, … . . 𝑥𝑒𝑗}, the elite oppositional solution is given 

by 

�̃�𝑖,𝑗 = 𝜌 ∗ (𝑑𝑎𝑗 + 𝑑𝑏𝑗) − 𝑥𝑒,𝑗 (3.8) 

where, 

𝑖 =  1, 2, … . 𝑃; 

P - population size 

𝜌 – Generalized coefficient  

𝑑𝑎𝑗 , 𝑑𝑏𝑗- Dynamic bounds can be calculated as: 

 𝑑𝑎𝑗 = min (𝑥𝑖,𝑗)                                                                                                                               

𝑑𝑏𝑗 = max (𝑥𝑖,𝑗)                                                                                 

In EOBL dynamic bounds are used instead of fixed bounds to secure the search space from shortening. 

If  x̃i,j crosses its dynamic bound it can be reset by using the following equation: 

       �̃�𝑖,𝑗 = 𝑟𝑎𝑛𝑑(𝑑𝑎𝑗, 𝑑𝑏𝑗) (3.9) 

The advantage of EOBL is that it can evaluate the elite population and the current population at the 

same point in time which results in population diversification and further enhance the global 

exploration capability of the metaheuristic algorithm. 

3.5 CSMSEOBL - Proposed Hybrid Algorithm  

In the field of evolutionary algorithms, SMS's algorithm is based on nature and used to solve MIMO-

type global optimization problems. The mechanism is based on the movement of heat energy. Three 

states of matter i.e., solid, liquid, and gas are simulated in this algorithm, and state-by-state, the ratio 

of exploration to exploitation is variable. The algorithm begins with the gas state which is purely 

exploration, then after reforming the exploration and exploitation ratio it reaches a liquid state in which 

a moderate transition takes place between exploration and exploitation and this reforming is continued 

till the solid state i.e., pure exploitation is reached. This whole process results in the enhancement of 

population diversity and simultaneously escapes the particles to concentrate within local minima[80].  

A hybrid metaheuristic approach is used to enhance the balance between the exploration and 

exploitation capability of the existing algorithm along with an accelerated convergence rate. The 

benefits of all three algorithms are combined to form this hybrid algorithm. Chaotic Maps are used to 
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calculate the random variable of the SMS algorithm and increase the exploitation capability. Further, 

the inclusion of EOBL enhances the exploration capability of the SMS Algorithm. CSMSEOBL 

algorithm is shown in Figure 3.6. 

The complete CSMSEOBL Algorithm can be divided into four stages: 

Stage 1: Initialization state & general procedure: 

• Find the best element from population P 

                             𝑃𝑏𝑒𝑠𝑡 ∈ {𝑃}| 𝑓(𝑃𝑏𝑒𝑠𝑡) = 𝑚𝑎𝑥 {𝑓(𝑃1),𝑓(𝑃2), … … … 𝑓(𝑃𝑁𝑃
)}                      (3.10) 

And at the same time opposite population is generated by using elite opposition-based learning. 

 Calculate initial velocity magnitude 

                                                               𝑣𝑠𝑡 =
∑ (𝑏𝑗

ℎ−𝑏𝑗
𝑙𝑛

𝑗=1 )

𝑛
∗ 𝛽                                            (3.11) 

where, 𝒃𝒋
𝒉 is the upper bound of the j parameter, 𝒃𝒋

𝒍 is lower bound of the j parameter, 𝜷 is a factor 

ranging [0,1] 

Update the direction vector to control the movement of the particle 

                                            𝑑𝑖
𝑘+1 = 𝑑𝑖

𝑘 (1 −
𝑘

𝑔𝑒𝑛
) 0.5 + 𝑎𝑖                                                    (3.12) 

𝑎𝑖 =  
(𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖)

‖𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖‖
 

where,′𝑎𝑖′attraction unitary vector, ′𝑝𝑏𝑒𝑠𝑡′ is the best molecule in population ‘P’, ′𝑝𝑖′ is molecule ‘i’ of 

population ‘𝑃’,’𝑘’ is the current iteration number; ‘𝑔𝑒𝑛’ is the total number of iterations. 

Calculate velocity  ′𝑣𝑖′ of each molecule 

    𝑣𝑖 = 𝑑𝑖 ∗ 𝑣𝑠𝑡                                                            (3.13)     

• Calculate collision radius ′𝑟′ 𝑎𝑛𝑑 0 ≤ 𝛼 ≤ 1 

                                                      𝑟 =
∑ (𝑏𝑗

ℎ−𝑏𝑗
𝑙𝑛

𝑗=1 )

𝑛
∗ 𝛼                                                                (3.14) 

• Then update the Position of each molecule, which is given by (H is a threshold limit) 
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            𝑝𝑖,𝑗
𝑘+1 = 𝑝𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ 𝜌 ∗ (𝑏𝑗
ℎ − 𝑏𝑗

𝑙); 𝑖𝑓𝑟𝑎𝑛𝑑 ≤ 𝐻                                     (3.15) 

𝑝𝑖,𝑗
𝑘+1 = 𝑝𝑖,𝑗

𝑘  ; 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝐻 

Random variable rand is updated by using different chaotic maps and the best chaotic maps are 

selected for a position update. 

Stage 2: Gas state 

• Set the parameters for the gas state:𝜌 ∈ [0.8,1], 𝛽 = 0.8, 𝛼 = 0.8 & 𝐻 =  0.9. 

• Apply the general procedure as described in Stage 1. 

• If the no. of iteration=50% of the total no. of iterations then the process shifted to a liquid state 

otherwise the general procedure is repeated. 

Stage 3: Liquid State 

• Set the parameters for the liquid state: 𝜌 ∈ [0.3,0.6], 𝛽 = 0.4, 𝛼 = 0.2 & 𝐻 = 0.2. 

• Apply the general procedure as described in Stage 1. 

• If no. of iteration=90% of the total no. of iterations then the process shifted to solid-state 

otherwise the general procedure is repeated. 

Stage 4: Solid State 

• Set the parameters for solid-state: 𝜌 ∈ [0.0,0.1], 𝛽 = 0.1, 𝛼 = 0 & 𝐻 = 0. 

• Apply the general procedure as described in Stage 1. 

• If the total no. of iteration=100% then the process is finished otherwise the general procedure 

is repeated. 

Pseudo Code for CSMSEOBL 

   Begin: Define fitness function 𝑓(𝑥), Population P, 𝑋 =  {𝑥1, 𝑥2, … … . . , 𝑥𝐷} 

       Result: The optimal solution x* 

1. Initialization: Initialize the parameter of the SMS algorithm for gas state i.e., α, β, ρ and H, 

and also initialize the dynamic boundary of search space. 
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2. While the termination criterion is not satisfied do 

3. Make use of the EOBL approach to update the current population (Equations 

(3.5),(3.6),(3.7),(3.8) and (3.9)). 

For each x ϵ P do 

4. Update all random variables by using chaotic maps 

                                          𝑝𝑖,𝑗
𝑘+1 = 𝑝𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗 ∗ 𝐶(𝑡) ∗ 𝜌 ∗ (𝑏𝑗
ℎ − 𝑏𝑗

𝑙)                              (3.16)                                                                   

Where 𝐶(𝑡) is the value of the chaotic map. 

5. Calculate initial velocity and collision radius for gas state by using Equation  3.13. and 3.14 

respectively. 

6. Compute the new molecules by using the direction vector of Equation  3.12 

7. Solve collision by using collision operator  

8. Generate a new random position by using the collision operator of Equation  3.15 

9. Check if the total no. of iterations completed is ≤ 50% of the total number of iterations 

10. Go to the liquid state and repeat steps 6, 7, 8  and 9. 

Else 

11. Check if the total no. of iterations completed  ≤ 90% of the total number of iterations 

12. Go to solid-state and repeat steps no.6, 7,8 and 9. 

13. If 100% of total iterations completed 

14. Update 𝑥 with 𝑥∗. 

End if 

End for 

End while 
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Figure 3.6. Flow Chart of CSMSEOBL Algorithm 
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3.6 Benchmark Functions  

Fundamentally, benchmark test functions are optimization issues given as arithmetic expressions. 

These functions are optimized using a set of best-fit parameter values that aid in achieving the optimal 

solution, where D denotes the problem dimensions. The optimum answer is concealed among a huge 

number of sub-optimal alternatives scattered throughout a problem landscape with a variety of hills 

and valleys. A variety of test functions are available, including unimodal and multimodal, regular and 

irregular, separable and non-separable and so on. To add complexity to the optimization environment, 

these functions are frequently rotated or moved and they are also employed with a larger spectrum of 

dimensions (from 10D to 1000D). This leaves a large gap for the research community who wishes to 

test any updated version of an existing metaheuristic algorithm or a completely new method on 

benchmark test functions. Each optimization method, including metaheuristic algorithms, strives to 

discover the optimal answer as soon as possible (though this is not always guaranteed). The global 

searchability and local convergence ability of any optimization algorithm are used to determine its 

efficiency. Better global searchability algorithms are difficult to trap in sub-optimal regions. 

Simultaneously, metaheuristics with quick convergence ability make it difficult to overlook any 

optimal solution in the surrounding [116]. 

The test functions may be classified into the following groups based on the features (modality, 

separability and dimensionality) that form the problem's landscape: 

3.6.1 Modality 

The quantity of spikes in the problem landscape is defined by modality. Local and global minima are 

formed by these spikes. 

a. Unimodal Functions: These functions feature a single valley and a single global minimum 

at which the optimal solution may be found. These functions are thought to be simple to 

solve, however moving and rotating them increases the difficulty. These functions can be 

used to assess metaheuristic methods for evaluating local search efficiency. 

b. Multimodal Functions: These functions have many outcomes, but the real global best is 

only one. There are numerous local minimum sites for such functions, but only one real 

global minimum. As a result, every metaheuristic algorithm must traverse the whole 

territory to discover the real global optimum answer. These functions are tough to solve and 

are useful for assessing an algorithm's global search efficiency. 
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3.6.2 Separability 

Separability relates to the optimization of a function's variables. In both unimodal and 

multimodal functions, separable and non-separable functions exist. 

a. Separable Functions: When a function is separable, each variable may be optimized 

independently. The purposes of this category are clear. 

b. Non-Separable Functions: A non-separable function is one in which all of its variables are 

tightly coupled and cannot be optimized independently. Solving such functions may be 

difficult. 

3.6.3 Dimensionality 

The size of the search space is defined by this parameter. The higher the dimension, the broader the 

terrain and the more sub-optimal places there are. Small-dimensional functions are simple to solve and 

most optimization techniques operate well on these functions. Functions must, however, be high 

dimensional for real performance assessments [117]. 

Some benchmark functions used in this thesis to analyze the performance of the proposed 

hybrid metaheuristic algorithm are shown in Table 3.2. 

Table 3.2 Benchmark Functions used for validation of the proposed algorithm 

S.No. Function Definition Lower 

bound 

Upper 

bound 

Modal

ity 

Global 

Minima 

Dimen

sion 

Characte

ristics 

1 Sphere 
𝑓1(𝑥) = ∑ 𝑥𝑖

2

𝑛

𝑖=1

 
-5.12 5.12 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Separable

, Scalable 

2 Schwefel 

2.21 

 

𝑓2(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖
≤ 𝑛} 

-100 100 unimo

dal 

f(0, · · · 

, 0)=0 

n Continuo

us, Non-

Differenti

able, 

Separable

, Scalable 

3 Quartic 

with noise 
𝑓3(𝑥)

= ∑(𝑖. 𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑(0,1)) 

-1.28 -1.28 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Separable

, Scalable 
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S.No. Function Definition Lower 

bound 

Upper 

bound 

Modal

ity 

Global 

Minima 

Dimen

sion 

Characte

ristics 

4 Schwefel 

2.26 

 

𝑓4(𝑥)
= 418.9829 ∗ 𝑛

− ∑ 𝑥𝑖

𝑛

𝑖=1

sin (√𝑥𝑖) 

-500 500 multi

modal 

f 

(±[π(0.5 

+ k)]2 

)=-

418.983 

n Continuo

us, 

Differenti

able, 

Separable

, Scalable 

5 Zakharov 

 

𝑓5(𝑥)

= ∑ 𝑥𝑖
2

𝑛

𝑖=1

+ (∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1

)2

+ (∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1

)4 

-5 10 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Non-

Separable

, Scalable 

6 

 

Ackley 

 

𝑓6(𝑥) =

−20𝑒−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 −

𝑒
1

𝑛 ∑ cos(2𝜋𝑥𝑖
𝑛
𝑖=1 ) +

20+𝑒1 

-32.768 32.768 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Non-

separable, 

Scalable 

7 Schwefel 

2.22 

 

𝑓7(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 
-100 100 unimo

dal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Non-

Separable

, Scalable, 

8 Alpine 

 

𝑓8(𝑥) = ∑|𝑥𝑖 sin(𝑥𝑖)

𝑛

𝑖=1

+ 0.1𝑥𝑖| 

0 10 multi

modal 

f(0, · · · 

, 0)=0 

n Separable

,Non-

Differenti

able,Conti

nuous, 

9 Salomon 

function 

 

𝑓9(𝑥)

= 1 − cos( 2𝜋 ∑ 𝑥𝑖
2

𝑛

𝑖=1

)

+ 0.1 ∑ 𝑥𝑖
2

𝑛

𝑖=1

 

-100 100 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Non-

Separable

, Scalable 
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S.No. Function Definition Lower 

bound 

Upper 

bound 

Modal

ity 

Global 

Minima 

Dimen

sion 

Characte

ristics 

10 Goldstein 

and Price 

 

𝑓10(𝑥, 𝑦)
= [1
+ (𝑥 + 𝑦 + 1)2(19 − 14𝑥
+ 3𝑥2 − 14𝑦 + 6𝑥𝑦
+ 3𝑦2)][30
+ (2𝑥 − 3𝑦)2(18 − 32𝑥
+ 12𝑥2 + 4𝑦 − 36𝑥𝑦
+ 27𝑦2)] 

-2 2 multi

modal 

f(0, 

−1)=3 

2 Continuo

us, 

Differenti

able, 

Non-

separable, 

Non 

Scalable 

 

11 Powell 

Sum 

Function 

 

𝑓11(𝑥) = ∑|𝑥𝑖|𝑖+1

𝑛

𝑖=1

 
-4 5 unimo

dal 

f(0)=0 n Continuo

us, 

Differenti

able, 

Separable 

Scalable 

12 Drop 

wave 

function 

 

𝑓12(𝑥)

= −
1 + cos(12√𝑥2 + 𝑦2)

(0.5(𝑥2 + 𝑦2) + 2)
 

-5.12 5.12 multi

modal 

f(0.0)=-

1 

2 continuou

s 

13 Easom 𝑓13(𝑥, 𝑦) =
−cos (𝑥1)

cos 𝑥2)exp (−(𝑥 − 𝜋)2 −
(𝑦 − 𝜋)2) 

-100 100 multi

modal 

f(π, π)=-

1 

2 Continuo

us, 

Differenti

able, 

Separable

, Non-

Scalable, 

14 Griewank 𝑓14 (𝑥)

= ∑
𝑥𝑖

2

4000

𝑛

𝑖=1

− ∏ (cos
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

 

-600 600 multi

modal 

f(0, · · · 

, 0)=0 

n Continuo

us, 

Differenti

able, 

Non-

Separable

, Scalable, 

15 Rastrigin 𝑓15 (𝑥)

= 10. 𝑛 + ∑ 𝑥𝑖
2

𝑛

𝑖=1

− 10 cos 2𝜋𝑥𝑖 

-30 30 multi

modal 

f(0, · · · 

, 0)=0 

n Separable

, 

continuou

s, 

differentia

ble 

 

3.7 Simulation Results Analysis  

It has been proved that no one search strategy is the best on average for all problems when specified 

assumptions are made about the problem [118]. The CSMSEOBL technique's optimization potential is 
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tested using a wide range of typical benchmark functions without a predetermined conclusion for 

specific issues. 

