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ABSTRACT 
 

Low-resolution of satellite images restrict the performance and applications of satellite 

image processing. Due to inability of the methods to convert low-resolution satellite 

imagery to high-resolution, there might be a large amount of temporal data loss. Satellite 

imagery deals with the problem of mixed pixels and aims to minimise it. This study 

focuses on the review of the methods to classify subpixels inside the mixed pixels, along 

with the background involving endmember extraction and abundance mapping. 

Further, the study utilises two subpixel mapping algorithms, i.e. Pixel Swap (PS) Method 

and Inverse Euclidean Distance (IED) Method for the subpixel distribution of binary 

classes. The model is trained on resampled satellite image to compute the best possible 

method among these to perfom binary target detection. Considering various accuracy 

metrics, IED performs better than PS. This IED algorithm is further used on Landsat-8 

data, with a scale factor 3, to obtain the high-resolution image. This high-resolution output 

image is used in the application of area estimation. In area estimation, the area 

corresponding to pure target pixels only is calculated for the reference image, the output 

image and the low-resolution image. 

Accuracy of IED for testing was not as high as training. But, considering the increase in 

area estimation of the target from original low-resolution imagery to output high-

resolution imagery, the method is reliable enough for subpixel mapping. 

  

 

 



iv 
 

 

 
 

ACKNOWLEDGMENTS 
 

First and foremost, I thank the Almighty God,  for his strength, sustenance, and graces 

from the beginning of my academics up to this phase of being able to write the thesis for 

my master's degree.  

My humble appreciation and gratitude are reserved and due for my impeccable and ever-

supportive supervisor Dr. K. C. Tiwari for his quintessential guidance and empathetic 

approach towards me over all these years of doing research. The cooperation, 

appreciations, critics, and motivations received from him over this period helped in 

gracefully overcoming all the challenges and obstacles that came in the way.  

I am indebted to the persistent support received from all the members of The 

Multidisciplinary Centre for Geoinformatics, Delhi Technological University, who have 

always been available at the need of the hour. I would like to recognize the invaluable 

assistance obtained from my fellow batchmates over all these months. 

My words of thanks are due to all my near and dear ones including my family, relatives, 

and friends, for their mental support and understanding approach that kept me motivated.  

Thank you so much everyone for standing beside me on this journey and keeping me 

work towards success. 

 

 

 

          UTKARSH KARN 



v 
 

 

 

 

     CONTENTS 

 

CANDIDATE’S DECLARATION i 

CERTIFICATE ii 

ABSTRACT iii 

ACKNOWLEDGMENTS iv 

CONTENTS v 

LIST OF FIGURES vii 

LIST OF TABLES ix 

CHAPTER 1: INTRODUCTION 1 

1.1 General 1 

1.2 Issues of Multi-Sensor Multi-Resolution Remote Sensing 2 

1.3 Gaps In The Study 4 

1.4 Motivation 4 

1.5    Objectives                4 

1.5   Organisation of Thesis 5 

CHAPTER 2: CRITICAL REVIEW 6 

2.1 Mixed Pixels and Spectral Unmixing 6 

2.1.1. Endmember extraction 8 

2.1.2. Spectral Unmixing and Fractional Abundance 11 

2.2 Subpixel Mapping and Super Resolution 13 

CHAPTER 3: IDENTIFICATION OF MODEL FOR SUPER RESOLUTION 17 

3.1 Background 17 



vi 
 

3.2 Datasets & Software Requirements 18 

3.2.1 Datasets 18 

3.2.2 Softwares 19 

3.3 Methodology 19 

3.3.1 Pixel Swap Algorithm 24 

3.3.2 Inverse Euclidean Distance (IED) Algorithm 25 

3.4 Results 27 

3.4.1 Mean Square Error (MSE) 28 

3.4.2 Structural Similarity Index (SSI) 28 

3.4.3 Peak Signal to Noise Ratio (PSNR) 28 

3.4.4 Model Conclusion 29 

CHAPTER 4: IMPLEMENTATION AND APPLICATIONS OF IED 30 

4.1 Data and Methodology 30 

4.1.1 Data Used 30 

4.1.2 Methodology 30 

4.2 Implementation 31 

4.3 Area Estimation 36 

4.4 Results and Discussion 37 

4.4.1 Results 37 

4.4.2 Discussion 37 

CHAPTER 5: CONCLUSION 38 

REFERENCES 39 

APPENDIX 1: Resampling Code 45 

APPENDIX 2: Preprocessing Of Data (MATLAB) 46 

APPENDIX 3: IED Technique (MATLAB) 47 

 



vii 
 

 
 

 
 

LIST OF FIGURES 
 

Figure 1.1   Pure and Mixed Pixels 2 

Figure 2.1   Mixed Pixel Target 7 

Figure 2.2   Fractional Abundance Maps 11 

Figure 3.1   Binary image showing white target 17 

Figure 3.2   Sentinel 2 Data in JPEG format (left) and TIFF format (right) 18 

Figure 3.3   Linear Spectral Unmixing - Target (top) , Background (bottom left) 20 

Figure 3.4   Abundance fraction of target endmember 21 

Figure 3.5   Target image 21 

Figure 3.6   Histogram of Original Image used to decide the threshold of the target 22 

Figure 3.7   Methodology Flowchart 23 

Figure 3.8   Output image by Pixel Swap 27 

Figure 3.9   Output image by IED 27 

Figure 4.1   Landsat 30 m Imagery 30 

Figure 4.2   Flowchart of the methodology of testing 31 

Figure 4.3   Endmember Selection using ROI tool in ENVI 32 

Figure 4.4   Abundance Map of Target 32 

Figure 4.5   Histogram of the Landsat Data 33 

Figure 4.6   Target Image 34 

Figure 4.7   Output after IED Algorithm 34 



viii 
 

Figure 4.8   RGB Composite of Sentinel-2 data 35 

Figure 4.9   Abundance map of Target (left) and Background (right) 35 

Figure 4.10 Binary Image of Sentinel-2 for validation 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 
 
 
 

LIST OF TABLES 

 
Table 1.1 High-resolution Satellites and the cost of their imagery 3 

Table 2.1 Review of  Endmember Extraction Techniques 9 

Table 2.2   Some Existing Super Resolution Techniques 15 

Table 3.1   Sentinel 2 Data 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 
 

 
 

LIST OF ABBREVIATIONS 

 

