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ABSTRACT

Red emitting Eu®* activated KsBiMo04O1s (KBM: Eu®*) phosphor has been synthesized via high
temperature solid state reaction route and explored via investigating various structural and spectroscopic
properties. The phase purity of the as-synthesized KBM samples have been analysed through X-ray
diffraction technique. Morphological properties have been analysed through SEM images and the
vibration modes have been identified in KBM crystal using Fourier Transform Infrared (FT-IR)
spectroscopy. The luminescence spectrum of KBM: Eu®* phosphor indicates the characteristic peaks of
Eu®* positioned at 578, 588, 612, 657 and 704 nm under 392 and 464 nm excitation wavelength. The color
coordinates of KBM: Eu®* phosphor excited with 392 and 464 nm wavelength are (0.657, 0.342) and
(0.655, 0.344) located in red region. Based on the above-mentioned characteristics, KBM: Eu®* phosphor

may be a potential candidate to utilize in optoelectronic applications such wLEDs and solar cells.
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CHAPTER 1: INTRODUCTION

1.1 Phosphor

Phosphor have been used since the 19" century as a broad word for substances that emit light when
exposed to darkness. Each phosphor does have its unique set of properties, such as emission colors and
the amount of time it takes to glow just after excitation stops. Electroluminescence occurs whenever a
phosphor generates light as a result of electron excitation, and all these phosphors are used to make video
displays and workstation monitors. Photoluminescence is a means of stimulating phosphor with UV,

visible, and infrared radiation. It is most commonly used in fluorescents for ambient illumination [1].

Fig. 1.1. Phosphor emitting light

Phosphor are divided into numerous groups according to the parameters used to classify them. We're
talking about chemical phosphor here. The most common form of inorganic phosphor is a dry powder.
Various synthetic procedures are used to create these powder specimens. The concept is to use a host
matrix around which to dope any activator ion, such as a Rare-Earth ion. Rare-earth ions are the most

often employed activator ions [2, 3].
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Phosphor are made up of composites such as oxide, oxynitride, sulfide, selenide, halide, borates, and
oxyhalide that are doped with minute amounts of activator ions, which could be rare-earth or transition
element ions. The activator ions behave as radiation or light centers with their own energy levels, which

are inhabited by stimulation or energy transfer [4, 5].

An effective phosphor will be able to utilize excitation energy while transmitting light as shown in Fig.
1.1. To avoid an afterglow, the duration between excitation and emission should be as short as possible.
Energy absorption can occur at the activator ion or anywhere else in the lattice, but the energy must finally
be transferred to the radiating core for emissions to occur [6]. The absorbed energy can also be lost in the
form of radiation-free disintegration, lowering the quantum efficiency. Effective phosphor securely hold
their ions, reducing energy loss through non-radiative transitions. Contaminant ions absorb or redirect

energy, halting the material's luminous properties [7].

The color range (three emitting colors-red, green, and blue), the lumen equivalency, the emission
spectrum, quantum yield, and the emission lifespan are all essential factors for phosphor materials. To
get color points, the emission spectrum energy division is employed, which is computed using the
Commission International de L'Eclairage (CIE) graphic rule. A higher luminosity count indicates a strong
light. The lumen equivalent of a phosphor should be higher. When an atom or molecule transitions from
high to low energy levels, a range of frequencies known as the emission spectrum of electromagnetic
radiation is communicated. To be utilized economically, any phosphor's emission lifespan should be long.
Quantum efficiency is a measure of the quantity and wavelengths of emitted photons from a phosphor if
we recognize the amount of triggering photons at specific wavelengths [8]. The decaying time (afterglow
or persistence) of a phosphor is defined as the time it takes for the emission intensity to drop to 10% of
its initial intensity after stimulation ends. The decay time is determined by the substance's intrinsic

properties [9].
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Rare earths such as Tb3*, Eu?*, Dy**, Mn?*, and Eu®" are examples of d-electrons in action. The crystalline
host lattice engages favorably with the d-orbit. There are a number of critical characteristics to consider
when determining if the synthesized phosphor is suitable for further use. Chemical and thermal stability,
quantum efficiency, color point, biodegradability, emission spectrum, and longevity are only a few of the
considerations. Plasma and field-emission displays, light-emitting diodes, solar cell applications, thermal

sensors, and other applications are all possible using phosphor materials [10].