The efficiency and the efficacy of the proposed hybrid algorithm have been evaluated on 15 

benchmark functions and obtained results are compared with other metaheuristic optimization 

techniques. To validate the performance of the proposed CSMSEOBL algorithm, SMS algorithm [19], 

Grey Wolf Optimization [119], Krill Herd [79] and Particle Swarm Optimization[16] are used for 

comparison. These benchmark functions can be divided into two sections - unimodal functions and 

multimodal functions [84]. Generally, to evaluate exploitation unimodal functions are used and for 

evaluation of exploration multimodal functions are used. A detailed description of these benchmark 

functions is given in [120]. As there are multiple local minima in multimodal benchmark functions 

that’s why they are a challenge for getting good optimization. In the case of the multimodal benchmark 

function, any metaheuristic algorithm can locate global optima and escape from local optima. The 

results obtained by this hybrid algorithm have been compared to SMS algorithms. For both algorithms, 

the population has been set to 50. The maximum number of iterations has been set to 1000 for all 

benchmark functions. The results obtained by each algorithm have been averaged for 30 runs and the 

dimension is also set to 30. Also, the proposed hybrid algorithm has been run for different chaotic maps 

which have been detailed in Table 3.1. The purpose of implementing the algorithm with different 

chaotic maps is to enhance the quality of the solution. 

The parameter setting of the SMS, PSO, GWO[108], KH (Krill Herd Optimization) and 

CSMSEOBL algorithm is shown in Table 3.3. 

The whole experimental procedure and described methods are implemented in Matlab 

R2016a in Microsoft Windows 10 environment with an i5 processor. 
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Table 3.3 Parameter setting for different metaheuristic Algorithms 

Name of 

Algorithm 

Parameters Values Name of Algorithm Parameters Values 

SMS β= [0.8, 0.4, 0.1] 

α= [0.8, 0.2, 0] 

H = [0.9, 0.2,  0] 

Population size P = 50 

Dimension, D=30 

No. of Iterations=1000 

GWO Search agents=80 

Control parameter (⃗a) 

[2, 0] 

Population size P = 50 

Dimension, D=30 

No. of Iterations=1000 

Name of 

Algorithm 

Parameters Values Name of Algorithm Parameters Values 

CSMSEOBL Total no. of Chaotic Maps=10 

β= [0.8, 0.4, 0.1] 

α= [0.8, 0.2, 0] 

H = [0.9, 0.2, 0] 

Population size P = 50 

Dimension, D=30 

No. of Iterations=1000 

PSO Inertia coefficient= 

0.75 

Cognitive and social 

coefficient = 1.8,2 

Population size P = 50 

Dimension, D=30 

No. of Iterations=1000 

KH Foraging speed Vf = 0.02 

maximum diffusion speed = 0.008 

maximum induced speed = 0.02 

Population size P = 50 

Dimension, D=30 

No. of Iterations=1000 

  

3.7.1 Performance of CSMSEOBL with different chaotic maps 

SMS algorithm hybridized with EOBL is run for different 10 Chaotic Maps which have been given in 

Table 3.1 to improve the quality of the solution.14 benchmark functions are run for 10 different chaotic 

maps and 1000 iterations are carried out for each. All 10 chaotic maps have been marked as C1, 

C2…C10. 

The benchmark functions are used to evaluate the algorithm's capability to converge quickly, 

move out of local optima and obtain a high number of local optima while avoiding premature 
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convergence. Table 3.4, Table 3.5 and Table 3.6 shows the median, mean and standard deviation 

respectively achieved by CSMSEOBL algorithms.  

Table 3.4 Median values obtained for 10 different chaotic maps 

  C11 C2 C3C3 C4C4 C5C5 C6C6 C7 C8C8 C9C9 C10 

f1 0.00045 0.00359 0.0039 0.0052 0.0024 0.0072 0.0030 0.0000 0.0002 0.0059 

f2 0.00021 0.00009 0.00006 0.0001 0.00009 0.00005 0.0000 0.0001 0.06905 0.00006 

f3 0.00735 0.00263 0.00268 0.0070 0.00224 0.00251 0.0026 0.0026 0.02980 0.00281 

f4 9519.90 9497.34 9435.18 9509.4 9486.75 9530.79 9484.3 9385.2 9426.09 9512.8 

f5 0.26087 0.00000 0.00000 0.2673 0.00000 0.00015 0.0000 0.0000 5.39434 0.00000 

f6 0.20485 0.04905 0.05504 0.1605 0.04052 0.06883 0.0466 0.0262 0.00557 0.0654 

f7 0.78382 0.32845 0.35851 0.7790 0.28371 0.43178 0.2800 0.1887 0.18787 0.3965 

f8 0.03644 0.01995 0.02090 0.0385 0.01657 0.02513 0.0193 0.0152 0.14549 0.0227 

f9 0.19987 0.09987 0.09987 0.1998 0.09987 0.09987 0.0998 0.0998 0.19987 0.0998 

f10 3.00138 3.00000 3.00000 3.0005 3.00000 3.00000 3.0000 3.0000 3.00000 3.0000 

f11 0.09987 0.09987 0.09987 0.0998 0.09987 0.09987 0.0998 0.0998 0.09987 0.0998 

f12 0.01983 0.00301 0.00708 0.0092 0.00264 0.00738 0.0050 0.0004 0.00372 0.0069 

f13 0.86100 0.93625 -0.93625 0.9362 0.93625 0.93625 0.9362 -0.936 -0.7857 0.93625 

f14 0.98688 0.99307 -0.98660 0.9781 0.98956 0.99115 0.9920 -0.991 -0.9871 0.98792 

f15 56.76709 3.95608 4.485292 60.0936 4.918964 6.719794 3.4315 3.2194 120.747 4.50132 
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Table 3.5 Mean values obtained for 10 different chaotic maps 

 

  C11 C2 C3C3 C4C4 C5C5 C6C6 C7 C8C8 C9C9 C10 

f1 0.0057 0.0033 0.00399 0.007 0.002 0.0067 0.0028 0.0007 0.0037 0.0059 

f2 0.0004 0.00009 0.00007 0.0005 0.000 0.0000 0.00009 0.00011 0.09767 0.0000 

f3 0.0077 0.00267 0.00262 0.0074 0.002 0.0027 0.00287 0.00268 0.02924 0.0028 

f4 9544.6 9457.03 9443.63 9488.7 9458. 9462.2 9484.97 9441.74 9418.61 9492.5 

f5 0.5651 0.00007 0.00013 0.3388 0.000 0.0004 0.00013 0.00000 6.51608 0.0002 

f6 0.2024 0.05004 0.05428 0.1575 0.039 0.0682 0.04710 0.02082 0.09009 0.0656 

f7 0.7622 0.34909 0.35650 0.6488 0.296 0.4276 0.29639 0.19013 0.30756 0.3966 

f8 0.0367 0.02034 0.02034 0.0389 0.016 0.0251 0.01910 0.01508 0.22704 0.0228 

f9 0.1798 0.09987 0.09987 0.1732 0.099 0.0998 0.09987 0.09987 0.19654 0.0998 

f10 3.1751 3.00000 3.00000 3.0287 3.000 3.0000 3.00000 3.00000 5.60030 3.0000 

f11 0.0998 0.09987 0.09987 0.0998 0.099 0.09987 0.09987 0.09987 0.14322 0.09987 

f12 0.0874 0.00458 0.00589 0.0609 0.0036 0.00786 0.00518 0.00169 1.44370 0.00658 

f13 0.8610 0.93625 -0.9312 0.8660 0.9362 -0.9362 -0.9362 0.9362 -0.8003 0.93625 

f14 -0.8063 0.84276 -0.7466 0.7059 0.8860 -0.8855 -0.8973 0.79415 -0.7582 0.79131 

f15 61.884 5.18796 4.80082 66.210 5.7212 6.16206 4.12283 3.68039 86.8361 5.02830 
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Table 3.6 Standard deviation obtained for 10 different chaotic maps 

 

 

3.7.2 Performance Comparison 

The proposed approach is compared to other optimization algorithms on unimodal, multimodal and 

fixed dimension multimodal benchmark functions to demonstrate its efficacy. Tables 3.4, 3.5 and 3.6 

provide the mean, median and standard deviation of all 15 benchmark functions for 10 different Chaotic 

maps respectively. 

To evaluate the intensification capacity of a metaheuristic algorithm, unimodal test functions 

f1, f2, f5, and f12 are utilized. The best-normalized value derived from the above-mentioned methods 

  C11 C2 C3C3 C4C4 C5C5 C6C6 C7 C8C8 C9C9 C10 

f1 0.00710 0.00168 0.00136 0.00826 0.00145 0.00189 0.00160 0.00089 0.00893 0.00229 

f2 0.00101 0.00002 0.00002 0.00214 0.00002 0.00001 0.00003 0.00002 0.10117 0.00002 

f3 0.00401 0.00118 0.00102 0.00390 0.00121 0.00119 0.00140 0.00125 0.02653 0.00144 

f4 341.722 369.312 334.3216 339.278 382.169 301.965 332.306 383.403 289.564 363.392 

f5 0.58514 0.00022 0.00047 0.31977 0.00012 0.00076 0.00044 0.00000 6.43639 0.00069 

f6 0.14413 0.00804 0.00843 0.15683 0.01115 0.00893 0.01074 0.01371 0.15319 0.01161 

f7 0.50859 0.09057 0.07453 0.54768 0.07625 0.07451 0.06901 0.05079 0.61548 0.05876 

f8 0.00582 0.00300 0.00308 0.00678 0.00275 0.00308 0.00324 0.00259 0.36501 0.00343 

f9 0.04842 0.00000 0.00000 0.06397 0.00000 0.00000 0.00000 0.00000 0.09279 0.00000 

f10 0.59523 0.00000 0.00000 0.07609 0.00000 0.00000 0.00000 0.00000 6.02433 0.00000 

f11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.05041 0.00000 

f12 0.19630 0.00373 0.00446 0.10701 0.00352 0.00405 0.00474 0.00259 2.77190 0.00511 

f13 0.07653 0.00000 0.02748 0.07636 0.00000 0.00000 0.00000 0.00000 0.14229 0.00000 

f14 0.30202 0.33230 0.36480 0.37758 0.28739 0.27077 0.27861 0.34848 0.37556 0.37079 

f15 22.8060 3.58225 3.162544 32.1523 3.8948 3.07006 2.56390 1.82970 60.7596 2.57856 



53 

 

on unimodal test functions is shown in Table 3.7. In terms of best-normalized value, CSMSEOBL is 

the best optimizer for f1, f2, f5, and f12 test functions, whereas SMS is the second most successful 

optimizer. 

Multimodal test functions can be used to assess an optimization algorithm's diversification. 

Table 3.7 show that CSMSEOBL can identify the best response for benchmark functions (f1-f3, f5-

f12, f14). For f4 krill herd and f15, GWO gives the best-normalized values.  

Table 3.7 Best-Normalized Values for different metaheuristic algorithms 

  SMS GWO KH PSO CSMSEOBL 

f1 0.001613 6.9187 1.1964 6.0651 6.54E-08 

f2 0.055017 1.7831 0.0061 87.6269 2.01E-05 

f3 0.015084 0.002 9.7403 56.707 0.000678 

f4 9112.667 6.1499 1.2728 7.6971 8746.403 

f5 0.026685 4.8419 6.7275 589.78 9.81E-08 

f6 0.033842 1.5099 0.987 0.39 0.000404 

f7 0.164469 1.2559 1.1346 3.7472 0.069533 

f8 0.012369 1.7676 5.9928 16.62 0.008682 

f9 0.299873 0.0999 7.1997 23.93 0.099873 

f10 0.5843 0.954 1 0.974 0.00764 

f11 0.099184 3.3981 1.678 5.0433 3.17E-09 
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 SMS GWO KH PSO CSMSEOBL 

f12 -0.6195 -0.9362 -0.2297 -0.00189 -0.93625 

f13 -1 -1 -1 -0.8227 -1 

f14 9.43E-05 0.000126 0.989 0.973 8.15E-10 

f15 4.744741 0.029014 0.865 0.998 1.159739 

3.7.3 Statistical Analysis 

Aside from the fundamental statistical analysis, the Wilcoxon rank test is run at a significance level of 

5% [80]. The CSMSEOBL algorithm's superiority is demonstrated by the p-values of less than 0.05. 

Table 3.8 summarises the Wilcoxon rank-sum test findings. CSMSEOBL outperforms other 

optimization methods available in the literature, according to the findings. 

Wilcoxon rank test which is a nonparametric test has been conducted on results of the proposed hybrid 

algorithm and SMS algorithm for 14 benchmark functions given in Table 3.2 and results are shown in 

Table 3.8. 
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Table 3.8 p-values obtained by Wilcoxon’s test that compare SMS vs. CSMSEOBL 

Function p-values Function p-values 

f1 0.662734758176107e-4 f8 2.98034208171800e-11 

f2 3.01985935916215e-11 f9 2.98034208171800e-11 

f3 3.68972585398101e-11 f10 2.99534031311320e-11 

f4 6.202653652039733e-04 f11 3.01985935916215e-11 

f5 3.01985935916215e-11 f12 3.52005762606802e-07 

f6 9.83289055492186e-08 f13 3.01418492280728e-11 

f7 3.01985935916215e-11 f14 3.55859151949451e-06 

f15 1.74366896542643e-10   

3.7.4 Convergence Analysis 

The convergence curve analysis is examined to have a better knowledge of the 

CSMSEOBL algorithm's behaviour. Both optimization methods i.e., SMS and CSMSEOBL are shown 

in Figure 3.7. The average optimum of the benchmark function is shown in the above-mentioned 

figures. Also, the global optima of all benchmark functions are shown in the form of semi-logarithmic 

convergence plots. 

