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ABSTRACT 

In this work, the application of dielectrics to the Silicon Nanowire Gate All Around Field Effect Transistor 

is discussed. Employing quantum ATK software, device is studied at three distinct dielectric constants 

(4,9,25). Sub-threshold circumstances such as subthreshold slope, ION and IOFF currents are explored at 

each dielectric. Calculated parameters and results were compared to three different dielectrics (4,9,25) 

with the same channel length. The ION /IOFF ratio for dielectric 4,9,25 was determined to be 0.86 x 10⁷, 

0.22 x 10⁷, and 0.12 x10⁷ for the mentioned device, respectively. The subthreshold slopes were computed 

as 298.416 mV/dec, 285.8914 mV/dec, and 190.66 mV/dec for the same three dielectrics (4,9,25 

respectively). Also, transmission spectrum was also calculated without dielectric explaining the transport 

of electrons at gate voltage, VG = 0.5V. Many further analyzes were carried out to see how the proposed 

device may be used for sensing applications. 
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CHAPTER 1: INTRODUCTION 

1.1 CMOS Technology: Developments and Challenges 

In 1975, Gordon Moore amended his prognosis, indicating that the doubling will occur every two years 

on average. "Moore's Law" is the name given to this predictive model, has served as a benchmark for the 

semiconductor industry, motivating them to push harder to breach technological barriers through ongoing 

innovation [1]. 

Figure 1.1 shows that, in accordance with Moore's Law Every year, the transistor count per chip has risen. 

The semiconductor industry has faced numerous hurdles over the years in order to maintain its growth 

[2]. The first big setback occurred in the early 2000s, when the technology node was reduced to less than 

90 nanometers. Heat became trapped inside the chips as a result of the fast clock speed and compact 

device size, eventually making them too hot to use. In order to stay up with Moore's law, the industry put 

a stop to clock speed increases and produced multi-core CPUs [3]. 

 

 

Figure 1.1. Intel’s Microprocessor transistor count [4] 
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Short Channel Effects (SCEs) and gate leakage current resulted when the technological node and gate 

length and oxide thickness shrank. The semiconductor industry has come up with a variety of 

modifications to the fundamental Si-based MOSFET structure over the years in order to keep those non-

ideal effects under check and continue scaling [5]. 

Another notable short channel effect is the Hot Carrier Effect, also known as Impact Ionization, in which 

the carrier electrons in an n-MOSFET gain much greater energy than average electrons due to enhanced 

lateral electric fields caused by shorter channel length [6]. Due to impact ionization, these “Hot Electrons” 

strike Silicon atoms and generate electron-hole pairs, resulting in a channel-to-substrate current. If the 

"Hot Electrons'' accumulate enough energy, they may be able to break through the channel-oxide barrier 

and damage the gate oxide material. This phenomenon can be avoided by separating the channel from the 

substrate physically and using a thick high-oxide layer [7]. Some other non-ideal phenomenon linked 

with aggressive transistor growth is Gate Oxide Breakdown. The gate oxide thickness shrinks as the 

feature length of a transistor generation shrinks, making it more susceptible to electrostatic breakdown. 

This is a primary cause of contemporary transistor failure and a serious threat to device dependability. 

The use of thick high-gate oxides can help with the breakdown problem while maintaining the gate 

capacitance required by constant scaling [8]. Thicker gate oxides also lessen gate leakage current by 

reducing Quantum Mechanical tunneling at the channel-oxide contact. Intel is already deploying high-

gate oxide transistors in their 45 nm and beyond technological nodes [9]. 

One of the most critical variables determining transistor scaling is subthreshold current. Because today's 

gadgets operate at such low voltages, the threshold voltage is really no higher when compared to off-

voltage. Even if the VT is low, this causes high drain current, which is one of the main causes of heating 

in off-state devices [10]. Subthreshold Slope (SS), which represents the voltage necessary in millivolts to 

lower the drain current by a factor of ten lesser than the threshold conditions (VT), illustrates intensity of 
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undesired current. Traditional MOSFET structures, however, are limited to an SS of 60 m V/dec. Gate-

all-round (GAA) FET and Fin FET transistor architectures with a higher degree of gate control can easily 

exceed the theoretical limit of SS [11]. 

