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ABSTRACT 

Electrical energy has become an essential part of modern human life. The power and 

energy industries have undergone significant transformations in recent years. Electric 

utilities are increasingly being privatized, restructured, and deregulated. With the current 

trend of deregulation, privatization, and restructuring in power systems, operating an 

electric power system has become more difficult. In order to deal with these difficulties, 

the optimal power flow (OPF) methodology is required by power engineer’s / utility 

companies as the key tool for operation planning, and control of power systems. 

 

OPF is a highly nonlinear, multimodal, non-convex, and non-differential optimization 

problem, which includes a large number of complex constraints, decision variables, and 

non-linear power flow equations. To solve the optimal power flow problem, several 

conventional and intelligent algorithms were used in recent years. Some of the 

conventional algorithms have outstanding convergence properties, and are often used in 

the industry. However, conventional algorithms depend on convexity to find the global 

best solution and are required to simplify relationships to achieve convexity. These 

approaches are normally limited to particular cases of OPF and do not have much 

flexibility in terms of different kinds of objective functions or constraints that could be 

employed. Except for linear programming and convex optimization, most of the 

conventional optimization algorithms cannot be guaranteed to find globally optimal 

solutions for complex constrained optimization problems.  

 

Nowadays, numerous Evolutionary Computing (EC) based optimization or meta-

heuristic algorithms have been developed by researchers, which are found to be powerful 

tools for handling difficult optimization problems. These random search, population-based 
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algorithms are highly flexible, which means that they are appropriate to solve various types 

of optimization problems, including linear as well as non-linear problems, and complex 

constrained optimization problems. Due to the stochastic nature of the EC algorithms, 

evaluating the performance of Evolutionary Computing algorithms for addressing the OPF 

problem is a challenging task. However, it has been logically proved that any single 

optimization algorithm does not have the potential to solve various types of engineering 

and complex optimization problems, thus, the “No Free Lunch” theorem supports, and 

encourages the scientists and researchers to improve the performance of existing 

algorithms and developed new algorithms. Hence, the main objective of this research is to 

develop an efficient optimization method for the OPF problem. 

 

To begin, the optimal power flow problem is solved using two meta-heuristic 

algorithms: bat search optimization and bird swarm algorithms. These algorithms have 

been used in IEEE 30-bus test systems for fuel cost minimization, total voltage deviation 

minimization, emission minimization, power losses minimization, and voltage stability 

enhancement under the normal condition as well as during line outage contingency. Based 

on OPF outcomes, it was concluded that both the proposed algorithms for the OPF problem 

are competitively better and have competitive nature compared to other reported methods.  

 

Evolutionary Computing algorithms are population-based random search techniques. 

Despite their advantages, these meta-heuristic algorithms have some drawbacks. These 

algorithms require parameter tuning to find the optimum results and for parameters tuning, 

they require multiple trials and a significant computing time. Moreover, the best solutions 

achieved by such algorithms cannot be replicated exactly, and thus several trials should be 

performed to ensure accuracy and meaningful statistical results. In this thesis, the Rao 

algorithms, a recently developed algorithm-specific parameter-less optimization 
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algorithms have been proposed to solve the OPF problem. The Rao algorithms have been 

applied to the standard IEEE 30-bus system, IEEE 57-bus system, and the IEEE 118-bus 

test system to demonstrate their efficacy and ability to solve OPF problems. Various 

objectives for solving the OPF problem are fuel cost minimization, total voltage deviation 

minimization, enhancement of voltage stability under normal and under contingency 

conditions, real power loss minimization, and emission minimization. As noted from the 

OPF results, the performance of the proposed Rao algorithms has been better than the other 

reported algorithms mentioned in the recent literature. 

 

When used to solve complex real-world engineering optimization problems, standard 

versions of some of the EC-based algorithms have been found to have some limitations, 

as some algorithms are good in exploration, while others are in exploitation. To overcome 

this problem a hybrid algorithm is proposed, which is based on a sine-cosine mutation 

operator and a modified Jaya (SCM-MJ) algorithm, to solve the OPF problems in this 

work. The efficacy of the SCM-MJ algorithm is primarily evaluated using thirteen 

(unimodal and multimodal) mathematical benchmark functions. Later, the SCM-MJ 

algorithm is applied to the Algerian 59-bus system and IEEE 118-bus test system to handle 

the OPF problems. The SCM-MJ algorithm successfully provided a minimum value of the 

objective function over several runs than other modern meta-heuristic optimization 

approaches in all the thirteen mathematical benchmark functions as well as in OPF case 

studies. The comparison of OPF outcomes demonstrates that the suggested SCM-MJ 

algorithm dominates over other approaches for solving the OPF problem. The SCM-MJ 

algorithm has provided better results for mathematical benchmark functions and OPF 

problems quickly and efficiently. 

 



xii 
 

Due to the increase in demand for electrical energy over limited reserves of fossil fuels 

and environmental concerns, renewable energy-based distributed generation is a highly 

concerned area in the modern power industry. Hence, in modern power systems, 

integration of distributed generation (DGs) is becoming increasingly essential day by day. 

This opens up new opportunities for the formulation of the OPF problem considering DG 

units in sub-transmission and distribution systems. As a result, the next work included in 

this thesis is to solve the OPF problem including DG units. A hybrid EC-based approach 

Jaya-PPS, which is the combination of the Jaya and Powell’s Pattern search (PPS) method, 

is proposed in this work to solve the optimal power flow problem for fuel cost 

minimization, emission minimization, real power losses minimization, and total voltage 

deviation minimization simultaneously. The recently developed Jaya algorithm has been 

applied for the exploration of search space, while the excellent local search capability of 

the PPS method has been used for exploitation purposes. Integration of the local search 

procedure into the classical Jaya algorithm has been carried out in three different ways, 

which resulted in three versions, namely, Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3. These 

three versions of the proposed hybrid Jaya-PPS approach were developed and 

implemented to solve the OPF problem in the standard IEEE 30-bus, IEEE 57-bus, and 

IEEE 118-bus systems. The obtained results of the three versions are compared to the 

dragonfly algorithm (DA), grey wolf optimization (GWO) algorithm, Jaya algorithm, and 

other reported methods. A comparison of the results demonstrates the superiority of the 

proposed Jaya-PPS1 algorithm over different versions of proposed algorithms and the 

reported methods.  
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𝑔𝑗 Best previous position shared by the swarm 

G (x,u) Equality constraint 

𝐻𝑘
(𝐿)

 Lower bounds of inequality constraint 

𝐻𝑘
(𝑈)

 Upper bounds of inequality constraint 

H (x,u) Inequality constraint 

𝑖𝑡𝑒𝑟 Iterations 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations 

𝐽𝑖,𝑗,𝑘𝑐1
 𝐽𝑖,𝑗,𝑘𝑐2

 and  𝐽𝑖,𝑗,𝑘𝑐3
 Three random solutions in the ith  iteration 

𝐽𝑖,𝑗,𝐵 Best candidate value of variable jth 

𝐽𝑖,𝑗,𝑊 Worst candidate value of variable jth 

𝐽𝑖,𝑗,𝑘 Value of the jth variable for kth candidate during the ith 

iteration 

𝐽𝑖+1,𝑗,𝑘 Updated value of  𝐽𝑖,𝑗,𝑘 
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𝐽𝑛𝑒𝑤(𝑖+1,𝑗,𝑘) kth candidate’s new position value during (i +1)th 

𝐾1,   𝐾2,   𝐾3,   𝐾4    Penalty factor 

k Random positive integer (k ≠i) 

𝐿𝐽 Static voltage stability index 

meanj jth element of the average position of the whole swarm 

𝑁𝑂𝑥 Nitrogen oxides 

NB Number of load buses 

NC Number of VAR compensators 

NG Number of generators 

NLB Number of load buses 

NT  Number of regulating transformers 

ntl Number of transmission lines 

𝑃𝑔1
 Slack bus generated active power  

𝑃𝑑𝑖 Active power load demand at bus i 

𝑃𝑔𝑖 Generators’ active power outputs at bus i, 

𝑝𝐹𝑖𝑡𝑖 Best fitness value of the bird 𝑏𝑖 

𝑝𝑖,𝑗 Best previous position of the ith bird 

pr Pulse emission rate 

Pop. Population size 

𝑄𝐺 Generator reactive power output  

𝑄𝑑𝑖 Reactive power load demand at bus i 

𝑄𝑔𝑖 Reactive power generation at bus i, 

Qsh Shunt VAR compensation 
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𝑅𝑖,𝑗,𝑘 the jth variable value for the kth candidate 

𝑅𝑗,𝑏𝑒𝑠𝑡,𝑖 Value of the jth variable for the best candidate 

𝑅𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖 Value of the jth variable for the worst candidate 

r, 𝜑 Random numbers (0, 1) 

Randn(0,1) Gaussian distributed random number with mean (μ) zero  

𝑆𝑂𝑥 Sulphur oxides 

𝑆𝑔
𝑙  Search direction for lth coordinate for gth dimension 

𝑆𝑙 Transmission line loading (line flow)  

S Social accelerated coefficients 

sumFit Sum of the best fitness value of the whole swarms 

Tr Tap settings of regulating transformer 

u Set of control Variables 

𝑉𝐿 Load (PQ) bus voltage  

𝑉𝑖 Voltage magnitudes of bus i 

VAR Volt-amp reactive 

Vg Generator bus voltages 

𝑉𝑗 Voltage magnitudes of bus j 

𝑣𝑘 Random flying velocity of bats at the position 𝑋𝑘 

𝑣𝑘
𝑡   Velocity of the Kth bat at tth time step 

𝑊𝑅𝑃𝐿𝑀 , 𝑊𝑇𝑉𝐷𝑀, 

𝑊𝑉𝑆𝐸  and 𝑊𝐸𝑀 

Weight factors 

𝑋∗ Global best solution 

𝑋𝑗
𝑚𝑖𝑛 and 𝑋𝑗

𝑚𝑎𝑥 Lower and upper boundaries for dimension j, 
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𝑋𝑘𝑗 jth component position vector of 𝑋𝑘 

𝑋𝑘
𝑡  Position of the Kth bat at tth time step 

x Set of dependent Variables 

𝑌𝑖𝑗 Admittance between bus i and bus j, 

𝛼𝑖,𝑗,1 and  𝛼𝑖,𝑗,2 Two random numbers between 0 and 1 

𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜆𝑖, 𝜉𝑖 Emission coefficients of ith generating unit 

𝛾𝑖,𝑗,1 and  𝛾𝑖,𝑗,2 Two random numbers between 0 and 1 

𝛿𝑖 Voltage angles at bus i 

𝛿𝑗 Voltage angles at bus j 

𝜆𝑔
∗  Step length 

𝜆𝑔
𝑚𝑖𝑛 and 𝜆𝑔

𝑚𝑎𝑥 Minimum and maximum step length for gth decision 

variable 

ϵ Smallest constraint which is used to avoid zero-division 

error 

σ Standard deviation 

𝛽 Random number between 0 and 1 

Ψ Uniformly distributed random number (-1 to 1) 
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CHAPTER 1 

INTRODUCTION 

1.1  OVERVIEW 

A power system is the largest interconnected electrical system on the earth having 

numerous generating sources, transmission and distribution systems, loads, and 

controlling devices like transformers, AVRs and governors, relays, circuit breakers, and 

other modern controlling devices, etc. to ensure its reliable, stable and unceasing operation. 

In the last few decades, the power and energy industries have undergone remarkable 

advancements.  Earlier, power systems were structured as a centralized vertically 

integrated utility that comprises three unidirectional levels of operation via generation, 

transmission, and distribution. There have been growing trends of restructuring and 

deregulation of electric utilities. It has evolved the system from vertically integrated 

utilities to decentralized control, which led to the growth of multiple power producers on 

the scale of small to large power generation. The operation of electric power systems is 

now becoming more challenging with the present trend of deregulation, and restructuring 

in power systems[1], [2]. The main goal of these changes is to increase the operating 

efficiency of power plants, reduce system losses and consequently electricity costs. 

With the integration of different kinds of power electronic appliances and renewable 

energy sources in the sub-transmission and distribution system in the existing electrical 

power system, the operation and control of the power systems have become complex and 

challenging. The efficient planning for a power system to utilize the best possible use of 

existing capacity is of prime importance and key input to the process of economic 

development. Therefore, the importance of solving the optimum power flow (OPF) 
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problem has increased many folds. OPF results are needed for planning, economic 

operation, and control of existing electrical power systems as well as for its future 

expansion planning.  

Due to the increase in demand for electrical energy over limited reserves of fossil fuels 

and environmental concerns, renewable energy generation is a highly concerned area in 

the modern power industry. At present, the continuously increasing global energy demand 

is currently unable to be met by centralized generation. Approximately 16% of the world’s 

people still do not have access to electricity [3]. Therefore, the growing inclination of 

penetration of distributed generation (DG) units in inter-connected restructured power 

systems has increased the importance of solving optimum power flow many times.  

 

1.2  OPTIMAL POWER FLOW 

 The main aim of solving an OPF problem is to find the optimal set of control variables 

that optimizes a certain objective function, at the same time satisfying various operating 

constraints and power balance equations. Optimal power flow results are needed for 

economic operation, planning, and control of the existing electrical grid and future 

expansion planning [4]. For the OPF problem, the control variables used are Vg (generator 

bus voltages), Pg (generators’ active power outputs excluding slack bus), phase shifters, Tr 

(tap settings of regulating transformer) and Qsh (injected reactive power using capacitor 

banks, FACTS devices etc.). Some of these variables are discrete, e.g., tap settings of 

regulating transformer, injected reactive power source output, and phase shifters, while 

others are continuous (e.g., Pg and Vg). The discrete nature of the control variable poses a 

challenge for the optimization techniques and makes OPF a non-convex problem. At the 

beginning of the 1960s, Carpentier addressed the OPF problem as an extension of 
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economic load dispatch for the first time in history [5]. Since then, researchers have 

contributed significantly to this crucial issue.  

 The OPF is an essential tool that regulates the control or decision variables set in the 

feasible region to find the optimal control variables setting, which can minimize a pre-

specified objective functions [6]. In the formulation of the OPF problem, fuel cost 

minimization (FCM) is frequently used as a primary objective function in addition to other 

objectives like voltage stability enhancement (VSE), total voltage deviation minimization 

(TVDM), real power losses minimization (RPLM), and emission minimization (EM) via 

readjustment of control variables, taking into account both operational and physical 

constraints. OPF is a complex optimization problem, which associates several constraints 

and decision or control variables. It is a highly non‐linear, high‐dimensional, non‐

differential, multi‐modal, and non‐convex problem with discrete and continuous control 

variables[7].  

 

1.3  DISTRIBUTED GENERATION  

DG is defined in various ways. The IEEE defines DG [8]as: 

 “the generation of electricity by facilities that are sufficiently smaller than central 

generating plants so as to allow interconnection at nearly any point in a power system, a 

subset of distributed resources”. 

On-site generation, dispersed generation, decentralized generation, district/distributed 

energy, embedded generation, and redistributed energy are all terms used to describe 

distributed generation. In general, distributed generation is a method of producing 

electricity near the consumer side by using small-scale technologies. These generations 
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rely on technologies that are mostly renewable, such as wind turbines, photovoltaic cells, 

geothermal energy, and micro hydropower plants. In addition, now a day’s hybrid DGs 

system is also used which is a combination of renewable and conventional energy sources 

(Fuel cells, Micro turbine and gas turbines, etc.) or renewable and storage devices (like 

batteries, ultra-capacitor, Flywheels, etc).  

DGs are decentralized, modular, and flexible technologies that are located close to the 

load. Their capacities are ranging typically from 1 kW to 10,000 kW or less. Fig. 1 depicts 

the classification of DGs. The DGs are classified as micro, small, medium, or large based 

on their power ratings[9]. 

 

 

Fig 1.1: Distributed generation classification  

 

1.3.1 Distributed generation technology 

 

The DGs include a variety of technologies such as renewable energy generation like 

wind, PV, wave, and geothermal, as well as non-renewable resources such as fuel cells, 

micro turbines, and internal combustion engines. The characteristics of the various DGs 
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and studying the behaviour of these technologies can improve system design and analysis. 

The following section discusses the major DG technologies. Fig.2 shows the different 

types and technologies of distributed generations. 

 

 

 

Fig 1.2: Types and technologies of distributed generation 

 

 

The DGs may also be classified into four major types based on terminal 

characteristics in terms of real and reactive power delivering capability as described in 

[10]. Four common types of DG power injection are described here 

Type 1: DG capable of supplying real power only (P) 

Type 2: DG capable of supplying reactive power (Q) only 
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Type 3: DG capable of supplying real power (P) and reactive power (Q) both  

Type 4: DG capable of supplying active power (P) but consuming reactive power (Q). 

1.3.2 Purpose of integration of DGs 

 

The inclusions of DG units in modern electrical power system have numerous 

economic and technical advantages. The following are some of the benefits of DGs[11]–

[13]: 

 From the economical point of view: 

i) It opens the door to reforms in the power sector. 

ii) It encourages the use of clean energy and the exploration of renewable energy 

sources. 

iii) Installing DGs in optimum locations is improve the available transfer capacity of 

transmission lines that reduces the expansion of the transmission and distribution 

network at the time of future planning of the power system. 

iv) The DGs installation process is very easy and cost-effective. Thus, it can be set up in 

a short period of time in any location. 

v) The DGs unit is operated independently and separately from the other DGs units 

which mean it is not controlled by central operators. Consequently, it is added or 

removed from the electrical grid as per power demand.  

vi) By supplying power to the grid at the peak hour, DGs are reducing the cost of 

electricity to end-users. In addition, the construction of new power plants, 

transmission, and distribution lines can be reduced. 

vii)  In many circumstances, supplying power to remote places becomes too expensive or 

impracticable. The DG can be installed close to the load and operated on-site. In such 
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circumstances, hybrid distributed generation is typically used to provide service to a 

single large client or a group of small customers.  

 

 From the operational point of view: 

i) DGs have a positive impact on the voltage profile, system stability, and power 

quality of the distribution and sub-transmission systems. 

ii) The optimum location and size of DG can reduce the real power losses of 

transmission and distribution networks. 

iii) DGs can be used as a backup power source on-site in the event of a power outage 

or a system failure. 

iv) DGs keep the system stable and provide the spinning reserve. 

v) The DGs capacity varies from a few kW to MW that allows them to be installed 

on medium and/or low voltage distribution and sub-transmission networks. It 

provides flexibility and is placed near to various small and big consumers.  

vi) Renewable energy base DGs reduce or eliminate emissions, thus it is good for the 

environment and society. 

vii) DGs help to reduce the congestion of transmission and distribution networks. 

viii) For industries that require uninterrupted service, DG technologies may provide 

benefits in the form of a more reliable power source. 

ix) DGs help to reduce the load demand during peak hour times of the grid or 

minimise congestion of the transmission network, because they produce power 

locally for users. 

x) DGs technologies can provide emergency power for a wide range of public 

services, and communications station while remaining grid-independent. 

xi) It provides a solution for rural electrification in a country like India. 
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1.4  MOTIVATION 

In the early decades, many classical methods [14], [15], like quadratic programming, 

interior point method, linear programming, non-linear programming and mixed-integer 

non-linear programming, etc. have been applied to solve the OPF problems. But the 

conventional algorithms depend on convexity to find the global best solution and are 

required to simplify relationships to achieve convexity. However, since the OPF problem 

is non-convex in general, several local minima can exist. If the valve point loading effects 

of thermal generators are taken into account, the non-convexity increases even further.  

Some conventional optimization techniques have outstanding convergence properties, 

and are often used in the industry. Because of the nonlinear, non-differential, multimodal, 

non-smooth, and non-convex nature of the OPF problem, the conventional optimization 

techniques are less efficient for solving the optimal power flow problem [16]. In other 

words, the conventional optimization methods are less efficient, particularly, when the 

constraints and objective functions are non-linear, non-convex, and have multiple local 

optima. 

To overcome the demerits of classical optimization methods and to handle such 

difficulties, several Evolutionary Computing (EC) based or meta-heuristic algorithms 

came into being as alternatives to the classical optimization methods[17]. As a result, EC-

based algorithms have recently got a lot of attention and are being applied to solve various 

real-world optimization problems in science and engineering fields. Some of these are 

genetic algorithm (GA), particle swarm optimization (PSO), differential Evolution (DE), 

gravitational search algorithm (GSA), moth swarm algorithm (MSA), black-hole-based 

optimization (BHBO) approach, salp swarm optimizer algorithm (SSA), league 

championship algorithm (LCA), teaching learning-based optimization (TLBO) etc.  
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When used to solve complex real-life engineering optimization problems, standard 

versions of some of the more common meta-heuristic approaches have been found to have 

some limitations. For example, premature convergence or local optima trapping is a 

common occurrence in GA and moth search optimization (MSO) algorithms. Similarly, 

the simulated annealing (SA) and PSO algorithms are relatively ineffective in searching 

for optimal global solutions [18]. In addition, poor communication in the TLBO algorithm 

during the second phase (Learning Phase) may result in insufficient knowledge sharing, 

therefore may get trapped in the local solution. Furthermore, the Jaya algorithm has a 

strong capacity to explore the search space for optimization, but occasionally it suffers 

from premature convergence [19]. The stud krill herd (SKH) algorithm was used to 

overcome the sluggish convergence of the krill herd (KH) algorithm and to find an 

optimum solution to solve the OPF problem[20]. Various modifications and hybridization 

of meta-heuristic algorithms have been proposed in the literature to address the 

shortcomings of the poorly performing standard versions of meta-heuristic approaches.  

It was found that all EC-based algorithms have some advantages and disadvantages 

through the literature survey. Two main parts of any EC-based algorithm are exploration 

and exploitation or intensification and diversification. Some algorithms have good 

exploration capability but poor exploitation, and vice versa. Some algorithms are more 

suitable to solve certain types of problems than others. It is logically proved that any single 

EC based optimization algorithm does not have the potential to solve various types of 

engineering and complex optimization problems, thus, the “No Free Lunch” theorem 

encourages the development of new algorithms and modified the existing algorithms [21]. 

To enhance the global search ability for solving the OPF problem, many improved 

variants have been explored in recent years. Some of these are, quasi-oppositional TLBO, 
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novel improved social spider optimization algorithm, improved evolutionary 

programming, enhanced genetic algorithm, adaptive biogeography based predator–prey 

optimization, levy mutation TLBO algorithm, G-best guided ABC algorithm, improved 

group search optimization, enhanced self-adaptive differential evolution (ESDE), and 

modified sine cosine algorithm (MSCA) etc.  

A hybrid meta-heuristic algorithm is the most recent research trend to solve practical 

optimization problems. Recently, hybridization of meta-heuristic or EC-based algorithms 

has become more popular because of its improved ability to deal with complex 

optimization problems. In recent literature, a large number of hybrid EC-based algorithms 

have been proposed to solve complex optimization problems successfully.  

Despite their advantages, EC-based algorithms have some drawbacks. To find the 

near-global optimal solution, they require parameter tuning. The parameters’ tuning needs 

multiple trials and hence takes a long time to get the optimal solution. Moreover, the best 

solution achieved by such algorithms cannot be replicated exactly, thus several trials 

should be performed to ensure accuracy and meaningful statistical results. From that 

context, to alleviate this problem of the meta-heuristic or EC based algorithms and make 

them more effective, a set of modified and hybrid versions of parameter-less optimization 

algorithms are proposed in this thesis. 

 

1.5  CONTRIBUTIONS 

Developing hybrid optimization methods and improving the computation 

performance of existing optimization algorithms is the main focus of this research work. 
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The application of these modified and hybrid algorithms to solve OPF problems with and 

without distribution generation were examined. 

The main contribution in this thesis work is as follows: 

 To evaluate the performance of two meta-heuristic algorithms namely, bat search and 

bird swarm algorithms to solve the optimal power flow problem. 

 To apply three easy‐to‐use metaphor‐less optimization algorithms, Rao algorithms, to 

solve the optimal power flow problem. 

 To develop and propose a modified Jaya algorithm for solving the optimal power flow 

problem. 

 To develop a novel sine-cosine mutation-based modified Jaya algorithm for solving the 

optimal power flow problem. 

 To develop a hybrid meta-heuristic Jaya-Powell’s Pattern Search (Jaya-PPS) method to 

solve the optimal power flow problem integrated with and without distributed 

generating units. 

 

1.6  LAYOUT OF THESIS 

The current chapter begins with an overview and background of OPF problems, 

followed by the motivation for conducting research in the field of OPF. This thesis is 

divided into eight chapters, including an introduction and conclusion. The remaining 

chapters of the thesis are organized as follows: 

Chapter 2 depicts a literature survey on numerous classical and meta-heuristic algorithms 

for the OPF problem. Based on the literature survey, significant research gaps are 
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recognized. The difficulties encountered in OPF solution methods, as well as the need for 

numerous modifications in classical and meta-heuristic algorithms are also included. 

Chapter 3 presents the mathematical modelling of the OPF problem with and without DG 

in a power system. The power flow equations as well as their operational constraints are 

thoroughly discussed. In addition, based on the critical review, certain essential objectives 

functions are identified and suggested. 

Chapter 4 presents a detailed study of two meta-heuristic algorithms, bat search (BS) 

optimization, and bird swarm algorithm (BSA), for optimizing the optimal power flow 

problem. These algorithms have been employed in IEEE 30‐bus test system for fuel cost 

minimization, total voltage deviation minimization, emission minimization, real power 

losses minimization, and voltage stability enhancement under the normal condition as well 

as during line outage contingency. The comparative analysis of BS optimization with BSA 

on OPF problem is carried out. 

Chapter 5 introduces Rao algorithms, which are newly proposed algorithm-specific 

parameter-less optimization approach for solving the OPF problem. The Rao algorithms 

have been applied to the standard IEEE 30-bus, IEEE 57-bus system and the IEEE 118-

bus test system to demonstrate the efficacy and ability of Rao algorithms to solve OPF 

problems. Various objectives for solving the OPF problem were considered in this chapter 

namely: fuel cost minimization, total voltage deviation minimization, voltage stability 

enhancement under normal and under contingency conditions, real power loss 

minimization, and emission minimization. Because the Rao algorithms do not require 

adjustment of algorithm-specific parameters, the proposed algorithms were found to be 

better to other reported methods. The simulation results achieved by the proposed Rao 

algorithms were compared with recently developed optimization algorithms, which 
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proved the superiority of the Rao algorithms, particularly Rao‐2 and Rao‐3 algorithms in 

terms of robustness and quality of solutions. 

Chapter 6 applies a hybrid algorithm, which is based on a sine-cosine mutation operator 

and a modified Jaya (SCM-MJ) algorithm to solve the OPF problems. The efficacy of the 

SCM-MJ algorithm is primarily evaluated using thirteen mathematical benchmark 

functions. Later, the SCM-MJ algorithm is applied to the Algerian 59-bus system and 

IEEE 118-bus test system to handle the OPF problems. The SCM-MJ algorithm has 

provided better solutions for mathematical benchmark functions and OPF problems 

quickly and efficiently. The comparison of numerical outcomes demonstrates that the 

suggested SCM-MJ algorithm dominates over other approaches for solving the OPF 

problem. 

Chapter 7 presents the hybrid meta-heuristic Jaya-Powell’s Pattern Search method to 

solve the optimal power flow problem integrated with and without DG units. Powell’s 

Pattern Search method has been incorporated into the Jaya algorithm in three different 

ways, resulting in three variants namely; Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3. To 

demonstrate the efficacy of the proposed algorithm and its potential to solve OPF 

problems, it is tested on the standard IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus 

systems for fuel cost minimization, emission minimization, real power loss minimization, 

and total voltage deviation minimization. Over several runs, Jaya-PPS1 consistently 

provided a lower objective function value in all the case studies regardless of the 

complexities and size of the power system. 

Chapter 8 summarizes the conclusions and key contributions of the thesis work. Finally, 

the scope of future study in the field of optimal power flow has been highlighted.  
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CHAPTER 2 

LITERATURE SURVEY 

2.1  INTRODUCTION 

A large number of optimization techniques have been applied to solve OPF problems. 

These optimization techniques are categorized into two major categories. The first 

category is classical or traditional optimization algorithms[14], [15], which cover both 

calculus-based and numerical methods. Further, another category is EC-based or meta-

heuristic optimization algorithms [17], [22], which includes the evolutionary computing 

based, nature-inspired, chemistry-based, human behaviour based, plant-based and physics-

based algorithms, etc. In general, the classification of optimization techniques is shown in 

Fig. 2.1. This chapter systematically presents an inclusive literature review on the several 

optimization techniques used for optimal power flow solutions. 

 

2.2  CLASSICAL OPTIMIZATION ALGORITHMS FOR OPTIMAL 

POWER FLOW 

Many classical optimization techniques (COTs) such as linear programming [23]–

[30], non‐linear programming [30]–[32], gradient based method [33]–[36], hessian matrix 

based method [37], [38], interior point method [39]–[43], Newton method [44]–[50], 

quadratic programming method [51]–[57], semi definite programming method [58]–[61], 

and chance-constrained method [62]–[65] etc. were employed during the early decades to 

solve the OPF problems.  
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M. Sasson [66] presented the solution to the OPF problem using the Fletcher-Powell 

Non-Linear Programming (FPNL) algorithm. The proposed FPNL algorithm is an 

improved version of the Powell method. The FPNL algorithm has claimed better 

performance to find global solutions in comparison to the Powell method. The proposed 

algorithm was applied in the IEEE 30-bus system to solve the OPF problem. 

 

 

Fig 2.1: Classification of optimization algorithms 

F. Capitanescu and L. Wehenkel [67] presented the solution to the OPF problem using 

a sensitivity-based method. C. H. Jolissaint, N.V. Arvanitidis and D. G. Luenberger [68] 

applied the decomposition method for online applications of real and reactive power flows. 
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A.M. Sasson [69] solved the load-flow problem using the decomposition technique. 

In the 19th century, the main drawback of the conventional method required huge storage 

and computation time to solve the OPF problems for the large power system. The beauty 

of the decomposition technique is the reduced computation time as well as efficiently use 

of memory storage.  The proposed method reduced 90% of computation time for IEEE 57-

bus system. The decomposition method is formulated for solving the OPF problem in the 

IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems. The proposed 

technique efficiently solved the 500-node power system problem without external storage. 

F. Capitanescu and L. Wehenkel [70] solved the corrective security-constrained OPF 

problem using the new iterative method. H. Y. Yamin, K. Al-Tallaq, and S. M. 

Shahidehpour [71] have applied benders decomposition to solve the dynamic OPF 

problem of deregulated electrical market.  J. E. Van Ness and J. H. Griffin [72] presented 

a load-flow study using the elimination method. M. Vanti and C. Gonzaga [73] solved the 

OPF problem using the Newton interior-point method. 

G. Tognola, and R. Bacher [74] solved the OPF problem using an unlimited point 

algorithm. The proposed method has conceptually similar to the interior point method. The 

unlimited point algorithm was applied to minimize of real power loss up to 700-bus system 

successfully. N. Alguacil and A. J. Conejo [75] proposed the benders decomposition 

method to solve the multi-period OPF problem. S.H. Low [76] presented convex relaxation 

of OPF Part I and Part II. S. N. Talukdar and T.C. Giras [77] solved the optimal power 

flow problem using a fast and robust variable metric method.  

G. Torres and V. Quintana [78] solved optimal power flow using the nonlinear 

complementarity method. To demonstrate the efficacy of the proposed algorithm and its 

potential to solve OPF problems, it is tested on the different IEEE benchmark test systems 
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including IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, and IEEE 300-bus systems and the 

Brazilian power network. The Brazilian power network is a practical power system, which 

is considered to demonstrate the validity of the proposed algorithm to solve a practical 

power system problem. S.-Y. Lin, Y.-C. Ho and C.-H. Lin [79] presented the solution to 

the OPF problem using an ordinal optimization theory-based algorithm. L. P. M. I. 

Sampath et al. [80] solved the AC OPF problem using the trust-region based sequential 

linear programming method. A. S. Jr, S. M. Deckmann and S. Soares [81] solved the active 

and reactive OPF problem using the dual augmented Lagrangian approach. 

G. Verbic, and C. A. Cañizares [82] proposed a two-point estimate method to solve 

the OPF problem considering competitive electrical market-based uncertainty. The main 

benefit of the suggested technique is that; it does not need derivatives of the nonlinear 

function which is employed in probability distribution computations. The proposed 

algorithm has been applied on 3-bus and 129-bus test systems for supply-side bidding and 

inelastic demand. N. Grudinin [83] solved the OPF problem for economic dispatch and 

security control using a combined quadratic-separable programming algorithm. Q. Wang 

et al. [84] presented the Lagrangian relaxation and benders decomposition method to solve 

the corrective risk-based security-constrained OPF problem. R. A. Jabr [85] presented the 

solution to the OPF problem using the primal-dual interior-point based semi-definite 

programming. R. R. Shoults and D. T. Sun [86] applied the P-Q decomposition technique 

to solve the OPF problem.  

D. Phan, and J. Kalagnanam [87] proposed the Lagrangian duality method to solve 

the security-constrained OPF problem. To check the efficiency and supremacy of the 

proposed algorithm, Lagrangian duality method has been applied to three standard IEEE 

test systems 30-bus, 57-bus and 118-bus test systems and two practical (New England 
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system and Polish network) power systems. The proposed algorithm solved the OPF 

problem under normal and stress conditions. In addition, the Polish network (PL 3012) is 

considered to validate the scalability of the proposed algorithm to handle large dimensional 

OPF problems, as in this system the numbers of buses are 3012. 

The classical methods have outstanding convergence properties, many of them are 

often used in the industry. In addition, most of the classical methods have used slop of 

objective function with respect to optimization variables. Therefore, most of the time, they 

stuck local minima that prevent the algorithm from searching actual global optimal 

solution. Moreover, they are facing the problem to deal with the system having non-

convex, non-differentiable, multi-modal optimization functions and constraints. Also, 

these approaches are normally limited to particular cases of OPF and do not have much 

flexibility in terms of different kinds of objective functions or constraints that could be 

employed [88]. Therefore, conventional optimization algorithms are not efficiently solving 

the all kinds of OPF problem. 

 

2.3  INTELLIGENT OR META-HEURISTIC ALGORITHMS FOR 

OPTIMAL POWER FLOW 

To overcome the demerits of classical optimization methods like dependency of nature 

of problem, constraints and initial starting point etc., various meta-heuristic algorithms 

came into being as alternatives to the classical optimization methods. As a result, meta-

heuristic or EC-based optimization algorithms have recently got a lot of attention and are 

being applied to solve various types of optimization problems. It is worth noting that 

continuous research in the soft computing area has led to the development of more than 
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100 algorithms present in the latest literature [89]. A. Saha, P. Das, and A. K. Chakraborty 

[90] presented the solution to the OPF problem using the water evaporation method. The 

conventional IEEE 30-bus and IEEE 118-bus test systems were used to demonstrate the 

effectiveness of the water evaporation algorithm. A comparison of the optimization results 

acquired from this algorithm with those of modern meta-heuristic optimization approaches 

published in recent literature demonstrates that the water evaporation algorithm is highly 

efficient and robust over other recently developed optimization algorithms. A. Barzegar et 

al. [91] suggested a water cycle algorithm to find the solution OPF problem. [92]–[94] 

have presented some extensive research work on the usage of an artificial bee colony 

algorithm for optimal power flow.  