CSMSEOBL has been demonstrated to be highly competitive in benchmark functions. The 

findings indicate that the CSMSEOBL algorithm finds the global optimum by sustaining a good 

balance between local and global search. 

The proposed algorithm gives better result as compared to SMS for unimodal functions i.e.f1, 

f2, f5, f7 and f12 and results have been shown in Figures 3.7(a), 3.7 (b), 3.7 (e), 3.7 (g) and 3.7 (l) 
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respectively. Similarly, the proposed algorithm has been proven better compared to SMS for most of 

the multimodal functions also. These multimodal functions are shown in Figure 3.7. 

 

(a)                                         (b)                                          (c) 

 

(d)                                             (e)                                                   (f) 

 

(g)                                             (h)                                                   (i) 

 

          (j)                                         (k)                                         (l) 



57 

 

 

     (m)                                       (n) 

Figure 3.7.   Performance Comparison of SMS and CSMSEOBL Algorithm: (a) Sphere Function (b) 

Schwefel2.21 Function (c) Quartic with noise function (d) Schwefel 2.26 Function (e) Zakharov 

Function (f) Ackley function (g) Schwefel 2.22 Function (h)ALPINE Function (i) Salomon Function 

(j) Goldstein & Price Function (k) Powell Function (l) Drop wave Function (m) Easom Function (n) 

Griewank Function 

3.8 Conclusion 

When looking for the global optimum of complicated problems, the key struggle is among ‘reliability,’ 

‘accuracy,’ and 'computation time.' If standard optimization approaches fail to provide efficiently and 

consistently trustworthy outcomes, optimization techniques may be a viable option. To prove the 

correctness of a new metaheuristic algorithm, a developer must use a set of performance metrics. An 

algorithm's effectiveness may then be shown by comparing these criteria to other methods. These 

criteria are then compared to other ways to demonstrate an algorithm's efficacy. The SMS algorithm is 

hybridized with EOBL and Chaotic concept to give a new and improved metaheuristic algorithm. 

Multiple chaotic maps are employed to update random variables of the SMS algorithm. The chaos 

facilitates the control parameter in finding the best solution more rapidly and improving the algorithm's 

convergence rate. The EOBL concept is used to enhance the exploration capability of the Chaotic SMS 

algorithm. By concurrently assessing the present population and the opposing one, the algorithm is 

directed to approximate the space in which the global optimum is encompassed. This technique takes 

full use of the qualities of elite persons, which include a more beneficial search for information than 

regular individuals and uses them to drive this algorithm to the global optimum response. The 

suggested approach, on the other hand, may considerably enhance the population's variation and 

improve computation accuracy, resulting in excellent optimization performance. 

 Simulation results show that the proposed hybrid algorithm gives better convergence for many 

unimodal as well as multimodal functions. The beauty of the proposed metaheuristic algorithm is its 
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simplicity and ease of implementation. Another main benefit is fewer parameters to adjust. 

Furthermore, the novel strategy may improve solution quality without sacrificing robustness 

The computational complexity, Statistical analysis as well as convergence behaviour, have been 

studied in detail. The statistical measures and convergence analysis are presented to show that the 

suggested method outperforms other metaheuristics. When compared to other algorithms, the findings 

show that CSMSEOBL's effectiveness is less sensitive to scalability. It would be fascinating to use the 

CSMSEOBL method to solve real-world engineering challenges in the future 
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Chapter 4 

Optimal Design of FOPID Controller for the Control of CSTR By Using a 

Novel Hybrid Metaheuristic Algorithm 

4.1 Introduction 

Several sophisticated control approaches for regulating linear and non-linear processes have been 

developed in the process control sector during the last two decades. Even though conventional PID 

controllers are frequently utilized because of their simple structure and reliable operation, sometimes 

they do not perform well for non-linear systems [121]. Although a simple PID controller provides the 

least impenetrable, most productive and effortless tuning of controller parameters for the practical 

process. But with advantages, PID controllers have limitations also like the less optimal solution for a 

system loaded with non-linearity, time delay, high order disturbances, noise, etc. These limitations lead 

to the introduction of new and advanced tuning methods like Fuzzy Logic, Neural Network, Adaptive 

Control, Internal Model Control, etc. which ameliorate the capability and performance of the traditional 

PID controller[122] along with enhanced flexibility of conventional PID controller. 

FOPID, on the other hand, may be used with five parameters to adjust, when a traditional PID 

Controller only has three. Even though it increases the complexity of parameter tweaking to some level, 

it also allows for more fine-tuning [4]. Podlubny [5] suggested FOPID as a more sophisticated version 

of PID controller, where λ and μ are the non-integer order of integral and differential terms, 

respectively. According to a survey of the literature, FOPID performs better than traditional PID 

controllers  [123]. In continuation of this, presently many metaheuristic algorithms are in great demand 

for control tuning parameters of the PID controller [124]. The rising complexities in the research area 

result in limiting the mathematical methods of finding optimal solutions and this necessity results in 

the investigation of metaheuristic optimization algorithms. 

Major limitations with traditional methods of optimization are time-consuming, tedious, less 

efficient and less accurate [125]. The imperative feature of the metaheuristic algorithm which makes it 

prominent among researchers is its adaptability and versatility. It can adapt to the problem and 

determine the optimal solution of different types of problems, whether it is related to mathematics, 

engineering, process industry, etc.[126]. 

Using metaheuristics, which are based on trial and error, a difficult issue may be addressed in 

a fair amount of time and may provide an acceptable answer. The key goal is to come up with a feasible 
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solution in a fair amount of time. When a metaheuristic is selected for a problem, it never guarantees 

the best answer and we have no way of knowing whether or not it will provide the greatest solution. 

The basic goal of choosing an algorithm is to provide acceptable or correct results the majority of the 

time with the least amount of variation. Exploration (diversification) and exploitation (intensification) 

are two crucial components of every metaheuristic algorithm, with exploration looking for regions that 

haven't been discovered yet and exploitation looking for additional interesting locations in the sample 

space. As a result, an algorithm's success is determined by a proper balance of exploration and 

exploitation, which ensures convergence to optimality [11]. 

Most of the chemical processes such as continuous stirred tank reactor (CSTR), biochemical reactor 

and conical tank systems persist  dynamic and highly nonlinear behaviour as they consist of multiple 

process variables to be manipulated. Many advanced controlling and optimization methods are 

proposed to control such types of MIMO (Multi-input multi-output) systems. Extensive Literature 

review shows that evolutionary techniques like PSO (Particle Swarm Optimization)[127][128], 

IWO(Invasive Weed Optimization) [129], SFS(Stochastic Fractal Search) [130] FFA (Firefly 

Algorithm)[131],GWO (Grey Wolf Optimizer)[119], CSO(Cat Swarm Optimization)[132], TLBO 

(Teacher-Learner based Optimization)[133][134], SMS (State of Matter Search)[80], CKH (Chaotic 

Krill Herd)[135], RDO(Red Deer Optimization Algorithm)[136], SOA(Sailfish Optimization 

Algorithm) [137] and many more have proved their superiority as compared to traditional controllers 

like  Z-N tuned PID, refined Ziegler-Nichols rule [138], intelligent controllers Fuzzy-PID[139], 

Neural-PID[140], Model-based controllers MRAC (Model reference adaptive control) [141] and 

Internal model control (IMC)[142]. 

The proposed methodology is used for the concentration and temperature control of continuously 

stirred tank reactors (CSTR). A vast literature is available for controlling methodologies of CSTR but 

it is highly nonlinear and its complex dynamics properties make it a complex problem. Therefore, it is 

a tedious task to control CSTR by the conventional controller[143]. Nowadays optimization-based 

control is preferred over the conventional or intelligent controller and to achieve this a hybrid 

CSMSEOBL methodology is proposed. It is a modified form of SMS algorithm (state of matter search) 

in which, Chaotic Maps and Elite opposition-based learning (EOBL) are embedded with SMS to 

enhance the efficiency and efficacy of the SMS algorithm. The basic principle of the SMS algorithm 

lies in the heart of the thermal energy motion system. The whole algorithm is divided into three states 

of matter solid; liquid and gas and each state persist in a different diversification-intensification ratio. 

The algorithm starts with the gas state and modifies the diversification-intensification ratio and ends at 

a solid-state [80]. The chaotic concept is used for the systems which have high sensitivity towards the 

initial condition and also it increases the randomness because the range of random numbers is limited. 
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The chaotic theory has been used with many evolutionary algorithms like PSO, Krill herd, BFO, etc. 

[135]. This concept of chaotic SMS algorithms is used to define some random variables to stimulate 

the convergence of SMS. Further, chaotic SMS is merged with elite oppositional-based learning. The 

concept of OBL was introduced by H. R. Tizhoosh in 2005 which increases the exploration capability 

of the existing algorithm by combining two main properties of OBL which are a global search and a 

good convergence rate[122]. EOBL is the superior form of OBL which gives better global search and 

a higher convergence rate [144]. A fractional-order PID control of CSTR using a hybrid metaheuristic 

algorithm CSMSEOBL is implemented on MATLAB and results obtained from this hybrid algorithm 

prove the excellence of the proposed methodology. 

4.2 Continuously Stirred Tank Reactor (CSTR) 

Chemical process industries rely on Continuous Stirred Tank Reactors (CSTR). It is very nonlinear 

and has vast operating ranges. To maintain a constant temperature in a reactor, heat must be evacuated 

or injected, depending on the chemical reaction [201]. The reactor's jacket has feed and exit streams. 

Energetic fluxes from the reactor into the jacket are believed to be completely blended and at a lower 

temperature than the reactor. In Figure 4.1, a single coolant stream cools a constant volume reactor, 

causing an irreversible and exothermic compound reaction.[145]. 

Considering the uniform volume, exact blending and uniform values of the parameter, the mass-

energy balance condition is given by[89]. 

 

 

Figure 4.1. Schematic representation of Jacketed CSTR system 
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4.2.1 Overall material balance[146] 

The rate of material accumulation in the reactor is equal to the rate of material inflow minus the rate of 

material outflow.  

                                                        
 dVρ

dt
 = Finρin - Foutρ                                                                (4.1)                                          

assuming a constant quantity of material in the reactor (
dVρ

dt
= 0), we find that 

Finρin =  Foutρ 

It is also assumed that the density remains constant, then                    

                                                        Fin = Fout = F                                                                                                  (4.2)              

and                                                           
dV

dt
 = 0 

4.2.2 Balance on Component A[146] 

The balance on component A is 

dVCA

dt
= FCAf – FCA – rV                                                                                       (4.3)                                                                      

where r is the rate of reaction per unit volume. 

4.2.3 Energy Balance[146] 

The energy balance is  

d(Vρcp(T−Tref)

dt
= Fρcp(Tf −  Tref) − Fρcp(T −  Tref) + (−∆H)Vr − UA(T −  Tj)                           (4.4) 

where  Tref  is an arbitrary enthalpy temperature.  

4.2.4 State Variable form of Dynamic Equations[146] 

We can write (4.1) and (4.2) in the following state variable form (since 
𝑑𝑉

𝑑𝑡
 = 0)                                         

                                          f1(CA, T) =  
dCA

dt
=  

F

V
(CAf − CA) − r                                                                     (4.5)                               
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                   f2(CA, T) =  
dT

dt
=  

F

V
( Tf − T) + (

−∆H

ρcp
) r −

UA

Vρcp
(T − Tj)                                                          (4.6)               

It is assumed that volume is constant.  

                                                                            r=𝑘𝑜exp(
−∆𝐸

𝑅𝑇
) 𝐶𝐴                                                             (4.7)                               

where we have assumed that the reaction is first-order. 

4.2.5 Steady-State Solution 

The steady-state solution is obtained when 
𝑑𝐶𝐴

𝑑𝑡
= 0 and  

𝑑𝑇

𝑑𝑡
= 0, that is 

                𝑓1(𝐶𝐴, 𝑇) =  0 =  
𝐹

𝑉
(𝐶𝐴𝑓 − 𝐶𝐴) − 𝑘𝑜 exp(

−∆𝐸

𝑅𝑇
) 𝐶𝐴                                                       (4.8) 

𝑓2(𝐶𝐴, 𝑇) =  0 =  
𝐹

𝑉
( 𝑇𝑓 − 𝑇) + (

−∆𝐻

𝜌𝑐𝑝
) 𝑘𝑜exp(

−∆𝐸

𝑅𝑇
) 𝐶𝐴 −

𝑈𝐴

𝑉𝜌𝑐𝑝
(𝑇 − 𝑇𝑗)                                       (4.9) 

Each of the parameters and variables (except for two) must be stated to address these two 

equations. For the steady-state values of CA and T, the numerical values in Table 4.1 are utilized to 

solve the equations. 

The description of CSTR parameters is given in Table 4.1 [147]. The prime objective is to regulate 

the temperature and concentration of the reactor by regulating the cooling rate of the reactor.  

Table 4.1 CSTR Parameters[141] 

Reactor Parameter Description Values 

F/V( hr-1) Flow rate*reactor volume of the tank 1 

Ko (hr-1) Exponential factor 10e15 

-∆H (kcal/kmol) Heat of reaction 6000 

E(kcal/kmol) Activation energy 12189 

ρCP (BTU/ ft3) 

 

Density*heat capacity 500 
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Reactor Parameter Description Values 

Tf( K̊) Feed temperature 315 

 CAf(lbmol/ft3) The concentration of feed stream 1 

𝑈𝐴

𝑉
 

Overall heat transfer coefficient/reactor volume 1451 

Tj(K) Coolant Temperature 300 

 

4.3 FOPID Controller 

The most pressing problem in control engineering is enhancing system behavior. For that purpose, 

[148] offered the refinement of conventional Controller parameters to non-integer order of integration 

and differentiation. Intuitively, this expansion of conventional PIDs provides additional tuning 

parameters and, as a result, more flexibility in changing the control system's temporal and frequency 

characteristics. As a result, designs become more enduring. The development of fractional calculus in 

the past few years has enabled the switch from existing theories and control systems to ones represented 

by non-integer order ordinary differential equations. As a result, fractional-order estimation techniques 

and controllers have been developed. 

 Prof. Oustaloup [148] was the first to introduce fractional-order controllers (FOC). He created 

the CRONE controller, which stands for "commande Robuste d'ordre nonentier" in French. In [149], 

the notion of employing FOC for dynamic system control is thoroughly discussed. Podlubny has 

suggested a generalization of the Classical-PID Controller as a logical consequence to the Fractional 

order-PID Controller i.e. 𝑃𝐼𝛾𝐷𝜇 controller, incorporating an integrator and a differentiator of order 𝛾 ∈

𝑅+ 𝑎𝑛𝑑 𝜇 ∈ 𝑅+ respectively. 