1.2 Metal Oxide Semiconductor Field Effect Transistor  

Figure 1.2 shows a MOSFET design. When it comes to VLI, researchers are constantly concentrating on 

reducing the transistors in order to improve their efficiency [12]. Now-a-days, the industry of 

semiconductors and microprocessors are progressing to the point where many nano scaled transistors may 

operate with low power and cheap cost designs. Scaling the device to the nanoscale scale causes problems 

such as SCE’s, tunnelling effects, and threshold voltage effects, among others, this reduces efficiency and 

complicate production. This review article covers not only scaling problems and solutions, but also a deep 

examination of silicon nanowire and other unique nano FETs [13]. 

 

 

Figure 1.2. N-MOS structure [14] 
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1.2.1 MOSFET Operation  

The MOSFET is a form of enclosed transistor manufactured by supervised oxidation, often silicon. The 

supplied voltage will produce charges in the metal plates of a traditional parallel plate capacitor and 

counter charges in the semiconductor's interfacial layer, as expected [15]. The primary capability of the 

MOSFET is to generate and change a conducting layer comprised of minority carriers at the 

semiconductor–oxide interface [16]. 

 

. 

Fig 1.2.1. Quantum confinement effect shown in an n-channel MOSFET [17] 

Because a p-type substrate is employed in n-MOS transistors, when Vg>0 is applied, holes begin to move 

away from the common region [18]. When the gate voltage is increased higher, the depletion layer 

penetrates the substrate deeper, and electrons begin to inject, producing a pathway. For an n-type 

substrate, the channel created by a p-MOS transistor is made up of holes. MOSFETs are classified into 

two categories based on how they operate [19]. 
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1.2.2 Enhancement Mode  

In Enhancement mode, in case no voltage is fed to gate electrode of MOSFET, a conducting channel does 

not exist between the metal regions. Switching the device ON, a particular minimum gate voltage must 

be applied to initiate the channel [20]. 

1.2.3 Depletion Mode 

Even when no gate voltage is provided to a depletion-mode MOSFET, a conducting channel (inversion 

layer) exists. In this situation, the gadget will be turned off by the threshold voltage [21]. 

1.3 Downsides of Conventional MOSFETs and Their Limitations 

Conventional bulk metal-on-silicon (MOS) devices are commonly used in large-scale integrated circuits. However, 

due to their reduced size, they are not ideal for the small-channel applications. Due to the presence of both gate-

drain and gate-source overlap, the device's longitudinal field is increased [22]. The increasing number of parasitic 

capacitances in a device makes it unsustainable and consumes more energy. Downscaling of a device requires 

proper scaling of its gate length and width, thickness of oxide layer, and other dimensions [23]. 

1.3.1 Short Channel Effects (SCEs)  

Gate electrode controls electrostatics of device's channel in long channel MOSFETs, but the source and 

drain regulate the electrostatics of the channel in short channel MOSFETs. Furthermore, as the size of the 

channel is minimized, the drain current increases, making switching easier but also lowering the threshold 

voltage [24]. 
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1.3.2 Velocity Saturation  

The value of the lateral electric field grows in a short channel device, resulting in charge carrier velocity 

saturation at around 107 cm/sec. As a result, the device current obtained is smaller than the drain current 

predicted by the mobility model [25]. 

1.3.3 Surface Scattering  

The inversion layer formed in the device is confined to a very narrow region in the silicon near the silicon-

insulator interface. Due to the increment in lateral electric field inside channel of short channel MOSFET 

and also the electric field applied vertically, charge carriers experience collision among them while 

accelerating towards the drain region causing degradation of mobility. This is known as surface scattering 

which lead to reduction in drain current [26].  

 

1.3.4 Hot Carrier Effects  

 

In short channel device, value of electric increases in the channel regions causing the carriers to move at 

high velocity. This acquired high kinetic energy could cause impact ionization which ultimately leads to 

degradation of insulator layer causing gate leakage current. These high energy charge carriers are called 

hot-carriers. These can also lead to undesirable substrate current [27].  