A.A. El-Fergany, and H.M. Hasanien [95] solved optimal power flow using a salp 

swarm optimizer. The proposed algorithm is applied to IEEE 57-bus and IEEE 118-bus 

systems considering four objective functions namely, minimization of fuel cost, 

minimization of voltage deviation, minimization of real power loss and voltage stability 

enhancement. The simulation outcomes obtained by the salp swarm algorithm are 

compared to other meta-heuristic algorithms and it is observed that the proposed algorithm 

produces better results than its competitors for both the test systems. B. Allaoua and L. 

Abdellah [96] have applied the ant manners algorithm to solve the OPF problem. C. A. 

Roa-Sepulveda and B. J. Pavez-Lazo [97] presented a simulated annealing algorithm to 

solve the optimal power flow problem. [98]–[100] present a collection of comprehensive 

research papers on the application of an ant colony optimization algorithm for optimal 

power flow problems. 

G. Chen, X. Yi, Z. Zhang, and H. Wang [101] proposed a firefly algorithm to solve 

the optimal power flow problem. The proposed algorithm was implemented in the IEEE 
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30-bus, IEEE 57-bus and IEEE 118-bus systems for solving the multi-objective OPF 

problems for minimization of fuel cost, minimization of emission and for real power loss 

minimization. The OPF results of the firefly algorithm were compared with NSGA-II, 

NSGA-III, and MOPSO algorithms and the reported results available in recent literature. 

Based on the results it is found that the firefly algorithm provided the minimum value of 

the objective function in most of the cases. H. A. Hassan and M. Zellagui et al. [102] 

solved the OPF problem using the grey wolf optimizer algorithm. The grey wolf optimizer 

algorithm is inspired nature of grey wolves. To test the efficacy of the suggested GWO 

method, it is applied to WSCC 9-bus and modified 5-bus test systems for optimal power 

flow of two-terminal HVDC transmission networks. In addition, bacterial foraging 

algorithm [103]–[106], biogeography-based optimization algorithm [107]–[109], 

backtracking search algorithm [110]–[112] have been used to solve the OPF problems. 

H. Chen, M. L. Bo, and Y. Zhu [113] presented the solution to single and multi-

objective optimal power flow problems using the multi-hive bee foraging (MHBF) 

algorithm. To show the effectiveness of the suggested MHBF algorithm, this algorithm 

has been applied to six benchmarks functions as well as to the OPF problem. The obtained 

results of the MHBF algorithm were compared to the NSGA-II, MOABC, and MOPSO 

algorithms. A comparison of the results clearly demonstrates the superiority of the 

proposed MHBF algorithm over the reported methods. 

H. R. E. H Bouchekara, M. A. Abido, and M. Boucherma [114] suggested teaching-

learning-based optimization (TLBO) algorithm for the OPF problem. The TLBO 

algorithms are parameter‐less optimization algorithms. As a result, algorithm‐specific 

parameter tuning is not required at all. To demonstrate the efficacy of TLBO algorithms, 

the proposed TLBO algorithm has been employed in two standard IEEE test systems (30‐
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bus, and 118‐bus) to solve the OPF problem. The OPF results of TLBO algorithms and the 

results provided by other swarm intelligence (SI)/ evolutionary computing‐based 

algorithms published in recent literature have been compared.  

H.R.E.H Bouchekara [115] applied a black-hole-based optimization algorithm to 

solve the OPF problem. The proposed black-hole-based algorithm was implemented in the 

IEEE 30-bus and Algerian 59-bus systems for solving the OPF problem. Furthermore, 

differential evolution algorithm [116]–[124], evolutionary programming [125]–[130], 

genetic algorithm [131]–[139], particle swarm optimization algorithm [140]–[146] were 

applied to solve the optimal power flow problem. 

H.R.E.H Bouchekara et al. [147] have applied the league championship algorithm 

(LCA) to solve the OPF problem in the Algerian power system. The Algerian 59-bus 

system is a practical power system used to demonstrate the validity and scalability of the 

proposed LCA algorithm to solve the OPF problem. I. N. Trivedi et al. [148] presented a 

moth-flame optimizer algorithm to solve the OPF problem. K. Abaci and V. Yamacli [149] 

solved the OPF problem using a differential search algorithm. The proposed algorithm was 

applied in IEEE 9-bus, IEEE 30-bus, and IEEE 57-bus test systems to solve the OPF 

problem for minimization of fuel cost, minimization of emission, voltage stability 

enhancement, and minimization of total voltage deviation.  

M. Basu [150] solved optimal power flow problem using group search optimization. 

P.K. Roy and C Paul [151]proposed a krill herd algorithm to solve the optimal power flow 

problem. S. S. Reddy, and C. S Rathnam [152] applied the glowworm swarm optimization 

(GSO) method to solve the optimal power flow problem. To check the efficacy of the GSO 

algorithm, it was applied for solving the OPF problem in the standard IEEE 30-bus and 

Indian 75-bus systems. The Indian 75-bus system is a practical power system used to 
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demonstrate the validity of the GSO algorithm for solving the real-world OPF problem. A 

comparison of the optimization results acquired from the proposed GSO algorithm with 

those of modern meta-heuristic optimization approaches published in recent literature 

demonstrates that the proposed algorithm is highly efficient and robust over other well-

known algorithms. 

 S. Sivasubramani, and K. S. Swarup, [153] addressed the OPF problem using a multi-

objective harmony search algorithm. V. Roberge, M. Tarbouchi, and F. Okou [154] 

applied graphics processing units for the OPF problem. W. Warid et al. [155] proposed the 

Jaya algorithm to solve the OPF problem with and without distribution generation (DG) 

source. The proposed algorithm handles the OPF problem considering DG units with three 

objectives functions simultaneously, namely, minimization of fuel cost, minimization of 

real power losses and voltage stability enhancement. To demonstrate the efficacy of the 

Jaya algorithm and its capacity to solve OPF problems, the proposed algorithm was applied 

to the standard IEEE 30‐bus system and IEEE 118‐bus test system. Y. T. K. Priyanto, and 

L. Hendarwin [156] proposed a wolf algorithm to find the solution to the multi-objective 

OPF problem.   

B. Bentouati, S. Chettih, and L. Chaib [157] presented the solution to the OPF problem 

using the interior search algorithm. Moreover, gravitational search algorithm [158]–[160], 

moth swarm algorithm [161], [162], tree-seed algorithm [163] and symbiotic organisms 

search algorithm [164], [165] have been employed to solve the OPF problem. 

When used to solve complex real-life engineering optimization problems, standard 

versions of some of the more common meta-heuristic approaches have been found to have 

some limitations. For example, premature convergence or local optima trapping is a 

common occurrence in GA and MSO algorithms.  
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2.4  VARIANTS OF INTELLIGENT ALGORITHMS FOR OPTIMAL 

POWER FLOW 

To encounter the shortcoming of meta-heuristic algorithms and enhance the global 

search ability for solving the OPF problem, many improved variants have been explored 

in recent years. A. M. Al-Attar et al. [166] presented the modified grey wolf optimizer to 

solve optimal power flow problem. The proposed modified GWO algorithm was applied 

in IEEE 30-bus system considering two objective functions namely, minimization of fuel 

cost and pollution gasses emission. Simulation outcomes obtained by modified grey wolf 

optimizer were better compared to classical GWO algorithm and other competitors.  

A. R. Bhowmik, and A. K. Chakraborty [158] have applied an opposition-based 

gravitational search algorithm (GSA) to solve single and multi-objective OPF problems. 

To overcome the drawback of the classical GS algorithm, the oppositional based learning 

(OPL) strategy has been used. The IEEE 30-bus system is used to demonstrate the validity 

and scalability of the proposed OPL- GSA to solve the OPF problem.   

Artificial bee colony (ABC) [167] is another population-based stochastic optimization 

algorithm. It has good global search ability but sometime it is suffering from premature 

convergence problem. To overcome the drawbacks of the classical ABC algorithm, several 

variants of the ABC algorithm have been proposed to solve the optimal power flow 

problem. Some notable ones are: modified ABC algorithm [168], chaotic ABC algorithm 

[169], new enhanced ABC algorithm [170], g-best guided ABC algorithm [171], [172], 

improved ABC algorithm based on orthogonal learning[173], improved ABC 

algorithm[174], new quantum-inspired chaotic ABC algorithm [175] and many more. 

Moreover, several improved variants of the biogeography-based optimization (BBO) 
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techniques were also used to solve the OPF problem. These are adaptive biogeography 

based predator–prey optimization technique [176], adaptive real coded BBO algorithm 

[177] and quasi-oppositional BBO algorithm [178] and others. 

The Particle swarm optimization (PSO) algorithm [179] is a nature-inspired 

optimization technique developed by Kennedy and Eberhart in the year 1995. Like most 

swarm intelligence based optimization algorithms, the PSO algorithm is suffering 

premature convergence. Thus, recently several modified or improved versions of PSO 

have been developed to efficiently solve the OPF problem. Some of these are: non-

dominated sorting PSO algorithm [180], improved PSO algorithm [181]–[183], modified 

PSO algorithm [184], [185], chaotic improved PSO algorithm[186], parallel PSO 

algorithm [187], comprehensive learning PSO algorithm [188], PSO with an aging leader 

algorithm [189], evolutionary PSO algorithm [190], new constriction PSO algorithm 

[191], mixed-integer PSO algorithm [192] and many more. 

A.F. Attia, R. A. El Sehiemy and H. M. Hasanien [193] proposed a modified sine-

cosine algorithm to solve the OPF problem. The sine-cosine algorithm (SCA) has a strong 

capacity to explore search space globally, but sometimes it suffers from getting stuck in 

local optima. In order to overcome this problem and to make this algorithm more efficient, 

a modified sine-cosine algorithm (MSCA), which combines the SCA and levy flights 

algorithm, is proposed in this paper. B. Mahdad and K. Srairi [194] suggested an adaptive 

partitioning flower pollination algorithm to solve the OPF problem. The conventional 

IEEE 30-bus and IEEE 57-bus test systems were used to demonstrate the effectiveness of 

the proposed algorithm to solve security constrained OPF problems. B. S. Rao, and K. 

Vaisakh [195] presented solution to the optimal power flow problems integrated with 
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FACTS devices using an adaptive clonal selection algorithm. D. Nualhong et al. [196] 

solved optimal power flow using a reactive tabu search algorithm.  

Differential Evolution (DE) is a powerful evolutionary algorithm and has a strong 

exploitation search capability. To enhance the global search capability of the DE 

algorithm, many improved or modified variants of DE were applied to solve the OPF 

problem. Some of these are: forced initialized DE algorithm [197], enhanced self-adaptive 

DE [198], evolving ant direction DE algorithm [199], DE integrated with effective 

constraint handling techniques [200], improved adaptive DE algorithm [201], modified 

DE algorithm [202], multi-agent based DE algorithm [203] and improved DE algorithm 

[204]. 

E. Barocio et al. [205] used a modified flower pollination algorithm (MFPA) to solve 

multi-objective optimal power flow. The centroid decision making concept (CDMC) has 

been used to select the best solutions for the Pareto fronts. The CDMC concept is simple 

as compared to entropy criterion, and fuzzy membership methods and has provided better 

results for multi-objective OPF problems. To check the efficacy of the MFPA algorithm, 

it was applied for solving the multi-OPF problem in the IEEE 30-bus system considering 

bi and tri objective functions namely, fuel cost, voltage deviation and real power loss. G. 

Chen et al. [206] solved optimal power flow using a modified pigeon-inspired optimization 

method.  

Evolutionary programming (EP) is a powerful evolutionary algorithm developed by 

L. J. Fogel. The working principle of the EP method is similar to that of genetic algorithm. 

Like GA, EP is also suffering from premature convergence or local optima trapping. Thus, 

the various modified version of EP has been developed to efficiently solve the complex 

power system problem. Some of these are, parallel evolutionary programming [207], 
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modified MOEA/D approach [208], wheeling using EA algorithm [209], EA with 

constraint handling technique [125], faster EA algorithm [210], efficient evolutionary 

algorithm [211], improved evolutionary programming [212], improved strength Pareto EA 

algorithm [213]. Furthermore, improved variants of the symbiotic organisms search (SOS) 

algorithm has also been used to solve the OPF problem [214]. 

H.R.E.H. Bouchekara [215] has applied a modified electromagnetic field optimization 

algorithm to find the solution to the OPF problem. A versatile combination of chaotic maps 

concept and EFO algorithm may overcome their common weaknesses while taking 

advantage of the strengths of the two algorithms. The performance of the proposed 

algorithm was evaluated by solving optimal power flow in IEEE 30-bus, IEEE 57- bus, 

and IEEE 118-bus systems. The numerical results obtained by the proposed algorithm are 

better than the EFO algorithm and other well-known optimization algorithms in all three 

systems. In addition, several improved variants of the krill herd algorithm have also been 

used to solve the OPF problem. These are oppositional krill herd algorithm[216], chaotic 

krill herd algorithm[217], [218], and novel oppositional krill herd algorithm [219]. 

Furthermore, several improved variants of the teaching–learning based optimization have 

also been used to solve OPF problems. These are modified TLBO algorithm [220], quasi-

oppositional TLBO algorithm [221] and Lévy mutation based TLBO algorithm [222]. 

An improved colliding bodies optimization algorithm for solving the OPF problem 

has been proposed by H.R.E.H. Bouchekara et al. [223]. The suggested algorithm's 

performance was assessed by solving the optimal power flow problems for three different 

IEEE benchmarked (IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus) systems considering 

16 objective function cases. K. Srilakshmi, P. R. Babu and P. Aravindhababu [224] solved 

the OPF problem using the enhanced most valuable player algorithm. M. A. Taher et al. 
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[225] solved optimal power flow using an improved moth-flame optimization algorithm. 

M. A. Taher et al. [226] presented an optimal power flow problem using a modified 

grasshopper optimization method. M. Ghasemi et al. [227] have applied the chaotic 

invasive weed optimization algorithm to solve the OPF problem.  M. H. Hassan et al. [228] 

addressed the OPF problem with a DG source using a modified Rao-2 algorithm. In 

addition, improved variants of the Jaya algorithm (JA) namely, Quasi‐Oppositional JA 

[229], has also been used to solve the OPF problem.  

John Holland proposed a population-based stochastic optimization algorithm named 

genetic algorithm in 1975, which was motivated by the survival of fitness and natural 

selection. To make new children from parent chromosomes, GA uses genetic operators 

(mutation, crossover, and selection) the same as the DE algorithm. GA is a well-known 

and efficient global optimization algorithm but sometimes suffers local optima trapping or 

premature convergence. Therefore, the last couple of years numerous modified or 

improved versions of GA have been developed to overcome this problem and to make this 

algorithm more efficient. Some of these are, enhanced GA [230]–[232], linear adaptive 

GA [233], adapted GA with adjusting population size [234], efficient parallel GA [235], 

dynamic strategy based fast decomposed GA [236], parallel non-dominated sorting GA-II 

[237], GA with a new multi-parent crossover [238], improved non-dominated sorting GA-

III [239], modified simple GA [240], non-dominated sorting GA-II [241], improved GA 

[242], refined GA [243], modified non-dominated sorting GA-II algorithm [244], [245], 

mixed integer GA with arithmetic operators [246], real-coded mixed-integer GA [247] and 

many more. 

The multi-objective OPF problem was solved using an adaptive group search 

optimization by N. Daryani, M. T. Hagh, and S. Teimourzadeh [248].  T.  Niknam et al. 
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[249] presented a modified shuffle frog leaping algorithm to find the solution OPF 

problem. The OPF problem was solved using an improved salp swarm algorithm by S. A. 

El-sattar et al. [250]. Moreover, several improved variants of the bacteria foraging 

algorithm (BFA) were used to solve the OPF problem. These are: modified BFA [251], 

[252] and enhanced BFA [253]. 

T.  Niknam et al. [254] solved the dynamic optimal power flow problem using a 

modified honey bee mating optimization. The proposed algorithm solved the OPF problem 

by taking into account practical issues of generator units like prohibited operating zones 

and valve loading effects. The performance of the proposed algorithm was evaluated by 

solving optimal power flow considering three IEEE test systems namely, IEEE 14-bus, 

IEEE 30-bus, and IEEE 118-bus systems.  V. Raviprabakaran and R.C. Subramanian [255] 

solved the OPF problem using enhanced ant colony optimization. Moreover, several 

improved variants of the harmony search method have been used to solve the OPF 

problem. These are the improved harmony search (HS) method [256], chaotic self-

adaptive differential HS algorithm [257] and differential HS algorithm [258]. 

T. T. Nguyen [259]proposed improved social spider optimization (ISSO) algorithm to 

solve optimal power flow. The proposed ISSO algorithm has been modified in three 

different ways, resulting in three variants namely; ISSO1, ISSO2, and ISSO3. The 

performance of the proposed algorithm is evaluated by solving optimal power flow for 

IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems. Y. Tan et al. [260]suggested an 

improved group search optimization algorithm for solving optimal power flow problem.  
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2.5  HYBRID ALGORITHMS FOR OPF  

Various types of hybridization of meta-heuristic algorithms have been proposed in the 

literature to address the shortcomings of the poorly performing standard versions of meta-

heuristic approaches. A. Gacem, and D. Benattous  [261] proposed a hybrid algorithm, 

which was based on genetic algorithm and particle swarm optimization algorithm. The 

IEEE 30-bus test system was used to demonstrate the effectiveness of the proposed 

algorithm to solve OPF problem. The numerical results obtained by the proposed 

algorithm were superior as compared to GA and PSO algorithms.  A. Khelifi, B. Bentouati, 

and C. Saliha [262] applied a hybrid firefly krill herd algorithm to solve the OPF problem. 

To improve the local search performance of the hybrid algorithm, a light intensity operator 

was employed in the krill herd algorithm. To examine the efficacy of the proposed 

algorithm, it was applied in IEEE 30-bus system considering various single and multi-

objective functions. M. Kaur and N. Narang [263]proposed a hybrid invasive weed 

optimization method to solve the OPF problem. The proposed hybrid method is a 

combination of Powell’s pattern search and invasive weed optimization algorithm. 

B. Mahdad, and K. Srairi [264]solved the OPF problem considering four objectives: 

minimization of fuel cost, real power loss, total voltage deviation, and power system 

security with loading margin stability enhancement using a hybrid firefly pattern search 

algorithm. The IEEE 14-bus and IEEE 30-bus systems were used to examine the 

effectiveness of the proposed algorithm. C.-M. Huang, and Y.-C. Huang [265] presented 

optimal power flow problems integrated with FACTS devices using a hybrid optimisation 

method. The proposed hybrid algorithm is a combination of the harmony search algorithm 

and the ant system algorithm. To check the efficacy of the algorithm, it has been applied 

to the IEEE 30-bus to solve OPF problems considering real power loss, and voltage 
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deviation as the main objective functions. The numerical results obtained by the proposed 

algorithm were compared with DE and PSO algorithms. The comparison of numerical 

outcomes demonstrates that the proposed hybrid algorithm dominates over other methods 

reported in the recent publications for solving the OPF problem. 

D. B. Das, and C. Patvardhan [266] solved the OPF problem using multi-objective 

hybrid evolutionary strategy (MOHES). The proposed hybrid algorithm was applied to 

IEEE 30-bus and IEEE 118- bus systems considering fuel cost, emission cost, real power 

loss, and total voltage deviation as the main objective functions to be minimized. The 

results obtained by the proposed method were more robust and competitive as compared 

to those of the reported algorithms. E. Naderi et al. [267] presented the solution to single- 

and multi-objective optimal power flow problems using self-adaptive particle swarm 

optimization (SPSO) and differential evolution algorithms. J. Radosavljevic et al. [268] 

applied particle swarm optimization and gravitational search algorithm (GSA) to find the 

solution to the OPF problem. The hybrid method utilized the social thinking of the PSO 

algorithm and the exploitation quality of the GSA algorithm. 

K.-H. Kim et al. [269] presented hybrid evolutionary programming incorporating 

sequential quadratic programming to find the solution to the OPF problem. The proposed 

hybrid algorithm was applied in modified IEEE 14-bus system to solve the OPF problem 

taking into account generation unit and transmission line outage as main objective 

functions. L. Shengsong, H. Zhijian and W. Min [270]proposed a hybrid algorithm, which 

is based on a chaos optimization algorithm (COA) and linear predictor-corrector primal-

dual interior point (PCPDIP) algorithm to solve the OPF problem. The proposed hybrid 

approach is primarily concerned with balancing the exploration and exploitation steps of 

the optimization procedure. PCPDIP technique has good search space exploitation 
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capability, while COA is able to explore the search space very well. The goal of 

incorporating PCPDIP with COA is to combine the benefits of both algorithms. The OPF 

problem was solved using an evolving ant direction hybrid DE algorithm by K. Vaisakh, 

L. Srinivas, and K. Meah [271]. 

L. Shengsong, H. Zhijian and W. Min [272] used hybrid chaos optimization and 

successive linear programming to find the solution of the OPF problem. The conventional 

IEEE 14-bus, 30-bus and 57-bus test systems were used to demonstrate the effectiveness 

of the proposed algorithm to solve OPF problems. M. Ghasemi et al. [273]solved the OPF 

problem using a hybrid imperialist competitive algorithm (ICA) and teaching-learning 

algorithm (TLA). M. R. Narimani et al.[274] solved the optimal power flow problem using 

a hybrid PSO and the shuffle frog leaping algorithm. The proposed algorithm was applied 

in IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems to solve the OPF problem 

taking into account practical issues of generator units like valve point effect and multi-fuel 

type of generation units, and many others. M. R. Al Rashidi, and M. E. El-Hawary [275] 

solved the discrete optimal power flow problem considering valve-point loading effects 

using a hybrid particle swarm optimization. P. Bhasaputra and W. Ongsakul [276] solved 

an OPF problem using hybrid tabu search and simulated annealing algorithms. T. Niknam, 

M. R. Narimani, and R. Azizipanah-Abarghooee [277] presented a hybrid algorithm, 

which is based on shuffled frog leaping algorithm and simulated annealing (SA) to find 

the solution to the OPF problem. The proposed hybrid algorithm solved the OPF problem 

taking into account practical issues of generator units like prohibited operating zones and 

valve loading effects. T. S. Chung and Y. Z. Li, [278] solved the optimal power flow 

problem using a hybrid genetic algorithm. Y. Xu et al. [279] applied a hybrid evolutionary 

algorithm to solve transient stability based OPF problem and many more.  
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2.6  RESEARCH CHALLENGES AND OBJECTIVES 

From the aforementioned critical literature review relating to methods that have been 

used for optimal power flow, the following research challenges are identified: 

• OPF is a complex optimization problem, which associates several constraints and 

decision variables. Conventional optimization methods are less efficient for solving 

OPF problems particularly, when the constraints and objective functions are non-linear, 

non-convex, and have multiple local optima. 

• Various evolutionary computing based algorithms were proposed in recent literature to 

overcome the shortcomings of classical optimization techniques to solve the OPF 

problem.  

• When used to solve complex real-life engineering optimization problems, standard 

versions of some of the more common EC based approaches were found to have some 

limitations. For example, premature convergence or local optima trapping is a common 

occurrence in meta-heuristic algorithms. 

• Despite their advantages, EC based algorithms have some drawbacks. To find the near-

global optimal solution, they require parameter tuning. The parameters’ tuning needs 

multiple trials and hence take a long time to get the optimal solution. Moreover, the 

best solutions achieved by such algorithms cannot be replicated exactly thus several 

trials should be performed to ensure accuracy and meaningful statistical results. 

• It is observed that most of the evolutionary computing based and nature inspired 

algorithms have some advantages and disadvantages through the literature survey. Two 

main parts of these algorithms are exploration and exploitation. Some algorithms have 
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good exploration capability but poor exploitation, and vice versa. Some algorithms are 

more suitable to solve certain types of problems than the others. 

The following objective functions are considered on the basis of the aforementioned 

challenge and critical review. 

• To apply the parameter-less optimization algorithm for the OPF problem. 

• Develop hybrid algorithm(s) to balance the exploration and exploitation capability of 

the algorithm during the search process. Validation of the modified / hybrid 

algorithm(s) using several standard mathematical benchmark functions. 

• To assess the robustness of the modified / hybrid algorithm(s) algorithms for solving 

the OPF problem with and without DG, statistical analysis was performed. 

• To illustrate the proposed work through realistic case studies. 

2.7  SUMMARY 

This chapter presents a comprehensive and critical overview of optimal power flow. 

Further, various solution methodologies for the OPF problem are also discussed in detail. 

Based on the literature survey, research gaps are recognized and research objectives have 

been framed for the present research work. Apart from presenting various methodologies 

for optimal power flow reported in the literature, this chapter also discusses the pros and 

cons of these optimization techniques.   
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CHAPTER 3 

OPTIMAL POWER FLOW  

3.1  INTRODUCTION 

 The motive of solving an optimal power flow problem is to determine the optimal set 

of control variables in a given power system network that optimizes some objective 

functions. The objective functions to carry out OPF are fuel cost minimization, total voltage 

deviation minimization, real power losses minimization, voltage stability enhancement and 

emission minimization via optimal adjustment of the power system independent variables, 

while at the same time it takes care of various network physical operating constraint. The 

control variable used for the OPF problem are generator bus voltages, generator’s active 

power outputs (except slack bus), transformer tap settings, phase shifters and other sources 

of reactive power such as shunt capacitor or some shunt FACTS controllers. Some of them 

are discrete (e.g. reactive injections, and transformer tap settings) and others are continuous 

(e.g. generator real power outputs and generator voltages) in nature.  

 The presence of the discrete nature of the variables provides a challenge to optimization 

techniques and makes the OPF problem become a non-convex one. The power system 

equality and inequality constraints such as generator constraints, shunt VAR constraints, 

transformer constraints, line-flows and bus voltages are effectively handled in the OPF 

problem by implementing the penalty factor approach. OPF problem formulation yields a 

highly non-linear, multi-modal, non-convex, non-differential objective function having 

discrete and continuous control variables and it has been introduced by Carpentier in the 

early 1960’s [280]. 
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3.2  PROBLEM FORMULATION 

A set of objective functions and constraints are used to construct the OPF problem. 

Either each objective is optimized individually or all of them are combined, at the same 

time all the system constraints (limits) need to be satisfied. In general, the OPF problem 

can be mathematically formulated as follows [281]: 

Minimize       F (x, u)                                                                                                                     (3.1) 

Subject to;    {
G (𝑥, 𝑢)  =  0  

𝐻𝑘
(𝐿)

≤  𝐻 (𝑥, 𝑢)  ≤  𝐻𝑘
(𝑈)                                                       (3.2) 

Where,  

F(x, u): objective function, 

G (x, u), H (x, u): equality and inequality constraints, 

x, u: set of dependent and control variables, 

𝐻𝑘
(𝐿)

, 𝐻𝑘
(𝑈)

: lower and upper bounds of inequality constraint 

The ‘x’ is the vector of dependent variables in a power system network that includes: 

 Slack bus generated active power 𝑃𝑔1
. 

 Load (PQ) bus voltage 𝑉𝐿. 

 Generator reactive power output 𝑄𝑔 . 

 Transmission line loading (line flow)  𝑆𝑙. 

Hence, x can be expressed as:  

𝑥𝑇 = [𝑃𝑔1
, 𝑉𝐿1

… 𝑉𝐿𝑁𝐿𝐵
, 𝑄𝑔 … 𝑄𝑔𝑁𝐶

, 𝑆𝑙1
… 𝑆𝑙𝑛𝑡𝑙

]                                                                                                      (3.3) 
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Where NLB, NG and ntl are the number of load buses, the number of generators and the 

number of transmission lines, respectively. 

In Eqs (3.1) and (3.2), u denotes the independent or control variables of a power 

system network that includes: 

 Generator active power output 𝑃𝑔 except at slack bus 𝑃𝑔1
. 

 Generator bus voltage 𝑉𝑔. 

 Transformer taps setting 𝑇𝑟. 

 Shunt VAR compensation 𝑄𝑠ℎ. 

Hence, u can be expressed as:  

𝑢𝑇 = [𝑃𝑔2
… 𝑃𝑔𝑁𝐺

, 𝑉𝑔1
… 𝑉𝑔𝑁𝐺

, 𝑄𝑠ℎ1
… 𝑄𝑠ℎ𝑁𝐶

, 𝑇1 … 𝑇𝑁𝑇  ]                                                                                        (3.4) 

Where NG, is the number of generators, NC is the number of VAR compensators, and NT 

is the number of regulating transformers respectively. 

3.3  CONSTRAINTS 

The optimal power flow problem has two types of constraints namely equality and 

inequality constraints, as given below [282]. 

3.3.1 Equality Constraints 

These constraints can be divided into real power and reactive power static load flow 

equations as: 

  0    =        Pgi − Pdi − Vi ∑ Vj
NB
j=1 [Gij cos( θij) + Bij sin(θij)]                   (3.5) 

0    =       Qgi − Qdi − Vi ∑ Vj
NB
j=1 [Gij sin( θij) − Bij cos(θij)]                      (3.6) 
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Where, 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 , the voltage magnitudes at bus i and bus j are 𝑉𝑖 and 𝑉𝑗 respectively, 

NB is the number of buses, 𝑃𝑔𝑖 and 𝑄𝑔𝑖 are the active and reactive power output of 

generator at bus i, 𝑃𝑑𝑖 and 𝑄𝑑𝑖 are the active and reactive load demand at bus i, 𝐺𝑖𝑗  and 𝐵𝑖𝑗 

are the elements of the admittance matrix (𝑌𝑖𝑗= −𝐺𝑖𝑗+ j𝐵𝑖𝑗) representing the conductance 

and susceptance between bus i and bus j, respectively. 

3.3.2 Inequality Constraints 

These constraints can be categorized into four types, namely, generation constraints, 

shunt VAR compensation constraints, transformer constraints and security constraints 

[283]. 

 Generator Constraints: 

The voltage 𝑉𝑔𝑘
, active power output 𝑃𝑔𝑘

and reactive power output 𝑄𝑔𝑘
 should be 

regulated by their lower and upper limits for all the generators including slack bus 

generator:  

Vgk
min ≤ Vgk

≤ Vgk
max   , k = 1 … . . . NG                                                                                                           (3.7) 

Pgk
min ≤ Pgk

≤ Pgk
max  , k = 1 … . … NG                                                                                                          (3.8) 

  Qgk
min ≤  Qgk

≤ Qgk
max  , k = 1 … . … NG                                                                                (3.9) 

 Transformer Constraints: 

Transformer taps-settings (𝑇𝑟) are regulated to their lower and upper limits:  

Tr𝑘
min  ≤ Tr𝑘

≤ Tr𝑘
max   k = 1 … … NT                                                                                                                 (3.10) 

 Shunt VAR compensator constraints: 
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Controllable VAR sources (𝑄𝑠ℎ) are maintained within the maximum and minimum 

limits: 

Qshk

min ≤ Qshk
≤ Qshk

max    k = 1 … … NC                                                                                                           (3.11) 

 Security Constraints: 

The voltage at load buses 𝑉𝐿 and power flow in transmission lines 𝑆𝑙 should vary 

within their minimum and maximum limits. 

VLj

min ≤ VLj
≤ VLj

max        j = 1 … … NLB                                                                                                        (3.12) 

Slk
≤ Slk

max         k = 1 … … ntl                                                                                                                       (3.13) 

Where, NG, NT, NC, NLB and ntl are the number of generators, numbers of regulating 

transformers, numbers of shunt compensation, the number of load buses and number of 

transmission lines respectively. The corresponding lower and upper limits are represented 

by scripts “min” and “max” in Eqs. (3.7) - (3.13) respectively. 

 

3.4 INCORPORATION OF CONSTRAINTS 

The penalty factor approach is used in the OPF problem to efficiently include the 

working limits of the operating constraints, such as load bus voltage constraints, 

transmission line-flows, and generator constraints [284]. The penalty factor approach 

penalizes each violation by multiplying it by a large number, so that infeasible solutions 

are rejected and only feasible solutions are considered. To find feasible solutions, the 

above mentioned inequality constraints are included and the augmented objective function 

is obtained by Eq. (3.14). 
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Faug = F(. ) + K1(Pg1
− 𝑃𝑔1

𝑙𝑖𝑚)
2

+ K2 ∑ (Qgk
− Qg𝑘

lim)
2NG

k=1 + K3 ∑ (VL𝑗
− VL𝑗

lim)
2

NLB
j=1 +

K4 ∑ ( SlK
−  SlK

lim)
2ntl

k=1                           (3.14) 

Where, K1, K2, K3, and K4 are the penalty factors. In this work, K1, K2, K3, and K4 are all 

set equal to 105. 

 

3.5 OBJECTIVE FUNCTIONS 

In the formulation of the OPF problem, fuel cost minimization (FCM) is frequently 

used as a primary objective function in addition to other objectives like voltage stability 

enhancement (VSE), total voltage deviation minimization (TVDM), real power losses 

minimization (RPLM), and emission minimization (EM) via readjustment of control 

variables, taking into account both operational and physical constraints. Either each 

objective is optimized individually or all of them are combined, at the same time, all the 

system constraints need to be satisfied. This section represents details of these objective 

functions [285], [286]. 

3.5.1 Fuel cost minimization (FCM) 

The first objective function, namely, minimization of generators’ fuel cost can be 

expressed as: 

 FFCM(x, u) = ∑ f(Pgi
) ($

ℎ⁄ )NG  
i=1       =  ∑ Ai + BiPgi

+ CiPgi
2  ($

ℎ⁄ )NG  
i=1                                       (3.15) 

where 𝐴𝑖,𝐵𝑖 and 𝐶𝑖 are the quadratic fuel cost coefficients of the ith generating unit and 𝑃𝑔𝑖
 

is the active power output of ith generating unit. 

3.5.2 Total Voltage Deviation Minimization (TVDM) 
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All bus voltages close to the rated voltage are required for the steady-state operating 

condition of a power system. The main motive of the second objective function i.e. Voltage 

profile improvement can be attained by minimization of the voltage variation in all load 

buses from 1.0 pu. The objective function can be described in this case as follows: 

FTVDM(x, u) =  ∑ |VL𝑖
− 1|  

iϵNLB                                                               (3.16) 

where 𝑉𝐿 is the voltage magnitude in pu at ith load bus. 

By employing weighted sum method, the two objective functions namely fuel cost 

and voltage profile can be combined and transformed into a single objective function as 

fellow: 

COF =   FFCM(x, u) + 𝑊𝑇𝑉𝐷𝑀 ×  FTVDM(x, u)                              (3.17) 

where 𝑊𝑇𝑉𝐷𝑀 is a weight factor, and it is to be selected by the user. 

3.5.3 Voltage Stability Enhancement (VSE) 

At present, the need for electricity in an interconnected power system is constantly 

increasing; sometimes this requirement may not be fulfilled by the utilities. This leads to 

the problem of voltage stability issues and poor voltage profile on the load side. For the 

stable operation of a power system, the bus voltage of all the load buses must be maintained 

within acceptable limits during a sudden change in load and in normal operating 

conditions. By checking the L-index value for all the PQ buses, the power system voltage 

stability can be monitored.  

Consider the Ng generators in an N-bus system. The following equation expresses the 

relationship between voltage and current: 
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[
𝐼𝐺

𝐼𝐿
] = [

𝑌𝐺𝐺 𝑌𝐺𝐿

𝑌𝐿𝐺 𝑌𝐿𝐿
] [

𝑉𝐺

𝑉𝐿
]                                                                                                                            (3.18) 

 

The complex currents and voltages at the generator and load buses are denoted by IG, VG, 

IL, and VL respectively. 