The most common form of PID controller combines three kinds of corrective measures to the 

error signal, which is the representation of closeness or distance of the desired output from the actual 

one. In general, these three corrective measures are termed proportional, integral and derivative. The 

general form of a PID Controller is given by[150]   

                          𝑢(𝑡) = 𝑘𝑃𝑒(𝑡) +
1

𝑘𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑘𝑑

𝑡

0

𝑑𝑒(𝑡)

𝑑𝑡
)                                       (4.10) 
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 Professor Podlubny[151] proposed FOPID Controller in 1999 as an extended form of PID 

controller which has a comparatively wider range for controlling. The FOPID Controller is shown in 

Figure 4.2 and represented as 

                              𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖𝐷
−𝛾𝑒(𝑡) + 𝑘𝑑𝐷𝜇𝑒(𝑡)                                           (4.11) 

where 𝜸 and 𝝁 are real numbers with 𝜸 > 0,𝝁 > 0[152], D is a fractional calculus operator which is 

defined by Riemann–Liouville as (𝒏 is general non-integer order and ℾ(𝒏)is Euler’s gamma function) 

                          𝐷−𝑛𝑓(𝑡) =
1

ℾ(𝑛)
∫ 𝑓(𝑦)(𝑡 − 𝑦)𝑛−1𝑑𝑦

𝑡

0
                                                                (4.12) 

The FOPID controller also takes current error, accumulated error and predicted error into account 

same as the classical PID controller but fractional operators are non-local in FOPID which gives a 

modified definition to the integral as well as derivative action[150]. For the analysis purpose, fractional 

calculus equations must be transferred into algebraic equations. The Laplace transform of the equation 

for 𝑫−𝒏𝒇(𝒕) can be expressed as 

                                                          ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = 𝑠𝛼𝐹(𝑠)
∞

0
                      (4.13) 

 Here, it is assumed that all initial conditions are zero [153]. 

From Figure 4.3 Case I, if 𝜸 = 1 and  𝝁 = 1 results in PID controller. Case II, if 𝜸 = 1 and 𝝁 =

0, results in PI Controller. Case III, if 𝜸 = 0and 𝝁 = 1, resulting in PD controller. Case IV, if 𝜸 = 0 

and 𝝁 = 0 results in gain controller only. The transfer function of FOPID Control[154] is represented 

as, 

                                                𝐺𝐶(𝑠) =
𝑈(𝑆)

𝐸(𝑠)
 (𝑘𝑝 + 𝑘𝑖

1

𝑆𝛾 
+ 𝑘𝑑𝑆𝜇)                                                (4.14)  

The use of the FOPID Controller results not only in enhanced performance of the control system, and 

better adaptability but fine control of the dynamical system as well as very fewer variations in 

parameters of a control system [155]. 
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Figure 4.2.  FOPID Controller 

 

Figure 4.3.  Plane of the FOPID controller [156] 

                   

The FOPID Controller ensures that the plant model is resistant to gain change, noise and 

disturbance. As a result, it has a better transient reaction than an integer-order PID controller. As 

illustrated in Figure 4.3, the fractional-order PID controller extends the integer-order PID controller 

from point to plane form. When compared to integer-order PID controllers, this expansion gives us 

greater versatility in controller design and allows us to regulate our real-world processes more 

precisely. 

4.4 Metaheuristic Optimization Algorithms   

Figure 4.4 represents the flow of the proposed work with parameters of the FOPID Controller which 

are optimized by the metaheuristic optimization and controlled parameters are fed into the process. 
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Figure 4.4.  Optimized FOPID for Control of CSTR 

 4.4.1 Particle Swarm Optimization (PSO) 

PSO is a swarm intelligence-based optimization algorithm that was proposed by Kennedy and Eberhart 

in 1995 [16]. It simulates the concept of cooperation, communication and social behaviour in fish and 

bird schooling. Literature [157] reveals that extensive research has been done on PSO to demonstrate 

its efficiency in solving real-valued complex, non-linear, non-differentiable optimization problems. 

However, since the search space dimension can be sufficiently increased, PSO is sensitive to the trend 

of falling into local optima. To solve this limitation with traditional PSO some improved and hybridized 

version of PSO has been introduced from time to time to enhance its convergence performance [158]. 

It is a population-based optimization technique that gives rise to high-quality results within a more 

concise time and shows stable converge characteristics [147]. 

There are several steps in the PSO process. The PSO's primary processing loop initially updates 

each particle's current velocity depending on the particle's current velocity, the particle's local 

information, and the global swarm information that is available to the PSO [147]. The velocity of each 

particle is then used to update the location of each particle. Both equations are updated in mathematical 

terms.: 

             𝑣(𝑡 + 1) = (𝑤 ∗ 𝑣(𝑡))  +  (𝑐1 ∗ 𝑟1 ∗ (𝑝(𝑡) –  𝑥(𝑡))  +  (𝑐1 ∗ 𝑟2 ∗ (𝑔(𝑡) –  𝑥(𝑡))              (4.15)            

                                                         𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1)                                                  (4.16)                                  

where, 𝑟1 and 𝑟2 are random numbers with a value between [0,1], 𝑐1 and 𝑐2 are two acceleration 

constants, 𝑤 is inertia weight, 𝑥(. )is the position of the particle, 𝑝(𝑡) is the personal best position of 

the particle,  𝑔(𝑡) is the global best position of the group. The term 𝑣(𝑡 + 1) gives velocity at the 

FOPID Controller 

Process 

Metaheuristic Algorithms 

CSMSEOBL/SMS/CS/PSO 
Time Integral 

Error 

    𝑘 𝑝     𝑘 𝐼       𝑘𝐷      𝛾         𝜇 

          R (S)                 E(S)            U(S)                 C(S)  

C(S)CSC(S)CC(S) C(S) C(S)   
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time(t + 1). Once 𝑣(𝑡 + 1), has been computed, it is used to compute updated position 𝑥(𝑡 +

1) 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒[159].  

 4.4.2 Cuckoo Search Algorithm (CS) 

Yang and Deb[160] developed a novel meta-heuristic calculations cuckoo search in 2009. CS is 

dependent on the brood parasitism of certain cuckoo species for its survival. Moreover, the calculation 

is upgraded by the purported Lévy flights, as opposed to basic isotropic irregular strolls. Cuckoos are 

interesting flying creatures, not just as a result of the excellent sounds they can make yet additionally 

on account of their forceful generation methodology. A few animal types, for example, the ani and 

guira cuckoos lay their eggs in shared homes, however, they may evacuate others' eggs to expand the 

bring forth likelihood of their eggs (Figure 4.6). A lot of animal varieties connect with the committed 

brood parasitism by laying their eggs in the homes of other host winged animals[144]. In cuckoo search 

calculation cuckoo egg speaks to a potential answer for the structure issue which has an objective 

function. The calculation utilizes three glorified guidelines (Figure 4.5): 

• Rather than laying each egg in turn, each cuckoo just drops them at a random location.  

• The finest house, with the best eggs, will be passed on to the next generation of chickens. 

• Host flying animals can locate an outsider egg with a probability of 𝑷𝒂 ∈ [𝟎, 𝟏] when the 

number of accessible host houses is fixed, and the number of accessible host homes is 

fixed [161].   

 

Figure 4.5.  How the Cuckoo search algorithm works [144] 

 

 

 

 

 

 

 

 

 

 

 

 

The number of possible host nests is fixed, and the cuckoo's egg 

is found by the host bird with a probability of 𝑃𝑎 𝜀[0, 1] 

The best nests with the highest quality eggs will be passed down 

to future generations 

Each cuckoo lays one egg at a time and deposits it in a randomly 

selected nest 
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Pseudo code of Cuckoo Search [162] 

Fitness function f(x), 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ; 

Initialize population for ‘n’ no. of host 𝑥𝑖  (𝑖 = 1,2, … , 𝑛); 

while (p <Max no. Of Generation) or (stop criterion); 

obtain a cuckoo (say i) randomly by using Levy flights; 

𝑥𝑖
𝑝+1 = 𝑥𝑖

𝑝 + 𝛼 ⊕ 𝐿′𝑒𝑣𝑦(𝜆) 

Examine its quality 𝑓𝑖 ; 

Choose one of n (say j) nests at random; 

if (𝑓𝑖 >  𝑓𝑗  ), 

Substitute the new solution for j; 

end 

Abandon a percentage of the worst nests 𝑝𝑎  

[and create new ones in other places with Lévy flights]; 

Sort the options and choose the best one; 

end while 

Visualization of findings and post-processing; 

 

 

Figure 4.6. A sample cuckoo making its way to its preferred territory [162]. 
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4.5 Simulation Results 

To confirm the practicality and viability of the proposed hybrid CSMSEOBL approach, a progression 

of comparative experiments have been performed on CSTR against the accompanying three states of 

the art metaheuristic optimization techniques: PSO, CS, SMS and CSMS-EOBL. MATLAB 2018 is 

used for simulation and Intel(R) Core (TM) 2 Duo CPU T6400@ 2.00 GHz 1.20 GHz, 1.99 GB of 

RAM. The performance is verified for Control Temperature and Concentration of CSTR by running 

CSMSEOBL-based FOPID, SMS-based FOPID, CS-based FOPID and PSO-based FOPID controller 

and results are compared. 

For any optimization process convergence of metaheuristic algorithm towards the global 

optima of the tuned parameters of FOPID, the problem is defined with an objective function or fitness 

function. To get the finest transient response as well as minimum steady-state error along with the least 

overshoot, ITAE is utilized as the objective function. Since ITAE is the most aggressive controller 

setting criteria that avoid peaks and give controllers a greater load disturbance rejection and lessens the 

overshoot of the system while retaining the robustness of the system. ITAE is defined as 

𝐽𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
𝑇

0

 

4.5.1 Parameter setting for different metaheuristic algorithms 

Table 4.2  Parameter Setting of different Metaheuristic Algorithms[89] 

Algorithm and 

Parameters 

Parameter 

Value 
Algorithm and Parameters 

Parameter 

Value 

PSO 

 

CS  

Population 50 Population 50 

Iteration 25 Iteration 25 

Weight Function [0.2,0.9] Pa 0.25 

Acceleration constants 2 Beta 1.5 

The dimension of search 

space 

5 The dimension of search space 5 
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Iteration 25 Iteration 25 

SMS 
 

CSMS-EOBL  

Vector Adjustment, ρ 1 Vector Adjustment, ρ 1 

Beta [0.8, 0.4, 0.1] Beta [0.8, 0.4, 0.1] 

Alpha [0.8, 0.2, 0] Alpha [0.8, 0.2, 0] 

Threshold Probability, H [0.9, 0.2, 0] Threshold Probability, H [0.9, 0.2, 0] 

Phase Percent [0.5, 0.1, -0.1] Phase Percent [0.5, 0.1, -0.1] 

Adjustment Parameters [0.85 0.35 

0.05] 

Adjustment Parameters [0.85 0.35 

0.05] 

Iteration 25 Iteration 25 

The CSMSEOBL is used to optimize the parameters of FOPID for concentration and temperature 

control of CSTR. To show the comparative study CS, PSO, and SMS algorithms are also implemented 

on CSTR. MATLAB Simulink environment is utilized for evaluating the results. 

Further, different types of chaotic maps are used to enhance the randomness of the SMS 

algorithm. Figure 4.7 and Figure 4.8 show the variation of concentration and temperature for different 

types of chaotic maps respectively. 
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Figure 4.7.  Simulation result for concentration control of CSTR with CSMSEOBL algorithm with 

different types of Chaotic Maps 

              

Figure 4.8.  Simulation result for temperature control of CSTR with CSMSEOBL algorithm with 

different types of Chaotic Maps 

The proposed algorithm is further demonstrated by a comparative analysis of the best solution 

obtained from Figures 4.7 and 4.8 with the existing algorithms, which include SMS, CS, and PSO. 

These results are shown in Figures 4.9 and 4.10, respectively, to demonstrate the superiority of the 
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proposed algorithm over the existing algorithms. The setpoint for Concentration is taken as .119 (lb. 

mol/ft3) and the temperature is at 315K. 

 

Figure 4.9.  Comparison of concentration control of the CSTR system among different metaheuristic 

algorithms 

 

Figure 4.10. Comparison of Temperature control of the CSTR system among different metaheuristic 

algorithms 
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4.5.2 Transient response analysis 

From Table 4.3 we could conclude that the proposed CSMSEOBL shows a promising approach for 

concentration and temperature control of CSTR because in process control problems main aim is to 

obtain the least settling time and minimum overshoot. Even though the rise time and the peak time are 

large for CSMSEOBL-FOPID as compared to SMS-FOPID, CS-FOPID and PSO-FOPID but the cost 

function is minimized along with minimum overshoot and least settling time.  

Table 4.3 Comparative analysis of controller parameters and time response specifications 

 FOPID Controller Parameter Rise 

time 

Peak 

time 

Overshoo

t 

Settling 

time 

Kp KI KD 𝜸 𝝁 

SMS 12.1 32.5 1 1.006 0.100 1.22 1.53 .38 2.27 

CS 21.7 50 0.2 1.002 0.785 1.13 1.36 .12 1.86 

CSMSEOBL 15.8 43.3 1.9 .9999 0.138 2.04 1.68 0 1.43 

PSO[163] .2510 .0243 .499 .5968 .0706 3.65 4.76 7 14 

4.5.3 Convergence analysis 

The CSTR's dynamic performance is enhanced by utilizing a mathematical formulation of the objective 

function ITAE to improve performance indicators such as settling time, rising time, and overshoot. 

This is accomplished via the use of a mathematical formulation of the goal function ITAE. ITAE 

decreases not only the initial extent of error but also decreases the error which develops in later 

responses[164]. Variation of ITAE for different metaheuristic algorithms has been shown in Figure 

4.11. The comparative analysis of considered metaheuristic algorithms in terms of ITAE is shown in 

Figure 4.12. The proposed CSMSEOBL algorithm outperformed the other metaheuristic algorithms 

and it has been shown in Table 4.3. 



75 

 

 

Figure 4.11. Variation of ITAE for different metaheuristic algorithms 

 

Figure 4.12.  Comparison of objective function ITAE for different metaheuristic algorithms 

4.6 Conclusion 

This paper fixes the limitations of the standard SMS Algorithm by hybridizing it with chaotic maps 

and Elite Opposition Based Learning. Further, this hybrid algorithm CSMSEOBL is used to find 

optimal parameters of the FOPID Controller for the temperature and concentration control of a 

Continuously Stirred Tank Reactor (CSTR). Major findings of the work are as follows: CSMSEOBL 

gives better exploration and exploitation capability; The use of CSMSEOBL on a non-linear control 

problem results in faster convergence; CSMSEOBL shows promising results in terms of overshoot, 

settling time, and ITAE for optimizing the performance; The proposed controller is validated for 

concentration and temperature control of CSTR. 