1.2 Host matrix and activator ions

Phosphor are made up of a host matrix and an activator, which is a radiating core. Inorganic hosts
have several features including physical, thermal, and chemical inertness, and hence serve as ideal
candidates. Self-activated hosts are preferred over inorganic hosts since they produce their inherent intense
and broadly visible radiation in response to UV stimulation, which is utilized by the activator to improve
emission intensity [11].

The activator is a dopant that is introduced to the material's crystal to induce the desired form of
inhomogeneity. The activators lengthen the time it takes for the emission to occur. The activator
concentration in the crystals is also quite important. Whereas the host substance is microcrystalline and
transparent to visible light, the activators absorb and emit radiation [12].

The activator gathers the stimulating radiation and amplifies it to a state of excitement. Luminescence
does not occur in every ion or element. The radiation pattern, the absorption spectrum, and the proportion
of the frequencies of radiative and non-radiative reversion to the ground state are the properties to be

indicated by this approach. This determines the capacity of luminous compounds to convert light[13].
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Liquid crystal display panels constructed of rare earth (Eu®*) phosphor grab 10 times more brightness, and
white LEDs built of a combination of three rare earth phosphor are 80 % more efficient than incandescent
lamps for excellent energy efficiency [14].

When achieving narrow-band luminosity in the visible spectrum, rare earth elements are employed
wherein light emission is a performance criterion because their electronic structure enables efficacy
throughout high energy stimulation by gamma rays, and X-rays. Deep UV wavelengths are frequently
effective in exciting rare-earth phosphor.

The illuminance of trivalent rare-earth ions (Sm®*, Dy** and Eu®*) in borates have recently piqued interest
due to properties such as high stability, wide UV transparency, and low composite temperature,
extraordinary optical damage threshold, excellent chemical and thermal stability, and high luminous
efficiency [15]. Borates are useful materials because they have a broad transmittance spectrum, an
extremely high threshold, a large range of structural types, and excellent optical quality. During UV and
blue light excitation, the red fluorescence released by Borate phosphor is extremely important since it is
employed to create beneficial and functional applications.

Rare-earth ions are doped in a variety of materials are employed as activator ions for phosphor [16]. The
rare-earth ions Sm®*, Eu®*, and Dy®* are regarded as important activator ions for creating radiation in the
visible area. Sm** doped phosphor drew a lot of attention because of the transition from “Gs,—%H;, which
is employed in optical retention of high-density sensors, underwater communication, and a variety of
fluorescence instruments, as well as color display. Samarium's emission spectra exhibit thermostability
in the intensity of specific lines, making it suitable for measuring surface temperature on moving turbine

blades [17].
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1.3 White light emitting diodes (w-LEDSs)

When compared to traditional light bulbs, LEDs are more efficient in producing light. White LEDs
were not always white LEDs. Instead, a single LED encases bonded red, green, and blue LEDs. Phosphor
were used to make the very first white LEDs, which were not confined to one of three LEDs. A complete
conversion white LED may be manufactured simply by covering the enclosures with phosphor and placing
ultraviolet or violet LEDs inside, however, they are inefficient.

Because of Phosphor’s excellent properties such as high efficacy, low potential dissipation, extended
lifetime, and low toxicity [18].

In white LEDs, The blue light from the blue LED chip within the photosensitive white LED is captured
by the phosphor and converted to yellow light. The phosphor's unconsumed blue light then is transported
out. White light may be made by fusing yellow and transmitted blue light having chromaticity coordinates
and linked color temperature (CCT) [19].

As a result, a new approach is employed to produce superb full-spectrum white light using tri-color
phosphor activated by near-UV (370-410 nm). Because of advantages including intense tolerance to UV
chips' color anomaly (cause of phosphor for use in generating white color) and unique color rendering
index, it is a flexible and open strategy in attaining maximum white LEDs, but it also results in reduced
luminous performance because green and red phosphor possess potent reabsorption in the wavelength
range [20].

