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Biomedical signal is a summarizing term for all kinds of signals that can be continually 

measured and monitored from living creatures including human beings. Electrocardiogram 

(ECG), perhaps is the most common and popular 1-D biomedical signals as it is directly 

associated with one of the most important organs of human body that is activities of the heart.   

ECG has a wide range of applications in cardiac diagnostics and is preferred over other methods 

as it is largely non-invasive, safe to the patient, easy to obtain, provides instantaneous results 

with highest level of accuracy.  

The appropriate analysis of the ECG signals using suitable means is of utmost importance, 

before any diagnostics. Therefore, to fulfill this requirement the higher order cumulants are an 

effective mathematical tool for the analysis of nonlinear and non-stationary ECG signals. The 

proposed method in this thesis, classifies dataset of ECG signals based upon higher order 

statistics i.e., using cumulants. It provides a quality detection technique in comparison to the 

other methods used earlier in this research domain. 

However, ECG very easily gets contaminated by various types of noises and artefacts during 

the process of its acquisition. Therefore, this contaminated ECG must be “cleaned” to the 

appropriate level, it means to minimize the counter-productive effects of embedded noise and 

artefacts so as to enhance the required information, before using it for any further processing 

for diagnosis or interpretation. There are different types of noises or artefacts present in any 

ECG signal, but baseline wander is considered as severest one. This research work is mainly 

focused on proposing novel methods for removal of baseline wander and other types of noises 

from ECG signal. 

Accordingly, a new method is proposed for baseline wander artefact denoising from ECG using 

cascaded combination of Complete Ensemble Empirical Mode Decomposition (CEEMD) and 

Artificial Neural Networks [ANN]. The proposed method maintains morphology of ECG signal 

during denoising and thus there is no loss of vital information from the ECG signal. The 

denoising of ECG signal is further enhanced by another novel approach making use of Genetic 

Particle filter improved fuzzy-AEEMD, which has been proposed in this thesis.  The 

performance of proposed methods is tested with different types of readily available ECG 

datasets and compared with other state-of-the-art methods and these proposed methods proved 

to be more effective and efficient denoising methods. 

 

ABSTRACT 
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Biomedical signal measurement is one of the most important aspects of biomedical signal 

analysis and interpretation to support scientific hypotheses and medical diagnoses. Biomedical 

signal measurement aims at appropriately acquiring and measuring biomedical signals for 

accurate and improved diagnosis and proper medicine management. Extensive research is going 

on in the field of Bio-Medical Measurements and Instrumentation to find out new non-invasive 

ways and methods for diagnosis and measurement of health parameters for the welfare of the 

mankind. Non-invasive techniques are more suitable than the invasive ones if sufficient 

accuracy can be achieved using them. Among the available non-invasive medical devices and 

techniques, perhaps bioimpedance based diagnostics is still highly unexplored and underrated 

owing to insufficient research efforts.  

Keeping above scenario in mind accordingly, an efficient low-cost bioelectrical impedance 

measuring instrument was developed, implemented, and tested in this study. Primarily, it is 

based upon the low-cost component-level approach so that it can be easily used by researchers 

and investigators in the specific domain. The measurement setup of instrument was tested on 

adult human subjects to obtain the impedance signal of the forearm which is under investigation 

in this case.  However, depending on the illness or activity under examination, the instrument 

can be used on any other part of the body. The technique is easy and user-friendly, and it does 

not necessitate any special training, therefore it can be effectively used to collect bioimpedance 

data and interpret the findings for medical diagnostics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

 

JOURNALS  

1] Rajiv Kapoor & Rajesh Birok “Genetic particle filter improved fuzzy-AEEMD For ECG signal de-

noising.”  Computer Methods in Biomechanics and Biomedical Engineering, ISSN: 14768259, 

10255842 DOI: 10.1080/10255842.2021.1892659 [SJR-0.354]. [Published in SCIE]  

2] Rajesh Birok & Rajiv Kapoor “Design of Low Cost Bioimpedance Measuring Instrument” 

International Journal of Advanced Computer Science and Applications, ISSN: 21565570, 2158107X        

in Volume 13, No. 1 (2022). [SJR-0.193] [Published in ESCI]  

3] Rajesh Birok & Rajiv Kapoor “ECG Signal Analysis Using Higher-order Cumulants” 

[Communicated in SCIE/ESCI Journal]  

4] Rajesh Birok, Rajiv Kapoor & Mahipal Singh Choudhry “ECG Denoising Using Artificial Neural 

Networks and Complete Ensemble Empirical Mode Decomposition” Turkish Journal of Computer and 

Mathematics Education [TURCOMAT], ISSN: 2382 - 2389 in Volume 12, No. 2 (2021). [SJR - 0.218]  

[Published in SCOPUS INDEXED JOURNAL]  

PATENT AWARDED 

BIOELECTRICAL IMPEDANCE METER DESIGN to 1. RAJIV KAPOOR 2. ABHISHEK GROVER 3. 

RAJESH BIROK 4. PADMA BATRA et al Vide Patent No.: 354875 [SL No: 011129756]; Application No.: 

2169/DEL/2015  

INTERNATIONAL CONFERENCES 

1] Satyam Mishra & Rajesh Birok “Sleep Classification using CNN and RNN on raw EEG Single-

Channel” 2020 International Conference on Computational Performance Evaluation (ComPE) North-

Eastern Hill University, Shillong, Meghalaya, India. Jul 2-4, 2020   

2] Shubham Kaushik & Rajesh Birok “Heart Failure Prediction using Voting Ensemble Classifier” 

August 2021 Asian Conference on Innovation in Technology (ASIANCON) Pune, India.  

3] Shubham Kaushik & Rajesh Birok “Heart Failure prediction using Xgboost algorithm and feature 

selection using feature permutation” September 2021 Fourth IEEE International Conference on 

Electrical, Computer and Communication Technologies (ICECCT 2021)  

 

 

 

LIST OF PUBLICATIONS 



8 
 

 

TABLE OF CONTENTS 
 

DESCRIPTION PAGE NO. 
 

CERTIFICATE iii 
ACKNOWLEDGMENT  iv 
ABSTRACT v 
LIST OF PUBLICATIONS vii 
TABLE OF CONTENTS viii 
LIST OF FIGURES xi 
LIST OF TABLES xiii 

 

Bio-Medical Signal Analysis Techniques 

[PART-I] 
 

CHAPTER 1 INTRODUCTION TO BIOMEDICAL SIGNALS WITH 

SPECIAL REFERENCE TO ECG & BIOIMPEDANCE 
1-23 

1.1 Introduction to Human Body 1 
1.2 Types of Biomedical Signals 3 
1.3 Behavior of Biomedical Signals 

4 
1.4 Objectives of Biomedical Signal Analysis 

1.5 Origin of Bioelectrical Signals 5 
1.5.1 Action Potential 6 

1.6 Types of Bioelectrical Signals 
9 

1.6.1 Electroneurogram (ENG) 

1.6.2 Electromyogram (EMG) 10 
1.6.3 Electroencephalogram (EEG) 11 
1.6.4 Electrogastrogram (EGG) 

13 
1.6.5 Vectorcardiography [VCG] 

1.6.6 Electrocorticogram (ECoG) 15 
1.6.7 Electrocardiogram (ECG) 

16 
1.6.7.1 The Heart 

1.6.7.2 Heart's Electrical Signal Generation System 
17 

1.6.7.3 ECG Signal Acquisition 

1.7 Bioimpedance 
21 

1.7.1 Basics and Origin of Bioimpedance 
 

CHAPTER 2 LITERATURE REVIEW 24-39 
2.1 ECG Signal Analysis Techniques  

24 
2.1.1 Higher Order Statistics Analysis 

2.1.2 Neural Networks 25 
2.1.3 Type-2 Fuzzy Logic System 

26 
2.1.4 Miscellaneous Methods 

2.2 ECG Denoising Techniques 

27 2.2.1 Digital Window-Based Filters 

2.2.2 Adaptive Filters 

2.2.3 Wavelets 28 
2.2.4 Empirical Mode Decomposition 29 

2.2.4.1 Ensemble Empirical Mode Decomposition (EEMD) 
30 

2.2.5 Miscellaneous Methods 

2.3. Research Gaps 33 
 

Bio-Medical Signal Measurement 

[PART-II] 

2.4 Bioimpedance Measurement   



9 
 

2.4.1 Cole parameters 

34 2.4.2 Stepped-Sine Excitations 

2.4.3 Transfer Function Approach 

2.4.4 Voltage Sensing Circuit 
35 

2.4.5 Non-Invasively Tracking Blood Glucose Levels 

2.5 Miscellaneous Methods 36 
2.6 Research Gaps 

39 
2.7 Research Objectives  

 

CHAPTER 3: ECG SIGNAL ANALYSIS USING HIGHER ORDER 

CUMULANTS 
40-61 

3.1 Introduction  40 
3.2 Theoretical Background  

41 
3.2.1 Cumulants  

3.2.2 Classifiers  
45 

3.2.2.1.  Support Vector Machine [SVM]   

3.2.2.2.  Fuzzy-2  46 
3.2.2.3.  Deep Structured Neural Network [DSNN]  47 

3. 3 Proposed Methodology 48 
3.3.1 Block Diagram  

49 
3.3.2 Dataset Used  

3.3.3 Taking the ECG Datasets 

51 
3.3.4 Calculating the Cumulants for the ECG Signals 

3.3.5 Classification Using SVM, Fuzzy-2 and DSNN Classifiers 

3.4 Results  

3.5 Significant Findings  61 
 

CHAPTER 4: ECG DENOISING USING ANN AND CEEMD  62-72 
4.1 Introduction  62 
4.2 Theoretical Background  

63 
4.2.1 Complete Ensemble Empirical Mode Decomposition [CEEMD]  

4.2.2 Artifical Neural Network [ANN]  64 
4.3 Proposed Methodology  65 
4.4 Results  67 
4.5 Significant Findings  72 

 

CHAPTER 5: GENETIC PARTICLE-FILTER IMPROVED FUZZY- 

AEEMD FOR ECG SIGNAL DE-NOISING  
73-89 

5.1 Introduction  
73 

5.2 Theoretical Background  
5.2.1 Ensemble EMD  74 
5.2.2 Adaptive EEMD  76 
5.2.3 Fuzzy Thresholding  

77 
5.2.4 Genetic Particle Filter  

5.3 Proposed Methodology  79 
5.4 Results  80 
5.5 Significant Findings  88 

 

CHAPTER 6: DESIGN OF LOW COST BIOIMPEDANCE  

                         MEASURING INSTRUMENT 
90-111 

6.1 Introduction  
90 

6.2 The Human-Instrument System 

6.3 Important Factors for the Design of Biomedical Instruments 

91 6.4 General Constraints in the Design of Medical Instrumentation Systems,   

      Biomedical Signal Acquisition and Analysis 

6.5 Basic Medical Instrumentation System 93 
6.6 Performance Requirements of Medical Instrumentation Systems 94 



10 
 

6.7 Non-Invasive Biomedical Techniques 
95 

6.8 Theoretical Background: Bioimpedance 
6.8.1 Frequency Response of Bioimpedance  96 
6.8.2 Types of Electrode Configurations  97 

6.9 Proposed Methodology  99 
6.9.1 Waveform Generation  100 
6.9.2 V to I Convertor 101 
6.9.3 Instrumentation Amplifier 102 
6.9.4 Demodulator 103 
6.9.5 Low Pass Filter 

106 
6.9.6 Assumptions, Measurement Protocol and Data Acquisition 

6.4 Results  108 
6.5 Significant Findings  109 

 

CHAPTER 7 CONCLUSIONS & FUTURE SCOPE 112-115 
7.1 Conclusions 112 
7.2 Future Research Scope 114 
REFERENCES 116 
AUTHOR’s BIOGRAPHY 120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

LIST OF FIGURES 
 

DESCRIPTION PAGE NO. 
 

Fig.1.1 Different levels of structural organization of human body 1 
Fig.1.2 Different levels of structural complexity of human body 2 
Fig.1.3 Process for the generation of cell potential waveform and its recorded signal. 6 
Fig.1.4 Electrical activity associated with one contraction in a muscle. 8 
Fig.1.5 Types and Sources of Bioelectrical Signals 9 
Fig.1.6 Acquisition of Electroneurogram (ENG) signal 10 
Fig.1.7 Generation and Processing of Electromyogram (EMG) signal 11 
Fig.1.8 10-20 System of electrode placement for EEG recording 12 
Fig.1.9 EEG signal frequency bands and associated brain activities 13 
Fig.1.10 Generation and output signals of Electrogastrogram [EGG] 

14 
Fig.1.11 3D cardiac electrical vector loops in frontal, horizontal, and sagittal planes 

Fig.1.12 Conventional Vectorcardiography scheme 15 
Fig.1.13 Electrocorticogram (ECoG) setup and signal output 16 
Fig.1.14 Schematic for cardiac conduction system 

17 
Fig.1.15 Typical ECG signal waveform 

Fig.1.16 Wilson's central terminal and Einthoven's triangle for ECG measurement 18 
Fig.1.17 ECG signal acquisition process 19 
Fig.1.18 Typical normal ECG signal and distorted ECG signals due to various 

cardiac ailments 
20 

Fig.1.19 Five component model for human body   22 
Fig.1.20 Representation of Total Body Water (TBW) in human body 23 

 

Fig.3.1 Fuzzy-2 flowchart 46 
Fig.3.2 Fuzzy-2 membership function 47 
Fig.3.3 Block diagram of the proposed method 49 
Fig.3.4 ECG Signal Waveforms 50 
Fig.3.5 Third order cumulant obtained for dataset used 52 
Fig.3.6 Third order cumulant for dataset used in frequency domain (Bi-spectrum) 54 
Fig.3.7 Fourth order cumulant obtained for dataset used 55 
Fig.3.8 Fourth order cumulant for dataset used in frequency domain (Tri-spectrum) 56 
Fig.3.9 Neural Network Scheme for Proposed Method 57 
Fig.3.10 Regression plots for ANN 58 
Fig.3.11 Regression plot for DSNN 60 

 

Fig.4.1 Flowchart of proposed method 65 
Fig.4.2 (a) Noisy signal (Recording-1) (b) Denoised signal using EMD and Neural 

Network (c) Denoised signal using EEMD and Neural network (d) Denoised signal 
using CEEMD and Neural network 

68 

Fig.4.3 (a) Noisy signal (Recording-2) (b) Denoised signal using EMD and Neural 

Network (c) Denoised signal using EEMD and Neural Network (d) Denoised signal 

using CEEMD and Neural Network 
69 

Fig.4.4 (a) Noisy signal (Recording-3) (b) Denoised signal using EMD and Neural 

network (c) Denoised signal using EEMD and Neural Network (d) Denoised signal 

using CEEMD and Neural Network 
70 

Fig.4.5 (a) Noisy signal (Recording-1) (b) Denoised signal using EMD and 

Morphological Operator (c) Denoised signal using Neural Network (d) Denoised 

signal using CEEMD and Neural Network 
71 

 

Fig.5.1 Flow chart of EEMD method 75 
Fig.5.2 Noisy ECG signal 76 



12 
 

Fig.5.3 Block diagram of the proposed GA-PF method 77 
Fig.5.4 Membership function for Fuzzy-2 78 
Fig.5.5 Block diagram of the proposed ECG de-noising method 80 
Fig.5.6 IMFs components obtained by AEEMD method 81 
Fig.5.7 Noisy ECG signal and residual signal 

82 
Fig.5.8 Performance of Genetic Algorithm (o: each individual) 

Fig.5.9 Best solution by Genetic Algorithm (: o) and RS (: *) in each generation 
83 

Fig.5.10 Best solution by Genetic Algorithm (: o) and RS (: *) for overall 

Fig.5.11 De-noised ECG signal 84 
Fig.5.12 SNR vs different database with different method and proposed method 85 
Fig.5.13 RMSE vs different database with different method and proposed method 86 
Fig.5.14 Original signal and added random noise 

87 Fig.5.15 Original signal multiplied by std (0.3), AEEMD with SNR 10 

Fig.5.16 The effect of using constant amplitude 0.3 std and the AEEMD process  

Fig.5.17 DSO output acquired through proposed algorithm (AEEMD) 88 
 

Fig.6.1 Generalized Medical Instrumentation System 93 
Fig.6.2 Bioimpedance measurement using: (a) two-electrode method, (b) four-

electrode method. 
98 

Fig.6.3 General block diagram of Measuring Instrument 99 
Fig.6.4 Schematic diagram of ICL8038 100 
Fig.6.5 Circuit diagram for Voltage to Current converter 101 
Fig.6.6 Variation of current through {R} with respect to change in value of load 

resistance, y-axis is the current through the load and x-axis is the impedance of the 

load connected to the V to I converter. 
102 

Fig.6.7 Circuit Diagram for Instrumentation Amplifier 102 
Fig.6.8 Frequency response analysis of the Instrumentation Amplifier 103 
Fig.6.9 Circuit Diagram of simple envelope detector 

104 
Fig.6.10 Precision Detector 

Fig.6.11 Precision Envelope Detector 105 
Fig.6.12 Final version of designed Bioimpedance Measuring Instrument 106 
Fig.6.13 The human body's impedance when modelled as a homogeneous 

cylindrical volume conductor 107 
Fig.6.14 General test setup for BIA 

Fig.6.15 Output voltage signals measured using the instrument. (a) is the output 

signal of volunteer set-A (b) being the output signal of volunteer set-B and (c) is the 

output signal of volunteer set-C. The y-axis in each figure is the output voltage 

amplitude value and the x-axis represents number of samples. 

109 

 

 

 

 

 

 

 

 

 

 



13 
 

 

LIST OF TABLES 
 

DESCRIPTION PAGE NO. 
 

Table 1.1: Most common bioelectric signals with their primary characteristics 8 

Table 1.2: EEG frequency bands 12 
 

Table 3.1: Used dataset description 50 
Table 3.2: Description of dataset used for classification 51 
Table 3.3: SVM Confusion Matrix 57 
Table 3.4: ANN Confusion Matrix 

59 Table 3.5: FUZZY-2 Confusion Matrix 

Table 3.6: DSNN Confusion Matrix 

Table 3.7: Comparison of four classifiers 60 
Table 3.8: Comparison of proposed method of ECG classification with other 

methods used 
61 

 

Table 4.1: Recording-1 Input SNR & Input MSE calculated for methods  

(a) EMD and ANN  

(b) EEMD and ANN, and  

 (c) CEEMD and ANN 

68 
Table 4.1: Recording-2 69 
Table 4.1: Recording-3 70 

Table 4.1: Recording-1 (Input SNR & Input MSE calculated for methods (a) EMD and 

Morphological Operator (b) ANN, and (c) CEEMD and ANN) 
71 

 

Table 5.1: SNR values comparation of proposed approach with other known 

techniques 
84 

Table 5.2: Comparison of RMSE values for different database of existing methods 

with proposed method 
85 

 

TABLE 6.1:  BASAL IMPEDANCE (FOREARM) 108 
PATENT AWARDED 111 

 

 

 

 

 



1 
 

Chapter 1: Introduction to Biomedical Signals with Special Reference to ECG & Bioimpedance 

 

CHAPTER 1 

 
 

 INTRODUCTION TO BIOMEDICAL SIGNALS WITH SPECIAL 

REFERENCE TO ECG & BIOIMPEDANCE 
 

 

1.1 INTRODUCTION TO HUMAN BODY 

All living creatures whether they are animals or plants are always made up of three-dimensional 

arrangement of cells and tissues. The human body is likewise a complicated biological structure 

and system, as it is made up of billions of cells and tissues organized in three dimensions. The 

human body functions like a highly complicated and sophisticated system. It functions as a 

single entity, yet it is made up of a number of interconnected operating subparts. Each portion 

is linked to a specific, and sometimes related function that is critical to the individual's well-

being. The individual components do not work in isolation, but rather in tandem with one 

another. The ability of an individual to survive is dependent on the integrated functioning of 

their physical parts. As a result, both the structure and function of the human body are 

complicated.  As demonstrated in fig. 1.1 below the different levels of structural organisation 

in the human body are: 
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Fig.1.1 Different levels of structural organisation of human body 
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These levels shown in fig.1.2 are broadly classified as: 

❑ Chemical, Cellular, Tissue, Organ, Organ system & Organismal level 

 

Fig.1.2 Different levels of structural complexity of human body 

Chemical is the lowest level. Atoms combine to form molecules, of which the human body has 

a wide variety. The body contains billions of cells, which are the smallest autonomous units of 

living matter. Each cell type has grown specialised, performing a specific role that aids the 

body's demands. Cells with similar structures and functions are found together in complex 

organisms like the human body, forming tissues. Organs are made up of a variety of tissue types 

and perform a specific function. A system is made up of a group of organs and tissues that work 

together to meet one or more of the body's survival needs. The human body is made up of 

various systems that work together to perform certain functions and are all necessary for good 

health. 

The external environment surrounds the body and supplies all of the body's cells with oxygen 

and nutrition. The skin acts as a barrier between the dry outside world and the wet inside world 

of most bodily cells. The water-based medium in which body cells dwell is known as the 

internal environment. The fluid that surrounds cells is known as tissue fluid. To reach them, 
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oxygen and other substances must travel via the interstitial fluid from the internal transport 

networks. 

Chapter 1: Introduction to Biomedical Signals with Special Reference to ECG & Bioimpedance 

The cell membrane surrounds each cell and acts as a possible barrier to substances entering or 

leaving the cell. Membrane structure confers permeability which can be semi or selective. Large 

molecules can't move between the cell and the tissue fluid because of this. Smaller particles can 

normally flow through the membrane, albeit some do so more easily than others, and the 

chemical makeup of the fluid inside the cell differs from that outside. 

1.2 TYPES OF BIOMEDICAL SIGNALS  

Biomedical signal is a collective term used for all types of physiological signals that can be 

measured from different parts of the living creatures or specifically human beings. Biomedical 

signals are broadly classified into following major categories;  

I) Biochemical: - Mostly, these are in the form of pH changes, Hormones and 

Neurotransmitters, Level of glucose, Blood oxygen level;  

II) Bioelectrical: -Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram 

(EMG), Electrooculography (EOG), Electrogastrogram (EGG); 

III) Biomechanical: - Blood Pressure, Accelerometer signals describing human movements, 

gait, balance and posture (used for Parkinson disease, mobile applications, fitness); 

IIIA) Bio-acoustic: -Subset of mechanical signals that describe the acoustic sound produced 

by the body (vibrations and motions). Examples includes: Phonocardiography for cardiac 

sounds, Obstructive Sleep Apnea detection or snoring, sounds related to respiration process;  

IV) Biothermal: - Generally in the form of body temperature maps to describe the temperature 

distribution over the body surface; 

V) Bio-optical: These signals are formed as a result of biological system’s optical functions, 

which might occur spontaneously or be caused by the measuring procedure, for example- 

blood oxygenation levels; 

VI) Bio-magnetic: Few organs, generate exceptionally low magnetic fields. The obtained 

signals can be measured to provide information not accessible in other forms of bio-signals, 

such as bio-electric signals. The magneto-encephalograph signal from the brain is a such an 

example; 

VII) Bio-impedance: The tissue's impedance provides vital information on its composition, 

blood distribution, and blood volume, among other things. A common example of this sort of 

signal is the measurement of galvanic skin resistance. The bio-impedance signal may also be 

acquired by administering the tissue with ac current and detecting the drop in voltage caused 
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by the impedance of tissue. This sort of signal includes the measuring of respiration rate using 

the bio-impedance approach. 
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1.3 BEHAVIOUR OF BIOMEDICAL SIGNALS  

Living things are made up of many different component systems, such as the circulatory and 

nervous systems. Subsystems that perform a range of physiological tasks make up each system. 

For instance, the cardiac system is in charge of the body's regular, oxygenated blood pumping. 

The phenomena of physiological processes, which include the activation and control of the 

nervous system, are extremely complex. A biological system's diseases or faults frequently alter 

the regular physiological processes, leading to pathological processes that have an effect on the 

system's performance, health, and general well-being. Signals that are associated with a 

diseased process typically differ in some manner from their equivalent normal signals. 

For instance, most illnesses cause an increase in body temperature that is simple to spot. A 

scalar quantity that describes the thermal condition of the human body is the single or one-time 

measurement of temperature. When the temperature is recorded constantly, then the obtained 

signal can be described as continuous-time analog signal x(t), it can be written as x(nT) or x(n) 

when it is discrete in nature. If this discrete signal is further encoded it becomes digital signal. 

In another example; the monitoring of blood pressure (BP), is indicated by two pressures 

namely systolic and diastolic, which can be written as a vector x = [x1, x2]
 T, where x1 is systolic 

pressure & x2 is diastolic pressure. In clinical practise, blood pressure is measured in millimetres 

of mercury (mm of Hg).  

