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ABSTRACT 

 

Development of a non-parametric linearization method to be used for analysis of 

nonlinear random vibration has been done. It operates on a discretized representation 

of the stochastic inputs and combines the ideas from the first order reliability method 

(FORM). For nonlinear system a particular response threshold is defined and the 

equivalent linear system is characterized by matching the "design points" of the 

nonlinear and linear responses in the space of the standard normal variables which is 

derived by discretizing the excitation. As a consequence of this definition, the first 

order approximation of tail probability of nonlinear system is equalized to tail 

probability of linear system. Thus, a unit-impulse response function of the input 

excitation is required for the representation of TELS. This system has been organized 

in order to tackle the inadequacy of conventional equivalent linearization method. 

Our objectives are investigation and thorough understanding of analysis of stochastic 

non-linear system by tail equivalent linearization method along with the calculations 

of certain nonlinear response characteristics. Furthermore study is presented on 

method of random vibrational analysis especially on equivalent linearization method 

and also gives brief review on reliability analysis of structure, first order reliability 

analysis (FORM). This purpose of this study is to look at the effects of different 

parameters on the system. At the design point, linearization of the limit-state surface 

is done in order to distinctly define a linear system, which is denoted as TELS.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

Most of the structural and mechanical engineering problems involve parameters that 

are stochastic and non-linear. In a way, it can be said that these parameters are the 

mother of all problems in analysis. Moreover, they cannot be overlooked as they are 

important considerations in determining the reliability of structural and mechanical 

systems under extreme loading conditions, e.g. 

 Inelastic structural response to strong ground motion in case of 

earthquakes 

 Response of high rise structures against turbulent winds 

 Response of offshore structures to wave loads taking into effect the 

material and geometric non-linearity. 

A method for non-linear stochastic dynamic analysis is the needed as the presently 

existing methods are either restricted to special cases or are unsuitable for reliability 

analysis. Consideration of nonlinearity during the safety evaluation of a structure is 

necessary as failure of the structure mostly happens in the nonlinear range of 

behaviour. 

Various methods have been developed for the study of nonlinear random vibrations 

over the last few decades. A typical drawback of the other methods is that they are 

limited to specialized systems or excitation and are thus not fit for practical 

application despite being more accurate. The Monte Carlo Simulation method does 

not suffer any limitations, but it requires very difficult and lengthy calculations. 

As we know, the functions of second moment of the response of a linear system 

represent the characteristics of the system, therefore the solutions need to follow an 

iterative pattern. Furthermore, a Gaussian distribution is preferred for assumption of 

the probability distribution. Thus, the probability distribution may not be truly 

correct, especially in the tail region. Therefore, the results aren’t very accurate 

although the method is quite accurate in estimation of the mean square response. 

 

1.2 Objective and scope of study 

The objectives are examination and intensive comprehension of investigation of 

nonlinear systems by Tail Equivalent Linearization Method just as calculation of 

certain nonlinear reaction attributes. Appropriate calculation for finding the design 

point has been displayed. 
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This study to display intensive examination of nonlinear dynamic analysis utilizing 

TELM (Tail Equivalent Linearization Method), and impact of different parameters 

on the system, for example, discrete portrayal of stochastic excitation, 

characterization of linear system and so on. Aside from TELM for the utilization of 

white noise process, for contemplating of TELM we need essential thought regarding 

arbitrary vibration investigation and strategies for basic reliability investigation. 

TELM depends on FORM and ELM or random vibration.  

TELM is mix of FORM and ELM implies unwavering quality investigation and 

random vibration investigation. In this examination we give brief survey of both the 

techniques.  

Various uses of this technique in structural building documented has been examined 

for stationary and non-stationary problems, for both single & multi-degree of 

freedom systems, hysteretic material models, demonstrating its legitimacy and 

precision. 

 

1.3 Organization of Report 

The following report is composed into twelve sections.  

In the primary section a short survey of TELM and significance of this strategy are 

given. For comprehension TELM, we require a decent learning of arbitrary vibration 

examination and dependability investigation of structure with the goal that we 

likewise require a survey of both techniques for examination. 

The second section is literature review in which works by past researchers on Tail 

Equivalent Linearization Method are clarified. 

In part three, the various strategies for nonlinear stochastic examination are 

diagrammed. This incorporates traditional strategies, simulation techniques and 

linearization methods. 

In part four, the characteristics of linear system are clarified. 

In part five, we learn about reliability. Different terms utilized in reliability are 

explained. We learn about normal distribution function. Lastly first order reliability 

method is examined. Nonlinear system is changed into linear system and we compute 

the design point and further reliability is determined. 

In section six, the different steps to discretize nonlinear stochastic procedure is 

clarified. This incorporates time-domain discretization and frequency-domain 

discretization. 

In part seven, we perceive how to utilize FORM to tackle stochastic dynamic 

problems. 

In part eight, we consider how to recognize linear system in both time & frequency 

domains. 
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In section nine, we learn about the Tail Equivalent Linearization Method. A brief 

presentation of TELM is given. At that point the different steps in TELM are 

clarified. Thereafter iterative calculations to discover the structure design point is 

shown. 

In part ten, we learn about the different qualities of the TELM. A numerical example 

to demonstrate the different attributes of TELM is used by utilizing a SDOF inelastic 

hysteretic oscillator based on Buoc Wen Model. Before we tackle the 

abovementioned issue, we should know the various strategies which are utilized to 

assess dynamic response. We unravel a numerical example given in A. K. Chopra 

book by linear interpolation and furthermore, Newmark's method. 

In part eleven, we learn about the deficiencies and impediments of TELM lastly 

In section twelve, we acquire the conclusions from the entire report. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Kazuya Fujimara, Armen Der Kiureghian, displayed TELM which uses the 

benefits of FORM. TELM is non-parametric linearization technique. The "design 

points" of nonlinear and linear responses are derived by discretization of the 

excitation and coordinated to characterize the equivalent linear system. The first order 

approximation of tail probability of nonlinear system is equalized to tail probability of 

linear system. The name comes from this property. The impulse response function is 

obtained by the knowledge of the design point and it uniquely describes the equivalent 

linear system.  