 

 

Fig. 1.3.4. Representation of Hot carrier effects [28] 
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1.4 Gate-all-round (GAA) FET: 

The use of numerous gate transistors significantly reduces the impact of small channels and improves 

performance. The Nanowire itself serves as the substrate in a silicon Nanowire transistor [29]. Nanowires 

come in a variety of device shapes, including rectangular and cylindrical. The transistors are created as a 

cylindrical gate, or gate all around structures depending on the shape of the nanowires [30]. 

Unlike planar MOSFETs, silicon Nanowire FETs contain metal connections. That is, instead of 

degenerately doped semiconductors, the above-mentioned connections are constructed of metals. As a 

result, physical contact qualities have a significant impact on device performance. Also, annealing can 

result in the development of practically ohmic contacts, resulting in a substantial rise in ON current and 

apparent carrier mobility [31]. While the twin gate FET construction increases device performance by 

increasing drain current and transconductance, as well as improving short channel reliability, the 

misalignment of two gates might reduce device performance when compared to the single gate structure. 

The variation from intended behavior produced by gate misalignment might occur from either overlapped 

or non-overlapping regions. The symmetric dual gate structure is studied in this research [32]. 

1.4.1 Problems with Double Gate FET structure  

While the double gate FET construction increases device performance by increasing drain current and 

transconductance, as well as improving short channel reliability, the misalignment of two gates might 

reduce device performance when compared to the single gate structure [40]. Overlapping any gate 

electrode with the source or drain can change the device attributes since the gate now controls the 

overlapped part of the source or drain. The departure from intended behavior produced by gate 

misalignment might occur from either overlapped or non-overlapping regions. The symmetric dual gate 

structure is considered in this study [33]. 
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1.5 Literature Review 

1.5.1 Biosensors 

“Biosensor R&D is a widely researched discipline that has been researched because Biosensors are 

simple, rapid, low-cost, very sensitive, and selective, and they aid in the development of next-generation 

medications such as customized therapy and ultrasensitive point-of-care disease marker detection” [34]. 

From the perspective of smart biomaterials, this chapter reviewed traditional biosensors and biosensing 

techniques and emphasized current breakthroughs in essentials. Surface chemistry developments that 

have opened up a slew of new possibilities for creating target molecule recognition systems. Biosensor 

development will be accelerated and biological disciplines will be transformed as a result of the synthesis 

of a wide range of interdisciplinary knowledge [35]. 

1.5.2 For biomedical purposes, a 3D-printed device with embedded biosensors 

Biosensors play an important role in every aspect lives, and their importance in making our lives easier 

cannot be overstated. Even the healthcare system is reliant on biosensors in this technological age. The 

integration of 3D printing technology with custom-made biosensors is the need of the hour. The ground-

breaking technology allows for the procedure to be utilized in conjunction with MRI and CT are examples 

of imaging techniques scanning, allowing for a thorough examination of a patient's dataset. Biosensors 

are used by healthcare professionals in diagnostics, prostheses, teaching, organ transplantation, and even 

prevention [36]. 
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1.6 The Rationale for Selecting Silicon Nanowire 

Silicon CMOS is perhaps the nanoelectronics industry's favored technology since several decades. Due 

to their exceptional qualities, MOSFETs have evolved into one of the most important components of 

VLSI. A MOSFET's channel length is lowered during scaling down the device, deviations from long 

channel behavior are predicted. As a result, due to their greatly improved electrical and optical features, 

In the present semiconductor business, silicon nanowire transistors have gotten a lot of interest as a 

potential replacement for traditional MOSFETs [37]. 

It was reported that the carrier mobility of small-diameter SiNWs is high. The ability to fabricate high-

performance FETs requires a high carrier mobility. Since SiNWs consist of high surface-to-vol. ratio, 

comparatively mass carriers may be easily regulated by a modest electrical field applied to the gate, these 

SiNWs-related nano FETs are extremely sensitive [38].  
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1.7 Aim & Purpose of the Study   

The key goals of this project can be classified into four sections.  

1. Designing the Hydrogen Passivated Gate All Around (GAA) Silicon Nanowire FET using 

Quantum ATK software. 

2. We’ve used three distinct computational methods to determine the nanowire's band structure: 

DFT-GGA, DFT-MGGA, and the Extended Hückel technique 

3. We utilized NEGF for transport of electrons and semi-empirical calculator to perform the 

calculations. 