1.4 OBJECTIVES OF BIOMEDICAL SIGNAL ANALYSIS  

Following are the major objectives of biomedical instrumentation and signal analysis:  

❑  Gathering of Information 

❑ Diagnostics   

❑ Monitoring and supervision 

❑ Control and Therapy and finally, an evaluation is performed, which is an objective 

examination used to assess a system's capacity to satisfy functional criteria, get evidence 

of performance, perform quality control, or measure a treatment's effect. 
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1.5 ORIGIN OF BIOELECTRICAL SIGNALS 

Animal electricity was discovered by renowned Italian physician and biologist Luigi Galvani 

in the 18th century, and it became the foundation for explaining the behaviour of living tissues 

in terms of bioelectric potentials. The human body, generates various types of electrical signals 

mainly by nerves and muscles. Ion migration is related with normal muscle contraction, 

resulting in potential changes that can be measured with appropriately placed electrodes. The 

heart and brain, for example, produce distinct patterns of voltage variations that may be 

recorded and analysed for use in clinical treatment and research.  

Electrochemical alterations accompanying the transmission of signals via nerves to or from the 

brain also cause potential variations. When these impulses, which are in the order of a few 

microvolts, are recorded, they produce a complex pattern of electrical activity. A cell is made 

up of an ionic conductor that is isolated by a membrane which is semipermeable in behaviour.   

All biological substances are made up of different sorts of cells. The body fluids, which 

surrounds the cells of the body are ionic in nature and supports electric potentials through its 

conducting medium. The main ions involved in the phenomenon of creating cell potentials are 

Na+, K+, and Cl–.   

The semi-permeable cell membrane impedes the Na+ ions movement, but easily allows the entry 

of K+ and Cl–. As a result, the Na+ ion concentration is higher on the outer of the cell than on 

the inside it. Due to this a cell's membrane its resting state has more +ve charge on its outside. 

At this time the potential measured is known as resting potential, which has basically generated 

due to the unbalanced charge distribution.  Now the cell is in its polarised state. The cell 

potential changes to around +20 mV as a result of this process, which is known as 

depolarization. Repolarization occurs after a brief period of time, when the cell returns to its 

usual condition, with the interior of the membrane being negative in relation to the outside. To 

re-establish the resting potential, repolarization is required. The voltage waveforms produced 

by this discharging and recharging of the cell can be recorded using appropriate microelectrode 

methods. The process for the generation of cell potential waveform and its recorded signal is 

shown in fig. 1.3.  
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Fig.1.3 Process for the generation of cell potential waveform and its recorded signal 

1.5.1 ACTION POTENTIAL  

When a single cell is activated by an electrical current, the Action Potential (AP) is the electrical 

signal that accompanies the mechanical contraction (neural or external). A minimum threshold 

current is always required for the depolarization of the cell.   Owing to finite mass and restricted 

speeds of the ions, they are offered resistance while their movement through the fluid. It results 

in finite rise and fall time for the cell action potential. To record an action potential, a single 

cell must be isolated and microelectrodes with tips of a few micrometres must be used to 

stimulate the cell and record the response. The various steps involved in the generation of cell 

action potential as shown in fig.1.4 are: 

1. Resting Potential & Stimulus: A semi-permeable membrane surrounds nerve and muscle 

cells, allowing certain molecules to flow through while keeping others out. Excitable cell 

membranes readily accept the admission of K+ and Cl- ions in their resting state, but effectively 

restrict the entry of Na+ ions. According to the phenomenon of charge concentration, various 

ions strive to achieve a balance between the interior and outside of a cell. A polarised cell is 

one that is in its resting state with some resting potential.  
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Until a disruption or stimulus breaks the equilibrium, most cells retain a resting potential of          

-60 to -100 mV. The stimulus threshold is the name given to the minimum value of applied 

stimulus for depolarization. After a cell has been stimulated, it takes a certain amount of time 

for it to recover to its pre-stimulus state. This is due to the fact that the energy associated with  
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the action potential is generated by metabolic processes that require time to complete within 

the cell. This is referred to as the refractory period.  

2. Depolarization: When a cell is stimulated by another external stimulus, the membrane 

changes its properties and allows Na+ ions to enter. The flow of Na+ ions create an ionic current, 

which lowers the membrane barrier to Na+ ions even further. This causes an avalanche effect, 

in which Na+ ions flood the cell. Because K+ ions were in higher concentration inside the cell 

in the previous resting state, they try to escape the cell, but they can't move as quickly as Na+ 

ions. As a result of the imbalance of K+ ions, the inside of the cell becomes positive in 

comparison to the exterior. After the surge of Na+ ions stop, a new state of equilibrium is 

attained. For most cells, this change marks the start of the action potential, which has a peak 

value of around +20 mV. Hence, depolarization is the process of an excited cell displaying an 

action potential and becoming depolarized. 

3. Repolarization: It is the process by which a depolarized cell becomes polarised again and 

returns to its resting potential after a period of depolarization. Repolarization happens through 

processes similar to depolarization, although the main ions involved in repolarization are K+ 

ions rather than Na+ ions. Because the permeability of K+ ions varies far more slowly than that 

of Na+ ions during depolarization, the initial depolarization is produced by an inrush of Na+ 

ions. However, around the apex of the depolarization, the membrane permeability changes for 

Na+ ions begin to diminish spontaneously, whilst those for K+ ions continue to rise. As a result, 

during repolarization, K+ ions have the highest membrane permeability. Because the quantity 

of K+ within the cell is significantly larger than outside, there is a net outflow of K+ from the 

cell, causing the interior to become more negative, causing repolarization to the resting 

potential. 

4. Hyperpolarization:  It  is  a  condition  when  the  membrane  potential  is  a reduced by the  

❑ outflow of potassium ions and  

❑ potassium channels cessation. 

5. Resting state: This state occurs before the next stimulus is applied and it happens due to 

returning of the membrane potential back to its resting potential.  
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The all-or-none or all-or-nothing phenomenon describes how the action potential of a cell 

remains constant independent of the manner of excitation or the strength of the stimulus beyond 

a threshold. 
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Fig.1.4 Electrical activity associated with one contraction in a muscle. 

The absolute refractory phase occurs after an action potential, during which a cell is unable to 

respond to any fresh stimulation. The refractory period follows it, during which a significantly 

greater stimulus can elicit another action potential. The coordinated activity of large groups of 

cells produces the bioelectric signals of clinical interest, which are frequently recorded. The 

table 1.1. shows the most common bioelectric signals with their primary characteristics:  

Table 1.1: Most common bioelectric signals with their primary characteristics 
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1.6 TYPES OF BIOELECTRICAL SIGNALS  

The various types and sources of bioelectric Signals has been shown in fig.1.5.  

 

Fig.1.5 Types and Sources of Bioelectrical Signals 

The brief description of few important bioelectrical signals is as follows: 
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1.6.1 ELECTRONEUROGRAM (ENG)  

The ENG is an electrical signal that is detected as a stimulus and propagates along the length 

of a neuron as a nerve action potential. It may be used to determine the speed at which a stimulus 

or action potential propagates across a nerve (also known as conduction velocity). A peripheral 

nerve's conduction velocity can be assessed by activating a motor nerve and monitoring the 

corresponding activity at two places along its route that are a known distance apart.  

To reduce muscular contraction and other undesirable consequences, the limb is kept in a 

relaxed position while a powerful but brief stimulation is administered in the form of a pulse 

with an amplitude of around 100 V and a duration of 100 - 300 ps. The conduction velocity in 

the nerve may be calculated using the separation distance between the stimulus locations. The 

conduction velocity decreases due to the presence of neural diseases.  The ENGs recorded in a 

nerve conduction velocity investigation are shown in fig. 1.6.  
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Fig.1.6 Acquisition of Electroneurogram (ENG) signal 

1.6.2 ELECTROMYOGRAM (EMG)  

Twitch fibres are skeletal muscle fibres that produce a mechanical twitch reaction in response 

to a single stimulus and create a propagated action potential. The Motor Units (MUs) are 

grouped together to form skeletal muscles. A motor unit's component fibres are triggered in a 

synchronous manner. A motor unit's component fibres run longitudinally in loose bundles along 

the muscle. The fibres of one motor unit are intermingled with the fibres of other motor units 

in cross-section. A schematic for the generation and processing of EMG signal is shown in 

fig.1.7.   

Large muscles with hundreds of fibres per motor unit are used for general movement; smaller 

muscles with fewer fibres per motor unit are used for precision movement. The innervation 

ratio is the number of muscle fibres per motor nerve fibre. The cumulative outcome of numerous 
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motor unit’s activation and contraction is the mechanical output (contraction) of a muscle. 

When each motor unit is triggered by a brain signal, it contracts and produces an electrical 

signal that is the total of all of its component cell’s action potentials. The Single Motor Unit 

Action Potential (SMUAP, or simply MUAP) is a kind of action potential that may be recorded 

using needle electrodes put into the muscle of interest. 

SMUAPs are commonly biphasic or triphasic, with a length of 3-15 ms, an amplitude of          

100- 300 μV, and a frequency of 6-30 Hz. Disease has an impact on the form of SMUAPs. Slow 

conduction and/or desynchronized activation of fibres, as well as a polyphasic SMUAP with a 

higher amplitude, are all symptoms of neuropathy. Myopathy is characterised by the loss of 

muscle fibres in motor units while the neurons remain intact. Asynchronous contraction occurs 

when motor units fire at various times and at distinct frequencies. Motor units fire at around    

5-15 pulses/second due to a  lack of volitional  effort. The EMG of the muscle is  generated  by 
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adding the MUAPs of all activated motor units in a spatial-temporal manner.  

 

Fig.1.7 Generation and Processing of Electromyogram (EMG) signal 

1.6.3 ELECTROENCEPHALOGRAM (EEG)  

The EEG (also known as brain waves) is a measurement of the brain's electrical activity. 

Physiological control systems, mental processes, and external stimuli all create signals in the 
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brain that may be recorded using surface electrodes on the scalp. The scalp EEG is an average 

of the numerous different activities of many tiny zones underneath the electrode on the cortical 

surface. Several channels of the EEG are recorded concurrently from several points on the scalp 

in clinical practise for comparative examination of activity in different brain areas. The 10-20 

scheme of electrode placement for clinical EEG recording is the most common and popular 

method as shown schematically in fig.1.8.  

The designation 10-20 refers to the fact that the electrodes along the midline are arranged at 

fractional distances of the respective reference distances of 10,20,20,20,20 and 10% of the total 

nasion-inion distance. EEG signals may be used to investigate the neural system, track sleep 

stages, provide biofeedback & control, and diagnose disorders like epilepsy. Monitoring sleep 

EEG and detecting epileptic seizure  transients  may  need  multichannel  EEG  recording  over 
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several hours. The use of needle electrodes, naso-pharyngeal electrodes, and other specialised 

EEG methods are among the most often used. 

 

 

 

Fig.1.8 10-20 System of electrode placement for EEG recording 

The different EEG frequency bands are shown in table 1.2.  

Table 1.2: EEG frequency bands 
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S. No Frequency Band Name Frequency Range  

1 Delta (δ) 0.5- 4 Hz 

2 Theta (θ) 4 - 8 Hz 

3 Alpha (α) 8 - 13 Hz 

4 Beta (β) > 13 Hz. 

 

The fig.1.9 shows EEG signal frequency bands and associated brain activities. Various 

physiological and mental functions are linked to EEG rhythms. The alpha rhythm is the brain's 

primary resting rhythm, and it's frequent in awake, resting adults, particularly in the occipital 

region with bilateral synchronisation. With the eyes closed, auditory and mental arithmetic 

activities produce significant alpha waves, which are inhibited when the eyes are opened. Theta 

waves emerge at the start of sleep, whereas delta waves appear during profound sleep. In tense 

and worried people, high-frequency beta waves seem as background activity. 

Chapter 1: Introduction to Biomedical Signals with Special Reference to ECG & Bioimpedance 

 

In a certain state of the individual, depression or the lack of the normal rhythm might suggest 

abnormalities. In a wakeful adult, the occurrence of delta or theta (slow) waves would be 

regarded aberrant. Abnormal slow waves in the corresponding areas are caused by focal brain 

damage and tumours. The existence of epileptogenic areas in the corresponding portions of the 

brain might be indicated by spikes and sharp waves. All of the channels have a lot of alpha 

activity. Spikes, transients, and other waves and patterns linked with various neurological 

illnesses can also be found in EEG readings. 

 

Fig.1.9 EEG signal frequency bands and associated brain activities  
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1.6.4 ELECTROGASTROGRAM (EGG)   

An EGG can be recorded with the help of external (cutaneous) electrodes as depicted in fig.1.10. 

The surface EGG is believed to reflect the overall stomach activity, which includes the both 

electrical control activity and the electrical response activity. The analysis of the EGG provides 

the details of gastric dysrhythmia or arrhythmia. However, accurate and reliable measurement 

using EGG requires implanting of electrodes in the stomach, which limits its practical 

applicability.  

1.6.5 VECTORCARDIOGRAPH [VCG] 

A vectorcardiogram is the name for the display known as Vectorcardiography [VCG] which is 

a procedure that involves plotting and analysing the 3D cardiac electrical vector loops in three 

mutually orthogonal planes, which are frontal, horizontal, and sagittal planes as shown in 

fig.1.11.  In  contrast  to  an  ECG,  which  shows  the  electrical  potential  on  a  single axis, a  
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vectorcardiogram shows the same electrical events on two perpendicular axes at the same time. 

This creates loop type patterns on the CRT screen as shown in fig.1.12. Each cardiac cycle is 

usually documented with a picture. The amplitude and direction of the P, Q, R, S, and T vector 

loops may be calculated using such images. 

 

 

Fig.1.10 Generation and output signals of Electrogastrogram [EGG]  
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Fig.1.11 3D cardiac electrical vector loops in frontal, horizontal, and sagittal planes 

VCG depicts the phase differences between voltages as well as the different leads from which 

it is formed. Each vectorcardiogram has three loops, one for the P wave, one for the QRS axis,  
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and one for the T wave. Loops from the QRS complex prevail due to the high amplitude 

associated with QRS. To fully depict the loops caused by the P wave and T wave, an increase 

in horizontal and vertical deflection sensitivity is usually necessary. 

 

Fig.1.12 Conventional Vectorcardiography scheme 
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1.6.6 ELECTROCORTICOGRAM (ECoG)  

In Electrocorticography (ECoG) procedure, neurosurgeons place macroelectrodes (usually      

2–3 mm in diameter) on the exposed surface of the cortex to determine the cause of seizures in 

drug-resistant epileptic patients. The part of the brain that causes seizures is then surgically 

removed. The intra-operative recording of cortical potentials has played an essential role in the 

surgical therapy of patients with medically resistant epilepsy. It's been utilised to: 1) locate 

epileptogenic tissue; 2) map out brain functions; and 3) forecast surgical outcome. Thus, the 

traditional electroencephalography (EEG) electrodes, measures the brain activities from outside 

the skull, whereas ECoG can be done in the operating theatre during surgery (intraoperative 

ECoG) or outside of surgery (extra operative ECoG) as depicted in fig.1.13. However, the 

ECoG technique is invasive in nature.  

 

 

 

 

Chapter 1: Introduction to Biomedical Signals with Special Reference to ECG & Bioimpedance 

 

 

Fig.1.13 Electrocorticogram (ECoG) setup and signal output 

1.6.7 ELECTROCARDIOGRAM (ECG)  

 

The ECG is the electrical representation of the heart's contractile activity, and it may be easily 

recorded using surface electrodes on the limbs or chest. Perhaps the most well-known, 

recognised, and used biological signal is the ECG. The important aspects of ECG are as follows: 

1.6.7.1 THE HEART 
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The heart is a four-chambered pump that has two atria for blood collecting and two ventricles 

for blood pumping out. The four chambers and the main arteries that link to the heart is shown 

schematically in fig.1.14. Diastole refers to the resting or filling phase of a heart chamber, 

whereas systole refers to the contracting or pumping phase. The superior and inferior vena-

cavae send impure blood to the right atrium (or auricle, RA). The largest and most significant 

heart chamber is the left ventricle. Because it needs to pump oxygenated blood, the left ventricle 

contracts the hardest of the heart chambers. The names systole and diastole are used to the 

ventricles by default due to the greater significance of ventricle contraction.  

The Sino-Atrial (SA) node is the specialized pacemaker of the heart. The average (resting) heart 

rate is around 70 beats per minute. Although the heart rate drops during sleep, unusually low 

heart rates of less than 60 beats per minute during exercise may suggest bradycardia. During 

strenuous exercise or sports activity, the instantaneous heart rate can approach 200 beats per 

minute; a high resting heart rate, known as tachycardia, can be caused by sickness, disease, or 

cardiac anomalies. 

 

 

Chapter 1: Introduction to Biomedical Signals with Special Reference to ECG & Bioimpedance 

 

 

Fig.1.14 Schematic for cardiac conduction system 

1.6.7.2 HEART'S ELECTRICAL SIGNAL GENERATION SYSTEM  

The SA node is a simple, natural cardiac pacemaker that initiates a series of action potentials 

on its own. The SA node's action potential travels across the remainder of the heart, creating a 

specific pattern of excitation and contraction as shown in fig.1.15.  
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Fig.1.15 Typical ECG signal waveform 

1.6.7.3 ECG SIGNAL ACQUISITION 

The conventional 12-channel ECG is acquired in clinical practise utilising four limb leads and 

six chest leads in six places. The reference electrode is placed on the right leg. Leads I, II, and 

III  are  obtained  via  the  left  arm,  right  arm,  and  left  leg.  Wilson's  central  terminal  is  a  
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composite reference made up of the left arm, right arm, and left leg leads that is used as a 

reference for chest leads. Einthoven's triangle is a hypothetical equilateral triangle formed of 

leads I, II, and III. Wilson's central terminal is represented by the triangle's centre as shown in 

fig.1.16. The heart is supposed to be at the centre of the triangle in this arrangement or diagram. 

 

Fig.1.16 Wilson's central terminal and Einthoven's triangle for ECG measurement 

The six leads measure 3D cardiac electrical vector projections onto the axes which are sampled 

in the 00-1800 range in around 300 increments. The projections make it easier to see and analyse 
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the electrical activity of the heart from various angles in the frontal plane. The V1 and V2 leads 

are located immediately to the right and left of the sternum, respectively, in the fourth 

intercostal gap as shown in fig.1.17. The fifth intercostal gap on the left midclavicular line is 

where V4 is recorded. Similarly, V3, V5 & V6 are also recorded. Despite the fact that it is 

redundant, the 12-lead method is the foundation of the conventional clinical ECG. The majority 

of clinical ECG interpretation is empirical, depending on prior experience. Regardless, in 

clinical practise, the 12-lead scalar ECG is the most often employed method. 

External ECG recordings are not unique since they are a projection of the interior 3D cardiac 

electrical vector. The following are some of the most important inter-relationships:  

❑ II = I + III  

❑  aVL=(I-III)/2. 

where aVL is augmented lead for left arm. 

The 12-lead ECG of a healthy male adult along with distorted ECG signals due to various 

cardiac ailments is shown in fig.1.18. By analysing the waveshapes in the six limb leads, a well-

trained cardiologist may derive the 3D direction of the heart electrical vector. The waveshapes 

in the six chest leads can be used to locate any cardiac abnormalities.  
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Fig.1.17 ECG signal acquisition process 
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Fig.1.18 Typical normal ECG signal and distorted ECG signals due to various cardiac 

ailments 
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1.7 BIOIMPEDANCE 

Simply, impedance offered by a living tissue is known as bioimpedance. Whether, it is animal 

and plant cells or tissues, these are always made up of three-dimensional arrangement of cells 

and tissues. Therefore, human body is a complex biological structure and system, which is also 

made up of billions of cells and tissues arranged in 3-D formation [1]. The biological cells and 

tissues of both animals and plants floats in ECF which is known as Extra-Cellular Fluids. This 

ECF comprises Intra-Cellular Fluids (ICF) and Cell Membranes (CM) which may be with or 

without cell wall. When biological cells and tissues are subjected to the external electrical 

stimulus they respond and produces a complex bioelectrical impedance or simply known as 

bioimpedance. This bioimpedance is highly frequency-dependent [2, 3].  

Accordingly, frequency response of bioimpedance of cells and tissues of humans is greatly 

affected by physiological and physiochemical composition and structure of these cells and 

tissues. Moreover, it also changes from person to person. As a result, learning about cell and 

tissue anatomy and physiology through biological cell and tissue bioimpedance analysis will be 

a valuable resource. Therefore, it has been found that studying complex bioimpedance of 

biological cell and tissues is a useful method for non-invasive physiological and pathological 

investigations. As we know that the bioelectrical impedance of a biological cells or tissues is 

dependent on the signal frequency, however, multifrequency application may also be used for 

non-invasive diagnostics and medical investigations, so as to determine their physiological or 

pathological behavior or even properties. There are numerous Non-invasive bioimpedance 

techniques such as BIA (Bio-Impedance Analysis), EIT (Electrical Impedance Tomography), 

IPG (Impedance Plethysmography), ICG (Impedance Cardiography) etc. The bioimpedance 

measurement technique proposed in this study, is a low-cost, efficient, and effective non-

invasive diagnostic technique.                  

1.7.1 BASICS AND ORIGIN OF BIOIMPEDANCE  

Bioimpedance is a passive electrical property that describes a biological tissue's ability to 

obstruct (oppose) electrical current flow. The reaction to electrical excitation (current or 

potential) applied to biological tissue is used to determine bioimpedance. The same or other 

electrodes apply the excitation signal and pick up the reaction in bioimpedance measurements, 

converting the electronic charge to ionic charge and vice versa [4]. Simply, the ratio of voltage 

(V) to alternating current (I) is known as electrical impedance (Z). Since, Direct Current (DC) 

is quite hazardous to humans, therefore, it is never used for any experimentation on humans. In 

fact,  Alternating  Current  (AC)  is  more  preferable  choice for such type  of applications. The  
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calculated or observed bioimpedance (Z) is highly influenced by the Resistive (R), Capacitive 

(C), and Inductive (L) components of the cells and tissues. The bioimpedance (Z) can be given 

by using the modulus |Z| and the phase change. Since, bioimpedance (Z) is a complex function 

or parameter, therefore its real part is Resistance (R) and whereas, the imaginary part is 

Capacitance Reactance (Xc).  As the ICF, CM, and ECF are made of dissimilar materials with 

nonidentical electrical properties, therefore every cell and tissue components react differently 

to the applied AC signal.  

As we know that ICF and ECF are made up of ionic solution which are highly conducting in 

nature, thus it provides highly conducting or low resistive path to the applied AC signal [5]. 

The Cell membranes are composed of lipid bilayers which are electrically nonconducting and 

sandwiched between two conducting protein layers. This sandwiched structure, produces a 

capacitive reactance (Xc) to the applied AC signal [6, 7]. Due to this, biological cells and tissues 

produces a complex bioimpedance (Z) which can be considered as overall response to an 

applied AC signal [2, 3]. Thus, bioimpedance (Z) is a complex function depends upon cell and 

tissue composition and structure, health of person and applied AC signal frequency. Moreover, 

it also changes with measurement direction, varies from subject to subject and even tissue to 

tissue. The human body composition comprises, water (64%), protein (20%), fat (10%), and 

minerals (5%) and starch (1%) as shown in fig.1.19 through the concept of five component 

model for human body.  

 

 

Fig.1.19 Five component model for human body   

The mass of the human body is mainly due to oxygen (65%), carbon (18%), and hydrogen (8%). 

The majority of muscles are made up of protein whereas, majority of bones are made up of 

minerals [1]. The bioimpedance is proportional to Total Body Water (TBW), which contains 

Intra-Cellular Water (ICW) and Extra-Cellular Water (ECW) as shown in fig.1.20. Body water, 

body fat, and body muscle have different impedance values according to the amount of presence 

of water in these. Thus applied AC signal pass through paths that contain more water as it 
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it provides high conductivity [8]. 

 

Fig.1.20 Representation of Total Body Water (TBW) in human body 

The physiological, morphological, and pathological settings, as well as the frequency of the 

applied electrical signal, all affect and influence the electrical properties of biological cells and 

tissues [7, 9]. The biological cells and tissues may have active (endogenous) or passive 

(exogenous) electrical properties, depending on the type of source of applied AC signal. The 

electrocardiograph (ECG) signals from the heart, electroencephalograph (EEG) signals from 

the brain, electromyograph (EMG) signals from the muscles are few examples of active 

properties (bioelectricity) produced by ionic activities within cells and tissues (typical of nerve 

cells). Passive properties are generated by simulating them with an external electrical excitation 

source [4].  