Rare earth elements as phosphor dopants have been shown to lead to effective photoluminescence in a
variety of compounds, allowing their interaction in phosphor-converted LEDs. They feature a low color

temperature and a high color rendering [21].
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1.4 Photoluminescence (PL)

Photoluminescence is the emission of light by a substance after it has been exposed to light. It's
derived from the Latin term luminescence and the Greek suffix photo, which means "light." The light-
induced by the absorption of photons is known as photoluminescence. It's a technique in which a particle
eats a visible-range photon, excites the electron to a greater excited energy level, and afterward transfers

a photon to a lower-energy state, such as an electron.

The experimental method of photoluminescence (PL) is used to characterize semiconductor
nanostructures and explore their electrical properties. When the photon energy is larger than the bandgap
energy, it is induced by the lighting of the medium. For photoluminescence to occur, wavelengths should
be close to the bandgap wavelength. The essential data for device characterization may be derived from

the PL spectrum, device temperature, and intensity, which is dependent on irradiation intensity.

In the photoluminescence spectrum of a semiconductor like GaAs, there are several distinct transitions.
As a result, the purer GaAs are, the more complicated their PL spectrum will be. For the examination of
a photoluminescence spectrum caused by the complex formation of impurities and defects,
comprehensive knowledge of the energy levels is necessary. Photoluminescence is a particularly

important characterization tool because of the vast amount of data it provides.

PL has a number of benefits, including the ability to create huge amounts of data quickly and easily, the
ability to indirectly assess the non-radiative recombination time, and the ability to provide data regarding
the system's energy levels and sensitivity. It's a non-destructive method for labeling, stains, chemical
markers, and cosmic-ray disclosure on a crystal. Fluorescent lights and LEDs are commonplace, with

fluorescent coatings converting short wavelength UV (blue) light to longer wavelength (yellow) light
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Fig. 1.2. Jablonski diagram of fluorescence and phosphorescence processes

Intersystem crossover (ISC) to the stimulated triplet state is also possible for the molecule (T1). ISC occurs
when molecules have a wide range of spin-orbit coupling, heavy metals like europium and iridium have
a high spin-orbit coupling strength. Because the states have different spin multiplicities, the decaying of
the T, state to the So is a forbidden transition according to angular momentum conservation. However,
spin-orbit coupling removes this restriction, making the shift from Ti to S; possible. Because the
transition from Ty to So is 'prohibited,’ it takes a long time (microseconds to hundreds of seconds), which

is known as phosphorescence as shown in Fig. 1.2.
1.5 Fluorescence and phosphorescence

Fluorescence is photoluminescence that occurs rapidly after material has been photon excited,
whilst phosphorescence is long-lasting photoluminescence that occurs after the excitation has ended. In
other words, fluorescence is photoluminescence without the necessity for a spin multiplicity change in the
radiative transition, whereas phosphorescence is photoluminescence with the need for a spin multiplicity

change in the radiative transition.
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Molecules with paired electrons are stable, while those with unpaired electrons are exceedingly reactive
and volatile. Electrons have a center angular momentum called spin, and the appropriate symmetry of
electron spins determines whether an electron belongs in one of two states. When two spins are oriented
anti symmetrically, the total spin is zero (S = 0), but when they are oriented symmetrically, the total spin
is one (S = 1). A singlet is an antisymmetric S = 0 arrangement of electron spin pairs, while a triplet is
three symmetric S = 1 permutations of spin pair states.

Whenever the photon is absorbed, one of the pair's electrons is boosted to a higher energy level, and the
molecule is said to be in a higher energy state. A molecule's ground energy level is a singlet state (So), and
the photoexcited state must also be a singlet according to angular momentum conservation (S1). The
decline of the S state to the So state is an authorized transition (because of the identical spin multiplicity),
which results in fluorescence on the picosecond to the nanosecond time scale [22].

Mineralogy, gemology, drugs, sensors, and fluorescence affixed at an angle towards the electron, which
is then used to produce a 3D image of the sample displayed on a monitor, are some of the practical uses
of fluorescence. A conductive adhesive is routinely used to adhere samples tightly to a specimen container.
When non-conductive materials are studied by the beam, they build charges, which causes scanning
defects and other picture errors, especially in SE imaging mode. Specimens must be good conductors of
electricity and flat to prevent the accumulation of electrostatic charges for conventional imaging. Stump
metal substance requires just minor preparation aside from conductively connecting to a specimen. A
small layer of electrical conductor material is utilized to cover non-conducting components, and then low-
vacuum sputter coatings are applied. It is placed on top of the sample. Gold, platinum, tungsten, chromium,
graphite, and other conductive materials are utilized for specimen coatings. The morphological features
are investigated using the SEM method. It reveals that the particles are micron in size and agglomerated

throughout the whole surface [23].
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CHAPTER 2: INSTRUMENTATION

