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ABSTRACT 
 

We designed a non-linear composite metamaterial made up of alternating layers of fused 

silica glass and silver with thicknesses adjusted so that ε'=0 in the near infrared range., 

and the structure's optical behaviour is theoretically studied. It shows a shift from negative 

to positive in the real component of dielectric permittivity as a function of wavelength. 

we also have studied the variation of ENZ wavelength with thickness of dielectric layer 

and plasma frequency. By using the Maxwell Garnett theory, we have calculated non-

linear optical properties, and we find that as we increase the thickness of dielectric 

material the ENZ wavelength increases along with the increases in real part of non-linear 

susceptibility. A significant enhancement in nonlinear parameters has been also observed 

at ENZ wavelength due to the ENZ nature of the composite material. 
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CHAPTER 1 

The Origin of Refractive Index 

 
We've already stated that light travels slower in water than in air, and somewhat slower 

in air than in vacuum. The index of refraction n describes this phenomenon. Now we'd 

like to know how such a slower velocity might have occurred. We should look at the 

relationship between several physical assumptions or claims, such as  

1. That the entire electric field in each physical situation may always be expressed 

     by the total of all the charges in the universe's fields 

 

2. A single charge's field is always given by its acceleration multiplied by a retardation at 

speed        c. 

While it is true that light or any electrical wave appears to travel at the speed c/n through 

a material with an index of refraction of n, the fields are still produced by the motions of 

all the charges—including the charges moving in the material—and with these 

fundamental contributions of the field travelling at the ultimate velocity c, we can see 

how the apparent slower velocity is achieved. 

                         

 

 

 

S and P are thought to be far distant from the plate in this example. An electric field 

anywhere that is far from all moving charges is the (vector) sum of the fields produced 

by the external source (at S) and the fields produced by each of the charges in the plate 

of glass, each with its proper retardation at the velocity c, according to the principles we 

stated earlier. 

 

 

𝐸 = ∑ 𝐸𝑒𝑎𝑐ℎ 𝑐ℎ𝑎𝑟𝑔𝑒
𝑎𝑙𝑙 𝑐ℎ𝑎𝑟𝑔𝑒𝑠

                                                               (1) 

 

                                                    

Fig 1. Electric waves passing through a layer of transparent 

material.  
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𝐸 = 𝐸𝑠 + ∑ 𝐸𝑒𝑎𝑐ℎ 𝑐ℎ𝑎𝑟𝑔𝑒                                               (2)

𝑎𝑙𝑙  𝑜𝑡ℎ𝑒𝑟 𝑐ℎ𝑎𝑟𝑔𝑒𝑠

 

 

where Es is the field owing only to the source and would be exactly the field at P if no 

material were present. If there are any additional moving charges, we anticipate the field 

at P to be different from that at Es. Consider the case where the impacts of the other atoms 

are negligible in comparison to the effects of the source. To put it another way, we take a 

material where the total field is not greatly affected by the mobility of the other charges. 

This relates to a material with a refraction index extremely near to one. The field produced 

at P by all the oscillating charges in the glass plate must be calculated. 

This section of the field will be referred to as Ea, and it is just the second word expressed 

as a sum. We'll have the whole field at P when we add it to the term Es because of the 

source. If the total field at P is going to appear like radiation from the source that is slowed 

while travelling through the thin plate, the "correction field" Ea would have to be. A wave 

going to the right (along the z-axis) would have no impact if the plate had no influence 

on it. 

                                 
𝐸𝑠 = 𝐸0 cos𝑤(𝑡 −

𝑧

𝑐
)                                                                 (3)  

 

𝐸𝑠 = 𝐸0𝑒
−𝑖𝜔(𝑡−

𝑧

𝑐
)                                                                         (4)  

 

The thickness of the plate Δz. If the plate were not there the wave would travel the 

distance Δz in the time Δz/c. But if it appears to travel at the speed c/n then it should take 

the longer time nΔz/c or the additional time Δt = (n−1)Δz/c. It would then resume 

travelling at the speed of c. We can account for the extra time it takes to pass through the 

plate by substituting t with (t−Δt) or by [t−(n−1)Δz/c]. As a result, the wave should be 

written after the plate is inserted. 

                                         𝐸𝑎𝑓𝑡𝑒𝑟𝑝𝑙𝑎𝑡𝑒 = 𝐸0𝑒
𝑖𝜔(𝑡−(𝑛−1)

△𝑧

𝑐
 −𝑧/𝑐)                                           (5)    

 

𝐸𝑎𝑓𝑡𝑒𝑟𝑝𝑙𝑎𝑡𝑒 = 𝐸0𝑒
−𝑖𝜔((𝑛−1)

△𝑧

𝑐
 )
𝐸0𝑒

𝑖𝜔(𝑡−
𝑧

𝑐
 )                                          (6)  

 

 

When Δz is tiny, it is quite simple to identify the proper amount to add; we will remember 

that if x is a small number, then ex is nearly equal to (1+x). We can write, therefore 

𝑒
−𝑖𝜔((𝑛−1)

△𝑧

𝑐
 )
≈ 1 − 𝑖𝜔 ((𝑛 − 1)

△𝑧

𝑐
 )                                           (7)   

 

𝐸𝑎𝑓𝑡𝑒𝑟𝑝𝑙𝑎𝑡𝑒 = 𝐸0𝑒
𝑖𝜔 (𝑡 −

𝑧

𝑐
)

⏟        
𝐸𝑠

−
𝑖𝜔(𝑛 − 1)Δ𝑧

𝑐
𝐸0𝑒

𝑖𝜔 (𝑡 −
𝑧

𝑐
)

⏟                
                                      (8)

𝐸𝑎
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The field Es will have the same phase everywhere on the plate if the source S is far to the 

left, thus we may write that in the plate's vicinity.                   