Luca Garre, Armen Der Kiureghian, broadened the past work on the method to 

the frequency domain. The frequency response function was introduced to 

characterize a TELS. This approach was very helpful in case of stationary input and 

response functions, found very frequently in marine structures. Considering linear 

waves, the TELS has properties, such as the representation of multi-support 

excitations and invariance from the scale of the excitation. The computational 

proficiency of TELM is largely enhanced as a result of the last property. Discretizing 

input excitation to a limited arrangement of standard normal variables is an essential 

prerequisite of TELM. The strategy was at first created in earthquake engineering. 

Thus, after this a comparing meaning of TELS was gotten with regards to its unit 

impulse response functions. Various uses of this strategy for non-stationary as well 

as stationary problems in the field of structural designing have been examined. 

 

Armen Der Kiureghian and Kazuya Fujimura, another elective methodology for 

processing fragility curve for nonlinear structures is proposed. This methodology is 

proposed. The approach utilizes an as of late created technique for the nonlinear 

dynamic analysis using TELM. The methodology keeps away from repeated time-

history examination. 

Offering a reasonable option for fragility investigation, the proposed technique has 

constraints. For instance, right now it is just material to non-degrading frameworks, 

and just a single part of ground movement was considered. Moreover, response slope 

calculations are required and in this manner, a dynamic investigation code with this 

capacity must be utilized. By and by, the proposed strategy offers an option in 

contrast to a kind of investigation for which couple of other reasonable choices are 

by and by accessible. 

 

Caughey TK proposed summing up to the instance of nonlinear systems along with 

the random excitation. The strategy is connected to an assortment of issues and 

results are contrasted and definite arrangements of the Fokker-Planck condition for 

those situations where the Fokker-Planck system may be connected. Exchange ways 

to deal with the issue are examined including the trademark work. 
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Heonsang Koo, Armen Der Kiureghian, Kazuya Fujimara, The structure point 

excitation for white noise input into an indirect versatile SDOF oscillator is 

indistinguishable from the identical representation of free-vibration reaction when 

discharged from the target threshold. For these cases just a guess to the structure 

design point is acquired. In the event that essential the guess can be utilized as a 

beginning stage in a calculation to get the exact structure design point. 

 

Armen Der Kiureghian, The geometry of random vibration issues in the space of 

the standard random variables acquired by discretizing the input procedures is 

portrayed. Linear systems exposed to Gaussian excitation, straightforward geometric 

structures, for example, vectors, planes and ellipsoids, portray the issue of intrigue. 

For non-Gaussian reactions, non-direct geometric structures portray the issues. 

Surmised answers for such issues are acquired by the utilization of FORM and 

SORM. 

 

M.Ababneh, M.Salah, K.Alwidyan, in his paper, an examination between the ideal 

linear model and Jacobian linearization method is led. The exhibition of these two 

linearization techniques are delineated utilizing two benchmark nonlinear systems, 

these are transformed pendulum system; and Duffing chaos system, linearization of 

nonlinear dynamical systems. Optimal linear model is an online linearization strategy 

for finding a neighbourhood model that is linear in both the state and control terms. 
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CHAPTER 3 

METHODS OF NONLINEAR STOCHASTIC ANALYSIS 

 

3.1 Introduction 

Classical methods: Fokker-Plank equation, Moment Closure, Perturbation methods, 

stochastic averaging. 

Simulation methods: Monte Carlo Simulation (MCS), Markov Chain Monte Carlo 

(MCMC), Orthogonal Plane Sampling (OPS), Importance Sampling (IS), Latin 

Hypercube Sampling (LHS), etc. 

Linearization methods: Equivalent Linearization Method (ELM), TELM. 

The old style strategies are significant and rich approaches, however they are 

restricted to particular systems. The vast group of simulations has no hypothetical 

breaking points be that as it may, a few of these techniques lack computational 

efficiency for high reliability issues. The last class of strategies offers an effective 

and genuinely precise calculation of the reaction distribution for most structural 

designs. 

 

3.2 Classical methods 

3.2.1 FOKKER-PLANCK EQUATION - It was inferred with regards to statistical 

mechanics, a partial differential equation depicting development in time of 

probability density function. Solving this condition gives the definite probabilistic 

structure of the response consistently.  

3.2.2 MOMENT OF CLOSURE - It is a rough strategy for assessing the statistical 

moments. As a rule, statistical moments are administered by endless coupled 

conditions; a closure procedure is utilized to acquire an approximate solution as far 

as a limited arrangement of minutes. The precision of the arrangement relies upon 

the order of closure. 

3.2.3 PERTURBATION - Among the traditional strategies, these are presumably 

the initial ones to be utilized in nonlinear random excitation. They are genuinely 

broad techniques to comprehend deterministic and/or potentially nonlinear issues.  

These depend on power series expansion keeping "significant" terms only. 

Differential equations figured for every term. The technique is somewhat direct. In 

any case, because of the idea of the detailing, the expansion terms quickly turn 

complex in case of high-order terms. Moreover, these techniques are generally 

constrained to slightly nonlinear systems. 
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3.2.4 STOCHASTIC AVERAGING - Basically, the strategy approximates 

response vector with diffusive Markov vector with the likelihood thickness capacity 

administered by FP condition. The strategy is intended to ascertain the coefficient 

function by taking out the impact of intermittent terms using stochastic averaging. 

This strategy is relevant to a wide range of SDOF systems; however it discovers its 

constraints when connected to MDOF systems. 

 

3.3 Simulations methods 

3.3.1 MONTE CARLO SIMULATION - Because of its effortlessness, it is the 

most widely and frequently used method. There are no hypothetical restrictions 

inferable from the idea of the methodology. For systems with very high reliability, 

where the most distant tail of the distribution is of interest, numerous simulation 

techniques have been created. The two head classifications are IS and MCMC 

techniques. 