AAAS American Association for the Advancement of Science  

AMEE  Automated Morphological Endmember Extraction 

ANN Artificial Neural Network  

AVIRIS Airborne Visible-Infrared Imaging Spectrometer 

BFM Bilinear-Fan Model 

CCA Convex Cone Analysis 

CF Correct Fraction 

CRS Coordinate Reference System 

DEM Digital Elevation Model  

FCLS  Fully Constrained Least Squares  

GA Genetic Algorithm 

GRP  Ground Reference Points  

HNN Hopfield Neural Network  

IEA Iterative Error Analysis 

IED  Inverse Euclidean Distance 

JPEG  Joint Photographic Experts Group 

LIDAR Light Detection and Ranging  

LLM Linear Mixture Model  

LSU Linear Spectral Unmixing 



xi 
 

MEST Manual Endmember Selection Tool 

MRF Markov Random Field  

ORASIS  Optical Real-time Adaptive Spectral Identification System 

POCS Projection Onto Convex Sets 

PPI Pixel Purity Index 

PPNM Polynomial Post-Nonlinear Model 

PS Pixel Swap 

PSNR Peak Signal to Noise Ratio 

PSO Particle Swarm Optimisation 

RFSR Random Forest Super Resolution 

RGB Red Green Blue 

RMSE Root Mean Square Error  

SAM  Sub-pixel/Pixel Attraction Model 

SFCM Supervised Fuzzy c-means  

SMA  Spectral Mixture Analysis 

SNR Signal to Noise Ratio 

SR Super Resolution 

SVM Support Vector Machine  

TIFF Tag Image File Format 

VDSR Very Deep Super Resolution 

 

 

 



1 
 

 
 
 
 

CHAPTER 1 

INTRODUCTION 
 

1.1 GENERAL 

Super-resolution is a type of image restoration that aims to turn low-quality 

images into high-resolution images [1]. It is similar to sub-pixel mapping, which is a 

technique for locating soft values inside each pixel and transferring fraction images to 

subpixel land cover maps using information supplied by soft categorization [2].   

The method of acquiring data by measuring an area on the ground and assigning 

a value to it is known as remote sensing. Satellite remote sensing, being one of the 

methods for remote sensing, is improving all the time. The output of satellite remote 

sensing is present in the form of images, dealing with various types of resolutions, such 

as spatial resolution, spectral resolution, temporal resolution, and radiometric resolution. 

Hyperspectral sensors give much more information per recorded pixel than 

multispectral sensors in the form of a three-dimensional cube comprising two spatial 

dimensions and one spectral dimension [3]. As a result, thorough examinations of the 

earth’s characteristics are now feasible, which would otherwise be lost in low spectral 

resolution data [4] [5]. 

As there is an increase in spectral resolution of hyperspectral images, the spatial 

resolution usually gets worse [6]. For sensors at high altitudes which cover wide areas, 

low-resolution images are quite common as the introduction of high-resolution sensors 

on such platforms might increase the cost. The low resolution of hyperspectral images 

restricts the performance of algorithms for processing and analysing. In the process of 

classification, mixed pixels are created due to low resolution. Pixels that contain more 

than one land cover type are called mixed pixels [7]. Fig. 1.1 [3] shows the problem of 

mixed pixels. 
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Mixed pixels can be a difficult challenge because of the limited spatial resolution  

[8]. It leads to a reduction in accuracy and the performance of image analysis for detecting 

targets [9]. Several full-pixel techniques have been proposed during the last decade, 

however, these techniques are not suitable for mixed pixels due to high rates of error. To 

conduct mixed pixel analysis, it is necessary to separate the target from unwanted 

background information, which involves careful handling, investigation, and exploration 

[10]. Soft classification techniques are essentially used for this purpose [11].  

Land cover classification, target detection, change detection, monitoring of 

vegetation, etc. describe some highlighting applications of hyperspectral images ( [12] 

[13] [14]. Existing works for hyperspectral detection focus on the pixel level relying on 

spectral information and simple neighboring pixel correlation information [15]. The 

detection process can further be enhanced by exploiting the spatial correlation. 

1.2 ISSUES OF MULTI-SENSOR MULTI-RESOLUTION REMOTE 

SENSING 

For many years, high-resolution imagery has been obtained from space, mostly 

for military requirements [16] [17]. There are many satellite systems in orbit or scheduled 

that can give high-resolution images, such as the fine resolution sensing system from 0.6 

m resolution of Quick Bird allows mapping at scales ~1:5,000 [18]. However, the main 

drawback of using these systems is the cost of imagery. Table 1.1 lists various satellite 

systems, along with their resolution and the cost of obtaining the data (according to the 

Figure 1.1   Pure and Mixed Pixels 
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American Association for the Advancement of Science (AAAS)). The cost of obtaining 

high-resolution imagery is extremely expensive for most of the applications. There are 

various satellite imagery portals such as Geocento and Apollo Mapping, which provide 

high-resolution imagery from various satellites by charging a large amount of money [19] 

[20]. Imagery from slightly coarser resolution systems such as SPOT costs about $ 3-5 / 

km2 and the extent covers a larger area [17]. Despite being costly, high-resolution images 

cover a smaller area on the ground. To cover an area the size of Oklahoma, US, at least 

four photos from the Pleiades-1, Kompsat-3, or SuperView-1 satellites would be required. 

A single Landsat 8 image, on the other hand, may cover the area of 25 such cities [21]. 

Low as well as medium-resolution imagery, however, provides less costly or free-

of-charge images. The historical significance of such images is also relevant for various 

applications. However, the low level of detail is the main drawback [21]. 

Table 1.1   High-resolution Satellites and the cost of their imagery 

Satellite Resolution  

(in meters) 

Price 

 (Archived images) 

Price  

(New Collection) 

QuickBird 0.61 pan, 2.4 multi $ 17 / km2 $ 23 / km2 

Superview - 1 0.5 pan, 2 multi $ 14/ km2 - 

Worldview - 4 0.31 pan, 1.24 multi $ 22.5 / km2 - 

Worldview - 2 0.46 pan, 1.84 multi $ 17/ km2 $ 23 / km2 

Worldview – 1 0.4 pan $ 14 / km2 $ 20 / km2 

GeoEye – 1 0.41 pan, 1.65 multi  $ 12.5 / km2 $ 25 / km2 

IKONOS 0.82 pan, 4 multi $ 10/ km2 $ 20 / km2 

PLEIADES NEO 0.3 pan, 1.2 multi $ 22.5/km2 - 

Kompsat-3 0.4 pan, 1.6 multi $ 12 / km2 $ 24 / km2 

SPOT- 6 2.2 pan, 8.8 multi $ 4.75 / km2 - 

Planetscope SI 3 pan $ 1.8 / km2 - 
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1.3 GAPS IN THE STUDY 

The research gaps observed in this study are 

i. There are various methods and techniques for endmember extraction and 

subpixel mapping. Selection of proper technique is essential. Hence, 

application-specific super resolution technique is needed to be adapted 

ii. Most of the subpixel mapping methods of super resolution consider the 

assumption of distribution of endmembers inside subpixel only on the basis 

of its abundance fraction. 

iii. The application of subpixel mapping in target detection and corresponding 

area estimation is very limited. 