𝐸𝑠 = 𝐸0𝑒
𝑖𝜔(𝑡 −𝑧/𝑐)                                                            (9)      

 

𝐸𝑠 = 𝐸0𝑒
𝑖𝜔𝑡  (𝑎𝑡 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒)                                               (10) 

 

When it comes to light difficulties, the right description of an atom provided by wave 

mechanics states that the electrons behave as if they were held by springs. Assume that 

the electrons have a linear restoring force that, when combined with their mass m, causes 

them to act like little oscillators with a resonant frequency of 0. We've already looked at 

such oscillators and know that their motion is described by the following equation: 

𝐹 = 𝑚(
𝑑2𝑥

𝑑𝑡2
+ 𝜔0 

2 𝑥)                                                      (11) 

F stands for the driving force. 

The driving force in our problem comes from the electric field of the wave from the 

source, thus we should employ that. 

 

                                                𝐹 = 𝑞𝑒𝐸𝑠 = 𝑞𝑒𝐸0𝑒
𝑖𝜔𝑡                                                    (12)          

 

The electron's equation of motion is then 

                                    

𝑞𝑒𝐸0𝑒
𝑖𝜔𝑡 = 𝑚(

𝑑2𝑥

𝑑𝑡2
+ 𝜔0 

2 𝑥)                                          (13) 

                                                      

𝑥 = 𝑥0𝑒
𝑖𝜔𝑡                                                             (14)  

 

𝑥0 =
𝑞𝑒𝐸0

𝑚(𝜔0 
2−𝜔2)

                                                         (15)  

 

so that 

                                  

𝑥0 =
𝑞𝑒𝐸0

𝑚(𝜔0 
2 − 𝜔2)

𝑒𝑖𝜔𝑡                                             (16) 

 

We know that 

      

                      total field at P  =   - 
𝜂𝑞

2𝜖0𝑐
𝑖𝜔𝑥0𝑒

𝑖𝜔(𝑡−
𝑧

𝑐
)                               (17)           
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or just putting x0 in above equations we get 

 

𝐸𝑎 =
𝜂𝑞

2𝜀0𝑐
[𝑖𝜔

𝑞𝑒𝐸0

𝑚(𝜔0
2 − 𝜔2)

𝑒𝑖𝜔(𝑡−
𝑧
𝑐
)]                                       (18) 

 

The two expressions of Ea will, in fact, be identical if 

(𝑛 − 1)∆𝑧 =
𝜂𝑞𝑐

2

2𝜖0𝑚(𝜔0
2 − 𝜔2)

                                                (19) 

Substituting NΔz for η and cancelling the Δz, we obtain our major result: a formula for 

the index of refraction in terms of the characteristics of the material's atoms—as well as 

the frequency of light: 

 

𝑛 = 1 +
𝑁𝑞𝑐

2

2𝜖0𝑚(𝜔0
2 − 𝜔2)

                                                    (20) 

 

This equation gives the “explanation” of the index of refraction that we wished to 

obtain. In this formula we don’t know about the natural frequency of atoms. And 

definitely we 

can’t get a general formula for the n. Because the value of ω0 is different for every 

different material. Now we discuss our formula in various possible circumstances. 

 

2.1 For gases 

 

The electron oscillators' inherent frequencies correlate to ultraviolet light, which means 

that 0 is substantially greater than visible light. The index for gases is basically constant. 

However, if we look attentively, we can observe that n climbs slowly with. 

That is why a prism bends light in the blue direction more than in the red. 

• If the frequency is very near to natural frequency or if natural frequency is evident. 

Because the denominator is zero, the index might grow exponentially. 

• If is larger than the natural frequency, our equation is now negative, implying that n has 

a negative value. This indicates that the effective speed of the waves in the material 

exceeds c. 

The speed at which you may transmit a signal, on the other hand, is defined not by the 

index at one frequency, but by the index at several frequencies. The index indicates the 

speed at which the wave's nodes travel. A wave's node is not a signal in and of itself. To 

convey a signal, you must alter the wave in some way, for as by cutting a notch in it or 

making it slightly thicker or thinner. That means the wave must have several frequencies, 

and it can be demonstrated that the speed at which signals move is determined not by the 

index alone, but by the way the index varies with frequency. 

 

We need to make some adjustments to be entirely correct. 

1. We should anticipate that our atomic oscillator model will have some dampening force. 
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2. A second change was made to account for the fact that each type of atom has many 

resonance frequency. 

It's simple to solve our dispersion problem by thinking that there are multiple distinct 

types of oscillators, each acting independently. 
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CHAPTER 2. 

Drude Model: Deriving the permittivity of metal 
 

2.1 Derivation of electron motion  

 

Let’s say the driving oscillating electric field is E=E0 Cos(-ωt) The damping force, which 

is defined by the damping coefficient γ, is velocity dependant. (unit of chosen such that 

force = γmv) 

𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 =
𝑞𝐸0
𝑚
cos(−𝜔𝑡)                                               (21) 

 

 

Solution of the equation               𝑥 = 𝑥0 cos(−𝜔𝑡 + 𝜙)                                                 (22) 

 

In complex form,                            𝑥 = 𝑥0𝑒
𝑖𝜙𝑒−𝑖𝜔𝑡                                                           (23)           

 

                                                      �̃� = 𝑥0̃𝑒
−𝑖𝜔𝑡                                                              (24)           

Take derivative 

                                               
𝑑�̃�

𝑑𝑡
= (−𝑖𝜔)𝑥0̃𝑒

−𝑖𝜔𝑡                                                                             (25) 

                                     

                                               
𝑑2�̃�

𝑑𝑡2
= (−𝑖𝜔)2𝑥0̃𝑒

−𝑖𝜔𝑡                                                    (26) 

 

Put all of these numbers into equation 1 and solve for the complex form amplitude of 

electron motion. 