3.3.2 MARKOV CHAIN MONTE CARLO METHOD - A Markov chain having 

ideal distribution in its equilibrium state is developed for examining from 

complicated probability densities. Gibbs sampling discovered the underlying 

foundations in image processing, great references for MCMC techniques. 

 

3.4 Linearization Methods 

3.4.1 Equivalent Linearization Method 

The ELM is the most famous strategy utilized in nonlinear elements. It is widely 

popular because it is very simple and has a wide range of applications. The most 

engaging element of each linearization technique is that, as soon as we acquire the 

linear system, all the linear theory can be easily connected. 

The equivalent needs to be specifically defined in the approximation of nonlinear 

response in terms of an “equivalent” linear response system (Caughey 1963). The 

ELS is defined by removing a type of variation between the nonlinear and linear 

systems. Various techniques are established depending on the type of variation 

minimised: 

 Ordinary ELM – limits the variance of error among nonlinear and linear 

responses; a distribution is to be assumed, normally Gaussian (for example 

Atalik and Utku 1976; Wen 1976). Gaussian distribution is utilized on the 

grounds that it highly simplifies every one of the calculations. This technique 

functions admirably on the off chance that you are assessing the variation of 

the nonlinear response. It gives very exact outcomes. Anyway you are keen 

on tail probabilities (the probability of a response exceeding a given higher 

threshold), this technique does not functions admirably. This does not 

function admirably especially due to the Gaussian distribution function. We 

realize that regardless of whether input is Gaussian, the yield of a nonlinear 
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framework isn't Gaussian, so this Gaussian distribution is fairly limited. 

Hence the following two strategies attempt to beat this issue. 

 Minimize higher moments of error (Naess 1995) – this technique is utilized 

for a specific type of elastic nonlinear system wherein the restoring force has 

a polynomial structure. Since higher moments are being looked at, 

accentuation is set in the tail thus showing more satisfactory results in the tail. 

Yet, the technique is confined again on account of the polynomial structure. 

 Minimizing the difference in mean crossing up rates at a selected threshold 

(Casciati 1993). By this we can get great outcomes in the tail. Anyway the 

estimation of the up crossing rate response is very vague. 

 

3.4.2 Tail Equivalent Linearization Method 

This technique characterizes the direct framework by equating first order 

approximation of tail probability of nonlinear response to tail probability of linear 

response (Fujimara and Der Kiureghian 2007). Since it is managing the tails the 

precision is improved in the tail area. 
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CHAPTER 4 

CHARACTERISTICS OF A LINEAR SYSTEM 

 

 

 

Fig 4.1 Linear System 

 

Think about a linear system exposed to one excitation F(t) and one response X(t).  

For one input-output pair (F(t), X(t)), a stable linear system is totally characterized 

by both of the accompanying: 

 h(t) = impulse response function(IRF); i.e. reaction to F(t)=δ(t)  

 H(ω) = frequency response function(FRF); i.e. amplitude to steady state 

response to F(t) = exp(iωt) (complex harmonic function). 

In the event that you have both of these functions for a stable linear system, at that 

point you have totally described the system. You don't have to know the geometry, 

boundary conditions, and so forth. So for any input you can contribute the comparing 

output. 
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CHAPTER 5 

RELIABILITY 

 

5.1 Reliability Analysis 

 

5.1.1 Reliability: 

Geotechnical structural quality over some time under standard conditions is known 

as reliability. We can also say that it is the success probability. 

 

5.1.2 Methods of reliability: 

i. First Order Reliability Method (FORM)  

ii. Second Order Reliability Method (SORM)  

iii. Monte Carlo Sampling (MCS)  

iv. Numerical Integration (NI)  

v. Increased Variance Sampling (IVS)  

 

5.1.3 Mean: 

It is the first central moment and can be defined as average value. It also 

approximates the central tendency of the data. 

 

5.1.4 Variance:  

It is the second central moment and it tells us how much the data values spread about 

the mean. 

 

5.1.5 Coefficient of variation (cov): 

It gauges the scattering of data. Higher estimation of cov speaks to the higher 

dispersion about its mean. 
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5.1.5 Covariance: 

It demonstrates the extent of linear relationship among two random variables. 

������, �	  � �� ���  ��	 ��  ��		  �  � ���   �� ��	  
�  ����	    ���	���	� 

The vulnerabilities in a variable can be evaluated utilizing a numerical model 

fulfilling various capacities. 

 

5.1.6 Normal distribution: 

It is the most generally known and utilized of all distributions considered. Since it 

approximates numerous natural phenomena very accurately, it has developed as a 

standard of reference for most of the problems of probability. 

 

 

Fig. 5.1 Standard Normal Distribution Curve 

 

 

5.1.7 Properties of Normal distribution: 

 Ranges from – ∞ to + ∞. 

 It is impeccably symmetric. 

 Mean, median and mode values are always same. 
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The standard expression for a normal density function is 

���, µ, ��	  �  1
√2��� �����µ	�/���  

The value of reliability is obviously �1 –  ��	. Let ‘R’ = resistance and ‘S’ = load, 

then the structure will fail on the chance that ‘R’ < ‘S’ and failure probability can 

then be written as  

�� �  � � ! "#  �  � ��  "	  !  0#. 
 

 

Fig. 5.2 Shaded area is the failure probability 

 

The shaded area as depicted in the above figure is the probability of failure and it is 

mathematically written as 

�� �  & ' �(	'"�)	*)
+,

�,
 

Reliability, 

  �  1   & ' �(	'"�)	*)
+,

�,
 

Where, GR(r) is cumulative distributive function of ‘R’ and GS(s) is the cumulative 

distributive function of ‘S’. 

 

A mathematical model that can relate the variables like load and resistance is known 

as the limit state function. It can be written as 

- �  �  "	  �  �� , "	  �  ��./, .�, .0, … . . , .2	 
Where, ‘Z’ = margin of safety 
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Fig. 5.3 Distribution of safety margin (Melchers 2002) 

 

The equation for the reliability index was given by Cornell as 

3 � μz
σz

  and 

Pf = Φ (-β) is the cdf of the given standard normal variable. 