By rearranging the equation above, we get: 

[
𝑉𝐿

𝐼𝐺
] = [

𝑍𝐿𝐿 𝐹𝐿𝐺

𝐾𝐺𝐿 𝑌𝐺𝐺
] [

𝐼𝐿

𝑉𝐺
]                                                                                                                           (3.19) 

 

Where,   

 
 𝐹𝐿𝐺 =  − [𝑌𝐿𝐿]−1 [𝑌𝐿𝐺]                                                                                                                            (3.20) 

 

The jth node's line (L)-index is given by the following expression: 

 
 

𝐿𝑗 =  |1 − ∑ 𝐹𝑗𝑖  
𝑉𝑖

𝑉𝑗

𝑁𝑔

𝑖=1
 ∠(𝜃𝑗𝑖 + 𝛿𝑖 − 𝛿𝑗)|  j=  1,2,3……………………………..𝑁𝐿𝐵                            (3.21) 

 

Where 𝑉𝑖 is the voltage magnitude of ith generator bus i: 𝑉𝑗 is the voltage magnitude of jth 

load bus : 𝛿𝑖 is the voltage angles of ith generator unit:  𝛿𝑗 is the voltage angles of jth 

generator unit. The phase angle of the term Fji  is 𝜃𝑗𝑖. 

The L-index is described below:  

 FVSE(x, u) = max[Lj ]      j = 1,2 … … NLB                                                                                                          (3.22) 

where 𝐿𝑗 is the static voltage stability index or L-index at jth load bus. 

The L-index values vary between 0 and 1. The most insecure bus in a power network 

is the bus with the highest value of the L-index. The L-Index assessment of the load-bus 

provides information on its closeness to voltage unstable / failure state. By reducing the 

L-index, voltage stability can be increased.  
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By employing the weighted sum method, the two objective functions namely fuel cost 

and voltage stability can be combined and transformed into a single objective function as 

follows: 

COF =   FFCM(x, u) + 𝑊𝑉𝑆𝐸 × FVSE(x, u)                                          (3.23) 

where 𝑊𝑉𝑆𝐸 is a weight factor, and it is to be selected by the user. 

3.5.4 Emission minimization (EM) 

In the present case, two types of emission gasses mainly the oxides of SOx (Sulphur) 

and NOx (nitrogen) are taken as the main pollutants. The emission gasses are considered 

as a combination of quadratic and an exponential function of the generator’s active power 

output. The total emission is defined as below: 

FEM(x, u) = ∑ αi
NGN  
i=1 +  βiPgi

+  γiPgi
2 +   ξi exp(λiPgi

)  (ton/h)                                                             (3.24) 

where 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜉𝑖, 𝜆𝑖 are the emission coefficients of ith generating unit. 

3.5.5 Real power losses minimization (RPLM) 

The real power losses of the electrical network can be computed using the following 

expression: 

FRPLM(x, u) = ∑ Gk|Vi
2 + Vj

2 + 2|Vi||Vj| cos(δi − δj) |ntl 
k=1                                                                    (3.25)           

Where 𝐺𝑘 the conductance of kth line is connected between ith and jth buses: ntl is the 

number of transmission lines: 𝑉𝑖 is the voltage magnitude at bus i: 𝑉𝑗 is the voltage 

magnitude at bus j: 𝛿𝑖 is the voltage angles at bus i:  𝛿𝑗 is the voltage angles at bus j. 

The multi-objective function which consists of four contradictory objective functions 

i.e. fuel cost minimization, emission minimization, real power losses minimization and 
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total voltage deviation minimization is transformed into a single objective function by 

using weighing factors to combine the four objective functions as given below. 

COF =  FFCM(x, u) + 𝑊𝑇𝑉𝐷𝑀 ×  FTVDM(x, u) + 𝑊𝐸𝑀 × FEM(x, u) + 𝑊𝑅𝑃𝐿𝑀 × FRPLM(x, u)        (3.26) 

Where 𝑊𝐸𝐶𝑀, 𝑊𝑅𝑃𝐿𝑀 and 𝑊𝑇𝑉𝐷𝑀 are weight factors and COF is a combined objective 

function. 

3.6 SUMMARY 

This chapter discusses the mathematical formulation of the optimal power flow 

problem of a power system. Furthermore, the power flow equations and several operating 

constraints related to OPF problem are then explained in detail. The various technical and 

economic objective functions associated with the OPF problem namely, fuel cost 

minimization, emission minimization, voltage stability enhancement, real power losses 

minimization and total voltage deviation minimization are thoroughly discussed.  
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CHAPTER 4 

SWARM INTELLEGENT ALGORITHMS FOR OPTIMAL 

POWER FLOW 

4.1  INTRODUCTION 

The OPF is a well-known complex constrained optimization problem, which 

associates several constraints and control variables. Nowadays, researchers and scientists 

are used to solving complex science and engineering problems using intelligent 

algorithms. These random search, population-based algorithms are highly flexible and are 

appropriate to solve various types of optimization problems, including linear problems, 

non-linear problems and complex constrained optimization problems. 

This chapter presents the application of two renowned swarm-based optimization 

algorithms namely, bat search and bird swarm algorithms to solve the optimal power flow 

problem. These algorithms are population-based random search techniques. The bat 

search (BS) algorithm is based on the echolocation capability of bats responsible for their 

unique foraging behaviours. However, the bird swarm algorithm (BSA) is a recently 

developed bio-inspired evolutionary algorithm. It uses swarm intelligence derived from 

the social interactions and social behaviours in bird swarms for searching the near global 

optimal solution. The objective functions to carry out OPF are fuel cost minimization, total 

voltage deviation minimization, emission minimization, real power losses minimization 

and voltage stability enhancement under normal as well as under contingency conditions. 

The effectiveness of the proposed algorithms has been demonstrated by applying these 

algorithms to solve the OPF problem in the standard IEEE 30-bus system with the above-
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mentioned objectives. The results obtained using both the algorithms are compared with 

the results obtained using other evolutionary computing techniques reported in the 

literature. 

4.2 BAT SEARCH (BS) OPTIMIZATION ALGORITHM 

Bat search optimization algorithm is a nature inspired optimization technique, 

developed by Xin She Yang in the year 2010 [287]. This algorithm is based on the 

echolocation capability of bats responsible for their unique foraging behavior. Most the 

bats are using sonar echoes to recognize, detect or sense different types of obstacles. The 

species including bats using sonar echoes ability, emit sound pulses of frequencies in the 

range of 10 kHz to 200 kHz. These pulses when hitting the objects or the prey around a 

bat produce echoes. The bats listen to the echo and then analyze and evaluate the distance 

of prey from them. Yang developed a basic bat search algorithm by considering the 

following approximation and ideal rules: 

 Echolocation is used by all the bats to sense the distance and the difference between 

food/prey and background barriers.   

 The bats have a random flying velocity 𝑣𝑘 at the position 𝑋𝑘 with a frequency 𝑓𝑚𝑖𝑛, 

changing the wavelength and loudness 𝐴𝑂to find prey.  

 Bats have capability to regulate automatically the wavelength of their emitted pulses 

and adjust the pulse emission rate pr ∈ [0, 1] according to the proximity of the object. 

 Even though the loudness of the emitted pulses can vary in several ways, it is assumed 

to lie within a large positive value 𝐴𝑂to some minimum value 𝐴𝑚𝑖𝑛. 

The basic steps used in the bat search optimization algorithm can be summarized as 

follows [287], [288]:  
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4.2.1 Initialization of bats  

The initial population of bats N is randomly generated with dimension d by taking into 

account upper and lower boundaries. The jth component 𝑋𝑘𝑗 of the position vector 𝑋𝑘 can 

be written as: 

𝑋𝑘𝑗 = 𝑋𝑗
𝑚𝑖𝑛 + 𝜑(𝑋𝑗

𝑚𝑎𝑥 − 𝑋𝑗
𝑚𝑖𝑛)                                               (4.1) 

Where k = 1, 2 … N, j = 1, 2 … d, 𝑋𝑗
𝑚𝑖𝑛 and 𝑋𝑗

𝑚𝑎𝑥are the lower and upper boundaries for 

the dimension j, respectively. 𝜑 is a random number and it lies within range of 0 to 1. 

4.2.2 Movement of bats 

The frequency(  𝑓𝑘), velocity ( 𝑣𝑘) and position of the bat (𝑋𝑘) are updated according 

to Eqs. (4.2)- (4.4) 

 𝑓𝑘 =  𝑓𝑚𝑖𝑛 + 𝛽(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)                                         (4.2) 

 𝑣𝑘
𝑡 =  𝑣𝑘

𝑡−1 + (𝑋𝑘
𝑡−1 − 𝑋∗)𝑓𝑘                                        (4.3) 

 𝑋𝑘
𝑡  = 𝑋𝑘

𝑡−1 + 𝑣𝑘
𝑡                                              (4.4) 

Where, 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are the maximum and minimum values of frequency, 𝑓𝑘 

represents the frequency of the kth bat, 𝛽  is a number that is randomly generated between 

0 to 1, vector 𝑋∗ is current global best location (solution) obtained on comparison of all 

the N number of solutions and 𝑣𝑘
𝑡  and 𝑋𝑘

𝑡   are the velocity and position of the kth bat at tth 

time step. 

BS optimization algorithm uses the benefit of the local search for maintaining the 

solutions diversity of the population. The local search follows the random walk strategy to 

generate a new solution. 

 𝑋𝑛𝑒𝑤 =  𝑋𝑜𝑙𝑑 +  Ψ 𝐴𝑡                            (4.5) 
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Where, Ψ is a random number uniformly distributed ranging from -1 to 1 and 𝐴𝑡 is 

average loudness value of all bats at tth time step. 

4.2.3 Loudness and Pulse Emission Rate 

The loudness (A) and pulse emission rate (pr) can be updated according to Eqs. (4.6) 

- (4.7) respectively.   

  𝐴𝑘
𝑡+1 =  𝛼𝐴𝑘

𝑡                                                         (4.6) 

  𝑝𝑟𝑘
𝑡+1 = 𝑝𝑟𝑘

0(1 − 𝑒−𝛾𝑡)                                                         (4.7) 

Where 𝛾  and 𝛼 are constants,  𝑝𝑟𝑘
0  is the initial pulse emission rate value of the kth bat. 

Flowchart of BS algorithm has been shown in Fig. 4.1. 

The solution algorithm for solving OPF using bat search optimization algorithm can 

be summarized in following steps: 

i) Set the bat population size (N), loudness (A), and pulse emission rate pr, the 

maximum number of iterations (itermax) and the number of decision variables (d).  

ii) Initialize bat position 𝑋𝑘 of N individuals randomly in the feasible area and their 

velocities 𝑣𝑘. 

iii) For each bat, run load flow (e.g. NRLF) program, to find the fitness for each 

individual as per the objective functions of various cases mentioned above.                             

iv) Adjust the frequency, and update velocities and position using Eqs (4.2) to (4.4) to 

produce new solutions. 

v) If rand is greater than 𝑝𝑟𝑘
  select the best solution among various solutions and 

generate new solution using local search. Otherwise create a new solution randomly. 

vi) If rand > 𝑝𝑟 (pulse emission rate) and f(Xi) < f(𝑋∗), accept the created new solution 

and  increase the value of 𝑝𝑟 and decrease the loudness 𝐴𝑖   using Eqs. (4.6) - (4.7). 
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vii) Ranking of bats (solutions) based on fitness value and find the current best solution. 

viii) If iter < itermax, increase iter by 1 i.e. iter =iter+1 and go to step iv., Otherwise go to 

step iii). 

ix) Stop the process and display the best solution. If the stopping criterion is satisfied.  

 

 

 

Fig. 4.1: Flowchart of bat search optimization algorithm 
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4.3  BIRD SWARM ALGORITHM (BSA) 

The bird swarm algorithm is a recently developed bio-inspired algorithm. It is based 

on the social interactions and social behaviors of bird swarms. Three kinds of behaviors 

are mainly possessed by all birds. These are foraging behavior, vigilance behavior and 

flight behavior. For survival and searching for good forage, birds use their sense and move 

in the flock. Each bird shares its experience with the rest of the birds in a flock. If it finds 

food, it frequently raises its head and scans near the surrounding area which is called 

vigilance behavior. All the birds have a competition to achieve their positions at the center 

of the flock because of more chances of being attacked at the periphery of the group. Birds 

may move from one location to another to escape from the hunter and to find their food. 

Two different breeding groups in flock birds exist namely, producers and scroungers.  

All N virtual birds, depicted by their position xi
t(i ϵ [1, … N]) time step t, forage for food 

and fly in D-dimensional space. The main steps used in bird swarm algorithm can be 

described as follows [289]:  

4.3.1 Foraging behaviour 

All the birds search for food as per their own and swarm experience. The mathematical 

expression of the foraging behavior can be written as below: 

  xi,j
t+1 = xi,j

t + (pi,j − xi,j
t ) × ∁ × rand(0,1) + (gj − xi,j

t ) × S rand(0,1)                                                  (4.8)  

Where(j ϵ [1, … D] ), rand (0, 1) represents a random number. It is uniformly distributed 

between (0, 1). S and C are two positive constants, which can be respectively called as 

social and cognitive accelerated coefficients. 𝑝𝑖,𝑗 represents the best previous position of 

the ith bird and 𝑔𝑗 is the best previous position shared by the swarm. 
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4.3.2 Vigilance behaviour 

Each bird tries to attain its position at the center of the swarm to save itself from the 

predators, and they inevitably compete with each other. Thus, each bird would not directly 

move toward the center of the swarm. These motions can be formulated as given below: 

 xi,j
t+1 = xi,j

t + A1(meanj − xi,j
t ) × rand(0,1) + A2(pk,j − xi,j

t ) × rand(−1,1)                                   (4.9) 

  A1 = a1 × exp (−
pFiti

sumFit+ϵ
× N)                                               (4.10) 

  A2 = a2 × exp ((
pFiti−pFitk

|pFitk−pFiti+ϵ|
)

N×pFitk

sumFit+ϵ
                                     (4.11) 

Where, k is a random positive integer, having its value between 1 and N, but not equal to 

i. a1 and a2 are positive constants between 0 and 2. pFiti is the best fitness value of the 

bird bi and sumFit denotes the sum of the best fitness value of the whole swarms. ϵ is the 

smallest constant in the computer which is used to avoid zero-division error. meanj 

represents the jth element of the average position of the whole swarm. 

4.3.3 Flight behaviour 

Birds fly to another location for searching food and to save themselves against the 

predators’ attack. A bird can be a producer or a scrounger and its behaviors can be 

expressed as follows: 

 xi,j
t+1 = xi,j

t + rand(0,1) × xi,j
t                                        (4.12) 

  xi,j
t+1 = xi,j

t + (xk,j
t − xi,j

t ) × FL × rand(0,1)                                       (4.13) 

Where, randn (0, 1) is expressed as Gaussian distributed random number with μ (mean) = 

0 and σ (standard deviation) = 1, k ϵ [ 1,….. N], (k ≠ i). FL (FL ϵ [0, 2]) is a following 

factor which means scrounger would follow producer to search their food. For simplicity, 
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it is assumed that each bird moves to one site to another site every FQ unit interval. The 

basic flowchart of the BSA is shown in Fig. 4.2. 

The solution algorithm for OPF using the BSA algorithm can be summarized in the 

following steps: 

 

Pseudo code of bird swarm algorithm (BSA) 

Input: N: birds or population size, P: the probability of foraging for food, FQ: frequency 

of bird’s flight behavior, C, S, a1, a2, FL: five constant parameters, M: the maximum 

number of iterations and the control /decision variables (D = 24 here). The minimum 

and maximum value of the control variable in vector form 𝑋𝑀𝑖𝑛 = [  X1
min … . .   XD

min] 

and 𝑋𝑀𝑎𝑥 = [  X1
max … . .   XD

max]. Initialise the load flow data. 

Set count G = 0 and define algorithm parameters, Population (P): Initialise the 

population randomly with uniformly distributed amongst [𝑋𝑀𝑖𝑛, 𝑋𝑀𝑎𝑥]. For each bird, 

run load flow (e.g. NRLF) program and evaluate the fitness of each bird.  

While (G < M) 

If (G % FQ ≠ 0) 

For i = 1: N 

If rand (0, 1) < P 

Birds forage for food (Equation 4.8) 

Else 

Birds keep vigilance (Equation 4.9) 
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End if  

End for 

Else 

Divide the swarm into two parts: producers and scroungers. 

For i=1: N 

If i is a producer 

Producing (Equation 4.12) 

Else 

Scrounging (Equation 4.13) 

End if  

End for 

End if  

Evaluate new solutions 

If the new solutions are better than their previous ones, update them 

Find the current best solution 

G=G+1;  

End while 

Output: the individual with the best objective function value in the population. 
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Fig. 4.2: Flowchart of bird swarm algorithm 
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4.4 RESULTS AND DISCUSSION 

To demonstrate the efficacy of the proposed algorithms, these algorithms have been 

applied standard IEEE 30-bus test system to solve the OPF problem. For the IEEE 30-bus 

system under study, the control variables limit, line data, bus data along with their initial 

settings are given in Appendix A. For this system, 30 runs were taken using both the 

algorithms to solve the OPF problem with different objective functions and the best 

results are given here. 

4.4.1 Minimization of Fuel Cost  

In this case, minimization of fuel cost was considered an objective function as defined 

in Eq. (3.15). Here, the cost characteristics of all the generators were assumed to be 

quadratic. The fuel cost offered by the BS optimization algorithm is 800.5087 $/h, which 

is the lesser as compared to other reported results, while Bird Swarm algorithm provided 

the minimum fuel cost as 800.8374 $/h. The fuel cost obtained using the BS optimization 

algorithm is compared with the BSA and other reported methods and given in Table 4.1. 

This OPF outcome demonstrates the potential of the proposed BS optimization algorithm 

to solve the OPF problem. Fig. 4.3 shows the convergence characteristics of both the 

algorithms for the minimization of total fuel cost.  

Table 4.1: Comparison of OPF results for Case 1 

Method Fuel cost (pu) Computation Time (sec) 

Base Case 902.004 0.08 

BS 800.500 98.34 

BSA 800.837 102.83 

ABC [93] 800.66 - 

GWO [123] 801.4100 - 

DE  [123] 801.2300 - 

GPU-PSO [154] 800.5300 - 



64 

 

MSA [162] 800.509 - 

MPSO [162] 800.516 - 

MDE[162] 800.839 - 

MFO [162] 800.686 - 

FPA [162] 802.79 - 

ARCBBO [177] 800.51 - 

RCBBO[177] 800.87 - 

BBO [177] 801.05 - 

HSFLA-SA [277] 801.79 - 

MSFLA [249] 802.28 - 

SFLA [249] 802.50 - 

 

 

 

Fig 4.3: Convergence characteristics for IEEE 30-bus system, Case 1 

 

4.4.2 Total Voltage Deviation Minimization 

The objective function chosen in Case 2 was minimization of the total fuel cost and 

improvement of voltage profile by minimizing the total voltage deviation simultaneously. 

The OPF results attained using the BSA has been compared with the BS optimization 
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algorithm and other reported results in Table 4.3. The minimum fuel cost and total voltage 

deviation obtained by the BSA were 804.5222 $/h and 0.1000 pu, which is least among 

other reported results. The OPF results confirm the potential of the proposed BSA 

compared to the BS optimization algorithm and other reported algorithms. The voltage 

profile is significantly improved in this case 2 as compared to that of case 1, as the total 

voltage deviation is reduced from 1.0762 in case 1 to 0.1000 in case 2. The voltages of 

load buses of both the algorithms are displayed in Fig. 4.4.  

 

 

Fig. 4.4: Load bus voltage profile for IEEE 30-bus system, Case 2 

 

Table 4.2: Comparison of OPF results of case 2 

Method Fuel cost ($/h) TVDM (pu) Computation Time (sec) 

Base Case 902.004 1.1601 0.08 

BSA  804.5222 0.1000 108.23 

BS  803.7503 0.1052 123.83 

DE [124] 805.2619 0.1357 - 

MSA [162] 803.3125 0.1084 - 

MPSO [162] 803.9787 0.1202 - 
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MDE [162] 803.2122 0.1264 - 

MFO [162] 803.7911 0.1056 - 

FPA [162] 803.6638 0.1365 - 

 

4.4.3 Voltage Stability Enhancement 

The objective function for minimization of the total fuel cost and enhancement of 

voltage stability simultaneously was selected in case 3. The minimum fuel cost and L-

index as obtained by the BS optimization algorithm were 801.8202 $/h and 0.1259 

respectively. The OPF outcome attained using the BS algorithm is compared with the BSA 

and results are obtained using the reported algorithms. The comparison of numerical 

results is given in Table 4.3. The optimal setting of control variables is given in Table 4.4. 

As depicted in Table 4.3, the BS optimization algorithm has provided better results as 

compared to the BSA and other reported algorithms.  

Table 4.3: Comparison of OPF results of Case 3 

Method Fuel cost ($/h) L-index Computation Time (sec) 

Base Case 902.004 0.177 0.8 

BS 801.8202 0.1259 112.36 

BSA 803.3270 0.1263 126.98 

ABC [93] 801.6650 0.1379 - 

MSA [162] 801.2248 0.1371 - 

MPSO[162] 801.6966 0.1374 - 

MDE [162] 802.0991 0.1374 - 

MFO[162] 801.668 0.1375 - 

FPA [162] 801.1487 0.1375 - 
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Table 4.4: Optimum value of control variable for case 1 – case 3 

 

S. 

No. 

 

Control     

variables 

 

Initial 

Case 

Case 1(FCM) Case 2(TVDM) Case 3(VSE) 

BS BSA BS BSA BS BSA 

Generator active power output 

1 Pg2 0.80 0.4879 0.48910 0.4877 0.4853 0.5484 0.4973 

2 Pg5 0.50 0.2146 0.21410 0.2213 0.2128 0.3140 0.2185 

3 Pg8 0.20 0.2110 0.21440 0.1867 0.2077 0.2372 0.2103 

4 Pg11 0.20 0.1198 0.12300 0.1328 0.1511 0.2029 0.1162 

5 Pg13 0.20 0.1110 0.11410 0.1203 0.1220 0.2640 0.1267 

Generator voltage 

6 Vg1 1.05 1.0838 1.07910 1.0450 1.0417 1.0516 1.0996 

7 Vg2 1.04 1.0643 1.05880 1.0282 1.0302 1.0467 1.0956 

8 Vg5 1.01 1.0323 1.03140 1.0069 1.0144 1.0426 1.0638 

9 Vg8 1.01 1.0374 1.03780 1.0065 1.0078 1.0533 1.0722 

10 Vg11 1.05 1.0473 1.05130 1.0858 1.0752 1.0509 0.9828 

11 Vg13 1.05 1.0506 1.04080 0.9804 0.9672 1.0449 1.0089 

Tap settings 

12 T6-9 1.078 1.0019 1.12500 1.0988 1.0987 1.0255 0.9001 

13 T6-10 1.069 0.9900 0.90470 0.9004 0.9000 1.0318 1.1000 

14 T4-12 1.032 0.9862 0.98520 0.9264 0.9047 1.0330 0.9000 

15 T28-27 1.068 0.9823 0.97340 0.9739 0.9702 0.9882 0.9768 

Shunt VAR source 

16 Qc10 0.0 0.0279 0.07570 0.0228 0.0495 0.0500 0.0500 

17 Qc12 0.0 0.0275 0.05500 0.0009 0 0.0498 0.0500 

18 Qc15 0.0 0.0251 0.02220 0.0496 0.0500 0.0440 0.0498 

19 Qc17 0.0 0.0353 0.04090 0 0.0002 0.0499 0.0500 

20 Qc20 0.0 0.0248 0.02290 0.0492 0.0485 0.0500 0.0487 

21 Qc21 0.0 0.0474 0.06330 0.0477 0.0463 0.0500 0.0498 

22 Qc23 0.0 0.0111 0.01230 0.0494 0.0471 0.0372 0.0500 
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23 Qc24 0.0 0.0414 0.03100 0.0486 0.0492 0.0500 0.0471 

24 Qc29 0.0 0.0154 0.01430 0.0378 0.0329 0.0162 0.0500 

Fuel cost ($\h) 

TVDM (pu) 

Emission 

(ton/h) 

RPLM (MW) 

L-Index (LI) 

902.0046 800.5000 800.8374 803.7503 804.5222 801.8202 803.3270 

1.1601 0.7314 1.0672 0.1052 0.1000 1.1419 1.0663 

0.2359 0.3412 0.3306 0.3369 0.3308 0.3227 0.3332 

5.8423 9.1709 8.8245 9.9840 9.9416 8.7599 9.7639 

0.1772 0.1454 0.1330 0.1407 0.1405 0.1259 0.1263 

 

4.4.4 Voltage stability enhancement during contingency 

In practical power system operation, there might be various types of contingencies 

occurring such as transmission line outage and generator unit outage. It is necessary to 

have enough stability margins in normal as well as under contingency conditions of a 

power system. So, the objective function of the present case is the minimization of the fuel 

cost and enhancement of voltage stability of the power system simultaneously under (N-

1) contingency, which is simulated as an outage of the line connected between bus no. 2 

and bus no. 6. The comparison of the results obtained using the proposed BS, BSA and 

reported results using other algorithms are given in Table 4.5. From Table 4.5, it is clear 

that the bat search optimization algorithm has provided better results as compared to other 

reported algorithms.  

Table 4.5: Comparison of OPF results of case 4 

Method Fuel cost ($/h) L-index (pu) Computation Time (sec) 

Base Case 902.004 0.1805 0.08 

BS 804.5271 0.1393 124.38 

BSA 804.5307 0.1395 128.73 

ABC [93] 809.0112 0.1474  

MPSO[162] 807.6519 0.1405  
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MDE[162] 806.6668 0.1398  

MFO[162] 804.556 0.1393  

FPA [162] 805.5446 0.1414  

 

4.4.5 Real power loss minimization 

The proposed algorithms have been applied for minimization of the real power loss. 

The minimum value of power loss obtained by the BSA was 3.1281 MW which is the least 

among the other algorithms mentioned in Table 4.6. The comparison of the results 

obtained by BSA with the BS optimization algorithm and other reported methods is given 

in Table 4.6. From Table 4.6, it is clear that the least power loss was found by BSA 

compared to other reported methods. Fig. 4.5 displays the convergence characteristic of 

both the algorithms for the minimization of active power losses. 

 

 

Fig 4.5: Convergence characteristics for IEEE 30-bus system, Case 5 
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Table 4.6: Comparison of OPF results of Case 5 

Method RPLM (MW) Computation Time (sec) 

Base Case 5.8423 0.08 

BSA 3.1281 102.45 

BS 3.1578 106.28 

GWO [123] 3.4100 - 

DE [123] 3.3800 - 

MSA[162] 4.5404 - 

MPSO[162] 4.5409 - 

MDE[162] 4.3891 - 

MFO[162] 4.5772 - 

FPA[162] 4.7981 - 

 

4.4.6 Emission minimization 

In this case, minimization of emission gasses has been selected as an objective 

function and it is defined in Eq. (3.20). The minimum value of emission obtains by the 

proposed BSA method was 0.2037 ton/h, which is the least among the other algorithms 

mentioned in Table 4.7. The comparison of minimum emissions obtained by proposed 

algorithms and other reported methods are given in Table 4.7. It is found that the 

performance of BSA technique is superior as compared to the BS algorithm and other 

algorithms reported in the recent literature. In the present case, the total emissions are 

reduced to 0.2037 ton/h (40.29%) in comparison to 0.3412 ton/h in case 1. The control 

variable setting obtained by the proposed algorithms is given in Table 4.8. Fig. 4.6 displays 

the convergence characteristic of the proposed algorithms for this case. 

 

Table 4.7: Comparison of OPF results of Case 6 

Method Emission (ton/h) Computation Time (sec) 

Base Case 0.2359 0.08 
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BSA 0.2037 98.36 

BS 0.2038 100.25 

ABC[93] 0.2048 - 

MSA[162] 0.2048 - 

MPSO[162] 0.2324 - 

MDE[162] 0.2092 - 

MFO[162] 0.2048 - 

FPA[162] 0.2052 - 

ARCBBO[177] 0.2048 - 

MSFLA [249] 0.2247 - 

SFLA [249] 0.2249 - 

 

 

 

Table 4.8: Optimum value of control variable for case 4 - case 6 

S. 

No. 

 

Control 

Variables 

Case 4 

(VSE during 

Contingency) 

Case 5 

(RPLM) 

Case 6 

(EM) 

BS BSA BSA BSA BS BSA 

Generator active power output 

1 Pg2 0.57500 0.4821 0.7989 0.8000 0.6643 0.66810 

2 Pg5 0.32490     0.2109 0.5000 0.5000 0.5000 0.50000 

3 Pg8 0.24840     0.2352 0.3500 0.3499 0.3499 0.35000 

4 Pg11 0.20060     0.1285 0.3000 0.2987 0.3000 0.30000 

5 Pg13 0.27160     0.1200 0.3990 0.4000 0.4000 0.40000 

Generator voltage 

6 Vg1 1.05340     1.0915 1.0679 1.0693 1.0367 1.05410 

7 Vg2 1.04600     1.0775 1.0628 1.0660 1.0301 1.05610 

8 Vg5 1.03070     1.0500 1.0366 1.0414 1.0108 1.03880 

9 Vg8 1.04420     1.0527 1.0485 1.0540 1.0138 1.04570 

10 Vg11 1.06510     1.0959 1.0829 1.0921 1.0917 1.06760 

11 Vg13 1.04370     1.0030 1.0768 1.0597 1.0999 1.00620 

Tap settings 

12 T6-9 1.01610     0.9043 0.9750 0.9892 0.9001 1.06590 

13 T6-10 1.03510     0.9912 1.0898 1.0725 0.9000 1.02670 

14 T4-12 1.00680     1.0919 1.0035 1.0039 0.9288 1.01590 

15 T28-27 1.00400     0.9932 0.9840 0.9903 0.9000 1.05050 

Shunt VAR source 

16 Qc10 0.04980     0.0500 0.0500 0.0497 0.0046 0.04120 

17 Qc12 0.04310          0 0.0500 0.0130 0.0500 0.03300 
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18 Qc15 0.04560     0.0498 0 0.0124 0.0424 0.04410 

19 Qc17 0.04860     0.0495 0.0500 0.0413 0.0500 0.04150 

20 Qc20 0.05000     0.0496 0.0343 0.0499 0.0500 0.04990 

21 Qc21 0.05000     0.0500 0.0500 0.0462 0.0495 0.05000 

22 Qc23 0.04920     0.0499 0.0500 0.0425 0.0491 0.04260 

23 Qc24 0.05000     0.0500 0.0469 0.0498 0.0500 0.05000 

24 Qc29 0.03110     0.0500 0.0500 0.0305 0.0259 0.04850 

Fuel cost ($\h) 

TVDM (pu) 

Emission (ton/h) 

RPLM (MW) 

L-Index (LI) 

804.5271 804.5307 967.2963 967.4409 942.9017 943.7488 

0.9455 0.9467 0.9581 0.8657 1.6781 0.4145 

0.3321 0.3319 0.2066 0.2066 0.2038 0.2037 

10.0044 10.0081 3.1578 3.1281 3.3805 3.4737 

0.1393 0.1395 0.1290 0.1317 0.1215 0.1427 

 

 

Fig 4.6: Convergence characteristics for IEEE 30-bus system, Case 6 

 

4.5 SUMMARY 

This chapter presents detailed studies of two meta-heuristic algorithms namely, 

bat search optimization and bird swarm algorithms to solve the optimal power flow 
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problem. These algorithms have been employed in IEEE 30-bus test system for fuel 

cost minimization, total voltage deviation minimization, emission minimization, real 

power losses minimization and enhancement of voltage stability under normal as well 

as during contingency conditions. The comparative analysis of the bat search algorithm 

with the bird swarm algorithm on the OPF problem is carried out.  

Based on of numerical results, it seems that both the algorithms are competitively 

better or competitive in nature in comparison with other reported meta-heuristic 

methods. For fuel cost minimization, enhancement of voltage stability under normal 

as well as during contingency conditions, BS optimization algorithm has given the 

least value of objective functions. However, in case of total voltage deviation 

minimization, emission minimization, real power losses minimization; BSA 

performed better and provided least values of objective functions compared to other 

reported results mentioned in recent literature.  
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CHAPTER 5 

PARAMETER LESS OPTIMIZATION ALGORITHMS FOR 

OPTIMAL POWER FLOW 

5.1 INTRODUCTION 

The OPF problem formulation yields a highly non-linear, multi-modal, non-convex, non-

differential objective function having discrete and continuous control variables. In recent 

years, various EC-based techniques have been implemented to solve different types of 

optimization problems as well as OPF problems. These population-based random search 

optimization techniques are heuristic in nature. The performance of EC-based techniques does 

not depend upon the problems and nature of objective functions. Therefore, these algorithms 

can be applied to any type of optimization problem and have the potential to offer near-global 

optimal solutions within acceptable computation time.  

EC-based algorithms, notwithstanding their benefits, have several drawbacks. They need 

parameters tuning to find the near-global best solution. It has been observed that parameter 

tuning of meta-heuristic optimization algorithms plays a very important role and it is a very 

crucial and time taking task to tune its parameters for solving a given optimization problem. 

Hence, in this chapter, application of a parameter-less, Rao algorithms has been presented to 

solve the OPF problem.  

This chapter offers three easy to use metaphor-less optimization algorithms proposed 

by Rao to solve the optimal power flow problem. Rao algorithms are parameter-less 

optimization algorithms. As a result, algorithm-specific parameter tuning is not required at 



78 

 

all. This quality makes these algorithms simple to use and able to solve various kinds of 

complex constrained numerical and engineering optimization problems.  

5.2 RAO ALGORITHMS 

The Rao algorithms employ the worst and best solutions, which can be obtained 

during the phases of optimization and random interaction among candidate solutions. The 

key benefit of the proposed algorithms is their algorithm-specific parameter-less property, 

and hence, these algorithms can be easily implemented for solving different types of 

optimization problems [290]. 

Assume that there is ‘m' population size (i.e. candidate solutions, k=1, 2…, m) and ‘n' 

design variables (i.e. j=1, 2, 3…, n) for any iteration i. The best candidate will provide 

the best value of an objective function in all the candidate solutions, while the worst 

candidate will give the worst value of the objective function. During the ith iteration, 

if 𝑅𝑖,𝑗,𝑘 is the jth variable value for the kth candidate, then its value is updated according to 

the following Eqs. (5.1) - (5.3). 

 Rj,k,i
′ = Rj,k,i + α 1,j,i(Rj,best,i − Rj,worst,i)                                                     (5.1) 

 Rj,k,i
′ = Rj,k,i + α 1,j,i (Rj,best,i − Rj,worst,i)  + α 2,j,i (|Rj,k,ior Rj,l,i| − |Rj,l,ior Rj,k,i|)                              (5.2) 

  Rj,k,i
′ = Rj,k,i + α 1,j,i (Rj,best,i − |Rj,worst,i|)  + α 2,j,i (|Rj,k,ior Rj,l,i| − (Rj,l,ior Rj,k,i))                         (5.3) 

In Eqs. (5.1) - (5.3), the value of the jth variable for the best candidate is 𝑅𝑗,𝑏𝑒𝑠𝑡,𝑖, and 

the value of the jth variable for the worst candidate is 𝑅𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖. The modified value of 

𝑅𝑗,𝑘,𝑖 is 𝑅𝑗,𝑘,𝑖
′. For the jth variable, 𝛼 1,𝑗,𝑖 and 𝛼 2,𝑗,𝑖 are the two random numbers in the 

range [0, 1] during the ith iteration. 
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The term, “𝑅𝑗,𝑘,𝑖 or 𝑅𝑗,𝑙,𝑖” in Eqs. (5.2) - (5.3) shows that the solution for the candidate 

k is compared with any randomly picked candidate solution l and the information is shared 

based on objective function values. If the kth solution’s objective function value is better 

than the lth solution’s objective function value, then the term “𝑅𝑗,𝑘,𝑖 or 𝑅𝑗,𝑙,𝑖 ” becomes 

𝑅𝑗,𝑘,𝑖. Similarly, the term “𝑅𝑗,𝑘,𝑖 or 𝑅𝑗,𝑙,𝑖” becomes 𝑅𝑗,𝑙,𝑖 when the objective function value 

of lth solution is better than the fitness value of kth solution. 