                                             𝑥0̃ =
𝑞𝐸0

𝑚
 

1

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

                                                    (27)  

The fact that it's complicated simply implies that there's a time delay (phase shift) between 

the generating electric field and the electron's reaction. 

𝑥0̃ =
𝑞𝐸0
𝑚
 

1

(𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾)

𝑒−𝑖𝜔𝑡                                     (28) 

We obtain after finding the real and imagined parts. 

                                           𝑥𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) =
𝑞𝐸0

𝑚
 

𝜔0
2−𝜔2

(𝜔0
2−𝜔2)2+(𝜔𝛾)2)

cos(−𝜔𝑡 + 𝜙)             (29) 

 

 

2.2 Dipole moment  

   The complex dipole moment created by an electron travelling like this in an atom (with 

the nucleus at the origin, immobile and hence not contributing to the dipole moment) is 

calculated as follows: 
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                                                          𝑷 = ∑𝒒𝒊 𝒓𝒊                                                             (𝟑𝟎) 

 

                                                 �̃� = (𝑞) (
𝑞𝐸0

𝑚
 

1

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

𝑒−𝑖𝜔𝑡) 𝑥                                (31)̂   

 

                                                   �̃� =
𝑞2𝐸0

𝑚
 

1

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

𝑒−𝑖𝜔𝑡                                          (32) 

 

The polarisation P stands for the dipole moment per volume. If there are γN electrons per 

volume, each operating with the same dipole moment as described above, the complex 

polarisation is obtained by multiplying the last equation by N. 

�̃� =
𝑁𝑞2𝐸0
𝑚

 
1

(𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾)

𝑒−𝑖𝜔𝑡                               (33) 

                                            

�̃� =
𝑁𝑞2

𝑚
 

1

(𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾)

(𝐸0𝑒
−𝑖𝜔𝑡)                            (34) 

                                                     

                                              �̃� =
𝑁𝑞2

𝑚
 

1

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

�̃�                                                        

 

Between P and E, there is a phase change. 

 

2.3 Susceptibility and Permittivity  

Because susceptibility is determined by P=𝜖0𝜒𝐸 We can just read off the susceptibility 

from the previous equation as the material multiplying  Ē divided by 

                              �̃� =
𝑁𝑞2

𝑚𝜖0
 

1

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

                                               (35) 

Plasma Frequency is a constant number that also happens to be the frequency at which a 

plasma will spontaneously oscillate if the positive and negative charges in the plasma are 

offset from each other. 

𝜔𝑃 = √
𝑁𝑞2

𝑚𝜖0
                                                       (36) 

 

As a result, we may write susceptibility in a very concise way, 

 

                                                     �̃� =  
𝜔𝑃
2

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

                                               (37) 

 

Furthermore, because susceptibility and permittivity (dielectric constant) are linked, 

                                                   𝜖𝑟 = 1 + 𝜒                                                        (38) 

 

                                   𝜖�̅� = 1 +  
𝜔𝑃
2

(𝜔0
2−𝜔2−𝑖𝜔𝛾)

                                                                   (39) 
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At a very low frequency value ω=0 

                              𝜖�̅�(𝐷𝐶) = 1 +  
𝜔𝑃
2

(𝜔0
2−02−𝑖0𝛾)

                                                          (40) 

                              𝜖�̅�(𝐷𝐶) = 1 +
𝜔𝑃
2

(𝜔0
2)
                                                                 (41) 

 

And high frequency value 

                                     

𝜖�̅�(ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 1 +  
𝜔𝑃
2

(𝜔0
2 −∞2 − 𝑖∞𝛾)

                                      (42) 

 

                                            𝜖�̅�(ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 1                                                     (43)          
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CHAPTER 3 

Zero Refractive Index 

 
 

3.1 Negative Refractive Index 

 

Despite the fact that it was known that the refractive index would have to be a complex 

number to account for absorption and even a tensor to characterise anisotropic materials, 

the sign of the refractive index was never addressed. Veselago originally addressed the 

scenario of a medium with both negative dielectric permittivity and negative magnetic 

permeability at a particular frequency in 1967, and came to the conclusion that the 

medium has a negative refractive index. Despite the fact that Veselago went on to point 

out several interesting effects in NRMs, such as a modified Snell's law of refraction, a 

reversed Doppler shift, and an obtuse angle for Cerenkov radiation, his result remained 

an academic curiosity for a long time because real materials with simultaneously negative 

and were not available. However, theoretical concepts for structured photonic media with 

negative and in particular frequency ranges have been established experimentally in 

recent years, bringing Veselago's result to the forefront. 

The effective refractive index is negative. The complex refractive index of a medium is 

the ratio of the speed of an electromagnetic wave through that medium to the speed of an 

electromagnetic wave in vacuum, and it may be used to calculate relative dielectric 

permittivity. If both ε and μ are negative in a given thus be written as n =√|𝜇||𝜀|, where 

μ is complex relative magnetic permeability and ε wavelength range, this means that we 

may write μ = |μ| exp( iπ) and in an equivalent fashion ε = |ε| exp( iπ). It follows that  

 

𝑛 = √|𝜇||𝜀| exp(2𝑖𝜋)                                                     (44) 

 

𝑛 = −√|𝜇||𝜀|                                                            (45) 

NRM metamaterial is a combination of two materials that independently demonstrate 

negative permeability and permittivity, as no known material has these properties 

intrinsically. ε<0 and μ<0. 