2.1 Thermal gravimetric analysis (TGA)

TGA stands for thermogravimetric analysis. It is characterization that is done for the sample to
study for any mass change concerning the temperature change. Analysis of a material's thermal properties,
moisture, and liquid content, and the average concentration of components in a sample are some of its
main applications. TGA is primarily used to determine a substance's thermal stability and composition.
From the TGA curve, we can tell whether the reaction process is endothermic or exothermic. Weight loss

percentage can be calculated too [24].

Fig. 2.1. Thermal gravimetric analysis
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2.2 X-ray diffraction (XRD)

X-ray diffraction (XRD) is a significant and broadly utilized material portrayal strategy. With the
new improvement in material science innovation and understanding, different new materials are being
created, which requires redesigning the current scientific methods to such an extent that arising

unpredictable issues can be addressed.

Fig. 2.2. X-ray diffraction

Despite the fact that XRD is a deep-rooted non-disastrous strategy, it actually requires further upgrades
in its portrayal capacities, particularly while managing complex mineral designs. The current audit
conducts complete conversations on nuclear gem structure, XRD standard, its applications, vulnerability
during XRD investigation, and required security safety measures. The future exploration headings,
particularly the utilization of man-made reasoning and Al instruments, for working on the adequacy and
exactness of the XRD strategy, are talked about for mineral portrayal. The subjects covered incorporate
how XRD examples can be used for an intensive comprehension of the translucent construction, size, and
direction, separation thickness, stage distinguishing proof, measurement, and change, data about cross-

section boundaries, lingering pressure, and strain, and warm development coefficient of materials. This
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multitude of significant conversations on XRD examination for mineral portrayal is accumulated in this
far-reaching audit, with the goal that it can help subject matter experts and designers in the compound,

mining, iron, metallurgy, and steel ventures.

The dynamic scattering of x-ray photons in a periodic lattice by atoms is known as X-ray diffraction.
Bragg's law states that scattered monochromatic x-rays in phase produce constructive interference-ray

diffraction as shown by equation (2.1) below;

nA=2sind (2.1)

A diffractometer records the powder diffraction pattern, and all of the d-values and related energies of
the diffraction bands are presented in order to identify an unknown substance. The information is then
compared to the traditional line patterns available there in Powder Diffraction File (PDF) databases for

various composites [25].

The angle between the incident beam and the perpendicular to the reflective lattice plane, as well as the
degree of reflection, the wavelength, the crystal plane spacing, and the angle between the incident beam
and the perpendicular to the reflective lattice plane, are all given here. To estimate the value of the spacing

by a distance spacings d, the angles of each crystallographic phase are measured.

. - - - >

Fig. 2.3. Schematic representation of Bragg’s law
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To verify the existence of a crystalline structure in either a uniform substance or an inhomogeneous
mixture, the existence of the three most intense particular lines from the authorized PDF line model is
required. The distinction between conceivable phases can be done by exploring the various characteristic

lines in particular subjects [26].

2.1.1 Joint committee on powder diffraction standards (JCPDYS)

In 1941, the Joint committee on powder diffraction standards (JCPDS) was established. It
maintains the powder diffraction file (PDF), which contains data on powder x-ray diffraction models,
particularly relative strengths of notable diffraction peaks in the d-spacings. It is generally used to
categorize materials based on x-ray diffraction patterns and is designed for applications. International
center for diffraction data is the name given to it currently (ICDD). The PDF of 2019 has distinct sets of
material data. Every data set contains diffraction, sample needs, and research and literature data, as well
as laboratory, device, crystallographic, and desirable mechanical properties in a conventional graded
format. The powder diffraction file databases, educational seminars, clinics, and conferences, as well as

the pharmaceutical powder X-ray diffraction symposium, are now all part of it (PXRD) [27].