This study of hybrid metaheuristics can be further extended to reform the transient performance 

using multiple models, adaptive control strategy, and other latest metaheuristic algorithms. 
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Chapter 5 

CSMSEOBL-PID Controller for Ball Balancer System 

5.1 Introduction 

The ball balancer is a nonlinear, multivariate, unstable and electromechanical system that is 

underactuated. The use of intelligent controllers or automatic decision development to approximate 

such underactuated systems is a challenge that arises in a variety of control situations and may be 

solved utilizing a variety of techniques[165]. Many process control systems have these characteristics 

by default, making it difficult to devise a viable control approach for them [166]. Due to the complexity, 

Researchers in the field have started to investigate different linear, nonlinear, intelligent and model-

free controllers. These controllers aim to achieve self-adjusting and consistent control for several 

processes like the mechanism of ship control, horizontal stabilization of an airplane during turbulent 

airflow and landing, the twin-rotor multi-input multi-output system, inverted pendulum, hovercraft, 

Furuta pendulum, the ball beam system and ball and plate system [167] [168].   

While there are a few different hardware configurations for ball and plate systems[169]–[171], 

the basic device dynamics and control concept is the same for all of them: It comprises of a base plate, 

a ball, an overhead camera, and two servo units. In addition to the servo units and plate, an overhead 

camera detects the location of the ball for controller input. There are two servos beneath the plate that 

link to the plate and give 2-DOF gimbal movements for the camera. The plate has two axes of motion. 

But the system can only be described in one axis since both axes are symmetrical about each other 

[172]. As a benchmark type engineering challenge for various controller designs, the ball and beam 

control experiment are divided into two categories: model-based control systems and non-model-based 

control systems [226]. Model-based control systems must contain regulated system states that cannot 

be computed clearly because they are needed by the model. Non-model-based systems rely on real-

time sensor output data that is available at the moment of control. The primary disadvantage of model-

based control architecture is that it is extremely dependent on the correctness of the model employed 

in the state observer, which may be a source of contention. Because any of the aspects that determine 

the physical system's nonlinear dynamics cannot be included in the system model, model-based control 

loses its effectiveness over time as a result of improvements in the physical configuration of the system 

or wear and tear on the system's mechanical components. In addition, the practical specification of the 

ball and beam arrangement, which is employed for certain non-model-based control designs, is a factor 

in determining the differences between various controller designs. [173]. 
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In addition, nonlinear processes are linearized, which has a significant impact on device 

response time. This prompted the development of a variety of nonlinear control strategies to resolve 

the issues in underactuated systems. Many nonlinear controllers have been suggested, including the 

Lagrangian, lambda process and backstepping controller [174][175]. 

Kennedy and Eberhart [176] developed Particle Swarm Optimization (PSO) as an optimization 

technique in 1995. It guides the particles to find global optimum solutions using a basic process that 

mimics swarm behaviour in birds flocking and fish schooling.  It's a swarm-based, efficient stochastic 

optimization strategy. It uses the principle of social interaction to solve problems and does not depend 

on the gradient of the problem to be solved, because it does not necessitate a differential optimization 

problem, as traditional optimization approaches do [177]. The PSO algorithm has a lot of advantages. 

It's easy to set up, needs just a few parameters, works well in global searches, is unaffected by 

architecture variable scaling and can be quickly parallelized for parallel processing [178]. 

 In this chapter, the chaotic SMS algorithm idea is used to describe certain random variables to 

promote SMS convergence. By integrating the two key properties of OBL, a global search and a fast 

convergence rate, the diversification capabilities of the current algorithm get improved. PID control of 

a ball balancer is tested on MATLAB using existing algorithms like PSO, SFS, SMS and a hybrid 

metaheuristic algorithm called CSMSEOBL and the results show that the suggested approach is 

superior. 

 5.2 Mathematical modelling of Ball balancer system 

The 2 DOF Ball Balancer, or 2DBB, as seen in Figure 5.1, is made up of a plate on which a ball can 

be put and move freely. The plate can be swivelled in any direction by mounting it on a two-degree-

of-freedom (2 DOF) gimbal. The ball's location is measured using an overhead USB camera and a 

vision unit. Quanser Rotary Servo Base Unit (SRV02) systems are the two servos under the surface. 

Two DOF gimbals are used to attach each of them to a side of the plate. The tilt angle of the plate can 

be changed by controlling the direction of the servo load gears to balance the ball in an ideal planar 

position. The overhead digital camera takes photographs of the plate, which are then processed using 

the provided Quanser image processing blocks to determine the ball's x and y locations. A FireWire 

attachment is used to easily pass images to the PC. As a result, the 2 DOF Ball Balancer is designed as 

two decoupled "ball and beam" structures, with the assumption that the angle of the x-axis servo just 

influences ball movement in the x-direction. The y-axis ball motion is similar to the x-axis. Section 

2.1.1 gives the equation of the ball’s motion at the x-axis in comparison to the plate’s angle, while 

Section 2.1.2 integrates the servo angle into the model. 
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The open-loop structure of the 2D Ball Balancer is illustrated in Figure 5.1. The dynamics 

between the servo input motor voltage and the resulting load angle are represented by the SRV02 

transfer function Bs(S). Bbb(S) is a transfer function that defines the dynamics between the servo load 

gear's angle and the position of the ball (s). This is a decoupled framework because the y-axis response 

is not affected by the x-axis actuator. The dynamics of each axis are the same as all SRV02 systems 

have the same hardware.  Figure 5.2 depicts the free body diagram of the 2D Ball Balancer. 

             

(a)                                                        (b) 

                                                      

       (c)      

Figure 5.1.  Ball balancer open-loop block diagram (a) Servo X-axis (b) Servo Y-axis (c) Open Loop 

block diagram of 1-D plant 

The complete transfer function of the 1DBB plant is given by 

                 𝐵(𝑆) = Bbb(S) Bs(S)                       (5.1) 

where 

B𝑏𝑏(S) =
C(S)

𝛼1(S)
 

                                                          and           Bs(S) =   
𝛼1(S)

𝑉𝑚(S)
 

The movement of the ball concerning the servo's load angle is defined by the 1DBB transfer function. 

                                                           𝑚𝑏𝐶(𝑡)̈ = ∑ 𝐹  =  𝐹𝑥,𝑡 − 𝐹𝑥,𝑟                                   (5.2) 
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where 𝐹𝑥,𝑟  is the inertial force of the ball and 𝐹𝑥,𝑡 is the gravitational axial force. The force produced 

by the ball's momentum must be equal to the force produced by gravity for the ball to be stable at a 

given moment, i.e., be in equilibrium (Figure 5.2). 

When the incline is positive, the force acting in the positive x-direction is 

                                                       𝐹𝑥,𝑡 = 𝑚𝑏𝑔 𝑠𝑖𝑛𝛽(𝑡)                                                       (5.3)            

The force generated by the ball's rotational spin 

                                                   𝐹
𝑥,𝑟=

𝜏𝑏
𝑟𝑏

                                                                   (5.4) 

                                         𝜏𝑏=𝐽𝑏�̈�𝑏(t)                                                                    (5.5) 

Where 𝑟𝑏 − 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 

𝜏𝑏 − 𝑡𝑜𝑟𝑞𝑢𝑒 

𝛳𝑏-ball angle 

𝐽𝑏 − 𝑏𝑎𝑙𝑙 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 

The force acting in the x-direction on the ball as a result of its momentum is 

  𝐹
𝑥,𝑟=

𝐽𝑏�̈�𝑏(t)

𝑟𝑏
2

                                      (5.6) 

From Equation  (5.2), (5.3) and (5.6) 

                                                     𝑚𝑏𝐶(𝑡)̈ =  𝑚𝑏𝑔 𝑠𝑖𝑛𝛽𝑡 −
𝐽𝑏�̈�(t)

𝑟𝑏
2                                               (5.7) 

5.2.1 Calculation of servo angle 

The action of the ball and plate system in terms of complex variables: the position of the ball around 

the servo load angle reflects motion and time. The servo angle and the beam have the following 

relationship: 

sin(𝛽(𝑡)) =
2𝑠𝑖𝑛(𝛼1(t))𝑟𝑎

𝑙𝑡
                                                                      (5.8) 

where 
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𝑟𝑎 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑒𝑎𝑟 𝑠ℎ𝑎𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑅𝑉02. 

𝑙𝑡 − 𝑇𝑎𝑏𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 

Using linearization around 𝛳1 = 0, the dynamic variables for characterizing the rotation of the ball that 

corresponds to the servo angle 𝛳1 are discovered. The mathematics for the servo and plate angle 

relationship is as follows: 

                                            𝐶(𝑡) =̈ 2𝑚𝑏𝑔𝑟𝑎𝑟𝑏
2𝑠𝑖𝑛𝛼1(𝑡)

𝑙𝑡(𝑚𝑏𝑟𝑏
2+𝐽𝑏)

                                            (5.9) 

The sine function sin𝛾𝑙 is approximated as 𝛾𝑙 to linearize the equation of motion and the final equation 

for the 1-D ball balancer is: 

        𝐶(𝑡) =̈ 2𝑚𝑏𝑔𝛼1(𝑡)𝑟𝑎𝑟𝑏
2

𝑙𝑡(𝑚𝑏𝑟𝑏
2+𝐽𝑏)

                                                                           (5.10) 

 

Figure 5.2. Free body diagram of Ball balancer 

  5.2 Controller Design 

The inner loop is stabilized first, so the outer loop is stabilized. The inner loop's job is to keep track of 

the angle of the motor. The motor angle should track the reference signal, so the inner controller should 

be programmed accordingly. To control the ball angle, the outer loop uses the inner feedback loop. As 

a result, the inner loop must come first. The following are some of the control strategies that have been 

designed and tested for the ball balancer system. 
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Figure 5.3.  Block Diagram of Ball Balancer System 

5.2 Particle swarm optimization (PSO) 

 Kennedy and Eberhart [176] suggested the particle swarm optimization (PSO) algorithm, which is a 

stochastic optimization technique focused on the swarm. The PSO algorithm mimics the social 

behavior of animals such as insects, clusters, birds and fish. The PSO algorithm's main architecture 

concept is based on two studies: One is the evolutionary algorithm, which, uses a flock mode to find a 

wide area in the solution space of the optimized objective function at the same time. Artificial life, on 

the other hand, is the study of artificial structures with life-like characteristics [179]. Each individual 

in the PSO technique is referred to as a particle, and each particle represents a possible solution in a 

population-based search process. A variable speed is used by each particle to travel across the search 

space, which is dynamically changed depending on the flight experiences of the particle and those of 

other particles[180]. Each particle in PSO aims to better itself by imitating good peers' traits. 

Furthermore, since each particle has a brain, it can recall the best place in the search space it has ever 

visited. 𝑝𝑏𝑒𝑠𝑡 denotes the place with the best fitness, while 𝑔𝑏𝑒𝑠𝑡 denotes the absolute best of all the 

particles in the population [181]. 

The position and velocity update equations of PSO are given by  

          𝑣𝑖.𝑔
(𝑡+1)

= 𝑤. 𝑣𝑖.𝑔
(𝑡)

+ 𝑎1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑝𝑏𝑒𝑠𝑡𝑖.𝑔 − 𝑥𝑖.𝑔
𝑡 ) + 𝑎2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑔𝑏𝑒𝑠𝑡𝑔 − 𝑥𝑗.𝑔

𝑡 )        (5.11)  

                                                 𝑥𝑖.𝑔
(𝑡+1)

= 𝑥𝑖.𝑔
(𝑡)

+𝑣𝑖.𝑔
(𝑡+1)

                                                  (5.12) 

 i=1, 2…... n;  g=1, 2... m 

  where 
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  n- number of particles in a group; m- number of members in a particle; t - pointer of 

iterations(generations); 

𝑣𝑖.𝑔
(𝑡)

 -    velocity of particle i at iteration t; 𝑤 - inertia weight factor; 𝑎1,𝑎2  -  acceleration constant; rand 

( )- random number between 0 and 1; 𝑥𝑖.𝑔
(𝑡)) -  current position of particle i at iteration t; 

 𝑝𝑏𝑒𝑠𝑡𝑖-  𝑝𝑏𝑒𝑠𝑡 of particle 𝑖; 𝑔𝑏𝑒𝑠𝑡 − 𝑔𝑏𝑒𝑠𝑡 of the group 

                            𝑤 =
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
∗ 𝑖𝑡𝑒𝑟                                                                                       (5.13) 

 The inertia weight ′𝑤′ is calculated using Equation (5.13). A good choice of ‘w’ strikes a good mix 

between global and local searches, taking fewer iterations on average to get at a suitably optimum 

solution. 

5.4 Stochastic Fractal Search (SFS) Algorithm 

A trade-off is encountered between accuracy and time consumption with Fractal Search since it is a 

dynamic algorithm in which the number of agents in the algorithm is changed. As a result, a new 

version of Fractal Search that addresses the issues of Fractal Search is introduced named Stochastic 

Fractal Search [182]. SFS aims to find a probabilistic or optimum search pattern that can provide a 

better solution to an optimization process. To find the search space, SFS uses the diffusion property 

found in random fractals. Diffusion and redesign are the two primary mechanisms involved [183]. The 

flow chart of the SFS algorithm is illustrated in Figure 5.4 

The SFS algorithm's steps are as follows: 

Begin: Each particle's (points) location is initialized randomly based on the problem specifications by 

defining maximum and minimum bounds as follows: 

                                                             𝑃 = 𝑙𝑏 + 𝑟(𝑢𝑏 − 𝑙𝑏)                                                       (5.14)                                                    

where ‘r’ is a random number with a uniform distribution (generated by Gaussian distribution) and a 

range of [0, 1]. 

The probability value for each point ‘𝑖’ in the group is then assigned using the following equation, 

which follows a simple uniform distribution: 

                                                       𝑃𝑎𝑖 =
𝑟𝑎𝑛𝑘 𝑃𝑖

𝑁
                                                                          (5.15)                                               
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where 𝑟𝑎𝑛𝑘 𝑃𝑖 denotes the position of the point 𝑃𝑖 with the other points in the set and N denotes the 

total number of points in the group. 

Equation  (5.16) is used to update the jth element of 𝑃𝑖; otherwise, it stays consistent. 

                                                   𝑃𝑖
′(𝑗) = 𝑃𝑟(𝑗) − 𝑟(𝑃𝑡(𝑗) − 𝑃𝑖(𝑗))                                     (5.16)                   

where 𝑃𝑖
′ is now in a new updated role.𝑃𝑟 , 𝑃𝑡  and 𝑃𝑖 are three points in the category that were chosen 

at random. 

If the condition 𝑃𝑎𝑖 < 𝑟 r holds for a new point 𝑃𝑖
′ the current location of 𝑃𝑖 

′ is updated according to 

Equation nos. (5.17) and (5.18), otherwise, there is no change.  