 

5.2 First order reliability method (FORM) 

It is an all-around created method for solving reliability problems which is an 

essential component of structural reliability analysis. 

. = vector of random variables 

'�.	 = limit state function (G(X) <= 0 failure event) 

�7  �  �(�8��	 9� 0# = failure probability 

 

Fig 5.4 Geometry of random variables 
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The image above depicts the idea regarding geometry in the space of the random 

variables x1 and x2. The shapes are speaking to the form of the likelihood thickness 

capacity of these arbitrary factors. The limit state surface is shown by the red line 

where this limit state function takes zero values and the grey area is the failure space. 

Estimating the probability of these random variables to be lying in this failure region 

is the main work at hand. 

 

 

Fig 5.5 Transformation - x to u space 

 

The FORM takes care of this issue by making a transformation. The transformation 

is made from the ‘x’ space to the ‘u’ space (a vector of standard normal variables). 

There is no estimation required here and this should be possible until the random 

variables are continuous and possess a strictly increasing joint cumulative 

distributive function (cdf). 

 : �  :��	 - Transformed to normal space. 

 ' �:	  �  8;:��	< - Limit state function in the transformed space.  

 

The benefit of doing this (x-u space transformation) is that the probability densities 

have circular and hyper circular contours in the u space in higher dimensions. So it is 

a standard space and in this space there are basic properties regarding probability 

calculations.  

Next we discover the closest point from the origin, i.e. design point.  

:∗ � arg �AB CD|:|D| '�:	 � 0F � design point 
The surface is the linearized at this point. 

3 � D|:∗|D � reliability index 

Reliability index is the distance of the design point from the origin. 
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The first order approximation of the failure probability can be obtained by obtaining 

the probability of failure that is defined by a particular hyper plane which is half 

space probability in the normal space. Generally, it is standard normal probability 

function assessed at minus the distance from the origin. 

�7 � S�3	 => FORM approximation 

 

 

Fig 5.6 Reliability index and Design point representation 

 

Probability density decays exponentially in accordance with the distance from the 

origin is the only reason why this approximation works so well. Hence the 

differences between the hyper plane and the actual surface become negligible as we 

go farther away from the origin. 
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CHAPTER 6 

DISCRETE REPRESENTATION OF STOCHASTIC PROCESS 

 

Discretizing the stochastic process is necessary and representation in terms of 

random variables only so as to utilize a time-invariant stochastic problem. 

 

6.1 General form of a zero-mean Gaussian process 

T�U	 � )�U	. : 
)�U	  � �)�U/	 … … . . )�U2	# = vector of deterministic basis function which upholds 

the time evaluation of the excitation. 

: �  �:/ … . . :2# = vector containing standard normal variables responsible for 

stochasticity. 

This is a way of separating variation in time and stochasticity. 

There are different ways of doing this. 

 

6.2 Time domain discretization 

)V�U	 � W�U	. ℎ7�U  UV	 where,  

ℎ7�U  UV	 � A�Y:Z)� (�)Y�B)� �:B[UA�B �� \ ZAB�\( �AZU�(  

W�U	 � modulating function that modulates the process in time 

 

 

 

Fig 6.1 Time domain discretization 
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Discretized time has been shown in the above image. A random impulse and the 

filter response to that impulse are obtained and they can be added up as the first 

equation is a summation equation. The final result obtained after summing up these 

impulses is shown hereafter.  

 

 

Fig 6.2 Frequency domain discretization 

 

The above process is non-stationary in both time domain & in the frequency domain. 

 

6.3 Frequency-domain discretization 

T�U	 � /
�b c T�d	�Vef*d,

�, , where 

T�d	 � & T�U	��Vef*U
,

�,
 

The above process is well known for decomposing a process into its frequency 

components. 
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CHAPTER 7 

FORM SOLUTION OF STOCHASTIC DYNAMIC PROBLEMS 

 

7.1 Definitions 

 T�U	  �  )�U	. : = discretized stochastic excitation 

 .�U, :	 = response to discretized stochastic excitation (the response is a function 

of time but also implicitly the function of the random variable u, there could be 

huge numbers of them relying upon how you discretize length, etc.) 

 �(�� 9 .�U, :		 = tail probability at the threshold ‘x’ at time ‘t’ (the tail 

probability tells about the probability that at any given time ‘t’, the response 

exceeds a particular threshold response ‘x’) 

 

7.2 Reliability Formulation 

 '�:, �	 � �  .�U, :	 => this is the limit state function G(), because the 

random variables are already in the standard normal space 

 �(�� 9 .�U, :	 � �(�'�:, �	 ! 0	 => tail probability is now the probability 

that the limit state function assumes a value that is less than zero 

 :∗ � arg min gD|:|Dh '�:, �	 � 0	 �i UℎA) A) Uℎ� *�)A8B Y�ABU 

 3��	 � D|:∗��	|D �i  reliability index 

 

 

Fig 7.1 Reliability index (β (x)) 

 

The only exception here from the one shown before is that here the limit state 

function contains the threshold too as a parameter. 

�(�� 9 .�U, :		  � �S�3��		 �i  FORM approximation of tail probability 

Since β is not necessarily proportional to ‘x’, the distribution obtained is also not 

Gaussian. 
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7.2.1 Reliability formulation - in case of linear system 

Using the superposition principle 

 .�U, :	� �  \�U	. : where, ai(t) = vector of responses to deterministic 

functions si(t). 

 '�:, �	 � �  \�U	. :, we can notice that the limit state function is a linear 

function of u. 

 :∗  � �
D|n�f	|D . o�p	

D|n�f	|D 
 3��	 �  �

D|n�f	|D, we see that the reliability index is proportional to the 

threshold x. 