The extracellular fluids surround all cells with membranes in biological tissues. The main 

constituents of Extra-Cellular Fluid (ECF) are fluid component of the blood known as plasma 

and the other one is Interstitial Fluid (IF) which surrounds all cells that are not in blood. The 

extracellular space is the part of a multicellular organism outside the cells, whereas intracellular 

space is within the organism’s cells. The cell membranes separate extracellular spaces and 

intracellular space thus producing two electrically conducting compartments known as 

extracellular media and intracellular media. These intracellular and extracellular fluids provide 

resistive pathways. Due to its insulating design and structure, the lipid bilayer cell membrane 

is very-very thin measuring approximately 6-7 nm. This lipid bilayer cell membrane is semi-

permeable, due to which it has a high capacitance and which produces capacitive reactance    

[10, 11, 12]. Although biological cells and tissues may have inductive properties, inductance is 

much lower at low frequencies than resistance and capacitive reactance, so it is often 

overlooked [13]. Thus, biological cells or tissue’s complex bioimpedance is the contributions 

from both frequency-dependent capacitance and conductance. Bioelectrical impedance often 

differs from one tissue to the next, as well as from one subject to the next. The complex 

bioelectrical impedance is affected by changes in cell and tissue composition and structure, and 

even health condition or status of the subject [4, 5].  
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Bio-Medical Signal Analysis Techniques [PART-I] 
 

The Electrocardiogram (ECG) is one of the several kinds of bioelectrical impulses and is 

extremely significant. The ECG, a technique for monitoring the bioelectric impulses generated 

by the heart, is used by cardiologists and doctors to evaluate a patient's heart health. Recent 

years have seen an increase in the importance of the ECG signal in the initial diagnosis, 

prognosis, and survival analysis of cardiac illnesses, however all this heavily rely on the quality 

of ECG. Overall, ECG has a considerable impact on medical practise. Doctors use top quality 

ECGs to spot pathological and physiological phenomenas. Therefore, thorough ECG analysis 

is crucial for medical signal processing and analysis in order to control and monitor further 

medicine management.  

2.1 ECG SIGNAL ANALYSIS TECHNIQUES 

In the past, several researchers have employed a wide range of techniques to increase the 

diagnostic precision and ECG signal categorization. To name a few of these initiatives: 

2.1.1 HIGHER ORDER STATISTICAL ANALYSIS: Many statistical techniques are 

available to extract information from random signals, such as the ECG. Higher Order Spectra 

(HOS) cumulants are a powerful tool for the investigation of nonlinear and non-stationary 

signals, such as the electrocardiogram (ECG). Most often, first and second order statistics are 

utilised. However, when nonlinearity in systems is present, many signals cannot be fully 

investigated using second order statistical techniques. As a result, more advanced statistical 

approaches have been developed. These methods are very useful when non-Gaussian, non-

minimum phase, phase coupling, nonlinear behaviour, and resistance to additive noise are 

required. Higher Order Statistics and Spectra in Communication Systems were studied by 

Sanaullah [14], for application in communication and pattern recognition, higher level 

statistical and spectral approaches for detection and classification have been developed. 

Singoreto et al., [15] suggested a kernel function that makes use of the fourth-order cross-

cumulant tensor spectral data that is connected to each multichannel signal. However, relevant 

connections to the system dynamics can be developed under specific modelling hypotheses.  
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Kernel functions for unstructured data do not make use of the underlying dynamism of 

multichannel signals. In addition to the above, Classification of Multichannel Signals using 

Cumulant-Based Kernels was carried out by Dah-Chung Chang et al. [16]. When the 

modulation type is adaptive, Automatic Modulation Classification (AMC), a classical topic in 

the field of signal classification, is frequently used. The fourth-order cumulant statistics are 

frequently used for modulation classification for typical modulation methods such as M-PSK 

& M-QAM. An association between the cumulants of the received signal and the multipath 

fading effects is created to address the channel impulse response. 

2.1.2 NEURAL NETWORKS: Shivajirao M. Jadhavl et al. [17] conducted ECG Arrhythmia 

Classification using Modular Neural Network Model; They divided arrhythmia into normal and 

pathological groups using the Modular Neural Network (MNN) model. The MNN model was 

built using one to three hidden layers, and it was trained using different training percentages in 

various data set divisions. However, the primary goal of this study was to produce accurate data 

for the categorization of arrhythmias only. Manab Kumar Das et al. [18] carried out 

Electrocardiogram (ECG) Signal Classification using S-transform, Genetic Algorithm and 

Neural Network; Argyro Kampouraki et al. [19] used Support Vector Machines (SVM) for 

Heartbeat Time Series Classification; In this work, SVM were used to classify heartbeat time 

series. With a very little amount of data, few characteristics were extracted from the signals of 

long-term ECG recordings of healthy patients and subjects with coronary artery disease using 

statistical approaches and signal processing techniques. 

Shwetha Edla et al. [20] performed ECG Signal Modelling with Adaptive Parameter Estimation 

Using Sequential Bayesian Methods; In this article, authors suggested sequential Bayesian 

approaches for modelling and adaptively choosing ECG signal parameters. However, when  real 

ECG data was used it provided limited success to illustrate the performance of the suggested 

algorithms. Kartik Audhkhasi et al., [21] studied Noise Benefits in Backpropagation; They 

made an effort to demonstrate how noise may hasten the backpropagation algorithm's 

convergence. The training data are directly increased by the noise. Both the neural network's 

backpropagation training and its deep bidirectional pre-training have an marginal advantage 

against noise. The probability structure of the neurons at each layer, determines how the noise 

benefit is shaped. A prohibited noise area created by logical sigmoidal neurons is located 

beneath a hyperplane. Kaiming He et al. [22] used Spatial Pyramid Pooling in Deep 

Convolutional Networks for Visual Recognition.   

 

 



 

27 
 

Chapter 2: Literature Review 

2.1.3 TYPE-2 FUZZY LOGIC SYSTEM: With the use of a straightforward Genetic Type-2 

Fuzzy Logic System, I.A. Hameed et al. [23]; demonstrated that the high computational cost of 

type-2 fuzzy systems (T2FS) is a significant issue  that prevents  their  widespread adoption in  

real-time applications, despite the benefits they provide in addressing uncertainty in control 

applications. A Genetic Algorithm (GA) gives the system a tool to identify and display the level 

of uncertainty it has assimilated, in addition to its role in offering flexibility to deal with 

changing situations. Researchers have discovered that T1FLS have trouble in modelling and 

reducing the impact of uncertainty. It takes a lot of computing power to type-reduce T2FS into 

T1FS so that the defuzzifier can process them and provide a clean result, especially when there 

are a lot of Membership Functions and a lot of rules. The General and Interval Type-2 Fuzzy 

Face-Space Approach to Emotion Recognition was used by Anisha Halder et al. [24] and Chia-

Feng Juang et al. [25] studied-An Interval Type-2 Neural Fuzzy Classifier; In this study, an 

interval type-2 neural fuzzy classifier (IT2NFC-SMM) that learns through soft margin 

reduction is proposed and used to classify human body position with highly limited success.  

2.1.4 MISCELLANEOUS METHODS: In addition to the approaches listed above, other 

techniques have occasionally been employed by various researchers for the delineation, 

modelling, and detection of ECG waveforms for biomedical signal analysis in general, 

including: In [26], the use of a Hidden Markov Tree model in a new ECG delineation technique 

is suggested. The two main goals of this method are to classify the various ECG waves using 

wavelet coefficients and to link these coefficients using a tree structure in order to identify wave 

changes. In Hermitian Function [27], to approximate the ECG signal, a piecewise modelling is 

provided. The majority of modelling techniques tried to produce the accurate representation of 

the whole ECG signal. This results in weighting each segment's approximation inaccuracy 

according to how significant it is over the whole ECG complex. As the outcome demonstrates, 

this approach's overall error is practically cut in half when compared to a comparable non-

segmented method. Autoregressive (AR) modelling of cumulants is presented in [28] for 

improving ECG signals.  

The fundamental idea behind the Wavelet Transforms approach [29] is to utilize the same data 

for Ventricular Premature Contraction (VPC) identification that was used for QRS detection, a 

step that is required by the majority of ECG classification algorithms. It is discovered that the 

computation of the proposed distinctive characteristics is significantly influenced by the R wave 

amplitude. This normalizing procedure enables accurate VPC identification while minimizing 

the impact of alternating R wave amplitude. However, using the same wavelet for QRS 

detection and VPC classification has two main drawbacks: it requires additional calculation and  
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implementation complexity. According to [83], a nonlinear approach may be used to recover 

the ECG signal's hidden information. In this study, they used Wavelet Packet Decomposition 

(WPD) of Higher Order Spectra (HOS) cumulants to automatically classify normal and 

pathological beats. Ventricular Premature Contractions (VPC) and Atrial Premature 

Contractions (APC) are the aberrant beats. To reduce the number of features, Principal 

Component Analysis (PCA) is applied to these Wavelet Packet Decomposition (WPD) with 

HOS cumulant features. 

2.2 ECG DENOISING TECHNIQUES 

The quality of the ECG signal is always lowered by noise [71]. Because the ECG signal 

changes over time, removing ECG noise is challenging. A high-quality ECG signal is required 

since it is utilized as the primary tool for diagnosing and analyzing cardiac problems. The 

cardiac irregularities can be seen in the ECG signal's minor amplitude and duration changes. 

It is challenging to identify cardiac problems due to aberrations in the ECG signal, such as 

Baseline Wander, Electromyogram (EMG), and Power Line Interference (PLI) at 50/60 Hz. 

Moreover, high-frequency disturbances, and equipment noise frequently damage ECG 

recordings. Several techniques for ECG signal denoising have been proposed in the literature, 

particularly for the elimination of low frequency noise, such as: 

2.2.1 DIGITAL WINDOW-BASED FILTERS were first proposed by [30][31]. In the 

processing of low frequency signals, digital filters are crucial. These filters may be utilized in 

a variety of applications due to their adaptability, including isolating a QRS complex in an 

ECG signal, removing certain powerline frequencies, and simply reducing aliasing artefacts 

[30]. The three elliptic approximation filters are made and used on the live ECG data. With 

different limits, it is found that the newly introduced elliptic filter outperforms Butterworth, 

Chebyshev type I & type II [31]. The issue with them is that when a severe cut-off is employed, 

they generate ripples in the pass band. These ripples cause the shape of the ECG signal to 

change, which is improper from a diagnostic standpoint. Furthermore, the inaccuracy of the 

precise frequency cut-offs required for a window-based filter is demonstrated by the failure to 

apply Fourier Transforms to an ECG signal because of its non-stationary and non-linear 

characteristics. 

2.2.2 ADAPTIVE FILTERS: The ability to distinguish the desired signal from disturbances 

brought on by power line interference, external electromagnetic fields, random body 

movements, and breathing is a major challenge in the processing of biological data such as 

ECG. In [32][33] [34], (LMS, NLMS, BLMS, and so on) were proposed as an upgrade over 

window-based  filters.  To  exclude  signal  components  from  undesirable  frequency  bands,  
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several digital filters are utilized [32]. Filters with fixed coefficients are challenging to use to 

minimize biomedical signal noise. This issue needs to be solved using adaptive filtering 

techniques. The cancellation of noise in ECG data uses normalized adaptive filters [33], which  

are computationally better and have multiplier free weight update loops. These methods 

outperform previous Least Mean Square (LMS)-based realizations in terms of speed by 

primarily using basic addition and shift operations.  

Before subtracting noise from the noisy ECG, it is necessary to estimate the noise from an 

external reference when using adaptive filters to minimize noise [34]. This is typically 

unhelpful because of the reference signal's weak correlation with the noise in the primary input. 

These strategies include active signal monitoring and noise prediction based on the difference 

between predicted and observed signals. Starting with the requirement for pure input signals 

in order to approximate how the signal differs, problems arise when using these for ECG 

filtering. Additional issues arise from the reference signals' poor match to the original data and 

the adaptive filter's minimal Mean Square Error [MSE] requirement. 

2.2.3 WAVELETS: Although window-based filtering is preferable to adaptive filtering, there 

is still room for improvement. Due to recent developments in wavelet-based nonlinear signal 

processing, wavelets are being employed more and more in ECG denoising. A number of 

algorithms [36] [37] [38] have been developed on top of the Donoho et al. [35] as given in his 

thesis in the domain of ECG denoising. This work [36] proposes a unique approach based on 

the threshold value of ECG signal determination using Wavelet Transform coefficients. This 

study sought to examine the efficiency of wavelet denoising in multichannel high resolution 

ECG signal noise reduction [37], in particular, the effects of the wavelet function and 

decomposition level selections. This work used to suppress parasite electromyographic (EMG) 

signals (myopotentials) present in electrocardiogram (ECG) signals using the Wiener filtering 

in the shift-invariant wavelet domain with signal pilot estimate [38]. For pilot estimate, wavelet 

filtering with hybrid thresholding was utilized.  

According to Luong et al. [39], the conventional wavelet method is ineffective in eliminating 

baseline wander noise. This issue was addressed by a fuzzy rule-based multi wavelet technique 

that helped to optimize pre and post filtering choices for a specific data collection [40]. The 

approach for weak ECG signal denoising presented in this work uses wavelet packet analysis 

and fuzzy thresholding. First, a wavelet packet transform is used to divide the faint ECG signal 

into several levels. After that, the fuzzy S-function is used to calculate the threshold value. The 

inverse wavelet packet transform is used to rebuild the ECG signal from the preserved 

coefficients [94]. 



 

30 
 

Chapter 2: Literature Review 

2.2.4 EMPIRICAL MODE DECOMPOSITION (EMD): Huang suggested Empirical Mode 

Decomposition   (EMD)  as  a  cutting-edge  technique  for  the  analysis  of  non-linear  non- 

stationary signals in his publication [41]. This is utilized in several algorithms and has been 

demonstrated to be highly successful in ECG filtering [42]. The majority of EMD research has, 

however, concentrated on reducing high-frequency noises. Denoising of ECG signals with the 

use of linear filtering (Butterworth Low Pass Filter) [43] produces superior results as compared 

to direct denoising by EMD method. Results from the combination of EMD and adaptive filters 

are better than those from the combination of EMD and linear filters. Combining EMD and 

wavelets can also be used to achieve ECG denoising [44]. This was modified even more by 

Zhang et al. [45]. This study investigated the energy of each Intrinsic Mode Function (IMF), 

and the noisy IMFs were found. The noisy IMFs were the only ones denoised using the Wavelet 

Soft Thresholding Technique. This speeds up calculation and is currently the most effective 

approach. All of these methods have the drawback of being unable to handle Baseline Wander 

noise since they are developed to handle signals with lower IMFs or high frequency 

components.  

In a study by Zhi-Dong Zhao et al. [46], EMD was utilized for baseline wander denoising for 

the first time. The residual signal, which was used to approximate baseline wander, was left 

out in order to account for noise in the ECG signal. In order to advance this field, Na Pan et al. 

[47] divided the signal into 15 IMFs, assuming that the final three IMFs primarily consisted of 

noise components. Thus, the baseline drift was adjusted by removing the latest three IMFs. 

These initiatives have limitations as a result of the limited signals they were tested on and the 

lack of an appropriate mechanism to work with various IMFs. Additionally, it has been shown 

that the EMD's inherent ability to denoise is inadequate [48] [49]. To get the best possible 

outcomes, it should be used in conjunction with another strategy. The two primary drawbacks 

of the EMD are its susceptibility to noise and its mode mixing feature, which introduces 

inaccuracy into the recorded signal [50]. 

Empirical Mode Decomposition was the foundation for the de-noising method for ECG data 

developed by Anil Chacko* et al. [66]. The noisy ECG signal is broken down using the EMD 

approach into sequences of Intrinsic Mode Functions (IMFs). The IMFs controlled by noise 

are spontaneously determined by Spectral Flatness (SF). These noisy IMF’s noise is filtered 

out using Butterworth filters. Its Signal to Noise Ratio (SNR) is greater and its Root Mean 

Square Error is less than Wavelet Transform de-noising (RMSE). The most significant 

weakness of EMD is the mode mixing consequence. When oscillations of different time scales 

coexist in one IMF or when oscillations of different time scales are allocated to different IMFs,  
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this is referred to as mode-mixing. All of these techniques have drawbacks, including mode 

mixing, oscillation in reconstructed signals, decreased ECG signal amplitude, and degeneracy, 

to name a few. 

2.2.4.1 ENSEMBLE EMPIRICAL MODE DECOMPOSITION (EEMD): To address the 

above-mentioned issues related with EMD, Huang suggested an Ensemble Empirical Mode 

Decomposition (EEMD) system [51], which was later improved [52], resulting in a 

numerically negligible error. Although EEMD has been used to denoise ECG [53], it has had  

some of the same issues with inadequate denoising strength on its own. With the help of 

averaging, this solves the problem of mode mixing and oscillations. However, this has a few 

drawbacks: it is computationally expensive, and the final amplitudes associated with the IMFs 

are greatly reduced due to the uneven number of modes across the ensemble [54]. An enhanced 

Ensemble Empirical Mode Decomposition (EEMD) based methodology called Complete 

Ensemble Empirical Mode Decomposition (CEEMD) requires fewer iterations than the EEMD 

method, making it computationally more efficient. Additionally, CEEMD appropriately 

reconstructs the input signal from the extracted modes after decomposing the signal up to the 

lowest or final level. 

2.2.5 MISCELLANEOUS METHODS: The following have been attempted and tested by a 

number of researchers and scientists in the past: 

Artificial Neural Networks [ANN]; are a type of data processing based on how the human brain 

works. Their efficiency has been diminished by the fact that their application for filtering has 

been restricted to PLI and electrode motion noise [55] and is reliant on signal reconstruction 

utilizing pre-existing biological signals. Additional studies, like that of [56], solely utilized the 

direct noisy values of the ECG signals as input and discovered that networks trained on the 

direct values were overfit and had a reduced capacity to filter fresh ECG signals. EMD in 

conjunction with neural networks has been widely employed for the prediction of non-linear 

non-stationary signals [57] [58]. In Cascade Combination of EMD and Morphological 

Functions; Mahipal Singh Choudhry et al. suggested employing a cascade combination of the 

EMD and Morphological function to remove low frequency artefacts from ECG readings. In a 

another publication, Mahipal Singh Choudhry and Rajiv Kapoor recommended the use of 

CEEMD and Adaptive Morphological Function [59] for ECG denoising. 

Combined Empirical Mode Decomposition and Wavelet Thresholding; Wavelet thresholding 

and Empirical Mode Decomposition were used in a hybrid technique proposed by B. Pradeep 

Kumar et al. [61]. Intrinsic Mode Function (IMF) sequences are created using an EMD to 

separate noisy ECG signals. With wavelet  thresholding, noise in a decomposed signal  may be  
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removed. Thus, the hybrid approach has improved the de-noising signal's performance. The 

hybrid technique is also better than the wavelet transform method in terms of SNR. Noise from 

the power lines and baseline drift noise are both eliminated. 

Un-Decimated Wavelet Transform; In their de-noising technique, V. Naga et al. [62] included 

an un-decimated wavelet transform. Using this method, the raw ECG signal is deconstructed. 

This method uses the shrinking process to clean up an unsteady ECG signal. The shrinkage 

phase makes use of semi-soft and stein block thresholding in addition to conventional soft and 

hard thresholding. It verified that multiple wavelets might be used to de-noise ECG data. It 

provided smoother, more stable, and more precise results as compared to the Discrete Wavelet 

Transform (DWT). The wavelet transform methodology has the following shortcomings as a 

denoising method for ECG signals: (ii) The reconstructed ECG signal may oscillate due to hard 

thresholding. (ii) Soft thresholding may reduce the ECG waveform amplitudes, especially the 

R waves, which are more important for identifying cardiac diseases. 

Morphological Methodology; A morphological method was recommended by Zhongguo Liu et 

al. [63] to reduce noise in ECG data. The structural components are available in a wide range 

of sizes. The different ECG signals and noise environments are processed using these structural 

elements. Although this filter does a decent job at lowering noise, but it only corrects the 

baseline drift issue.  

Hilbert-Huang Transform; Changnian Zhang et al. [64] suggested a Hilbert-Huang Transform-

based technique for de-noising electrocardiogram (ECG) signals. For signal processing, this 

transform contains two stages. The original dataset is first converted into 'n' number of IMFs 

using the  EMD technique,  and  then  the  components  of  these  IMFs  are transformed using 

Hilbert transforms. In comparison to the wavelet de-noising method, it is a simpler approach. 

Grid Search Approach; Grid search was used by Dong, Dai, et al. [65] to identify the optimal 

parameters that resulted in the least amount of multi-scale complexity, but the multi-scale 

complexity calculation was difficult and not appropriate for small sample data. Based on the 

recently developed noise invalidation approach, an ECG denoising strategy is presented in this 

study [67]. By excluding coefficients that are less than the suggested threshold, the approach 

offers an adaptive data dependent threshold that may be used to denoise ECG signals in an 

orthogonal basis of choice. By denoising a collection of ECG signals that have been tainted by 

various sources of noise, the performance of the noise invalidation approach is assessed using 

mean square error.  

In the realm of image processing, patch-based techniques have received a lot of attention 

recently  addressing  a  number  of issues including denoising, inpainting, and super-resolution  
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interpolation [68]. Investigated the use of the Non-Local Means (NLM) approach, one such 

technique, for the denoising of biological data. Metrics measuring the denoised waveform's 

distortion are reduced more significantly, for the ECG as an example. Baseline drift, powerline 

interference, and other electromagnetic interferences are the three main causes of noise in ECG 

signals [69]. Frequency transformation techniques are becoming increasingly important for 

removing noise from ECG signals as a result of the Wavelet transform's recent success in 

recognizing and removing noise from a wide range of signals. This study uses the S-transform 

to remove baseline wander from ECG data, and the suggested strategy is then contrasted with 

one based on the wavelet transform.  

There has been another two-stage ECG signal denoising method suggested in [70]. In the 

translation-invariant wavelet domain, it combines wavelet shrinkage with Wiener filtering. To 

achieve a more precise signal estimate in the first phase of the approach, a time-frequency 

dependent thresholding has been created and used. It performs better than other thresholding 

methods in this region since it is connected to the shape of the ECG signal. This study presents 

an overview of several sorts of disturbances that damage ECG signals.   

It can be difficult to suppress electromyographic (EMG) noise in electrocardiogram (ECG) 

signals because it typically has an impulsive character and a broad-spectrum content that 

overlaps the ECG as in [95]. Gaussian noise modelling has been used to suppress EMG signals 

in the majority of prior attempts. Due to the high-level EMG noise that commonly couples with 

the ECG signals during exercise, their approaches are largely insensitive to this noise. A particle 

filter (P) based technique is created for the denoising of non-Gaussian and non-linear ECG data 

in order to get around this restriction, but with the problem of PF sample degeneracy.  In order 

to address the above-mentioned issue and as well as the parameters selection issue in the 

Ensemble Empirical Mode Decomposition (EEMD) algorithm, [96] suggested an improved 

EEMD method based on genetic algorithm better known as GAEEMD, however results were 

not so promising.  
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2.3 RESEARCH GAPS 

● The Higher Order Spectra (HOS) using Cumulants (HOC) have only recently been 

employed in the field of biomedicine, specifically for the classification of ECG 

waveforms. The application of Higher Order Spectra (HOS) using cumulants in the 

domain of ECG signal analysis and classification is still highly insufficient. Therefore, 

the extensive research using Higher Order Spectra (HOS) in the domain of ECG signal  

● analysis and classification is still highly insufficient. As a result, this analysis and 

classification method can also be used effectively and efficiently for the analysis and 

classification of ECGs with the appropriate level of accuracy. 

● In addition to the above, the motivation for using cumulants for ECG analysis are: a) 

ECG signals are largely non-linear & non-Gaussian signals & they are easily ratified by 

3rd and 4th order statistics as they manifest quadratic and other higher-order non-

linearities; b) ECG signals are comparatively easy to detect and classify either using the 

bi-spectral or tri-spectrum contours; c) ECG signal can be easily processed in Gaussian 

noise-free domains. 

● The majority of available ECG denoising techniques tend to filter out most of the noises, 

but causing information loss. One of the most typical ECG artefacts is the baseline drift. 

Especially when the patient's breathing rate increases, this artefact is commonly 

observed during stress ECGs. All of these morphological alterations are typical and 

required for diagnosis, though the majority of available denoising techniques tend to 

reduce these but again at the cost of distorted ECG signal. Therefore, in this thesis, it is 

proposed that baseline drift be corrected.  

● The fact that baseline wander hasn't received as much attention in the literature as PLI 

and other forms of noises for which there are plenty of effective denoising techniques 

are available. Therefore, it is another factor in our decision to use baseline wander for 

denoising. Accordingly, a combination of CEEMD and Artificial Neural Network 

[ANN] in our proposed algorithm is used to remove low frequency artefacts from ECG 

signals. The use of CEEMD eliminates the intrinsic flaws in EMD while also ensuring 

that the Neural Network does not overfitted. 

● The use of a genetic particle filter lowers the degeneracy of particle filter samples. 