The flowchart of the Rao algorithm is shown in Fig. 5.1. The flowcharts for the Rao-

2 and Rao-3 algorithms will be the same, except that Eq. (5.1) in the flowchart will be 

replaced by Eq. (5.2) and Eq. (5.3), respectively. 

Computational steps of Rao algorithms for OPF problem 

The following are the computational steps for applying Rao algorithms: 

1. Randomly generate the initial population having control variables and set the stopping 

criteria i.e. itermax. 

2. Set iteration count Iter = 0. 

3. Identify the worst and best solutions in the population by observing the value of the 

augmented objective function (3.14). 

4. Update the solutions based on the worst and best solutions (5.1 to 5.3). 

5. Proceed to step 6 if the updated solution is better than the previous solution; otherwise, 

proceed to step 7. 

6. Replace the old solution with the new one. Go to step 8. 

7. Keep the old solution. 
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8. If Iter < itermax, increase the count of iteration (i.e. Iter =Iter+1) by 1 and go to step 3. 

Else go to step 9. 

9. Stop and display the best results. 

 

 

Fig. 5.1: Flowchart of Rao-1 algorithm  

 



81 

 

5.3 RESULTS AND DISCUSSION: 

Three standard test systems, IEEE (30-bus, 57-bus, and 118-bus), are used to check the 

efficacy of the Rao algorithms, considering various objective functions. Several trials have 

been carried out, but the best results obtained and presented in this chapter are with the 

population size (pop.) = 40 and the maximum number of iterations (itermax) = 100 for the IEEE 

30-bus system and pop. = 50 and itermax =150 for IEEE 57-bus and IEEE 118-bus.  

To demonstrate the effectiveness of the proposed algorithm, 11 cases are considered as 

given below: 

Table 5.1: Various case studies of OPF problem for three systems 

IEEE-30 bus system 

S. no. Case name Objective Function 

1 Case 1 FCM 

2 Case 2 FCM + 𝑊𝑇𝑉𝐷𝑀 × TVDM 

3 Case 3 FCM + 𝑊𝑉𝑆𝐸 × VSE 

4 Case 4 FCM + 𝑊𝑉𝑆𝐸 × VSE during contingency 

5 Case 5 RPLM 

6 Case 6 EM 

IEEE-57 bus system 

7 Case 7 FCM 

8 Case 8 FCM + 𝑊𝑇𝑉𝐷𝑀 × TVDM     

9 Case 9 FCM + 𝑊𝑉𝑆𝐸 × VSE 

10 Case 10 RPLM 

IEEE-118 bus system 

11 Case 11 FCM 

*FCM=Fuel Cost Minimization; TVDM=Total voltage deviation Minimization; VSE = Voltage Stability 

Enhancement; RPLM=Real power loss minimization 

 

5.3.1 Test System 1 # (IEEE 30-bus System) 

The system data along with control variables operating limits are given in Appendix A. 

Also, the emission and fuel cost coefficients of the IEEE 30-bus system are given in Appendix 

A. For this system, 30 runs were performed using Rao algorithms to solve the different 
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objective functions of the OPF problem and the best results out of 30 independent trials are 

given below. 

5.3.1.1 Case 1# (Fuel Cost Minimization):  

Here, the first objective of the OPF problem is to reduce the total cost of generation or 

the fuel cost. This function can be described as Eq. (3.15). The minimum cost attained by the 

Rao-3 algorithm is 799.9683 $/h, while Rao-2 and Rao-1 algorithms provided the minimum 

fuel cost of 799.9918 $/h and 800.4391 $/h, respectively. Table 5.2 compares the simulation 

results of case 1 obtained by the proposed algorithms and by the other reported algorithms 

listed in recent literature. The OPF results of the proposed Rao-3 algorithm and optimal 

control variable settings are presented in Table 5.3. Based on the outcomes, it is clear that the 

Rao-3 algorithm provided the least value of the fuel cost as compared to the other methods. 

This demonstrates the effectiveness of the proposed Rao-3 algorithm as compared to Rao-2, 

Rao-1 algorithms, and other competitors for this case. The fuel cost convergence 

characteristics of case 1 are presented in Fig. 5.2. 

 

 

Fig 5.2: Convergence characteristics for IEEE 30-bus system, Case 1 
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Table 5.2: Comparison of OPF Results in IEEE 30-Bus System, Case 1 

Algorithm Fuel Cost ($/h) Computation Time (Second) 

Base Case 902.0046 0.08 

Rao-3 799.9683 89.56 

Rao-2 799.9918 89.74 

Rao-1 800.4391 91.62 

BS 800.5000 98.34 

BSA 800.8374 102.83 

ABC [93] 800.66 - 

GWO [123] 801.41 - 

DE [123] 801.23 - 

DSA [149] 800.3887 - 

Jaya [155] 800.479 - 

MSO [161] 801.571 - 

MSA [162] 800.5099 - 

MPSO [162] 800.5164 - 

MDE [162] 800.8399 - 

MFO [162] 800.6863 - 

FPA [162] 802.7983 - 

ARCBBO [177] 800.5159 - 

RCBBO [177] 800.8703 - 

ECHT-DE [200] 800.4148 - 

SF-DE [200] 800.4131 133.1 

SP-DE [200] 800.4293 - 

IMFO [225] 800.3848 - 

MFO [225] 800.6206 - 

GA [225] 800.4346 - 

PSO [225] 800.4075 - 

TLBO [225] 800.4104 - 

MGOA [226] 800.4744 - 

GOA [226] 800.7806 - 

QOJA [229] 800.352 - 

MGBICA [291] 801.1409 - 

GBICA [291] 801.1513 - 

SKH [292] 800.5141 - 
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Table 5.3: Optimum values of control variables for Case 1 to Case 3, IEEE 30-bus 

system 

S. No. Control 

variable 

 

Case 1(FCM) Case 2(TVDM) Case 3(VSE) 

Rao-1 Rao-2 Rao-3 Rao-1 
Rao-

2 
Rao-3 Rao-1 Rao-2 Rao-3 

Generator active power output 

1 Pg2 0.4869 0.4923 0.4879 0.4957 0.4855 0.4827 0.4884 0.4906 0.4873 

2 Pg5 0.2131 0.2134 0.2144 0.2137 0.2166 0.2176 0.2127 0.2158 0.2119 

3 Pg8 0.2078 0.2059 0.2093 0.2228 0.2188 0.2253 0.2044 0.2087 0.2149 

4 Pg11 0.1186 0.1195 0.1192 0.1253 0.1243 0.1227 0.1221 0.1143 0.1159 

5 Pg13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1201 0.1201 

Generator voltage 

6 Vg1 1.1 1.0933 1.0944 1.0444 1.0504 1.0492 1.0909 1.0941 1.0948 

7 Vg2 1.0707 1.0751 1.0752 1.0253 1.032 1.0319 1.0748 1.0745 1.0758 

8 Vg5 1.0299 1.0441 1.0444 1.0078 1.0122 1.0118 1.0475 1.0435 1.043 

9 Vg8 1.0405 1.0491 1.0486 1.0044 1.0059 1.0072 1.052 1.0489 1.0493 

10 Vg11 1.1 1.1 1.0994 1.0751 1.073 1.0724 1.0999 1.0981 1.1 

11 Vg13 1.0592 1.0498 1.0574 0.9904 0.9696 0.9771 1.0551 1.0558 1.048 

Tap settings 

12 T6-9 1.1 1.0992 1.0659 1.1 1.1 1.1 1.0806 1.0382 1.1 

13 T6-10 0.9 0.9 0.9267 0.9 0.9 0.9002 0.9004 0.9451 0.9014 

14 T4-12 0.9763 0.9711 0.969 0.9451 0.9218 0.9229 0.9708 0.9745 0.9635 

15 T28-27 0.9813 0.9735 0.9759 0.9708 0.9699 0.9713 0.9815 0.9738 0.9821 

Shunt VAR source 

16 Qc10 0.0369 0.05 0.0442 0.05 0.0499 0.0496 0.0457 0.0214 0.0484 

17 Qc12 0.0003 0.05 0.0026 0 0.05 0.003 0.0053 0.05 0.05 

18 Qc15 0.0453 0.05 0.05 0.0495 0.05 0.05 0.0481 0.0335 0.0479 

19 Qc17 0.05 0.0492 0.0495 0 0.0001 0.0003 0.0499 0.0493 0.0368 

20 Qc20 0.0419 0.05 0.0414 0.0496 0.05 0.05 0.0264 0.046 0.049 

21 Qc21 0.05 0.0499 0.05 0.0499 0.05 0.0498 0.0499 0.0466 0.0498 

22 Qc23 0.0332 0.037 0.0352 0.0496 0.05 0.0497 0.0432 0.0404 0.0418 

23 Qc24 0.05 0.0493 0.0497 0.05 0.05 0.0491 0.05 0.0489 0.0476 

24 Qc29 0.0278 0.0178 0.029 0.033 0.0265 0.0285 0.0333 0.0309 0.05 

Fuel cost ($/h) 

TVDM (pu) 

Emission 

(ton/h) 

RPLM (MW) 

L-Index  

800.4391 799.9918 799.9683 803.4877 803.5375 803.5304 800.0492 800.001 800.025 

0.9714 1.1168 1.1356 0.1031 0.0993 0.1001 1.1481 1.1409 1.1449 

0.3362 0.3351 0.3351 0.3315 0.3338 0.3331 0.3357 0.3355 0.3354 

9.0613 8.91 8.8872 9.7465 9.8209 9.7724 8.941 8.9086 8.9098 

0.1307 0.1285 0.1281 0.1404 0.1404 0.1408 0.128 0.1278 0.1264 
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5.3.1.2 Case 2 # (Total Voltage Deviation):  

The main motive of the second case is to minimize the voltage variation in all the load 

buses from 1.0 pu along with fuel cost. The multi-objective function is transformed into a 

single objective function by using the weighted sum method, using Eq. (3.17). In the combined 

objective function, the value of the weighting factor (𝑊𝑇𝑉𝐷𝑀) assigned to voltage deviation 

was taken as 160. 

The optimal control variable settings are presented in Table 5.3, while the Load (PQ) 

bus voltage profile obtained by the Rao-2 algorithm in case 2 is shown in Fig. 5.3. The OPF 

results attained using Rao algorithms are compared with other reported results in Table 5.4. 

As can be observed from Table 5.4, the Rao-2 algorithm provided a minimum total voltage 

deviation of 0.0993 pu, which is the least among the Rao algorithm variants. Based on the 

OPF results, it is clear that the Rao-2 algorithm provided the least value of the total voltage 

deviation as compared to the other variants of the Rao methods. This demonstrates the 

effectiveness of the Rao-2 algorithm in comparison to the Rao-1, and Rao-3 algorithms for 

this case. 

 

Table 5.4: Comparison of OPF Results in IEEE 30-Bus System, Case 2 

Algorithm Fuel Cost ($/h) TVDM (pu) Time (Second) 

Base case 902.0046 1.1601 0.08 

Rao-3 803.5304 0.1001 88.14 

Rao-2 803.5375 0.0993 87.36 

Rao-1 803.4877 0.1031 89.91 

BS 803.7503 0.1052 108.23 

BSA 804.5222 0.1000 123.83 

MSA [162] 803.3125 0.1084 - 

MPSO [162] 803.9787 0.1202 - 

MDE [162] 803.2122 0.1265 - 
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MFO [162] 803.7911 0.1056 - 

FPA [162] 803.6638 0.1366 - 

MFO [225] 803.5173 0.1007 - 

GA [225] 803.2347 0.1018 - 

MGOA [226] 803.4176 0.1107 - 

GOA [226] 803.4488 0.1709 - 

* TVDM= Total Voltage Deviation Minimization 

 

 

Fig. 5.3: Load bus voltage profile for IEEE 30-bus system, Case 2 

 

5.3.1.3 Case 3 # (Voltage stability enhancement):  

The system voltage stability can be increased by reducing the L-index. In this case, fuel 

cost minimization and voltage stability enhancement were considered using two-fold 

objective function as Eq. (3.19). The OPF results of Rao algorithms and the results provided 

by other methods published in recent literature have been compared in Table 5.5. The OPF 

results in Table 5.5 prove that the Rao-3 algorithm is the best among the three variants of Rao 

algorithms for case 3. As can be observed from Table 5.5, the Rao-3 algorithm provided a 
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minimum L-Index value of 0.1264, which is the least among the Rao variants. In this case, 

the minimum L-Index values obtained by the proposed Rao algorithms are slightly higher than 

some reported results, but the fuel cost is less. Such types of situations will be there only 

because the different research papers might have selected different weighting factors. The 

control variables’ settings of this case obtained using the three variants of Rao algorithms are 

given in Table 5.6. 

 

 

Table 5.5: Comparison of OPF Results in IEEE 30-Bus System, Case 3 

         * L-Index = voltage collapse proximity indicator. 

 

 

 

Algorithm Fuel Cost ($/h) L-Index Time(Second) 

Base Case 902.0046 0.1772 0.08 

Rao-3 800.0250 0.1264 87.94 

Rao-2 800.0010 0.1278 88.50 

Rao-1 800.0492 0.1280 88.11 

BS 801.8202 0.1259 - 

BSA 803.3270 0.1263 - 

MSA [162] 801.2248 0.1371 - 

MPSO [162] 801.6966 0.1375 - 

MDE [162] 802.0991 0.1374 - 

MFO [162] 801.668 0.1376 - 

FPA [162] 801.1487 0.1376 - 

ECHT-DE [200] 800.4321 0.13739 130.4 

SF-DE [200] 800.4203 0.13745 - 

SP-DE [200] 800.4365 0.13748 - 

IMFO [225] 800.4762 0.1255 - 

MFO [225] 800.9415 0.1266 - 

GA [225] 800.4385 0.1254 - 

PSO [225] 800.5815 0.128 - 

TLBO [225] 800.4738 0.1247 - 



88 

 

5.3.1.4 Case 4 # (Voltage stability enhancement during contingency): 

In case 4, voltage stability has been improved considering single line outage (n-1) 

contingency. The prime objective in this case is to improve voltage stability and reduce fuel 

cost under a single line (connected between bus no. 2 to bus no. 6) outage condition. The 

control variables settings obtained in this case using the three Rao algorithms are given in 

Table 5.6. Table 5.7 compares the OPF results of Case 4 obtained by the proposed Rao 

algorithms with other efficient optimization algorithms reported in the recent literature. The 

results shown in Table 5.7 demonstrate the Rao-3 algorithm’s dominance over other recently 

developed optimization methods.  

 

Table 5.6: Optimum values of control variables of Case 4 to Case 6 of IEEE 30-bus 

system 

S. 

No. 

Control 

variable 

 

Case 4 

(VSE) during contingency 

Case 5 

(RPLM) 

Case 6 

(ECM) 

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 

Generator active power output 

1 Pg2 0.4034 0.4515 0.4811 0.8 0.8 0.8 0.6633 0.6631 0.7421 

2 Pg5 0.2951 0.2132 0.214 0.5 0.5 0.5 0.5 0.5 0.4638 

3 Pg8 0.2935 0.2808 0.2416 0.35 0.35 0.35 0.35 0.35 0.3154 

4 Pg11 0.168 0.12 0.1279 0.3 0.3 0.3 0.3 0.3 0.2867 

5 Pg13 0.2854 0.12 0.12 0.4 0.4 0.4 0.4 0.4 0.3127 

Generator voltage 

6 Vg1 1.0414 1.1 1.02 1.066 1.0616 1.0718 1.0737 0.9963 1.0473 

7 Vg2 1.0035 1.469 1.02 1.0509 1.0577 1.0679 1.0677 0.95 1.0441 

8 Vg5 1.0416 1.095 1.092 1.025 1.0381 1.0484 1.0477 0.956 1.0317 

9 Vg8 1.0799 1.095 1.08 1.0409 1.0495 1.0552 1.0539 1.0932 1.0488 

10 Vg11 1.0602 1.06 1.1 1.02 1.1 1.1 1.1 0.9539 1.0924 

11 Vg13 1.0237 1.0714 1.1 1.0452 1.07 1.063 1.0613 1.1 1.0719 

Tap settings 

12 T6-9 0.9602 1.0496 0.914 1.1 1.0858 1.0822 1.0445 0.9063 1.0493 

13 T6-10 1.0208 1.0657 0.9747 0.9108 0.9001 0.9 0.9518 0.9054 1.0764 
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14 T4-12 1.0379 1.0012 0.9549 1.0307 0.9977 0.9966 0.9928 0.9762 1.0378 

15 T28-27 0.9724 0.9327 0.9256 1.0072 0.9772 0.9774 0.9761 0.9156 1.0724 

Shunt VAR source 

16 Qc10 0.021 0.05 0.05 0.05 0 0 0.0293 0.0317 0.0217 

17 Qc12 0.0324 0.05 0.05 0.045 0.0479 0.0478 0.05 0.0414 0.0429 

18 Qc15 0.032 0.05 0.05 0.0495 0.039 0.0471 0.0448 0 0.0342 

19 Qc17 0.0151 0.05 0.05 0.05 0.0499 0.0498 0.05 0.0349 0.0343 

20 Qc20 0.0283 0.05 0.05 0.05 0.0413 0.0412 0.0413 0.0018 0.0122 

21 Qc21 0.0344 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0433 

22 Qc23 0.0147 0.05 0.05 0.0427 0.0371 0.0341 0.0332 0.05 0.0358 

23 Qc24 0.0282 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0458 

24 Qc29 0.0232 0.05 0.05 0.0205 0.0257 0.0252 0.0236 0.05 0.0383 

Fuel cost 

TVDM  

Emission 

RPLM  

L-Index 

827.3375 810.3012 818.5353 968.1496 967.683 967.5828 942.3443 944.1722 915.2185 

0.5925 0.5754 0.7439 0.4125 1.0361 1.1277 1.1261 0.821 0.5493 

0.2792 0.3324 0.3375 0.2066 0.2066 0.2066 0.2037 0.204 0.2126 

9.2645 11.3868 14.145 3.3041 3.1086 3.0675 3.2162 3.9623 4.2325 

0.1485 0.1439 0.1363 0.1391 0.1302 0.1289 0.1286 0.1328 0.1467 

 

 

Table 5.7: Comparison of OPF Results in IEEE 30-Bus System, Case 4 

Algorithm Fuel Cost ($/h) L-Index Time (Second) 

Base Case 904.9201 0.1805 0.08 

Rao-3 818.5353 0.1363 90.65 

Rao-2 810.3012 0.1439 92.32 

Rao-1 827.3375 0.1485 91.87 

BS 804.5271 0.1393 - 

BSA 804.5307 0.1395 - 

MSA [162] 804.4838 0.1392 - 

MPSO [162] 807.6519 0.1405 - 

MDE [162] 806.6668 0.1398 - 

MFO [162] 804.556 0.1394 - 

FPA [162] 805.5446 0.1415 - 
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5.3.1.5 Case 5 # (Real power loss minimization): 

In Case 5, RPLM was selected as the main objective function. Mathematically, RPLM 

can be represented by Eq. (3.21). The minimum power loss attained by the Rao-3 algorithm 

is 3.0675 MW, while Rao-2 and Rao-1 algorithms provided minimum power loss of 3.1086 

MW and 3.3041 MW, respectively. The results of Rao algorithms and optimal control variable 

settings are presented in Table 5.6. Table 5.8 compares the simulation results of case 5 

obtained by the proposed algorithms and other methods proposed in recent literature. Based 

on the OPF outcomes, it can be concluded that the Rao-3 algorithm provided the least value 

of real power loss as compared to the other methods. The power loss convergence 

characteristic of case 5 is presented in Fig 5.4. 

 

Table 5.8: Comparison of OPF Results in IEEE 30-Bus System, Case 5 

Algorithm Power Loss (MW) Time (Second) 

Base Case 5.8423 0.08 

Rao-3 3.0675 85.72 

Rao-2 3.1086 90.89 

Rao-1 3.3041 89.07 

BS 3.1578 - 

BSA 3.1281 - 

MSA [162] 3.1005 - 

MPSO [162] 3.1031 - 

MDE [162] 3.1619 - 

MFO [162] 3.1111 - 

FPA [162] 3.5661 - 

MSO [161] 3.4052 - 

ECHT-DE [200] 3.0850 - 

SF-DE [200] 3.0845 - 

SP-DE [200] 3.0844 136.4 

IMFO [225] 3.0905 - 

MFO [225] 3.139 - 

GA [225] 3.118 - 
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PSO [225] 3.103 - 

TLBO [225] 3.088 - 

SKH [292] 3.0987 - 

 

 

 

Fig. 5.4: Convergence characteristics for IEEE 30-bus system, Case 5 

 

5.3.1.6 Case 6 # (Emission minimization):  

For a given electrical network, the total emission cost can be calculated using Eq. (3.20). 

Table 5.9 compares the results obtained by the proposed Rao algorithms for case 6 with other 

efficient algorithms reported in the recent literature. The results shown in Table 5.9 

demonstrate the dominance of the Rao-1 algorithm over other variants of Rao techniques. The 

convergence characteristics offered by the three Rao algorithms are shown in Fig. 5.5. The 

control variables’ settings for case 6 obtained using the three Rao algorithms are given in 

Table 5.6. 
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Fig. 5.5: Convergence characteristic for IEEE 30-bus system, Case 6 

 

Table 5.9: Comparison of OPF Results in IEEE 30-Bus System, Case 6 

Algorithm Emission (ton/h) Time (Second) 

Base Case 0.2359 0.08 

Rao-3 0.2126 87.87 

Rao-2 0.2040 85.45 

Rao-1 0.2037 89.82 

BS 0.2038 - 

BSA 0.2027 - 

ABC [93] 0.2048 - 

DSA [149] 0.2058 - 

MSO [161] 0.2175 - 

MSA [162] 0.2048 - 

MPSO [162] 0.2325 - 

MDE [162] 0.2093 - 

MFO [162] 0.2049 - 

FPA [162] 0.2052 - 

ECHT-DE [200] 0.2048 138.2 

SF-DE [200] 0.2048 - 

SP-DE [200] 0.2048 - 

IMFO [225] 0.2048 - 
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MFO [225] 0.2048 - 

GA [225] 0.2048 - 

PSO [225] 0.2048 - 

TLBO [225] 0.2048 - 

MGBICA [291] 0.2048 - 

GBICA [291] 0.2049 - 

SKH [292] 0.2048 - 

 

 

5.3.2 Test System 2 # (IEEE 57-bus System) 

To evaluate the effectiveness of the Rao algorithms, it is applied to the IEEE 57-bus 

system to solve OPF problems. The system data, shunt capacitor data, transformer data, and 

control variables limits are given in Appendix B. The active and reactive power demands of 

this system on the 100 MVA base are 12.508 pu and 3.364 pu respectively. Thirty independent 

runs were taken using Rao algorithms to solve the OPF problem for this system, and the best 

results obtained are given in this chapter. 

5.3.2.1 Case 7# (Fuel Cost Minimization):  

FCM is selected as the primary objective as in case 1 and defined in Eq. (3.15). Table 

5.10 compares the simulation results of case 7 as obtained by the proposed Rao algorithms 

and by other methods reported in recent literature. The minimum cost attained by the Rao-3 

algorithm is 41,659.2621 $/h, while Rao-2 and Rao-1 algorithms offered the minimum fuel 

cost as 41,872.0668 $/h and 41,771.1088 $/h, respectively. Based on the OPF outcomes, it is 

clear that the Rao-3 algorithm provided the least fuel cost as compared to other methods. This 

demonstrates the effectiveness of the proposed Rao-3 algorithm as compared to Rao-2, Rao-

1 algorithms, and other reported algorithms. The OPF results of the proposed Rao-3 algorithm 

and optimal control variable settings are presented in Table 5.11. The fuel cost characteristics 

of case 7 are presented in Fig. 5.6. 
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Fig. 5.6: Convergence characteristics for IEEE 57-bus system, Case 7 

 

Table 5.10: Comparison of OPF Results in IEEE 57-Bus System, Case 7 

Algorithm Fuel Cost ($/h) Time (Second) 

Base Case 51348.2153 0.02 

Rao-3 41659. 2621 131.23 

Rao-2 41872. 0668 132.94 

Rao-1 41771.1088 131.87 

SSA [95] 41,672.30 80.61 

DSA [149] 41686.82 - 

MSO[161] 41,747.20 - 

MSA [162] 41673.7231 - 

MPSO [162] 41678.6762 - 

MDE [162] 41695.8123 - 

MFO [162] 41686.4119 - 

FPA [162] 41701.9592 - 

TSA [163] 41,685.07 75.61 

ECHT – DE [200] 41670.562 - 

SF-DE [200] 41667.85 - 

SP-DE [200] 41667.82 219.9 

IMFO [225] 41692.7178 - 

MFO [225] 41719.8471 - 
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GA [225] 41700.4162 - 

PSO [225] 41684.4009 - 

TLBO [225] 41694.7778 - 

MGOA [226] 41671.0980 - 

GOA [226] 41679.6792 - 

SKH [292] 41676.9152 - 

 

 

5.3.2.2 Case 8 # (Total Voltage Deviation):  

In case 8, total voltage deviation is considered as an objective function in addition to 

fuel cost, as defined in Eq. (3.16). The optimal control variables’ settings are presented in 

Table 5.11. The minimum total voltage deviation attained by the Rao-3 algorithm is 0.5725 

pu, while the Rao-1 and Rao-2 algorithms provided the minimum total voltage deviation of 

0.9882 and 0.7645 pu, respectively. Table 5.12 compares the simulation results of case 8 

obtained by the proposed Rao algorithms and other proposed methods reported in recent 

literature. Based on the OPF outcomes shown in Table 5.12, it can be concluded that the 

Rao-3 algorithm provided the least value of total voltage deviation compared to the other 

methods. This demonstrates the effectiveness of the proposed Rao-3 algorithm over Rao-1, 

Rao-2 algorithms, and other algorithms. PQ bus voltage profiles obtained in case 8 are shown 

in Fig. 5.7. 

 
Table 5.11: Optimum control variables setting of Case 7 and Case 8 in IEEE 57-bus system 

 

S. 

No. 

 

Control Variable 

CASE 7 (FCM) CASE 8 (TVDM) 

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 

Generator active power output 

1 Pg2 0.8722 0.9999 0.8857 0.8822 0.8866 0.4027 

2 Pg3 0.42 0.5217 0.4494 0.4506 0.4497 0.42 

3 Pg6 0.7856 0.3264 0.7324 0.7298 0.7183 0.3135 

4 Pg8 4.6615 4.5567 4.6028 4.6168 4.5992 4.814 

5 Pg9 0.8309 0.94 0.9588 0.963 0.9726 0.962 

6 Pg12 3.639 3.9341 3.5953 3.5936 3.607 4.087 

Generator voltage 
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7 Vg1 1.0791 1.0629 1.0603 1.0484 1.0322 0.9965 

8 Vg2 1.0822 1.0694 1.0637 1.0526 1.0362 1.014 

9 Vg3 1.0602 1.0556 1.0529 1.043 1.0255 1.0097 

10 Vg6 1.0611 1.0493 1.0615 1.057 1.04 1.0032 

11 Vg8 1.0656 1.0626 1.0741 1.0757 1.0592 1.0135 

12 Vg9 1.0508 1.0484 1.0541 1.0502 1.0329 1.0148 

13 Vg12 1.0518 1.046 1.0462 1.0342 1.0175 1.044 

Tap settings 

14 T4-18 1.0824 1.001 1.1 0.982 1.0872 0.9031 

15 T4-18 1.0075 1.0173 0.9416 1.0113 0.9243 1.0393 

16 T21-20 1.0187 1.0649 1.0154 0.9892 0.991 0.9757 

17 T24-25 1.0879 1.0289 0.9447 1.017 0.9452 1.1 

18 T24-25 1.0887 0.9164 1.0887 1.0503 1.0952 1.0996 

19 T24-26 1.0277 0.9031 1.0327 1.1 1.0224 1.0152 

20 T7-29 1.0149 1.0082 0.9954 1.034 1.014 1.0054 

21 T34-32 1.0011 0.9549 0.9565 0.938 0.9356 0.9334 

22 T11-41 1.0006 0.9111 0.9083 0.9 0.9008 0.9002 

23 T15-45 1.01 1.1 0.9781 0.989 0.9691 0.9524 

24 T14-46 0.9841 0.9489 0.9612 0.9866 0.9651 0.9798 

25 T10-51 1.0997 0.9788 0.9748 1.0039 0.9848 1.0138 

26 T13-49 0.9037 0.9328 0.936 0.9553 0.9357 0.9001 

27 T11-43 1.0938 1.0018 0.9771 1.0047 0.9745 0.9781 

28 T40-56 0.9067 0.9 0.9975 1.0041 0.9975 0.9849 

29 T39-57 0.9182 0.9 0.9675 0.9415 0.9384 0.9 

30 T9-55 1.0134 1.1 1.0026 1.0285 1.0115 1.0146 

Shunt VAR source 

31 Qc18 0.1858 0.0559 0.1724 0.0127 0.0628 0.0003 

32 Qc25 0.2803 0.1939 0.1439 0.163 0.1747 0.3 

33 Qc53 0.2381 0.1577 0.1267 0.1705 0.1481 0.3 

Fuel cost ($\h) 

TVD (pu) 

L-Index 

PLoss  (MW) 

41771. 1088 41872. 0668 41659. 2621 41688.4417 41691.1102 42043. 2728 

1.5465 1.6713 1.6953 0.9882 0.7645 0.5725 

0.231 0.2411 0.2349 0.2438 0.2415 0.2297 

17.364 16.4837 14.7262 15.4719 15.4214 18.0100 

 

 

 

Table 5.12: Comparison of OPF Results in IEEE 57-Bus System, Case 8 

Algorithm Fuel Cost ($/h) TVD (pu) Time (Second) 

Base Case 51348.2153 1.2236 0.02 

Rao-3 42043. 2728 0.5725 134.25 

Rao-2 41691.1102 0.7645 136.34 

Rao-1 41688.4417 0.9882 131.87 

DSA [149] 41699.4 0.762 - 

MSA [162] 41714.9851 0.67818 - 
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MPSO [162] 41721.6098 0.67813 - 

MDE [162] 41717.3874 0.6781 - 

MFO [162] 41718.8659 0.67796 - 

FPA [162] 41726.3758 0.69723 - 

TSA [163] 54,045.17 0.72 75.41 

ECHT-DE [200] 41694.82 0.81659 - 

SF-DE [200] 41697.52 0.77572 - 

SP-DE [200] 41697.50 0.77253 203.6 

IMFO [225] 41692.7178 0.7182 - 

MFO [225] 41719.8471 0.7551 - 

GA [225] 41700.4162 0.8051 - 

PSO [225] 41684.4009 0.7624 - 

TLBO [225] 41694.7778 0.712 - 

MGOA [226] 41697.9735 0.7381 - 

GOA [226] 41715.1396 0.8260 - 

 

 

Fig. 5.7: Voltage profile at load buses in IEEE 57-bus system, Case 8 

 

5.3.2.3 Case 9 # (Voltage stability enhancement):  

In case 9, the VSE is considered as an objective function in addition to fuel cost as 

defined in Eq. (3.19). The control variables' values obtained using the three Rao algorithms 
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are provided in Table 5.13. The OPF results of case 9 attained by the proposed Rao methods 

and the other optimization algorithms mentioned in the recent literature are compared in Table 

5.14. The OPF results shown in Table 5.14 prove the dominance of the Rao-3 algorithm over 

other optimization algorithms for this case also. 

Table 5.13: Optimum control variables setting of Case 9 and Case 10 in IEEE 57-bus system 

S. 

No. 

Control  

variable 

Case 9 (VSE) Case 10 (RPLM) 

Rao-1 Rao-2 Rao-3 Rao-1 Rao-2 Rao-3 

Generator active power output 

1 Pg2 0.8747 0.9749 0.9637 0.3048 0.3 0.3 

2 Pg3 0.4513 0.4486 0.4518 1.3241 1.322 1.3549 

3 Pg6 0.7085 0.7029 0.7067 0.9937 0.9999 0.9996 

4 Pg8 4.6141 4.5994 4.5916 3.1132 3.0842 3.0604 

5 Pg9 0.9998 0.9324 0.934 0.9978 0.9999 0.99998 

6 Pg12 3.5892 3.572 3.5912 4.1 4.1 4.0999 

Generator voltage 

7 Vg1 1.047 1.0873 1.0873 1.0542 1.0723 1.0712 

8 Vg2 1.0502 1.1 1.1 1.0559 1.0722 1.0721 

9 Vg3 1.0425 1.0672 1.0676 1.0563 1.067 1.0666 

10 Vg6 1.0569 1.0621 1.062 1.0623 1.0633 1.0631 

11 Vg8 1.0717 1.0689 1.0697 1.0654 1.0697 1.0695 

12 Vg9 1.0465 1.0507 1.0509 1.0492 1.0576 1.0572 

13 Vg12 1.0328 1.0384 1.0382 1.0441 1.0572 1.0567 

Tap settings 

14 T4-18 1.0999 0.9016 0.9 1.1 0.9117 1.1 

15 T4-18 0.9081 1.1 1.0428 1.0023 1.082 0.9014 

16 T21-20 1.0138 1.0321 1.0025 0.998 1.042 1.0128 

17 T24-25 1.083 1.1 1.0999 0.9036 1.0356 1.0902 

18 T24-25 1.1 1.0998 1.1 1.0698 0.9704 0.9354 

19 T24-26 1.0252 1.0268 1.0262 1.0086 1.0109 1.0098 

20 T7-29 0.9991 0.9993 0.9986 0.9953 0.9963 0.9961 

21 T34-32 0.9423 0.9522 0.9476 0.9318 0.9528 0.9526 

22 T11-41 0.9112 0.9129 0.9002 0.9111 0.9174 0.9025 

23 T15-45 0.9707 0.9909 0.9916 0.9733 0.9892 0.9889 

24 T14-46 0.9539 0.9695 0.9686 0.9671 0.9751 0.9722 

25 T10-51 0.9676 0.9709 0.9699 0.9797 0.9821 0.9819 

26 T13-49 0.9076 0.9389 0.9365 0.9411 0.9449 0.9451 

27 T11-43 0.9643 0.9782 0.9811 0.9776 0.9817 0.9939 

28 T40-56 0.9945 0.9924 1.0152 0.9826 0.9938 0.993 

29 T39-57 0.9753 0.9655 0.9639 0.96 0.9624 0.9638 

30 T9-55 0.9912 0.9934 0.9978 0.9986 0.9961 0.9947 

Shunt VAR source 

31 Qc18 0.1139 0.0375 0.0002 0.2771 0.0002 0.0239 

32 Qc25 0.2412 0.2613 0.2576 0.1081 0.1448 0.1554 
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33 Qc53 0.1405 0.1428 0.1293 0.1445 0.1339 0.129 

Fuel cost ($\h) 

TVD (pu) 

PLoss (MW) 

L-Index 

41670.4726 41692.9720 41692.6149 44418.4740 44438.1623 44600.2741 

1.7637 1.7835 1.8735 1.5278 1.7464 1.793 

15.0175 15.561 15.4768 10.005 9.766 9.759 

0.22 0.2191 0.2186 0.2434 0.2353 0.2330 

 

Table 5.14: Comparison of OPF Results in IEEE 57-Bus System, Case 9 

Algorithm Fuel Cost ($/h) L-Index Time (Second) 

Base Case 51348.2153 0.3098 0.02 

Rao-3 41692.6149 0.2186 131.78 

Rao-2 41692.9720 0.2191 132.54 

Rao-1 41670.4726 0.2200 132.76 

DSA [149] 41761.22 0.2383 - 

MSA [162] 41675.9948 0.27481 - 

MPSO [162] 41694.1407 0.27918 - 

MDE [162] 41689.5878 0.27677 - 

MFO [162] 41680.1937 0.27467 - 

FPA [162] 41684.1859 0.27429 - 

ECHT-DE [200] 41671.09 0.28152 - 

SF-DE [200] 41667.53 0.28022 214.4 

SP-DE [200] 41668.45 0.28092 - 

IMFO [225] 41673.6204 0.23525 - 

MFO [225] 41688.6522 0.2395 - 

GA [225] 41670.0872 0.2413 - 

PSO [225] 41670.1755 0.242 - 

TLBO [225] 41685.353 0.24787 - 

MGOA [226] 41682.4031 0.2297 - 

GOA [226] 41698.1175 0.2395 - 

SKH [292] 43937.1058 0.2721 - 

 

5.3.2.4 Case 10 # (Real power loss minimization): 

The function 𝐹𝐿𝑜𝑠𝑠 is selected for the RPLM as described in Eq. (3.21). The minimum 

real power loss attained by the Rao-2 algorithm is 9.759 MW, while the Rao-1 and Rao-3 

algorithms provided the real power loss as 10.005 MW and 9.770 MW, respectively. Results 

of the proposed Rao algorithms and optimal control variable settings are presented in Table 
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5.13. Table 5.15 compares the simulation results of this case as obtained by the Rao algorithms 

and other methods reported in recent literature. The OPF results shown in Table 5.15 

demonstrate the superiority of the Rao-2 algorithm over Rao-1, Rao-3, and the other 

competitors. The power loss convergence characteristic of case 10 is presented in Fig. 5.8. 