1.4 MOTIVATION 

The motivation of this research comes from attending to the problem arising due 

to the low resolution of imagery obtained by the process of remote sensing. A few of the 

common problems, which require the need of super-resolution, are- 

i. Loss of temporal information: The data obtained during earlier times have 

low resolution. The inability of techniques to obtain information from this 

low-resolution data might result in huge temporal data loss for generations to 

come. 

ii. Inaccessible data capture: Data captured through various air platforms in 

enemy regions or regions, which cannot be accessed frequently, might come 

in low resolution.  

iii. Mixed pixels: Mixed pixels are a huge problem in hyperspectral imagery 

which further compromises with the process of target detection, land cover 

classification, change detection, etc. 

iv. High cost: Acquisition of high-resolution data requires the expenditure of a 

huge amount of money 

1.5 OBJECTIVES 

The objectives of this study are as follows 
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i. Critical Review of the endmember extraction techniques and subpixel 

mapping techniques leading to super resolution 

ii. Development of a model for the super resolution to improve target detection 

iii. The utilisation of the model for enhanced area estimation 

1.5   ORGANISATION OF THESIS 

The work in this thesis is organised into five chapters, which include this 

introduction section.  

Chapter-1 is dedicated to the overview of the topics to be addressed in the thesis, 

and the gaps identified that led to the motivation behind this research. The chapter is 

concluded with the definition of the objectives of the study. 

Chapter 2 performs a critical review of endmember extraction techniques, 

spectral unmixing techniques, subpixel mapping techniques, and super resolution 

algorithms. 

Chapter 3 covers the background, datasets, and methodology followed for 

implementing the algorithms. This chapter also covers and results and accuracy 

assessment of the model. 

Chapter 4 describes the implementation and performance of the developed 

model. This chapter also deals with the application of area estimation using the model. 

Chapter 5 Conclusion and future aspects 
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CHAPTER 2 

CRITICAL REVIEW  
 

2.1 MIXED PIXELS AND SPECTRAL UNMIXING 

During the past decades, satellite photography has been subjected to a wide range 

of analytic approaches. They are either full pixel or mixed pixel approaches, in which 

each pixel vector in a hyperspectral picture encodes spectral information. Each pixel 

vector records the reaction of one mainly underlying substance at each point in a picture, 

which is the basic premise guiding full pixel approaches [22]. Mixed pixel approaches, 

on the other hand, are based on the notion that each pixel vector records the reaction of 

numerous underlying materials at each site. A scenario may emerge when neighbouring 

end members share a single pixel, resulting in the creation of mixed pixels [23].  

Unfortunately, many sites in a picture are pure materials, but many others are mixes of 

elements, resulting in an image that is often a blend of the two conditions. 

The approach of spectral matching is the most basic full-pixel methodology for 

satellite image analysis, mainly developed for hyperspectral imagery [24]. Spatial 

neighbours have no effect on the class label assignments supplied by spectral matching 

methods [23]. One of the most significant distinctions between pure and mixed pixel 

classification is that the former is a process of class membership assignment, whilst the 

latter is a method of endmember signature abundance estimate [25]. 

Jones and Sirault studied the effect of mixed pixels on thermal data too. They 

found the effects of increases in spatial resolution on the use of thermal imaging in-field 

plant phenotyping. When image pixels are significantly smaller than the objects of 

interest (e.g., leaves), accurate estimates of leaf temperature can be made; however, when 

pixels are on the same scale or larger than the objects of interest, the observed 

temperatures become significantly influenced by the background temperature due to the 

presence of mixed pixels. Approaches to estimating the true leaf temperature that work at 

both the whole-pixel and sub-pixel levels were examined and addressed [26]. 
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Target identification using hyperspectral or multispectral images is important, 

especially for military applications. Spectral variation and subpixel target detection are 

the two most challenging aspects of target detection. Because of the spatial resolution 

limits, the ground sample distance is frequently longer than the size of the targets of 

interest, resulting in mixed pixels. This, in turn, makes it difficult to determine the target 

pixel through its spectra, especially if the target is very small. Figure 2.1 shows the 

subpixel target in a mixed pixel.  

Figure 2.1   Mixed Pixel Target [27]   

By combining linear statistical modeling and signal processing techniques, 

spectral mixture analysis (SMA) techniques have solved some of the shortcomings of full 

pixel approaches [28] [29]. They are either nonlinear or linear approaches by definition. 

Nonlinear mixed pixel analysis necessitates a thorough understanding of numerous 

scattering effects that may develop as a result of the close proximity of components inside 

each pixel [30]. Although sub-pixel nonlinear mixing is useful for some types of analysis, 

the effects of multiple scattering are thought to be minimal in the majority of cases if a 

linear model is utilised [31]. 

Spectral Mixture Analysis accepts the fact that the spectrum which is measured 

for a mixed pixel is a function of the pure spectral features, called endmembers, present 

in that pixel, with their corresponding weighting factors. This Spectral Mixture Analysis 

is also called Spectral Unmixing. For target detection algorithms, spectral unmixing is 

performed to separate the target spectra from the background spectra [32]. Spectral 

unmixing provides the end member present within the pixel and their corresponding 

abundance fractions (discussed in the next subsection). Spectral unmixing involves two 
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processes, namely, endmember extraction and creation of abundance map using 

abundance fraction. 

2.1.1. Endmember extraction 

An endmember is a surface material's spectrally distinct, idealised, and 

pure signature [33]. Endmembers can be gathered in one of two ways: either by ground 

truthing to produce ground reference points (GRPs) or through image data extraction to 

obtain GRP surrogates, or both [34]. Collecting a significant number of high-quality field 

samples is frequently a costly and time-consuming undertaking, especially in places with 

difficult terrain or inaccessibility. Algorithms are used to obtain training samples from 

remotely sensed images themselves. Thus, generating pure full pixel endmembers from 

an image is termed as ‘Endmember Extraction’ [3] [8].  

A study by Pablo J. Martinez et.al [35], summarised that the best 

endmembers must be obtained in the same condition as the unmixing spectrum (from the 

same image) preventing external factors, such as the illumination or elevation angles, 

affecting the unmixing results. The endmember extraction methods that jointly exploit 

spatial and spectral information obtain better quality endmembers than those methods 

which only utilize spectral information. 

Table 2.1 summarises common endmember extraction methods. A study 

by Rui Song et.al [36], found that N-FINDR, which is one of the earliest endmember 

extraction algorithms, is employed in the framework to extract pure endmember pixels 

from Sentinel-2 spectral surface reflectance. Based on the pure spectra that are extracted 

from N-FINDR, a Fully Constrained Least Squares (FCLS) is employed to estimate the 

abundance map for each single pure spectrum 

According to Plaza et.al [37], for mixed pixels containing binary components 

(synthetic data), PPI, N-Findr, CCA, and ORASIS are more sensitive to noise than IEA 

and AMEE. IEA and AMEE however produce the best similarity score for reflectance as 

well as radiance data. It has also been observed that the shade component is difficult to 

model. For abundance estimation, AMEE and IEA produce the lowest error score for high 

SNR. Performance increases with high SNR (for binary mixture). For non-binary mixture 

(synthetic data), AMEE scores are better.  For real hyperspectral images, reflectance data 
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is better. For radiance data, AMEE is best. For reflectance, AMEE is best. Shade 

constituent is characterized better in IEA. 
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2.1.2. Spectral Unmixing and Fractional Abundance 

The goal of spectral unmixing is to determine the fractional abundance of 

the various components that appear inside the mixed pixels [38]. Spectral unmixing 

produce a habitat map for classes, that is fundamentally different from a traditional per-

pixel categorization. The fraction of an end member inside a mixed pixel is known as the 

fractional abundance of that end member. Figure 2.2  shows the fractional abundance map 

of three endmembers namely Endmember 1, Endmember 2, Endmember 3, and 

Endmember 4, where dark red shows the highest fraction of that endmember in the 

corresponding area. 