2.3 Diffuse reflectance spectroscopy (DRS)

Diffuse reflectance spectroscopy is a very well-established approach for examining the spectral
features of impenetrable solid materials, based on the principle that certain light reflected from the

substance is reflected inwardly and also from the surface (specular reflection) [28].
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Fig. 2.4. Diffuse Reflectance Spectroscopy

2.4 Fourier infrared transform spectroscopy (FT-IR)

Infrared light is passed through a material by the FT-IR device, with some of it being absorbed
but some traveling through. Resulting output at the detector is a spectrum that ranges from 4000 cm-1 to
400 cm-1 and indicates the chemical fingerprint of the material. FT-IR analysis is a good approach for
chemical identification since every molecule has its unique spectral fingerprint. The various bands are
marked in the transmittance versus wavenumber plot. These bands correspond to the different modes of

stretching namely, the symmetric, asymmetric, bending, and so on [29].

"

Fig. 2.5. Fourier infrared transform spectroscopy
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2.5 Scanning electron microscope (SEM)

It's a method for investigating the morphologies of a sample or substance. This is because initially,

one has to see whether the data is matching with the reference and peaks and indexes too. Then once

observed that the sample material has crystallized well, scanning electron microscopy is performed as

discussed above. The electrons are associated with atoms in the specimen, producing a variety of signals,

including data about the specimen's surface topography (surface characteristics), morphology (material's

appearance), structure, and crystallography (arrangement) [30].

Fig. 2.6. Scanning electron microscope

The electron beam studies the specimen in a raster approach in scanning electron microscopy. The

electrons at the apex of the column come from the electron source. These are released when the thermal

energy exceeds the work function of the reference element. The anode activates and excites them

subsequently (positively charged). To defend it from pollution, vibrations, and noise, the whole electron

column must be placed under a vacuum. The vacuum allows the operator to receive a high-resolution

image while still increasing the detector's electron gathering capability. The electrons' course is controlled

by Lenses. Two electromagnetic lenses are used: The beam is collected by the condenser lens, which will

then be converted by the objective lens before striking the specimen. The intensity of the electron beam
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is governed by the condenser lens, while the objective lens concentrates the beam toward the specimen

[31].
2.6 Photoluminescence (PL) spectroscopy

Light is focused onto a specimen in photoluminescence spectroscopy, here it is absorbed and
photosensitizer may occur, leading in the emission of photoluminescence. For room and lowest
temperature spatially resolved micro-PL, a concentrated laser beam offers a chromatic aberration spot
width of the order of 1 m. A CCD camera captures the spectrum for every investigated place when
scanning the sample. When employing luminous materials, examine the emission, quantum yield,

luminescence energy transfer, Diffuse duration, chemical/physical durability, and other factors [32].

Fig.2.7. Photoluminescence spectroscopy
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CHAPTER 3: EXPERIMENTAL PROCEDURE

3.1 Synthesis: Solid state reaction method

This is the most popular process for preparing phosphor for use in a variety of applications. Starting
with diverse solid ingredients necessary for the final product, the preparation procedure is used. A high
temperature of around 1000-1500°C is given for a short length of time to allow the reactions to occur.
Solid reactants are employed in the production of phosphor or any crystalline chemical. The chemical
reactants utilized in it are determined by their practicality, as well as some reaction parameters and the
ultimate product. The reactants are combined after they have been weighted according to their
stoichiometric ratios in the chemical equation. Acetone or alcohol are examples of volatile organic liquids
that are added to the mixture in sufficient quantities to ensure that almost all of the reactants are evenly
distributed. A paste-like mixture is generated, which is extensively ground until the organic solvent
volatilizes and evaporates entirely, which takes around 10-15 minutes, resulting in a powder-like
substance. In a furnace, a subsequent reaction occurs at high temperatures. The real advantage of a solid-
state reaction is that the final product is pure and has the qualities that are sought. This process produces

no waste or hazardous material and is ecologically friendly.

3.2 Sample preparation: KsBiMo04O1s

Stoichiometric ratios are calculated via chemical methods. The masses of the reactants K>COs,
Bi.COs3, and MoOs are calculated based on the concept of equal reactant and product sides. In this scenario,
3 g of KBM was required. The KBM sample synthesis procedure was to take an agate mortar, all of the
calculated reactants are put, and just enough ethanol is added to mix them all. To produce a powder

composition, the paste is pounded for roughly an hour in a mortar. In a muffle furnace, the powder is
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sintered in a silica crucible. Three different temperatures were used to sinter the KBM samples which are

800, 900, and 1000 °C.