The lossy Drude model, in which polarisation and magnetization are separated, is a 

commonly used form for effective and. 

                                        𝜀𝑒𝑓𝑓(𝜔) = 1 −
𝜔𝑝𝑒
2

𝜔(𝜔+𝑖Γ𝑒)
                                                 (46) 

 

                                        𝜇𝑒𝑓𝑓(𝜔) = 1 −
𝜔𝑝𝑚
2

𝜔(𝜔+𝑖Γ𝑚)
                                               (47) 

 

 

 

For both polarisation and magnetization, the plasma frequency ωp and the damping 

constant Γ are commonly considered to be identical, 
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𝜔𝑝𝑒 = 𝜔𝑝𝑚 = 𝜔𝑝,    Γ𝑝𝑚 = Γ𝑝𝑒 = Γ𝑝                                           (48) 

 

The refractive index of a low loss model becomes 

                                      𝑛𝑒𝑓𝑓(𝜔) = 1 −
𝜔𝑝
2

𝜔(𝜔+𝑖Γ)
≈ 1 −

𝜔𝑝
2

𝜔2
+ 𝑖Γ

𝜔𝑝
2

𝜔3
                                (49) 

The assumption that dumping is negligible is a common one, and it's a good estimate even 

from an experimental standpoint. Finally, if lossy metamaterial is explicitly considered, 

the damping factor is usually expressed as a proportion of plasma frequency. The Lorentz 

model, which is relevant to various experimental implementations of negative 

permeability structures, is another model frequently seen in literature. 

 

3.2 Zero Refractive Index 

 

Near zero material parameters are not a new phenomena, as we all know. Metamaterial 

is classed as epsilon-near-zero (ENZ), mu-near-zero (MNZ), or epsilon-and-mu-near-

zero (EMNZ) depending on whether permittivity, permeability, or both are zero. All of 

these metamaterials have a zero index (ZIM). EMNZ metamaterials, on the other hand, 

have been renamed ZIM metamaterials[2]. ZIM is the only one with both ε = 0 and μ = 

0. The zero refractive index allows for a wide range of applications. Waveguide 

Rectangular This feature has always been present in rectangular waveguides, long before 

metamaterial was recognised. Consider a rectangular waveguide. The wave number k for 

TEmn mode is given by, where m index refers to the bigger dimension a and n index 

relates to the smaller dimension b. 

 

                                        𝜅 = √(
𝜔

𝑐
)
2

− 𝜋2 [(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

]                                             (50) 

                                               𝜅 =
1

𝑐
√𝜔2 − 𝜔𝑚𝑛2                                                             (51) 

 

                                    𝜔𝑚𝑛
2 = [(

𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

]                                                        (52)               

is the frequency of the cut-off. The wave velocity, also known as phase velocity, is 

expressed as 

                                       𝑣𝑝 =
𝜔

𝑘
=

𝑐

√1−𝜔𝑚𝑛 
2 /𝜔2

                                                         (53) 

                                     

                                       𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝑐√1 − 𝜔𝑚𝑛 2 /𝜔2                                                   (54) 

and the group velocity is given by Below cut-off frequency (ω < ωmn), no mode exists as 

k is imaginary and for very high frequencies (ω >> ωmn), the propagation resembles that 

in free space. At extremely high frequencies, the wavelength λmn is so tiny in comparison 

to the dimensions a and b that the incoming wave seems to be moving in empty space. 

The TE10 mode corresponds to the lowest cutoff frequency of ω10.  At ω= ωmn, the wave 

vector k is 0 for any mode, hence the effective refractive index is zero and the phase 

velocity is infinite, as it should be It should be emphasised that if phase velocity exceeds 

c, or even infinite, no physical rules are broken because it has no physical relevance. The 
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group velocity is the rate of energy transmission that is always smaller than c. As a result, 

it has been established that a physical system's zero refractive index is a highly natural 

attribute. 

 

 

3.3 Snell’s Law for NZI Material 

 

(1) If n1 is zero :- 

If light travels from zero refractive index to any medium with refractive index n2 then 

n1 = 0 

n2 sin(r) = 0, n2 ≠ 0 

So only, 

 

sin(r) = 0 

 

The refraction angle (r) is thus always zero. 

The angle of refraction in the second media is always zero or the transmitted light is 

directed towards the normal for any angle of incidence in the first medium. 

 

(2) If n2 is zero: 

If light travels from a media having a refractive index of n1 to a medium with a refractive 

index of zero, 

                      𝑛1 sin 𝑖 = 𝑛2 sin 𝑟                     ,  𝑛2 = 0 

 

                       𝑛1 sin 𝑖 = 0 

                            sin 𝑖 = 0 

As a result, the light must incident normally before passing through ZIM. 
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CHAPTER 4.  

ENZ Material 
 

 

4.1 Classifications 

 

"Materials with a permittivity (ENZ) that approaches zero" The ENZ regime occurs in 

general in a wavelength range where both the real and imaginary parts of the permittivity 

are near to zero. Epsilon-near-zero (ENZ) materials are intriguing nonlinear plasmonic 

materials because of their unique optical characteristics. Several transparent conductive 

oxides (TCOs) have been found to have substantial optical nonlinearities at their ENZ 

wavelengths, including indium-tin oxide (ITO) and aluminum-doped zinc oxide 

(AZO)[4]. Furthermore, ENZ modes of ENZ materials thin films may be used to couple 

with plasmonic resonant modes to increase optical modulation efficiency. ENZ materials 

have long been thought of as a key platform for integrated devices and nanophotonics. 