 

 

Fig. 5.8: Convergence characteristic for IEEE 57-bus system, Case 10 

 

Table 5.15: Comparison of OPF Results in IEEE 57-Bus System, Case 10 

Algorithm Real Power Loss (MW) Time (Second) 

Base Case 27.8282 0.02 

Rao-3 9.7590 131.26 

Rao-2 9.7660 132.18 

Rao-1 10.005 135.77 

SSA [95] 11.321 81.17 

MSO [161] 12.743 - 

TSA [163] 12.473 76.17 

SKH [292] 10.687 - 
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5.3.3 Test system 3 # (IEEE 118-bus system) 

To demonstrate the scalability of Rao algorithms and to prove their efficacy to solve 

large-scale problems, all the three versions of Rao algorithms were applied to solve the OPF 

problem in the IEEE 118-bus test system. The IEEE 118-bus test system has 54 generation 

units, two reactors, and 12 capacitors, 186 branches, and nine tap-changing transformers. The 

system data along with control variable operating limits are given in Appendix D. Thirty 

independent runs were taken using Rao algorithms to solve the OPF problem for the proposed 

test system, and the best results obtained out of 30 trials are shown in this section. 

 

5.3.3.1 Case 11# (Fuel Cost Minimization):  

In case 11, fuel cost is selected as the primary objective as in Case 1. The minimum cost 

attained by the Rao-3 algorithm is 1,29,220.6794 $/h, while Rao-2 and Rao-1 algorithms 

offered the minimum fuel cost of 1,29,256.5242 $/h and 1,29,241.1787 $/h, respectively. The 

OPF results of the proposed Rao-3 algorithm and the optimal control variable settings are 

presented in Table 5.16. Table 5.17 compares the OPF results of case 11 obtained by the Rao 

algorithms and other methods reported in recent articles. Based on OPF outcomes, it is clear 

that the Rao-3 algorithm provided the least fuel cost as compared to the other methods. This 

demonstrates the effectiveness of the Rao-3 algorithm over Rao-1, Rao-2 algorithms, and 

other algorithms for fuel cost minimization in IEEE 118-bus system. The fuel cost 

characteristics of case 11 are presented in Fig. 5.9. 
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Fig. 5.9: Convergence characteristic for IEEE 118-bus system, Case 11  

 

Table 5.16: Optimum control variables settings of Case 11 in IEEE 118-bus system 

S. 

No 

Control 

variables 

Initial Rao-3 S. 

No 

Control 

variables 

Initial Rao-3 S. 

No 

Control 

variables 

Initial Rao-3 

1 Pg1 0 0.07872 45 Pg103 0.4 0.33181 89 Vg77 1.006 1.00706 

2 Pg4 0 0.07685 46 Pg104 0 0.24175 90 Vg80 1.04 1.02122 

3 Pg6 0 0.0662 47 Pg105 0 0.06467 91 Vg85 0.985 1.03344 

4 Pg8 0 0.1337 48 Pg107 0 0.0083 92 Vg87 1.015 1.01663 

5 Pg10 4.5 4.27188 49 Pg110 0 0.03809 93 Vg89 1.005 1.02186 

6 Pg12 0.85 0.58259 50 Pg111 0.36 0.33608 94 Vg90 0.985 0.9779 

7 Pg15 0 0.02101 51 Pg112 0 0.18375 95 Vg91 0.98 0.96364 

8 Pg18 0 0.00159 52 Pg113 0 0.00423 96 Vg92 0.99 1.0142 

9 Pg19 0 0.00782 53 Pg116 0 0.0008 97 Vg99 1.01 0.98147 

10 Pg24 0 0.0178 54 Vg1 0.995 1.02416 98 Vg100 1.017 1.03575 

11 Pg25 2.2 2.1492 55 Vg4 0.998 1.03241 99 Vg103 1.01 1.05908 

12 Pg26 3.14 2.84427 56 Vg6 0.99 1.03808 100 Vg104 0.971 1.05774 

13 Pg27 0 0.31058 57 Vg8 1.015 0.97062 101 Vg105 0.965 1.05895 

14 Pg31 0.07 0.09645 58 Vg10 1.05 0.9431 102 Vg107 0.952 1.05859 

15 Pg32 0 0.00434 59 Vg12 0.99 1.05326 103 Vg110 0.973 0.96628 

16 Pg34 0 0.17751 60 Vg15 0.97 1.01875 104 Vg111 0.98 0.95313 
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17 Pg36 0 0.32141 61 Vg18 0.973 1.0552 105 Vg112 0.975 0.94652 

18 Pg40 0 0.46268 62 Vg19 0.962 1.02694 106 Vg113 0.993 1.03236 

19 Pg42 0 0.68702 63 Vg24 0.992 1.04181 107 Vg116 1.005 0.97069 

20 Pg46 0.19 0.25232 64 Vg25 1.05 1.04186 108 T5−8 0.985 0.9002 

21 Pg49 2.04 1.87987 65 Vg26 1.015 0.95537 109 T26−25 0.96 1.03159 

22 Pg54 0.48 0.30277 66 Vg27 0.968 1.03944 110 T30−17 0.96 0.9885 

23 Pg55 0 0.74996 67 Vg31 0.967 1.03063 111 T38−37 0.935 0.95581 

24 Pg56 0 0.35764 68 Vg32 0.963 1.02981 112 T63−59 0.96 1.09927 

25 Pg59 1.55 1.53703 69 Vg34 0.984 1.02045 113 T64−61 0.985 0.91596 

26 Pg61 1.6 1.65333 70 Vg36 0.98 1.03052 114 T65−66 0.935 1.08267 

27 Pg62 0 0.09242 71 Vg40 0.97 0.98601 115 T68−69 0.935 0.90129 

28 Pg65 3.91 3.98068 72 Vg42 0.985 0.97303 116 T81−80 0.935 1.0949 

29 Pg66 3.92 3.33319 73 Vg46 1.005 1.03671 117 QC5 0 0.0397 

30 Pg70 0 0.12369 74 Vg49 1.025 1.00562 118 QC34 0 0.13264 

31 Pg72 0 0.04355 75 Vg54 0.955 0.96514 119 QC37 0 0.29284 

32 Pg73 0 0.01357 76 Vg55 0.952 0.98114 120 QC44 0 0.22743 

33 Pg74 0 0.05 77 Vg56 0.954 0.96645 121 QC45 0 0.16846 

34 Pg76 0 0.05541 78 Vg59 0.985 1.04398 122 QC46 0 0.01255 

35 Pg77 0 0.05941 79 Vg61 0.995 1.05939 123 QC48 0 0.00779 

36 Pg80 4.77 3.5775 80 Vg62 0.998 1.05898 124 QC74 0 0.27942 

37 Pg85 0 0.12274 81 Vg65 1.005 0.96444 125 QC79 0 0.01159 

38 Pg87 0.04 0.01293 82 Vg66 1.05 1.05809 126 QC82 0 0.3 

39 Pg89 6.07 4.56372 83 Vg69 1.035 1.04551 127 QC83 0 0.15625 

40 Pg90 0 0.06063 84 Vg70 0.984 0.94113 128 QC105 0 0.13484 

41 Pg91 0 0.01788 85 Vg72 0.98 0.94008 129 QC107 0 0.26686 

42 Pg92 0 0.05746 86 Vg73 0.991 0.94036 130 QC110 0 0.01831 

43 Pg99 0 0.00446 87 Vg74 0.958 1.00781     

44 Pg100 2.52 2.33746 88 Vg76 0.943 0.96203     

OPF RESULTS  

 

Optimized Results Rao-1 Algorithm Rao-2 Algorithm Rao-3 Algorithm 

Fuel Cost ($/h) 1,29,241.1787 1,29,256.5242 129220.67 

TVDM (p.u) 1.4070 1.4205 1.5416 

RPLM (MW) 101.1756 109.2671 109.1203 

Pg69  (Slack bus power) 442.6168 492.0928 471.2005 
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Table 5.17: Comparison of OPF Results in IEEE 57-Bus System, Case 11 

 

 

5.4 STATISTICAL COMPARISON OF RAO-1, RAO-2 AND RAO-3 

ALGORITHMS 

To assess the robustness of the Rao-1, Rao-2 and Rao-3 algorithms to solve the OPF 

problem, statistical analysis was performed. Thirty separate trials for the same population 

size and number of iterations were conducted. Tables 5.18 shows the results of the 30 

trials, which were used to measure the best, worst, average (mean), and standard deviation 

(SD). The lowest values of the best, worst, average, and standard deviation offered by the 

Rao algorithms demonstrate that the proposed Rao algorithms provides statistically 

significant results in all the cases. This confirms the robustness of the Rao algorithms.  

 

Table 5.18: Statistical analysis of the various cases using the Rao algorithms 

Algorithm Best Worst Mean SD Best Worst Mean SD 

Case 1 Case 7 

Rao-3 799.9683 801.8023 800.8813 0.0186 41659. 2621 41674. 4259 41669. 0213 1.7866 

Rao-2 799.9918 801.9718 800.9032 0.0203 41872. 0668 41894. 0668 41887. 0668 2.2906 

Rao-1 800.4391 802.1403 801.2391 0.0223 41771.1088 41782.4437 41776.6512 2.1860 

Case 5 Case 10 

Rao-3 3.0675 3.1182 3.0714 0.0288 9.7590 9.8460 9.7971 0.0318 

Rao-2 3.1086 3.1761 3.1271 0.0360 9.7660 9.8541 9.8065 0.0339 

Rao-1 3.3041 3.4065 3.3389 0.0408 10.0050 10.9451 10.4515 0.0351 

Algorithm Fuel Cost ($/h) Time (Second) 

Base Case 1,31,220.020 0.13 

Rao-3 1,29,220.6794 164.19 

Rao-2 1,29,256.5242 169.24 

Rao-1 1,29,241.1787 167.33 

GPU-PSO [154] 1,29,627.03 - 

IMFO [225] 1,31,820.00 - 

PSOGSA [268] 1,29, 733.58 - 
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Case 6 Case 11 

Rao-3 0.2126 0.2246 0.2206 0.0166 129220.6794 129440.3458 129331.6023 4.0910 

Rao-2 0.2040 0.2065 0.2048 0.0131 129256.5242 129541.2740 129402.0961 4.7350 

Rao-1 0.2037 0.2049 0.2043 0.0110 129241.1787 129511.7206 129381.4028 4.5210 

* SD = standard deviation 

 

 

 

5.5 SUMMARY  

It has been observed that parameter tuning of meta-heuristic optimization algorithms 

plays a very important role and it is a very crucial and time taking task to tune its parameters 

for solving a given optimization problem. Hence, in this chapter Rao algorithms have been 

proposed to solve the OPF problem. As the proposed Rao algorithms are parameter tuning 

free optimization algorithm, the exploration and exploitation search ability of the algorithm is 

not dependent on algorithm-specific parameters.  

This chapter offers three easy to use metaphor-less optimization algorithms proposed 

by Rao to solve the optimal power flow problem considering technical and economical 

objective functions. The proposed Rao algorithms have been applied on three standard IEEE 

test systems e.g. 30-bus, 57 bus and 118 bus which have 24 control variables, 33 control 

variables, and 130 control variables, respectively to test the efficacy of the proposed algorithm 

for different problem dimensions. As the Rao algorithms performed well in all the 3 power 

networks having different dimensions of the control variables, they can also be employed to 

solve OPF problems in practical power systems.  

Various objectives considered for solving the OPF problem in this chapter were 

minimization of fuel cost, minimization of total voltage deviation, enhancement of voltage 

stability under normal and under contingency conditions, minimization of real power loss, 
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and minimization of emission cost. The performance of Rao-1, Rao-2 and Rao-3 is found to 

be competitive with one another as mentioned in [290]. 

Another appealing feature of the Rao algorithm is that with small variation in the update 

equation, three different versions can be developed and applied for solving any optimization 

problem. Consequently, based on the performance, the best version can be selected out of the 

three versions for solving the optimization problem at hand. 
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CHAPTER 6  

SINE-COSINE MUTATION BASED MODIFIED JAYA 

ALGORITHM FOR OPTIMAL POWER FLOW 

6.1 INTRODUCTION 

A modification of the existing meta-heuristic algorithm is the latest research trend to 

solve practical optimization problems. In recent literature, a large number of modified 

meta-heuristics algorithms have been proposed to solve complex optimization problems. 

When applied to real-world engineering optimization problems, standard versions of 

some of the common meta-heuristic approaches have been found to have some 

limitations. For example, premature convergence or local optima trapping is a common 

occurrence in GA and moth search optimization (MSO) algorithms. Similarly, the 

simulated annealing (SA) and PSO algorithms are relatively ineffective in searching for 

optimal global solutions. In addition, poor communication in the TLBO algorithm during 

the second phase (Learning Phase) may result in insufficient knowledge sharing, therefore 

may get trapped in the local solution. Various modifications and hybridization of meta-

heuristic algorithms have been proposed in the literature to address the shortcomings of 

the poorly performing standard versions of meta-heuristic algorithms. 

Jaya algorithm has a strong capacity to explore search space globally, but sometimes 

it suffers from premature convergence and can be stuck simply in local optima. To 

overcome this problem and to make this algorithm more efficient, in this chapter, a sine-

cosine mutation-based modified Jaya algorithm (SCM-MJ) for solving the OPF problem 

has been proposed. The efficacy of the SCM-MJ algorithm is primarily evaluated using 

thirteen (uni-modal and multi-modal) mathematical benchmark functions. Later, the 
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SCM-MJ algorithm is applied to the Algerian 59-bus system and IEEE 118-bus test 

system to handle the OPF problems. The proposed SCM-MJ algorithm has successfully 

offered a minimum value of objective function over several runs than other modern meta-

heuristic optimization approaches in all the thirteen mathematical benchmark functions 

as well as in OPF case studies. The SCM-MJ algorithm has provided high-quality 

solutions for mathematical benchmark functions and OPF problems quickly and 

efficiently.  

6.2 JAYA ALGORITHM 

Jaya algorithm is a comparatively new meta-heuristic optimization algorithm 

developed by Rao [293]. The working principle of the Jaya algorithm is that the numerical 

solution that has been obtained should go towards the best solution and should avoid the 

inferior solutions for a particular optimization problem. The key benefit of the Jaya 

algorithm is that algorithm-specific parameter tuning is not required at all in it and thus it 

is easy to implement this algorithm for solving various kinds of optimization problems.  

Initial population ‘p’ is randomly generated within the upper and lower limits of the 

control variables and is updated as per Eq. (6.1). The best and worst solutions are 

determined based on the fitness values of the objective function. 

Let, the number of design variables is ‘m’ (i.e. j = 1, 2, 3…, m) and ‘n’ is the population 

size (k = 1, 2…, n). Let 𝐽𝑖,𝑗,𝑘 represents the value of the jth variable for kth candidate during 

the ith iteration, and then this value is modified as (6.1) 

 Ji+1,j,k = Ji,j,k + γ i,j,1(Ji,j,B − abs(Ji,j,k)) − γ i,j,2(Ji,j,W − abs(Ji,j,k))                                                           (6.1) 
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Where,  𝐽𝑖,𝑗,𝑘 represents the value of the jth variable for the kth candidate during the ith 

iteration. 𝐽𝑖,𝑗,𝑊 and 𝐽𝑖,𝑗,𝐵 are the worst candidate and best candidate value of the jth variable 

respectively. 𝛾 𝑖,𝑗,1  and 𝛾 𝑖,𝑗,2 are the two random numbers for the jth variable during the ith 

iteration in the range [0, 1]. 

6.3 MODIFIED JAYA ALGORITHM 

The modified Jaya algorithm has been derived by changing the solution update 

equation of the Jaya algorithm using (6.1). 

 Ji+1,j,k = Ji,j,k + γ i,j,1 × (Ji,j,B − Ji,j,k) − γ i,j,2  × S × (Ji,j,W − Ji,j,k)                                                           (6.2) 

where S is updated in each iteration as follows; 

S = {
 1     If rand2 > 0.5

 −1                           else
                                            (6.3) 

Where, rand2  is the random number in the range [0, 1]. 

 

6.4 SINE-COSINE MUTATION OPERATOR  

Zhou et.al [294] suggested a sine-cosine mutation operator that enhances the global 

search ability of the meta-heuristic techniques. The key benefit of the sine-cosine mutation 

operator is that it avoids the loss of diversity of populations during the search process. The 

sine-cosine mutation operator typically constructs new offspring (solutions) similar to the 

parent candidate solutions. When the sine-cosine mutation operator is used during the 

search process, smaller steps are taken, allowing the candidate solutions to explore every 

corner of the solution space. The sine-cosine mutation operator is capable of diversifying 

the population and making global searches more effective, so that the objective function 
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does not converge prematurely with local optima. The sine-cosine mutation operator 

function is calculated as follows: 

 Jnew(i+1,j,k) = {
Ji,j,kc1

+ A × sin(B) × |C. Ji,j,kc2
− Ji,j,kc3

|          C < 1.0          

Ji,j,kc1
+ A × cos(B) × |C. Ji,j,kc2

− Ji,j,kc3
|       otherwise             

                                      (6.4) 

Eq. (6.4) is used to achieve the kth candidate’s new position value   𝐽𝑛𝑒𝑤(𝑖+1,𝑗,𝑘) during (i 

+1)th iteration. In Eq. (6.4), 𝐽𝑖,𝑗,𝑘𝑐1
,  𝐽𝑖,𝑗,𝑘𝑐2

 and 𝐽𝑖,𝑗,𝑘𝑐3
 are three random solutions in the ith 

iteration, which are different from one another. The parameter ‘A’ is changed iteratively 

as determined by Eq. (6.4), whereas ‘B’ and ‘C’ are random numbers in the range [0, 2π] 

and [0, 2] respectively.  

 𝐴 = 2 × (1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

2

                                                  (6.5) 

To maintain a constant population size in next generations, sine-cosine mutation uses 

a greedy selection procedure. The new position value of 𝐽𝑛𝑒𝑤(𝑖+1,𝑗,𝑘) replaces the old value 

𝐽(𝑖,𝑗,𝑘) if and only if  f (𝐽𝑛𝑒𝑤(𝑖+1,𝑗,𝑘)) <f (𝐽(𝑖,𝑗,𝑘)). 

6.5 THE PROPOSED METHODOLOGY 

Jaya algorithm is an efficient optimization algorithm. This algorithm is good in the 

exploration of the search space but is slow in the exploitation part. Therefore, hybridizing 

Jaya with an algorithm having strong exploitation capability might balance the exploitation 

and exploration of the Jaya algorithm. Hence, to boost the operational efficacy of the Jaya 

algorithm, a sine-cosine mutation operator has been incorporated into it. The motivation 

to incorporate the sine-cosine mutation operator with the Jaya algorithm is to combine the 

benefits of both of them.  
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The SCM-MJ algorithm can maintain the population’s diversity throughout the search 

space to avoid sub-optimal solutions, enhance the convergence speed, and find near-global 

solution as well. The hybridization of the modified Jaya algorithm and sine-cosine 

mutation operator would lead to better results for real-world complex, constrained and 

high dimensional optimization problems. The flow chart of the proposed hybrid method is 

given in Fig. 6.1. 

The main computational step for solving OPF using the SCM-MJ algorithm can be 

summarized as follows: 

Step 1:  Initialize population ‘P’ having control variables, with the dimension of problem 

‘D’ and set the stopping criteria.   

Step 2:  For each individual, run NRLF (Newton Raphson load flow) program and evaluate 

the value of the augmented objective function (3.14).  

Step 3:  Set iteration Iter =0.  

Step 4: Identify the worst and best solution in the population based on the value of the 

augmented objective function (3.14). 

Step 5:  Modify the solution based on the worst and the best solutions using (6.2). 

Step 6:  For each individual, is the new fitness value better than the previous one? If yes, 

then replace the previous solution with a new solution. Otherwise, keep the 

previous solution. 

Step 7: Apply the sine-cosine mutation operator to update the position of all the members 

of the population and calculate the augmented objective function value. 
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Fig. 6.1: Flowchart of the proposed SCM-MJ algorithm 

 

Step 8:  If a new solution achieved after the mutation operator is better than the previous 

solution, accept the new solution otherwise keep the previous solution. 

Step 9: If the stopping criteria is satisfied then go to step 10, otherwise go to step 4 and 

increase the iteration count by 1, i.e. Iter = Iter + 1. 
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Step 10: Stop and display optimal solutions. 

 

6.6 RESULTS AND DISCUSSION 

To check the efficacy of the proposed SCM-MJ algorithm, it has been applied to 

thirteen standard mathematical benchmark functions. Table 6.1 presents the input 

parameters of the SCM-MJ algorithm. Details of these benchmark functions and 

simulation outcomes can be seen in Table 6.2 and Table 6.3 respectively.  

To compare the performance of the proposed SCM-MJ algorithm with the M-Jaya 

algorithm, ant lion optimizer (ALO), bat algorithm (BA), cuckoo search (CS) algorithm, 

flower pollination algorithm (FPA), firefly algorithm (FA), GA, PSO, and states of matter 

search (SMS) algorithms [295], these algorithms were applied and run with the population 

size of 100 for the 5000 iterations on all the thirteen benchmark functions. The number of 

functions evolution (NFE) for ALO, BA, CS, FPA, FA, GA, PSO, and SMS algorithms, 

proposed SCM-MJ algorithm and M-Jaya algorithm are also the same which is equal to 

5,00,000. Details of the implementation of hybrid SCM-MJ and M-Jaya algorithms are 

given in Table 6.1. 

 

Table 6.1: Algorithm specific parameters setting of SCM-MJ algorithm 

SCM = Sine-cosine mutation operator; M-Jaya = Modified Jaya algorithm 

S. 

No. 

Parameter Value 

1 Population size 100 (for benchmark function), 30 (for OPF problem) 

2 Maximum Iteration 2500 (for benchmark function), 150 (for OPF problem) 

3 Number of function 

Evolution 

(2,50,000×M-Jaya+2,50,000×SCM) = 5,00,000 (for benchmark 

function) 

 (45,00×M-Jaya +45,00×SCM) = 9,000 (for OPF problem) 
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Table 6.2: Mathematical benchmark functions 

S. 

No. 

Formulation Dimension Search 

range 

fmin 

Uni-modal benchmark functions  

1 
F1(x) = ∑ xi

2
n

i=1
 

200 [-100, 100] 0 

2 
F2(x) = ∑ |xi| + ∏ |xi|

n

i=1

n

i=1
 

200 [-10, 10] 0 

3 

F3(x) =  ∑ (∑ xj

i

j−1

)

2
n

i=1

 

200 [-100, 100] 0 

4 F4(x) = maxi{|xi|,        1 ≤ i ≤ n} 200 [-100, 100] 0 

5 

F5(x) = ∑[100(xi+1 − xi
2)2 + (xi − 1)2]

n−1

i=1

 

200 [-30, 30] 0 

6 
F6(x) = ∑ ([(xi + 0.5])2

n

i=1
 

200 [-100, 100] 0 

7 
F7(x) = ∑ ixi

4
n

i=1
+ random[0,1) 

200 [-1.28, 

1.28] 

0 

Multi-modal benchmark functions  

8 
F8(x) =  ∑ −xi sin (√|xi|)

n

i=1

 
200 [-500, 500] − 418.982

× Dim 

9 
F9(x) = ∑[xi

2 − 10 cos(2πxi) + 10]

n

i=1

 
200 [-5.12, 

5.12] 

0 

10 

F10(x) = −20 exp (−0.2√
1

n
∑ xi

2

n

i=1

)

− exp (
1

n
∑ cos(2πxi)

n

i=1

) + 20 + e 

200 [-32, 32] 0 

11 
F11(x) =

1

4000
∑ xi

2 − ∏ cos (
xi

√i
)

n

i=1

n

i=1

+ 1 
200 [-600, 600] 0 

12 
F12(x) =

π

n
{10 sin(πy1)

+ ∑(yi − 1)2

n−1

i=1

[1 + 10sin2(πyi+1)]

+ (yn − 1)2} + ∑ u(xi, 10,100,4)

n

i=1

 

yi = 1 +
xi + 1

4
 

u = (xi, a, k, m) = {

k(xi − a)m     xi > 𝑎
0              − a < 𝑥i < 𝑎
k(−xi − a)m    xi < 𝑎

 

200 [-50, 50] 0 
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13 
F13(x) = 0.1 {sin2(3πx1)

+ ∑(xi − 1)2

n

i=1

[1 + sin2(3πxi + 1)]

+ (xn − 1)2[1 + sin2(2πxn)]}

+ ∑ u(xi, 5,100,4)

n

i=1

 

200 [-50, 50] 0 

 

 

Table 6.3: Comparison of SCM-MJ algorithm with M-Jaya and reported algorithms  

Fun. SCM-MJ M-Jaya ALO [295] PSO [295] SMS [295] 

ave Std ave std ave std ave std ave std 

F1 0.0000 0.0000 0.0088 0.0094 7.8e-07 1.1e-07 23.799 11.721 1039.2 0.4243 

F2 0.0000 0.0000 7.6897 1.2159 530.82 222.67 237.87 22.432 1832.4 0.0122 

F3 0.0000 0.0000 1.6e+05 1.4e+05 2331.4 507.18 4693.3 503.57 2034.8 0.3780 

F4 0.0000 0.0000 30.013 1.5509 30.58 1.1446 40.111 0.5879 300.26 0.0023 

F5 188.71 0.2105 627.31 12.737 167.04 49.746 911.23 95.245 3863.5 0.5329 

F6 2.5 e-07 1.3 e-07 0.0455 0.0601 7.6e-07 7.3e-08 43.421 14.206 2494.4 0.0003 

F7  1.8 e-05 1.0 e-05 0.3724 0.0689 0.0505 0.0144 17.321 4.0133 28.359 1.9e-05 

F8 -50837 2395.9 -22549 14867 -44,426 1442.5 -18,136 4962.4 -35,969 0.8765 

F9 0.0000 0.0000 1445.3 424.37 613.89 66.795 748.58 24.301 480.01 0.2365 

F10 8.8e-16 0.0024 2.3669 1.2515 2.3058 0.2554 15.183 0.5762 17.293 0.0974 

F11 0.0000 0.0000 0.0200 0.0391 0.0074 0.0065 3241.2 137.49 4801.5 0.8532 

F12 0.7421 2.1e-02 6.4463 1.6378 5.3982 0.5959 4.0e+05 4.7e+05 1.0e+08 1.9e-05 

F13 19.772 2.3e-04 154.35 21.675 0.1391 0.2219 1.2e+06 5.8e+05 1.0e+08 1.9e-05 

 BA [295] FPA [295] CS [295] FA [295] GA [295] 

ave Std ave std ave std ave std ave std 

F1 1117.3 20731 55. 989 32. 678 3.8e-05 1.8e-05 76.128 1.5744 227.75 186.56 

F2 3842.8 468.28 280.6 6.9384 400.10 0.8656 611.19 71.219 6322.6 1092.7 

F3 1090.7 475.06 24219 8540 12,957 633.75 14852 6418.4 11,206 3986.1 

F4 65.667 2.8293 37.689 2.4572 30.936 1.6877 2.736 0.5472 101.54 2.5321 

F5 1410.8 591.07 3150.7 1490.6 332.67 159.88 1321.7 114.76 964.49 748.76 

F6 51.205 12.005 166.99 41.109 8.1e-05 4.5e-05 78.42 2.3405 482.56 278.61 
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F7 2.4344 0.1275 4.8391 1.5354 0.4013 0.0087 0.0273 0.0041 116.56 60.161 

F8 -25632 869.47 -45771 3097.8 -52600 156.04 -39,753 649.69 -28,660 1011.0 

F9 723.38 100.96 702.95 69.653 541.58 41.889 475.45 28.058 1645.8 37.155 

F10 18.159 0.0677 17.544 0.1668 17.654 2.9820 2.4297 0.0385 20.361 0.1425 

F11 4937.0 268.42 180.74 36.084 0.0011 0.0011 1.7048 0.0143 3306.8 113.30 

F12 1.6e+09 4.2e+08 4.3e+07 3.2e+07 1.0e+10 0.0045 23.426 0.5598 8.1e+09 9.5e+08 

F13 2.2e+09 8.8e+08 9.8e+07 3.8e+07 1.0e+10 0.0568 2.8614 0.0568 1.3e+10 1.4e+09 

*ave = average value, std. = standard deviation 

 

The SCM-MJ algorithm is applied subsequently on the two systems (Algerian 59-bus 

and IEEE 118-bus) to solve the OPF problem. Several trials were taken, but the best results 

obtained and given in this work are with population size 30 and the maximum number of 

iterations 150 for both the power systems. The simulation outcomes obtained by the SCM-

MJ algorithm are compared with other meta-heuristic algorithms and it is observed that 

the SCM-MJ algorithm produces better results than its competitors for mathematical 

benchmark functions as well as for OPF problems. The computational work was carried 

out on a personal computer having a 1.7 GHz Intel Processor, 4GB RAM, Core i3, and 64-

bit operating system using MATLAB-13a computing environment. Several case studies 

were carried out using SCM-MJ algorithm and are given in Table 6.4. 

Table 6.4: Various case studies of Optimal Power Flow problem  

 

Algerian 59-bus system 

Case 1 : (FCM) 

Case 2 : (FCM+ W TVDM × TVDM) 

Case 3 : (FCM + WRPLM × RPLM) 

 

IEEE 118- bus system 

Case 4 : (FCM) 

Case 5 : (TVDM)   

Case 6 : ( RPLM) 

Case 7 : (FCM+ W TVDM × TVD + WRPLM × RPLM) 
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6.6.1 Algerian 59-bus system 

To evaluate the effectiveness of the proposed SCM-MJ algorithm, it is tested for 

solving the OPF problem in a practical power system, namely, the Algerian 59-bus system. 

The system data, maximum and minimum limits of the control variables are the same as 

provided in Appendix C. It is worth mentioning that generator at bus No. 13 is not in 

service. For this system, 30 runs were taken using SCM-MJ and M-Jaya algorithms to 

solve the different objective functions of the OPF problem and the best results are given 

here.  

6.6.1.1 Case 1# (FCM): Algerian 59-bus system 

The proposed SCM-MJ algorithm has been applied to solve the OPF problem in the 

Algerian 59-bus system to test its performance in solving practical power system 

problems. Table 6.5 shows the numerical results attained by the SCM-MJ algorithm and 

other methods mentioned in recent papers, while Table 6.6 shows the OPF results as well 

as the optimal control variable settings of the SCM-MJ algorithm. The numerical outcomes 

reveal that the proposed SCM-MJ algorithm produces better results as compared to other 

meta-heuristic algorithms for solving OPF problems. The convergence characteristic of 

case 1 is shown in Fig. 6.2. 

 

6.6.1.2 Case 2# (FCM+W TVDM ×TVDM): Algerian 59-bus system 

 The proposed SCM-MJ algorithm has been applied to solve the OPF problem, which 

involves the minimization of fuel cost and improvement of voltage profile by minimization 

of total voltage deviation. In this case, the total voltage deviation and fuel cost obtained by 

the SCM-MJ algorithm are 1.8815pu and 1718.4893 $/h, respectively. The numerical 

outcomes of case 2 attained by the proposed method and recent optimization algorithms 
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mentioned in the recent literature are compared in Table 6.5. The OPF results along with 

optimum control variables settings are given in Table 6.6. The voltage profiles of the base 

case, achieved by the SCM-MJ and M-Jaya algorithm are presented in Fig. 6.3. This can 

be observed from Fig. 6.3, that voltages at various load buses are within the specified 

limits. 

 

 

Fig. 6.2: Convergence characteristics of fuel cost for Case 1 

 

 

 

Fig. 6.3: Load bus voltage profile for Case 2 
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6.6.1.3 Case 3 # (FCM+ WRPLM ×RPLM): Algerian 59-bus system 

The main motive of case 3 is to minimize the real power loss along with the fuel cost. 

The multi-objective function is transformed into a single objective function by using the 

weighted sum method. In the combined objective function, the value of the weighting 

factor (WRPLM) assigned to real power loss was 10. The OPF results attained using the 

SCM-MJ and M-Jaya algorithm are compared with other reported results in Table 6.5.  As 

can be observed from Table 6.5, the SCM-MJ algorithm provided the total fuel cost as 

1724.01823$/h and real power loss as 15.4330 MW, while the ESDE-MC algorithm 

provided the total fuel cost and real power loss as 1719.9456 $/h and 16.1682 MW 

respectively.  

In this case, the real power loss obtained by the proposed algorithm is less than the 

reported ESDE-MC results, while the fuel cost obtained by the proposed SCM-MJ 

algorithm is slightly higher than the reported ESDE-MC method [198]. Such type of 

situations will be only because of the preference given to one objective as compared to the 

other objective and as discussed above, in this case, the relative weightage given to real 

power loss is 10 as compared to fuel cost. The OPF results along with the control variable 

setting for this case also are shown in Table 6.6, while Fig. 6.4 displays the real power loss 

convergence characteristics of the SCM-MJ and M-Jaya algorithms in this case. 