0 

 

 

 

 

Figure 2.2   Fractional Abundance Maps [39] 
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The standard technique of spectral unmixing involves the linear 

combination of end-members, weighted by their respective abundance fractions. This 

technique is called Linear Mixture Model (LMM). In most cases, the LMM is simple to 

use and adaptable. The model is described by 
 

                𝑠(𝜆) = ∑ 𝑓𝑒𝑠(𝜆)
ୀଵ                                                (2.1) 

                

                      ∑ 𝑓

ୀଵ = 1.0                0  ≤ 𝑓 < 1.0           (2.2) 

  where  𝑠(𝜆) is the surface reflectance curve of a mixed sample, 𝑒𝑠(𝜆)  

is the surface reflectance curve of the kth endmember, 𝑓  is the abundance of kth 

endmembers in a mixed sample, and p are the endmembers that exist in the data [38]. A 

study conducted by Zhang, Rivard, and Sanchez-Azofeifa found that if the endmembers 

in mixed samples are linearly mixed, the derivative will follow the linearity as well [40].  

The capacity to resolve absorption characteristics and define their typical forms and 

precise wavelength area is a benefit of the spectral derivative [40]. Since it typically 

consists of an appropriate first-order approximation of the physical processes involved in 

most scenes of interest, the LMM has gotten a lot of attention [41]. 

In the study conducted by Yu, Chen, Lin, and Ye [42], multispectral data 

is used to compare the performance of six linear and nonlinear unmixing approaches: 

supervised fuzzy c-means (SFCM), fully constrained least squares (FCLS), artificial 

neural network (ANN), polynomial post-nonlinear model (PPNM), bilinear-Fan model 

(BFM), and Support Vector Machine (SVM). By evaluating the indicators of accuracy 

such as, RMSE and Pearson correlation coefficient (r). The results of the unmixing were 

evaluated in terms of overall performance, pure and mixed data sets, and sub-scenes with 

different mixture proportions.. In various research regions, the performance of nonlinear 

techniques varied drastically as the number of mixed pixels rose. When the fraction of 

mixed pixels was high, SVM, SFCM, BFM, and PPNM performed better, however, ANN 

performed better when processing vast numbers of relatively clean pixels. The proportion 

change of mixed pixels in a research region affects the performance of nonlinear 

techniques considerably. The linear technique, on the other hand, is better for an 



13 
 

approximate estimate, especially if you have limited prior information on the subject 

topic. 

Although the physical relevance of LMM is assured by equation (2.1), 

precise abundance assessment would be extremely difficult. Unlike multispectral 

unmixing, which focuses on accurate measurement of a single signature, target detection 

focuses on its presence, which may be assessed by the relative value of abundance, with 

the bigger abundance indicating a target sample and the lesser abundance indicating a 

background sample [43].  

2.2 SUBPIXEL MAPPING AND SUPER RESOLUTION 

The practise of optimising abundance fractions within or between pixels in order 

to create a subpixel map with a spatial resolution finer than the coarse spatial resolution 

input picture is known as super resolution [44]. It combines sub-pixel information in 

images to boost the image's resolution. Estimation of class proportion inside a pixel is 

called subpixel mapping. This sort of land-cover mapping, which was first described by 

Atkinson [45], can be thought of as post-processing of soft categorization. As a result, 

super resolution mapping algorithms employ the fraction values obtained from soft 

categorization as input to find a suitable geographic position for specified land-cover 

fractions. Because there is no knowledge of subpixel proportion, super resolution 

mapping always creates ambiguity [46]. In order to reduce the uncertainty, more site-

specific information at the sub-pixel scale would be beneficial. Panchromatic band 

images [47] [48], light detection and ranging (Lidar) data [48], digital elevation model 

(DEM) data [48], and  vector boundaries [49], all contain this type of additional 

information for super-resolution mapping issues [50]. 

Deshpande and Patavardhan [51]  performed a review of techniques involving 

super resolution and came out with the following observations: 

i. High-frequency content lost during the image acquisition process has to be 

recovered in the SR techniques 

ii. Frequency domain-based super resolution includes Fourier transform-

based and wavelet transform based techniques 
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iii. Interpolation-based (non-adaptive and adaptive) super resolution, 

reconstruction-based (deterministic and stochastic), and learning-based 

approaches are all examples of spatial domain-based super resolution. 

iv. SR approaches based on interpolation work well in smooth areas but 

poorly in edge areas. 

v. In the first stage, researchers switched their focus away from frequency-

domain algorithms and toward spatial domain algorithms. In the second 

stage, regularised multi-frame SR frameworks were the major emphasis. 

Because of their effectiveness, the GPR and TV frameworks have become 

the most often used methodologies. 

Subpixel mapping techniques for super resolution can be classified into two types: 

i. Regression-based, which includes 

a. Geostatistical methods 

b. Spatial Attraction Models 

c. Random Forest Super Resolution (RFSR) 

d. Artificial Neural Network (ANN) 

e. Wavelet Transform 

f. Projection Onto Convex Sets (POCS) 

ii. Spatial Optimisation based, which includes 

a. Genetic Algorithms 

b. Pixel Swapping 

c. Hopfield Neural Network (HNN) 

d. Markov Random Field (MRF) 

e. Particle Swarm Optimisation  
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 Table 2.2 covers major super resolution techniques used for satellite remotely 

sensed images. Challenges when applying super resolution algorithms include: 

i. The dimensionality of multispectral and hyperspectral data is larger. 

ii. Atmospheric conditions, haze, clouds, and cloud shadows add additional 

variation to measured values. 

iii. Characteristics vary globally for classes in imagery. 

 

Table 2.2   Some Existing Super Resolution Techniques 

Name Properties Limitation 

Very Deep Super- 

Resolution 

(VDSR) [52] 

Ability to train for multiple 

levels of enhancement 

Fast inference speed 

Low convergence rate 

Random Forest 

Super Resolution 

(RFSR) [53] 

Fast inference speed 

Clustering-based method 

Different discriminative 

characteristics are required 

for clustering and regression 

issues. 