AEEMD is used in this thesis instead of EMD since it solves the mode-mixing issue 

with EMD. AEEMD offers more adaptation and robustness in the noisy ECG signal 

filtering field. 
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Bio-Medical Signal Measurement [PART-II] 

2.4 BIOIMPEDANCE MEASUREMENT  

Bioimpedance is the resistance provided by a living tissue. Bioimpedance assessment is a non-

invasive, low-cost, and popular method for determining body composition measures as well as 

for evaluating nutrition and health. Engineers and scientists have periodically made a great 

deal of attempts to build and create devices, components, and systems to measure 

bioimpedance non-invasively. A few of these endeavors include: 

2.4.1 COLE PARAMETERS: It is challenging to identify between plant and animal tissues 

using bioimpedance due to the wide variation of Cole parameters. A unique electronic method 

for identifying fruit or vegetable tissue is described in [72]. In order to calculate bioimpedance 

and Cole parameters in the frequency range of 1 Hz to 1 MHz, this system employs a pair of 

specially made electrodes [72]. In-depth data analysis is done after measuring bioimpedance 

in the above-mentioned frequency range for apple and potato tissues. The parameters of 

bioimpedance and the characteristics of cellular structure exhibit a strong association. The 

voltage output across the cell and tissue is measured after an alternating current injection to 

ascertain it. However, resistive and capacitive components make up the impedance of human 

cell and tissue [5, 6] that creates the perceptible variability of Cole parameters that with of 

plant tissues. 

2.4.2 STEPPED-SINE EXCITATIONS: According to [73], Linear Time-Varying (LTV) 

bioimpedance is measured with a specific degree of precision using stepped-sine excitations. 

The temporal distortions impacting the data rely on the experimental time, which in turn 

establishes the data accuracy and restricts the temporal bandwidth of the system that has to be 

evaluated when measuring linear time-varying (LTV) bioimpedance using stepped-sine 

excitations. However, due to temporal distortions that might damage the data, the device's 

temporal bandwidth is constrained and the data accuracy is undermined. 

2.4.3 TRANSFER FUNCTION APPROACH: The fundamental building parts of an 

bioimpedance measuring instrument are the current source and voltage sensor circuit. 

Numerous researchers  have faricated current sources that operate up to a few hundred kHz 

with success [74]. The basic component of the system is a monolithic operational amplifier, 

and the signal current is recovered from the amplifier's power supply leads using a modified 

current mirror. In order to achieve high drive capability with low amounts of quiescent current,  
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the entire circuit runs  in class-AB mode.  In order to quantify the load impedance, Paul Annus 

et al. [75] used a load-in-loop configuration and a transfer function methodology to 

systematically assess the design of a current source. The analysis is carried out for the 

aforementioned load-in-loop current source circuit topology and is generalized to include the 

grounded load impedance. But it is applicable for comparing the observed data with the 

theoretical and simulated outcomes only. 

2.4.4 VOLTAGE SENSING CIRCUIT consists of amplifier, demodulator and low pass 

filter. Areny and Webster [76] have examined the usage of instrumentation amplifier for 

bioimpedance measurements. The measurement method has been applied in a variety of 

contexts, including the estimation of Total Body Water (TBW), Intra-Cellular Fluid (ICF), and 

Extra-Cellular Fluid (ECF) [5], Electrical Cardiometry [77], Skin Water Content, Impedance 

Imaging (Tomography), Ablation Monitoring, and measurement of Respiration Rate [78]. 

Additionally, the method may be used to biometrics [79]. Examples of bioimpedance 

applications that are discussed and analyzed in [80] include skin conductance, Electrical 

Impedance Tomography (EIT), skin composition assessment, and transthoracic impedance 

pneumography. In-depth analysis of bioimpedance systems for medical applications is 

developed in this study. Applications of bioimpedance such as Electrical Impedance 

Tomography (EIT), Impedance Cardiography (ICG), Transthoracic Impedance 

Pneumography, and skin conductance are described and studied.  

2.4.5 NON-INVASIVELY TRACKING BLOOD GLUCOSE LEVELS: [81] examined the 

potential for monitoring blood glucose levels non-invasively utilising bioimpedance data, 

which would enable more frequent testing and improved diabetes treatment and monitoring. 

The measurement of resistance (R) and capacitive reactance (Xc), which is carried out using 

an analogue instrument, is made possible by the passage of a small amplitude electrical current 

with a certain frequency delivered through leads attached to electrodes placed on the human 

body. Current may flow through extracellular fluids at low frequencies, but at high frequencies, 

it can enter cells and intracellular fluid. The efforts are focused on examining the potential for 

non-invasively monitoring blood glucose levels using bioimpedance data, which would enable 

more frequent testing and more stringent management of diabetes. Using ANFIS, an  adaptive  

estimating  method, the  bioimpedance  values  obtained  from  various individuals are 

evaluated for various other subjects after being trained against the real value of blood glucose 

obtained using the standard clinical procedure.  
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2.5 MISCELLANEOUS METHODS: In addition to the above following effort were also 

made to design and develop the non-invasive bioimpedance based measurements:  

Bioimpedance analysis is a non-invasive, affordable, and frequently employed method for 

determining body composition and evaluating clinical status. There are several approaches 

used to analyse measured bioimpedance data, and bioimpedance is widely used to estimate 

body composition and assess clinical state. Bioelectrical impedance techniques can be used for 

non-invasive tissue characterisation since living tissues create a complex electrical impedance 

under alternating electrical stimulation that is dependent on tissue composition, architecture, 

health condition, and applied signal frequency. 

In bioimpedance spectroscopy, the complex impedance of living tissues is measured across a 

wide frequency range [97]. For physiological investigations or health monitoring systems, this 

strategy is very practical. Devices need to be portable, wearable, or even implanted for a variety 

of purposes.  Thus, the implementation of the next generation of bioimpedance sensing systems 

must take into account resource and power reductions. Impedance measuring techniques may 

be categorised into two groups. While others rely on "multi-tone" signals, some are based on 

"single-tone" signals. However, both strategies are rarely appropriate for embedded 

applications. Moreover, both strategies are quite noise sensitive.  

The required frequency range for bioimpedance measurements depends on the object's 

dielectric characteristics and is normally between 3 and 4 decades in the kHz to MHz region 

[98]. The number of frequency components employed determines how accurately the 

equivalent circuit-based impedance model fits the test findings. In general, using higher 

frequencies makes fitting more accurate but makes measurements more challenging. However, 

the signal to noise ratio (SNR) of the measurement signals also affects the accuracy of the 

fitting. It follows that the number of frequency components employed has two opposing effects 

on how well the comparable circuit model's parameters are estimated. The essential principles 

of bioimpedance measuring methods, such as frequency-based, allocation-based, 

bioimpedance vector analysis, and real-time bioimpedance analysis systems, were reviewed in 

[99]. The effect of anthropometric measures, gender, ethnicity, ethnic groups, postures, 

measuring techniques, and electrode artefacts on predicted results is also explored, as well as 

commonly used prediction equations for body composition evaluation.  

In order to reduce the electrode-skin impedance that naturally occurs, gel electrodes are used 

for the majority of bioimpedance tests. The usefulness of dry electrodes is examined in [100]  

since this type of electrode is frequently inappropriate in measuring conditions. The electrode- 

skin  impedances  are   measured   when   signal  frequency,  contact  time,  contact  pressure, 
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placement location, and subjects were changed in order to compare the properties of the 

electrodes. Additionally, for comparison, all tests were carried out using hydrogel electrodes 

made of silver and silver chloride (Ag/AgCl). The electrode-skin impedance of dry electrodes 

can be reduced to ranges of hydrogel electrodes and even lower by wisely setting these 

parameters. However, when converting scientific measuring techniques to clinical settings or 

commercial products, using dry electrodes is one of the most challenging tasks.  

Electrical impedance measurements can be distinguished between tissues with various 

electrical characteristics as discussed in [100]. The kind of tissue in which the needle tip is 

located can be determined using a measuring instrument with sufficient spatial resolution 

focused on a volume around the tip. Generally, Electrode Polarisation Impedance (EPI) have 

an impact on small electrode impedance values at low frequencies. [102] proposes a different 

technique for measuring impedances that uses voltage excitation with a fixed amplitude. The 

technique, which may be easily applied to bioimpedance measurement with electrode sensors, 

uses the feedback principle to adjust the measurement parameters to the load being tested.  

[103] focused on cell coverage and other significant parameters, such as the cell-electrode gap, 

that may be determined by observing impedance changes brought on by cell development on 

microelectrodes. The measured bioimpedance immediately reflects the presence and 

movement of the cells as they adhere to the electrodes [104]. The tetrapolar electrode 

arrangement is used in the bulk of investigations regarding bioimpedance measurement. 

However, the measuring current spreads from the current-carrying electrodes in a multi-

layered tissue volume, causing unforeseen issues that are addressed as a negative sensitivity 

issue as demonstrated in [105]. It compared the outcomes obtained by bipolar and tetrapolar 

bioimpedance devices in order to explore this issue on the bioimpedance measurements of the 

upper and lower limbs.  

[106] suggested that when selecting a material for an implanted electrode, the following five 

factors must be taken into account: (i) Radiographic visibility, (ii) Tissue Response, (iii) 

Allergy Response, (iv) Electrode-Tissue Impedance, and (v) Tissue Response. In [107], 

authors demonstrated that Electrode Polarisation Impedance (EPI), which is generally shown 

as a distinct dispersion, can be distinguished from measured tissue impedance provided that 

the characteristic frequencies of the tissue and EPI are not too near to one another. In a clinical 

context, it is crucial to continually and non-invasively monitor the heart pumping performance 

as discussed in [108]. In order to evaluate the changes in stroke volume, the study investigated 

a regional impedance plethysmography approach.  
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The current driver, which can work across a wide range of impedance and frequency, is a 

crucial element in bioimpedance studies as elaborated in [113]. High output impedance, little 

phase delay, and little harmonic distortion are crucial characteristics for current drivers. Based 

on whether they are open loop or closed loop designs, the analogue current drivers are divided 

into two types in this study. Historically, only low frequencies, typically below 100 kHz, have 

been employed to evaluate electrical bioimpedance for medical diagnostic reasons [114]. 

However, this research only looked at the resistive portion of the impedance; neglected the 

reactive portion treating it as highly insignificant at low frequencies. The output current from 

a source must be practically continuous across the desired frequency range and irrespective of 

the load at the output. Over the years, a number of designs have been put forth, however their 

performance all significantly declined at frequencies below 1 MHz [116] modified impedance 

cardiography, for the purpose of measuring cardiac output during stress testing.   

Impedance Plethysmography (IPG) is a straightforward, inexpensive, and non-invasive 

method for evaluating the flow of blood throughout the body's core and periphery [118]. [119] 

provided the better understand of the morphology, physiology, and pathology of biological 

tissues by conducting an impedance study over a broad frequency range, since the impedance 

responses of various tissue characteristics change with the frequencies of the applied signal. 

Electrical Impedance Spectroscopy (EIS), Impedance Plethysmography (IPG), Impedance 

Cardiography (ICG), and Electrical Impedance Tomography (EIT) are a few of the impedance-

based non-invasive tissue characterization techniques that have been proposed over the past 

few decades.  

[120] Implemented the monitoring techniques for real-time, non-invasive, non-destructive 

evaluation of the viability and properties of the cell cultures. A non-invasive, label-free, and 

real-time approach for monitoring tissue engineered structures is provided by the 

bioimpedance measuring technique, which capitalises on measurements of the electrical 

characteristics of living tissues.  
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2.6 RESEARCH GAPS  

● There is utter lack of non-invasive method for medical diagnostics, therefore in this 

scenario bio-impedance based low-cost method can be of immense help for medical 

diagnosis. Although the bioimpedance measurement is not a brand-new method for 

biomedical diagnosis, research is currently being done to turn this non-invasive method 

into a norm for a particular disease's diagnosis.  

● For proper prognosis, a significant quantity of data must be gathered for each disease, 

for each environmental society, and analysis must be performed to link the disease to 

the signal captured. In order to achieve this goal, we designed and developed a low-

cost apparatus that accurately records the bioimpedance signal using conventional 

analogue signal processing blocks. 

 

2.7 OVERALL RESEARCH OBJECTIVES 

This research is focussed on development of accurate and reliable analysis of ECG signal and 

its appropriate denoising.  Moreover, a serious attempt has been made to design and develop a 

state of art, low-cost bioimpedance measuring instrument. Overall, following objectives have 

been considered for analysis and investigation in the present study. 

RESEARCH OBJECTIVE-1  

⮚ The main research objective of ECG analysis using Higher Order Cumulants is to 

increase the precision with which ECG waveform classification is performed since it 

offers a thorough assessment of non-linearity and produces superior outcomes in terms 

of time complexity. Additionally, in contrast to the other techniques previously 

employed in this study domain, it offers a quality analysis and detection tool. 

RESEARCH OBJECTIVE-2  

⮚ It's always crucial to clean up or denoise the ECG signal so that the patient's cardiac 

activity is not misunderstood. Here, it's carried out utilizing: 

ANN and CEEMD 

GP-F Improved fuzzy-AEEMD 

RESEARCH OBJECTIVE-3  

⮚ In this work, a reliable and affordable bioelectrical impedance measurement device was 

designed, developed and evaluated. It is primarily built on the low-cost component-

level approach to make it simple for researchers and investigators in the specific 

domain to utilise.  
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ECG SIGNAL ANALYSIS USING HIGHER ORDER CUMULANTS  

 

3.1 INTRODUCTION 

In general, ECG provides indicative information for most of the cardiac ailments such as heart 

attack, angina, myocardial infarction, cirrhosis, or sudden cardiac arrest etc. The doctors 

especially cardiologist uses ECG to acquire first-hand knowledge about the well-being of 

human heart. However, higher level of radio diagnostic tests such as TMT (Tread-Mill Test) 

Echocardiography etc. are required to establish a particular type of heart problem so as to carry 

out subsequent cardiac treatment and proper medicine management. Though, an early diagnosis 

through ECG allows to select the appropriate cardiovascular medicine management for the time 

being, which can prove effective and timely relief to heart patients. The domain of 

electrocardiogram analysis has been explored by many researchers previously as a part of the 

electrocardiogram based symptomatic treatment and classification. These studies were 

conducted using both experimental and non-experimental measurements.  

The main purpose of ECG analysis is to improve the accuracy of ECG waveform classification. 

With the aid of appropriate analysis methods, the ECG classification can be more accurate and 

quicker during the study. Therefore, evaluation of previous ECG analysis algorithms is a 

significant aspect; however, it still needs in-depth research as on date. According to an analysis 

by the PubMed Central Journal Report 2021 by Population Studies Center, heart disease is the 

foremost cause of death in both urbanized and developing countries. Therefore, ECG-based 

cardiac signal acquisition and classification is always quite effective in early diagnosis and 

treatment of heart ailments. Thereafter, in addition to this, ECG can also be used effectively for 

other non-medical applications such as biometrics, person identification etc., but in such cases 

large amount of ECG data is required to be processed and classified to obtain desired results. 

This process is quite complicated, tedious and time consuming.  

The appropriate analysis of the ECG signals using suitable means is of utmost importance, 

before any diagnostics. Therefore, to fulfill this requirement the higher order cumulants are an 

effective mathematical tool for the analysis of nonlinear and non-stationary ECG signals. When  
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studying non-linear data, the motivation for utilizing cumulants is to attenuate Gaussian noise 

processes with uncertain spectral properties. Till recently higher order cumulants haven’t been 

used much in the field of biomedicine, especially for ECG waveform analysis, accordingly this 

classification method can also be used effectively and efficiently for ECG analysis and 

classification with appropriate level of accuracy.   

The proposed method classifies dataset of ECG signals based upon higher order statistics i.e., 

using cumulants. This method is a comprehensive measure of non-linearity and gives better 

results in terms of time complexity. It provides a quality detection technique in comparison to 

the other methods used earlier in this research domain. Few of these methods are Principal 

Component Analysis (PCA), Hermitian function, Hidden Markov Tree model etc. The 

proposed method also compares this higher order statistics classification obtained using 

different classifiers such as SVM, Fuzzy-2 and DSNN to find the best classifier. 

3.2 THEORETICAL BACKGROUND 

3.2.1 CUMULANTS 

The cumulants  of a probability distribution are a set of values that give an alternative to the 

distribution's moments in probability theory and statistics. The cumulants determine the 

moments in the same way that the moments do. Any two probability distributions with identical 

moments will have identical cumulants, and vice versa. The first cumulant is the mean, the 

second cumulant is the variance, and the third cumulant is the same as the third central moment. 

Fourth and higher-order cumulants, on the other hand, are not equivalent to central moments. 

In some circumstances, theoretical solutions based on cumulants are easier to understand than 

solutions based on moments. The nth-order cumulant of the sum of two or more random 

variables is equal to the sum of their nth-order cumulants when they are statistically 

independent. A normal distribution's third and higher-order cumulants are also zero, and it is 

the only distribution that has this property. It is feasible to define joint cumulants in the same 

way that joint moments are used for collections of random variables. 

In measurement hypothesis and applied math, the cumulants  is the sum of the values that 

change according to the moment of distribution. The cumulants of a random variable X are 

calculated using the cumulant-generating function , which is written as  
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               (3.1) 

Here  represents statistical expectation.  
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The cumulants are generated from a power series expansion of the cumulant generating 

function:  

                                                  (3.2) 

                 = 𝑄1
𝑡

1!
+ 𝑄2

𝑡2

2!
+ 𝑄3

𝑡3

3!
 +  ….      (3.3) 

                             = 𝜇𝑡 + 𝜎2 𝑡2

2
                          (3.4)  

 

This expansion is a Maclaurin series, to get the nth cumulant, differentiate this extension n times 

and calculate the result at t = 0 as given below:  

                               (3.5) 

 

The two-stage statistical analysis, such as autocorrelation, uses random data as a model, but 

suppresses phase information, thus allowing only low-level signal analysis. To evaluate low 

phase signals, such as ECG signals, a high-phase spectrum is required. Therefore, this high-

quality spectrum can be defined in terms of moments and cumulants. In general, the relationship 

between the first few moments and cumulants can be easily obtained by extracting coefficients 

from the equations as follows:  

                                               𝑄1 =  𝜇1                                                                     (3.6) 

                                    𝑄2 =  𝜇2 −  𝜇1
2                                                          (3.7) 

                                              𝑄3 =  𝜇3 −  3𝜇2 𝜇1  +  2𝜇1
3                                  (3.8) 

          𝑄4 =  𝜇4 −  4𝜇3 𝜇1 − 3𝜇2
2 + 12𝜇2𝜇1

2  − 6𝜇1
4           (3.9) 

or conversely, 

     𝜇2 =  𝑄2 + 𝑄1
2                              (3.10) 

𝜇3 =  𝑄3 + 3𝑄2 𝑄1 + 𝑄1
3       (3.11) 

  𝜇4 =  𝑄4 + 4𝑄3 𝑄1 + 3𝑄2
2 + 6𝑄2𝑄1

2  + 𝑄1
4     (3.12) 

 

where,  
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𝑄1 =  𝜇1  is the mean of some random variable X and Q2 is the variance or second central 

moment. However, higher  order  cumulants  are not  the  same  as moments about the mean. If 

x(n), n = 0, ±1, ±2, ±3, ... is a real stationary discrete-time signal and its moments up to order p 

exist, then: 

pp(τ1, τ2,…,τp-1) = E[x(n).x(n+τ1)…x(n+τp-1)]       (3.13)                                      
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Here, E[.] signifies statistical expectation, which reflects the stationary signal's pth order 

moment function, which is exclusively dependent on time differences τ1, τ2, …, τp-1. Τi = 0, ±1, 

±2, ... for all ‘i’. The first order cumulant, which yields the distribution's mean value, may now 

be defined as: 

   Q1 = p1 = E[x(n)]                              (3.14) 

where p1 is the first order moment of the first order cumulant of a real stationary discrete-time 

signal. The equation for the second order cumulant is: 

Q2(τ) = p2(τ) – p1
2                                (3.15) 

 

p2(τ) stands for second order moment, also known as autocorrelation, while Q2(τ) stands for 

second order cumulant, also known as variance. Then there's the third order cumulant, which is 

denoted by  

  Q3(τ1, τ2) = p3(τ1, τ2)–p1[p2(τ1) +p2(τ2)–p2(τ1-τ2) +2p1
3     (3.16) 

 

where p3(τ1, τ2) is the third order moment. The third-order cumulants are identically zero when 

the input signal has a symmetrical probability density function. Bernoulli-Gaussian random 

variables and signals with Laplace distribution are examples of such situations. In such cases, 

it is vital to make full use of the fourth order cumulant's non-Gaussian features. The equation 

for the fourth order cumulant is: 

Q4(τ1, τ2, τ3) = p4(τ1, τ2, τ3) – p2(τ1). p2(τ3 - τ2) – p2(τ2). p2(τ3 - τ1) – p2(τ3). p2(τ2 – τ1) – p1[p3(τ2 

– τ1, τ3 - τ2) + p3(τ2, τ3) +p3(τ2, τ4) +p3(τ1, τ2)] – (p1)
2[p2(τ1) + p2(τ2) + p2(τ3) + p2(τ3 - τ1) + 

p2(τ3-τ2) +p2(τ2–τ1)]–6(p1)
4                                           (3.17) 

 

where p4(τ1, τ2, τ3) is the fourth order moment. 

The second and third order cumulants are equal to the second and third order moments, 

respectively, if the signal {x(k)} has a zero mean p1 = 0. However, in order to create the fourth-

order cumulants, we need to know the fourth-order and second-order moments in the equation 

provided below: 

Q4(τ1, τ2, τ3) = p4(τ1, τ2, τ3) – p2(τ1). p2(τ3 - τ2) – p2(τ2). p2(τ3 - τ1) – p2(τ3). p2(τ2 – τ1)
      (3.18)                                    
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In reality, dealing with cumulants rather than moments in the case of non-stationary signals is 

more usual and preferred due to the second characteristic function's distinctive linear quality. 

As a result, higher order spectra are commonly characterised as their (n-1) dimensional Fourier 

transformations in terms of nth-order cumulants. 

If these cumulants are analysed in the frequency domain, the Fourier transform of these 

cumulants  may  be  produced. The  third  order  cumulant's  Fourier  transform  is  written  as 

Chapter 3: ECG Signal Analysis Using Higher Order Cumulants 

β (ω1, ω2) = X(ω1) X(ω2) X
*(ω1 + ω2) 

= ∑∞
𝑛2=−∞ ∑∞

𝑛1=−∞ (𝑄3(𝜏1, 𝜏2).𝑒𝑥𝑝 𝑒𝑥𝑝 ( − 𝑗2𝜋(𝜔1𝑛1 +

𝜔2𝑛2) ∑∞
𝑛2=−∞ ∑∞

𝑛1=−∞ (𝑄3(𝜏1, 𝜏2).𝑒𝑥𝑝 𝑒𝑥𝑝 ( −         𝑗2𝜋(𝜔1𝑛1 + 𝜔2𝑛2)  (3.19) 

where β (ω1, ω2) is the Bi-spectrum of x(n), 𝑄3(𝜏1, 𝜏2) is the third order cumulant and X(ω) 

is the Fourier transform of x(n). Similarly, the fourth order cumulant's Fourier transform is tri-

spectrum, and it is written as  

Г (ω1, ω2, ω3) = X(ω1) X(ω2) X(ω3) X
*(ω1 + ω2 + ω3) 

                    = ∑∞
𝑛3=−∞ ∑∞

𝑛2=−∞ ∑∞
𝑛1=−∞ (𝑄4(𝜏1, 𝜏2, 𝜏3) ∗

𝑒𝑥𝑝 𝑒𝑥𝑝 ( −                        𝑗2𝜋(𝜔1𝑛1 + 𝜔2𝑛2 + 𝜔3𝑛3) =

∑∞
𝑛3=−∞ ∑∞

𝑛2=−∞ ∑∞
𝑛1=−∞ (𝑄

4
(𝜏1, 𝜏2, 𝜏3) ∗𝑒𝑥𝑝 𝑒𝑥𝑝 ( −  𝑗2𝜋(𝜔1𝑛1 + 𝜔2𝑛2 + 𝜔3𝑛3)        

(3.20) 

where Г (ω1, ω2, ω3) is the Tri-spectrum of x(n), 𝑄4(𝜏1, 𝜏2, 𝜏3) is the fourth order cumulant.  

The cumulants are more preferable than moments because of having a number of additional 

advantages over moments such as: 

a) If 𝑥𝑖, 𝑖=1, 2…., N are random variables and α𝑖, 𝑖= 1, 2…., N are constants, then 𝑐um 

(α𝑖𝑥𝑖, αN𝑥N) = ∏𝑁
𝑖=1 𝛼𝑖 cum (𝑥1…. 𝑥N). 

b) If a subset of N random variables {𝑥𝑖} is independent, then 𝑐um (𝑥𝑖…, 𝑥N) = 0. 

c) Cumulants are additive in nature, i.e., 𝑐um (𝑥0 + 𝑦0, 𝑧1…, 𝑧N) = 𝑐um (𝑥0, 𝑧1…, 𝑧N) + 

𝑐um (𝑦0, 𝑧1…, 𝑧N). 

d) If the random variables {y𝑖} are independent of the random variables {x𝑖}, 𝑖= 1, 2……, 

N then 𝑐um (y1 + x1…, yN + xN) = 𝑐um (y1…, yN) + 𝑐um (x1…, xN). 

e) If μ is a constant then 𝑐um (μ + 𝑥1, 𝑥2……, 𝑥N) = 𝑐um (𝑥1, 𝑥2……, 𝑥N). 