 �(�� 9 .�U, :		 � S�3��		, since the tail probability β is proportional to 

x, it can be concluded that the response is Gaussian. 
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CHAPTER 8 

IDENTIFICATION OF THE LINEAR SYSTEM 

 

Once the design point is known for a particular input-output pair, linear system can 

easily be identified. Knowing the design point will also lead to the knowledge of the 

linear vector ‘a’ and as soon as we get the vector ‘a’, the system can be identified in 

either of the two domains, viz. the time domain and the frequency domain. 

 

8.1 Time Domain Analysis 

Duhamel’s integral gives the response X(t) of a general linear, time-invariant 

dynamical system. 

aq�t	  �  & ℎ�U  UV	. )�UV	*UV
f

r
, A � 1,2, … , B 

where ai(t) is the response of the system to the deterministic function si. 

The discretized form of the Duhamel’s integral can be written as 

\V�U	 �  s ℎ�U  UV	. )�UV	∆U
2

Vu/
, ∀ A � 1,2, … , B  

Here, h(.) is impulse response function (IRF) of system for particular input-output 

pair. 

Provided that ai and si are known, ‘h’ can be calculated at various time steps. Thus 

we can directly get the IRF of the system by the design point. Therefore we can 

know the type of linear system being used without knowing the linear system but by 

knowing the design point. 

 

8.2 Frequency Domain Analysis 

|w�dV	| � x\V�U	� + \z{ �U	�
�V

 

|V � tan�/�\V�U	
\z{ �U	# 

w�dV	 � |w�dV	|exp�A|V	 
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We see that the modulus and the phase angle of the frequency response function 

(FRF) can be computed if we have ai, which in turn is easily obtained is the design 

point is known. 

Thus we confirm that with the knowledge of design point, both the IRF and the FRF 

can be easily obtained. 

The FRF can also be computed if we know the IRF of the system by the following 

equation 

w�d	 �  & ℎ�U	 exp�AdU	 *U
,

r
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CHAPTER 9 

THE TAIL EQUIVALENT LINEARIZATION METHOD 

 

9.1 Introduction 

TELM was introduced as a developed linearization technique for the purpose of 

nonlinear stochastic dynamic analysis. 

It uses the time-invariant first order reliability method (FORM) to make a fairly 

accurate estimate of the tail of the response distribution of a nonlinear system when 

subjected to a stochastic input making. 

Discretization of the input process is done and it is represented as a set of normal 

variables in TELM. A limit-state surface is defined for various response thresholds. 

A non-parametric and unique linear system is defined by linearizing the limit-state 

surface at the design point. This linear system is known as the TELS. 

 

9.2 Steps in TELM 

 For a given threshold ‘x’ and time ‘t’ the tail probability problem is formulated in 

terms of the limit-state function '�:, U	  �  �  .�U, :	  
 Design point ‘u*’ is found out. 
 Gradient vector of tangent plane is then found. 
 The TELS corresponding to the gradient vector ‘a’ is then identified by its 

IRF ‘h(t)’ or its FRF ‘H(ω)’. The tangent that hyper plane defines the TELS. 

Although the calculations are pretty simple, the determination of the design 

point is not that easy a task. 

 

9.3 Iterative algorithms for solving design point 

:∗��	 � arg min~D|:|D| '�:, �	 � 0� 

Repeated calculations of X(t, u) and the gradient of the response for the selected 

values of ‘u’ is required. 

The solution to constraint optimization problem gives us the design point. Distance 

of limit state surface from the origin has to be minimised. 

The nonlinear problem has to be solved repetitively. Generally, this calculation does 

not require a lot of iterations. Convergence in results is found in not more than 10-20 

steps. 

Due to the huge amount of variables used in the problem, using the method of finite 

differences to calculate the response gradient can prove to be a very cumbersome 

process. 
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The direct differentiation method is used in order to avoid this problem. 

Small increments are assumed between successive thresholds. This gives a fair 

approximation to the design point of next threshold, xi+1, using the following 

equations 

:�∗��V+/	 �  :∗��V	 +  � :∗��V	  :∗��V�/	
D|:∗��V	  :∗��V�/	|D 

.�:�∗	 � �V+/ 

The approximate design point ‘:�∗’ is located ‘�’ distance away from the previous 

design point ‘:∗��V	’ on the line which connecting previous 2 design points, using 

first equation. Utilization of the second equation is that it finds the point on limit-

state surface for that response threshold, i.e. �V+/. The approximate solution 

‘:�∗��V+/	’ is then used as a starting point. 

 

 

Fig 9.1 Representation of design point 

 

�/  �  0 is selected as the first threshold. A small value is selected for x2 where the 

response of the structure is nearly linear. When the first two points have been 

determined, the search algorithm can be started. 
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CHAPTER 10 

CHARACTERICTICS OF THE TAIL EQUIVALENT 

LINEARIZATION METHOD 

 

For a given threshold ‘x’ and time ‘t’ : 

The tail probability of the TELS system = First order approximation of the tail 

probability of the nonlinear system response 

 

 

Fig 10.1 TELS of the nonlinear response 

 

 TELM is a non-parametric method unlike the ELM and other linearization 

methods.  

 The IRF/FRF of the linear system shares a one-to-one relationship with the 

design point of the tail distribution. Specifically speaking, the IRF/FRF can 

be defined solely by the coordinates of the design point. It is quite a relief that 

no parameters need to be defined and computed through optimizations for the 

TELS, making it a non-parametric system in a complete sense. 

 Design point excitation T∗�U	 �  )�U	. :∗ gives us the most probable 

realization of the excitation so as to offer ascent to the occasion ;� !
.�U, :	<. In order to find the design point excitation, we first find the design 

point and then substitute it back in the equation of the discretized point 

excitation.  
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10.1 Numerical Example 

Here, an SDOF oscillator with inelastic material behaviour is considered to 

numerically investigate the properties of TELM. Both the frequency and time 

domains are utilized to solve the problem. A symmetric Bouc-Wen material model is 

used in order to describe the force-displacement relationship.  

The condition of differentiability of the limit state & response function is important 

as it confirms that the limit-state surface has a tangent hyper plane at the design 

point. 