 

 

Table 6.5: Comparison of SCM-MJ algorithm for case1-case3 in Algerian 59-bus 

system 

Algorithm Fuel Cost 

($/h) 

Voltage 

(p.u) 

Real Power 

Loss (MW) 

COF Computation 

Time (Sec) 

Case – 1 (FCM) 

SCM-MJ 1688.5933 - - - 39.80 

M-Jaya 1689.0281 - - - 37.23 
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SKH [20] 1688.5742 - - - 47.32 

BHBO [115] 1710.0859 - - - - 

ESDE-MC [198] 1688.5586 - - - 42.34 

ESDE-EC [198] 1690.3171 - - - 45.93 

ESDE [198] 1692.0624 - - - 40.02 

Case- 2 (FCM + W TVDM × TVDM) 

SCM-MJ 1718.48938 1.8815 - 2207.6711 39.78 

M-Jaya 1719.8954 1.8842 - 2209.7874 36.09 

LCA [147] 1755.5775 1.8404 - - - 

Case- 3 (FCM + WRPLM× RPLM) 

SCM-MJ 1724.01823 - 15.4330 1878.3480 39.23 

M-Jaya 1719.8684 - 15.9020 1878.8884 36.73 

ESDE-MC [198] 1719.9456 - 16.1682 - 127.34 

ESDE-EC [198] 1723.9823 - 16.5586 - 137.43 

ESDE [198] 1724.6272 - 16.7660 - 120.53 

 

Table 6.6: Control variables settings for Case 1- Case 3 of Algerian 59-bus system 

S. 

No. 

Control variable Minimum 

Value 

Initial 

Case 

Case-1 Case-2 Case-3 Maximum 

Value 

Generator active power output 

1 Pg2 0.1 0.7 0.23372 0.20114 0.3073 0.7 

2 Pg3 0.3 0.7 1.01775 1.0115 1.06134 5.1 

3 Pg4 0.2 1.15 1.10507 1.20036 1.38107 4.0 

4 Pg13 0.15 0 0 0 0 1.5 

5 Pg27 0.1 0.4 0.25832 0.35014 0.39958 1.0 

6 Pg37 0.1 0.3 0.50955 0.47721 0.43504 1.0 

7 Pg41 0.15 1.1 0.97038 0.71526 0.61906 1.4 

8 Pg42 0.18 0.7 1.40855 1.49762 1.29505 1.75 

9 Pg53 0.3 2 1.03189 1.19992 1.11455 4.5 

Generator voltage 

10 Vg1 0.94 1.06 1.1 1.06605 1.09999 1.1 

11 Vg2 0.94 1.04 1.08796 1.07318 1.09973 1.1 

12 Vg3 0.94 1.05 1.1 1.09944 1.09998 1.1 

13 Vg4 0.94 1.0283 1.09998 1.03878 1.08747 1.1 

14 Vg13 0.94 1 1.09878 0.99749 1.1 1.1 

15 Vg27 0.94 1.0266 1.09932 1.03703 1.08661 1.1 

16 Vg37 0.94 1.0273 1.1 1.02878 1.1 1.1 
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17 Vg41 0.94 1.0966 1.1 1.01045 1.09404 1.1 

18 Vg42 0.94 1.034 1.1 1.1 1.1 1.1 

19 Vg53 0.94 1 1.1 1.09991 1.09999 1.1 

Fuel Cost ($\h) 

Voltage (pu) 

Real Power Loss (MW) 

Pg1(Slack bus) 

Combined Objective 

Function  

- 1943.7010 1688.5933 1718.4893 1724.0182 - 

- 1.5757 2.8062 1.8815 2.9395 - 

- 29.1409 27.6423 24.9567 15.4330 - 

- 8.2409 58.2193 43.7417 38.2340 - 

- - - 2207.6711 1878.3480 - 

 

 

      Fig. 6.4: Convergence characteristics of real power loss for Case 3 

 

 

6.6.2 IEEE 118-bus system: 

To evaluate the scalability of the SCM-MJ algorithm and to verify its efficacy to solve 

large scale problems, the SCM-MJ method was applied to solve the OPF problem in the 

IEEE 118-bus test system. The system data and maximum and minimum limits of the 

control variable are given in Appendix D. For this system also, 30 runs were taken using 

the SCM-MJ and M-Jaya algorithm to solve the different objective functions of the OPF 

problem and the best results are presented here. 
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6.6.2.1 Case 4 # (FCM): IEEE 118-bus system 

As in Case 1, FCM is chosen as the main objective function for the IEEE 118-bus test 

system in case 4. Table 6.7 displays the OPF outcomes along with the optimal control 

variable settings of the SCM-MJ algorithm. The OPF results attained by the SCM-MJ 

technique are compared with the reported results available in recent literature in Table 6.8. 

The proposed SCM-MJ algorithm provides the minimum fuel cost as compared to other 

reported results with all the operating constraints within their pre-specified limits. This 

demonstrates the effectiveness of the SCM-MJ algorithm as compared to the M-Jaya 

algorithm and its other competitors. Fig. 6.5 represents the fuel cost convergence 

characteristics for M-Jaya and SCM-MJ algorithms. 

 

 

Fig. 6.5: Convergence characteristics of fuel cost minimization for Case 4 
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6.6.2.2 Case 5#(TVDM): IEEE 118-bus system 

The proposed SCM-MJ method has been employed to solve the OPF problem for 

minimization of voltage deviation from 1.0pu at all the PQ (load) buses. The OPF results 

along with the optimum value of control variables are shown in Table 6.7. The total voltage 

deviation at load buses provided by the SCM-MJ algorithm is 0.4366pu. The OPF results 

of case 5 attained by using the SCM-MJ method, M-Jaya method and other efficient 

methods reported in the recent literature are compared in Table 6.8. The voltage profile of 

the base case and this case are displayed in Fig. 6.6. The voltage profile obtained by the 

proposed SCM-MJ and M-Jaya algorithm shows that all the PQ buses’ voltages are within 

the operating limits.  

 

 

Fig. 6.6: Load bus voltage profile for Case 5 

 

6.6.2.3. Case 6#(RPLM): IEEE 118-bus system 

In this case, minimization of real power loss is selected as an objective function. 

The power loss is significantly improved in this case as compared to the base case. Table 

6.7 shows the OPF results with the optimal control variable settings of the SCM-MJ 
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algorithm and Table 6.8 compares the numerical outcomes offered by the SCM-MJ 

algorithm, M-Jaya algorithm and other reported results. The convergence characteristics 

of the proposed algorithm are depicted in Fig. 6.7. As can be seen from Fig. 6.7, the 

proposed SCM-MJ method has offered smooth convergence characteristics as compared 

to the M-Jaya algorithm. 

 

             Fig. 6.7: Convergence of SCM-MJ algorithm for Case 6 

 

Table 6.7: Optimum values of control variables of Case 4 - Case 6, IEEE 118-bus 

system 

S. 

No. 

CV Case 4 Case 5 Case 6 S. No. CV Case 4 Case 5 Case 6 

1 Pg1 0.0074 0.2476 0.7493 68 Vg32 1.0064 1.012 1.0013 

2 Pg4 0.0352 0.0904 0.0879 69 Vg34 0.9818 1 1.004 

3 Pg6 0.1114 0.1369 0.2065 70 Vg36 0.9569 0.9964 0.9947 

4 Pg8 0.1151 0.4611 0.7209 71 Vg40 0.9917 1.0088 0.9877 

5 Pg10 4.0965 3.0116 1.044 72 Vg42 1.0561 1.0033 1.0028 

6 Pg12 0.8912 0.6187 1.7026 73 Vg46 0.9457 1.0037 1.0226 

7 Pg15 0.0537 0.1774 0.887 74 Vg49 0.9765 1.0197 1.0049 

8 Pg18 0.0778 0.1317 0.8205 75 Vg54 1.0265 1.0176 1.0166 

9 Pg19 0.027 0.5426 0.9457 76 Vg55 1.0264 0.9804 1.0203 

10 Pg24 0.2123 0.0001 0.1748 77 Vg56 1.0269 0.9938 1.0173 

11 Pg25 1.8093 1.9346 0.1804 78 Vg59 0.9837 0.9547 1.015 
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12 Pg26 2.8809 2.1913 0.2349 79 Vg61 0.9705 0.9993 1.0161 

13 Pg27 0.231 0.4348 0.9624 80 Vg62 0.9713 0.9699 1.0192 

14 Pg31 0.0799 0.0224 0.9218 81 Vg65 0.9586 0.9486 1.0223 

15 Pg32 0.0789 0.0647 0.3108 82 Vg66 0.9756 1.0436 1.0162 

16 Pg34 0.5587 0.2384 1 83 Vg69 0.9869 1.0373 1.0126 

17 Pg36 0.0755 0.5328 0.2322 84 Vg70 0.9542 0.9928 1.0159 

18 Pg40 0.0019 0.7794 0.9251 85 Vg72 0.9439 0.9679 1.0153 

19 Pg42 0.6441 0.1771 0.9828 86 Vg73 0.9895 0.9926 1.0463 

20 Pg46 0.2165 0.2659 0.9008 87 Vg74 0.9713 0.9786 1.0228 

21 Pg49 1.831 1.886 1.403 88 Vg76 0.9547 1.0195 1.0024 

22 Pg54 0.4066 0.4281 1.1292 89 Vg77 0.9801 1.0011 1.0069 

23 Pg55 0.3165 0.6398 0.9997 90 Vg80 1.0254 1.0384 1.0177 

24 Pg56 0.0687 0.1811 0.8698 91 Vg85 0.9769 1.0239 0.9996 

25 Pg59 1.4468 1.1159 2.3818 92 Vg87 0.9565 0.9738 1.0269 

26 Pg61 1.4983 0.9604 0.9092 93 Vg89 1.0313 0.9937 0.9859 

27 Pg62 0.01 0.1131 0.2029 94 Vg90 1.0071 0.9824 0.9881 

28 Pg65 3.2906 3.3113 2.3234 95 Vg91 1.022 0.9535 0.9849 

29 Pg66 3.0704 3.1084 1.8803 96 Vg92 1.0584 1.008 0.9934 

30 Pg70 0.0411 0.1137 0.6109 97 Vg99 1.0509 1.0517 0.9888 

31 Pg72 0.1232 0.0082 0.2463 98 Vg100 1.0525 1.007 1.0054 

32 Pg73 0.1004 0.1719 0.1671 99 Vg103 1.0204 1.0391 1.0115 

33 Pg74 0.568 0.6359 0.6442 100 Vg104 0.9664 1.0178 1.0177 

34 Pg76 0.0944 0.9307 0.5954 101 Vg105 0.9723 1.0015 1.007 

35 Pg77 0.066 0.1893 1 102 Vg107 0.9747 1.0339 0.9822 

36 Pg80 4.0032 3.7289 3.3519 103 Vg110 1.0487 0.9994 1.041 

37 Pg85 0.1829 0.0703 0.4759 104 Vg111 1.0114 1.0035 1.0599 

38 Pg87 0.045 0.0337 0.3066 105 Vg112 1.0595 1.0273 1.0288 

39 Pg89 5.0749 4.05 0.9493 106 Vg113 0.9989 0.9884 1.0184 

40 Pg90 0.0029 0.3006 0.9232 107 Vg116 0.9881 1.0167 1.0238 

41 Pg91 0.1777 0.0136 0.4551 108 T5−8 0.9009 0.9016 0.989 

42 Pg92 0.0083 0.1151 0.7886 109 T26−25 0.9432 0.9919 0.9057 

43 Pg99 0.094 0.6149 0.0599 110 T30−17 1.0151 1.019 0.9779 

44 Pg100 2.678 2.0898 1.697 111 T38−37 1.0627 0.9422 0.9394 

45 Pg103 0.402 0.0909 0.2765 112 T63−59 1.0973 1.0673 1.0151 

46 Pg104 0.2142 0.3885 0.121 113 T64−61 1.0682 1.0303 1.0208 

47 Pg105 0.0959 0.0661 0.8569 114 T65−66 1.0956 1.0847 0.9631 

48 Pg107 0.1201 0.3794 0.3457 115 T68−69 0.9036 0.9 0.9158 

49 Pg110 0.1723 0.0102 0.6948 116 T81−80 0.9001 0.9303 1.0363 

50 Pg111 0.4485 0.361 0.416 117 QC5 0.136 0.0155 0.2081 
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51 Pg112 0.0194 0.4748 0.2227 118 QC34 0.0683 0.152 0.0029 

52 Pg113 0.0271 0.1551 0.3846 119 QC37 0.1855 0.0305 0.0471 

53 Pg116 0.0144 0.0216 0.4062 120 QC44 0.0824 0.042 0.1477 

54 Vg1 1.0203 0.9991 1.0276 121 QC45 0.2582 0.1835 0.1186 

55 Vg4 0.9948 0.9866 0.9998 122 QC46 0.0141 0.2967 0.0114 

56 Vg6 1.0054 0.9914 0.9978 123 QC48 0.0013 0.0142 0.2974 

57 Vg8 0.959 0.9617 0.9783 124 QC74 0.1131 0.2324 0.1259 

58 Vg10 1.0122 0.9651 0.9909 125 QC79 0.2902 0.2698 0.0911 

59 Vg12 1.0041 1.0126 1.015 126 QC82 0.082 0.0363 0.0599 

60 Vg15 0.9876 1.0004 1.01 127 QC83 0.0982 0.0217 0.2881 

61 Vg18 0.9813 0.9885 1.0165 128 QC105 0.2955 0.024 0.0371 

62 Vg19 0.9754 1.0178 1.0164 129 QC107 0.0011 0.0268 0.0484 

63 Vg24 1.0311 0.9905 0.9927 130 QC110 0.2277 0.0703 0.0032 

64 Vg25 1.0273 0.9931 0.9975 Fuel Cost  129171.96 130879.62 163639.21 

65 Vg26 1.0587 0.949 0.9846 TVDM  1.2721 0.4366 0.6099 

66 Vg27 1.0253 0.9971 1.0026 RPLM  114.5312 85.8153 19.1525 

67 Vg31 0.9954 1.0021 1.0018 Pg69  459.6014 439.9788 52.9582 

 

Table 6.8: Comparison of SCM-MJ algorithm for Case4 -Case6 in IEEE 118-bus 

system   

Algorithm Fuel Cost 

($/h) 

TVDM  

(pu) 

RPLM 

 (MW) 

COF Computation 

Time (Sec) 

Case – 4 (FCM) 

SCM-MJ 129171.96 - - - 63.85 

M-Jaya 129248.10 - - - 59.79 

Rao-1 129220.67 - - - 164.19 

Rao-2 129256.52    169.24 

Rao-3 129241.17    167.33 

NLP [27] 129700.00 - - - 0.80 

QP [27] 129600.00 - - - 0.36 

ALC-PSO [189] 129546.08 - - - - 

MSCA [193] 129620.22 - - - - 

SCA [193] 129622.65 - - - - 

IMFO [225] 131820.00 - - - - 

FAHSPSO-DE [267] 129519.38 - - - 64.93 

PSOGSA[268] 129733.58 - - - - 

Interior point  [296] 129720.70 - - - 0.13 
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Case- 5 (TVDM) 

SCM-MJ - 0.4366 - - 62.98 

M-Jaya - 0.6771 - - 60.08 

ALC-PSO [189] - 0.4412 - - - 

MSCA [193] - 0.995 - - - 

SCA [193] - 1.32 - - - 

Case- 6 (RPLM) 

SCM-MJ - - 19.1525 - 63.19 

M-Jaya - - 21.6419 - 59.07 

MSCA [193] - - 77.0873 - - 

SCA [193] - - 77.1113 - - 

QOTLBO [221] - - 35.3191 - - 

TLBO [221] - - 36.8482 - - 

EGA [297] - - 31.3519 - - 

DE-HS [297] - - 30.78047 - - 

 

 

 

6.7 STATISTICAL ANALYSIS 

Thirty separate trials for the same population size and number of iterations were 

conducted for each case of both the power systems. Tables 6.9 shows the results of the 30 

trials, which were used to measure the best, worst, average (mean), and standard deviation 

(SD). In all the cases, the lowest values of the best, worse, average, and standard deviation 

of the SCM-MJ algorithm are the clear evidence of statistically significant outcomes from 

the proposed SCM-MJ method. The lowest values of the best, worst, average, and standard 

deviation offered by the SCM-MJ algorithm demonstrate that the proposed SCM-MJ 

algorithm provides statistically significant results in all the cases. This proves the strength 

of the proposed SCM-MJ algorithm. 
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Table 6.9: Statistical analysis of various cases using SCM-Jaya and M-Jaya 

algorithms 

Algorithm Algerian 59-bus system IEEE 118-bus system 

Best Worst Mean Std.  Best Worst Mean Std.  

Case 1 Case 4 

SCM-MJ 1688.5933 1689.0236 1688.7502 0.0330 129171.96 129188.14 129181.62 9.190 

M-Jaya 1689.0281 1690.2490 1689.9762 0.0372 129248.10 129264.24 129255.09 9.276 

Case 2 Case 5 

SCM-MJ 2207.6711 2210.9225 2208.2497 0.0290 0.4366 0.4401 0.4386 0.029 

M-Jaya 2210.0867 2214.7244 2212.9852 0.0341 0.6771 0.6779 0.6775 0.034 

Case 3 Case 6 

SCM-MJ 1878.3480 1880.1783 1879.9610 0.0271 19.1525 20.7123 19.6571 0.028 

M-Jaya 1862.9864 1864.7612 1864.0213 0.0421 21.6419 23.0154 22.1765 0.031 

*std. = standard deviation 

 

6.8 SUMMARY 

Like other population-based algorithms, the Jaya algorithm sometimes suffers from 

premature convergence. A versatile combination of two meta-heuristic algorithms may 

overcome their common weaknesses while taking advantage of the strengths of the two 

algorithms. In this chapter, a sine-cosine mutation-based modified Jaya algorithm for 

solving the OPF problem has been discussed in detail. The suggested SCM-MJ algorithm 

is found to be faster and immune to the local optima trapping as compared to the classical 

Jaya algorithm. The proposed SCM-MJ algorithm aims to maintain the diversity of the 

solutions throughout the search to avoid sub-optimal solutions, and find near-global 

optimum solution.  

 

To test the efficacy of the suggested SCM-MJ method, it is applied to calculate the 

mean value and standard deviations using 13 benchmark functions. Observations of the 

numerical results shown in the chapter prove the dominance of the SCM-MJ algorithm 
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over eight well-known optimization methods reported in the recent publications: ALO, 

BA, CS, FPA, FA, GA, M-Jaya, PSO, and SMS. Later, the proposed algorithm was 

implemented in the Algerian 59-bus and IEEE 118-bus systems for solving the OPF 

problem for minimization of fuel cost, voltage profile improvement, and real power loss 

minimization. A comparison of the optimization results acquired from the SCM-MJ 

algorithm with those of modern meta-heuristic optimization approaches published in 

recent literature demonstrates that the proposed SCM-MJ algorithm is highly efficient 

and robust over other recently developed popular algorithms.  

 

The statistical analysis indicates that the SCM-MJ method is a reliable and robust 

optimization algorithm over other modern meta-heuristic optimization approaches 

proposed in recent literature. The lowest values of the best, worst, average, and standard 

deviation given by the SCM-MJ algorithm demonstrate that the proposed SCM-MJ 

solution provides statistically significant results in all the cases of OPF problems. This 

confirms the effectiveness of the SCM-MJ algorithm to solve the large-scale complex 

optimization problem.  
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CHAPTER 7 

HYBRID JAYA ALGORITHM FOR OPF 

INCORPORATING DISTRIBUTED GENERATION 

7.1 INTRODUCTION 

Recently, meta-heuristic algorithms hybridization has become more popular because 

of its improved ability to deal with complex optimization problems. These hybrid 

algorithms are highly flexible, which means that they are appropriate to solve various 

types of optimization problems, including linear problems, non-linear problems, and 

complex constrained optimization problems. 

In this chapter, a hybrid Jaya-Powel’s Pattern Search (Jaya-PPS) algorithm 

combining the Jaya algorithm with Powell’s Pattern Search algorithm has been presented 

to solve the OPF problem with and without distributed generation (DG) in a power 

system. The aim to incorporate PPS with Jaya is to combine the benefits of both the 

algorithms. Three variants of the Jaya-PPS algorithm, Jaya-PPS1, Jaya-PPS2, and Jaya-

PPS3 are developed by incorporating hybridization in different manners. When any 

hybrid algorithm is developed for solving an optimization problem, some options to 

incorporate hybridization should also be tried to obtain the best one. To demonstrate the 

efficacy of the proposed algorithm and its potential to solve OPF problems with and 

without DG, it is tested on the standard IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus 

systems for minimization of fuel cost, emission cost, real power loss, and total voltage 

deviation simultaneously by combining these objective functions. The obtained results of 

the three versions of Jaya-PPS algorithm are compared to the Dragonfly Algorithm, Grey 
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Wolf Optimization algorithm, Jaya algorithm and already published results using other 

reported methods. 

7.2 JAYA ALGORITHM 

Jaya algorithm, recently developed by Rao [293] is an efficient meta-heuristic 

optimization algorithm. The Jaya algorithm is an algorithm-specific parameter-less 

algorithm like the TLBO algorithm. The main advantage of the Jaya algorithm over most 

of the other meta-heuristic algorithms is that algorithm operations do not require 

algorithm-specific parameter tuning other than population size and maximum iterations. 

Hence, it is simple to implement this algorithm for solving various kinds of optimization 

problems. 

Initial population ‘p’ is randomly generated within the upper and lower limits of the 

control variables and is updated as per Eq. (7.1). The best and worst solutions are 

determined based on the fitness values of the objective function. 

Let, the number of design variables is ‘m’ (i.e. j =1, 2, 3…, m) and ‘n’ is the population 

size (k =1, 2…, n). Let 𝐽𝑖,𝑗,𝑘 represents the value of the jth variable for kth candidate during 

the ith iteration, and then this value is modified as (7.1) 

 Ji+1,j,k = Ji,j,k + γ i,j,1(Ji,j,B − abs(Ji,j,k)) − γ i,j,2(Ji,j,W − abs(Ji,j,k))                                         (7.1) 

Where, 𝐽𝑖,𝑗,𝑊 and 𝐽𝑖,𝑗,𝐵 are the worst candidate and best candidate value of variable j 

respectively. The updated value of  𝐽𝑖,𝑗,𝑘 is  𝐽𝑖+1,𝑗,𝑘, and throughout the ith iteration, 𝛾 𝑖,𝑗,1 

and 𝛾 𝑖,𝑗,2 are the two random numbers between 0 and 1, for the jth variable. 
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7.3 POWELL’S PATTERN SEARCH 

Powell’s pattern search (PPS) was proposed by Powell in 1962. This method is an 

expansion of the basic pattern search method. It is based on the conjugate direction method 

and is a derivative-free optimization technique. PPS with a meta-heuristic algorithm offers 

a flexible, balanced operator to enhance local search capability in contrast to other meta-

heuristic algorithms. The following is the summary of the PPS algorithm underlying 

mechanism [298], [299]. 

The search direction for lth coordinate for gth dimension of the ‘n’ dimension search 

space can be defined as: 

 Sg
𝑙 = {

1      ; g = 𝑙
0      ; g ≠ 𝑙

(g = 1, 2, . . n;     𝑙 = 1, 2, . . n)                                        (7.2) 

The step length 𝜆𝑔
∗   for gth decision variable can be determined as: 

λg
∗ = λg

min + rand × (λg
max − λg

min)(g = 1, 2, … n)                                                               (7.3) 

Here, 𝜆𝑔
𝑚𝑖𝑛, 𝜆𝑔

𝑚𝑎𝑥 is the minimum and maximum step length for gth decision variable, 

respectively. The decision variable (𝑋𝑔) is modified once along the coordinate direction (l 

) as: 

 Xg = Xg + λg
∗ × 𝑆𝑔

𝑙       (g = 1, 2, … n)                                                   (7.4) 

 The vector of control variables is modified based on the minimum objective function 

value. For all ‘n’ coordinates, this process is continued. The pattern search direction is 

obtained for the next optimization cycle as: 

Sg
l =  Xg − Zg(g = 1, 2, . . n;     𝑙 = n + 1)                                       (7.5) 
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where 𝑍𝑔 is the initial value of the decision variable 𝑋𝑔. Additionally, one of the 

coordinate’s directions is discarded in the direction of pattern ‘m’ as: 

Sg
m = Sg

𝑙 (g = 1, 2, . . n;     𝑙 = n + 1)                           (7.6) 

The process is continued till the entire direction of the coordinate is discarded and the 

entire operations restart in one of the coordinate directions again. Finally, until the PPS 

method has reached maximum iterations, the process of updating continues.  

 

7.4 HYBRID JAYA-PPS ALGORITHM 

Jaya algorithm has a strong capability to explore the search space globally, but 

sometimes it suffers from the issue of premature convergence and it can be stuck simply 

in local optima. To overcome this problem and to make this algorithm more efficient, a 

hybrid Jaya algorithm that combines the Jaya algorithm and PPS algorithm is developed 

in this chapter. The aim to incorporate PPS with Jaya is to combine the benefits of both 

the algorithms. The integration of the local search procedure (Powell’s Pattern Search) 

into the classical Jaya algorithm has been carried out in three different ways, which 

resulted in three variants termed Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3. To evaluate the 

performance of these variants, the common controlling parameters and the total number of 

function evaluations (NFE) used in the three variants are set to be the same as that of the 

classical Jaya algorithm. The NFE has been used as a reference to the check efficiency of 

various algorithms in this work.  

In the first strategy which is in Jaya-PPS1, the Jaya algorithm and PPS algorithm have 

been applied sequentially in each iteration. The optimal setting of control variables as 

provided by the Jaya algorithm is used as the initial point setting for the PPS technique to 
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acquire a better solution around this solution by applying the PPS algorithm for a pre-

defined number of function evaluations. This better solution as provided by the PPS 

technique replaces the earlier one in the population of the Jaya algorithm and is used for 

further modification in the next iteration by the Jaya algorithm. This procedure is repeated 

for a pre-specified number of iterations. The flow chart of the proposed hybrid Jaya-PPS 

algorithm is shown in Fig. 7.1.  

In the second strategy (Jaya-PPS2), the Jaya algorithm and PPS algorithm have been 

applied sequentially after exploiting the 80% problem-solving capability of the Jaya 

algorithm i.e. on the solution achieved by applying the Jaya algorithm for 80% iterations. 

In other words, the optimization process has been divided into two steps. In step1 (for 80 

% of Itermax), only the Jaya algorithm has been applied, while in step 2 (for the remaining 

20% of iterations), Jaya and PPS algorithms both have been applied sequentially as in the 

case of Jaya-PPS1. 

In the third strategy (Jaya-PPS3), the PPS algorithm has been applied considering its 

initial point as the solution offered by the Jaya algorithm after applying it for 90% 

iterations. In this case, also, the optimization process is a two-step process. In step1 (first 

90 % of Itermax), only the Jaya algorithm has been applied. However, in step 2 (remaining 

10% of iterations), Jaya and PPS algorithms both have been applied sequentially with the 

optimal setting of control variables offered by the Jaya algorithm as the initial point for it.  

Computational Steps for hybrid Jaya-PPS Algorithm 

The computational steps of this algorithm are summarized as follows: 

i. Initialize the population having control variables and set maximum iteration count 

Itermax and the number of function evaluations PSFE for PPS method. 
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Fig. 7.1: Flowchart of the proposed hybrid Jaya-PPS algorithm 

 

ii. Set iteration count Iter = 0.  

iii. Identify the solutions which are worst and best in the population by observing the 

value of the extended objective function (3.14). 

iv. Modify the solutions based on the worst and the best solutions using (7.1). 



141 

 

v. If the modified solution is found to be better than the previous solution, then move to 

step vi, otherwise move to step vii.  

vi. Replace the previous solution with the modified solution. Move to step viii.  

vii. Keep the previous solution. 

viii. Select the best solution found by the Jaya algorithm so far as the initial point for the 

PPS method and apply the PPS method for PSFE to attain a better solution. 

ix. Modify the population of the Jaya algorithm by replacing the best solution of the Jaya 

algorithm by that obtained by the PPS method.  

x. Increase the iteration number by 1, i.e. Iter = Iter + 1.  

xi. If Iter < Itermax, then go to step iii, otherwise go to step xii. 

xii. Stop. The optimal solution is achieved. 

 

7.5 OPF RESULTS AND DISCUSSION: 

Three standard test systems, IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems 

are used to evaluate the effectiveness of the three versions of hybrid Jaya-PPS algorithm, 

Jaya algorithm, Dragonfly Algorithm, and Gray wolf optimization algorithm for solving 

OPF problems with and without integration of DG. The emission and fuel cost coefficients, 

control variables’ limits, line data, bus data along with their initial settings for the IEEE 

30-bus system are given in Appendix A. The combined objective function (COF), COF is 

obtained by considering the weighting factors WEM, WRPLM, and WTVDM as 19, 22, and 21 

respectively [262]. 

The IEEE 30-bus system is modified by including DG based on renewable energy 

technologies. The optimal location of the DG is selected based on the sensitivity of active 
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power loss and generation cost to each active and reactive power [19] and it is bus no. 30. 

At this bus, the capacity selected for the type 1 DG unit is 5MW, in this work. 

The IEEE 57-bus test system has 07 generating units and 80 branches. The limits for 

voltage magnitude at all the buses of the system are considered to be 0.94 pu and 1.06 pu. 

The limits for the tap changing transformers’ tap settings are taken as 0.9 pu and 1.1pu. 

The generator coefficients, lower and upper limits of all the 33 control variables, and 

system data (bus data, line data) along with their initial settings are given in Appendix B. 

The active and reactive power demands of this system are 12.508 pu and 3.364 pu 

respectively at 100 MVA base. In case of the IEEE 57-bus system, the combined objective 

function, COF is obtained by considering the weighting factors WEM, WRPLM, and WTVDM 

as 300, 30, and 600 respectively in this work. This system is modified by integrating two 

type 1 DGs optimally at bus nos. 35 and 36 with capacities of 47.9067MW and 47.2636 

MW respectively [300].  

To evaluate the scalability of proposed algorithms and to prove their efficacy to solve 

large-scale problems, all the three variants of Jaya-PPS algorithms, GWO and DA 

algorithm were applied to solve the OPF problem in the IEEE 118-bus system. The system 

data, generator coefficients, lower and upper limits of all the 130 control variables along 

with their initial settings are given in Appendix D. The active and reactive power demands 

of this test system are 42.42 pu and 14.38 pu respectively at 100 MVA base.  

To demonstrate the effectiveness of the proposed algorithm, five cases are considered 

as given below:  

Case 1: OPF no DG in IEEE 30-bus system 

Case 2: OPF with DG in IEEE 30-bus system 
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Case 3: OPF no DG in IEEE 57-bus system 

Case 4: OPF with DG in IEEE 57-bus system 

Case 5: OPF no DG in IEEE 118-bus system 

 

Various trials were carried out with different population sizes and no. of maximum 

iterations. The best results achieved and reported in this paper are for population size (pop) 

= 30 and maximum no. of iterations (Itermax) =200 for IEEE 30-bus system and pop = 40 

and Itermax = 300 for IEEE 57-bus and IEEE 118-bus systems. All these algorithms were 

developed using Matlab 13a version in a 3.6 GHz Intel Processor, 8GB RAM Core i7 and 

64-bit operating personal computer. 

To compare the performance of various algorithms, all the algorithms were run for the 

same number of function evaluations (NFE) which is equal to 6000 in case of the IEEE 

30-bus system and 12,000 in the case of the IEEE 57-bus and IEEE 118-bus systems. 

Details of the implementation of various algorithms and the inclusion of PPS in the three 

variants of hybrid Jaya-PPS algorithms are given in Table 7.1. 

 

Table 7.1: Details of DA, GWO, Jaya, Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3 

algorithms 

IEEE-30 bus system 

Algorithm Population Iterations  Total NFE = 6000 

Dragonfly Algorithm 30 200 30×200 

GWO Algorithm 30 200 30×200 

Jaya Algorithm 30 200 30×200 

Jaya-PPS1 30 200 (30JFE+30PSFE)×100 

Jaya-PPS2 30 200 30JFE×160+(30JFE+30PSFE)×20 

Jaya-PPS3 30 200 30JFE×180+(30JFE+30PSFE)×10 

IEEE-57 bus & IEEE 118 bus system 
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Algorithm Population Iterations Total  NFE = 12000 

Dragonfly Algorithm 40 300 40×300 

GWO Algorithm 40 300 40×300 

Jaya Algorithm 40 300 40×300 

Jaya-PPS1 40 300 (40JFE+40PSFE)×150 

Jaya-PPS2 40 300 40JFE×240+(40JFE+40PSFE)×30 

Jaya-PPS3 40 300 40JFE×270+(40JFE+40PSFE)×15 

 *JFE=Jaya Function Evaluations,  

 

For various cases, 50 runs were taken using DA, GWO, Jaya, Jaya-PPS1, Jaya-PPS2, 

and Jaya-PPS3 algorithms to solve the OPF problem with the above-mentioned objective 

functions. The best results obtained out of the 50 runs are given here.  

7.5.1 Case 1: OPF no DG in IEEE 30-bus system 

The proposed hybrid Jaya-PPS algorithms, GWO algorithm, Dragonfly algorithm, 

and Jaya algorithm were applied to solve the OPF problem for the combined objective 

function consisting of the fuel cost, emission, real power loss, and total voltage deviation. 

The results obtained using these methods along with optimal control variable settings are 

shown in Table 7.2. The simulation outcomes demonstrate that Jaya-PPS1 is superior to 

other techniques. Its combined objective function (964.962) is less than those achieved 

using other approaches without violation of the pre-specified constraints. Results of the 

hybrid Jaya-PPS algorithms are compared with DA, GWO, Jaya, and also with the reported 

results available in recent literature in Table 7.3, and it is found that the proposed Jaya-

PPS1 algorithm provided the minimum value of the COF.  

Convergence characteristics of DA, GWO, Jaya, Jaya-PPS1, Jaya-PPS2, and Jaya-

PPS3 algorithms are shown in Fig. 7.2(a). As can be observed from Fig. 7.2 (a), the Jaya-

PPS1 algorithm has offered the best convergence characteristic. During the iterative 

process for these six algorithms, the trajectories of all the components of the COF (e.g. 
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fuel cost, emission, real power loss, and total voltage deviation) are shown in Figs. 7.2(b-

g). As these figures show, the Jaya-PPS1 algorithm has given smooth convergence curves 

with no oscillations and a fast convergence speed in comparison with other methods. Fig. 

7.3 shows the voltage profile provided by the proposed Jaya-PPS1 algorithm, which 

indicates that all the bus voltages are within the specified upper and lower limits.  