Because the third-order cumulant of a symmetric distribution equals zero, we must utilise 

fourth-order cumulants in such circumstances. Because certain processes have distributions 

with extremely small third-order cumulants and considerably larger fourth-order cumulants, we 

would employ the fourth-order cumulant or the tri-spectrum in these cases as well. In the 
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categorization of ECG signals, cumulants have never been employed. Third order cumulants 

were employed in [82] to obtain symmetry in the signal, which is then used for AR modelling, 

which aids in the enhancement of the ECG signal. This property of symmetry of every signal, 

may be utilised to classify it. The [83] uses this aspect of non-stationary signals to distinguish 

normal and abnormal non-stationary beats. 

Results from various researches shows that the third and fourth order cumulants are insensitive 

towards noise and hence can be directly applied on the signals. There is no requirement of pre-

processing when using the higher order cumulants. As a result, 3rd and 4th order cumulants 

have been employed in this suggested technique since 3rd order cumulant is concerned with 

skewness  and  4th  order  cumulant  is  concerned  with kurtosis. Skewness is a measure of any  
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distribution's asymmetry around its mean. Positive skew means the left side's tail is shorter or 

thicker than the right sides. Skewness does not follow the expected rule when one tail is short 

and the other is thick. A zero value, for example, indicates that the tails on both sides of the 

mean are balanced, as in a symmetric distribution. 

Between the four types of ECG datasets utilised, there is some asymmetry in the waveforms. 

The peaked-ness of any ECG waveform is represented by the breadth of its peaks, and the 

kurtosis of a signal is a measure of the distribution's peaked-ness. Higher kurtosis indicates that 

more of the variance is due to rare severe deviations, and their Fourier transformations yield 

Bi-spectrum and Tri-spectrum for the signals, respectively, which can be employed as signal 

characteristics. As a result, these are used in the proposed method's multiple classifiers to 

improve accuracy and classification outcomes. 

3.2.2 CLASSIFIERS 

For classifying the various ECG signals, three classifiers are used which are as follows: 

3.2.2.1.  Support Vector Machine [SVM]  

Because of its multi-classification capabilities in discriminating distinct classes, the SVM 

(Support Vector Machine) classifier is used for ECG signal categorization. The margin between 

the support vectors should be maximised in SVM, hence the hyperplane parameters f, f0 should 

be minimised so that: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝐽(𝑓, 𝑓0) ≡
1

2
‖𝑓‖

2
                     (3.21) 

subject to 

𝑧𝑖 . (𝑓𝑇𝑥 + 𝑓0) ≥ 1, i = 1, 2, . . ., N              (3.22) 

 

The margin is obviously maximised when the norm is minimised. This is a quadratic (nonlinear) 
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optimization problem with a set of linear inequality constraints. Hence, the SVM decision 

function is expressed as equations 

 𝑓 = ∑𝑁
𝑖=1 𝑐𝑖 . 𝑧𝑖 . 𝑥𝑖                        (3.23) 

 

     ∑𝑁
𝑖=1 𝑐𝑖. 𝑧𝑖 = 0                       (3.24) 

 

To obtain high performance, [84] employed an SVM classifier with kernel filter. They refined 

the SVM classifier design by determining the optimal value of the parameters that alter the 

discriminant function and determining the best subset of features to feed the classifier. They'd 

utilised the identical method for multiclass categorization as well. SVM doesn’t provide good 

results in classifying different ECG signals and hence, another classifier is used.  
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SVM and artificial neural networks are also used to categorise ECGs (ANN). In this situation, 

also train the network with some training data. A suitable training approach produces an ANN 

that can provide a non-linear mapping function capable of reflecting associations between given 

ECG features and heart illnesses. A well-designed ANN will exhibit good generalisation when 

an accurate input-output mapping is created, even when the test input is slightly different from 

the data used to train the network. 

3.2.2.2.   Fuzzy-2  

SVM and ANN failed to generate the necessary results, as stated in the results section, thus the 

classification is done using the Fuzzy-2 classifier. It is a rule-based system that successfully 

employs several levels of uncertainty in a variety of engineering domains. Four components 

make up this classifier: a) a fuzzifier that creates fuzzy-2 sets from input and output by using a 

Membership Function (MF); b) 'IF... Then' rules to link input and output that have been 

fuzzified; c) an inference engine that combines the rules depending on the firing level; and d) 

two phases of defuzzification: After type-reduction to create a fuzzy-1 set from a fuzzy-2 set, 

defuzzification is used to provide output that is clear. 

The Fuzzy-2 flowchart is shown in the fig.3.1 
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Fig.3.1 Fuzzy-2 flowchart 

The definition of fuzzy-2 sets Ã is given by 

Ã = {((x, u), μÃ (x, u)) |∀ x ∈X, ∀ u ∈ Jx  [0,1]}    (3.25) 

            μÃ                       (3.26) 
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where 0 ≤ μÃ (x, u) ≤ 1, 0 ≤ fx′(u) ≤ 1, Jx is a vertical slice of fuzzy-2 membership function μÃ 

(x,u) and fx′(u) is the amplitude of a secondary MF that model the uncertainty of exact          

Fuzzy-2 system in this case. By modifying the membership function settings, Fuzzy-2 is taught 

to decrease the error between the estimated output and the real output using ECG data of input 

and output variables. Later the system is used to predict outputs depending on the inputs.    

Fuzzy-2 is characterised by a concept known as Footprints of Uncertainty (FOU) as shown in 

fig.3.2 

FOU(Ã)= {(x, u): u ∈ Jx  [0,1]}                  (3.27) 

Upper membership function is: 

Ã(x) =                           (3.28) 

Lower membership function is: 

Ã(x) =                          (3.29) 

 

We can cover the input/output domains with fewer fuzzy sets since FOU may express more 

uncertainty. This makes it easy to build the rule base using expert knowledge and improves the 

system's robustness. This classifier also is unable to provide efficient results in ECG signals 
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classification, results are even worse compared to ANN. So, in order to obtain better and 

efficient results, deep structured neural network is used. 

 

Fig.3.2 Fuzzy-2 membership function 

3.2.2.3.   Deep Structured Neural Network [DSNN]  

The Deep Structured Neural Network, or DSNN, is built on the deep learning idea. In deep 

learning, a significant quantity of unlabelled data is used to learn features through unsupervised 

pre-training a multi-layer neural network and then supervised fine-tuning to slightly change 

learnt features for improved prediction using labelled data. 

The suggested method's results are  applicable to  deep  networks with more hidden layers. The  

Chapter 3: ECG Signal Analysis Using Higher Order Cumulants 

neuron values at the M-neuron input layer are denoted by the letter 'x.' The pth element of SH 

is the vector of hidden neuron sigmoidal activations. 

𝑆𝑝
𝐻 =

1

1+𝑒𝑥𝑝𝑒𝑥𝑝 ( − ∑𝑀
𝑚=1 (𝑟𝑝𝑚.𝑥𝑚)

                     (3.30) 

where rpm is the weight of the link that connects the mth visible and pth hidden neuron. 𝑆𝑛
𝑑 is the 

nth output neuron’s value with activation.  

𝑆𝑛
𝑑 =

𝑒𝑥𝑝𝑒𝑥𝑝 ( ∑𝑃
𝑝=1 (𝜈𝑛𝑝.𝑠𝑝ℎ)

∑𝑁
𝑛𝑡=1 𝑒𝑥𝑝𝑒𝑥𝑝 ( ∑𝑃

𝑝=1 (𝜈𝑛1𝑝.𝑠𝑝ℎ)
                  (3.31)  

= p (g = n | x, Θ) 

 

where g denotes the N-valued target variable and t is its 1-in-N encoding, vnp is the weight of 

the link that connects the pth hidden and nth target neuron. Sn
t depends on input x and parameter 

matrices V and R. 

After modelling a network, a loss function must be developed in order to evaluate and improve 

its outcomes, because the purpose of training is to decrease the error of this function, which is 

dependent on weights and bias. Backpropagation uses gradient ascent to update network 



 

50 
 

parameters Θ and maximise the log likelihood function log p (g|x, Θ) (=Г). The partial 

derivative of this log-likelihood function with respect to vnj is 

𝜕𝛤

𝜕𝜈𝑛𝑝
= (𝑑𝑛 − 𝑆𝑛

𝑑). 𝑆𝑝
ℎ           (3.32)       

and with respect to rpm is 

𝜕𝛤

𝜕𝑟𝑝𝑚
= 𝑆𝑝

ℎ. (1 − 𝑆𝑝
ℎ)𝑥𝑚 ∗ ∑𝑁

𝑛=1 (𝑑𝑛 − 𝑆𝑛𝑡). 𝜈𝑛𝑝  (3.33) 

As a result, the partial derivatives of the log-likelihood function that execute gradient ascent 

will be obtained. For regression, a linear signal function frequently replaces the Gibbs function 

at the output layer: 

       𝑆𝑛
𝑡 = ∑𝑃

𝑝=1 (𝜈𝑛𝑝. 𝑆𝑝ℎ)          (3.34) 

As a result, the partial derivatives of the log-likelihood function that execute gradient ascent 

will be obtained. For regression, a linear signal function frequently replaces the Gibbs function 

at the output layer: 

𝐸 =
1

2
∑𝑁

𝑛=1 (𝑑𝑛 − 𝑆𝑛
𝑑)2   (3.35) 

3.3 PROPOSED METHODOLOGY 

The proposed method is shown in the block diagram in fig.3.3. It is briefly described as follows:  

a) First of all, third and fourth order cumulants were obtained for ECG datasets depicting 

various conditions of heart namely, Apnea, Normal, Arrhythmia and Tachyarrhythmia and then  
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Third and fourth order cumulants are subjected to a Fourier transform to produce bi-spectrum 

and tri-spectrum, respectively;  

b) these cumulants are then used by various classifiers to categorize these ECG datasets; and  

c) results from all classifiers were compared in order to achieve the best classification of ECG 

waveforms by comparing various classifiers. 

3.3.1    BLOCK DIAGRAM 
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Fig.3.3 Block diagram of the proposed method 

3.3.2       DATASET USED  

Dataset used was downloaded from the MIT-BIH arrhythmia database of Physio bank ATM 

[85]. In this, Dataset of 20 subjects for each type of ECG depicting i.e., Apnea, Normal, 

Arrhythmia and Tachyarrhythmia was taken as per details shown in table 3.1:  
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Table 3.1: Used dataset description 
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The general waveforms of these four different types of signals are shown in fig.3.4. These ECG 

waveforms differ from one another in several ways, as is readily shown in fig.3.4. These 

noticeable differences between them may be caused by the varying heart rates or cardiac states 

of various persons under various settings, like resting, exercising, effort, tension, being 

unconscious, or having a sluggish heartbeat, among others.

 

Fig.3.4 ECG signal waveforms 

The various waveforms shown in the fig.3.4 depicts different cardiac conditions such as:  

1] Apnea talks about the sleepy situation in the subject in which the subjects have an 

unconscious state of mind under resting situation;  
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2] A normal person typically has heartbeats between 60 and 100 beats per second and has a 

conventional ECG waveform with well-defined P-QRS-T peaks, which indicates a normal heart 

rate; 

3] Arrhythmia ECG indicates slow heart rate less than 60 beats per second which is also known 

as bradycardia and whereas  
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4] Tachyarrhythmia also known as tachycardia shows the cases with fast heart rate of more than 

100 beats per second.  

3.3.3 TAKING THE ECG DATASETS  

Dataset for ECG detection is loaded from the MIT-BIH arrhythmia database of Physio bank 

ATM to MATLAB workspace. The dataset used is further divided into training and testing data 

sets as as per details shown in table 3.2: 

Table 3.2: Description of dataset used for classification 

ECG Signals 
Trainin

g 

Testin

g 
Total 

Apnoea 12 8 20 

Normal 12 8 20 

Arrhythmia 12 8 20 

Tachyarrhythmi

a 
12 8 20 

 

3.3.4 CALCULATING THE CUMULANTS FOR THE ECG SIGNALS 

Then, for each dataset, MATLAB calculates third and fourth order cumulants with their 

associated Fourier transformations. The skewness and kurtosis of the ECG signals are discussed 

in these computed cumulants. Their respective Fourier transformations result in bi- and tri-

spectrums. As an input, these estimated cumulants will be used to develop and evaluate the 

classifiers.  

3.3.5 CLASSIFICATION USING SVM, FUZZY-2 AND DSNN CLASSIFIERS 

The classifier uses the higher order statistics of the ECG signals produced at the second step to 

identify the associated heart conditions. For reliable ECG identification and classification, this 

feature set comprises of higher order statistics that should effectively characterise the 

fluctuations in the input signals. To categorise the ECG signals in their appropriate class, the 

derived features will be fed into classifiers like SVM, Fuzzy-2, and DSNN classifiers as training 

and testing data. 

3.4 RESULTS 

Here, 12 datasets are selected randomly from each class, and there after total 48 datasets are 

used for training of classifiers. However, overall total number of datasets in the database was 

80.  Description  of  the  dataset  used  is  shown  in  the  table 3.1 and  table 3.2.  Higher order  

Chapter 3: ECG Signal Analysis Using Higher Order Cumulants 

statistical parameters are used with this dataset to extract features. These characteristics include 

third- and fourth-order cumulants, which are analysed as bi- and tri-spectrums in the frequency 

domain, respectively. The third order cumulant discusses the distribution's asymmetry, and the 

fourth order cumulant provides information on how peaked that distribution is, as was 
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previously addressed in relation to these characteristics. The physiological signals, in this 

example the ECG, may be statistically and quantitatively analysed by combining these 

components.

 

Fig.3.5 Third order cumulant obtained for dataset used 

The datasets of the four selected signals are provided in fig.3.4 along with the third and fourth 

order cumulants, respectively. Additionally, each signal's plot of higher order statistics exhibits 

distinct fluctuation, as seen in figs. 3.5, 3.6, 3.7, and 3.8. The third order cumulant of the ECG 

signals is shown in Fig.3.5, and its bi-spectral Fourier transform is shown in Fig.3.6. The ECG 

signals employed in the proposed technique can be seen in the picture to have some variances  
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between them, which are clearly discernible by computing their third order cumulants in the 

time and frequency domain (i.e., bi-spectrum). 
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The average values of these cumulants, which are -0.3877 for apnea, 0.0032 for a healthy 

patient, 0.0007 for an arrhythmia, and 0.0159 for a tachyarrhythmia, may be used to compare 

them. These discrepancies in the third order cumulants of four different types of ECG signals 

are brought on by differences in the symmetry of those ECG signals. The third order cumulant 

waveform of apnea has one peak with a minimum value and one with a maximum value. This 

is because of the ECG waveform's asymmetry. The P-QRS-T waveform of a normal ECG is 

said to be the most symmetrical one since it has the fewest peaks achieved and offers a 

symmetric third order cumulant. The greatest peak of an arrhythmia wave provides the 

impression that it has the least amount of symmetry. Furthermore, tachyarrhythmia has the 

lowest amplitude of the third order cumulant since it has the greatest heart rate of all of them.
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Fig.3.6 Third order cumulant for dataset used in frequency domain (Bi-spectrum) 

 

These third order cumulants are depicted as their contour in the frequency domains of fig.3.6. 

We can see the varied ECG variations from the third order cumulant's asymmetry, which is also 

clearly evident in the frequency domain. This is because the four different types of ECG signals 

used to make these contours have different characteristics. A third order cumulant represents 

the frequency domain bi-spectrum of a signal. These values are averages, and signals whose 

cumulants with values similar to these values assist classifiers in categorising signals into the 

proper classes. 

Figure 3.7 shows an ECG signal's fourth order cumulant, while Figure 3.8 shows its tri-

spectrum Fourier transform. The figure demonstrates how the peaked-ness changes in the ECG 

signals used in the proposed approach cause fluctuations that can be seen in their fourth order 

cumulants in both the time and frequency domains (using Fourier transform of fourth order 

cumulant i.e., tri-spectrum). These may be compared using the average values, which are 

11.9559 for apnoea, 2.3172 for a healthy patient, 3.1624 for an arrhythmia, and 2.9038 for a 

tachyarrhythmia. Like the third order cumulant, where symmetry in the signal was noticed, the 

kurtosis of these four various forms of ECGs is being compared in this instance. They estimated 

their fourth order cumulants, which are shown in Fig. 3.7, using the ECG signals shown in 

Fig.3.4. This graphic makes it obvious that each ECG has a different set of fourth-order 

cumulants. This variety is brought about by the fact that every topic has a distinctive peak. 
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Fig.3.7 Fourth order cumulant obtained for dataset used 
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Fig.3.8 Fourth order cumulant for dataset used in frequency domain (Tri-spectrum) 
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Fourth order cumulants are now shown in Fig. 3.8 in the form of their corresponding contours, 

precisely as the bi-spectrum for the third order cumulant, in the frequency domains. The fourth 

order cumulant's peakedness, which is readily apparent in its frequency domain as well, 

provides us with a clearer understanding of the many ECGs employed in this study since the 

various contours are the result of the usage of four separate ECG signals. The signal's tri-

spectrum, which is a fourth order cumulant in its frequency domain, is referred to. These values 

of the third and fourth order cumulants are employed in the classifiers used in this study, namely 

SVM, FUZZY-2, and DSNN, to categorise these ECGs into their respective classes. These 

values are also the average values. 

The higher order statistical parameters collected are then employed in the classifiers to classify 

these ECG signals. First, SVM is utilized for classification. A total of 80 subjects' datasets are 

used in this classifier. The SVM is trained on 48 of these subjects, and the remaining are tested 

on the trained classifier. The SVM classifier's findings are provided in table 3.3, which also 

includes a confusion matrix for the dataset that was evaluated. 

Table 3.3: SVM Confusion Matrix 

Targets 
 

AP 

 

AR 

 

NR 

 

TC 

 

Accuracy (%) 
Outputs 

 

AP 7/8 0/8 0/8 0/8 87.5 

AR 0/8 7/8 0/8 1/8 87.5 

NR 1/8 0/8 8/8 1/8 100 

TC 0/8 1/8 0/8 6/8 75 
 

The initials AP, AR, NR, and TC, respectively, in this table stand in for apnoea, arrhythmia, 

normal, and tachyarrhythmia. Table 3.3 demonstrates that, with an average accuracy of just 

87.5 percent, this classifier does not provide us a satisfactory result. In order to improve the 

results, the next classifier, ANN, is used. The neural network seen in fig. 3.9, which employs 

48 subject cumulants for training and 32 for testing, is created by applying it to the dataset. The 

categorization of these ECG datasets by an Artificial Neural Network (ANN)is shown in Fig. 

3.10.

 

Fig.3.9 Neural Network Scheme for Proposed Method  
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The training, validation, and testing data for the ANN are shown in the charts. The dashed line 

in each figure represents the ideal outcome, when outputs equal aims. The solid line displays 

the outputs-to-objectives linear regression line that fits outputs and goals the best. The 

relationship between the outputs and the objectives is represented by the R value. If R = 1, then 

there is a perfect linear relationship between the outputs and the targets. If R is close to 0, there 

is no linear relationship between the outputs and the objectives. In this instance, the training 

data show a respectable match. The results of the test and validation may also be observed to 

have R values over 0.9. The regression figure shows that throughout training, the value of R 

equals 0.989. When the testing dataset was applied to this, R=0.966 was obtained. A excellent 

validation value of 0.936 is also provided. Table 3.4 displays the confusion matrix for these 

ECG data that were classified using an ANN classifier. This table shows that the average 

accuracy is 96.6 percent, which is quite good and produces far better outcomes than SVM, 

which only achieves an accuracy of 87.5 percent. The cumulants obtained from these ECG 

datasets are then subjected to Fuzzy-2. 

 

Fig.3.10 Regression plots for ANN 
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Table 3.4: ANN Confusion Matrix 

Targets 
 

AP 

 

AR 

 

NR 

 

TC 

 

Accuracy (%) 
Outputs 

 

AP 8/8 0/8 0/8 0/8 100 

AR 0/8 8/8 0/8 0/8 100 

NR 0/8 0/8 8/8 1/8 100 

TC 0/8 0/8 0/8 7/8 87.5 
 

In the table 3.5 confusion matrix for the fuzzy-2 classifier is shown and it is clear from the 

matrix that results obtained are not satisfactory and even worse than the ANN and should be 

checked further using another classifier to have an improvement in the accuracy. Hence, for the 

same, Deep Structured Neural Network (DSNN) is used as the next classifier in which, when 

this same dataset is applied, results obtained are much better than the earlier methods used. 

Table 3.5: FUZZY-2 Confusion Matrix 

Targets  

AP 
 

AR 

 

NR 

 

TC 

 

Accuracy (%) 
Outputs 

 

AP 7/8 0/8 0/8 0/8 87.5 

AR 0/8 7/8 0/8 0/8 87.5 

NR 1/8 0/8 8/8 1/8 100 

TC 0/8 1/8 0/8 7/8 87.5 

 

Deep Structured Neural Network (DSNN) is used further for the results improvement. Its 

regression plot is shown in the fig.3.11. In this regression plot obtained, it can be seen from the 

plot that training value of R comes out as 0.999 and for the testing plot, it gives R=0.993. It also 

gives a good validation value of 0.999. Now it can be seen from the result that it has given 

better results compared to the SVM, ANN and Fuzzy-2. In this plot of DSNN, about 99.8% 

values of dataset gives accurate results and gives the best classifier among the classifiers used 

during this work. In its table of confusion matrix also i.e., shown in table 3.6, DSNN has given 

the best results. All the test datasets are accurately classified in their respective classes. 

Table 3.6: DSNN Confusion Matrix 

Targets 

AP  AR NR TC 

 

Accuracy 

(%)  

Outputs 

 

AP 8/8 0/8 0/8 0/8 100 

AR 0/8 8/8 0/8 0/8 100 

NR 0/8 0/8 8/8 0/8 100 

TC 0/8 0/8 0/8 8/8 100 
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Fig.3.11 Regression plot for DSNN 

The table 3.7 shows the comparison of all these classifiers used in this proposed method and it 

can be easily perceived from the table that Deep Structured Neural Network (DSNN) classifier 

gives the best results. 

Table 3.7: Comparison of four classifiers 

Classifier Name Accuracy (%) 

SVM 87.5 

FUZZY-2 90.6 

ANN 96.6 

DSNN 99.8 
 

The table 3.8 displays the comparison for the best method, here DSNN is clearly the best 

method  which  is  used in this proposed method. This method provides the best results when it  
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is compared with the earlier methods using some other techniques i.e., other than cumulants 

that have already been used for the ECG classifications,   

Table 3.8: Comparison of proposed method of ECG classification with other methods used 

REFERENCES METHODS USED 
ACCURAC

Y (%) 

Proposed Method DSNN 99.80 

Palaniappan and Krishnan [21] Neural Network 97.60 

Proposed Method ANN 96.60 

Chiu et al. [22] DWT 95.71 

Yao and Wan [23] PCA + Low Match Score (LMS) 91.50 

Proposed Method FUZZY-2 90.6 

Proposed Method SVM 87.5 

Homer et al.  [24] kNN 85.20 

Odinaka et al. [25] Generative Model Classifier 76.90 

 

3.5 SIGNIFICANT FINDINGS 

In this classification of ECG, four classifiers as SVM & ANN, Fuzzy-2 and DSNN were used 

and DSNN is observed to be as the best classifier among these classifiers because of its repeated 

learning and analyzing ability. The results computed from DSNN classifier has the highest 

observed accuracy compared to the rest of the three classifiers and hence, DSNN is the best for 

using it for the ECG signals classification. In this proposed method, cumulants helps us to 

remove many divergences in the other type of ECG datasets. Therefore, the proposed method 

is used to detect this problem and addresses the issue very efficiently and accurately.  

This chapter is based on the following work: 

Rajesh Birok & Rajiv Kapoor “ECG Signal Analysis Using Higher-Order Cumulants” [To  be 

communicated in SCIE/ESCI Journal]  
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CHAPTER 4 

 

 
ECG DENOISING USING ANN AND CEEMD 

 

 
4.1 INTRODUCTION 

 
The electrocardiogram (ECG) is a quasi-periodic signal that measures the electrical activity of 

the heart. Thus, electrocardiogram (ECG) is simply a documentation of the electrical activities 

of the heart. It is used to assess whether a patient has any type of cardiac disorder and provides 

information content mainly in the 0.5-120 Hz range. The P wave, QRS complex, and ST 

segment make up the majority of its morphology; any extra structures in the ECG indicate noise 

or cardiac defects. In general, it is used to identify a number of cardiac faults such as 

arrhythmias, Atrial Fibrillation [AF] etc.  The diagnosis of these disorders is generally made by 

experts who examines the ECG signal for specific morphologies. Due to this, an ECG signal's 

morphology is important, and it must be as noise-free as possible. Quite often the ECG gets 

corrupted by various kinds of artefacts, thus in order to gain correct information from them, 

they must first be denoised.  