4.  For each dielectric, subthreshold conditions such as subthreshold slope, ION, and IOFF currents are 

investigated. Three alternative dielectrics (4,9,25) with the same channel length were compared 

to the calculated parameters and. In addition, a transmission spectrum without dielectric was 

calculated to describe electron transport at gate voltage. 
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CHAPTER 2 

DEVICE STRUCTURE & SIMULATION 

IN QUANTUM ATK 
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CHAPTER 2: DEVICE STRUCTURE & SIMULATION IN QUANTUM ATK 

2.1 QUANTUM ATK 

Since 2003, professional software programmers have collaborated with academic researchers to produce 

Quantum ATK, an integrated set of atomic-scale modelling tools. Electronic structures can be calculated 

using density functional theory or Hamiltonians, bound or reactive empirical force fields in a range of 

parametrizations, using quantum ATK simulation engines. 

 

Fig 2.1.  Quantum ATK accommodates atomistic configurations. (a) A pentane molecule's molecular 

configuration. (b) A gold crystal in its bulk structure. (c,d) A gold-silver interface device arrangement. In the left-

right transport direction, both electrodes are semi-infinite [39]. 

In this situation, the device is periodic in both perpendicular directions to the transport direction, whereas 

a nanosheet or nanotube device would be the non- pierodic in one. A gold surface's surface arrangement. 

A left electrode (transparent yellow) and a central area make up the structure (orange box). The easy 

continuous integration of numerous computational in a single platform allows for the easy integration of 

various simulation approaches in unprogrammable processes. We give four separate application examples 

in addition to a basic overview and a number of implementation specifics not previously released. 
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Fig. 2.2.  Quantum ATK depiction of the NEGF quantum transport module [39] 

Quantum ATK's distinctive feature is device system simulation. Unlike most DFT device simulation 

algorithms, Quantum ATK was built from the ground up to offer the maximum accuracy [40].  

2.2 Simulation & Material Level Modeling 

2.2.1 Building a Silicon Nanowire (111) 

The first stage is to set up and optimize the Si (111) nanowire shape. For this, you should utilize the ATK-

DFT calculator. We next use three distinct computational methods to determine the nanowire's band 

structure: DFT-GGA, DFT-MGGA, and the Extended Hückel technique [41]. 

● To begin, go to Add. To find the diamond phase of silicon, search the database for "silicon FCC." 

● To the Stash, add the Silicon (alpha) bulk configuration. 

● Take the default (111) cleave direction and click Next  

Then, using the Bulk Tools Repeat, replicate the wire in the C directions eight times. Follow these steps 

to finish the nanowire: 

Center the structure in all directions with the Coordinate Tools Center tool; and apply the hydrogen 

passivation to the nanowire with Coordinate Tools Custom Passivator tool. 
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2.2.2 Constructing the Si (111) nanowires 

To compute device characteristics like ON-OFF ratio, zero-bias transmission spectrum and, after that, use 

the Extended Hückel model to construct the network device, combining the silicon nanowire's gate and 

doping [42].  

2.2.3 Hydrogen Passivation  

Hydrogen passivation is the process of creating hydrogen silicon bonds to protect silicon material surfaces 

from chemical reactions. Reactive dangling bonds on silicon atoms may be present in recently made 

silicon-based materials. These dangling bonds can change the material's band gap energy, influencing its 

semiconductor characteristics. Furthermore, air-sensitive reactive dangling bonds can be passivated with 

hydrogen to improve the material's stability and lifetime. Hydrogen passivation is accomplished by 

employing various hydrogen sources, including: Molecular H2, Atomic H produced in plasma, Firing of 

hydrogenated Si nitride (SiN:H) & Hydrogen Fluoride [43]. 

2.2.4 Construct the SiNW GAA device 

1. Build the Si (111) FET device from the bulk nanowire arrangement using Device from Bulk tool. 

For the electrode lengths, use the default suggestion. 

2. The first stage is to set up and optimize the Si (111) nanowire shape. For this, you should utilize 

the ATK-DFT calculator. We next use three distinct computational methods to determine the 

nanowire's band structure: DFT-GGA, DFT-MGGA, and the Extended Hückel technique [44]. 