 

(a) Convergence Characteristics for various algorithms for Case 1 

 

 

(b) Dragonfly Algorithm 

 

(c) GWO algorithm 
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(d) Jaya Algorithm 

 

(e) Jaya-PPS1 algorithm 

 

(f) Jaya-PPS2 algorithm 

 

(g) Jaya-PPS3 algorithm 

 

Fig. 7.2: Convergence and variation of objective functions, IEEE 30-bus system, Case 1 

 

Fig. 7.3: Voltage profile obtained using Jaya-PPS1 for Case 1 
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Table 7.2: OPF results with control variables settings in IEEE 30-bus system (Case 

1) 

S. No Control Variable DA GWO Jaya Jaya-PPS1 Jaya-PPS2 Jaya-PPS3 

Generator real power output 

1 Pg2 0.5265 0.5255 0.5167 0.5255 0.5279 0.5210 

2 Pg5 0.3114 0.3106 0.3221 0.3143 0.3146 0.3096 

3 Pg8 0.3500 0.3500 0.3497 0.3499 0.3500 0.3499 

4 Pg11 0.2577 0.2625 0.2726 0.2698 0.2750 0.2701 

5 Pg13 0.2167 0.2118 0.2071 0.2085 0.2035 0.2172 

Generator voltage setting 

6 Vg1 1.0742 1.0745 1.0728 1.0736 1.07302 1.0710 

7 Vg2 1.0597 1.0603 1.0590 1.0599 1.05934 1.0586 

8 Vg5 1.0312 1.0347 1.0337 1.0317 1.03193 1.0318 

9 Vg8 1.0414 1.0423 1.0415 1.0416 1.04188 1.0419 

10 Vg11 1.0545 1.0534 1.0501 1.0381 1.04865 1.0404 

11 Vg13 1.0160 1.0193 1.0273 1.0150 1.02283 1.0225 

Transformer tap setting 

12 T6-9 1.0677 1.0890 1.100 1.0998 1.0997 1.100 

13 T6-10 1.0140 0.9811 0.9483 0.9557 0.9459 0.9310 

14 T4-12 1.0216 1.0123 1.0258 1.0253 1.0272 1.0334 

15 T28-27 1.0018 1.0072 1.0034 1.0021 1.0046 1.0035 

Shunt VAR source setting 

16 Qc10 0.0496 0.0486 0.0000 0.0474 0.0038 0.0002 

17 Qc12 0.0002 0.0009 0.0005 0.0486 0.0445 0.0413 

18 Qc15 0.0363 0.0186 0.0496 0.0355 0.0003 0.0475 

19 Qc17 0.0487 0.0318 0.0500 0.0500 0.0499 0.0448 

20 Qc20 0.0499 0.0482 0.0498 0.0500 0.0464 0.0446 

21 Qc21 0.0500 0.0500 0.0499 0.0500 0.0492 0.0494 

22 Qc23 0.0489 0.0462 0.0173 0.0393 0.0498 0.0399 

23 Qc24 0.0497 0.0500 0.0498 0.0500 0.0470 0.0472 

24 Qc29 0.0253 0.0322 0.0303 0.0251 0.0290 0.0292 

COF 965.351 965.302 965.286 964.962 965.267 965.255 

Fuel Cost  829.358 829.239 831.549 830.467 830.850 830.290 

Emission  0.237 0.237 0.235 0.236 0.235 0.235 

Real Power Loss  5.685 5.684 5.578 5.625 5.616 5.642 

Total Voltage Deviation  0.304 0.309 0.311 0.297 0.304 0.302 

Pg1 (Slack Bus Power) 122.838 123.021 122.147 122.183 121.891 122.250 

L-Index (LI) 0.138 0.138 0.139 0.138 0.139 0.139 
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Table 7.3: Comparison of OPF Results in IEEE 30-bus system, case 1 

Algorithm COF Fuel Cost Emission RPL TVD 

Base Case 1336.645 902.004 0.222 5.842 1.160 

DA 965.351 829.358 0.237 5.685 0.304 

GWO 965.302 829.239 0.237 5.684 0.309 

Jaya 965.286 831.549 0.235 5.578 0.311 

Jaya-PPS1 964.962 830.467 0.236 5.625 0.297 

Jaya-PPS2 965.267 830.850 0.235 5.616 0.303 

Jaya-PPS3 965.255 830.290 0.235 5.642 0.302 

MSA [19] * 838.923 0.211 5.614 0.153 

ABC [19] * 835.523 0.207 5.394 0.138 

CSA [19] * 834.512 0.209 5.425 0.137 

GWO [19] * 851.049 0.205 4.892 0.201 

BSOA [19] * 830.711 0.225 5.744 0.183 

MJAYA[19] * 833.341 0.206 5.177 0.119 

MOEA/D-SF [125] - 883.322 0.218 4.452 0.132 

MSA [162] 965.290 830.639 0.252 5.621 0.293 

MPSO [162] 986.006 833.680 0.252 6.524 0.189 

MDE [162] 973.611 829.094 0.257 6.056 0.303 

MFO [162] 965.807 830.913 0.252 5.597 0.331 

FPA [162] 971.907 835.369 0.247 5.515 0.496 

GA [225] - 830.580 0.252 5.577 0.308 

MGOA [226] - 829.963 0.252 5.634 0.291 

GOA [226] - 831.412 0.251 5.571 0.332 

FKH [262] - 828.327 0.254 5.382 0.492 

KH [262] - 827.705 0.252 5.497 0.493 

FA [262] - 829.577 0.252 5.510 0.566 

MOMICA [301] - 830.188 0.252 5.585 0.297 

MOICA[301] - 831.225 0.267 6.022 0.404 

MNSGA-II [301] - 834.561 0.252 5.660 0.430 

BB-MOPSO [301] - 833.034 0.247 5.650 0.394 

NKEA [301] - 834.643 0.249 5.893 0.444 

*Different weighting factors; MSA= Moth swarm algorithm, MPSO= Modified PSO; MDE = Modified DE; MFO = 

Moth-Flame Optimization; FPA = Flower Pollination Algorithm; ABC= Artificial bee colony; CSA= cuckoo search 

algorithm; BSOA= backtracking search optimization algorithm; FFA =Firefly algorithm; KH = krill herd; MOICA = 

Multi-Objective Imperialist Competitive Algorithm; MNSGA-II = modified NSGA-II, BB-MOPSO =bare bones multi-

objective PSO; NKEA = Neighborhood knowledge-based evolutionary algorithm; GA= genetic algorithm; MGOA= 

modified grasshopper optimization 
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7.5.2 Case 2: OPF with DG in IEEE 30-bus system 

In this case, the various algorithms were applied to solve the OPF problem 

incorporating one type 1 DG with the same COF. In Table 7.4, the results of this case are 

shown for all the six algorithms along with optimal control variable settings. Table 7.4 

shows that Jaya-PPS1 algorithm is more efficient in solving the OPF problem as compared 

to other methods. The combined objective function value obtained using the Jaya-PPS1 

algorithm is 937.340, which is a minimum than those of DA, GWO, Jaya, Jaya-PPS2, and 

Jaya-PPS3.  

It can also be noted that after placing the DG as anticipated, the combined objective 

function of the proposed Jaya-PPS1 is reduced by 2.86% from 964.962 (Case1) to 937.340 

(Case2). The convergence characteristics of various algorithms are depicted in Fig. 7.4(a), 

which shows that the proposed Jaya-PPS1 algorithm has provided a smooth convergence 

characteristic with no oscillations and a high convergence speed in comparison with other 

methods. Variations of the various objective functions during the iterative process for all 

the six algorithms are shown in Figs. 7.4(b-g). Fig. 7.5 displays the voltage profile 

provided by the proposed Jaya-PPS1 algorithm.  

 

(a) Convergence Characteristics for various algorithms for Case 2 
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(b) Dragonfly Algorithm 

 

(c) GWO algorithm 

 

 

(d) Jaya algorithm 

 

(e) Jaya-PPS1 algorithm 

 
(f) Jaya-PPS2 algorithm 

 
(g) Jaya-PPS3 algorithm 

 

Fig. 7.4: Convergence and variation of objective functions, IEEE 30-bus system, Case 2 
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Fig. 7.5: Voltage profile of Jaya-PPS1 for Case 2 

 

Table 7.4: OPF results with control variables settings in IEEE 30-bus system (Case 

2)  

S. 

No. 

Control Variable DA GWO Jaya Jaya-PPS1 Jaya-PPS2 Jaya-PPS3 

Generator real power output 

1 Pg2 0.5190 0.5155 0.5157 0.5192 0.5371 0.5202 

2 Pg5 0.3118 0.3116 0.3114 0.3108 0.3112 0.3171 

3 Pg8 0.3500 0.3499 0.3500 0.3500 0.3500 0.3496 

4 Pg11 0.2588 0.2574 0.2625 0.2605 0.2588 0.2592 

5 Pg13 0.2056 0.2019 0.2056 0.2037 0.2087 0.2057 

Generator voltage setting 

6 Vg1 1.0710 1.0742 1.0637 1.0729 1.0730 1.0698 

7 Vg2 1.0574 1.0601 1.0492 1.0595 1.0602 1.0568 

8 Vg5 1.0315 1.0331 1.0223 1.0328 1.0331 1.0305 

9 Vg8 1.0400 1.0420 1.0321 1.0420 1.0415 1.0394 

10 Vg11 1.0993 1.0415 1.0478 1.0396 1.0394 1.0347 

11 Vg13 1.0243 1.0159 1.0299 1.0127 1.0190 1.0306 

Transformer tap setting 

12 T6-9 1.0101 1.0990 1.0995 1.0997 1.100 1.0919 

13 T6-10 1.1000 0.9244 0.9252 0.9592 0.9334 0.9384 

14 T4-12 1.0343 1.0231 1.0334 1.0234 1.0255 1.0520 

15 T28-27 1.0054 1.0213 1.0016 1.0076 1.0202 1.0149 

Shunt VAR source setting 

16 Qc10 0.0000 0.0013 0.0039 0.0499 0.0162 0.0220 
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17 Qc12 0.0141 0.0499 0.0000 0.0500 0.0163 0.0346 

18 Qc15 0.0498 0.0368 0.0407 0.0476 0.0465 0.0310 

19 Qc17 0.0393 0.0500 0.0499 0.0495 0.0306 0.0383 

20 Qc20 0.0212 0.0001 0.0495 0.0497 0.0491 0.0499 

21 Qc21 0.0491 0.0500 0.0486 0.0500 0.0496 0.0500 

22 Qc23 0.0364 0.0500 0.0389 0.0360 0.0377 0.0496 

23 Qc24 0.0500 0.0500 0.0485 0.0499 0.0479 0.0459 

24 Qc29 0.0149 0.0500 0.0244 0.0194 0.0500 0.034 

COF 938.581 938.498 938.378 937.340 937.958 937.792 

Fuel Cost (FC) 811.947 811.210 812.334 811.786 813.336 813.036 

Emission  0.232 0.234 0.232 0.232 0.230 0.231 

Real Power Loss (RPL) 5.231 5.283 5.287 5.225 5.182 5.193 

Total Voltage Deviation 

(TVD) 0.338 0.314 0.252 0.294 0.296 0.289 

Pg1 (Slack Bus Power) 119.099 120.033 119.147 119.178 116.984 118.398 

L-Index (LI) 0.104 0.101 0.103 0.101 0.101 0.102 

 

 

7.5.3 Case 3: OPF no DG in IEEE 57-bus system 

In this case, all the six algorithms were applied to solve the OPF problem in the IEEE 

57-bus system without DG for the same COF. The OPF results along with the optimal 

control variable settings of the Jaya-PPS1 algorithm are compared with DA, GWO, Jaya, 

Jaya-PPS2, and Jaya-PPS3 in Table 7.5 and with the reported results in Table 7.6. 

 

The results in Table 7.6 prove the dominance of the hybrid Jaya-PPS1 algorithm over 

other Evolutionary Computing based and Jaya, Jaya-PPS2, Jaya-PPS3 algorithms in 

solving the OPF problem. The proposed Jaya-PPS1 algorithm provided the COF value as 

43763.10361, which is better than the COF offered by other reported algorithms. Also, the 

Jaya-PPS1 algorithm provided fast and smooth convergence characteristics in comparison 

with other algorithms as can be noted from Figs. 7.6 (a)-(g). The bus voltage profile 
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obtained using the Jaya-PPS1 algorithm is within the specified limits as can be observed 

from Fig. 7.7. 

 

(a) Convergence Characteristics for all the six algorithms, Case 3 

 

 
(b)  Dragonfly algorithm 

 

 
(c) GWO algorithm 

 

 
(d) Jaya algorithm 

 
(e) Jaya-PPS1 algorithm 
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(f) Jaya-PPS2 algorithm 

 
(g) Jaya-PPS3 algorithm 

Fig. 7.6:  Convergence and variation of objective functions, IEEE 57-bus system, Case 3 

 

Fig. 7.7: Voltage profile of Jaya-PPS1 for Case 3 

 

Table 7.5: OPF results with control variables settings in IEEE 57-bus system (Case 

3) 

S. 

No. 

Control variable DA GWO Jaya Jaya-

PPS1 

Jaya-PPS2 Jaya-

PPS3 

Generator real power output 

1 Pg2 0.9998 1.0000 1.0000 1.0000 0.9944 0.9999 

2 Pg3 0.5282 0.6353 0.5709 0.5891 0.5899 0.5701 

3 Pg6 0.9934 0.9236 0.8796 0.8831 0.8956 0.9564 

4 Pg8 3.1544 3.1370 3.2140 3.1814 3.2025 3.1335 

5 Pg9 0.9997 1.0000 0.9999 1.0000 1.0000 0.9977 
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6 Pg12 4.0998 4.0985 4.0992 4.1000 4.0998 4.0995 

Generator voltage setting 

7 Vg1 1.0389 1.0478 1.0333 1.0308 1.0154 1.0359 

8 Vg2 0.9512 1.0982 1.0998 1.0478 1.0566 1.0991 

9 Vg3 1.0799 0.9754 1.0897 1.0170 1.0970 1.0567 

10 Vg6 0.9500 1.0200 0.9704 0.9505 1.0027 1.0030 

11 Vg8 0.9911 0.9954 1.0074 1.0139 0.9997 1.0107 

12 Vg9 0.9515 1.0303 0.9734 1.0683 1.0502 1.0583 

13 Vg12 1.0052 1.0168 1.0160 1.0162 1.0031 1.0141 

Transformer tap setting 

14 T4-18 1.0680 1.0991 0.9802 1.0211 1.0985 1.0990 

15 T4-18 0.9015 0.9000 0.9169 0.9000 0.9000 0.9482 

16 T21-20 1.0028 0.9716 1.0977 1.0054 0.9722 1.0132 

17 T24-25 0.9508 1.0332 1.0930 1.0527 1.0895 0.9002 

18 T24-25 1.0109 1.0663 0.9002 1.0419 1.0583 1.0501 

19 T24-26 1.0455 1.0357 1.0347 1.0396 1.0602 1.0314 

20 T7-29 0.9257 0.9528 0.9419 0.9678 0.9257 0.9654 

21 T34-32 0.9266 0.9371 0.9398 0.9278 0.9135 0.9403 

22 T11-41 0.9036 0.9000 0.9001 0.9000 0.9000 0.9025 

23 T15-45 0.9482 0.9631 0.9464 0.9791 0.9687 0.9667 

24 T14-46 0.9462 0.9643 0.9713 0.9592 0.9543 0.9644 

25 T10-51 0.9818 1.0261 0.9940 1.0025 0.9646 0.9790 

26 T13-49 0.9229 0.9000 0.9309 0.9014 0.9001 0.9070 

27 T11-43 0.9131 0.9141 0.9255 0.9699 0.9363 0.9729 

28 T40-56 1.0981 1.0306 1.0658 0.9713 0.9991 0.9843 

29 T39-57 0.9008 0.9542 0.9183 0.9001 0.9344 0.9054 

30 T9-55 0.9794 0.9463 0.9924 0.9896 0.9777 0.9810 

Shunt VAR source setting 

31 Qc18 0.0584 0.0326 0.0011 0.0033 0.0424 0.1997 

32 Qc25 0.0844 0.1924 0.1283 0.2000 0.1692 0.1240 

33 Qc53 0.1475 0.1004 0.1480 0.1870 0.1095 0.1815 

COF 43887.417 43864.841 43833.642 43763.103 43804.936 43790.825 

Fuel Cost (FC) 42584.455 42587.965 42547.094 42573.898 42542.989 42571.028 

Emission  1.357 1.344 1.370 1.363 1.364 1.350 

Real Power Loss  13.606 13.272 12.772 12.496 12.912 12.274 

Total Voltage Deviation  0.812 0.792 0.820 0.675 0.775 0.743 

Pg1 (Slack Bus Power) 186.848 184.621 187.197 187.925 185.465 187.339 

L-Index (LI) 0.263 0.242 0.251 0.240 0.248 0.250 
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Table 7.6: Comparison of OPF results in IEEE 57-bus system without DG (Case 3) 

Algorithm COF FC ($/h) 
Emission 

(ton/h) 
RPL (MW) 

TVD 

(pu) 

Base Case 53828.143 51395.570 2.761 28.365 1.255 

DA 43887.437 42584.469     1.357     13.606     0.812 

GWO 43864.841   42587.972     1.344     13.272      0.792 

Jaya 43833.629   42547.092      1.370    12.771     0.820 

Jaya-PPS1 43763.103   42573.898      1.363    12.496      0.675   

Jaya-PPS2 43804.936    42542.989      1.364    12.912      0.775 

Jaya-PPS3 43790.825    42571.028      1.350    12.274 0.743 

MOEA/D-SF [125] - 42648.69 1.343 11.886 0.671 

MOMICA [301] - 41983.058 1.496 13.696 0.797 

MOICA [301] - 41998.566 1.760 13.335 0.874 

MNSGA-II [301] - 42070.824 1.496 14.455 0.889 

BB-MOPSO [301] - 41994.019 1.533 12.609 1.074 

NKEA [301] - 42065.996 1.517 13.976 1.042 

 

 

7.5.4 Case 4: OPF with DG in IEEE 57-bus system 

In this case, the IEEE 57-bus test system with two DGs is considered to determine the 

efficacy of the Jaya-PPS1 algorithm for solving the OPF problem. The OPF results along 

with optimum control variable settings obtained by DA, GWO, Jaya, Jaya-PPS1, Jaya-

PPS2, and Jaya-PPS3 algorithms are listed in Table 7.7. 

The results in Table 7.7 demonstrate the superiority of the proposed hybrid Jaya-PPS1 

algorithm over other EC-based and hybrid Jaya-PPS algorithms in handling OPF problems 

in this case also. The proposed Jaya-PPS1 algorithm provided the COF value as 

39108.172, which is less than that offered by other algorithms. Further, after implanting 

the two DGs, the COF of the proposed Jaya-PPS1 algorithm is decreased (by 10.64 %) 

from 43763.103(Case 3) to 39108.172 (Case 4). 
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As can be seen from Figs. 7.8 (a)-(g), the proposed Jaya-PPS1 algorithm has offered 

fast and smooth convergence characteristics as compared to other algorithms. The bus 

voltages profile obtained by the Jaya-PPS1 algorithm is also within the limits as can be 

observed from Fig. 7.9. 

Table 7.7: OPF results with control variables settings in IEEE 57-bus system (Case 

4) 

S. 

No. 

Control 

variable 

DA GWO Jaya Jaya-PPS1 Jaya-PPS2 Jaya-PPS3 

Generator real power output 

1 Pg2 0.9098 0.9991 0.8986 0.9891 0.9826 0.9750 

2 Pg3 0.4757 0.4920 0.4745 0.4775 0.4881 0.4776 

3 Pg6 0.5954 0.3695 0.4621 0.4710 0.3423 0.3086 

4 Pg8 3.3367 3.4992 3.4752 3.3728 3.4902 3.5101 

5 Pg9 0.9935 0.9999 0.9997 0.9963 1.0000 0.9985 

6 Pg12 3.9401 3.8602 3.9434 3.9204 3.9601 3.9447 

Generator voltage setting 

7 Vg1 1.0183 1.0183 1.0155 1.0199 1.0195 1.0146 

8 Vg2 1.1000 1.0957 1.0989 1.0817 1.0464 1.0664 

9 Vg3 1.0608 1.0541 1.0698 1.0974 1.0879 1.0996 

10 Vg6 0.9500 1.0855 1.0955 0.9821 1.0610 1.0344 

11 Vg8 1.0129 1.0101 1.0034 1.0069 0.9964 1.0084 

12 Vg9 1.0113 0.9503 0.9863 1.0445 1.0022 1.0426 

13 Vg12 1.0118 1.0202 1.0042 1.0017 1.0040 1.0059 

Transformer tap setting 

14 T4-18 0.9003 1.0942 0.9000 0.9472 0.9512 1.1000 

15 T4-18 1.0999 0.9000 1.0984 1.0091 0.9554 0.9449 

16 T21-20 1.0443 0.9856 0.9864 0.9794 0.9992 0.9855 

17 T24-25 0.9000 1.1000 1.034 1.0881 1.0357 0.9800 

18 T24-25 1.0793 0.9000 0.9788 1.0669 1.0255 1.0663 

19 T24-26 1.0369 1.0029 1.0099 1.0178 1.0105 1.0175 

20 T7-29 0.9720 0.9722 0.9516 0.9830 0.9670 0.9709 

21 T34-32 0.9435 1.0062 0.9959 0.9886 0.9845 0.9939 

22 T11-41 0.9784 0.9660 0.9568 0.9746 0.9309 0.9472 

23 T15-45 0.9786 0.9790 0.9809 0.9860 0.9913 0.9841 

24 T14-46 0.9785 0.9769 0.9689 0.9748 0.9764 0.9801 

25 T10-51 0.9885 0.9930 0.9800 0.9795 0.9781 0.9858 
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26 T13-49 0.9243 0.9381 0.9309 0.9015 0.9197 0.9198 

27 T11-43 0.9903 1.0037 0.9842 0.9813 0.9853 0.9949 

28 T40-56 0.9192 0.9008 0.9364 0.9000 0.9955 0.9146 

29 T39-57 0.9807 0.9982 0.9877 1.0018 0.9268 0.9999 

30 T9-55 0.9510 0.9891 0.9815 0.9278 0.9219 0.9496 

Shunt VAR source setting 

31 Qc18 0.1862 0.0000 0.1289 0.0113 0.0041 0.1751 

32 Qc25 0.0617 0.1467 0.1143 0.1945 0.1359 0.1334 

33 Qc53 0.1296 0.1999 0.1662 0.1464 0.0910 0.1557 

COF 39200.178 39173.097 39162.889 39108.172 39122.922 39119.337 

Fuel Cost (FC) 38120.833 38114.735 38105.956 38069.932 38015.998 38056.723 

Emission  1.275 1.309 1.321 1.284 1.333 1.341 

Real Power Loss  12.318 13.170 12.570 12.716 12.816 12.852 

Total Voltage 

Deviation  

0.545 0.450 0.472 0.452 0.537 0.457 

Pg1  142.798 146.780 142.825 145.614 142.09 147.004 

L-Index (LI) 0.139 0.124 0.129 0.129 0.127 0.127 

 

 

 

 

(a) Convergence Characteristics for all the algorithms for Case 4 



159 

 

 

(b) Dragonfly Algorithm 

 

(c) GWO algorithm 

 

(d) Jaya algorithm 
 

(e) Jaya-PPS1 algorithm 

 

(f) Jaya-PPS2 algorithm 

 

(g) Jaya-PPS3 algorithm 

         

Fig. 7.8: Convergence and variation of objective functions, IEEE 57-bus system, Case 4 
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Fig. 7.9 Voltage profile obtained using Jaya-PPS1 for Case 4 

 

7.5.5 Case 5: OPF no DG in IEEE 118-bus system 

In Case 5, fuel cost is selected as the main objective function. The minimum fuel cost 

obtained by the Jaya-PPS1 algorithm is 129221.889 $/h, while the minimum fuel costs 

obtained by Jaya-PPS2 and Jaya-PPS3 algorithms are 129227.810 $/h and 129231.178 $/h 

respectively. The minimum fuel cost obtained using hybrid Jaya-PPS algorithms and other 

meta-heuristic algorithms are depicted in Table 7.8. From Table 7.8, it is clear that the fuel 

cost obtained from the Jaya-PPS1 algorithm is the least as compared to those of other 

methods. This demonstrates the effectiveness of the proposed Jaya-PPS1 algorithm as 

compared to Jaya-PPS2, Jaya-PPS3, DA, GWO algorithm, and other competitors in 

handling OPF problems in large size power systems. The fuel cost characteristics of 

various meta-heuristic algorithms for Case 5 are shown in Fig. 7.10. The OPF results along 

with optimum control variable settings obtained by Jaya-PPS1 algorithm are given in 

Table 7.9. 
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Fig. 7.10 Convergence Characteristics for various algorithms for Case 5 

Table 7.8: Comparison of Fuel cost minimization results, IEEE 118-bus system 

(Case 5) 

Algorithm Fuel Cost ($/h) TVD (pu) Slack Bus 

Power (Pg69) 

Power Loss 

MW MVAr 

Base Case 131220.020 1.438 513.810 132.810 782.607 

Jaya-PPS1 129221.330 1.291 451.752 101.228 699.365 

Jaya-PPS2 129227.810 1.280 468.832 102.181 647.686 

Jaya-PPS3 129231.178 1.290 442.370 100.928 697.991 

Jaya 129241.129 1.304 467.125 109.336 751.179 

SCM-MJ 129171.960 1.272 459.601 114.531 713.220 

Rao-3 129220.679 1.541 471.200 109.120 745.991 

DA 129248.356 1.270 462.121 102.181 636.267 

GWO 129257.145 1.401 441.035 100.928 695.114 

NLP [27] 129700 N. A N. A N. A N. A 

QP [27] 129600 N. A N. A N. A N. A 

MIQP [27] 129600 N. A N. A N. A N. A 

GPU-PSO [154] 129,627.03 N. A N. A 76.984 N. A 

ALC-PSO [189] 129,546.084 N. A N. A N. A N. A 

IMFO [225] 131820.000 1.5944 407.192 77.652 ‐910.020 

FAHSPSO-DE [267] 129519.38 N. A N. A N. A N. A 

PSOGSA [268] 129, 733.58 N. A N. A 73.21 N. A 

Interior point [296] 129,720.70 N. A N. A N. A N. A 

IMFO = improved moth‐flame optimization; ALC-PSO = particle swarm optimization with an aging leader and 

challengers; PSOGSA = Hybrid Particle Swarm Optimization and Gravitational Search Algorithm; GPU-PSO = Partial 
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swarm optimization based graphics processing units; CC-ACOPF = Chance Constrained Optimal Power Flow; 

QP=quadratic programming; MIQP= Mixed Integer quadratic programming 

 

Table 7.9: Optimum values of control variables for IEEE 118-bus system (case 5) 

S. No. 
Control 

variables 
SCM-MJ 

Jaya-

PPS1 
S. No. 

Control 

variables 
SCM-MJ Jaya-PPS1 

1 Pg1 0.0074 0.0108 68 Vg32 1.0064 0.9907 

2 Pg4 0.0352 0.01 69 Vg34 0.9818 1.0187 

3 Pg6 0.1114 0.02 70 Vg36 0.9569 1.0153 

4 Pg8 0.1151 0.34 71 Vg40 0.9917 1.0069 

5 Pg10 4.0965 3.7962 72 Vg42 1.0561 0.9945 

6 Pg12 0.8912 0.8442 73 Vg46 0.9457 0.9419 

7 Pg15 0.0537 0.2103 74 Vg49 0.9765 0.9766 

8 Pg18 0.0778 0.0595 75 Vg54 1.0265 0.9779 

9 Pg19 0.027 0.4138 76 Vg55 1.0264 0.9626 

10 Pg24 0.2123 0.9976 77 Vg56 1.0269 0.9702 

11 Pg25 1.8093 1.9701 78 Vg59 0.9837 1.0085 

12 Pg26 2.8809 2.988 79 Vg61 0.9705 1.0367 

13 Pg27 0.231 0.1156 80 Vg62 0.9713 1.0455 

14 Pg31 0.0799 0.0611 81 Vg65 0.9586 1.0572 

15 Pg32 0.0789 0.1491 82 Vg66 0.9756 1.008 

16 Pg34 0.5587 0.0023 83 Vg69 0.9869 1.0123 

17 Pg36 0.0755 0.0457 84 Vg70 0.9542 0.9959 

18 Pg40 0.0019 0.1273 85 Vg72 0.9439 0.942 

19 Pg42 0.6441 0.326 86 Vg73 0.9895 1.0521 

20 Pg46 0.2165 0.1809 87 Vg74 0.9713 0.97 

21 Pg49 1.831 1.7882 88 Vg76 0.9547 0.9542 

22 Pg54 0.4066 0.5511 89 Vg77 0.9801 0.9885 

23 Pg55 0.3165 0.7758 90 Vg80 1.0254 0.9984 

24 Pg56 0.0687 0.001 91 Vg85 0.9769 1.026 

25 Pg59 1.4468 1.536 92 Vg87 0.9565 0.9506 

26 Pg61 1.4983 1.7874 93 Vg89 1.0313 1.0011 

27 Pg62 0.01 0.2111 94 Vg90 1.0071 0.9681 

28 Pg65 3.2906 3.526 95 Vg91 1.022 0.9539 

29 Pg66 3.0704 3.3563 96 Vg92 1.0584 1.0109 
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30 Pg70 0.0411 0.1242 97 Vg99 1.0509 0.9862 

31 Pg72 0.1232 0.0826 98 Vg100 1.0525 1.0077 

32 Pg73 0.1004 0.0083 99 Vg103 1.0204 1.0006 

33 Pg74 0.568 0.0861 100 Vg104 0.9664 0.9753 

34 Pg76 0.0944 0.1941 101 Vg105 0.9723 0.9816 

35 Pg77 0.066 0.0004 102 Vg107 0.9747 0.988 

36 Pg80 4.0032 3.8513 103 Vg110 1.0487 1.0137 

37 Pg85 0.1829 0.0013 104 Vg111 1.0114 1.0464 

38 Pg87 0.045 0.0295 105 Vg112 1.0595 0.9883 

39 Pg89 5.0749 4.1387 106 Vg113 0.9989 1.0138 

40 Pg90 0.0029 0.1424 107 Vg116 0.9881 0.9813 

41 Pg91 0.1777 0.004 108 T5−8 0.9009 0.9002 

42 Pg92 0.0083 0.0034 109 T26−25 0.9432 1.0506 

43 Pg99 0.094 0.1124 110 T30−17 1.0151 1.0165 

44 Pg100 2.678 2.4494 111 T38−37 1.0627 0.9351 

45 Pg103 0.402 0.3029 112 T63−59 1.0973 1.0939 

46 Pg104 0.2142 0.0013 113 T64−61 1.0682 0.9037 

47 Pg105 0.0959 0.1605 114 T65−66 1.0956 0.9151 

48 Pg107 0.1201 0.0428 115 T68−69 0.9036 0.9052 

49 Pg110 0.1723 0.068 116 T81−80 0.9001 1.0945 

50 Pg111 0.4485 0.4298 117 QC5 0.136 0.2838 

51 Pg112 0.0194 0.2883 118 QC34 0.0683 0.1919 

52 Pg113 0.0271 0.0971 119 QC37 0.1855 0.1298 

53 Pg116 0.0144 0.0598 120 QC44 0.0824 0.1978 

54 Vg1 1.0203 1.0056 121 QC45 0.2582 0.267 

55 Vg4 0.9948 1.0348 122 QC46 0.0141 0.0339 

56 Vg6 1.0054 1.0307 123 QC48 0.0013 0.1915 

57 Vg8 0.959 0.9492 124 QC74 0.1131 0.2224 

58 Vg10 1.0122 0.9935 125 QC79 0.2902 0.2977 

59 Vg12 1.0041 1.037 126 QC82 0.082 0.0985 

60 Vg15 0.9876 1.0165 127 QC83 0.0982 0.0422 

61 Vg18 0.9813 1.0095 128 QC105 0.2955 0.2935 

62 Vg19 0.9754 1.0216 129 QC107 0.0011 0.2541 

63 Vg24 1.0311 0.9766 130 QC110 0.2277 0.1272 

64 Vg25 1.0273 0.9506 Fuel Cost 129171.96 129221.33 
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65 Vg26 1.0587 1.0459 Total Voltage Deviation 1.2721 1.2910 

66 Vg27 1.0253 0.9813 Real Power Loss 114.5312 101.2288 

67 Vg31 0.9954 0.9828 Pg69 (Slack Bus Power) 459.6014 451.7529 

 

Over several runs, Jaya-PPS1 consistently provided a lower objective function value 

in all the case studies regardless of the complexities and size of the power system. For 

example, the IEEE 30-bus and IEEE 57-bus system result in savings of fuel cost of 

approximately 2.86% and 10.64%, respectively, in the original system, which is equivalent 

to the savings of 241,968.72 USD and 40,777,195.6 USD annually. In the case of the 

standard IEEE 118-bus system, the Jaya-PPS1 algorithm provided a fuel cost reduction of 

1.52% in comparison to the base case, which is equivalent to a cost saving of 

17,503,627.60 USD yearly. The policymakers should consider these findings for future 

planning, control, and cost-effective operation of the power system.  

To provide the importance to the four objectives, minimization of cost, total voltage 

deviation, emission, and real power losses differently, the weighing factors are to be 

modified accordingly. The OPF results of all the cases obtained using various meta-

heuristic algorithms were compared with the reported results. 

 

7.6 STATISTICAL ANALYSIS 

To assess the robustness of the DA, GWO, Jaya, Jaya-PPS1, Jaya-PPS2, and Jaya-

PPS3 algorithms to solve the OPF problem with and without DG, statistical analysis was 

performed. For each case of the IEEE 30-bus and IEEE 57-bus systems, 50 independent 

trials with the same population size and the same number of function evaluations were 

carried out. Results of these 50 trials used to calculate the best, the worst, the average 
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(mean), and the standard deviation (SD) are shown in Table 7.10 and Table 7.11. Out of 

all the cases, the lowest values of the best, worst, average, and standard deviation 

provided by the proposed Jaya-PPS1 algorithm reveal that the proposed Jaya-PPS1 

approach produces statistically meaningful results. This confirms the robustness of the 

proposed Jaya-PPS1 algorithm. 

 

Table 7.10: Performance Measures of various algorithms for IEEE 30-Bus System 

Algorithm Without DG (Case 1) Incorporating DG (Case 2) 

Best Worst Mean SD Best Worst Mean SD 

DA 965.351 966.435 965.873 0.0252 938.581 939.176 938.755 0.0261 

GWO 965.302 966.733 965.756 0.0215 938.498 939.246 938.867 0.0238 

Jaya 965.286 966.815 965.897 0.0198 938.378 939.254 938.978 0.0195 

Jaya-PPS1 964.962 965.127 965.018 0.0114 937.340 938.012 937.832 0.0102 

Jaya-PPS2 965.267 966.395 965.787 0.0195 937.958 938.878 938.138 0.0161 

Jaya-PPS3 965.255 966.385 965.987 0.0189 937.792 938.437 938.198 0.0158 

 

 

Table 7.11: Performance Measures of various algorithms for IEEE 57-Bus System 

Algorithm Without DG (Case 3) Incorporating DG (Case 4) 

Best Worst Mean SD Best Worst Mean SD 

DA 43887.437 43973.873 43893.893 0.0298 39200.178    39218.879 39207.656 0.0288 

GWO 43864.841    43896.887 43871.698   0.0291 39173.097   39181.365 39178.432 0.0282 

Jaya 43833.629    43845.953    43839.894   0.0282 39162.889    39175.542 39168.764 0.0281 

Jaya-PPS1 43763.103    43774.391 43767.692 0.0133 39108.172     39112.265 39110.356 0.0132 

Jaya-PPS2 43804.936    43815.873 43811.348    0.0271 39122.922    39131.654 39126.554 0.0273 

Jaya-PPS3 43790.825    43804.768   43798.562 0.0269 39119.337   39128.278 39125.456 0.0271 

 

 

A comparison of the OPF results and statistical analysis proves that the Jaya-PPS1 

algorithm is the best option for solving OPF problems and maybe the proposed hybrid 

methodology applies to solve other fields of optimization problems also. 
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7.7 SUMMERRY  

In this chapter, a hybrid meta-heuristic Jaya-Powell’s Pattern Search method is 

suggested to solve the optimal power flow problem. Powell's Pattern Search method for 

the local search with the classical Jaya algorithm has been incorporated in three different 

ways resulting in three variants namely; Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3. To 

demonstrate the efficacy of the proposed algorithm and its potential to solve the OPF 

problem, it is tested on the standard IEEE 30-bus system with 24 control variables, on the 

IEEE 57-bus system with 33 control variables, and the IEEE 118-bus system with 130 

control variables.  