 

 

Fig. 10.2 SDOF oscillator with inelastic material behaviour 

 

A hysteretic oscillator is considered to obtain further insight into the nature of the 

system. This oscillator is described as: 

 

�.��U	 + [.� �U	 + ���.�U	 + �1  �	-�U	# � T�U	 

 

Where, � �  3.0�10� ��8	, 
 [ �  1.5�10�  g�� �

��, 
And � � 2.1�10�  ���/�	 

The degree of hysteresis is controlled by the parameter ‘α’. 

 � � 0.1 

The excitation process is described by the equation: 

T�U	 �  ����U	 

Where, ����U	 gives base acceleration modelled as white-noise process. 

A finite value of the intensity of the white noise process produces results as shown 

below since the scale of the excitation has no effect on the TELS.  
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The term -�U	 follows the Bouc–Wen hysteresis law. 

-�U	 �  �D.� D|-�U	|2�/-�U	   �|-�U	|2.� �U	 + �.� �U	 

Where � �  � �  /
����

  in which ���  �  ����
��   is the mean square response of the 

linear (α = 1) oscillator, and the selected parameters are B � 3 and � � 1. 

The values of stiffness, initial displacement, mass damping ratio, natural time period, 

velocity can be changed and the graphs obtained hereafter will change 

correspondingly. 

Thus example investigating the various properties of TELM is solved on MATLAB. 

Values of various parameters that are given in the problem statement have been 

utilized in the code and the values of some other parameters have been assumed. The 

predefined functions such as “linsquare, pwelch, linsquare, hilbert” have been put to 

use which are predefined functions in MATLAB. A graph is plotted between the 

ground acceleration and time, depicting the variations in the impulse response 

functions (IRFs) and the frequency response functions (FRFs), thus showing the true 

nature of TELM. The problem has been solved in both the time and frequency 

domains. 

 

Fig.10.3 ground acceleration v/s time graph 
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The figure above shows that the ground acceleration ����U	 first reaches to a peak and 

then its effect starts diminishing after a while. 

 TELS is not dependent on the scaling of the excitation because neither the 

direction of the design point nor the shape of the limit-state surface varies due 

to the effect of this scaling, i.e. ℎ�U, �	 and w�d, �	 for the excitation )T�U	 

are invariant of ‘)’. 
This characteristic of TELS is very useful in getting fragility curves. The conditional 

probability of an event of interest conditioned on scale of excitation is known as 

fragility. 

 

Fig.10.4 Fragility curve for given threshold 

 

Every curve has been developed from one design point. 

 For broad-band excitations, there is a very mildly dependency of the TELS on the 

frequency content. So, a white-noise approximation is used to describe the 

IRF/FRF. 
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Fig.10.5 IRFs of TELS for the response of hysteretic oscillator 

 

 

 

Fig.10.6 FRFs of TELS for the response of hysteretic oscillator 
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Fig.10.7 Effect of non-stationarity on TELS. 

 

The above figure presents comparisons between the corresponding IRFs for         

UB � 4), 7) \B* 10), which are plotted for the interval (0,5s). It is clearly evident 

that in the event of the occurrence of a suddenly applied stationary excitation, the 

IRF has very little dependence on UB. On one hand, a single IRF is adequate per 

threshold for a stationary process, and on the other the IRF for each time point needs 

to be determined repetitively for a non-stationary process. This is the methodology 

that is followed in the ELM. The ELS needs to be obtained at every time step for a 

non-stationary excitation. 

There is a very strong dependency of the TELS on the selected thresholds: 

ℎ�U	� �i �ℎ�U, �	,  w�d	� �i �w�d, �	 

 

As opposed to the conventional linear system, where there is only one linear 

equivalent linear system that has to be found and applied for all thresholds, in the tail 

equivalent linear system we have a different linear system for each threshold.  
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Fig.10.8 Variation of IRF for selected thresholds 

 

We see that as the threshold value ‘x’ increases, the corresponding dissipation is 

faster. Though, for the unit response function of linear oscillator these curves are not 

typical. 

 

 

 

 

Fig.10.9 Variation of FRF of selected threshold 

 

The above graph makes it clear that upon increasing the threshold value the peak of 

the FRF drops. 

�(�� ! .�U, :	#� � �S�3��		 

Since the reliability index is not proportional to the threshold ‘x’, the TELM can 

present the non-Gaussian distribution. 
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�Z:� �i ZAB�\(�� � 1	;   �* �i B�BZAB�\(�� � 0.1	 
Fig.10.10 Variation of reliability index with threshold 

 

 

Fig.10.11 Variation of complementary cdf with threshold 

 

 

Fig.10.12 Variation of probability density function with threshold 
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The curve appears to be parabolic in the case that the response is Gaussian. In case of 

a linear response, the curve is parabolic. The curve in the figure above is not 

parabolic. The tail of the curve is going down as a straight line. 

TELS is invariant of time t for a stationary response. Thus the TELSs determined at 

one time point are enough to compute every statistical property of the response, viz. 

 Point-in-time distribution: Pr�� ! .�U, :	# 
 Mean up crossing rate 

 First passage probability 

TELM can be extended to MDOF systems with sufficient ease. 
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CHAPTER 11 

LIMITATIONS AND SHORTCOMINGS OF TELS 

 

 All the traditional disadvantages of FORM automatically become the drawbacks 

of TELM. In particular, the error due to the linearization approximation cannot 

be measured, implying that precision of TELM cannot be known in beforehand. 

Also, TELM asks for unmistakably greater analysis than ELM. 

 Several repeated computations are required in TELM as we use the direct 

differentiation method. 

 The continuous differentiability of the nonlinear response is a must. Thus the 

use of smooth or smoothened constitutive laws becomes compulsory 

otherwise the tangent plane cannot be defined. A pure elasto-plastic oscillator 

cannot be used without smoothening. Also, the transitions between the 

different systems have to be smooth. 