Next, define the metallic wrap-around gate using the Miscellaneous Spatial areas tool: 

1. First, create a new metallic region with a 0 Volt value. 

2. To make a cylindrical zone, go to Geometry and select Tube. 
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Enter the parameters indicated in the image below to define the tube's geometry. Along A and B, the 

cylinder will stretch to the simulation cell's edge, and along C, it will cover the majority of the 

nanowire's middle portion. 

 

2.2.5 P-i-N DOPING 

Finally, doping the Si (111) wire is put into the nanowire. Instead of introducing dopant atoms 

explicitly, which would result in a very high doping concentration for this very small device, the 

device is done with p-i-n junction which provides various quantities of electrons. The Fermi levels of 

the two electrodes will shift as a result, resulting in a built-in potential in the device [45]. Doping 

Type: p-type; Type of doping: n-type; Value of dopants for both left and right electrode: 4x1019 e/cm3. 

Finally, a dielectric is placed within the FET with a voltage of 1.0 V, and the dielectric constants are 

varied as 4,9,25 for further calculations. For these three dielectrics, simulations were done. 
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2.2.6.  Simulations Performed in Quantum ATK 

 

                                  

Fig. 2.3. Silicon (alpha)                                                  Fig. 2.4. Silicon Nanowire (111) 

 

                              

Fig. 2.5. Hydrogen Passivated Device                   Fig. 2.6. Metallic Gate applied to the device 

 

 

Fig. 2.7. SiNW FET with Dielectric applied 
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Table 1: Device’s physical parameters used in the structure 

 

Parameter Parameter used 

Spatial metaheuristic 

parameters 

Optimizer 

Method 

Force 

tolerance 

The most processes 

possible 

Max. force component 

Brenner 0.05 eV/Å 10 0.035085 

eV/Å 

Temperature 300 K 

k-points 

sampling (a, b, c) for 

device 

configuration 

1,1,101 

Density Mesh Cut-

off 

10 

Hückel-Basis set Atom Basic type Vacuum level 

 Silicon alpha 0 eV 

Hydrogen Hoffmann 

Hydrogen 

0 eV 

Poisson solver Boundary 

conditions 

A B C 

Neumann Neumann Dirichlet 
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CHAPTER 3 

RESULTS AND DISCUSSION 
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CHAPTER 3: RESULTS AND DISCUSSION 

 

We’ve discussed following numerical results carried electrical characterization, by varying dielectrics ID-

VGS, ID-VDS, and transmission of electrons in silicon nanowire transistors in the nanoscale range. Different 

values of dielectric constant are taken into account (K=4ɛ, 9ɛ,25ɛ) and their analog characteristics are then 

being compared. The Transfer (gate source) characteristics are shown in Figure 2. Once the dielectric 

constant shifts from one value to another, i.e., from a lower (4ɛ) to a higher(25ɛ) value, the device drive 

current increases. 

 

4.1 Device Electrical Characteristics at various dielectric constants 

4.1.1 Plot of the ON-OFF ratio  

 

 

Fig. 4.1.1. The ON-OFF ratio 

 

From Fig. 4.1.1., In terms of dielectric constant, the ON-OFF current ratio for three different dielectrics 

of Cylindrical Gate All Around FET based SiNW is shown in the graph above. According to the Cox = 
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ɛoɛx/ tox equation, as the dielectric constant rises, so does the value of oxide capacitance, Cox, and hence 

the value of both ON and OFF state currents. The device's sensitivity improves as the current in the OFF-

state increases. One of the most important characteristics in digital logic applications is the ION/IOFF ratio. 

For dielectric constants 4 and 9 and 25, respectively, it was found to be 8.6x106, 2.25 x106, and 1.2 x106 

in the simulation. 

 

4.1.2 Plot of Saturation voltage 

 

Fig. 4.1.2. Saturation Voltage at different dielectric constants 

 

 As shown in Fig. 4.1.2., The saturation voltage shifts from higher to lower values as we increase the 

dielectric constant. This could be explained by the presence of interface trap charges, which increases as 

k-values rise. 