In a number of applications, such as nonlinear optical switching and mode coupling, a 

material's ENZ wavelength must adjust to a desired working wavelength. "Materials 

having ENZ in the wavelength range of 1525nm – 1565nm are particularly appealing for 

optical telecommunications applications." 

Because of its potential for low-cost production and compatibility with silicon-based 

integrated photonics, ITO has shown special promise among these materials. In 

commercial semiconductor integrated circuits, ITO is frequently employed. As a result of 

its compatibility with well-established integrated photonics production procedures, it is 

an appealing material for building ENZ-based optoelectronic devices. Furthermore, it has 

been shown that annealed ITO has a quicker recombination time than many 

semiconductors. 

 

4.2 Indium Tin Oxide (ITO) 

 

Because of its unique optical characteristics, indium tin oxide (ITO) offers a wide range 

of uses at its epsilon-near-zero (ENZ) wavelength. The ENZ wavelength can be easily 

tuned by post-annealing. We show that thermal annealing in air for up to 130 minutes at 

330°C may red-shift the ENZ wavelength of ITO films over a wide range of wavelengths 

from 1200 nm to 1550 nm. The Drude model parameters of plasma frequency, damping 

factor, electron mobility, and effective mass were extracted using optical transmittance 

and reflectance spectra, as well as electron densities, for these ITO samples. The findings 

reveal that the red-shift in plasma frequency and ENZ wavelength is caused by changes 

in electron density and effective mass. At its epsilon-near-zero (ENZ) wavelength, indium 

tin oxide (ITO) has a wide range of applications due to its unique optical properties. Post-

annealing allows for easy tuning of the ENZ wavelength. Thermal annealing in air for up 

to 130 minutes at 330°C red-shifts the ENZ wavelength of ITO films throughout a wide 

range of wavelengths from 1200 nm to 1550 nm, according to our findings. Optical 

transmittance and reflectance spectra, as well as electron densities, were used to derive 

the Drude model parameters of plasma frequency, damping factor, electron mobility, and 
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effective mass for these ITO samples. Changes in electron density and effective mass 

produce the red-shift in plasma frequency and ENZ wavelength, according to the findings. 

• Indium tin oxide (ITO) is a ternary compound with variable amounts of indium, 

tin,   and oxygen. Indium tin oxide is commonly found in an oxygen-saturated 

state, having a formula of 74 percent indium, 18 percent tin, and 8% oxygen by 

weight. 

• It is translucent and colourless in thin layers, but yellowish to orange in bulk grey. 

• It serves as a metal-like mirror in the infrared portion of the spectrum. 

• Indium tin oxide is one of the most widely used transparent conducting oxides 

            because of its electrical conductivity and optical transparency, as well as the 

            ease with which it can be deposited as a thin film. 

• As with all transparent conducting films, a compromise must be made between 

            conductivity and transparency, since increasing the thickness and increasing the 

            concentration of charge carriers increases the film's conductivity, but decreases 

            its transparency 
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CHAPTER - 5  

ENZ Properties and Applications 

 
 

The interplay of light and matter has sparked several scientific breakthroughs during the 

last decade. Recently, the spectral area where the material's index of refraction approaches 

0 has attracted curiosity, resulting in a variety of exciting phenomena such as static light, 

enhanced non-linearities, and so on. Near-zero material parameters are not a relatively 

new development; metals have 0 permittivity at plasma frequency, while polaritonic 

materials such as silicon carbide (SiC) have zero permeability [3]. However, we can 

obtain near-zero optical characteristics in a more controlled and varied manner with 

metamaterial. 

Structured materials can only obtain NZI behaviour as an effective property that happens 

only at distances bigger than the size of structural units, whereas naturally occurring NZI 

materials accomplish this property locally. This may also be done in thin films with low 

losses that can be combined with other structures like metasurfaces and guiding 

structures. However, when the impedance approaches 0 or infinity, a significant 

restriction of homogeneous materials is the impedance mismatch that occurs when 

producing low-loss NZI materials. 

The NZI condition has been demonstrated in a variety of systems, including 

homogeneous materials, metals, doped semiconductors, and photonics materials 

(structured materials such as metamaterials), waveguides with near-zero cut-off 

frequencies, resonant cavities, and photonic crystals. 

Depending on whether the permittivity, permeability, or both are zero, the material is 

characterised in several ways. Category names include epsilon-near-zero (ENZ), mu-

near-zero (MNZ), and epsilon-and-mu-near-zero (EMNZ) [2]. All of these metamaterials 

are technically zero index metamaterials. According to the literature, the ZIM is the one 

that equals both 0 and 0. It paves the way for a slew of new optical phenomena, including 

photon tunnelling, super coupling [6-8], emission control, and severe nonlinear 

interactions. All of these materials have several characteristics that make NZI effects 

unique. as discussed below, including divergent velocities, wavelength expansion, and 

electric field enhancement . 

 

ENZ Properties and application  

1. Diverging velocity- We investigate the propagation of a plane wave in an area 

defined by a Drude oscillator to demonstrate the phenomenon of diverging 

velocities in a material with a refractive index near to zero. As ꞷ→ꞷp in the 

lossless case, where ꞷp is the plasma frequency, n(ꞷ) → 0 .Thus the phase velocity 

diverges vp (ꞷ)= 𝑐
√ 𝛆(ꞷ)⁄ and ε= n2/μ[12] 

                vg(ꞷ) = dꞷ/dk = 
𝑐√ 𝛆(ꞷ)

 𝛆(ꞷ)+(ꞷ/2)(d𝛆(ꞷ)/dꞷ)
                                             (55) 

Because the slope of permittivity is limited[9-12], it tends to zero. 
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Diverging phase velocities are a key property of NZI materials since they boost light-

matter interaction significantly. They've also been investigated in a variety of optical 

applications, including sensors, cloaking, and transformation optical devices, near-perfect 

optical absorbers, optical storage systems with enhanced quantum and nonlinear 

interactions, and pulse shaping. 