3.3 Analysis of sample

The KBM phosphor are manufactured using varying mol percent values of Eu®* doping. An X-ray
diffractometer was utilized to examine the crystalline properties of these materials (Bruker: model D8
advance). It uses nickel filtered CuKa (=1.541 A°) to scan the sample at an angle of 2 ranging from 20°
to 60°. With the help of a JASCO spectrophotometer, bandgap studies are carried out (Model no. V-770).
The Perkin Elmer Spectrum Two FT-IR spectrometer was utilized to explore the bonding modes in the
crystal lattice in the region of 400 to 1600 cm™* The morphological findings were investigated utilizing a
JEOL 7610F Plus scanning electron microscope. The photoluminescence properties were measured using
a Shimadzu RF-5301 PC Spectro fluorophotometer. The excitation and emission spectra were captured

using a JASCO FP-8300 fluorescence spectrophotometer and an excitation source (Xenon lamp).
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CHAPTER 4: RESULTS AND DISCUSSION
4.1 Structural studies

X-ray Diffraction studies for undoped and Eu** doped KsBiMo04O16 phosphor were carried out at different
temperatures as shown in Fig. 4.1.(a) for examining phase purity. The XRD was also carried out for 1.0
mol% doping of Eu** in KBM, depicted by Fig. 4.1.(b). The XRD patterns clearly depicted sharp and
single peaks. This shows that the sample has crystallized well suggesting the formation of a single-phase
polycrystalline nature. The pure phase begins at 800°C. The experimental data matches close to the known

data, that is, the JCPDS (29-0986) file.

KBiMo O (a) K BiMo, 0 : xEu™

l ‘ — 900 °C
’ e 800 “(

—JCPDS 29-0986 ‘
| L BE_ |

v T v T v T T |
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(b)

—x= 1.0 mol%

Intensity (a.u.)
Intensity (a.u.)

——JCPDS 29-0986

|1 \ .I L
v v T

T

%20 degree™ * °

Fig. 4.1. XRD patterns of KBM phosphor at (a) different sintering temperatures 800, 900, and 1000 °C

(b) 1.0 mol% concentration Eu®* doped KBM phosphor

The Crystallite size has been calculated with the help of the XRD pattern for KsBiM04O16. This is done

using the Debye-Scherrer formula for determining the crystallite size which is stated as follows;

Crystallite size (D) = KA1/fcos6 4.1)
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The crystallite size for doped and undoped Eu®** doped KBM phosphor was calculated to be 0.44 and 0.45

um, respectively.

4.2 Diffuse reflectance spectroscopy

The optical band gap for undoped and Eu** doped KBM phosphor was evaluated making use of DRS in
the wavelength range of 200 — 600 nm at RT (Fig. 4.2). To determine the optical band gap, the diffuse

reflectance was translated into the Kubelka Munk (K-M) function, as shown in the equation below:

—_n)2
F(R):(l R) :K

2R s

(4.2)

where R is the sample reflectance and K and S are the scattering and absorption constants. As demonstrated

in the equation, the linear absorption constant in the Tauc equation has a relationship with bandgap energy

(Eq):
ahv = A(hv — E,)" (4.3)

where h is light energy, A is the proportionality constant, and n is the electronic transition with values 1/2,
2, 3/2, and 3, expressing the authorized direct, allowed indirect, banned direct, and forbidden indirect

bandgaps with associated electronic transition values.

The band gap was calculated by projecting a linear fit line towards the x-axis. The displayed graph shows
the direct permitted bandgap for undoped and 1.0 mol % of Eu®* doped KBM samples with values of 3.60

eV and 3.58 eV, respectively.
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Fig. 4.2 Optical bandgap energy of undoped and 1.0Eu®* doped KBM at 800 °C (Inset: UV diffuse

reflectance spectra of undoped and 1.0Eu®* doped KBM at 800 °C)