 TELM is not very accurate for strongly stiffening systems (e.g. Duffin oscillator 

with a strong cubic term) or when abrupt behaviour in the system behaviour is 

involved in the non-linearity, i.e. the limit state surface should be well behaving. 

 Also, TELM cannot be applied to degrading systems. 
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CHAPTER 12 

CONCLUSIONS 

 

 In general, TELM is another linearization method for non-linear stochastic 

dynamic excitations. 

 TELM is non parametric. 

 According to its name, TELM gives us better results for tail probabilities. 

 TELM proves to be very convenient for fragility analysis. 

 TELM can be applied to stationary as well as non-stationary response. 

 It can also be applied to MDoF systems with multi-component excitations. 

 Therefore, in TELM also the accuracy of the method depends on the nature of 

the nonlinearity. 

 For the application of TELM, the nonlinear response should have continuous 

differentiability. 

 TELM can also capture the non-Gaussian distributions of nonlinear response. 
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APPENDIX-I 

Matlab code for numerical example solved in chapter 10: 

1. Main.m 

%%TELM for noonlinear random vibration 

warning off; 

f1=linspace(0,40,2048); 

zeta1=0.3;  

sigma1=0.3; 

fn1=2; 

T90=0.3; 

eps=0.4; 

tn1=20; 

f0=0; 

Fs=100; 

NFFT=2^12;  

 

[y1,t1]=seiTELS(sigma1,fn1,zeta1,f1,T90,eps,tn1); 

 

input.Vs1 =[200 300 2000]; %(m/s) 

input.rho1 =[2000 2100 2400]; %(kgr/m3) 

input.damp1 =[0.04 0.03 0.01]; 

input.freq1 =linspace(f0,Fs,NFFT); %frequency range 

input.layer_thick1=[10 10]; %(m) !no thickness for bedrock! 

 

%Call function 

[f,U,A,B]=HOR_IRF(input); 

%Frequency response function 

FRF_linear=U(1,:)./U(end,:); 

FRF_firstorder=U(2,:)./U(end,:); 

FRF_secondorder=U(3,:)./U(end,:); 

FRF_thirdorder=U(2,:)./U(end,:)+1; 

%%plot 
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figure 

plot(t1,y1); 

xlabel('time in sec') 

ylabel('ground-acceleration in (m/s^2)') 

axis tight; xlim([0 20]); 

set(gcf,'color','w') 

guessEnvelop=[0.33,0.43,50];  

guessKT=[1,1,5]; 

[T90,eps,tn1,zeta1,sigma1,fn1]=KTPSD(t1,y1,guessEnvelop,guessKT,'dataplot','yes'

); 

%plot 

figure; 

plot(f,abs(FRF_linear)); 

hold on; 

plot(f,abs(FRF_firstorder),'r'); 

hold on; 

plot(f,abs(FRF_secondorder),'k'); 

hold on; 

plot(f,abs(FRF_thirdorder),'m'); 

xlim([0 Fs/2]) 

xlabel('Time in sec') 

ylabel('h(t,x)') 

title('Suddenly applied white noise'); 

legend('t=4','t=7','t=10'); 

 

2. seiTELS.m 

function[y,t] = seiTELS(sigma1,fn1,zeta1,f1,T90,eps,tn) 

% [y,t] = seiTELS(fn1,sigma1,zeta1,f1,T90,eps,tn) generates one time series 

% corresponding to the acceleration record from a seismometer. 

% The function requires 7 inputs, and gives 2 outputs. 

 

Initialisation 

w1 = 2*pi*f1; 
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fs1 = f1(end); 

dt1 = 1/fs1; 

f01= median(diff(f1)); 

Nfreq1 = numel(f1); 

t1 = 0:dt:dt*(Nfreq1-1); 

Generation of the spectrum S 

Fn1 = fn1*2*pi; 

s01 = 2*zeta1*sigma1.^2./(pi.*fn1.*(4*zeta1.^2+1)); 

A1 = fn1.^4+(2*zeta1*fn1*w1).^2; 

B1 = (fn1.^2-w1.^2).^2+(2*zeta1*fn1.*w1).^2; 

S1 = s0.*A1./B1; 

Time series generation - Monte Carlo simulation 

A1 = sqrt(2.*S1.*f01); 

B1 =cos(w'*t1 + 2*pi.*repmat(rand(Nfreq1,1),[1,Nfreq1])); 

x1 = A1*B1; 

Envelop function E 

b1 = -eps.*log(T90)./(1+eps.*(log(T90)-1)); 

c1 = b1./eps; 

a1 = (exp(1)./eps).^b1; 

E1 = a1.*(t1./tn1).^b1.*exp(-c1.*t1./tn1); 

Envelop multiplied with stationary process to get y 

y = x1.*E1; 

end 

 

3.HOR_IRF.m 

function [f,U,A,B] = HOR_IRF(input) 
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if length(input.Vs)~=length(input.layer_thick)+1 

    disp('There is a problem with the number of velocities Vs assigned to the various 

layers') 

    disp(' ') 

    disp('Solution: Assign velocities for all soil layers and for the bedrock') 

end 

%frequency vector 

f=input.freq; 

%circular frequency vector 

omega=2*pi*input.freq; 

%imaginary 'i' 

clear i; i=sqrt(-1); 

%complex shear wave velocity 

Vsstar=input.Vs.*(1+i*input.damp); 

%thickness of the soil layers 

h=input.layer_thick; 

%number of soil layers + bedrock 

layernum=length(input.Vs); 

%complex impedance ratio on layer interfaces 

az=zeros(layernum-1); 

for i1=1:layernum-1 

    az(i1)=input.rho(i1)*Vsstar(i1)/(input.rho(i1+1)*Vsstar(i1+1)); 

end 

%Initialization of matrices 

kstar=zeros(layernum,length(input.freq)); 

A=zeros(layernum,length(input.freq)); 

B=zeros(layernum,length(input.freq)); 

U=zeros(layernum,length(input.freq)); 