Projection Onto 

Convex Sets 

(POCS) [54] 

Utilises wavelet bi-cubic 

interpolation algorithm and 

bilateral filtering 

Extremely sensitive to 

knowledge 

Genetic Algorithm 

(GA) [55] 

Operates on a set of solutions 

and spatial dependence 

Optimisation of GA 

Algorithms 

Sub-pixel/Pixel 

Attraction Model 

(SAM) [56] 

Spatial Dependence and it can 

be sub-pixel/sub-pixel 

attraction, sub-pixel/pixel 

attraction and pixel/pixel 

attraction 

Does not consider the 

correlation between sub-

pixels 
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Table 2.2   (Continued) 

Name Properties Limitation 

ANN Predicted 

Wavelet Transform 

[57] [58] 

Approximation fraction image 

and estimated detailed 

coefficients are used to create a 

high resolution source image 

Forecasting the border 

between classes is only 

accurate for particular 

classes. 

Hopfield Neural 

Network  (HNN) 

[59] 

Spatial distribution formulated 

as a constraint satisfaction 

problem  

Produce rounded corners and 

require the definition of pure 

pixels 

Markov Random 

Fields 

(MRF) [60] [61] 

Allows modeling of image's 

global spatial context using 

local interactions between class 

labels in a neighbourhood 

Require input parameters to 

get good quality images and 

neighbourhood size is fixed 

Particle Swarm 

Optimisation 

(PSO) [62] [63] 

Based on social intelligence 

and fitness score of particles 

(pixels) 

Low convergence rate in the 

process of iteration 

Pixel Swap [64] 

[65] 

Method with CF constraint and 

maintains the composition of 

the class 

Intensive computation for 

large scale factors and does 

not consider the correlation 

between subpixels 

Inverse Euclidean 

Distance (IED) 

[66]  

It uses abundance fraction and 

works on the binary class 

problem 

Non-recursive algorithm and 

use of linear Euclidean 

Distance for measurement of 

attraction 
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CHAPTER 3 

MODEL FOR SUPER RESOLUTION  
 

3.1 BACKGROUND 

This section of Chapter 3 highlights the background essential to performing the 

research work. The critical review of the literature leading to the process of super 

resolution provided the necessary insights to be undertaken for this research.  

The study mainly deals with the application of super resolution for target 

detection. Hence, the source images are conformed as a binary image. Binary pictures 

contain just two potential intensity values for each pixel [67]. They're usually shown in 

black and white. Figure 3.1 shows a binary image corresponding to target detection, 

marked by the red square.  

 

 

 

 

 

 

 

 

According to the previous chapter, the process of super resolution involves three 

basic steps. Endmember selection or extraction, abundance mapping, and subpixel 

mapping. Since the study is dealing with only the target and the rest of the classes in the 

image are considered as background, MEST is the adopted method for endmember 

selection. This method involves maximum human intervention and is supervised enough 

to be used for target detection. After the process of endmember selection, abundance maps 

involving the target and background as two defined classes (or endmember) are prepared 

Figure 3.1   Binary image showing white target [68] 



18 
 

by the process of Linear Spectral Unmixing (LSU). LSU is used for the study due to its 

simplicity, ease to use, adaptability, and good approximation nature.  

After LSU, the process of sub-pixel mapping is to be applied. Two techniques of 

subpixel mapping, namely, Pixel Swap (PS) and Inverse Euclidean Distance (IED) are 

being compared for the model. The technique with better results will be used for further 

applications. Pixel Swap, being one of the common and easy-to-use subpixel mapping 

algorithms, works on the random allocation of subpixels inside a pixel. This random 

distribution is based only on the fraction of each class/endmember inside the impure pixel. 

Most of the super resolution techniques are based on this random and recursive approach. 

However, IED is the non-random and non-recursive-based technique of subpixel 

mapping. 

3.2 DATASETS & SOFTWARE REQUIREMENTS 

3.2.1 Datasets 

Data used in the model is from Sentinel-2 imagery collection. An image 

tile is downloaded from Google Earth Engine with minimal cloud cover and good 

visibility of the considered target object.  Table 3.1 shows the specifications of the 

downloaded image. Figure 3.2 shows the image which is used to create input data, in jpeg 

format and tiff format (RGB).  

Figure 3.2   Sentinel 2 Data in JPEG format (left) and TIFF format (right) 
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Table 3.1   Sentinel 2 Data 

 

 

 

 

 

 

 

 

 

3.2.2 Softwares 

Various softwares necessary to perform the operations of the research are 

i. Google Earth Engine: To download data 

ii. ArcMap 10.8: For geospatial data handling 

iii. ENVI Classic 5.3: For satellite image processing 

iv. Google Colab: For the coding environment 

v. MATLAB R2019a: For model preparation and implementation 

3.3 METHODOLOGY 

The study aims to apply two super resolution techniques, i.e. pixel swap and 

inverse Euclidean distance on a Sentinel-2 image containing a target object. The A 90 × 

90 image of pixel size 10 m is downloaded and resampled to 30 m pixel size using the 

bilinear technique, since visually most plausible downsample results are obtained using 

this technique [69]. After downsampling, the image is converted into a 30 × 30 image of 

pixel size 30 m. MEST is used on this 30 × 30 image in ENVI Classic 5.3 with two 

Type of Image Residential 

CRS EPSG: 32631- WGS 84 / UTM Zone 31 N 

Width 90 

Height 90 

Bands  13 

Pixel size 10 × 10 

Target Central 
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endmembers, the target, and the background. LSU is then used to obtain the abundance 

map of the target, the background, and the error image (Figure 3.3).  

The target abundance map showing the abundance fraction of the target in each 

pixel is imported in MATLAB R2019a for further processing. Figure 3.4 shows the 

normalised fractional abundance of the input data in the form of a 2D array in MATLAB. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.3   Linear Spectral Unmixing - Target (top) , Background (bottom left)  

and Error (bottom right) 
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The target here corresponds to pixels having a normalised abundance fraction of more 

than 0.78. Therefore, assigning value 0 to pixels having normalised abundance fraction 

less than 0.78, and keeping the values of pixels having values more than 0.78. Padding is 

also done at the boundaries to move the target towards the center. Figure 3.5 shows the 

image which shows only pixels having values more than 0.78. The histogram of the 

original image helps in deciding the threshold of the pixel value to define the target 

(Figure 3.6).  

   

 

 

 

 

 

 

Figure 3.4   Abundance fraction of target endmember 

Figure 3.5   Target image 
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The target image is provided for super resolution using Pixel Swap and Inverse Euclidean 

Distance algorithm with a scale factor of 3. Figure 3.7 shows the flowchart of the 

methodology followed. 
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Figure 3.6   Histogram of Original Image used to decide the threshold of the target 
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3.3.1 Pixel Swap Algorithm 

The goal of this approach by Atkinson [64] [65] is to optimise the spatial 

correlation between nearby subpixels by changing the spatial layout of subpixels. The 

method considers a random initialization, and it also aims to determine the spatial 

arrangement of subpixels and works in a recursive way to determine their right allocation 

by determining the greatest correlation among surrounding subpixels. However, this 

approach only works for binary class problems, not multiclass problems.  

Each pixel is split into a group of normally equal-sized sub-pixels when 

using the PS technique of super-resolution mapping. The scale factor is the percentage 

increase in spatial resolution from pixel to subpixel [70]. Abundance fractions of each 

class act as the input for the pixel swap algorithm. The quantity of subpixels that belongs  

to each pixel of images having low spatial resolution  picture is determined using the scale 

factor.  