                                    𝑃𝑖
′′ =    𝑃𝑖

′(𝑗) − �̂�(𝑃𝑡
′ − 𝐵𝑃)| 𝑟′ ≤ 0.5                                                    (5.17) 

                                    𝑃𝑖
′′ =    𝑃𝑖

′(𝑗) + �̂�(𝑃𝑡
′ − 𝑃𝑟

′)| 𝑟′ > 0.5                                           (5.18) 

BP-The best point out of all the points. 

Stochastic Fractal Search Algorithm Pseudo Code 

Initialize N point population; 

while G < maximum no. of generation do  

                                                                                                   for each Point Pi in the system do 

Call Diffusion (it consists of the following steps): 

q = (maximum number of diffusion). 

for j = 1 to q do 

if the first Gaussian walk is applied then 

generate a new point based on Gaussian Walk 

end 

if second Gaussian Walks is used 

generate a new point based on Gaussian walk after diffusion 

end  

end 

Call Updating Process to consist of following steps 

begin 

First Updating Phase. 

all points are ranked as 𝑃𝑎𝑖 =
𝑟𝑎𝑛𝑘 𝑃𝑖

𝑁
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for each Point Pi in the system do  

for each component j in Pi do 

if r [0,1] > Pai then 

Update the component as 𝑃𝑖
′(𝑗) = 𝑃𝑟(𝑗) − 𝑟(𝑃𝑡(𝑗) − 𝑃𝑖(𝑗) 

end  

end 

end 

Second Updating Phase: 

again, all points are ranked based o 𝑛  𝑃𝑎𝑖 =
𝑟𝑎𝑛𝑘 𝑃𝑖

𝑁
 

for each Point Pi
′ in the system do 

if r [0,1] > Pa′
i then 

                                Update the position based on   𝑃𝑖
′′ = 𝑃𝑖

′(𝑗) − �̂�(𝑃𝑡
′ − 𝐵𝑃)| 𝑟′ ≤ 0.5 and           

                        end                                 𝑃𝑖
′′ =    𝑃𝑖

′(𝑗) + �̂�(𝑃𝑡
′ − 𝑃𝑟

′)| 𝑟′ > 0.5   

                         end  

end 

 end 

end 

 

 
Figure 5.4. Flow Chart of SFS algorithm 
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5.5 PID Controller 

Because of its reliability and simplicity of implementation, the PID controller is one of the popular 

controllers and is used in nearly every industrial control application [184] While there are many 

classical approaches for designing and tuning PID controller parameters (𝐾𝑝,𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑) that are well 

understood and easy to apply, one of the key drawbacks of these classical techniques is that they require 

skill and practice to tune PID controllers using these techniques. In these methods, a starting point and 

fine-tuning of parameters by the hit-and-trial process are needed to achieve the desired efficiency. Due 

to its dynamic structure, metaheuristic strategies could be a reasonable option [185]. 

Inner loop values remain the same for the execution of the PID controller, while PID has been 

performed on an outer layer to incorporate the position of poles as long as there is a decline in terms 

of time constant. While manually calculating PID gain values, a large error is produced, particularly 

when operating under different parametric and external uncertainties. As a result, automatic PID gain 

tuning is needed, which is accomplished through various Metaheuristic algorithms. 

5.5.1 Tuning of PID Controller 

The Ziegler-Nichols [186] continuous cycling technique, also known as the ultimate gain method, was 

introduced in 1942 and is one of the most well-known closed-loop tuning techniques. The PID tuning 

values were established as a function of ultimate gain Ku and ultimate time Pu and this tuning approach 

are often used by controller manufacturers and the process industry  [187][188]. Z-N tuned PID 

Controller parameters for closed-loop control systems are given in Table 5.1.  

Table 5.1 Z-N tuned parameters for PID Controller 

Tuning Method Kp Ti Td 

Z-N Closed Loop 0.6Ku Pu/2 Pu/8 

Parameters of PID Controller are tuned by using the classical method of PID Control i.e., Ziegler-

Nichols and metaheuristic optimization methods like Particle swarm optimization (PSO), Stochastic 

Fractal Search (SFS), State of Matter search (SMS)and new hybrid algorithm Chaotic State of Matter 

Search with Elite Opposition based Learning (CSMSEOBL). 
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5.6 Simulation Results and Analysis 

The numerical simulation of the 2DOF ball balancer model, which is theoretically presented in Section 

5.2, is created using the MATLAB/Simulink tool. Servo unit controllers may influence each other's 

actions since their plates are symmetrical, allowing them to affect one another. Inner loop values stay 

unchanged, but PID is applied to an exterior shell to add the position of poles as far as time constant 

decay is concerned. 

Initially, the PID controller's values are determined using the traditional PID Controller. 

Furthermore, metaheuristic algorithms such as PSO, SFS, SMS and finally the hybridized CSMSEOBL 

perform by calculating the difference between the expected and calculated ball positions to optimize 

the PID controller values. For the time response study of a ball balancer system, robustness analysis is 

used since it investigates the system's performance at the beginning and steady-state. It offers 

information on the closed-loop system's relative stability and response time. Although the level of 

maximum overshoot can be linked-to relative stability, the settling and rise times demonstrate the 

system's reaction speed. 

  The problem is defined using an objective function or fitness function for any optimization 

process, such as convergence of a metaheuristic algorithm towards the global optima of PID-adjusted 

parameters. The fitness function is firstly described by defining a controller based on the required 

requirements and restrictions. The controller parameter settings are altered by configuring the objective 

function. Typically, four types of performance requirements are examined in the domain of 

Controller design procedure. They are the integral of absolute error (IAE), the integral of squared error 

(ISE), the integral of time multiplied squared error (ITSE) and the integral of time multiplied absolute 

error (ITAE). Integral time absolute error (ITAE) is used as the fitness or objective function in this 

study as it is the most stringent controller setting criteria, avoiding peaks and giving controllers a higher 

load disturbance rejection and lessening system overshoot while maintaining network performance. 

Parameter setting for different metaheuristic algorithms is shown in Table 5.2. 

 The step response analysis is a study of how a system behaves at the start and finish of its entire 

lifecycle. It gives information on the closed-loop system's relative stability and responsiveness. While 

the quantity of maximum overshoot may be linked to relative stability, the settling and rising durations 

demonstrate the system's speed and quickness. Figure 5.6, Figure 5.7and Figure 5.8 respectively show 

the effects of the ball position, servo angle and voltage of the ball balancer mechanism for hybridized 

CSMSEOBL-PID, PSO-PID, SFS-PID, SMS-PID and the classic PID controller. The transient 

reactions of Classic PID, PSO-PID, SFS-PID, SMS-PID and CSMSEOBL-PID controllers to a 
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reference position are shown in Figure 5.6. Table 5.3 also includes numerical comparisons in terms of 

maximum overshoot, rising time (10 percent to 90 percent) and settling time (2 percent band). All of 

the performance criteria, such as overshoot, rising time and settling time, have attained the lowest 

values with the suggested CSMSEOBL-PID controller for the Ball balancer system, according to the 

comparative transient response study findings in Figure 5.6 and Table 5.3. These findings support the 

CSMSEOBL algorithm's significance in terms of strong exploration and exploitation search 

capabilities, as well as the system's transient reaction. In Figure 5.6, the controller's efficacy is shown 

by the smallest difference between the original and final positions. The hybridized CSMSEOBL-PID 

in this case has a minimum final position and achieves the optimal benefit in a short amount of time. 

The simulated position of Ball for different chaotic maps is shown in Figure 5.9 and this shows that 

the CSMSEOBL algorithm gives the best results for piecewise Chaotic maps. 

 

Figure 5.5 Block diagram representing tuning of PID controller parameters using different 

metaheuristic algorithms for Ball balancer system 
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Table 5.3 shows that the classical PID controller tuned Ball balancer system has maximum overshoot 

and large Integral Time absolute error (ITAE) along with a large settling time. Tuning of PID with 

PSO results in lesser settling time, lesser overshoot and less ITAE as compared to the classical 

controller. Further parameters of PID are tuned by using SFS and SMS algorithms. Results are further 

improved with SFS and SMS algorithms, but the proposed approach i.e., CSMSEOBL-based tuning of 

PID controller results in the finest response in terms of least overshoot and least ITAE as shown in 

Figure 5.6. 

A total of 150 optimization trials are carried out to assess the efficacy of all algorithm’s 

optimization processes. The population size (50) and the maximum number of iterations (25) are 

maintained constant to provide a fair comparison. The maximum run of the iteration serves as a 

stopping condition for the optimization process. 

5.6.1 Parameter setting for different metaheuristic algorithms 

Table 5.2 Parameter Settings for different Metaheuristic Algorithms 

Algorithm and Parameters Parameter Value Algorithm and Parameters Parameter 

Value 

PSO 
 

SFS  

Population 50 Population 50 

Iteration 25 Iteration 25 

Weight Function [0.2,0.9] S.Diffusion 3 

Acceleration constants 2 S.Walk 1 

The dimension of search space 5 The dimension of search 

space 

5 

SMS 
 

CSMS-EOBL  

Vector Adjustment, ρ 1 Vector Adjustment, ρ 1 

Beta [0.8, 0.4, 0.1] Beta [0.8, 0.4, 0.1] 

Alpha [0.8, 0.2, 0] Alpha [0.8, 0.2, 0] 

Threshold Probability, H [0.9, 0.2, 0] Threshold Probability, H [0.9, 0.2, 0] 

Phase Percent [0.5, 0.1, -0.1] Phase Percent [0.5, 0.1, -0.1] 
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Adjustment Parameters [0.85 0.35 0.05] Adjustment Parameters [0.85 0.35 0.05] 

Iteration 25 Iteration 25 

5.6.2 Transient response and Error convergence analysis 

Table 5.3 Comparison of step response characteristics for Z-N tuned PID controller 

 
PID Controller Parameters Step Response Characteristics 

Name of the 

Algorithm 

𝐊𝐩 𝐊𝐢 𝐊𝐝 Rise 

Time 

Settling 

Time 

Max. 

Overshoot 

Classical PID 3.45 0.0012 2.11 0.827 3.65 8.152 

Table 5.4 Comparison of step response characteristics and Fitness function for Ball balancer system 

 

PID Controller Parameters Step Response Characteristics 

Name of the 

Algorithm 

𝐊𝐩 𝐊𝐢 𝐊𝐝 Rise 

Time 

Settling 

Time 

Max. 

Overshoot 

Fitness Function 

ITAE 

PSO-PID 5.61 0.0167 2.86 0.651 2.9 4.737 0.05474 

SFS-PID 10.865 4.38E-06 5.587 0.897 2.72 -0.27 0.03675 

SMS-PID 7.9 1.2E-07 3.7431 0.57 2.1 0.496 0.03081 

CSMSEOBL-

PID 

11.032 1.02E-06 4.386 0.447 2.2 0 0.02538 

 

The performance of the proposed CSMSEOBL tuned PID controller is compared with already 

existing metaheuristic optimization algorithms like SMS, PSO and SFS. Table 5.4 shows that 

CSMSEOBL tuned PID controller results in zero overshoot and the optimal result of fitness function 

ITAE. Figure 5.6, Figure 5.7 and Figure 5.8 demonstrate the simulated position, servo angle and 

voltage respectively for the ball balancer system using different metaheuristic algorithms. The 

simulated position of the ball with the CSMSEOBL algorithm for a variety of Chaotic maps has been 
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presented in Figure 5.9 and the logistic map gives the best step response among all 10 chaotic maps. 

Figure 5.10 shows the set point tracking response for all four metaheuristic algorithms and 

CSMSEOBL results in best set point tracking. The convergence of ITAE for different metaheuristic 

algorithms is presented in Figure 5.11 and Figure 5.12 shows the comparative analysis of fitness 

function for different metaheuristic algorithms. 

 

 

 

 

 

 

 

 

Figure 5.6.  Simulated position of ball balancer for different metaheuristic algorithms 

 

 

 

 

 

 

 

Figure 5.7.  Simulated Servo angle response of ball balancer for different metaheuristic algorithms 
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Figure 5.8 The simulated voltage applied to servo motor for different metaheuristic algorithms 

 

 

 

 

 

 

 

Figure 5.9.  Simulated position of the ball with CSMSEOBL algorithm for a variety of Chaotic maps 

 

Figure 5.10.  Tracking response of ball balancer system 
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Figure 5.11.  ITAE variation for different metaheuristic algorithms 

  

Figure 5.12 Variation of ITAE for different Metaheuristic Algorithms 

5.7 Conclusion 

CSMSEOBL approach is proposed for the first time for the construction of a PID controller in a Ball 

balancer system using ITAE as the objective function. This Chapter describes how to tune the 

parameters of Proportional Integral Derivative control to achieve position and self-balancing control 

of a two-degree-of-freedom ball balancer system using an improved Elite Oppositional Based Chaotic 

State of Matter Search Algorithm. Results of simulations demonstrate that the evolved strategy greatly 

enhances efficiency when used in conjunction with the conventional system. 

In addition, a graphical and numerical comparison of the CSMSEOBL-PID approach to other 

current methodologies is shown in this chapter. When it comes to the ITAE objective function, the 

PSO-PID SFS-PID SMS-PID CSMSEOBL-PID
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CSMSEOBL-PID technique seems to provide better results than the existing methodologies described 

in the literature. This approach is used to determine the optimal settling time, rising time, and maximum 

overshoot possible. The suggested controller demonstrated flexibility and appropriate control 

efficiency when verified for simulation purposes.  
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CHAPTER 6 

2-DOF-PID Controller tuning for speed control of DC Motor using recent 

Metaheuristic techniques 

6.1 Introduction 

In our present industrial revolution, DC motors are used in almost every industrial operation[242]. As 

a result, it's widely used in a broad variety of industries because of its ease of control, low maintenance 

costs, and affordable pricing. DC motors are widely used in a variety of industrial settings, including 

machine tools, paper mills, textile mills, electric traction, and robots. As armature and field windings 

may be controlled separately, DC motor controller design is much more flexible [243]. It is common 

for DC motor speed control applications to employ a method where the armature and field winding 

currents are kept constant or vice versa, resulting in a wide range of desired parameters that can be 

effectively controlled. Keeping output speed at a predetermined level while monitoring the speed 

command is the main aim, as well as achieving the necessary speed or position control in the shortest 

amount of time feasible without excessive overshoots and settle periods [244] [238]. 

The number of closed-loop transfer functions that may be modified separately defines a control 

system's degree of freedom [1]. One-degree-of-freedom PID Controller system has the drawback that 

if an attempt is made to get a disturbance response, it results in the oscillatory response and to get a 

setpoint response, the disturbance response will get diverged [189]. Because these two requirements 

contradict and can't be met with a single-degree-of-freedom controller, a two-degree-of-freedom PID 

controller is used to fulfill them. Set point weighing on the proportional and derivative actions of the 

2DOF-PID Controller accomplishes both smooth set-point tracking and excellent disturbance rejection 

[190]. 