However, during acquisition process an ECG signal usually captures a vast range of different 

types of noise artefacts, rendering accurate diagnosis impossible. As a consequence, correct 

diagnosis necessitates a filtration procedure that removes the bulk of constituent noise while 

preserving details about the ECG signal's morphology. Any of the noises that can be present in 

any standard ECG are Power Line Interference (PLI), baseline wander, electrode touch noise, 

motion artefacts, and instrumentation noise etc., [86]. Baseline wander artefact occurs mainly 

as a result of the patient's breathing, making it omnipresent in almost all ECG signals. As it is 

one of the most common types of noise in an ECG, it is recommended for denoising in this 

chapter. This artefact is frequently seen during stress ECGs, especially as the patient's breathing 

rate rises. All of these morphological changes are normal and necessary for diagnosis, but most 

recent denoising procedures tend to filter them out, resulting in information loss [87]. Another 

reason we chose baseline wander for denoising in this study is that it hasn't got as much attention 

in the literature previously, so while there are fairly efficient methods are available for 

denoising PLI and other types of noises, the same cannot be said for baseline wander. 
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This chapter presents a novel approach for the filtering of low frequency artefacts of ECG 

signals by using Complete Ensemble Empirical Mode Decomposition (CEEMD) and Artificial 

Neural Networks [ANN], which removes most of the constituent noise while assuring no loss 

of information in terms of the morphology of the ECG signal. The contribution of the method 

lies in the fact that it combines the advantages of both CEEMD and ANN. The use of CEEMD 

ensures that the Neural Network does not get over fitted. It also significantly helps in building 

better predictors at individual frequency levels. The proposed method is compared with other 

state-of-the-art methods in terms of Mean Square Error (MSE), Signal to Noise Ratio (SNR) 

and Correlation Coefficient. The results show that the proposed method has better performance 

as compared to other state-of-the-art methods for low frequency artefacts removal from EEG. 

4.2 THEORETICAL BACKGROUND 

4.2.1 COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION [CEEMD] 

Any data set can be decomposed using CEEMD into a set of true Intrinsic Mode Functions 

(IMFs). The various IMFs obtained thus far are representations of the signal's various 

frequency components. The following is the procedure how CEEMD breaks down a signal into 

its constituent IMFs.  

● Using EEMD, 𝐾 realizations of the base signal with added White Gaussian noise        

(𝑥(𝑛) + 𝜀 𝑤𝑘 (𝑛)) are achieved to obtain their first modes and thereby to create an 

ensemble of first IMFs by taking average to obtain first true IMF, using the following 

formula      

𝐼𝑀𝐹1[𝑛]̃ =  
1

𝐾
∑𝐾

𝑘=1 𝐼𝑀𝐹1
𝑘(𝑛)                (4.1)  

Where, 𝑥(𝑛) is the base signal (raw ECG signal for the first stage), 𝑤𝑘(𝑛) is White 

Gaussian noise for 𝑘𝑇ℎ realization, 𝐼𝑀𝐹1
𝑘(𝑛) is first IMF of 𝑘𝑇ℎ realization, 𝜀 is weight 

coefficient of added noise and 𝑘 = 1,2,3,4 … … … …K. 

● At the first stage, residue is calculated by 

𝑟1[𝑛] =  𝑥[𝑛] − 𝐼𝑀𝐹1[𝑛]̃                   (4.2) 

• In the second stage of CEEMD, this residue signal is used as the base signal, and an 

ensemble of K residue realizations with white Gaussian noise is produced. The IMFs 

for each variable are first obtained, and then they are averaged to produce the second 

true IMF, which is provided as 

𝐼𝑀𝐹2[𝑛]̃ =  
1

𝐾
∑𝐾

𝑘=1 𝐸1(𝑟1(𝑛) +  𝜀1𝐸1(𝑤𝑘[𝑛]))   (4.3)                                        
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● Similarily using equation (4.2) again, the second residue is calculated and used for third 

true IMF. 

● The above-mentioned steps are continued until further decomposition is no longer 

possible and all the obtained true IMFs are subtracted from base signal to obtain the 

final residue, given as 

   𝑟[𝑛] =  𝑥[𝑛] − (𝐼𝑀𝐹1[𝑛] + 𝐼𝑀𝐹2[𝑛] + … )̃          (4.4) 

 4.2.2 ARTIFICAL NEURAL NETWORK [ANN] 

Artificial Neural Networks (ANN) are a type of informative paradigm [88] that is based on how 

the human brain processes data. A neuron is the most basic component of such a system, and 

the processing power is determined by the number of these components and their 

interconnection. They necessitate initial training data, which must be carefully pre-processed 

to prevent overfitting. As a result, training must be done in such a way that the neural network's 

ability to respond to novel patterns is not harmed. The steps involved in setting up a network 

are 

● Collection of data. 

● Pre-processing of data. 

● Initialization of weights of neural network and learning rate. 

● Division of data set into training, testing and validation. 

● Training of data: The network trains itself in such a way as to minimize a particular 

function such as MSE, the function to be minimized depends on the training rule to be 

used. 

● Testing: A portion of the data set is reserved for testing of the network that has been 

developed. Here the output of the network is compared against a pre-determined output 

and its performance is checked. 

● Cross Validation: This involves testing to ensure that training of the network is not 

leading to a loss in generalization.  
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4. 3 PROPOSED METHODOLOGY  

Flowchart of proposed method is given as Fig.4.1  

 

Fig.4.1 Flowchart of proposed method 

The various steps of proposed method are 

● Apply CEEMD to noisy ECG signal. 

● IMFs are broken down into two groups, those affected by baseline wander and those 

relatively free of it. 

● A neural network is created and trained to filter each baseline affected IMF. 

● The entire network is tested and cross validated. 

● Results are obtained based on three output parameters on different types of noises and 

test subjects 

The CEEMD operation is used to decompose a noisy signal into N true IMFs. These IMFs have 

now been grouped into two categories: (i)  noisy IMFs and (ii) clean IMFs. The Spectral 

Flatness (SF) of each individual IMF is used to calculate the number of noisy IMFs. The  

relationship  between  the  Geometric mean (GM) and the Arithmetic mean (AM) is known as 
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Spectral Flatness (SF). It is defined as the ratio of the power spectrum's geometric mean to its 

arithmetic mean. 

Spectral Flatness (SF) =GM / AM  (4.5) 

Spectral Flatness measure is fuzzified to detect whether the IMFs are noisy or clean. Linguistic 

variable used are low, and high membership functions for Spectral Flatness. 

The rules for spectral flatness are: 

Rule 1: IF SF is in high range, THEN IMF is clean 

Rule 2: IF SF is in low range, THEN IMF is noisy. 

The noisy IMFs are each applied to a different Neural Network separately. The Neural Network 

is more effective at filtration because each of these IMFs performs filtering at the IMF level 

and has a greater periodic nature than the combined complete ECG signal. This also eliminates 

the possibility of overfitting. The Levenberg-Marquardt algorithm [89] is utilized in the 

suggested technique for Network with 10 hidden layers and 2 delays during the training phase. 

The number of layers is determined by a comparison study, and the layer with the lowest 

inaccuracy is selected. The Levenberg-Marquardt algorithm combines the Gauss-Newton 

technique and the steepest descent method. The basic idea behind the algorithm is as follows: 

It uses a combined training method and the steepest descent algorithm when the curve is 

complicated. When the curve can be confidently approximated to be quadratic, it switches to 

the faster Gauss-Newton technique. The Levenberg-Marquardt algorithm is trained in the 

manner described below: With the randomly generated initial weights and evaluate the total 

error (SSE). 

1) Do an update as directed by the following equation to adjust weights 

    𝑤𝑘+1 = 𝑤𝑘 −  (𝐽𝑘
𝑇  𝐽𝑘  + µ 𝐼)−1 𝐽𝑘   𝑒𝑘             (4.6) 

2) With the updated weights, evaluate the total error.  

3) If the current total error is increased as a result of the update, then retract the step (reset 

the weight vector to the previous value), increase combination coefficient μ by a factor 

of 10 or by some other factor and then go to step 2 and try another update. 

4) If the current total error is decreased as a result of the update, then accept the step (keep 

the weight vector as the current one), decrease the combination coefficient μ by a factor 

of 10 or by the same factor as step 4. 

5) Go to step 2 with the new weights until the current total error is smaller than the required 

value. 
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4.4 RESULTS 

The MIT-BIH ST change database [90] is used to receive ECG signals for training and testing. 

This database contains 28 ECG recordings of varying lengths, sampled at 360 Hz, the majority 

of which were captured during exercise stress tests and show transient ST depression. The last 

five records (323 through 327) are ST elevation extracts from long-term ECG recordings. The 

pure ECG signal is augmented with a baseline wander noise estimation derived from the MIT 

BIH noise stress test database [91]. 

          The above-mentioned data sets are then fed into a Levenberg–Marquardt algorithm with 

10 hidden layers and 2 delays, which is used to train a neural network. For training, 70% of the 

total available data set is used. Input data from varying noisy ECG records is used to train the 

networks. When network generalization stops improving, cross validation is used to measure it 

and to stop training. Cross validation is carried out on 15% of the data set. 

         In order to test proposed method, Mean Square Error (𝑀𝑆𝐸), Signal to Noise Ratio 

(𝑆𝑁𝑅) and Correlation Coefficient (𝑅𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 ) are used as testing parameters. 

These parameters are defined as  

Output 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 [𝑀𝑆𝐸]  =  𝛴(𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)
2

/𝑁                 (4.7)                  

Output Signal to Noise Ratio [𝑆𝑁𝑅 𝑖𝑛 𝑑𝐵] = 10 ∗  𝑙𝑜𝑔
𝛴(𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

2

𝛴(𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)
2      (4.8) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 [𝑅𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 ] =  
𝑐𝑜𝑣 (𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)

𝜎𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙    𝜎𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑
        (4.9) 

where, 

 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is pure ECG signal, 

 𝑋𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 is denoised ECG signal,  

𝑐𝑜𝑣 is convolution function, and 

σ is variance. 

For the better denoising performance the smaller value of output MSE and larger value of output 

SNR is desired. The Correlation Coefficient between original ECG signal and denoised ECG 

signal provides the effectiveness of any method to preserve morphological information present 

in the ECG signal. Here in this case, large values of Correlation Coefficient indicates that 

proposed method better preserves morphological information present in the ECG signal. 
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Fig. 4.2 – 4.4 shows the plots of denoised signals using combinations of Neural Network with 

EMD, EEMD and CEEMD for three different ECG signals recordings. The tables 4.1-4.3 shows 

the results of denoising methods using combinations of Neural Network with EMD, EEMD and 

CEEMD for the same three different ECG signals recordings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3 (a) Noisy signal (Recording-2) (b) Denoised signal using EMD and Neural Network (c) 

Denoised signal using EEMD and Neural Network (d) Denoised signal using CEEMD and 

Neural Network.  

 

Table 4.2: Recording-2 

 

Chapter 4: ECG Denoising Using ANN and CEEMD 

 

 

Fig.4.2 (a) Noisy signal (Recording-1) (b) Denoised signal using EMD and Neural Network 

(c) Denoised signal using EEMD and Neural Network (d) Denoised signal using CEEMD and 

Neural Network.  

Table 4.1: Recording-1 

Parameter 
(Input SNR = -19.0489, Input MSE = 0.3699) 

EMD and ANN EEMD and ANN CEEMD and ANN 

MSE 0.0122 0.0030 0.0016 

SNR 14.8793 29.0949 35.3016 

Correlation Coefficient 0.9655 0.9671 0.9898 
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Fig.4.3 (a) Noisy signal (Recording-2) (b) Denoised signal using EMD and Neural Network (c) 

Denoised signal using EEMD and Neural Network (d) Denoised signal using CEEMD and 

Neural Network. 

Table 4.2: Recording-2 

Parameter 
(Input SNR = -2.0869, Input MSE = 0.2115) 

EMD and ANN EEMD and ANN CEEMD and ANN 

MSE 0.0453 0.0076 0.0073 

SNR 13.3992 31.2956 31.5658 

Correlation Coefficient 0.9509 0.9881 0.9887 
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he tables 4.1 show the results of denoising methods using combinations of Neural Network 

with EMD, EEMD and CEEMD for same three different ECG signal recordings. 

Table 4.1 Results of denoising methods using combinations of Neural Network with 

EMD, EEMD and CEEMD for same three different ECG signal recordings. 

RECORDING-1 

RECORDING-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.4 (a) Noisy signal (Recording-3) (b) Denoised signal using EMD and Neural network (c) 

Denoised signal using EEMD and Neural Network (d) Denoised signal using CEEMD and 

Neural Network. 

Table 4.3: Recording-3 

Parameter 
(Input SNR = -15.0319, Input MSE = 0.2114) 

EMD and ANN EEMD and ANN CEEMD and ANN 

MSE 0.08182 0.0250 0.0033 

SNR 1.5102 12.9336 56.6881 

Correlation Coefficient 0.9066 0.9352 0.9966 
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Fig.4.5 (a) Noisy signal (Recording-1) (b) Denoised signal using EMD and Morphological 

Operator (c) Denoised signal using Neural Network (d) Denoised signal using CEEMD and Neural 

Network.  

Table 4.4: RECORDING-1 

Parameter 

(Input SNR = -19.0489, Input MSE = 0.3699) 

CEEMD and 

Morphological 

Operator 

ANN CEEMD and ANN 

MSE 0.0118 0.0095 0.0016 

SNR 21.7005 23.7690 35.3016 

Correlation Coefficient 0.9363 0.9457 0.9898 
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The CEEMD-based approach outperforms both EMD and EEMD in terms of results. For ECG 

signal recording-1, fig.4.5 presents plots of denoising techniques using CEEMD and 

Morphological Operator, Neural Network, and a proposed combination of CEEMD and Neural 

Network. The table 4.4 shows the results of the denoising technique for ECG signal        

recording-1 using CEEMD and Morphological Operator, Neural Network, and a proposed 

combination of CEEMD and Neural Network.  

In terms of all three parameters, the proposed technique outperforms the combination of 

CEEMD with Morphological Operator and Neural Network. Other ECG signal recordings 

yielded the same results. 

4.5 SIGNIFICANT FINDINGS 

When examining the results, it is clear that simple Neural Networks can produce excellent 

results at times, but their performance is inconsistent. The addition of CEEMD ensures that the 

system runs smoothly. The results show that the proposed method is clearly superior to other 

methods in the literature. The use of CEEMD has increased the filtration properties of Neural 

Networks while also preventing overfitting. Furthermore, since the filtration will be conducted 

mainly at lower frequencies, any high frequency cardiac defects will not be filtered, which is 

an important consideration. 

This chapter is based on the following work: 

Rajesh Birok, Rajiv Kapoor & Mahipal Singh Choudhry “ECG Denoising Using Artificial 

Neural Networks and Complete Ensemble Empirical Mode Decomposition” Turkish Journal of 

Computer and Mathematics Education [TURCOMAT], ISSN: 2382-2389 in Volume 12, No. 2 

(2021). [SJR-0.218] [Published in SCOPUS Indexed Journal] 
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CHAPTER 5 

 

GENETIC PARTICLE-FILTER IMPROVED FUZZY-AEEMD FOR 

ECG SIGNAL DE-NOISING 

 

5.1 INTRODUCTION 

 
The electrical conduction activity of the heart is recorded by the electrocardiogram (ECG). 

These are extremely weak signals having a restricted bandwidth of 0.05-120 Hz. These signals 

are used by doctors, particularly cardiologists, to diagnose cardiac conditions and disorders. 

During acquisition, the ECG signal is polluted with different artefacts such as PLI, Patient–

electrode motion artefacts, Electrode-pop or contact noise, Baseline Wandering, and 

Electromyogram (EMG) noise. In the presence of such undesirable signals, analyzing ECG data 

to evaluate heart function becomes challenging. As a result, de-noising the ECG signal is critical 

to avoid misunderstanding of the patient's heart activity. 

This study proposes de-noising of the electrocardiogram signal based on the Genetic Particle 

filter and Fuzzy Thresholding using Adaptive Ensemble Empirical Mode Decomposition 

(AEEMD), which efficiently reduces noise from the ECG data. A two-phase approach for 

reducing noise from ECG signals is proposed in this research. With the aid of Adaptive 

Ensemble Empirical Mode Decomposition, the noisy signal is decomposed into real Intrinsic 

Mode Functions (IMFs) in the first phase. Because it eliminates the mode-mixing effect, 

therefore, AEEMD is superior to EMD or EEMD or CEEMD. Spectral Flatness of each IMF 

and Fuzzy Thresholding are used in the second step to get IMFs that have been contaminated 

by noise. To reduce noise from corrupted IMFs, a Genetic Particle filter is used. 

5.2 THEORETICAL BACKGROUND 

The Electrocardiogram is frequently contaminated through noise and artefacts. 

Various artefacts are: 

1. Power-Line Interference (PLI): PLI artefact is defined as 50-60 Hz power line 

frequencies with less than 1 Hz bandwidth. Power line interference can have an 

amplitude of up to 50% of the FSD level.  
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2. Baseline Wander: The major cause of baseline wander artefact is breathing at drifting 

frequencies of 0.15 Hz to 0.3 Hz. Baseline shift or drift is another name for baseline 

wander artefact. 

3. Muscle Noise/ Electromyographic Artefact: The ECG data is tainted by electrical bio-

potential caused by EMG or muscle contraction. With a frequency of 10kHz, the 

amplitude of muscle noise swings up to 10% of the FSD level.  

4. Motion Artefact: When the motion of an electrode or a change in impedance between 

electrodes is overlaid on the electrocardiogram activity, it is referred to as motion 

artefact.  

5. Electrode Contact Noise: This touch noise is caused by the electrodes losing contact  

      with the subject's skin. 

 6.   Data Collection Device and Electrosurgical Noises: It is produced at frequencies  

      ranging from 100 kHz to 1 MHz by medical equipment and signal processing gear. 

5.2.1 ENSEMBLE EMD [EEMD] 

Ensemble EMD (EEMD) [92] is used to eliminate the mode-mixing consequence. It primarily 

solves the original EMD's mode mixing problem by regularly injecting white noise into the 

intended signal. It is also known as a Noise-Assisted Data Analysis system (NADA). EEMD 

consists of EMD and taking corresponding IMFs ensemble average of ‘n’ number of trials. 

These ensemble averages output treats as final result of EEMD. The ECG signal is decomposed 

into real Intrinsic Mode Functions using Ensemble EMD techniques (IMFs). 

The process of decomposition using EEMD can be done in following steps [51]: 

(i) To the established original signal, a random white noise signal is introduced. 

)()()( tnAtxtx jj +=
 j=1,2,..,M, 

The amplitude of additional white noise is denoted by A, and the number of trials 

is denoted by M. 

(ii) Obtained signal (xj(t)) is decomposed into IMFs using EEMD: 


=

+=
jN

i

Njijj rctx
1

)(
,  (5.1) 

Here, cij denotes the ith IMF of the jth trial, r is the residue and Nj represents IMF 

number of the jth trial. 

(iii) Repeat these processes until the predetermined ensemble trial number is reached, 

and every time, add a different random noise signal.  
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(iv) For evaluating ensemble mean of the resultant IMFs of the decompositions is 

denoted as (ci): 

M

c
tc

M

j ij

i

 =
=

1
)(

 i=1, 2…, K, (5.2) 

Where K denotes the minimum number of IMFs in the trial. 

 

Fig.5.1 Flow chart of EEMD method 

The mode mixing problem is one of the major flaws of original EMD's, implying that many 

decomposition components appear in the same frequency waveform or that certain 

decomposition components contain a variety of frequency waveforms. Wu and Huang [51] 

proposed the EEMD noise-assisted data analysis system. In certain circumstances, EEMD 

overcomes the problem of mode mixing by introducing white noise to the starting input. The 

EEMD approach is a great step forward in EMD development, considerably increasing the 

algorithm's dependability. The Genetic Algorithm was used to improve the EEMD method's 

self-adaptiveness. 
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EMD also suffers from an end effect problem, in which the signal envelopes dictated by the 

extreme points might reflect its appearance, filtering out the higher frequency component and 

only representing the signal's lower frequency component throughout the EMD process. 

However, all the data between them should cover the upper and lower envelopes. The end points 

can’t generally be both maximum and minimum that results in difficult to recognize the extrema 

exactly. To resolve this problem Leitao Zhang et al. [93] proposed an end shifting method to 

resolve the end effect issue from EMD. 

5.2.2 ADAPTIVE EEMD [AEEMD] 

To lessen or decrease the irregularity as much as feasible, the extra white noise must impact the 

original signal's extrema. A random noise with a specified fixed amplitude value, on the other 

hand, affects the extrema (and hence lowers the present mode of mixing) but has no impact on 

the extrema. 

Instead, an adaptive approach (AEEMD) is proposed and many signals are used to test its 

efficiency and applicability. 







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
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  (5.4) 

where j=1,2,3,…,M. 

The amplitude rate for each data point in a sample is obtained by adding random white noise 

and applying the Signal-to-Noise Ratio (SNR) as in equation (5.3) & (5.4). Given the 

appropriate SNR, there will be confidence that the initial signal's extrema will be suitably 

influenced. A noisy ECG signal polluted with numerous artefacts is seen in fig.5.2.
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Fig.5.2 Noisy ECG signal  
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A predetermined constant value is created by multiplying a specified fixed value (0.3) by the 

standard deviation of the original signal. As a result, impacting the extrema is dependent on the 

value of random noise at the extrema's location. An adaptive value is derived using the 

suggested approach in order to retain the SNR ratio. It indicates that the amplitude of any 

randomly generated noise will be high enough to effect the extrema. Figures 5.14, 5.15, and 

5.16 demonstrate how the suggested amplitude functions more efficiently on the extrema when 

noise is added to the original signal. 

5.2.3 FUZZY THRESHOLDING [FT] 

Fuzzy rules are well-defined in terms of statistical properties which determine the required 

range of thresholds is known as Fuzzy Thresholding [94].  

5.2.4 GENETIC PARTICLE FILTER [GP-F] 

A Genetic Algorithm (GA) is embedded into the Standard Particle Filter (S-PF) is known as 

GA-PF [95], [96] which is used to overcome the degeneracy problem. It improves the self-

evolution and self-adaptation. The block diagram of the proposed GA-PF method is shown in 

fig.5.3. 
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Fig.5.3 Block diagram of the Proposed GA-PF method  
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Electrocardiogram signals were obtained from the hospital's database, then n(t) = y(t) + m(t), 

where y(t) is the original ECG and m(t) is the added noise signal & is used to obtain the noisy 

signal n(t). The AEEMD technique is used to breakdown the n(t) signal into Intrinsic Mode 

Functions. To get IMFs, a noisy signal is routed via the EMD technique. Ensemble means of 

correlating IMFs are used to produce true IMFs as a targeted signal. The Spectral Flatness (SF) 

of each individual IMF is used to calculate the amount of noisy intrinsic mode functions. The 

link between the Geometric mean (GM) and the Arithmetic mean (AM) is known as spectral 

flatness (AM). It is defined as the ratio of the power spectrum's geometric mean to its arithmetic 

mean. 

Spectral Flatness (SF) =GM / AM  (5.5) 

To determine if the IMFs are noisy or not, the Spectral Flatness metric is fuzzified. For Spectral 

Flatness, low, medium, and high membership functions were utilised, as illustrated in fig.5.4. 

The rules for spectral flatness are: 

Rule 1: IF SF is in high range, THEN IMF is clean 



 

81 
 

Rule 2: IF SF is in medium range, THEN IMF is noisy 

Rule 3: IF SF is in low range, THEN IMF is very noisy. 

 

            

Fig.5.4 Membership function for Fuzzy-2  

Now applying Rule 1, 

Take minimum of membership of Spectral Flatness 

Noisy = min (0.09, 0.08) = 0.08 

Now applying Rule 2, 

Take minimum of membership of Spectral Flatness 

Noisy= min (0.03, 0.05) = 0.03 
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According to the fuzzy max-min implication, 'min' membership is noisy when combining the 

criteria. Spectral flatness is used to automatically determine noisy intrinsic mode functions. To 

eliminate the noise from the noisy IMFs, the Genetic Particle Filter is used. 

5.3 PROPOSED METHODOLOGY 

The purpose of this research is to assess the performance of the proposed algorithm (AEEMD) 

under various ECG signal situations. 