2. Wavelength expansion 

The obvious consequence of diverging phase velocity in NZI material is wavelength 

expansion. 

λNZI = λ0/n where λNZI Is the wavelength at which n approaches zero λ0 is the free space 

wavelength. 

As a result, when the refractive index n is low, the wavelength grows dramatically, and 

phase advance is essentially non-existent. (kL = 2𝜋L/ λNZI →0) Wave propagating 

through a NZI film with a thickness L substantially greater than the wavelength in open 

space This diverging wavelength effect has been exploited to make phase-matching-free 

nonlinear optical devices[13-15], as well as super-coupling[16-18], antenna resonance 

pinning[19-21], and geometric resonance cavities. 

It was also the subject of some fascinating theoretical work on 'DC' or'static' light. 

 

3. Field enhancement 

We know that an electromagnetic boundary condition causes electric field increase in a 

material. This necessitates the application of the rule to the normal component electric 

field across a boundary ε1E1┴ = ε2E2┴. This resulted in an increase in the E's normal 

component within the NZI material, E2┴, by a factor of ε1/ ε2. Because ε2→0, It is possible 

to achieve effective energy confinement within the NZI layer. 

 

APPLICATION 

The NZI material has been used in a variety of applications, including electromagnetic 

waveguides, free space wave manipulations, metrology, non-linear optics, lasers, and 

quantum optics. 

We'll be concentrating on nonlinear optics here. Using natural material non-linearities, 

photon-photon interaction can be improved. In this discipline, a lot of work is put into 

developing new techniques to increase nonlinear effects and inventing or manufacturing 

materials that display nonlinear reactions. 

Because of their modest refractive index and the features outlined above, NZI materials 

are highly suited for improving non-linear optical interaction. 

Many applications in modern photonics, such as telecommunications and all optical data 

processing and storage, spectroscopy, and quantum information technologies, need non-

linear optical interaction. The efficiency of nonlinear optical interaction is determined by 

several essential factors, including phase matching, photon interaction length, and peak 

electric field. NZI materials can assist achieve these requirements. 

Now we'll look at some non-linear qualities. 
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CHAPTER - 6 

Non-Linear properties and application 
 

 

Non-linear Properties and applications  

1. Third order susceptibility  

ENZ materials' strong nonlinear optical response is linked to increases in nonlinear 

susceptibility and the electric field that occurs within the low permittivity material. 

From the preceding equation, we may derive higher order susceptibilities χ(3), which are 

a function of wavelength. 

n(I) = √ε(E) = √ε(1) + 3 |𝐸 |(2)χ(3)                                        (56) 

The value of χ (3) is found to be higher in a limited area surrounding the zero-permittivity 

wavelength. When comparing qualities at zero permittivity wavelength to those at other 

wavelengths. The value of third order susceptibility is claimed to stay constant, which 

cannot        explain for the size of the rise in non-linear optical response. So, for a given 

incident pump field intensity, we predict a field augmentation mechanism inherent to 

ENZ material to greatly boost |E|. 

2. Continuity of electric field  

The ENZ material's low permittivity results in a unique field augmentation process. In 

the absence of surface charge, the normal component of the electric displacement field 

remains constant.Thus, we get |E┴ = ε-1|E0, ┴|. We get the total field within the medium of 

permittivity when a p polarised beam is incident at an angle. 

E= |E0|√cos2 θ +
sin2 θ

ε
                                                           (57) 

When seen from an oblique angle, the electric field within an ENZ medium might be 

much larger than the incident field. As a result, many non-linear effects are angularly 

dependent. 

 

3. Slow light nonlinear enhancement  

For ENZ medium the group velocity is vg= √εc. Thus, it will feature an asymptotically 

vanishing group velocity as ε→ 0. The ENZ mode does, in fact, exhibit a diminishing 

group velocity. Because slow light propagation has been linked to nonlinear amplification 

in the past, researchers have drawn a link between ENZ-based nonlinearities and slow 

light effects. 

      4.  ENZ modes and Barreman modes 
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An ENZ thin film has a unique set of propagating eigenmodes, such as unbounded 

Brewster or Berreman mode and the restricted ENZ mode. The latter has a flat dispersion 

profile and a significant field augmentation thanks to the boundary condition. A thin 

coating must be ultra-thin to support ENZ. 

 

NON-LINEAR APPLICATION   

 

Harmonic generation and frequency mixing are two of the most common uses of 

nonlinear optical phenomena. Multiple theoretical works had predicted an increase in 

harmonic generation in ENZ and NZI media before experiments, but it has now been 

demonstrated that in a strongly resonant system loaded with ITO and operating under 

ENZ conditions, both the second-order nonlinear response from free electron and the 

third-order nonlinear optical response due to bound electron contribute to third harmonic 

generation (THG). 

Through the FWM (Four Wave Mixing) procedure, a set of possible frequency-mixing 

possibilities is also accessible based on the idea of third order non-linearities. The 

efficiency is particularly sensitive to the phase-matching criteria and the refractive index 

of the material since three input photons are involved. Because of the NZI media's 

divergent wavelengths, phase matching constraints are substantially loosened, and all 

photons add coherently. 
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CHAPTER 7 

RESULT AND DISCUSSION 

 

We looked into the theoretical description of a composite nonlinear optical material made 

up of two layers with varying linear and nonlinear properties. Unit layers of Ag and SiO2 

were used to produce the multilayer ENZ structure. The Ag thickness in each layer is kept 

at 5 nm in order to achieve ENZ conditions around 820-890 nm in the centre of the laser 

tuning zone, while the SiO2 thickness is 70 nm. The optical properties of a composite 

material may differ significantly from those of its constituents. We use the programming 

and numeric computation platform MATLAB to theoretically compute all of the linear 

and non-linear parameters in our proposed study. 
 