The stages for putting the algorithm into action include random allocation 

of subpixels to binary classes based on the abundance proportion. For each subpixel 

within the pixel, attractiveness is calculated for each neighbouring subpixel within the 

kernel. The attractiveness is calculated as, 

                            𝐴 =  𝜆𝜈൫𝑥൯


ୀଵ
                                                (3.1) 

Ai is the attractiveness of a subpixel i. j = 1, 2, 3, …., J neighbouring 

subpixels. 𝜈൫𝑥൯ is the binary class (1 or 0) of the jth subpixel at location xj , and 𝜆  is 

the weight function which is dependent on distance.  

The attractiveness is predicted as a distance weighted function of its 

neighbours. If the minimum attractiveness of one pixel, is less than the maximum 

attractiveness of the second pixel, the single pair is swapped. This process is continued 

until no swaps can be made [65].  

For large-scale factors, the swapping becomes intensive and the 

computation power increases. PS is particularly sensitive to the correctness of the soft 
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categorization since it slavishly retains the class composition information supplied by it 

[70]. 

3.3.2  Inverse Euclidean Distance (IED) Algorithm 

The review of the study which introduced the concept of IED [66] [71] 

highlights the following points: 

i. Linear mixture model, constrained linear mixing model, MLP, and 

fuzzy methods involving neural networks can be used to recover 

components inside a pixel. 

ii. The proportional proportions of abundance fractions and their spatial 

distribution within pixels are not the same. 

iii. The first dataset is made up of synthetic data (subpixel abundance in 

known), whereas the second dataset is made up of AVIRIS data. 

iv. In Euclidean Distance based super resolution: 

a. All subpixels exclusive to a pixel that belongs to a given class 

can be assumed to experience an attraction towards the 

centermost subpixel. This attraction is a function of the 

distance of any given subpixel from the centermost pixel. 

b. Modeling attractive influence involves right distance function, 

quantity of subpixels belonging to each class, and a 

neighborhood scheme of pixels. 

c. The scale factor corresponding to that pixel is used to calculate 

the number of subpixels in the coarse spatial resolution image. 

The scale factor is the number of rows and columns by which 

a pixel is split. 

d. Pixel neighborhood signifies the collection of pixels that exert 

or experience attraction on/from the central pixel/subpixel. The 

pixel neighborhood scheme and object/class center concepts 

are used in the estimation of subpixel distances. 
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e. A clique is a subset of an image array consisting of two 

different components that are common neighbours. They 

choose the number of pixels that have a direct impact on the 

pixel that is super resolved. 

f. A pixel with a higher abundance percentage would pull in more 

subpixels from a super resolved pixel. 

g. The attraction felt by each subpixel is inversely proportional to 

its distance from any of the adjoining pixels. 

h. In using inverse Euclidean distance, the start location (the 

class/object center which is expected to exert attractive 

influence on the subpixels being super resolved) and finish 

location (the subpixel of the array on which the attractive 

influence is being estimated) are to be determined. 

v. This approach is based on the stored rankings of attractiveness 

values of the super-resolved subpixels and does not require 

iterative convergence. 

Appendix 2 shows the MATLAB code that involves the implementation 

of this IED technique over the binary image. The steps involved in this process are: 

i. The judgment of the scale factor is done by trial and error. 

ii. The attractiveness of each pixel is defined as, 

                                            𝐴 = ൬
ଵ

ௗೕ
൰                                      (3.2)      

where dij is the Euclidean distance given by, 

                          𝑑 = ඥ(𝑖 − 𝑥)ଶ + (𝑗 − 𝑦)ଶ                          (3.3) 

where xc and yc are the coordinates of the subpixel facing the 

computed attractive impact, along with i and j are the coordinates 

of the neighbouring pixel’s row as well as column presumed to be 

the start point. 

iii. Arrange Aij in decreasing order and stored distinctly for each of the 

clique pixels. 
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iv. The number of pixels corresponding to each clique pixels is 

calculated and super resolution is commenced. 

 

3.4 RESULTS  

The outputs of the algorithms is shown in Figure 3.8 and Figure 3.9. The output 

provided by the IED algorithm is much more accurate in terms of visual observation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8   Output image by Pixel Swap  

Figure 3.9   Output image by IED  
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However, the accuracy of both the output is checked by using the original 

Sentinel-2 10 m resolution imagery. The original Sentinel-2 imagery was also 

preprocessed. Preprocessing included endmember extraction by MEST, and preparation 

of abundance fraction map by LSU. The target pixels having an abundance fraction 

greater than 0.7 were used to quantify the accuracy of the outputs.  

3.4.1 Mean Square Error (MSE) 

It assesses the average of the squared difference between the original value 

and the predicted value [72]. The formula for the MSE is, 

                                            ∑
(௬ି௬ො)మ


                                               (3.4) 

  Here, 𝑦 is the original value, 𝑦ො𝑖 is the predicted value and n is the number 

of observations.  

  All the values of the output pixel are subtracted from the pixel values of 

its corresponding pixel from the reference image, which is then taken average by the total 

number of pixels, i.e. 8100. The MSE obtained in the case of the PS algorithm was 

80.5626, while for IDE, it was 1.1506. 

3.4.2 Structural Similarity Index (SSI) 

Image quality deterioration induced by processing such as data 

compression or data transmission losses is quantified using this perceptual metric [73]. 

This metric is based on the luminance, contrast, and structure of the image. SSI is the 

combination of luminance comparison function, contrast comparison function, and 

structure comparison function [74].  

Using the built-in SSI function of MATLAB, SSI was calculated for both 

algorithms. For PS, the SSI came out to be 0.187, while for IED it came out to be 0.94. 

3.4.3 Peak Signal to Noise Ratio (PSNR) 

The peak signal-to-noise ratio (PSNR) is an expression for the ratio of a 

signal's greatest potential value (power) to the strength of distorting noise that influences 

its representation quality. The formula for PSNR involves MSE between the original 

image and the predicted image. Higher the PSNR value, the better the image quality. 
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Using a Python environment, the PSNR value of the original and predicted 

image is calculated. PSNR for the PS algorithm came out to be 18 dB, while for IED, it 

came out to be 51 dB. 

3.4.4 Model Conclusion 

Despite having low computational time than IED, various accuracy 

metrics pointed out that IED is better for the processing of Sentinel-2 imagery to perform 

subpixel mapping at a scale of 3. This method is further used in the next section to test on 

Landsat-8 30 m data.  
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CHAPTER 4 

IMPLEMENTATION AND APPLICATIONS OF IED  

 

4.1 DATA AND METHODOLOGY  

4.1.1 Data Used 

The data used for testing the model is from Landsat-8 satellite imagery. A 

30 × 30 size image is downloaded with the help of Google Earth Engine. The spatial 

resolution of the image is 30 m. Figure 4.1 shows the image input.  