The ECG signal de-noising method is given as: 

(a) To collect ECG signals and add random white noise. 

(b) To breakdown the signals into some IMFs using the EEMD with varied amplitudes of 

additional white noise. To extract the feature, the first IMFs with the most dominating 

information are picked. 

(c) To calculate the total energy Ei of the first m IMFs: 




−

= dttcE ii

2
)(

  (5.6) 
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(d) To create a feature vector with the energies of the m selected IMFs: 

],...,,[ 21 mEEEFV =   (5.7) 

(e) To normalize the feature: 
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=

m

i iEE
 

 

In Programming of MATLAB software was used to construct an algorithm for de-noising the 

ECG signal in the block diagram of the suggested technique for the ECG de-noising method 

shown in fig.5.5. The ECG signal is decomposed into Intrinsic Mode Functions using AEEMD 

techniques (IMFs). Then, utilizing Fuzzy Thresholding, IMFs that are dominated by noise are 

automatically identified and filtered using Genetic Particle algorithms to eliminate the noise 

and increase the adaptive processing's computing efficiency.  
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Fig.5.5 Block diagram of the proposed ECG de-noising method 

5.4 RESULTS 

The suggested algorithm's performance is evaluated using five distinct local hospital databases. 

The de-noising of the ECG signal is done in such a way that impulsive sounds are suppressed 

at multiple levels while the desirable ECG signal is preserved. It is impossible to totally 

eradicate noise, but it is feasible to reduce it to a minimum. SNR and RMSE measurements are 

used to evaluate the performance of our suggested approach. 

Parameters of Proposed algorithm listed as follows: - 

Number of particles =100 

Crossover probability =0.8  

Mutation probability =0.1  

Maximal Acceptable generation T=20 

Chapter 5: GP-F Improved fuzzy-AEEMD for ECG Signal De-noising 
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Fig.5.6 shows the decomposition of this noisy ECG signals into IMFs components which are 

obtained by AEEMD method.  
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Fig.5.6 IMFs components obtained by AEEMD method 

For subsequent processing, only the top twelve IMFs are utilized. The spectral flatness of individual 

IMFs is used to calculate the number of noisy IMFs. To put it another way, spectral flatness is 

fuzzed to identify whether or not the IMFs are noisy. The residual component of the ECG signal is 

shown in fig.5.7. There are no peaks or minima in these signals. 
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Fig.5.7 Noisy ECG signal and residual signal 

 

 

Fig.5.8 Performance of Genetic Algorithm (o: each individual)  
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Fig.5.9 Best solution by Genetic Algorithm (: o) and RS (: *) in each generation 

The performance of the genetic algorithm is seen in fig.5.8, which depicts the individual's 

weights as the particle's fitness function. In each generation, fig.5.9 depicts the greatest fitness 

function achieved using the Roulette wheel selection (RS) approach. Individually, the 

maximum level of fitness is immediately reserved for the next generation.

 

Fig.5.10 Best solution by Genetic Algorithm (: o) and RS (: *) for overall  
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Fig.5.11 De-noised ECG signal 

The greatest fitness function across all generations is shown in fig.5.10. The genetic particle 

filter is used to filter the noisy IMFs. The ECG signal is then rebuilt by combining the filtered 

IMFs with the remaining signal IMFs. The result is a de-noised ECG signal, as seen in fig.5.11. 

The SNR and RMSE are used to estimate the performance of our method. Signal to Noise Ratio 

(SNR) and Root Mean Square Error (RMSE) are acronyms for Signal to Noise Ratio and Root 

Mean Square Error, respectively. These variables are used to compare the proposed approach 

against the existing method. The SNR can be calculated as the follow: 

( )( )2210log10 outputinputoutputSNR −=        (5.9) 

The RMSE can be calculated as the follow: 

𝑅𝑀𝑆𝐸 = √∑𝐿−1
𝑡=0 [(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙)2]/𝐿       (5.10) 

The values of the SNR measure for the outcomes of several current techniques with the 

suggested method are shown in table 5.1. Existing approaches are EMD based technique, 

Genetic Particle Filtering etc., with five different databases.  

Table 5.1: SNR values comparation of proposed approach with other known techniques 

Database 

Wavelet Based 

Techniques 

(SNR in dB) 

EMD Based 

Techniques 

(SNR in dB) 

Particle Filter 

Method 

(SNR in dB) 

Proposed 

Method 

(SNR in dB)  

% Age 

improvement 

with Particle 

Filter Method  

Database1 10.9142 12.9997 14.0853 17.7205 25.80% 

Database2 11.1984 13.8093 15.2512 18.8058 23.30% 

Database3 10.1845 13.8138 15.9588 19.9987 25.31% 

Database4 10.4252 14.0839 16.0254 18.5141 15.52% 

Database5 11.9732 14.3374 14.8569 17.3418 16.72% 

Average 10.9391 13.8088 15.2355 18.4761 21.33% 
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Fig.5.12 SNR vs different database with different method and proposed method 

The table 5.2 represents the values of RMSE measure for the results of various existing 

approaches with proposed method. 

Table 5.2: Comparison of RMSE values for different database of existing methods with 

proposed method 

Database 

Wavelet 

Based 

Techniques 

(RMSE in 

dB) 

EMD Based         

Techniques 

(RMSE in 

dB) 

Particle 

Filter 

Method 

(RMSE in 

dB) 

Proposed 

Method 

(RMSE 

in dB) 

% Age 

improvement 

with Particle 

Filter Method 

 

Database1 0.299  0.224 0.198 0.131 -33.83%  

Database2 0.271 0.215 0.179 0.112 -37.43% 

Database3 0.310 0.212 0.162 0.105 -35.18% 

Database4 0.302 0.199 0.152 0.119 -21.71% 

Database5  0.255 0.191 0.187 0.137 -26.73% 

Average 0.287 0.208 0.175 0.120 -30.97% 
 

Wavelet approaches have shown to be popular and superior than older methods [71]. The best 

de-noising approach so far across all wavelet families is the Daubechies-4 (dB4) wavelet 

combined with soft thresholding. Wavelet algorithms are used to describe both time and 

frequency information at the same time. When thresholding approaches are utilized, they can 

improve ECG signals. The popularity of wavelet-based ECG de-noising algorithms can be 

attributed to this. However, the wavelet transform approach has certain drawbacks: (i) Due to 

the use of hard thresholding, the reconstructed ECG signal showed oscillations. (ii) Using soft  
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thresholding can lower the ECG signal amplitude, particularly the R waves amplitude, which 

is a big worry because the R-wave is vital for diagnosing cardiac illness. 

 

Fig.5.13 RMSE vs different database with different method and proposed method 

Because of these constraints, researchers have turned to Empirical Mode Decomposition 

(EMD) to de-noise ECG signals. Intrinsic Mode Functions are a set of oscillatory functions that 

are decomposed from a signal (IMFs). The ECG signal is partially recreated by reducing noisy 

IMFs in one EMD-based technique. The removal of signal information as well as noise is one 

of this method's drawbacks. A metric called as Spectral Flatness (SF) is employed in another 

technique to detect noisy IMFs. The ECG signal is subsequently de-noised by filtering away 

the noisy IMFs. However, the EMD methodology has some drawbacks as a de-noising method 

for ECG signals, including (i) the mode mixing effect (ii) EMD also has the issue of end effect 

and instability [66]. 

All of the restrictions mentioned above have been addressed in this suggested solution. The 

performance of the proposed method is clearly superior to that of current algorithms with 

various forms of artefacts, as shown in tables 5.1 and 5.2 and figures 12, 13 and 17. When 

compared to EMD, Wavelet, and Particle Filter based approaches that are often used as an 

ECG signal de-noising method with five various types of Databases, the suggested algorithm's 

SNR findings show better outcomes and reduced Root Mean square Error (RMSE). The 

suggested technique increased the average SNR and RMSE of the de-noised data by 21.33 

percent and -30.97 percent, respectively, over the second best Particle Filter method.  
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Fig.5.14 Original signal and added random noise 

 

 

Fig.5.15 Original signal multiplied by std (0.3), AEEMD with SNR 10 
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Fig.5.16 The effect of using constant amplitude 0.3 std and the AEEMD process  
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(a) Original Signal 

 

 

(b) Noisy Signal 

 

(c) De-noised Signal 

Fig.5.17 DSO output acquired through proposed algorithm (AEEMD) 

5.5 SIGNIFICANT FINDINGS 

In this work, de-noising of an ECG signal using a Genetic Particle Filter and Fuzzy 

Thresholding with the aid of AEEMD outperforms EMD-based techniques and other current 

noise removal methods in terms of SNR & RMSE. The ECG signal is separated into IMFs using 

the AEEMD   procedures.  The Adaptive  Ensemble  EMD   (AEEMD)  represents  a  significant  
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advancement in noisy ECG signal filtering approach adaptability, flexibility, versatility, and 

robustness. The AEEMD is superior than the EMD because it eliminates the signal's mode-

mixing effect. Spectral Flatness is utilized to automatically discover Intrinsic Mode Functions 

(noisy) using Fuzzy Thresholding. 

To achieve a clean ECG signal, the remaining noisy intrinsic mode functions are filtered using 

the Genetic Particle Filter. The Genetic Algorithm Particle Filter enhances the process of self–

evolution and adaption. De-noising performance has been increased by combining the benefits 

of the AEEMD over EMD technology and the Genetic Particle Filter over the particle filter. 

The testing findings revealed that our suggested signal de-noising approach is superior in both 

qualitative and quantitative measurements. When compared to the best current approach, the 

suggested method outperforms previous techniques with excellent quality output ECG signal 

in terms of average SNR (21.33 percent) and RMSE (-30.97 percent). Overall, the proposed 

method provides the better accuracy compared to other methods.  

This chapter is based on the following work: 

Rajiv Kapoor & Rajesh Birok “Genetic particle filter improved fuzzy-AEEMD For ECG 

signal de-noising.”  Computer Methods in Biomechanics and Biomedical Engineering, ISSN: 

14768259, 10255842 DOI: 10.1080/10255842.2021.1892659 [SJR-0.354]. [Published in 

SCIE]  
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CHAPTER 6 

 

DESIGN OF LOW COST BIOIMPEDANCE MEASURING 

INSTRUMENT 

 

6.1 INTRODUCTION 

Biomedical signal measurement is one of the most important aspects of biomedical signal 

analysis and interpretation to support scientific hypotheses and medical diagnosis. Biomedical 

signal measurement aims at appropriately acquiring and measuring biomedical signals for 

accurate improved diagnosis and proper medicine management. Extensive research is going 

on in the field of Bio-Medical Measurements and Instrumentation. Researchers and 

investigators in this field are striving hard to find out new ways and methods for diagnosis and 

measurement of health parameters for the welfare of the mankind. 

Broadly, there are two types of techniques for measuring biomedical signals namely                 

non-invasive and invasive techniques. Here, invasive refers to medical devices that enters the 

human body, whereas non-invasive techniques do not involve any physically entry, cutting or 

puncturing of the human body by any means. Recently, minimally invasive devices and 

techniques have revolutionized the medical field. Overall, minimally invasive technology has 

substantially improved ease of patient care, outcomes and recovery. However, minimally 

invasive devices are still invasive in some sense.  

6.2 THE HUMAN-INSTRUMENT SYSTEM  

The following are the components of a human-instrument system: 

❑ Subject or Patient  

❑ Stimulus or Activity Procedure  

❑ Transducers  

❑ Signal-Conditioning Equipment  

❑ Display Equipment  

❑ Recording, Data Processing, and Transmission Equipment  

❑ Control Devices  
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6.3 IMPORTANT FACTORS FOR THE DESIGN OF BIOMEDICAL 

INSTRUMENTS 

Biometrics is the study of measuring physiological characteristics and factors. The following 

are some of the factors to consider while designing, specifying, or using biomedical 

instruments: 

❑ Isolation of the subject or patient is critical to ensure that the person is not electrocuted. 

❑ Range of Operation: It is the signal or parameter being monitored for minimum and 

maximum values. 

❑ Sensitivity is the lowest discernible signal fluctuation. This determines the system's 

resolution. 

❑ Linearity is required, over at least a portion of the working range. Any nonlinearities 

discovered during signal processing may need to be incorrect values afterwards. 

❑ Hysteresis: It is basically the lag caused by the direction of change in the parameter 

being measured. Hysteresis can introduce bias into a measurement and should be taken 

into account. 

❑ Frequency Response: It is the fluctuation in sensitivity with frequency. The sensitivity 

of most systems encountered in practise exhibits a lowpass behaviour, which means that 

as the frequency of the input signal increases, the sensitivity of the system diminishes. 

To compensate for the loss of high-frequency sensitivity, signal restoration techniques 

may be necessary. 

❑ Stability - an unstable system may prevent measurement reproducibility and 

uniformity. 

❑ Signal-to-Noise Ratio (SNR): Simply, it is the ratio of signal strength to noise level.   

❑ Accuracy entails the effects of component tolerance, movement, or mechanical faults, 

as well as drift.   

6.4 GENERAL CONSTRAINTS IN THE DESIGN OF MEDICAL 

INSTRUMENTATION SYSTEMS, BIOMEDICAL SIGNAL       

ACQUISITION AND ANALYSIS 

 

Medical equipment is generally used to assess physiological characteristics of the human body, 

however, in certain cases, it is also utilised to provide a stimulus or some sort of energy to the 

human body for diagnosis and therapy. Despite the fact that biomedical equipment has a long 

history and is widely used in health care and research, biomedical signal gathering, processing,  
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and analysis face several practical challenges. Each form of signal has its own set of challenges 

and, as a result, its own set of potential solutions. The following concerns should be given 

special attention: 

❑ Inter-relationships and Interactions among Physiological Systems  

❑ Effect of the Instrumentation or Procedure on the System  

❑ Physiological artefacts and Interference  

❑ Inaccessibility of the Signal Source  

❑ Variability of Physiological Parameters  

❑ Interference among Physiological Systems  

❑ Transducer Interface Problems  

❑ High Possibility of Artefacts  

❑ Safe Levels of Applied Energy  

❑ Patient Safety Considerations  

❑ Human Factor Considerations 

❑ Reliability Aspects  

❑ Government Regulations  

The following are some of the other main aspects that influence the design of a medical 

measuring instrument: 

⮚ Measurement Range: When compared to non-medical parameters, measurement 

ranges are generally fairly small. Microvolt signal range make up the vast bulk of 

signals. 

⮚ Frequency Range: The bulk of biological signals are in the audio frequency range or 

below, with many of them include dc and ultra-low frequency components. 

As a result, it should come as no surprise that the design of medical devices is constrained by a 

variety of considerations. There are other general issues that must be taken into account during 

the original design and development of a medical device such as: 

❑ Signal Considerations  

❑ Environmental Considerations  

❑ Medical Considerations  

❑ Economic Considerations  
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6.5 BASIC MEDICAL INSTRUMENTATION SYSTEM 

 
Fig.6.1 Generalized Medical Instrumentation System 

The primary purpose of biomedical equipment is to measure or determine the presence of a 

physical quantity that can aid medical practitioners in better diagnostics and treating patients. 

As a result, hospitals and other medical institutions now utilise a variety of instrumentation 

systems. The biomedical instrumentation systems have certain similar characteristics with other 

instrumentation systems. The four basic functioning components of any medical device 

(Fig.6.1) are as follows: 

❑ Measurand  

❑ Transducer/Sensor 

❑ Signal Conditioner  

❑ Display System 

In addition to the aforementioned, the signal that has been processed after signal conditioning 

might be sent to: 
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❑ Alarm System  

❑ Data Storage  

❑ Data Transmission 
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Most medical equipment systems require calibration at regular periods in order to perform 

properly. The sensor input is frequently subjected to the calibration signal. The patient is given 

some form of stimulation or energy, and the impact it has on the patient is measured in many 

medical tests. A visual stimulus, such as a flash of light or an auditory tone, or direct electrical 

stimulation of a neuron, might be used. Control and feedback might be manual or automated. 

Microprocessors & microcontrollers currently handle almost all measuring and recording 

equipment, making it feasible to build equipment with little human interaction, calibration, and 

setup procedures. On the functional systems and sub-systems of the human body, measurements 

may be taken at numerous levels. In the medical science, there are two sorts of measurements: 

in vivo as well as in vitro In vivo measures, such as pressure measurements in the heart 

chambers, are taken on or within the living thing. In vitro measurement, on the other hand, 

involves taking measurements outside of the body, such as collecting ECG, EEG signals. 

6.6 PERFORMANCE REQUIREMENTS OF MEDICAL 

INSTRUMENTATION SYSTEMS 

In contrast to a standard, sensor/transducer data is usually represented in terms of current 

intensity, voltage level, frequency, or signal phase. Most transducers, on the other hand, 

produce current signals, which may be easily converted to voltage using operational amplifiers 

with suitable feedback. The frequency response of the system should, in general, be compatible 

with the signal being measured. Erroneous signal components that can occur at any frequency 

within the system's band pass are referred to as noise. The instruments are built in such a way 

that noise is kept to a minimum, allowing for precise and sensitive measurement. It is critical 

to improve the signal-to-noise ratio in order to extract information from noisy data. The main 

performance requirements of biomedical instrumentation systems are: 

❑ It should be capable enough to implement the most complex algorithms. 

❑ Its performance should be unaffected by uncontrollable factors like component age and 

temperature. 

❑ Its design parameters can be modified more readily since they are software-based rather 

than hardware-based. 
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In medical tools, the results of measurements are frequently shown on analog metres or digital 

screens. Digital displays are favoured for display over analog metres because of their superior 

resolution, accuracy, and robustness. Now a days computers are increasingly being utilised to 

manage equipment and to implement the man-machine interface. Moreover, high-resolution 

colour graphic panels are being employed for display reasons. A keyboard is the most common  
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peripheral instrument connected to virtually all forms of data collection, processing, and 

controlling operations in medical equipment. 

6.7 NON-INVASIVE BIOMEDICAL TECHNIQUES 

Non-invasive techniques are more suitable than the invasive ones if sufficient accuracy can be 

achieved using them. Examples of non-invasive medical devices and techniques includes:   

● External Bandages, Splints and Casts. 

● Stethoscopes & Blood Pressure Monitors,  

● Bio-Impedance based diagnostics such as BIA (Bio-Impedance Analysis), EIT 

(Electrical Impedance Tomography), IPG (Impedance Plethysmography), ICG 

(Impedance Cardiography) 

● X-Rays & Computed Tomography [CT] Scan. 

● Magnetic Resonance Imaging [MRI] Scan. 

● Positron Emission Tomography [PET] Scan, Dual-energy X-ray Absorptiometry [DXA 

or DEXA] Scan etc. 

● Hearing Aids and Holter monitoring 

● ECG, EEG, EOG, EMG, EGG etc. 

Among the above mentioned non-invasive available medical devices and techniques, perhaps 

bio-Impedance based diagnostics is still highly unexplored and underrated owing to insufficient 

research efforts. Later or sooner bio-impedance based diagnostics will become most prominent 

non-invasive diagnostic techniques as there is not only thrust on pure non-invasive diagnostic 

techniques, in fact it’s the need of the hour.  

6.8 THEORETICAL BACKGROUND: BIOIMPEDANCE  

It is a well-established fact that the electrical bio-impedance of a part of the human body can 

provide valuable information regarding physiological parameters of the human body, if the 

signal is correctly detected and interpreted. Therefore bio-impedance based signal measurement 
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is going to be one of the most important Non-Invasive techniques to measure various 

physiological parameters of human body such as: - 

▪ Intra-Cellular Fluid (ICF) & Extra-Cellular fluid (ECF), 

▪ Total Body Water (TBW) & Electrical Cardiometry,  

▪ Skin Water Content & Skin Conductance, 

▪ Impedance Imaging (Tomography) & Transthoracic Impedance Pneumography,  

Chapter 6: Design of Low Cost Bioimpedance Measuring Instrument 

 

▪  Ablation Monitoring and measurement of Respiration Rate,  

▪ Body Composition Assessment,  

▪ Electrical Impedance Tomography (EIT) etc, 

Keeping above scenario in mind accordingly, an efficient low-cost bioelectrical impedance 

measuring instrument was developed, implemented, and tested in this study. Primarily, it is 

based upon the low-cost component-level approach so that it can be easily used by researchers 

and investigators in the specific domain. The measurement setup of instrument was tested on 

adult human subjects to obtain the impedance signal of the forearm which is under investigation 

in this case.  However, depending on the illness or activity under examination, the instrument 

can be used on any other part of the body. The current injected by the instrument is within the 

safe limits and the gain of the biomedical instrumentation amplifier is highly reasonable. The 

technique is easy and user-friendly, and it does not necessitate any special training, therefore it 

can be effectively used to collect bioimpedance data and interpret the findings for medical 

diagnostics. Moreover, in this paper, several existing methods and associated approaches have 

been extensively explored, with in-depth coverage of their working principles, 

implementations, merits, and disadvantages, as well as focused on other technical aspects. 

Lastly, the paper also deliberates upon the present status, future challenges and scope of various 

other possible bioimpedance methods and techniques. 

6.8.1 FREQUENCY RESPONSE OF BIOIMPEDANCE  

The anatomical, physiological, and pathological state of biological cells and tissues determine 

the bioimpedance frequency response. Therefore, the bioimpedance study can provide much 

more information related to the anatomy and physiology of a cell or tissue. Since the 

bioimpedance response is a variable of signal frequency, therefore bioimpedance analysis with 

multifrequency inputs can give detailed information of cell or tissue properties, which can help 

in better cell or tissue characterization. It also fluctuates depending on the frequency of the 

applied ac signal [5, 6]. As a result, the frequency response of biological cells and tissues is 
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influenced not only by their physiological and physiochemical composition and structure, but 

also by the frequency of the applied signal.  

The few bioimpedance analysis techniques which makes use of lumped estimation of the 

bioimpedance values of the cell or tissue samples are BIA, IPG, and ICG etc.                                

Bio–Electrochemical Impedance Spectroscopy (EIS) measures and analyses bioimpedance at 

different frequencies. Thus, EIS provides not only a lumped approximation of the cell or tissue  
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sample's bioimpedance values at  relatively  higher  frequency (generally 50 kHz), but also the  

details required to have better understanding of the many complex bioelectrical phenomena 

such as dielectric dispersions and relaxation. 

The bioimpedance measurement can be broadly divided into two categories namely "single-

tone" signals and "multi-tone" signals measurements. The analysis of "single-tone" signals is 

very straightforward, but measurements take longer, whereas use of a multi-tone signal allows 

for simultaneous coverage of the entire frequency spectrum. However, use of a multi-tone 

signal may result in an algorithm which can be more complex for analysis purpose [97]. 

Moreover, the dielectric properties of the object determine the required frequency range for 

bioimpedance measurements, which typically spans 3 to 4 decades in the kHz to MHz range. 

In general, wider range of frequencies improves fitting accuracy but at the cost of complicating 

measurements. Furthermore, (SNR) of measured signals also effects the fitting accuracy [98].  

6.8.2 TYPES OF ELECTRODE CONFIGURATIONS 

When an alternating current is used in bioimpedance testing, the electrode displays a frequency-

dependent impedance at its interface with the tissue/solution known as Electrode Polarisation 

Impedance (EPI). Any change in the type of material which is in contact with the electrode also 

affects the magnitude and as well as the phase of the electrode impedance of tissue/solution. As 

a result, the total calculated impedance of the system is equal to the sum of the EPI and 

impedance of the tissue/solution [4]. Finally, the impedance will be determined by the 

magnitude of the applied AC signal, type of electrode used and electrode material used as well 

as its dimensions and geometrical structure [99]. To perform bioimpedance measurements, we 

need at least two electrodes to make a closed circuit for the electrical current to pass through it 

[4]. Therefore, bioimpedance measurements are performed with two or four electrodes. In both 

methods, the current or driving electrodes (as illustrated by the red coloured electrodes in fig.6.2 

are known as input or excitation electrodes, whereas the electrodes upon which the frequency 

dependent ac potential (V(f)) is determined are known as voltage or sensing or output electrodes 

(as depicted by blue coloured electrodes in fig.6.2. It should be observed that bioimpedance 
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measurements can be inaccurate due to factors such as movement and improper electrode 

placement [99]. Bioimpedance measurements are typically done with gel electrodes to 

minimise electrode-skin impedance. The usability of dry electrodes is studied in [100] because 

this type of electrode is not suitable in many measurement environments. For bioimpedance 

measurement,  there  are  two  kinds  of  electrode  configurations.  As  the  name  suggests, the          
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two-electrode system or setup in fig.6.2(a) uses only two electrodes for impedance 

measurement, and thus the current signal injection or current-carrying as well as voltage 

measurement or voltage pickup are done with the same electrodes. For unipolar measurements, 

electrode configuration with one very small and one very large electrode can also be used for 

measurements [101].  