 

Figure 1. The multilayer ENZ structure was made up of unit layers of Ag and SiO2. The 

thickness of the Ag and SiO2 layers is represented by tm and td, respectively. 

 

2.1. Linear Response  

The dielectric constant 𝜀𝑚 may be represented as a function of frequency 𝜔 using the 

Drude model. 

𝜀𝑚(𝜔) = 𝜀𝑚,𝑟 + 𝑖𝜀𝑚,𝑖 = 𝜀𝑏 −
𝜔𝑝
2

𝜔2+𝛾2
+

𝑖𝛾𝜔𝑝
2

𝜔3+𝛾2𝜔
                                (58)   

Where 𝜀𝑚,𝑟 and 𝜀𝑚,𝑖, are the real and imaginary components of the dielectric constant of 

the metal, respectively. 𝜀𝑏 is the static term owing to bound charge and 𝛾 is the damping 

coefficient. 
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Figure 2. Variation of permittivity with wavelength for Ag 

 

Negative dielectric constant metals, such as Ag, pass through zero before becoming 

positive at plasma frequencies, which are frequently UV. To get a near-zero dielectric 

constant at lower frequencies, such as visible light, we must basically "dilute" the metal 

with a positive dielectric constant material like SiO2 . Negative permittivity Ag loses less 

in the visible region than most noble metals, but positive permittivity SiO2 has good 

thermal stability and negligible optical loss. Unit layers in the proposed multilayer ENZ 

structure have sub-wavelength thicknesses to fulfil the EMT criterion. In addition, the 

thickness of the Ag layer must be kept as low as possible to reduce the overall structure's 

optical loss. 

Maxwell Garnett was the first to analyse composite materials theoretically, considering 

the linear response of metallic inclusion particles contained in glass and explaining the 

colours of metallic colloid. The effective permittivity of the multilayer may be calculated 

using the Maxwell-Garnett formulae. The permittivity components parallel to the 

luminant layer can be expressed as  

𝜀∥ = 𝜌𝜀𝑚 + (1 − 𝜌)𝜀𝑑                                              (59) 

When the electric field is perpendicular to the layer plane, The electric field, on the other 

hand, is not evenly distributed over the two composite components, and the effective 

linear dielectric constant is given by 

1

𝜀⊥
=
𝜌

𝜀𝑚
+
(1 − 𝜌)

𝜀𝑑
                                                (60) 

Where 𝜌 = 𝑡m/ (tm + td). 
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                                               (a)                  

Figure 3.  Permittivity of AgSiO2 parallel and perpendicular component 

respectively. (a)The real part (dashed blue line) crosses zero at 826nm and imaginary 

Part (dashed red line) have small value for Ag(5nm) and SiO2(70nm) multilayer structure 

(b) solid blue line shows real part of perpendicular permittivity and solid red line shows 

imaginary part of perpendicular permittivity. 

 

As a function of wavelength, Epsilon-Near-Zero metamaterials such as AgSiO2 

(thickness 70 nm) demonstrate a change in the real component of the dielectric 

permittivity from positive to negative values. For the given structure, ε′ is measured to be 

zero at 826nm (fig - 3a). The metamaterial's reaction may be expressed in terms of a 

conventional third order optical nonlinearity, which exhibits a clear inversion of the real 

and imaginary portions' roles upon crossing the ENZ wavelength, demonstrating an 

optically driven change in the metamaterial's physical behaviour. 

A semiempirical equation based on the linear refractive index is used to derive the value 

of nonlinear refractive index/optical susceptibility. The linear optical susceptibility 𝜒(1)  
of a nonlinear medium that may be computed using the provided relation 

𝜒(1) =
(𝑛2 − 1)

4𝜋
                                                            (61) 

The thickness of the layers of material d and m might vary in general. In particular, if the 

electric field within the composite metamaterial is spatially uniform, the composite's 

optical constant becomes a simple average of its component materials, i.e, 

 

𝜒(1) = 𝜌𝜒𝑚 + (1 − 𝜌)𝜒𝑑                                                   (62) 

Because the electric field is not equally distributed between the two components, the 

composite's effective susceptibility might often exceed that of its constituent materials.     

(b) 
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Figure 4.  𝜒(1) of AgSiO2 

 

. Linear susceptibility 𝝌(𝟏) has Similar variation as of linear permittivity. In terms of 

variation Light polarised parallel to the film interacts with an effective homogenised 

medium rather than each individual layer of the multilayer structure in the approximation 

of profoundly subwavelength films 

 

1.2.  Nonlinear Response 

From miller’s principles the third order susceptibility  𝜒(3) can be calculated 

𝜒(3) =
𝐴(𝑛2 − 1)4

(4𝜋)4
                                                       (63) 

The constant A=1.7x10-10 esu, n is the refractive index which can be calculated by using 

the equation √ɛ [9-10][15]. The composite is made up of layers of two distinct materials 

with linear dielectric constants that alternate. 𝜀𝑚and 𝜀𝑑 and nonlinear susceptibilities 𝜒𝑑
(3)

 

and 𝜒𝑚
(3)

,respectively 

𝜒(3) = 𝜌𝜒𝑑
(3)
+ (1 − 𝜌)𝜒𝑚

(3)                                                   (64) 
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Figure 5 .  Graph of 𝛘(𝟑) show the real (solid blue line) and imaginary (solid red line) 

part of third order susceptibility, it exhibit a small increase near the value of ENZ  

We can expect to see a region where εr is slightly negative in the vicinity of the ENZ 

wavelength if the nonlinear response is fast enough and the χ(3) is positive (alternatively, 

for materials with negative χ(3), identical results can be achieved at a wavelength with a 

slightly positive real permittivity). 