 

 

 

 

 

 

 

 

4.1.2 Methodology 

The testing aims to convert the 30 m spatial resolution Landsat data into 

10 m spatial resolution by the process of the Inverse Euclidean Distance method of 

subpixel mapping. The process will be done, however, by considering two endmembers 

or classes only. The two classes are target and background. Target pixels are the pixels 

containing the roof (white colour in Figure 4.1) and the rest is the background. Figure 4.2 

shows the flowchart of the methodology to be followed. 

Figure 4.1   Landsat 30 m Imagery 
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During the training phase of the model (Section 3.4), it was observed that 

the IED algorithm performs better than the PS algorithm. Therefore, it was selected for 

the testing phase. The observations of this phase are presented in the next section, and 

results and applications are presented in further sections.  

4.2 IMPLEMENTATION 

The data is first provided in ENVI Classic 5.3 for MEST and Linear Spectral 

Unmixing (LSU). The ROIs are created by human supervision, with constant attention to 

selecting pure pixels of the target as the required class (Figure 4.3). Figure 4.4 shows the 

abundance map of the target. This abundance map of the target is ingested into MATLAB 

R2019a. The histogram (Figure 4.5) of this abundance map is observed, for the threshold 

value of 0.78, as the target pixel. The image is then rescaled, in which the pixel with a 

cell value less than 0.78, is assigned 0 value, while the rest pixels are unchanged. 

 

Figure 4.2   Flowchart of the methodology of testing 
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Figure 4.3   Endmember Selection using ROI 
tool in ENVI 

Figure 4.4   Abundance Map of Target 
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Only a few pixels are having an abundance fraction greater than 0.78. Figure  4.6 

shows the image after defining the threshold. This grayscale segmented image is then 

provided to the IED algorithm for subpixel mapping (Appendix 3). Figure 4.7 shows the 

output of the IED algorithm. 
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Figure 4.5   Histogram of the Landsat Data 
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The accuracy assessment of the output is done with the help of Sentinel-2 imagery 

of the same area and dimension. Figure 4.8 shows the RGB image of the Sentinel-2 data 

of the same region. Figure 4.9 shows its target abundance map. Thresholding the image 

for pixel value 0.78, and assigning 1 to the values above the threshold value, Figure 4.10 

is obtained. This image is checked for accuracy with the output of the IED algorithm. 

Figure 4.6   Target Image 

Figure 4.7   Output after IED Algorithm 
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Sentinel-2 imagery is chosen for the process of validation, since, the spatial resolution of 

the Sentinel-2 is 10 m, and the spatial resolution of the data output is also 10 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8   RGB Composite of Sentinel-2 data 

Figure 4.9   Abundance map of Target (left) and Background (right) 
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This binary image (Sentinel-2) is used for validation of the output from the IED 

algorithm.  

4.3 AREA ESTIMATION 

High-resolution satellite imagery has been used for the purpose of area estimation 

for a very long time [75] [76]. This study also has its application in the field of area 

estimation. Some assumptions for the process of area estimation change are: 

i. One pixel of a 10 m imagery is assigned an area of 1 square units. 

ii. One pixel of a 30 m imagery is assigned an area of 9 square units. This is 

because one pixel of a 30 m imagery is composed of 9 pixels of 10 m 

imagery. 

iii. Only full target pixels are considered for the calculation of area. 

iv. Targets are pixels having abundance fraction greater than 0.78. 

For the process of area estimation, the area of all the pure target pixels is 

measured and compared for Sentinel-2 10 m imagery, Landsat-8 30 m imagery, and 

output image obtained by the IED subpixel mapping algorithm. The output image 

obtained has a spatial resolution of 10 m since the scale factor used in the study was 3.  

 

Figure 4.10   Binary Image of Sentinel-2 for 
validation 
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4.4 RESULTS AND DISCUSSION 

4.4.1 Results 

The accuracy measures obtained are: 

i. The MSE error obtained is 5.196 

ii. The SSI obtained is 0.7358 

iii. The PSNR obtained is 32 dB 

The area measures obtained from the three images in MATLAB are: 

i. The area of target in Sentinel-2 imagery is 504 square units. 

ii. The area of target in Landsat-8 imagery is 468 square units. 

iii. The area of target in IED output imagery is 486 square units 

 

4.4.2 Discussion 

The accuracy measures are not as high as obtained during the training 

phase. However, the measures are still reliable and can be improved by further changes 

in the method of endmember extraction and spectral unmixing. The loss in accuracy can 

be due to the selection of threshold value, or during the selection of endmember pure 

pixels. The increase in error is due to the misclassification of some target pixels into the 

background.  

There has been a significant increase in the measurement of the area 

through this process of subpixel mapping. Area estimation by low-resolution satellite 

imagery is highly growing towards the actual calculated area (area through high 

resolution Sentinel-2 image).  
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CHAPTER 5 

CONCLUSION  
 

 The high cost of fine-resolution satellite imagery has led to the inaccessibility of 

such data for civilian applications. Moreover, the inability to convert past low-resolution 

data to high resolution has led to the loss of temporal information. Super resolution of 

low-resolution imagery into high-resolution images is one of the most prominent 

solutions. The study is conducted to analyse the effect of two super resolution algorithms 

on the satellite imagery for binary target detection. Both of the algorithms are tested over 

Sentinel-2 original and resampled images. The image accuracy metrics, namely, Mean 

Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity 

Index (SSI), concluded that the Inverse Euclidean Distance (IED) algorithm performs 

better as compared to Pixel Swapping Algorithm. 

 This algorithm is then used on Landsat-8 data, with a scale factor of 3, to obtain 

the high–resolution output image. This output image when compared with Sentinel-2 

imagery of the same region, shows prominent accuracy. This output image, when tested 

for area estimation of the target region, showed a significant increase in the calculated 

value. The area, however, was still less than the actual area (area calculated by Sentinel-

2 imagery). 

 The technique although producing good results has a limitation of working only 

on binary targets. The accuracy can be improved by choosing different types of 

endmember extraction and abundance mapping. Further study might employ non-linear 

abundance mapping methodologies and non-linear criteria for ranking subpixels for 

spatial distribution. 
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APPENDIX 1 

RESAMPLING CODE 

 
import rasterio 
from rasterio import Affine, Resampling 
import os 
 
path = '/content/drive/MyDrive/Data/Input/' 
dest = '/content/drive/MyDrive/Data/Output/' 
 
for filename in os.listdir(path): 
  dat = os.path.join(path,filename) 
  name = os.path.basename(dat) 
  print(dat) 
  print(name) 
 
  def resample_raster(raster, scale=0.5): 
    t = raster.transform 
     
    #rescale the metadata 
    transform = Affine(t.a / scale, t.b, t.c, t.d, t.e / 
scale, t.f) 
    height = raster.height * scale 
    width = raster.width * scale 
 
    profile = src.profile 
    profile.update(transform=transform, driver='GTiff', 
height=height, width=width, crs=src.crs) 
 
    data = raster.read( #Note changed order of indexes, 
arrays are band, row, col order not row, col, band 
            out_shape=(int(raster.count), int(height), 
int(width)), 
            resampling=Resampling.bilinear) 
 
    with rasterio.open(dest + name,'w', **profile) as dst: 
        dst.write(data) 
        yield data 
 
  with rasterio.open(dat) as src: 
      with resample_raster(src, 1/3) as resampled: 
        print('Orig dims: {}, New dims: 
{}'.format(src.shape, resampled.shape)) 
        print(repr(resampled)) 
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APPENDIX 2 