A hybrid algorithm CSMSEOBL (Chaotic state of matter search with Elite opposition-based learning) 

is proposed for speed control of dc motor. This hybridization results in the most efficient methodology 

for locating the global optimal PID Controller parameters concerning the required performance 

indicators. CSMSEOBL is an enhanced version of the SMS algorithm (state of matter search) that 

incorporates Chaotic Maps and Elite Opposition-based Learning (EOBL) to increase the algorithm's 

performance. The underlying principle of the SMS algorithm lies at the heart of the thermal energy 

motion technique. To enhance SMS convergence, this chaotic SMS algorithm concept is utilized to 
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analyze specific random variables. The SMS algorithm's diversity is increased by combining the two 

essential features of OBL: a global search and a rapid convergence rate. 

The following are the key points of this chapter: 

A hybrid CSMSEOBL (Chaotic State of Matter Search with Elite Opposition-based Learning) 

algorithm is explained. 

CSMSEOBL is employed for speed control of dc motor 

2-DOF-PID controller parameters are tuned by using the CSMSEOBL algorithm 

The performance of the proposed hybrid CSMSEOBL algorithm is compared with other existing 

metaheuristic algorithms using time response and convergence analysis.  

6.2 Mathematical modeling of DC Motor 

The DC motor is a popular actuator in process control. It allows for direct rotation and translation when 

utilized with axles, drums, and wires. The figure below shows the armature's electric circuit and the 

rotor's free-body diagram (Figure 6.1). 

 

Figure 6.1.  Schematic diagram of DC motor [29] 

Input to the motor is supply voltage VS which is applied to the armature of the motor and output is the 

rotating speed of the shaft. The torque of a DC motor is proportional to armature current and magnetic 

field intensity. For an armature-controlled motor, it is assumed that the magnetic field is constant thus 

the torque of the motor (τm) is proportional to simply the armature current (𝐼𝑎) by a constant factor 𝐾𝑎  

as indicated in the equation below.  

                                                                𝜏𝑚 = 𝐾𝑎𝐼𝑎                                                                                     (6.1) 

The back emf, Eb has a constant component 𝐾𝑏 that is proportional to the shaft's angular velocity ω. 

                                                          𝐸𝑏 = 𝐾𝑏𝜔= 𝐾𝑏
𝑑𝜃

𝑑𝑡
                                                                                (6.2) 
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Based on Newton's 2nd law and Kirchhoff's voltage law, we may obtain the following governing 

equations from the diagram above. 

                                                 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝑅𝑎𝐼𝑎 + 𝐸𝑏 − 𝑉𝑆 = 0                                                                         (6.3) 

                                                     𝜏𝑎 = 𝐽
𝑑2𝜃

𝑑𝑡2 + 𝐵
𝑑𝜃

𝑑𝑡
= 𝐾𝑎𝐼𝑎                                                                              (6.4) 

From equations (3) and (4), the state space equations need to be formed by considering the 3 output 

variables (Angular displacement (𝜃), angular velocity (�̇� ̇), and motor current (𝐼𝑎)). Each of the variables 

(𝑥1= 𝜃 , 𝑥2= �̇� , 𝑥3= 𝐼𝑎) are substituted from equations (3) and (4). 

                                                                   𝑥1
̇ = 𝑥2                                                                                        (6.5) 

                                                      𝑥2̇ =
−𝐵

𝐽
 𝑥2 +

𝐾𝑎

𝐽
 𝑥3 − 𝜏𝑑

̇
                                                               (6.6)         

                    𝑥3̇ =
−𝐾𝑏

𝐿
 𝑥2 −

𝑅

𝐿
 𝑥3 +

𝑉𝑆

𝐿

̇
                                               (6.7) 

Where VS is the supply voltage, 𝑅𝑎 is armature resistance, 𝐿𝑎 is armature Inductance, 𝐼𝑎 is the armature 

current, 𝐸𝑏 is back emf, 𝜏𝑎 is the armature torque, J is the inertia of the DC motor, B is the viscous 

damping coefficient [88]. 

 

Figure 6.2.  Block diagram of DC motor [185]  

6.3 PID Controller Tuning 

In most situations, the main objective of any controller in the field of control design is to reduce error. 

PID controllers are preferred by most control engineers for their applications, easy operation and 

superior performance in the vast majority of instances. The key job for enhanced efficiency is to tune 

the PID controller [191].  
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The ZN technique for determining Kp, Ti  and Td is based on the control system's transient reaction. 

The step response (open loop) approach is used in this investigation [192].In this methodology, 

parameters are calculated by open-loop step response. Here ‘T’ is the time constant and ‘L’ is the delay 

time. 

Table 6.1 ZN method of PID Controller tuning 

 

Control system grade of freedom is the number of closed-loop transfer functions that may be altered 

individually[193]. Either for reference tracking or disturbance rejection, 1DOF PID provides a viable 

result [194].  

6.3.1 Two-Degree of freedom PID Controller 

1-DOF Control results in deprived set point tracking for optimization of disturbance response and vice 

versa.  To regulate two control systems at the same time, such as load disturbance and set point, a 2-

DOF control system structure is developed (Figure 6.3). Numerous researchers developed various 

control strategies utilizing a 2-DOF controller e.g. 2-DOF-IMC [195], Control of Uncertain Input-

Delay Systems with Input/Output Linearization and 2-DOF[196]and many more. 

Multi-objective optimization is the technique of simultaneously optimizing a set of objective 

functions. Control system design is a multi-objective issue because it includes optimizing several 

objective functions such as set point responsiveness, different load conditions and model uncertainty 

tolerance. The quantity of closed-loop transfer functions that may be changed autonomously refers to 

the degree of freedom in a controller design [197]. When we try to regulate two control system 

objectives at the same time, such as setpoint value and external disturbances, we get a two-degree-of-

freedom control system. 

From this block diagram (Figure 6.2) 

C(S)- Prime Compensator or serial compensator 

            Type of Controller Kp Ti Td 

P T/L   

PI 0.9T/L L/0/3  

PID 1.2T/L 2L 0.5L 
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Cf(s)-Feedforward Compensator 

Transfer function from Output Y(s) to set point R(S) is given by 

                                                             𝐺𝑌,𝑅 (𝑆) =
𝑃(𝑆)[𝐶(𝑆)+𝐶𝑓(𝑆)]

1+𝑃(𝑆)𝐶(𝑆)𝐻(𝑆)
                                                            (6.8) 

The transfer function from Output Y(s) to Disturbance D(s) to is given by 

                                                           𝐺𝑌,𝐷(𝑆) =
𝑃𝑑(𝑆)

1+𝑃(𝑆)𝐶(𝑆)𝐻(𝑆)
                                                             (6.9) 

Assumptions  

C(S)- Prime Compensator is a conventional PID Controller 

Cf(s)-Feedforward Compensator includes only ‘P’ and ‘D’ components of the PID controller for 

simplicity. 

                                                𝐶(𝑆) = 𝐾𝑃[1 +
1

𝑆𝑇𝐼
+ 𝑇𝐷𝐷(𝑆)]                                                          (6.10)           

                                               𝐶𝑓(𝑠) =  −𝐾𝑃{𝑏 + 𝑐𝑇𝐷𝐷(𝑠)}                                                          (6.11) 

where 

𝐾𝑃, 𝑇𝐼 , 𝑎𝑛𝑑 𝑇𝐷 are basic PID Controller parameters 

D(S) =Approximate derivative gain= 
𝑆

1+𝜏.𝑆
 

𝑏, 𝑐 are 2-DOF Parameters. 

 

                             Figure 6.3. Block diagram of 2-DOF-PID Controller[198] 

To make the situation easier to understand, we'll use the following two assumptions which apply to a 

large number of real-world engineering issues with a few exclusions. 
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Different forms OF 2-DOF Controller 

A. Feedforward Controller 

 

 

Figure 6.4. Block diagram of 2-DOF-PID Controller in Feedforward mode [197] 

      Manipulated variable U(s) is given by 

𝑈(𝑆) = [𝑅(𝑆) − 𝑌(𝑆)] [𝐾𝑃 +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)] − [𝐾𝑃𝑏 + 𝐾𝑃𝑐𝑇𝐷𝐷(𝑆)]                                            (6.12) 

𝑈(𝑆) =  𝑅(𝑆) [𝐾𝑃 +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)] − 𝑅(𝑆)[𝐾𝑃𝑏 + 𝐾𝑃𝑐𝑇𝐷𝐷(𝑆)]-Y(S)[𝐾𝑃 +

𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)]  

(6.13) 

𝑈(𝑆) = 𝑅(𝑆) [𝐾𝑃(1 − 𝑏) +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)(1 − 𝑐)] − 𝑌(𝑆) [𝐾𝑃 +

𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)]                (6.14)            

  B. Feedback Controller 

    

Figure 6.5. Block diagram of 2-DOF-PID Controller in Feedback mode [197] 
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Manipulated variable U(s) for a feedback type 2-DOF controller is given by 

𝑈(𝑆) = [𝑅(𝑆) − 𝑌(𝑆)] [𝐾𝑃 +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)(1 − 𝑐)] − 𝑌(𝑆)[𝐾𝑃𝑏 + 𝐾𝑃𝛽𝑇𝐷𝐷(𝑆)]              (6.15) 

𝑈(𝑆) = 𝑅(𝑆)[ 𝐾𝑃(1 − 𝑏) +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)(1 − 𝑐)] − 𝑌(𝑆)[𝐾𝑃(1 − 𝑏) +

𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃(1 −

𝑐)𝑇𝐷𝐷(𝑆)] − 𝑌(𝑆)[𝐾𝑃𝑏 + 𝐾𝑃𝑐𝑇𝐷𝐷(𝑆)]                                                                                      (6.16) 

𝑈(𝑆) = 𝑅(𝑆)[ 𝐾𝑃(1 − 𝑏) +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)(1 − 𝑐)] − 𝑌(𝑆)[𝐾𝑃 − 𝑏𝐾𝑃 +

𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆) + 𝐾𝑃𝑏 −

𝐾𝑃𝑐𝑇𝐷𝐷(𝑆) + 𝐾𝑃𝑐𝑇𝐷𝐷(𝑆)]                                                                                             (6.17) 

U(𝑆) = 𝑅(𝑆)[ 𝐾𝑃(1 − 𝑏) +
𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)(1 − 𝑐)] − 𝑌(𝑆)[𝐾𝑃 +

𝐾𝑃

𝑇𝐼𝑆
+ 𝐾𝑃𝑇𝐷𝐷(𝑆)]             (6.18) 

 

-                                    

                              Figure 6.6.  Effect of 2-DOF Controller Structure [198] 

The scenario described above can be theoretically represented in Figure 6.6. The traditional 1-DOF 

PID controller can only achieve the sketched area. As a result, we can't optimize both the set-point and 

disturbance responses at the same time. This limitation leads the researchers to select one of the 

following alternatives: 

a. To select one of the Pareto best points from the region AB. 

b. To utilize the disturbance optimized values and establish a boundary on the set-point variable's 

modification. 

The second option was good enough in the early days of industrial applications when the set-point 

value was not altered very often. As a result, several of the best tuning techniques[199] only yielded 

the “disturbance optimal” values. 
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However, in recent times, the scenario has altered and industrial control systems are now expected 

to adjust the set-point variable regularly. In such a circumstance, a 2-DOF-PID controller is a 

valuable tool. It allows the user to make both the set-point and disturbance responses inside the 

linear framework effectively optimum at the same time. 

6.4 Metaheuristic Algorithms 

6.4.1 Water Wave optimization algorithm 

The WWO approach handles the optimization problem by modeling wave motion, propagation, 

refraction, and breaking. A wave's fitness value is related to its height and wavelength. As seen in 

Figure 6.7, shallow water waves have a higher fitness value, higher wave height, and longer wavelength 

than deep water waves.[200]. 

 

Figure 6.7 Deep and shallow sea waves having different forms 

Table 6.2 Problem-population space relationship 

Problem space Population space 

Practical problem Wave model for shallow water 

The problem's search space Seabed area 

Solve each solution to the 

problem  

A water wave with height h and wavelength 𝜆 
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The value of each solution's 

evaluation function 

The greater the fitness value, the closer the water level is to the 

bottom. The lower the fitness value, on the other hand, the better 

 

Propagation 

Because the seafloor is uneven, wave height and wavelength will vary appropriately as each wave 

propagates. The initial wave x is propagated to produce the new water 𝑥′. 

                                                   𝑥′(𝑑) = 𝑥(𝑑) + 𝑟(−1,1). 𝜆𝐿(𝑑)                                               (6.19) 

where 

𝑟(−1,1)-random number distributed uniformly 

𝐿(𝑑) −length of dth  search space 

𝜆 −water wavelength of wave x 

As shown in Figure 1, as a wave goes from deep water (low fitness region) to shallow water (high 

fitness region), the wave height rises and the wave length decreases. We compute the fitness of the 

descendant wave 𝑥′ post propagation. If f (𝑥′) > f (𝑥), the population replaces ‘𝑥’ with 𝑥′ and the wave 

height of 𝑥′ is adjusted to ℎ𝑚𝑎𝑥. Otherwise, ‘𝑥’ remains the same, but its height ‘ℎ ‘is reduced by one, 

simulating energy loss owing to inertial resistance, vortex shedding and surface friction [200]. 

Wavelength 𝜆  is updated according to Equation (6.20) 

                                                           𝜆 = 𝜆𝛼
−

𝑓(𝑥)−𝑓𝑚𝑖𝑛+𝜖

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛+𝜖                                                                         (6.20) 

where 

𝛼 − attenuation constant of wavelength 

𝑓𝑚𝑖𝑛 −minimum fitness value 

𝑓𝑚𝑎𝑥 −maximum fitness value 

Breaking 

As the wave power increases, the crests get steeper and steeper. When the peak speed surpasses the 

wave propagation speed, the wave breaks into separate waves. The optimum water wave x is 



103 

 

accomplished by breaking operations in the WWO algorithm to increase population variety. The 

formula for updating the location is as follows: 

                                      𝑥′(𝑑) = 𝑥(𝑑) + 𝑁(0,1). 𝛽𝐿(𝑑)                                                                (6.21) 

                  𝛽 −broken wave coefficient 

If the fitness value of all solitary waves created by the breaking operation is better than the 

water wave 𝑥 *, then 𝑥 * is retained. 

Refraction 

During wave propagation, the energy of the water wave continues to diminish until it reaches zero. 