The nonlinear refractive index can be calculated using the equation  

𝑛2𝑟 =
3[𝑛𝑟𝜒𝑟

(3) + 𝑛𝑖𝜒𝑖
(3)]

4𝜀0𝑐𝑛𝑟(𝑛𝑟2 + 𝑛𝑖
2)
                                               (65) 

where A and B (representing 𝜒𝑟
(3)

 and 𝜒𝑖
(3)

, respectively) are used as criteria for fitting 

and A = 1.49 × 10−17 cm2/V2 and B = 1.9 × 10−17 cm2/V2. 

 

                              

 

 

 

 

 

 

 

 

Figure 6. Graph of nonlinear refractive index 

By requiring the longitudinal components of a TM-polarized field's displacement 

vector to be continuous across the border of media with different optical properties, the 

ENZ material improves the local electromagnetic field. For homogeneous, flat structures, 
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this condition is expressed as ɛinEin = ɛoutEout, where ɛin and ɛout are the dielectric constants 

inside and outside the medium, respectively, and Ein and Eout are the corresponding 

longitudinal components of the electric field amplitude, and the ENZ point is excited by 

oblique incidence. As a result, as ɛin declines, Ein rises, enhancing nonlinear optical 

phenomena such as the nonlinear index of refraction n2r. 

Most metals exhibit negative permittivity in the optical spectrum because their plasma 

frequencies are in the ultraviolet (UV). To "lower" the ꞷp, it is preferred to use chemical 

reactions or doping methods to create metal-dielectric compounds. Positive permittivity 

dielectric components can push metal-dielectric compounds' effective permittivity into 

the ENZ and even positive areas. This phenomenon is a preferred technique to realise 

ENZ media since it lowers the ꞷp of the compounds. This method, in particular, is used 

to build TCOs that demonstrate ENZ responsiveness. 

The permittivity dispersion profile of metals (such as Ag) and degenerately doped 

semiconductors is based on the free electron represented by the Drude model. 

𝜖(𝜔) =  𝜖𝑏 −
𝜔𝑃
2

𝜔2 + 𝑖𝛾𝜔
                                                   (66) 

Where 𝜖 is the high-frequency permittivity, γ the electron damping term, and ωP is the 

plasma frequency, as calculated by: 

𝜔𝑃 = √
𝑁𝑒2

𝑚𝑒
∗𝜖0
                                                         (67) 

N is the free-electron volume density, and 𝑚𝑒
∗   is the electron's effective mass. 

 

 

                                                 (a) 

Figure 7.  Variation in permittivity with wavelength at different ꞷp (plasma frequency) 

(a) Real part (b) Imaginary part 

An increase in carrier density causes a rise in plasma frequency, which reduces the real 

component of the permittivity, as represented by the preceding equation. In a doped 

(b) 
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semiconductor, the photon energy must exceed the bandgap energy; in a metal, it must 

exceed the interband transition energy. 

Furthermore, by altering the thickness (td) of the SiO2 unit layer, we were able to modify 

the ENZ range of this Ag/SiO2 multilayer arrangement. At different wavelengths, the 

associated real component of the effective permittivity was zero for different thickness. 

 

Figure 8. Variation of permittivity with ld (dielectric thickness) 

We have observed that if we increase the thickness ld then real part of ε is increases and 

imaginary part will decrease along with the increase in λENZ 

 

Figure 9.  Variation of third order susceptibility with ld (dielectric thickness) if we 

increase the thickness ld the non-linear susceptibility χ(3) will increase 
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CHAPTER 8 

CONCLUSION 

 

We have theoretically analysed the variation of permittivity (for metals such as Ag) with 

wavelength in our proposed study and concluded that to get a near zero dielectric constant, 

We must "dilute" the metal using a substance having a positive dielectric constant, such 

as SiO2. In the near infrared range, the optical behaviour of a composite non-linear 

metamaterial (AgSiO2) made up of alternating layers of fused silica glass and silver with 

thicknesses adjusted so that ε'=0 is theoretically explored. We also looked at the (AgSiO2) 

transition from a positive to a negative value in the real component of the dielectric 

permittivity as a function of wavelength. At 826nm, ε′ is measured to be zero for the given 

structure (thickness equal to 70nm). If the nonlinear response is fast enough and  χ(3) is 

positive, we can expect to find a region where εr is relatively negative close to the ENZ 

wavelength. When a result, as in (the dielectric constant inside the medium) drops, Ein 

rises, and nonlinear optical phenomena, such as the nonlinear index of refraction n2r, 

become more prominent. 

The variation of ENZ wavelength with dielectric layer thickness and plasma frequency 

has also been investigated. We found that as the thickness of ld is increased, the real part 

of 𝜀 is increases while the imaginary part decreases, corresponding to an increase in λENZ 

and non-linear susceptibility 𝜒(3). We also noticed that as ꞷp (plasma frequency) is 

increased, the ENZ value decreases, the real part of permittivity rapidly becomes 

negative, while the imaginary part remains positive. 

this work can find application in photon generation via wave mixing process where high 

non-linearities are required which can be explored in future/ we expect our work will 

provide path for future developments in photon generation 
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