The log scale fluctuation of drain current with various source and drain doping concentrations is shown, 

with a fixed Drain bias of 0.5V. The barrier grows slightly higher but also thinner as the Fermi level rises, 

resulting in a drop in thermionic emission but an increase in drain current. 
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4.1.3 Plot of Subthreshold Slope 

 

 

Fig. 4.1.3. Plot of SS at different dielectric constant 

 

The major performance limiters for new devices include growing SS values due to SCEs, which must be 

suppressed for the device to perform better overall. From fig 4.1.3, the lower SS values also lead to better 

gate electrostatic control on the channel and the possibility of using a gate oxide with a high dielectric 

constant for digital logic switching. 
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Table 2: Simulation yielded device properties. 

 

Output Various Dielectric constants used 

4 9 25 

Threshold Current (A) 2.1573x 10−10 2.3350 x 

10−10 

2.5025 x 10−10 

Saturation Voltage 

(V) 

0.883 0.804 0.654 

ON-OFF Ratio 8.60 x 106 2.25 x 106 1.20 x106 

Subthreshold Slope 

(mV/dec) 

298.416 285.8914 190.766 
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4.2 THE TRANSMISSION SPECTRUM 

 

     

Fig. 4.2 Transmission spectrum of SiNW FET without Dielectric 

 

From fig. 4.2, the SiNW FET transmission spectrum was estimated in addition to the I-V curves. As 

illustrated in Figure 1, the transmission spectra of doped and undoped FETs are similar. Undoped FETs 

have no gap at Fermi energy level, & spectrum intensity around the Fermi energy level is quite high. Two 

peaks in the conduction band can be found at 0.6 and 2.1 eV. A transmission channel is formed through 

the contact region when the valence bands and conduction bands of both electrodes overlap, and electrons 

are carried from the left to the right electrode. 
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CHAPTER 5: CONCLUSIONS 

In this paper, we've set up and run computations for a field effect transistor-based silicon nanowire. By 

defining the structure of a hydrogen passivated Si (111) nanowire and constructing a cylindrical wrap-

around gate field-effect transistor (FET). Finally, we estimated the on-off ratio, Subthreshold slope, 

threshold voltage for three different dielectrics (4,9,25), and transmission spectrum without dielectric. The 

ballistic transport characteristics of the SiNW (GAA) FET are calculated using the NEGF formalism in 

the simulator. Electrostatics, on the other hand, is defined by solving coupled 1D Schrödinger-Poisson 

equations. The Quantum ATK software is totally physically precise and can be used to compute the SiNW 

(GAA) FET's ultimate performance limit and investigate the impacts of multiple physical parameter 

variations on the device's performance. Based on the results of the built silicon nanowire FET, the work 

compares the performance of various dielectrics. Because Nanowire FETs have a high fabrication cost, 

modelling their effectiveness and improving their design criteria is a smart idea. Simulation results provide 

insight into the behavior of existing semiconductor devices and circuits, reducing fabrication costs and 

reducing time to market. The study compares gate oxide performance based on performance and SCEs 

variables. The optimized device has a 107 ION - IOFF ratio, an SS of 190.77mv/Dec, and a 654-mV threshold 

voltage. Because of the improved performance generated by utilizing dielectric 25, this device is helpful 

for switching and sensor applications. 
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CHAPTER 6: SCOPE OF WORK 

Semiconductor nanowires have piqued scientists' curiosity and are thought to be one of the most 

promising prospects for forthcoming nanostructured materials and microchips. Applications of Silicon 

Nanowire FET on gas sensor can be studied using the stated software. SiNW sensors have been used to 

detect proteins, DNA, pH, drug discovery, glucose, arrays for parallel molecular detection, and gas 

sensors in experiments.   

For future aspect the Quantum ATK software can also be examined for further evaluations for the SiNW 

FET device. Graphene sheets, carbon nano-tube can be designed for the evaluation of the devices too. 

To comprehend more about the transmission spectrum and how it changes with different gate voltages. 

When the channel length is reduced, the electron density in the channel region increases. A transmission 

pathway can be presented, which is a visual representation of carrier flow through a channel constructed. 

Sensors FET are very useful i.e., f or instance, for sensing pollutants in our atmosphere. As a matter of 

fact, SiNW FET can be used for a variety of applications in our daily life.  
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