%Calculate transfer functions 

for i1=1:layernum %Loop for the soil layers 

    for i2=1:length(input.freq) %Loop for the frequencies 

        kstar(i1,i2)=omega(i2)./Vsstar(i1); %complex wave number 

kstar=omega/Vsstar 

        if i1==1 

            A(i1,i2) = 0.5*exp(i*kstar(i1,i2)*input.layer_thick(i1)) + 0.5*exp(-

i*kstar(i1,i2)*input.layer_thick(i1)); 

            B(i1,i2) = 0.5*exp(i*kstar(i1,i2)*input.layer_thick(i1)) + 0.5*exp(-

i*kstar(i1,i2)*input.layer_thick(i1)); 

            U(i1,i2) = A(i1,i2)+B(i1,i2); 

        else 

            A(i1,i2) = 0.5*A(i1-1,i2) * (1+az(i1-1)) * exp(i*kstar(i1-

1,i2)*input.layer_thick(i1-1)) + 0.5*B(i1-1,i2) * (1+az(i1-1)) * exp(-i*kstar(i1-

1,i2)*input.layer_thick(i1-1)); 

            B(i1,i2) = 0.5*A(i1-1,i2) * (1-az(i1-1)) * exp(i*kstar(i1-

1,i2)*input.layer_thick(i1-1)) + 0.5*B(i1-1,i2) * (1+az(i1-1)) * exp(-i*kstar(i1-

1,i2)*input.layer_thick(i1-1)); 

            U(i1,i2) = A(i1,i2)+B(i1,i2); 

        end 

    end 

end 
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N=length(input.freq); 

%Complex conjugates for "perfect" ifft 

if round(rem(N,2))==1 

    ia=2:1:(N+1)/2; 

    ib=N:-1:(N+3)/2; 

else 

    ia=2:1:N/2; 

    ib=N:-1:N/2+2; 

end 

A(:,ib)=conj(A(:,ia)); 

B(:,ib)=conj(B(:,ia)); 

U(:,ib)=conj(U(:,ia)); 

end 

 

4. KTPSD.m 

function[T90,eps,tn1,zeta1,sigma1,fn1] = 

KTPSD(t1,y,guessEnvelop,guessKT,varargin) 

whiteNoise = inputParser(); 

whiteNoise.CaseSensitive = false; 

whiteNoise.addOptional('f3DB1',0.05); 

whiteNoise.addOptional('tolX1',1e-8); 

whiteNoise.addOptional('tolFun1',1e-8); 

whiteNoise.addOptional('dataPlot','no'); 

whiteNoise.parse(varargin{:}); 

tolX1 = whiteNoise.Results.tolX1 ; 

tolFun1 = whiteNoise.Results.tolFun1 ; 

f3DB1 = whiteNoise.Results.f3DB1 ; 

dataPlot = whiteNoise.Results.dataPlot ; 

narginchk(4,8) 

Get envelop parameters 

dt1 = median(diff(t)); 

h11=fdesign.lowpass('N,F3dB1',8,f3DB1,1/dt1); 

d11 = design(h11,'butter'); 

Y1 = filtfilt(d11.sosMatrix,d1.ScaleValues, abs(hilbert(y)));  

Y1 = Y1./max(abs(Y1)); 

options=optimset('Display','off','TolX1',tolX1,'TolFun1',tolFun1); 

coeff1 = lsqcurvefit(@(para,t) Envelop(para,t), guessEnvelop, t1, Y1, 

[0.01,0.01,0.1], [3,3,100], options); 

eps = coeff1(1); 

T90 = coeff1(2); 

tn1 = coeff1(3); 
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Get stationary perameters for the spectrum 

E =Envelop(coeff1,t); 

X1 = y1./E1;  

x(1)=0; 

[PSD,freq]=pwelch(x1,[],[],[],1/median(diff(t))); 

coeff2 = lsqcurvefit(@(para,t) KT(para,freq), guessKT, freq, PSD, [0.01,0.01,1], 

[5,5,100], options); 

zeta1 = coeff2(1); 

sigma1 = coeff2(2); 

fn1 = coeff2(3); 

dataPLot (optional) 

if strcmpi(dataPlot,'yes') 

spectra = KT(coeff2,freq); 

figure 

% subplot(211) 

plot(t1,y1./max(abs(y1)),t1,Envelop(coeff1,t1),t1,Y1,'r') 

legend('Typical Earthquake','Broadband Tuned','White Noise') 

title([' T_{90} = ',num2str(coeff1(2),3),'; \epsilon = ',num2str(coeff1(1),3),'; t_{n} = 

',num2str(coeff1(3),3)]); 

xlabel('time (s)') 

ylabel('h(t,x)'); 

axis tight ; 

figure; 

% subplot(212) 

plot(freq,PSD,freq,spectra,'r') 

legend('Measured','Fitted envelop') 

legend('Typical Earthquake','Broadband Tuned') 

title([' \zeta = ',num2str(coeff2(1),3),'; \sigma = ',num2str(coeff2(2),3),'; f_{n} = 

',num2str(coeff2(3),3)]); 

xlabel('frequency (Hz)') 

ylabel('H(w,x)') 

axis tight 

xlim([0 10]); 

set(gcf,'color','w') 

end 

function E = Envelop(para,t) 

eps0 = para(1); 

eta0 = para(2); 

tn0 = para(3); 

b = -eps0.*log(eta0)./(1+eps0.*(log(eta0)-1)); 

c = b./eps0; 

a = (exp(1)./eps0).^b; 

E = a.*(t./tn0).^b.*exp(-c.*t./tn0); 

end 

function S = KT(para,freq) 

zeta01 = para(1); 
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sigma01 = para(2); 

omega01 = 2*pi.*para(3); 

w1 =2*pi*freq; 

s0 = 2*zeta01*sigma01.^2./(pi.*omega01.*(4*zeta01.^2+1)); 

A1 = omega01.^4+(2*zeta01*omega01*w1).^2; 

B1 = (omega01.^2-w1.^2).^2+(2*zeta01*omega01.*w1).^2; 

S1 = s0.*A1./B1; 

end 

end 
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