The two-electrode technique suffers from contact impedance due to polarisation impedance at 

the electrode’s surfaces [4], and the measured data covers the voltage drop due to contact 

impedance. While, analysing the measured signal polarisation impedance in the output signal 

should be extracted and considered [102, 103]. Overall, the results obtained using this method 

are interesting, however they do not provide an accurate signal on the electrode's surface [104]. 

In four electrode configurations or setups, two independent electrode pairs are used for current 

injection and detecting changes in voltage or voltage measurements [101, 105]. A constant 

amplitude current signal is injected through the outer electrodes, known as current electrodes 

or driving electrodes in fig.6.2(b) with red colour, while the frequency dependent output voltage 

signal produced is measured at two points within the current electrode, known as voltage 

electrodes or sensing electrodes in fig.6.2(b) with blue colour.  

In this configuration, as the distance between electrode pairs was increased, the magnitude of 

the measured impedance decreased [4, 106]. A number of factors influence the effect of 

electrode polarisation impedance which includes electrode content, size, measuring frequency, 

sample impedance, and so on. The main advantage of four electrode configuration over its 

counterpart two electrode configuration is that the voltage electrodes are non-current carrying, 

due to this it eliminates polarisation impedance and thus reduces the effect of contact impedance 

at the electrode and tissue or electrolyte interface. Therefore, using a four-electrode system, is 

a well-known and popular method of lowering the effect of electrode polarisation impedance 

[107]. Furthermore, four electrode configuration measurements are more sensitive and accurate.  
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Fig.6.2 Bioimpedance measurement using: (a) two-electrode method, (b) four-electrode 

method. 
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6.9 PROPOSED METHODOLOGY  

The instrument designed consists of power supply, current source, voltage sensing unit and data 

acquisition system. Fig.6.3 depicts the general block diagram of the measuring                

instrument. The current source circuit is used to generate a sinusoidal current of amplitude in 

the range of 600 µA- 800 µA and a frequency of 50 kHz [4]. The voltage sensing unit is used 

to amplify and remove the high frequency components from the signal sensed by voltage 

sensing electrodes. The signal is then given to the data acquisition system. The contact surface 

dimensions of all test electrodes are the same, and the carrier is a circular printed circuit board. 

To compare the electrode’s characteristics, the electrode-skin impedances are measured under 

a variety of signal frequencies, contact durations, contact pressures, positioning positions, and 

subjects. All measurements are often done with silver/silver chloride (Ag/AgCl) dry gel 

electrodes for contrast [100]. The instrument has four Ag/AgCl electrodes, two on the outside 

and two on the inside, which are used as current electrodes and voltage electrodes, respectively. 

This type of arrangement is known as a tetra polar arrangement. Such an arrangement has been 

implemented by J. J. Wang et.al. [108] to use forearm impedance plethysmography for 

monitoring cardiac pumping function. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782691/figure/fig2/
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Fig.6.3 General block diagram of Measuring Instrument 
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6.9.1  WAVEFORM GENERATION 

This is the first stage of the instrument and also the most critical one. All the parameters for 

this stage are very important as far as subject’s safety and the output of the device   is 

concerned. As this is the first stage any noise added at this stage will get amplified in the 

subsequent stages. A good waveform generator should have a single frequency output with 

very low value of total harmonic distortion and should have a very low frequency drift. A 

Wein bridge oscillator can be used to generate a sinusoidal waveform [109]. The oscillator is 

designed for a frequency of 50 kHz as this frequency is widely accepted in clinical use as a 

standard [110].   Among all types of voltage source generators, an oscillator produces the 

output with the most stable frequency as compared to other sources. Wein bridge oscillator is 

implemented using an op-amp, which gives a stable output with a single frequency for a 

particular combination of resistors and capacitors. Proper limiter circuit is also used in the 

circuit to keep the poles of the oscillator on the imaginary axis. One major problem with using 

Wein bridge oscillator is that the instrument designed cannot be used for bioimpedance 

spectroscopy.  

A comparator, integrator and wave shaping circuit can be used to generate square, triangular 

and sinusoidal waveform of variable frequency [111]. The comparator and integrator circuit 
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used together generate square and triangular waveforms. Triangular waveform is shaped using 

a shaping circuit to generate sinusoidal waveform. The maximum frequency achieved by this 

circuit using 741 op-amp is 26 kHz. This method can be used for excitation in lower frequency 

range but lower frequencies are not used in bioimpedance spectroscopy as electrodes get 

polarized at lower frequencies. It has also been observed during our laboratory experiments 

that there was no biomodulation obtained in the output signal when a current of frequency less 

than 20 kHz was injected into human body.  

  

Fig.6.4 Schematic diagram of ICL8038 
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The instrument designed uses a monolithic integrated circuit ICL8038 (Fig.6.4.) to produce 

high accuracy sine, square and triangular waveforms [112]. The frequency can be selected 

externally from 10 kHz to 100 kHz using a potentiometer. The output of ICL8038 is stable 

over a wide range of temperature and supply variations. The total harmonic distortion for 

ICL8038 varies from 1% to 2% depending on the model selected.           

6.9.2 V TO I CONVERTOR 

One of the most important sub circuits in bioimpedance measurements is the current driver as 

it is capable of working over a wide range of frequency and impedance. The main requirements 

of a current driver are high output impedance, short phase delay and minimal harmonic 

distortion. Depending on whether they are open loop or closed loop, analogue current drivers 

are grouped into two groups. The features of each design are described [113]. 
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The voltage waveform generated using 8038 is converted into current, which is injected into 

human body. The current generated is within the safe limits (600µA- 800µA). The V to I 

converter is intended to run in the 10 kHz to 100 kHz frequency range.   

The main requirement for a current source is that it should supply a constant amount of current 

irrespective of the impedance of the load connected to it. When the output impedance of the 

current source is much greater than the load impedance then the current through the load is 

maintained constant regardless of the load value. F. Seoane et.al have analyzed Howland 

circuit as V to I converter [114]. In this instrument Howland circuit with buffer is used for 

voltage to current conversion. Fig.6.5 is the circuit diagram for voltage to current converter. 

The buffer stage increases the output impedance of the V to I converter. The input impedance  
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of the circuit is around 20 kΩ. Fig.6.6 depicts the simulation results for circuit of Fig.6.5. The 

resistance {R} in the fig.6.5 represents the load to which current would be injected. The 

impedance of the human body is in the range 1 kΩ - 3 kΩ. In simulation the resistance {R} is 

varied from 0.1k to 5k in steps of 500 Ω. It is verified using the simulation results that the 

current through the load is almost constant (10 μA variation) irrespective of the load resistance.  

Fig.6.5 Circuit diagram for Voltage to Current converter 
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Fig.6.6 Variation of current through {R} with respect to change in value of load resistance,    

y-axis is the current through the load and x-axis is the impedance of the load connected to 

the V to I converter. 

6.9.3. INSTRUMENTATION AMPLIFIER 

The voltage sensed from the section of human body is in range of millivolts. The input signal 

is amplified using a difference amplifier. A single op-amp can also be used as a difference 

amplifier but due to its low input impedance it cannot be used. The input impedance of the 

single op-amp difference amplifier can be increased by introducing a buffer at each of the 

inputs of the amplifier and instead of using a unity gain follower one can also have some gain 

from the first stage.  

 

Chapter 6: Design of Low Cost Bioimpedance Measuring Instrument 

Chapter 6: Design of Low Cost Bioimpedance Measuring Instrument 

This leads to the circuit of instrumentation amplifier as shown in fig.6.7. The instrumentation 

amplifier has high CMRR and high input impedance and has been very effectively used in 

biomedical applications such as EEG and ECG. The analysis for instrumentation amplifier has 

been given by Adel S. Sedra and Kenneth C. Smith [109] and its use as a biopotential amplifier 

has been analyzed by Nagel J.H [115]. The gain for the instrumentation amplifier is given 

below. 

Fig.6.7 Circuit Diagram for Instrumentation Amplifier 
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   𝑔𝑎𝑖𝑛 =
𝑅4

𝑅3
 ( 1 +

𝑅2

𝑅1
)                         (6.1) 

   

The signal from the electrodes is given as input to the two terminals of the instrumentation 

amplifier. The gain of the amplifier is 26.44 dB. The first two op-amps are used for gain and 

the third operational amplifier is used for common mode rejection. In the circuit designed R4=R3 

and R2/R1 is equal to 20. The input impedance of the amplifier is equal to the input impedance 

of the operational amplifier. Frequency response analysis of the instrumentation amplifier 

depicts that the phase and gain are constant in the frequency range of interest. Fig.6.8 depicts 

the frequency response of the instrumentation amplifier in which the continuous plot is the 

magnitude plot and dotted plot is the phase plot. 

 

Fig.6.8 Frequency response analysis of the Instrumentation Amplifier 

6.9.4 DEMODULATOR 

The signal obtained from the human body is an amplitude modulated signal, where the carrier 

is the current waveform that we have introduced into the human body. In this case the high 

frequency carrier is a sinusoidal waveform with a frequency of 50 kHz and the modulating 

bioimpedance signal is low frequency signal with frequency components less than 50 Hz. 

Webster and Tompkins [116] have suggested use of full wave rectifier for demodulation. The 

modulating signal can be extracted using a simple envelope detector circuit as shown in fig.6.9. 

Asynchronous demodulation has been used so  that square  and triangular waveform excitation  
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can also be used in addition to the sinusoidal waveform.  
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Fig.6.9 Circuit Diagram of simple envelope detector 

 

 

Fig.6.10 Precision Detector 

For the first cycle diode is forward biased and it charges the capacitor to the first peak value. 

The charging time constant should be such that the capacitor voltage follows the input signal. 

𝜏 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 <<  
1

𝑓𝑐
                 (6.2) 

Where fc is   the frequency of the carrier. The charging times constant depends on source 

resistance Rs, forward bias diode resistance rd and capacitance C1. 

 

𝜏𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ((𝑅𝑠 +  𝑟𝑑  +  𝑅2)|| 𝑅1 ) 𝐶1         (6.3) 

 

𝑅𝑠 +  𝑟𝑑  +  𝑅2  <<  𝑅1             (6.4) 

         ∴  

                           𝜏𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = (𝑅𝑠 +  𝑟𝑑  +  𝑅2) 𝐶1 

When the input signal drops, diode becomes reverse bias (as capacitor is charged to a higher 

voltage) and the capacitor voltage remains at the initial level. During this time (when diode is 

reverse bias) the capacitor discharges through the resistor R1. 
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𝜏𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 =  𝑅1 𝐶1              (6.5) 

The discharging time constant should be large so that the capacitor discharges slowly but it 
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should not be so large that it is unable to trace the low frequency modulating signal. The 

discharging time constant should follow the following relation  

  
1

𝐵
≫ 𝜏𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ≫   

1

𝑓𝑐
                (6.6) 

Where B is the bandwidth of the low frequency bioimpedance signals. For the calculation of 

the values of resistances and capacitance, value of B is taken equal to 50 Hz. The diode used in 

the circuit is forward biased when the incoming voltage is greater than 0.7V, therefore the low 

voltage signals cannot be detected. Taking into account this problem related to cut off voltage 

of diode, a precision diode [109] is used in this circuit in place of normal diode. A precision 

diode is an operational amplifier with a diode in the negative feedback followed by a diode 

whose anode is connected at the output pin of the op-amp. The cutoff voltage for a precision 

diode is approximately equal to zero volts. Fig.6.10 is the circuit for precision diode. The output 

of the demodulator is given to the low pass filter stage through a buffer. Improved output 

buffering and peak detector gain greater than unity is achieved with an output voltage follower. 

This leads to circuit of precision envelope detector in fig.6.11. The precision envelope detector 

is much more accurate than the simple envelope detector as the voltages below 0.7V are also 

detected by this circuit. Droop due to detector diode leakage can be removed through the use 

of bootstrapping feedback that holds detector diode bias at zero when the diode is not 

conducting. 

 

Fig.6.11 Precision Envelope Detector 
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6.9.5 LOW PASS FILTER 

The signal from the demodulator contains high frequency components, which needs to be 
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filtered out before the signal is given as input to the analog to digital converter of data 

acquisition. The low pass filter is used as an antialiasing filter. A second order Chebyshev low 

pass filter with a cutoff frequency of 40 Hz is used. Chebyshev filters differ from Butterworth 

filters in that they have a steeper roll-off and more passband (type I) or stopband (type II) ripple. 

Chebyshev filters have the property of minimizing the difference between the idealized and real 

filter characteristics over the filter's range, but with passband ripples. The output of the low pass 

filter is given to data acquisition system implemented using Arduino UNO board. 

 

Fig.6.12 Final version of designed Bioimpedance Measuring Instrument 

6.9.6 ASSUMPTIONS, MEASUREMENT PROTOCOL AND DATA ACQUISITION  

According to the BIA assumptions, the human body can be considered as a homogenous 

conductor having cylindrical dimensions, in which impedance is directly proportional to length 

of the cylinder and inversely proportional to the cross-sectional area of the cylinder base 

(Fig.6.13).  

BIA formulation processes typically make the following assumptions for ease of calculation, 

though in practise the human body varies from these assumptions:  

• The human body is assumed to be a cylinder;  

• The cylindrical shape is defined by its height and weight;  

• Homogeneous and evenly distributed body composition is considered;  

• The body compositions have no individual differences or variations;  

• The environment parameters like temperature, other physiological parameters such as body 

heat or stress are assumed to be constant.  
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Fig.6.13 The human body's impedance when modelled as a homogeneous cylindrical volume 

conductor 

The capacitive reactance which is due to the capacitive nature of cell membranes and caused 

by a selectively applied AC signal allows current to pass through these cell membranes using 

current paths largely depends upon the signal frequency (Fig.6.13). The high frequency current 

flows through ECF and cells, including membranes and intracellular fluids, and penetrates cell 

membranes. The low frequency current passes through ECF only as the cell membrane 

reactance prevents its flow through it. The BIA technique can be used to determine the (TBW) 

which is nothing but combination of ECW and ICW. However, it should be done at a particular 

frequency of the applied AC signal. 

 

Fig.6.14 General test setup for BIA 

The instrument designed was tested on patients at St. Joseph hospital, Ghaziabad, India. Prior 

approval for the study was taken from the concerned authorities. Twenty-five adult human 

subjects (aged 25-60 years) participated in this study. The general test setup for BIA is shown  
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in fig.6.14. However, in our study it differed little bit for the ease of the subjects.  They were 
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made to rest for 10-15 minutes in a supine position. On the right and left forearms, Ag/AgCl 

electrodes were placed. Volunteers were told to lie down straight and remain still during 

measurement. 

6.10 RESULTS 

The test setup used to validate the instrument is similar to the setup used in impedance 

plethysmography for the measurement of cardiac output. Impedance is a measure of resistance. 

Plethysmography has become the gold standard for measuring blood volume changes in any 

part of the body based on electrical impedance changes [117]. It is also being used in the 

diagnosis of peripheral vascular diseases. In impedance plethysmography, values of 

instantaneous impedance (Z), basal impedance (Z0), which is an average of calculated 

bioimpedance values and derivative of impedance with respect to time (dZ/dt) is used to 

calculate cardiac output parameters. Since the technique is a standard procedure, the values of 

basal impedance measured by this technique can be used to validate the instrument designed. 

The output of the demodulator is essentially the basal impedance of the section across which 

electrodes have been applied. The basal impedance values of forearm given in literature, [118] 

are used to validate the output signal of the instrument designed. 

The output voltage signal of three sets of volunteers has been displayed in fig.6.15. The slight 

variations in the voltage values depict the variations in impedance (Z0). The basal impedance 

is calculated using the constant voltage level. The calculated value of basal impedance and its 

comparison with values of basal impedance in literature has been shown in table 6.1. The 

comparison in table 6.1 shows that the values measured from the output of the instrument is 

in accordance with that of standard technique, which validates the design of the instrument.  

TABLE 6.1:  BASAL IMPEDANCE (FOREARM) 
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Fig.6.15 Output voltage signals measured using the instrument. (a) is the output signal of 

volunteer set-A (b) being the output signal of volunteer set-B and (c) is the output signal of 

volunteer set-C. The y-axis in each figure is the output voltage amplitude value and the x-axis 

represents number of samples. 

 

6.11 SIGNIFICANT FINDINGS 

A simple low cost bioimpedance measuring instrument has been designed using common 

electronic blocks. The results have been validated and have been found to be accurate and 

reliable. Each block of the instrument has been tested using simulation and verified 

experimentally. The method and device developed fulfills required specifications and can be 

used in clinical examinations. Bioimpedance measurement techniques can prove very useful 

for first hand diagnosis. The major problem for using this technique for diagnosis is that its 

results are not standardized. By standardized one means that just by looking the graph or using 

its results one can say whether the results correspond to a normal person or a patient suffering  
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from a disease. A large amount of analysis has to be done for a particular application of 

bioimpedance signals to enable the doctors to rely on results produced by bioimpedance 

analysis. The standardization of bioimpedance values for human body may be difficult due to 

variable ambient conditions, eating habits, lifestyle and anthropological background. So 

intensive and extensive research and in-depth analysis is required to be carried out towards 

normalization and standardization of the bioimpedance values. 

Physiological testing and health-monitoring systems can be benefitted greatly from this method. 

Devices must be compact, wearable, or even implantable for a wide variety of applications. As 

a result, the next generation of bioimpedance sensing systems must be designed to save energy 

and resources [119]. It's critical to consider the application as well as the type of cell or tissue 

culture to be monitored when selecting a bioimpedance measurement technique [119]. As a 

result, choosing the right electrode configuration is crucial. Future research should focus on the 

electrodes and the bioimpedance measurement method [119, 120]. Overall, this study describes 

a low-cost, bioelectrical impedance measurement system that has been successfully developed 

and tested and can be used effectively and efficiently for non-invasive health monitoring. The 

study also discussed some of the most important technological aspects and limitations of 

bioimpedance calculation and study. Finally, the theoretical dimensions, operating principles, 

implementations, benefits, disadvantages, and current research scenario, future developments, 

and challenges of bioimpedance analysis and calculation are all covered in great detail in this 

study.  

This chapter is based on the following work: 

Rajesh Birok & Rajiv Kapoor “Design of Low Cost Bioimpedance Measuring Instrument” 

International Journal of Advanced Computer Science and Applications, ISSN 21565570, 

2158107X in Volume 13, No. 1 (2022). [SJR-0.193] [Published in ESCI]  
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CHAPTER 7 

 

CONCLUSIONS & FUTURE SCOPE 
 

 

This chapter summarises the findings of this study based on theoretical and experimental 

contributions, as well as it specifies the future research plans. 

7.1 CONCLUSIONS 

In this study a new approach using higher order cumulants for the analysis of ECG signal has 

been proposed. Two new methods for ECG denoising namely 1) using ANN & CEEMD               

2) Genetic Particle-Filter Improved Fuzzy-AEEMD have been proposed in this thesis. In 

addition to the above “Design of Low Cost Bioimpedance Measuring Instrument” has been 

discussed in depth as well. The brief summary of these proposed methods is as follows:   

❑ The proposed method classifies dataset of ECG signals based upon higher order 

statistics i.e., using cumulants. This method is a comprehensive measure of non-linearity 

and gives better results in terms of time complexity. It provides a quality detection 

technique in comparison to the other methods used earlier in this research domain. The 

proposed method also compares this higher order statistics classification obtained using 

different classifiers such as SVM, Fuzzy-2 and DSNN to find the best classifier. In this 

classification of ECG, four classifiers as SVM & ANN, Fuzzy-2 and DSNN were used 

and DSNN is observed to be as the best classifier among these classifiers because of its 

repeated learning and analyzing ability. The results computed from DSNN classifier has 

the highest observed accuracy compared to the rest of the three classifiers and hence, 

DSNN is the best for using it for the ECG signals classification. In this proposed 

method, cumulants helps us to remove many divergences in the other type of ECG 

datasets. Therefore, the proposed method is used to detect this problem and address the 

issue very efficiently and accurately.  

 

❑ For the ECG denoising:  

o The first method presents a novel approach for the filtering of low frequency 

artefacts of ECG signals by using Complete Ensemble Empirical Mode 

Decomposition  (CEEMD)  and  Artificial Neural  Networks (ANN),  which  

removes  most  of  the constituent noise while assuring no loss of information in 
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terms of the morphology of the ECG signal. The contribution of the method lies 

in the fact that it combines the advantages of both EEMD and ANN. The use of 

CEEMD ensures that the Neural Network does not get over fitted. It also 

significantly helps in building better predictors at individual frequency levels. 

The proposed method is compared with other state-of-the-art methods in terms 

of Mean Square Error (MSE), Signal to Noise Ratio (SNR) and Correlation 

Coefficient. The results show that the proposed method has better performance 

as compared to other state-of-the-art methods for low frequency artefacts 

removal from ECG. 

o In terms of SNR & RMSE, the second approach offers de-noising of ECG signals 

using Genetic Particle Filter and Fuzzy Thresholding with the aid of AEEMD. 

This method outperforms EMD-based techniques and other existing noise 

removal methods. The AEEMD method is used to split the ECG signal into 

IMFs. The Adaptive Ensemble EMD (AEEMD) represents a significant 

advancement in noisy ECG signal filtering approach by providing adaptability, 

flexibility, versatility, and robustness. The AEEMD is superior than the EMD 

because it eliminates the signal's mode-mixing effect. Spectral Flatness is 

utilized to automatically discover the noisy Intrinsic Mode Functions using 

Fuzzy Thresholding. To achieve a clean ECG signal, the remaining noisy 

intrinsic mode functions are filtered using the Genetic Particle Filter. The 

Genetic Algorithm Particle Filter enhances the process of self–evolution and 

self-adaption. De-noising performance has been increased by combining the 

benefits of the AEEMD over EMD technology and the Genetic Particle Filter 

over the particle filter. Overall, the proposed method provides the better accuracy 

compared to other methods. 

❑ A simple low cost bioimpedance measuring instrument has been designed using 

common electronic blocks. The results have been validated and have been found to be 

accurate and reliable. Each block of the instrument has been tested using simulation and 

verified experimentally. The method and device developed fulfills required 

specifications and can be used in clinical examinations. Primarily, it is based upon the 

low-cost component-level approach so that it can be easily used by researchers and 

investigators in the specific domain. The final measurement setup of instrument was 

tested on adult human subjects to obtain the  impedance  signal of the forearm which is  
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under investigation in this case.  However, depending on the illness or activity under 

examination, the instrument can be used on any other part of the body. The current injected 

by the instrument is within the safe limits and the gain of the biomedical instrumentation 

amplifier is highly reasonable. The technique is easy and user-friendly, and it does not 

necessitate any special training, therefore it can be effectively used to collect bioimpedance 

data and interpret the findings for medical diagnostics. Moreover, in this design of low cost 

bioimpedance measuring instrument, several existing methods and associated approaches 

have been extensively explored, with in-depth coverage of their working principles, 

implementations, merits, and disadvantages, as well as focused on other technical aspects. 

7.2 FUTURE RESEARCH SCOPE 

Despite the suggested good performance approaches, several concerns have been identified, 

and these issues may lead to future research paradigms and scope: 

The performance of proposed method for analysis of ECG signals using higher order cumulants 

can be further improved by employing various permutation and combinations of higher order 

cumulants on larger data set.  

When examining the results, it is clear that simple ANN can produce excellent results at times, 

but their performance is inconsistent. The addition of CEEMD ensures that the system runs 

smoothly. The results show that the proposed method is clearly superior to other methods in the 

literature. The use of CEEMD has increased the filtration properties of ANN while also 

preventing overfitting. Furthermore, since the filtration will be conducted mainly at lower 

frequencies, any high frequency cardiac defects will not be filtered, which is an important 

consideration. 

The suggested approach for de-noising ECG signals using a Genetic Particle Filter and Fuzzy 

Thresholding with AEEMD is computationally more difficult and requires real-time validation. 

As a future work, complexity can be reduced further by using more efficient algorithms for 

reducing number of iterations, thereby reducing the computation time. Whereas, validation can 

be improved by testing and training on large real time data set.  

Bioimpedance measurement techniques can prove very useful for first hand diagnosis. The 

major problem for using this technique for diagnosis is that its results are not standardized. 

The standardization of bioimpedance values for human body may be difficult due to variable 

ambient conditions, eating habits, lifestyle and anthropological background. So intensive and  
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extensive research and in-depth analysis is required to be carried out towards normalization 

and standardization of the bioimpedance values. 

In the future, investigation and research can be carried out for Bluetooth-enabled wireless 

instrumentation for Bio-Impedance Analysis [BIA] techniques. Moreover, in future studies 

Bluetooth-enabled wireless instrumentation for Electrochemical Impedance Spectroscopy 

(EIS) techniques could be investigated. Bioimpedance technology is becoming more prevalent 

as a result of an increasing number of healthcare monitoring applications. In the coming times 

the devices must be compact, wearable, or even implantable for a wide variety of applications. 

As a result, the next generation of bioimpedance sensing systems must be designed to save 

energy and resources.     
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