4.3 Fourier transform infrared spectroscopy

The Fourier Transform Infrared Spectroscopy highlights the sample's critical characteristics, such as the
bond production and current functional groups in the synthesized Eu®* doped KBM phosphor. The Fourier
Transform Infrared Spectroscopy highlights the sample's critical characteristics, such as the bond
production and current functional groups in the synthesized Eu®" doped KBM phosphor. The Fourier
Transform Infrared spectroscopy of the KsBiMo04O1s phosphor is shown in Fig. 4.3. The transmittance
versus wavenumber diagram shows the various bands. These bands represent various stretching modes,

such as symmetric, asymmetric, bending, and so on. They have also been tabulated in the table below

Table 4.1.
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Fig. 4.3. FT-IR patterns of undoped and 1.0 mol% Eu®* doped KsBiMo04O15s phosphor

Table 4.1. Bands of KBM samples corresponding to the different modes of stretching

Bands (in cm™) Modes Bonds
915 Symmetric stretching Mo-Og4

852 Asymmetric stretching vibrational Mo-O

689 Symmetric scissor and stretching vibrations Bi-O;

453 Bending modes Bi-O3

516 and 565 Rocking Vibration Bi-O

4.4 Morphological studies

Scanning electron microscopy was carried out using High-resolution field emission scanning electron
microscope (HR-FE-SEM) 7610F Plus-JEOL. The shape, size, and morphology of the KBM phosphor

were studied carefully. It can be observed that there are no significant changes in the morphology of the

sample when Eu®* is doped in KBM.
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Fig. 4.4. SEM micrographs of KBM Phosphor

The particles are in micro range and the morphology is non-uniform. The average particle size lies in the
range of 0.2 to 0.6 um, inset of the Fig.4.4. which shows the particle size distribution of undoped and

KBM: 1.0Eu®* phosphor.

4.5 Photoluminescence spectra

4.5.1 Excitation spectra

The excitation spectra of 1.0 mol% Eu®*" doped KBM phosphor were recorded by fixing an emission
wavelength of 574 nm. The two most intense peaks were found in the near UV region at 392 nm and the
blue region at 464 nm wavelength. Various other peaks were located at 360, 380, 392, 413, 464, and 485
nm in the excitation spectra due to f-f transitions of Eu®" ions. This is shown in our intensity versus

wavelength plot below in Fig. 4.5. (a).

4.5.2 Emission spectra
The Photoluminescence Emission (PL) spectra of 1.0 mol% Eu®* doped KBM phosphor were recorded

by fixing an emission wavelength of 574 nm. The PL spectra highlight peaks located at 578, 588, 612,
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657, and 704 nm. The most prominent peak in the spectra appeared at 612 nm owing to the °Do—'F2

transition. The emission plot is shown below in Fig. 4.5.(b).

K BiMo 0 : xEu" (a) & (b) . s KBiMoO :xEu" ——3i =392nm
= 0/ . ' i o,
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Fig. 4.5. (a) PLE spectrum of 1.0 mol% of Eu** doped KBM phosphor at 612 nm emission wavelength

(b) Emission spectra of 1.0 mol% of Eu®*" doped KBM phosphor at two different excitation

wavelengths
4.6 Color chromaticity diagram for KBM

As per the following plot (Fig. 5.6), (0.657, 0.342) and (0.655, 0.344) are found to be CIE color
coordinates for 1.0 mol% Eu®* doped KBM under excitation wavelengths of 392 and 464 nm respectively.
When excited with n-UV and blue light, the CIE chromaticity coordinates are in the red area. The color

(CCT) values of as-synthesized phosphor have been determined using McCamy's polynomial formula:
CCT = -437n®+ 3601n%- 6861n + 5514.3 (4.4)

where n denotes the inverse slope line, which is equal to the ratio of (x-Xe) to (y-ye), and x.=0.332 and

ye=0.186 denote the convergence center.
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Fig. 4.6. CIE chromaticity diagram of 1.0 mol% of Eu®" doped KBM phosphor under excitation
wavelengths of Aex=392 nm and Aex=464 nm.