PREPROCESSING OF DATA (MATLAB) 

 
%Read image (abundance fraction of target) 
img = imread('LSM_TAR.tif'); 
 
%Converting the uint8 type of image 2D matrix to double 
type 
img = double(img); 
 
%Rescale the pixel values 
bimg = img/255; 
  
%View histogram to decide the threshold value 
imhist(bimg); 
  
%Thresholding the image to create binary image 
bin = bimg>0.78; 
  
%Viewing the binary image 
imshow(bin) 
  
%Saving the binary image as dat file 
d = double(bin); 
save input_image.dat  -ascii 
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APPENDIX 3 

IED TECHNIQUE (MATLAB)  

 

% DISTANCE METHOD NEW FOR ANY PROPORTION BUT BINARY CASE 
  
t1=cputime; 
%lefttopcorner   
 load ('distlefttopcorner','distlefttopcorner'); 
     adist=distlefttopcorner; 
  clear distlefttopcorner 
  
%Top middle centre 
     load ('disttopmiddilecentre','disttopmiddilecentre'); 
     bdist=disttopmiddilecentre; 
     clear disttopmiddilecentre 
  
  
%Right top corner 
     load ('distrighttopcorner','distrighttopcorner'); 
     cdist=distrighttopcorner; 
     clear distrighttopcorner 
  
%Left middle centre 
   load ('distleftmiddilecentre','distleftmiddilecentre'); 
   ddist=distleftmiddilecentre; 
clear distleftmiddilecentre  
  
%Right middle centre 
    load 
('distrightmiddilecentre','distrightmiddilecentre'); 
    fdist=distrightmiddilecentre; % e LEFT TO MARK PIXEL 
UNDER CONSIDERATION 
clear distrightmiddilecentre 
  
%Left Bottom corner  
    load ('distleftbottomcorner','distleftbottomcorner'); 
     gdist=distleftbottomcorner;  
clear distleftbottomcorner 
  
% bottom middle centre 
    load 
('distbottommiddilecentre','distbottommiddilecentre'); 
     hdist=distbottommiddilecentre; 
clear distbottommiddilecentre 
  
%Right bottom corner 
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   load ('distrightbottomcorner','distrightbottomcorner'); 
     idist=distrightbottomcorner;  
clear distrightbottomcorner 
 
zoomfactor=3; 
%=+======================================================== 
kzoom=zeros(zoomfactor*r,zoomfactor*c); 
for m=1:1:r 
    for n=1:1:c           
      if k1(m,n)==1; 
          kzoom((((m-1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=1;  
      else  
            if m==1 
                if n==1 
                sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                
                %Right middle centre 
                dist=fdist;                 
                
fraction=round((k1(m,(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % Bottom  middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Right bottom corner 
                dist=idist; 
                
fraction=round((k1((m+1),(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction  
                %figure,imshow(sumdist) 
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                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom); 
                                 
              elseif n==c     
                sumdist=zeros(zoomfactor,zoomfactor);                 
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                % Left middle centre 
                dist=ddist;                 
                fraction=round((k1((m),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % left bottom corner  
                dist=gdist; 
                fraction=round((k1((m+1),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Bottom middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom); 
                 
                else    
                sumdist=zeros(zoomfactor,zoomfactor);                 
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
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                % Left middle centre 
                dist=ddist;                 
                fraction=round((k1((m),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Bottom middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Right middle centre 
                dist=fdist;                 
                
fraction=round((k1(m,(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist)   
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom); 
               end 
   %=============================              
            elseif m==r 
                if n==1 
                sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                %Right middle centre 
                dist=fdist;                 
                
fraction=round((k1(m,(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
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                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist)   
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Right top corner 
                dist=cdist; 
                fraction=round((k1((m-
1),(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
           %=============================      
                elseif n==c              
                 sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                %Left middle centre 
                dist=ddist;                 
                fraction=round((k1((m),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
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                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Left top corner 
                dist=adist; 
                fraction=round((k1((m-1),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
                else 
                 sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                %Left middle centre 
                dist=adist; 
                fraction=round((k1((m-1),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Left top corner 
                 dist=cdist; 
                fraction=round((k1((m-
1),(n+1)))*totclasspixels); 
                myplotdistance; 
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                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
                end 
             
            else 
                if n==1 
                %=============================== 
                sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Bottom middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Right middle centre 
                dist=fdist;                 
                
fraction=round((k1(m,(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist)  
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                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
                 
                elseif n==c 
                sumdist=zeros(zoomfactor,zoomfactor);  
                
totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                 %Bottom middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Left middle centre 
                dist=ddist; 
                fraction=round((k1((m),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
                else 
                %=================================== 
                sumdist=zeros(zoomfactor,zoomfactor);  
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totclasspixels=round(k1(m,n)*zoomfactor*zoomfactor); 
                 
                %Left top corner 
                dist=adist; 
                fraction=round((k1((m-
1),(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % Top middle centre   
                dist=bdist; 
                fraction=round((k1((m-
1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                                 
                % Right Top corner  
                dist=cdist; 
                fraction=round((k1((m-
1),(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                            
                %Left middle centre 
                dist=ddist; 
                fraction=round((k1((m),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                % Right middle Centre , The m, n is e which 
is left 
                dist=fdist;                 
                
fraction=round((k1(m,(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 



56 
 

                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist)  
                 
                 
                % left bottom corner  
                dist=gdist; 
                fraction=round((k1((m+1),(n-
1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Bottom middle centre 
                dist=hdist; 
                
fraction=round((k1((m+1),(n)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction 
                %figure,imshow(sumdist) 
                 
                %Right bottom corner 
                dist=idist; 
                
fraction=round((k1((m+1),(n+1)))*totclasspixels); 
                myplotdistance; 
                sumdisttemp=ksubback; 
                sumdist=sumdist+sumdisttemp; 
                clear sumdisttemp dist fraction  
                %figure,imshow(sumdist) 
                 
                kzoom((((m-
1)*zoomfactor+1):zoomfactor*m),(((n-
1)*zoomfactor+1):1:zoomfactor*n))=sumdist; 
                clear totalclasspixels sumdisttemp dist 
fraction sumdist  
                %figure,imshow(kzoom);  
                end 
            end 
        end             
      end 
end 
save output_tar.dat kzoom -ascii  %image output save 
figure,imshow(kzoom);  
clear adist bdist cdist ddist edist fdist gdist hdist idist 
t2=cputime; 
Timetaken=t2-t1 