This improves the model's efficacy and speeds up the WWO algorithm's convergence. The refraction 

process formula for water wave x is as follows: 

                                                     𝑥′(𝑑) = 𝑁 (
𝑥∗(𝑑)+𝑥(𝑑)

2
) , 𝑁(

𝑥∗(𝑑)−𝑥(𝑑)

2
)                                               (6.22) 

Where 

𝑥∗ −optimal solution 

𝑁(𝜇, 𝜎) −Gaussian random number having 𝜇 mean and 𝜎 standard deviation 

This time wave height 𝑥′ is ℎ𝑚𝑎𝑥 

The wavelength is updated as 

                                                                𝜆′ = 𝜆
𝑓(𝑥)

𝑓(𝑥′)
                                                                                      (6.23) 

The basic goal of the WWO algorithm is to replicate the dynamic motion of a water wave and find the 

global best solution in the search space. The process takes place from deep water to shallow seas. 

Waves with lower fitness values, longer wavelengths and lower wave heights occur in deep water; 

waves with higher fitness values, shorter wavelengths and greater wave heights occur in shallow water. 

For the water wave optimization technique, propagation, breaking and refraction give an effective 

search mechanism. 

The depth of the algorithm is increased by local search, while the breadth of the algorithm is 

increased by global search. 
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Water waves with a greater fitness value can do a local search in a narrow range, whereas water 

waves with a lower fitness value may perform a global search in a broad range due to propagation. The 

breaking converts the ideal water waves into a sequence of isolated waves, which increases the 

algorithm's calculation accuracy and allows for a more intensive search for the global optimal solution. 

The refraction may eliminate energy-depleted waves, thus avoiding search stagnation and increasing 

population variety, creating better waves to replace the bad waves and speeding up the algorithm's 

convergence speed. 

The water wave optimization algorithm's global and local searches are successfully balanced 

by the combination of three procedures.  

6.5 Simulation Results and Discussion 

In the MATLAB/Simulink environment, assessments of meta-heuristic algorithms are carried out. The 

results were obtained after 30 runs of each method on a laptop running 64-bit Windows 10, Intel(R) 

Core i5 processor, CPU @1.30GHz, 1.5 GHz and 8GB RAM. Tables 6.2 provide the initialization 

settings for the variables that are held constant after each run of the metaheuristic algorithms' code 

execution. 

6.5.1 Tuning of the 2-DOF-PID controller by using the CSMSEOBL algorithm 

 

Figure 6.8.  Block diagram of 2-DOF-PID controller tuning using CSMSEOBL algorithm 
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In this simulation, a DC motor with a 2-DOF-PID controller and ITAE as a fitness function is presented 

which is shown in Figure 6.8. It has a more complicated architecture than a traditional PID controller. 

The ITAE goal function is minimized in controller synthesis. The goal of this research is to get a DC 

motor's speed as near to the set point condition as possible. 

The conventional PID Controller is used to determine the values of the PID controller at first, 

as mentioned in Table 6.1. Furthermore, metaheuristic algorithms such as PSO, WWO, SMS and 

eventually the hybridized CSMSEOBL optimize the 2-DOF-PID controller settings by calculating the 

difference between the predicted and calculated speed of the DC motor. Parameter settings for all the 

above-mentioned algorithms are shown in Table 6.3. 

Table 6.3 Parameter Setting for different Metaheuristic Algorithms 

Algorithm and Parameters Parameter Value Algorithm and Parameters Parameter Value 

PSO 
 

WWO  

Population 50 Population 50 

Iteration 100 Iteration 100 

Weight Function [0.2,0.9]  𝛼 = 1.0026 

 

𝛽 ∈ [0.01, 0.25] 

Acceleration constants 2 Wave height ℎmax 12 

The dimension of search space 5 Random number 𝑘max min(12, 𝐷/2) 

CSMSEOBL  Wavelength 𝜆 0.5 

Vector Adjustment, ρ 1 The dimension of search space 5 

Beta [0.8, 0.4, 0.1] SMS  

Alpha [0.8, 0.2, 0] Vector Adjustment, ρ 1 

Threshold Probability, H [0.9, 0.2, 0] Beta [0.8, 0.4, 0.1] 

Phase Percent [0.5, 0.1, -0.1] Alpha [0.8, 0.2, 0] 

Adjustment Parameters [0.85 0.35 0.05] Threshold Probability, H [0.9, 0.2, 0] 
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𝑎 = 0.02 𝑏 = 20 Phase Percent [0.5, 0.1, -0.1] 

No. of Chaotic maps 10 Adjustment Parameters [0.85 0.35 0.05] 

6.5.2 Time response analysis 

Table 6.4 Time response specifications for different metaheuristic algorithms 

Name of 

Algorithm 

Kp Ki Kd b c Tf Rise 

Time 

Settling 

Time 

Overs

hoot 

Peak 

Time 

PSO-2-

DOF-PID 

5.68 16.843 -0.0054 0.0078 0.0078 2390 0.7622 1.3561 1.8399 5.2932 

WWO-2-

DOF-PID 

8.34 26.94 -0.0039 0.0065 0.0065 2360 0.6932 1.2347 1.2327 5.2731 

SMS-2-

DOF-PID 

1.64 9.64 -0.0083 0.0065 0.0065 2165 0.406 5.613 4.4215 5.2206 

CSMSEOB

L-2-DOF-

PID 

1.88 52.3 -0.0096 0.0047 0.0047 2290 0.0763 0.139 1 5.0804 

             

Figure 6.9. Step response analysis for speed control of DC motor using different metaheuristic 

algorithms 
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It is clear from Figure 6.9 that CSMSEOBL tuned 2-DOF-PID Controller outperform the other 2-

DOF-PID Controller tuning methods in term of settling time and maximum overshoot. 

6.5.3 Convergence Analysis 

Table 6.5 ITAE and Standard Deviation for different metaheuristic algorithms 

Algorithm Fitness Function Value 

ITAE 

Std. deviation in ITAE 

PSO-2-DOF-PID 0.2028 .4521 

WWO-DOF-PID 0.1516 .05137 

SMS-2-DOF-PID 0.1764 .06908 

CSMSEOBL-2-DOF-PID 0.02612 .01211 

 

After 100 iterations, these optimization techniques converge to the lowest value of the fitness 

function shown in Table 6.5. The convergence of the meta-heuristic method for the optimum simulation 

run is shown in Figure 6.15. It has been discovered that the proposed techniques require fewer iterations 

to converge to an optimum PID controller. The CSMSEOBL-2-DOF-PID appears to converge faster 

than the WWO-2DOF-PID, SMS-2DOF-PID and PSO-2-DOF-PID. 

While CSMSEOBL-2-DOF-PID converged to the ITAE of 0.02612 in only 24 iterations, 

WWO-2-DOF-PID required roughly 56 iterations to attain a similar result. In terms of transient 

response criterion and optimized Fitness Function value, CSMSEOBL-2-DOF-PID and WWO-2-

DOF-PID beat ZN and PSO methods. Furthermore, compared to PSO-PID, the suggested technique 

requires fewer iterations to get the best ITAE value (Figure 6.14). 

  Set point tracking responses using different existing and suggested hybrid algorithms 

are shown in Figure 6.10, Figure 6.11, Figure 6.12 and Figure 6.13 respectively and these Responses 

clearly show that CSMEOBL tuned 2-DOF-PID controller results in the best method as compared to 

other. 
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              Figure 6.10 Set point tracking response using PSO tuned 2-DOF-PID Controller 

    

Figure 6.11 Set point tracking response using WWO tuned 2-DOF-PID Controller 

            

Figure 6.12 Set point tracking response using SMS tuned 2-DOF-PID Controller 
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Figure 6.13 Set point tracking response using CSMSEOBL tuned 2-DOF-PID Controller 

 

Figure 6.14 ITAE variation for various metaheuristic algorithms 

 

Figure 6.15 Comparative analysis of ITAE convergence using different metaheuristic algorithms 
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The above analysis leads to the conclusion that the suggested tuning methods offer PID 

controller settings with a reduced ITAE value which is a desirable characteristic. For 30 

individual runs, the CSMSEOBL-2-DOF-PID controller had the lowest ITAE and the lowest standard 

deviation. As a result, based on the ITAE fitness function the CSMSEOBL-2-DOF-PID controller is 

the most accurate meta-heuristic algorithm. Similarly, CSMSEOBL-2-DOF-PID shows low variation 

in the results between runs demonstrating the algorithm's strong repeatability. In terms of fitness 

function value, WWO-2DOF-PID is ranked second behind CSMSEOBL-2-DOF-PID. 

6.6 Conclusion 

The optimal gain settings of a PID controller to govern the rotational speed of a DC motor are provided 

in this paper using a new hybrid technique. Meta-heuristic methods are used to reduce the ITAE fitness 

function throughout the controller design process. The efficacy of meta-heuristic algorithms is 

evaluated using the transient response characteristics and set point tracking of a DC motor speed 

control system. In comparison to other existing methods, the simulation results show that using the 

CSMSEOBL-based 2-DOF-PID control strategy with ITAE as an objective function leads to decreased 

settling time and overshoot. As a result, the suggested approach may be used to confirm that 2-DOF-

PID controllers work optimally in big electrical systems, the manufacturing industry, and the robotics 

sector, among other applications. 
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Chapter 7 

Conclusion and further scope of work 

7.1 Introduction 

As a result of successful implementations and high intensity, research on metaheuristics has been 

extensively published in the literature. Though little information has been gathered on in-depth research 

of metaheuristic performance concerns, it remains a "black box" as to why some metaheuristics 

perform better on particular optimization tasks while others do not.  

CSMSEOBL is a novel hybrid metaheuristic algorithm that is developed in this thesis and tested 

on some benchmark functions as well as nonlinear control problems to demonstrate its efficiency and 

effectiveness. In addition, a comparative study with other recent metaheuristic algorithms is presented 

to demonstrate its superiority. This chapter provides a conclusion as well as a discussion of the future 

potential in this field. 

7.2 Contributions of work 

The conclusion of the work is being presented in a chapter-wise manner and is given below: 

Chapter 1 concludes that optimizing the parameters of nonlinear systems is one of the most challenging 

elements in control theory. Metaheuristic techniques have been employed to address this issue. They 

are advantageous when working with complex systems. In comparison to deterministic algorithms, 

metaheuristic optimization approaches perform very well in tackling nonlinear control problems with 

unknown search spaces. These optimization techniques have been used in almost every field of science, 

technology, and engineering to choose the optimum solution from a pool of plausible alternatives.   

The literature reviewed in Chapter 2 covers a wide variety of topics, including recent metaheuristic 

algorithms, the hybridization of two or more metaheuristics, surveys, comparisons, and performance 

analysis, Variants of controlling techniques as well as a broader range of applications in fields such as 

process control, electromechanical systems, engineering, etc. 

Chapter 3 conclude the mathematical and conceptual description of the proposed metaheuristic 

optimization technique i.e., CSMSEOBL. Some validity criteria have been considered to examine the 

efficacy of metaheuristics. The median, mean, normalized value and standard deviation of objective 

function values acquired over a certain number of runs are among these. In addition to these 

approaches, statistical analysis techniques have been used, which is the Wilcoxon test p-value. The 

CSMSEOBL algorithm converged much quicker than the PSO, SMS, WWO, SFS and CS algorithms, 

according to the findings of unimodal benchmark functions. Similar behaviour was found in the 
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multimodal benchmark functions, demonstrating the proposed algorithm's strong diversification and 

avoidance of local optima. According to the findings of composite test functions, 

CSMSEOBL outperformed other algorithms, demonstrating that this algorithm could effectively 

balance diversification and intensification to find the global optima of complex test functions. The 

findings of performance measurements revealed that CSMEOBL's search agent needed to modify 

quickly in the early stages of optimization and progressively in the latter stages. The findings revealed 

that this approach resulted in comprehensive diversification of the search space and intensification of 

the most promising parts. The enhancement of the initial random population and the optimal solution 

produced so far (convergence) by CSMSEOBL is further proved and validated by the average fitness 

of solutions and convergence curves. 

A Continuously Stirred Tank Reactor (CSTR) is described in Chapter 4 as an example of how the 

suggested hybrid algorithm 'CSMSEOBL' may be used to set the FOPID Controller's parameters for 

temperature and concentration control. The following are the most significant results of the 

investigation: It improves the functionality for exploration and exploitation; when implemented to a 

nonlinear control problem, it results in faster convergence; CSMSEOBL also exhibits promising results 

in terms of overshoot, settling time, and ITAE for performance optimization. 

 In Chapter 5, the CSMSEOBL method is proposed for tuning PID controller parameters in a Ball 

balancer system using ITAE as the fitness function. Using an updated Elite Oppositional Based Chaotic 

State of Matter Search Algorithm, the parameters of Proportional Integral Derivative control are tuned 

to accomplish position and self-balancing control of a balancer device with two degrees of freedom. 

The results of the simulations reveal that the evolved strategy greatly enhances the efficiency of this 

nonlinear system.  

With the new hybrid CSMSEOBL algorithm, the optimal gain settings of a 2-DOF-PID controller for 

managing the rotational speed of a DC motor are described in Chapter 6. To lower the ITAE fitness 

function, CSMSEOBL and other current Meta-heuristic approaches are employed. Based on the 

transient response characteristics and set point tracking of a direct current motor speed control system, 

the effectiveness of the proposed hybrid meta-heuristic algorithms is determined. When compared to 

other existing methods, the CSMSEOBL-based 2-DOF-PID control strategy using ITAE as the 

objective function results in a shorter settling time and less overshoot than the other methods used. 

7.3 Suggestions for further work 

With various research recommendations for future investigations, this study may be expanded and   i

mproved: 
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• Intelligent sampling and surrogate modelling are two more major areas that demand the 

researcher's attention. Surrogate techniques aid metaheuristics in work evaluations of 

enormously computationally costly capacities by estimating the actual objective function, while 

intelligent sampling reduces the limits of issue space for confined looking to best 

neighborhoods, this region has yet to be thoroughly investigated, thus there is a lot of room for 

investigation. 

• Scalable metaheuristic algorithms that can adapt and fine-tune themselves may be used to solve 

big optimization problems with enormous variable selection. 

• To increase its performance, the CSMSEOBL technique may be combined with other stochastic 

optimization algorithms. Finally, CSMSEOBL's performance on various real-world 

engineering optimization tasks may be evaluated. 

• Even if algorithms are efficient, adequate implementation and parallelization may improve their 

practical use. 

• The use of other recently developed metaheuristic optimization techniques, such as the Honey 

Badger Algorithm, the Dingo Optimizer, Artificial Gorilla Troops Optimizer, the Rocks 

Hyraxes Swarm Optimizer, and many others may be employed for the control of CSTR, Ball 

Balancers, Direct Current motors, and other nonlinear control problems. 

The performance study of CSMSEOBL and other contemporary metaheuristic optimization approaches 

may benefit from the inclusion of other emerging nonlinear control problems such as inverted 

pendulum, 2-DOF-Helicopter, Cruise control systems and many more. 
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