Under 392 and 464 nm excitation wavelengths, the estimated CCT values for 1.0 mol % Eu®* doped KBM
phosphor are 2901 and 2801 K, respectively. Phosphor with a CCT value less than 5000 K are better for
warm light applications, while those with values higher than 5000 K are better for cool light applications.
As a result, the CCT values for 1.0 mol % Eu®" doped KBM phosphor were less than 5000 K, indicating

that it may be used in warm w-LED applications.
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CHAPTER 5: CONCLUSIONS

High-quality KsBiMo4O16:Eu®* phosphor have been synthesized by the conventional solid-state reaction
technique and characterized for their structural and photoluminescence properties. The powder XRD
indicated that phosphor crystallized well and are single phase. SEM micrographs have depicted the
inhomogeneous morphology of these phosphor which indicated KBM to be submicron-sized and
agglomerated all over the surface. Their luminescence properties have been studied for both excitation
and emission spectra respectively. KBM shows the intense red emission at 612 nm excited under n-UV
and blue light. The color coordinates obtained from emission spectra are found to lie in red region for
KBM. The CIE chromaticity coordinates for this phosphor represent red emission of the as-synthesized
phosphor, which indicates that it can be used in cost-effective phosphor-converted white light-emitting

diodes (pc-wLED).
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CHAPTER 6: SCOPE OF WORK

The recent work has been done by doping Dysprosium (Dy**) and Europium (Eu®") into NBB and
KBM host materials respectively which have made them an effective and high-quality phosphor which
can be used in low-cost developed phosphor-converted white light-emitting diodes (pc-wLEDS). They
can also be employed for similar opto-electronic applications. Firstly, the luminescent properties of these
phosphor can be enhanced via co-doping with other suitable rare-earth ions (RE) such as yttrium (Y?*),
samarium (Sm®"), gadolinium (Gd*"), terbium (Th®"), and lutetium (Lu®"), etc. This is because RE ions
co-doped in specific regions of host matrix could enable a new generation of quantum integrated photonic

devices.

The present phosphor has been synthesized by the conventional solid-state reaction technique and
characterized for their structural and photoluminescence properties. So, another synthesis method such as
sol-gel method can be explored to improve the particle morphology and reduce the particle size. The sol-
gel combustion method employs a hybrid of the sol-gel and combustion processes, with nitrates as metal
precursors. The metal oxides that are generated go through numerous processes in the Sol—gel approach.
First, the metal nitrate is rapidly hydrolysed; second, the metal hydroxide solution is condensed to create
gels; and finally, xerogel is formed following the evaporation process, which is then combusted at a high
temperature. The resulting compound is a black fluffy structure that is sintered at various temperatures.
This method may be explored to improve the luminescence properties of the as-prepared phosphor.

The utility of these phosphor can not only be applied for wLEDs but also is extended for versatile
applications such as fingerprint sensing and thermal sensing, bio-imaging, etc. In a nutshell, the prototype

w-LEDs can be fabricated using the optimized phosphor for the above-mentioned applications.
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device applicstions * (MATPR.D.22.02961) has been
accepled for oral paper presentation at ICMPC.2022 and

publication in Materials Today: Proceedings

You are requested 1o sand the duly Med registration
ferm and copyright form along with Demand Dralt or bank
transaction recaipl. The program for the upcoming
conference will be loaded on the website 33 soon a3 it is
finakzed. We are locking forward Lo your participation at the

conference

Thanks and Regards

/”.lc‘

Dr. Swadesh Kumar Singh,
GRIET, Hyderabad.
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REGISTERATION PROOF

13" INTERNATIONAL CONFERENCE ON

Matenak Proceseng ano Chaactenzancn

REGISTRATION FORM
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PAPER ID: 823
Full Name: Tanisha Bhadauna
Designation: Student

Organization & Address: Delhi Technological University, Bawuna Rd Shahbad Daulatpur
Viltage, Rohini, New Delhi, Dethi 110042

Mobile: 7007097081 Phone (0):
E-muail: tanishabhadauna 2k20mscphy30va dtu ac in
Amount paid: AMPT (Taylor and Francis) : Rs 15000 / USD 250
AlP Conference proceedings : Rs 9000/ USD 175
v Materials Today: Proceedings: 9000/
Name of the Bank: Stute Bank of India
Name of the account holder: Tanisha Bhaduuria
Date of the transaction: 08 April, 2022
Online Transaction number: IMPSOO19%73471

Registration Category: Educational Institution

Signature with Date
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Correspondence Address:
ICMPC-2022
GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING &

FTECHNOLOGY BACHUPALLY, HYDERABAD-500090 TELANGANA, INDIA

PHONE NO: 091-9959870257

E-mail: icpe-hydicgniet acin
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