The aim to incorporate PPS with Jaya is to combine the benefits of both algorithms. 

In comparison with other meta-heuristic algorithms, the proposed hybrid Jaya-PPS1 

approach has the benefits of the simplicity to adopt, fast, and smooth convergence 

characteristics, and a guaranteed near global optimal solution. As the hybrid Jaya-PPS1 

algorithm has good exploration and exploitation properties, it can be employed to solve 

OPF problems in practical power systems and many real-world optimization problems. 

When any hybrid algorithm is developed for solving an optimization problem, some 

options to incorporate hybridization should also be tried to obtain the best one.  
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CHAPTER 8 

   CONCLUSION AND FUTURE SCOPE 

 

8.1 CONCLUSIONS  

The construction of the new power plants and transmission lines has been delayed 

for the last thirty years because of the cost of electricity, environmental issues, and 

restrictions on the right-of-way. As a result, the transmission system is operating near its 

security limits to meet the increased load demand. At the same time, the lack of reactive 

power sources in a power system leads to bulk power losses in transmission lines. 

Therefore, it is very important to consider voltage profile improvement and voltage 

stability improvement as the objectives of the OPF problem.  

Additionally, congestion of the transmission system creates obstacles in meeting the 

demands. In such cases, the integration of distributed generating units is a vital option to 

eliminate congestion on transmission lines, to improve the voltage profile and to enhance 

the system stability. The optimal placement of DG has a major impact on the reliability 

of power supply, operational cost, voltage profile, power loss, environmental pollution, 

and voltage stability. Integration of DGs seems to be quite appealing, but it is important 

to analyse their impact on a power system network. The optimal location and size of the 

DG unit have a significant effect on the reliability of power supply, operational cost, 

voltage profile, power loss and environmental pollution and voltage stability in a power 

system. Therefore, it has become a crucial task for researchers and industry personnel to 

determine the optimal location for the DG and the size of the DG.  
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With the inclusion of different kinds of power electronic appliances and renewable 

energy sources in the modern inter-connected restructured power system, the importance 

of solving the OPF problem is increasing many folds. Thus, in this work, the motivation 

was to develop efficient and more reliable methods to determine the solution to optimal 

power flow problems. With this view, various solutions methods have been developed, 

implemented and tested on practical and standard IEEE systems.  

Even though excellent advancements have been made in classical methods, they suffer 

from the following disadvantages: In most cases, mathematical formulations have to be 

simplified to get the solutions because of the extremely limited capability to solve real-

world large-scale power system problems. They are weak in handling qualitative 

constraints. They have poor convergence, may get stuck at local optimum, can find only a 

single optimized solution in a single simulation run, they become too slow if the number 

of variables is large and they are computationally expensive for the solution of a large 

system. Whereas, the major advantage of the EC-based or meta-heuristic algorithms are 

that it is relatively versatile for handling various qualitative constraints. It can find multiple 

optimal solutions in a single simulation run. So they are quite suitable for solving OPF 

problems. In most cases, these algorithms can find the near global optimum solution. 

The focus of this research work has been to solve OPF problem by EC based 

optimization algorithms. The EC based optimization algorithms have been found to be 

slower than conventional techniques. So, an attempt has been made to improve the 

existing EC algorithms. The research work done along with the key findings can be 

summarised as follows. 

 Based upon the exhaustive review of literature an overview of the state of the art 

methods, in optimal power flow (OPF) based on analytical, meta-heuristic, 
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modified meta-heuristic, and hybrid approaches has been carried out. Apart from 

presenting various methodologies of optimal power flow reported recently, the 

pros and cons of these optimization techniques have been identified and 

motivation, key contributions of the thesis are shaped.  

 The mathematical modelling of optimal power flow problem has been formulated. 

In addition, the power flow equations and several operating constraints of these 

equations have been explained in detail. Also, various technical and economic 

objective functions associated with the OPF problem are thoroughly incorporated. 

 Detailed studies of two meta-heuristic algorithms namely, bat search (BS) 

optimization and bird swarm algorithms (BSA) have been applied to solve the 

optimal power flow problem.  These algorithms have been applied in IEEE 30‐bus 

test system for fuel cost minimization, total voltage deviation minimization, 

emission minimization, real power losses minimization and enhancement of 

voltage stability under normal as well as contingency conditions. The comparative 

analysis of BS optimization algorithm with BSA on OPF problem is carried out. 

Based on numerical results, it seems that both the algorithms are competitively 

sound and of dominant nature. 

 Three easy‐to‐use metaphor‐less optimization algorithms, namely Rao algorithms, 

have been used to solve the optimal power flow problem. Meta‐heuristic 

algorithms, notwithstanding their benefits, have some drawbacks also. They need 

parameter tuning to find the near‐global best solution. It has been observed that 

parameter tuning of meta‐heuristic optimization algorithms plays a very important 

role and is a very crucial and time‐expensive task for solving a given optimization 

problem. Rao algorithms are parameter‐less optimization algorithms. As a result, 

algorithm‐specific parameter tuning is not required at all. To check the efficiency 
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and supremacy of the Rao algorithms these algorithms were applied to solve the 

OPF problem in three standard IEEE (30‐bus, 57‐bus, and 118‐bus) test systems. 

The simulation outcomes offered by Rao algorithms were compared for the various 

single and multi-objective functions and with the results of other methods 

mentioned in recent literature. The OPF results demonstrate that the suggested Rao 

algorithms are efficient and robust in most of the cases over other popular methods, 

which are reported in recent literature. 

 When used to solve complex real-life engineering optimization problems, standard 

versions of some of the more common meta-heuristic approaches have been found 

to have some limitations. Like other population-based algorithms, the Rao, bat and 

bird swarm algorithms sometimes suffers from premature convergence. 

Therefore, a sine-cosine mutation-based modified Jaya algorithm for solving the 

OPF problem has been proposed. The suggested SCM-MJ algorithm is found to 

be faster and immune to the local optima trapping as compared to the classical 

Jaya algorithm. The proposed SCM-MJ algorithm aims to maintain the diversity 

of the solutions throughout the search to avoid sub-optimal solutions, and find 

near-global optimum solutions.  

 

To test the efficacy of the suggested SCM-MJ method, it is applied on 13 

standard mathematical benchmark functions. Observations of the numerical results 

prove the supremacy of the SCM-MJ algorithm over eight well-known optimization 

methods reported in the recent publications: ALO, BA, CS, FPA, FA, GA, M-Jaya, 

PSO, and SMS. The proposed algorithm was implemented in the Algerian 59-bus 

and IEEE 118-bus systems for solving the OPF problem for minimization of fuel 

cost, total voltage deviation minimization, and real power loss minimization. A 

comparison of the optimization results acquired using the SCM-MJ algorithm with 
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those of modern meta-heuristic optimization approaches published in recent 

literature demonstrate that the proposed SCM-MJ algorithm is highly efficient and 

robust over other recently developed popular algorithms.  

 A hybrid meta-heuristic Jaya-Powell’s Pattern Search (Jaya-PPS) method has been 

proposed to solve the optimal power flow problem integrated with distributed 

generating units. A versatile combination of two meta-heuristic algorithms may 

overcome their common weaknesses while taking advantage of the strengths of 

the two algorithms. The aim to incorporate PPS with Jaya is to combine the 

benefits of both the algorithms. When any hybrid algorithm is developed for 

solving an optimization problem, some options to incorporate hybridization 

should also be tried to obtain the best one. Therefore, three variants of the Jaya-

PPS algorithm, Jaya-PPS1, Jaya-PPS2, and Jaya-PPS3 were developed by 

incorporating hybridization in different manner.  

To demonstrate the efficacy of the proposed algorithm and its potential to 

solve the OPF problem, it is tested on the standard IEEE 30-bus system with 24 

control variables, on the IEEE 57-bus system with 33 control variables, and the 

IEEE 118-bus system with 130 control variables. The OPF results of all the cases 

obtained using the proposed three variants of Jaya algorithms were compared with 

the reported meta-heuristic algorithms results. A comparison of the OPF results 

and statistical analysis proves that the Jaya-PPS1 algorithm is the best option for 

solving OPF problems. 

Finally, based upon the numerical results obtained and analytic comparative 

study, the author is able to demonstrate the superiority of the proposed SCM-MJ 
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algorithm over proposed BS, BSA, Rao, hybrid Jaya-PPS algorithms and other EC-

based algorithms in handling OPF problems. 

 

8.2 FUTURE SCOPE OF WORK 

The process of research and development is never-ending. Each end of a study effort 

marks the beginning of an opportunity for new possibilities for future research. For future 

study, the following suggestions have been made: 

 The proposed algorithm in this thesis can also be applied to solve other crucial power 

system optimization problems namely, economic load dispatch (ELD), automatic 

generation control (AGC), demand side management (DSM) and distribution systems 

planning (DSP) etc. 

 The study can also be extended under deregulated environment. 

 The stochastic wind and solar based distributed generation can be dynamically 

modelled and installed in an optimal location to investigate their impact on system 

performance. 

 The inclusion of discrete control variables like transformer taps-setting and shunt 

compensators in OPF problem formulation is another direction for future studies. 

 Machine learning or Deep learning based techniques can also be applied to solve real 

time OPF problems.  
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APPENDIX  A  

SYSTEM DATA FOR THE IEEE 30-BUS SYSTEM 

The IEEE 30-bus system is shown in Figure A. The IEEE 30-bus system has 30 buses, 6 

generators, and 41 branches. The system data along with the control variable operating 

limits are given in Reference[36]. The characteristics of test system, generator data, bus 

data, and line data are provided in the tables A.1, A.2, A.3, and A.4 respectively. The 

active and reactive power demands of this system on the 100 MVA base are 2.834 and 

1.262 pu, respectively. 

 

Figure A. Single line diagram of IEEE-30 Bus Test System 
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A1: CHARACTERISTICS OF IEEE 30-BUS TEST SYSTEM 

IEEE 30-bus system 

S. No Characteristics Value details Details 

1 Busses 30 - 

2 Branches 41 - 

3 Generators 06 Busses: 1, 2, 5, 8, 11 and 13 

4 Load bus voltage limits 24 [0.94:1.06] 

5 Generator bus voltage limits 06 [0.95:1.1] 

6 Control variables 24 (05+06+09+04) 

 

A2: GENERATOR DATA 

Bus No. Pg
min Pg

max Qg
min Qg

max Cost Coefficients 

 (MW) (MW) (MVAR) (MVAR) a b c 

1 50 200 -20 200 0.0 200 37. 5 

2 20 80 -20 100 0.0 175 175 

5 15 50 -15 80 0.0 100 625 

8 10 35 -15 60 0.0 325 83.4 

11 10 30 -10 50 0.0 300 250 

13 12 40 -15 60 0.0 300 250 

 

A3: BUS DATA 

Bus No. Bus Type Pd (MW) Qd (MVAR) 

1 1 0 0 

2 2 0.2170 0.1270 

3 3 0.0240 0.0120 

4 3 0.0760 0.0160 

5 2 0.9420 0.1900 

6 3 0 0 

7 3 0.2280 0.1090 

8 2 0.3000 0.3000 

9 3 0 0 

10 3 0.0580 0.0200 

11 2 0 0 

12 3 0.1120 0.0750 

13 2 0 0 

14 3 0.0620 0.0160 

15 3 0.0820 0.0250 

16 3 0.0350 0.0180 

17 3 0.0900 0.0580 

18 3 0.0320 0.0090 

19 3 0.0950 0.0340 

20 3 0.0220 0.0070 

21 3 0.1750 0.1120 

22 3 0 0 

23 3 0.0320 0.0160 

24 3 0.0870 0.0670 

25 3 0 0 
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26 3 0.0350 0.0230 

27 3 0 0 

28 3 0 0 

29 3 0.0240 0.0090 

30 3 0.1060 0.0190 

 

 

 

 

       A4: LINE DATA 

Line No. From To R X B Tap Setting 

1 1 2 0.0192 0.0575 0.0132 1.0000 

2 1 3 0.0452 0.1852 0.0102 1.0000 

3 2 4 0.0570 0.1737 0.0092 1.0000 

4 3 4 0.0132 0.0379 0.0021 1.0000 

5 2 5 0.0472 0.1983 0.0104 1.0000 

6 2 6 0.0581 0.1763 0.0094 1.0000 

7 4 6 0.0119 0.0414 0.0022 1.0000 

8 5 7 0.0460 0.1160 0.0051 1.0000 

9 6 7 0.0267 0.0820 0.0043 1.0000 

10 6 8 0.0120 0.0420 0.0022 1.0000 

11 6 9 0 0.2080 0 1.0780 

12 6 10 0 0.5560 0 1.0690 

13 9 11 0 0.2080 0 1.0000 

14 9 10 0 0.1100 0 1.0000 

15 4 12 0 0.2560 0 1.0320 

16 12 13 0 0.1400 0 1.0000 

17 12 14 0.1231 0.2559 0 1.0000 

18 12 15 0.0662 0.1304 0 1.0000 

19 12 16 0.0945 0.1987 0 1.0000 

20 14 15 0.2210 0.1997 0 1.0000 

21 16 17 0.0824 0.1932 0 1.0000 

22 15 18 0.1070 0.2185 0 1.0000 

23 18 19 0.0639 0.1292 0 1.0000 

24 19 20 0.0340 0.0680 0 1.0000 

25 10 20 0.0936 0.2090 0 1.0000 

26 10 17 0.0324 0.0845 0 1.0000 

27 10 21 0.0348 0.0749 0 1.0000 

28 10 22 0.0727 0.1499 0 1.0000 

29 21 22 0.0116 0.0236 0 1.0000 

30 15 23 0.1000 0.2020 0 1.0000 

31 22 24 0.1150 0.1790 0 1.0000 

32 23 24 0.1320 0.2700 0 1.0000 

33 24 25 0.1885 0.3292 0 1.0000 

34 25 26 0.2544 0.3800 0 1.0000 

35 25 27 0.1093 0.2087 0 1.0000 

36 28 27 0 0.3960 0 1.0680 

37 27 29 0.2198 0.4153 0 1.0000 

38 27 30 0.3202 0.6027 0 1.0000 

39 29 30 0.2399 0.4533 0 1.0000 

40 8 28 0.6360 0.2000 0.0107 1.0000 

41 6 28 0.0169 0.0599 0.0032 1.0000 
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APPENDIX B  

SYSTEM DATA FOR THE IEEE 57-BUS SYSTEM  

The IEEE 57-bus system is shown in Figure B. The IEEE 57-bus system has 57 buses, 7 

generator buses, and 80 branches. The system data along with the control variable 

operating limits are given in Reference[302]. The characteristics of test system, generator 

data, bus data, and line data are provided in the tables B.1, B.2, B.3, and B.4 respectively. 

The active and reactive power demands of this system on the 100 MVA base are 12.508 

and 3.364 pu, respectively. 

 

Figure B. Single line diagram of IEEE-57 Bus Test System 
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B1:  CHARACTERISTICS OF IEEE 57-BUS TEST SYSTEM 

IEEE 57-bus system 

S. No Characteristics Value details Details 

1 Busses 57 - 

2 Branches 80 - 

3 Generators 07 Busses: 1, 2, 3, 6, 8, 9 and 12 

4 Load bus voltage limits 50 [0.94:1.1] 

5 Generator bus voltage limits 07 [0.94 :1.1] 

6 Control variables 33 06+07+03+17 

 

B2: GENERATOR DATA 

Bus 

No. 
Pg
min Pg

max Qg
min Qg

max Cost Coefficients 

 (MW) (MW) (MVAR) (MVAR) a b c 

1 0 576 -200 300 0.0 2000 7.75795 

2 0 100 -17 50 0.0 4000 1 

3 0 140 -10 60 0.0 2000 25 

6 0 100 -8 25 0.0 4000 1 

8 0 550 -140 200 0.0 2000 2.22222 

9 0 100 -3 9 0.0 4000 1 

12 0 410 -150 155 0.0 2000 3.22581 

 

B3: BUS DATA 

Bus No. Type Pd Qd Bus No. Type Pd Qd 

1 1 55 17 30 3 3.6 1.8 

2 2 3 88 31 3 5.8 2.9 

3 2 41 21 32 3 1.6 0.8 

4 3 0 0 33 3 3.8 1.9 

5 3 13 4 34 3 0 0 

6 2 75 2 35 3 6 3 

7 3 0 0 36 3 0 0 

8 2 150 22 37 3 0 0 

9 2 121 26 38 3 14 7 

10 3 5 2 39 3 0 0 

11 3 0 0 40 3 0 0 

12 2 377 24 41 3 6.3 3 

13 3 18 2.3 42 3 7.1 4.4 

14 3 10.5 5.3 43 3 2 1 

15 3 22 5 44 3 12 1.8 

16 3 43 3 45 3 0 0 

17 3 42 8 46 3 0 0 

18 3 27.2 9.8 47 3 29.7 11.6 

19 3 3.3 0.6 48 3 0 0 

20 3 2.3 1 49 3 18 8.5 

21 3 0 0 50 3 21 10.5 
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22 3 0 0 51 3 18 5.3 

23 3 6.3 2.1 52 3 4.9 2.2 

24 3 0 0 53 3 20 10 

25 3 6.3 3.2 54 3 4.1 1.4 

26 3 0 0 55 3 6.8 3.4 

27 3 9.3 0.5 56 3 7.6 2.2 

28 3 4.6 2.3 57 3 6.7 2 

29 3 17 2.6     

 

B4: LINE DATA 

Line No. From To R X B Tap Setting 

1 1 2 0.0083 0.028 0.0645 1.0000 

2 2 3 0.0298 0.085 0.0409 1.0000 

3 3 4 0.0112 0.0366 0.019 1.0000 

4 4 5 0.0625 0.132 0.0129 1.0000 

5 4 6 0.043 0.148 0.0174 1.0000 

6 6 7 0.02 0.102 0.0138 1.0000 

7 6 8 0.0339 0.173 0.0235 1.0000 

8 8 9 0.0099 0.0505 0.0274 1.0000 

9 9 10 0.0369 0.1679 0.022 1.0000 

10 9 11 0.0258 0.0848 0.0109 1.0000 

11 9 12 0.0648 0.295 0.0386 1.0000 

12 9 13 0.0481 0.158 0.0203 1.0000 

13 13 14 0.0132 0.0434 0.0055 1.0000 

14 13 15 0.0269 0.0869 0.0115 1.0000 

15 1 15 0.0178 0.091 0.0494 1.0000 

16 1 16 0.0454 0.206 0.0273 1.0000 

17 1 17 0.0238 0.108 0.0143 1.0000 

18 3 15 0.0162 0.053 0.0272 1.0000 

19 4 18 0 0.555 0 0.9700 

20 4 18 0 0.43 0 0.9780 

21 5 6 0.0302 0.0641 0.0062 1.0000 

22 7 8 0.0139 0.0712 0.0097 1.0000 

23 10 12 0.0277 0.1262 0.0164 1.0000 

24 11 13 0.0223 0.0732 0.0094 1.0000 

25 12 13 0.0178 0.058 0.0302 1.0000 

26 12 16 0.018 0.0813 0.0108 1.0000 

27 12 17 0.0397 0.179 0.0238 1.0000 

28 14 15 0.0171 0.0547 0.0074 1.0000 

29 18 19 0.461 0.685 0 1.0000 

30 19 20 0.283 0.434 0 1.0000 

31 21 20 0 0.7767 0 1.0430 

32 21 22 0.0736 0.117 0 1.0000 

33 22 23 0.0099 0.0152 0 1.0000 

34 23 24 0.166 0.256 0.0042 1.0000 

35 24 25 0 1.182 0 1.0000 

36 24 25 0 1.23 0 1.0000 

37 24 26 0 0.0473 0 1.0430 

38 26 27 0.165 0.254 0 1.0000 

39 27 28 0.0618 0.0954 0 1.0000 

40 28 29 0.0418 0.0587 0 1.0000 

41 7 29 0 0.0648 0 0.9670 
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42 25 30 0.135 0.202 0 1.0000 

43 30 31 0.326 0.497 0 1.0000 

44 31 32 0.507 0.755 0 1.0000 

45 32 33 0.0392 0.036 0 1.0000 

46 34 32 0 0.953 0 0.975 

47 34 35 0.052 0.078 0.0016 1.0000 

48 35 36 0.043 0.0537 0.0008 1.0000 

49 36 37 0.029 0.0366 0 1.0000 

50 37 38 0.0651 0.1009 0.001 1.0000 

51 37 39 0.0239 0.0379 0 1.0000 

52 36 40 0.03 0.0466 0 1.0000 

53 22 38 0.0192 0.0295 0 1.0000 

54 11 41 0 0.749 0 0.9550 

55 41 42 0.207 0.352 0 1.0000 

56 41 43 0 0.412 0 1.0000 

57 38 44 0.0289 0.0585 0.001 1.0000 

58 15 45 0 0.1042 0 0.9950 

59 14 46 0 0.0735 0 0.9000 

60 46 47 0.023 0.068 0.0016 1.0000 

61 47 48 0.0182 0.0233 0 1.0000 

62 48 49 0.0834 0.129 0.0024 1.0000 

63 49 50 0.0801 0.128 0 1.0000 

64 50 51 0.1386 0.22 0 1.0000 

65 10 51 0 0.0712 0 0.9300 

66 13 49 0 0.191 0 0.8950 

67 29 52 0.1442 0.187 0 1.0000 

68 52 53 0.0762 0.0984 0 1.0000 

69 53 54 0.1878 0.232 0 1.0000 

70 54 55 0.1732 0.2265 0 1.0000 

71 11 43 0 0.153 0 0.8950 

72 44 45 0.0624 0.1242 0.002 1.0000 

73 40 56 0 1.195 0 0.9580 

74 56 41 0.553 0.549 0 1.0000 

75 56 42 0.2125 0.354 0 1.0000 

76 39 57 0 1.355 0 0.9800 

77 57 56 0.174 0.26 0 1.0000 

78 38 49 0.115 0.177 0.003 1.0000 

79 38 48 0.0312 0.0482 0 1.0000 

80 9 55 0 0.1205 0 0.9400 
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APPENDIX  C 

SYSTEM DATA FOR THE ALGERIAN 59-BUS SYSTEM 

The Algerian 59-bus system is shown in Figure C. The Algerian 59-bus system has 

59 buses, 10 generators, and 83 branches. It is worth mentioning that generator at bus No. 

13 is not in service. The system data along with the control variable operating limits are 

given in Reference [147]. The characteristics of test system, generator data, bus data, line 

data are provided in the tables C.1, C.2, C.3, and C.4 respectively. The active power 

demands of this system on the 100 MVA base is 6.841 pu. 

 

 

Figure C: Single line diagram of Algerian 59-bus system 
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C1: CHARACTERISTICS OF ALGERIAN 59-BUS SYSTEM 

Algerian 59-bus system 

S. 

No. 

Characteristics Value details Details 

1 Busses 59 - 

2 Branches 83 - 

3 Generators 10 Busses: 1, 2, 3, 4, 13, 27, 37, 41, 42 and 53 

4 Load bus voltage limits 49 [0.94:1.1] 

5 Generator bus voltage limits 10 [0.94 :1.1] 

6 Control variables 19 09+10 

 

 

 

C2: GENERATOR DATA 

Bus No. Pg
min Pg

max Qg
min Qg

max Cost Coefficients 

 (MW) (MW) (MVAR) (MVAR) a b c 

1 8 72 -10 15 0.0 1.5 0.0085 

2 10 70 -35 45 0.0 2.5 0.017 

3 30 510 -35 55 0.0 1.5 0.0085 

4 20 400 -60 90 0.0 1.5 0.0085 

13 15 150 -35 48 0.0 2.5 0.017 

27 10 100 -20 35 0.0 2.5 0.017 

37 10 100 -20 35 0.0 2.0 0.003 

41 15 140 -35 45 0.0 2.0 0.003 

42 18 175 -35 55 0.0 2.0 0.003 

53 30 750 -100 160 0.0 1.5 0.0085 

 

 

C3: BUS DATA  

 

Bus No. Type Pd Qd 

1 1 0 0 

2 2 0.2420 0.1100 

3 2 0 0 

4 2 0.6850 0.3120 

5 3 0.2220 0.1020 

6 3 0 0 

7 3 0.0600 0.0270 

8 3 0.0390 0.0180 

9 3 0.2840 0.1290 

10 3 0.1800 0.0820 

11 3 0.2500 0.1140 

12 3 0 0 

13 2 0 0 

14 3 0.2250 0.1030 

15 3 0.1940 0.0880 

16 3 0 0 

17 3 0.0640 0.0290 
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18 3 0 0 

19 3 0 0 

20 3 0.5290 0.2410 

21 3 0 0 

22 3 0 0 

23 3 0.5670 0.2580 

24 3 0.2140 0.0980 

25 3 0 0 

26 3 0.1960 0.0890 

27 2 0.2350 0.1080 

28 3 0.0780 0.0350 

29 3 0.0590 0.0270 

30 3 0 0 

31 3 0 0 

32 3 0 0 

33 3 0.2470 0.1130 

34 3 0 0 

35 3 0.1390 0.0630 

36 3 0.1390 0.0630 

37 2 0 0 

38 3 0.1560 0.0710 

39 3 0.0150 0.0070 

40 3 0.2160 0.0980 

41 2 0.0300 0.0130 

42 2 0 0 

43 3 0.0730 0.0330 

44 3 0.1680 0.0770 

45 3 0 0 

46 3 0.2220 0.1010 

47 3 0.1630 0.0740 

48 3 0.1920 0.0880 

49 3 0.1430 0.0650 

50 3 0 0 

51 3 0 0 

52 3 0.1600 0.0730 

53 2 0 0 

54 3 0.0730 0.0330 

55 3 0.0870 0.0400 

56 3 0.0720 0.0330 

57 3 0 0 

58 3 0.2230 0.1010 

59 3 0 0 

 

 

C4: LINE DATA  

 

Line No. From To R X B Tap Setting 

1 1 38 0.1520 0.4830 0.00115 1 

2 1 40 0.1100 0.3520 0.00085 1 

3 2 20 0.0190 0.1200 0.00035 1 

4 2 55 0.0040 0.0230 0.00005 1 

5 3 20 0.0180 0.1190 0.00035 1 

6 4 27 0.0020 0.0060 0.00100 1 

7 4 27 0.0030 0.0070 0.00100 1 
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8 5 9 0.0870 0.2210 0.00050 1 

9 5 9 0.0880 0.2210 0.00050 1 

10 5 23 0.0380 0.1380 0.00030 1 

11 5 23 0.0380 0.1400 0.00030 1 

12 5 27 0.0450 0.1670 0.00035 1 

13 5 27 0.0450 0.1680 0.00040 1 

14 5 46 0.0710 0.2310 0.00055 1 

15 6 5 0.0020 0.0540 0.00000 1 

16 6 13 0.0540 0.1900 0.06850 1 

17 6 13 0.0570 0.2010 0.07200 1 

18 6 30 0.0180 0.0850 0.03200 1 

19 6 30 0.0250 0.0860 0.03100 1 

20 7 40 0.5270 0.8870 0.00180 1 

21 7 56 0.3640 0.6270 0.00130 1 

22 8 14 0.2140 0.4910 0.00125 1 

23 8 25 0.1570 0.3950 0.00095 1 

24 9 14 0.2100 0.3660 0.00070 1 

25 9 14 0.1290 0.3240 0.00075 1 

26 10 40 0.0140 0.0180 0.00070 1 

27 10 40 0.0110 0.0150 0.00150 1 

28 11 48 0.2220 0.6050 0.00130 1 

29 12 11 0.0200 0.0540 0.00000 1 

30 12 37 0.0130 0.0450 0.00350 1 

31 13 3 0.0140 0.3260 0.00000 1 

32 13 34 0.0400 0.1420 0.05050 1 

33 13 34 0.0400 0.1410 0.05050 1 

34 14 29 0.3570 0.6220 0.00115 1 

35 15 54 0.1150 0.2770 0.00300 1 

36 16 15 0.0140 0.2850 0.00000 1 

37 16 34 0.0300 0.1040 0.03950 1 

38 17 39 0.1200 0.3080 0.00070 1 

39 17 44 0.3700 0.9490 0.00215 1 

40 18 22 0.0055 0.0200 0.00715 1 

41 18 51 0.0110 0.0400 0.01425 1 

42 19 22 0.0080 0.0285 0.01025 1 

43 19 32 0.0160 0.0570 0.02050 1 

44 20 28 0.2810 0.5060 0.00115 1 

45 20 55 0.0160 0.1010 0.00030 1 

46 21 20 0.0110 0.4390 0.00000 1 

47 21 54 0.1300 0.3490 0.00400 1 

48 22 20 0.0060 0.1620 0.00000 1 

49 22 21 0.0140 0.3400 0.00000 1 

50 23 26 0.0150 0.0200 0.00200 1 

51 23 27 0.0260 0.0340 0.00350 1 

52 23 46 0.0560 0.1710 0.00040 1 

53 24 57 0.0138 0.0489 0.01750 1 

54 25 29 0.2170 0.3690 0.00075 1 

55 26 27 0.0130 0.0170 0.00200 1 

56 28 43 0.2700 0.4770 0.00105 1 

57 29 39 0.3120 0.7890 0.00185 1 

58 30 29 0.0060 0.2160 0.00000 1 

59 30 45 0.0320 0.1500 0.05650 1 

60 31 34 0.0048 0.0168 0.00600 1 

61 31 50 0.0095 0.0335 0.01200 1 

62 32 34 0.0080 0.0285 0.01025 1 

63 33 35 0.0920 0.1550 0.00030 1 

64 33 48 0.8380 0.4130 0.00285 1 
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65 34 33 0.0060 0.2150 0.00000 1 

66 36 43 0.3340 0.5780 0.00120 1 

67 38 44 0.3270 0.5610 0.00115 1 

68 40 41 0.0140 0.0190 0.00200 1 

69 40 58 0.1060 0.3010 0.00060 1 

70 40 58 0.1070 0.3070 0.00060 1 

71 42 59 0.0079 0.0281 0.01000 1 

72 43 52 0.0940 0.1600 0.00035 1 

73 45 44 0.0140 0.3270 0.00000 1 

74 45 59 0.0190 0.0890 0.03400 1 

75 47 49 0.3390 0.8570 0.00195 1 

76 47 58 0.2190 0.5470 0.00130 1 

77 49 56 0.0160 0.0280 0.00005 1 

78 50 53 0.0048 0.0168 0.00600 1 

79 51 53 0.0055 0.0200 0.07150 1 

80 53 52 0.0060 0.1630 0.00000 1 

81 57 56 0.0100 0.3510 0.00000 1 

82 57 59 0.0288 0.1020 0.03650 1 

83 59 58 0.0060 0.2150 0.00000 1 
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APPENDIX D  

SYSTEM DATA FOR THE IEEE 118-BUS SYSTEM  

The IEEE-118 test bus system is shown in Figure D. The IEEE 118‐bus test system has 54 

generation units, two reactors, and 12 capacitors, 186 branches, and nine tap‐changing 

transformers. The system data along with the control variable operating limits are given in 

Reference [303]. The characteristics of test system, generator data, bus data, line data are 

provided in the tables D.1, D.2, D.3, and D.4 respectively. The active and reactive power 

demands of this system on the 100 MVA base are 42.42 and 14.38 pu, respectively. 

 

 

Figure D. Single line diagram of IEEE-118 Bus Test System 
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D1: CHARACTERISTICS OF IEEE 118-BUS TEST SYSTEM 

IEEE 118-bus test system 

S. No Characteristics Value  Details 

1 Busses 118 - 

2 Branches 186 - 

3 Generators 54 Busses: 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 

26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 

56, 59, 61, 62, 65, 66, 69, 70, 72, 73, 74, 76, 

77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 

104, 105, 107, 110, 111, 112, 113, and 116 

4 Voltage limits of all busses 118 [0.94 - 1.06] 

5 Transformers 09 Branches: 8, 32, 36, 51, 93, 95, 102, 107 and 

127 

6 Shunt VAR compensation 14 Busses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 

83, 105, 107 and 110 

7 Control variables 130 53+54+09+14 

 

D2: GENERATOR DATA 

 
Bus No. Pg

min Pg
max Qg

min Qg
max Cost Coefficients 

 (MW) (MW) (MVAR) (MVAR) a b c 

1 0 100.0000 -5 1.5 0.01 40 0.0 

4 0 100.0000 -300 300 0.01 40 0.0 

6 0 100.0000 -13 50 0.01 40 0.0 

8 0 100.0000 -300 300 0.01 40 0.0 

10 0 550.0000 -147 200 0.022222 20 0.0 

12 0 185.0000 -35 120 0.117647 20 0.0 

15 0 100.0000 -10 30 0.01 40 0.0 

18 0 100.0000 -16 50 0.01 40 0.0 

19 0 100.0000 -8 24 0.01 40 0.0 

24 0 100.0000 -300 300 0.01 40 0.0 

25 0 320.0000 -47 140 0.045455 20 0.0 

26 0 414.0000 -1000 1000 0.031847 20 0.0 

27 0 100.0000 -300 300 0.01 40 0.0 

31 0 107.0000 -300 300 1.428571 20 0.0 

32 0 100.0000 -14 42 0.01 40 0.0 

34 0 100.0000 -8 24 0.01 40 0.0 

36 0 100.0000 -8 24 0.01 40 0.0 

40 0 100.0000 -300 300 0.01 40 0.0 

42 0 100.0000 -300 300 0.01 40 0.0 

46 0 119.0000 -100 100 0.526316 20 0.0 

49 0 304.0000 0 210 0.04902 20 0.0 

54 0 148.0000 -300 300 0.208333 20 0.0 

55 0 100.0000 -8 23 0.01 40 0.0 

56 0 100.0000 -8 15 0.01 40 0.0 

59 0 255.0000 -60 180 0.064516 20 0.0 

61 0 260.0000 -100 300 0.0625 20 0.0 

62 0 100.0000 -20 20 0.01 40 0.0 

65 0 491.0000 -67 200 0.025575 20 0.0 

66 0 492.0000 -67 200 0.02551 20 0.0 

69 0 100.0000 -300 300 0.019365 20 0.0 

70 0 100.0000 -10 32 0.01 40 0.0 

72 0 100.0000 -100 100 0.01 40 0.0 
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73 0 100.0000 -100 100 0.01 40 0.0 

74 0 100.0000 -6 9 0.01 40 0.0 

76 0 100.0000 -8 23 0.01 40 0.0 

77 0 577.0000 -20 70 0.01 40 0.0 

80 0 100.0000 -165 280 0.020964 20 0.0 

85 0 104.0000 -8 23 0.01 40 0.0 

87 0 707.0000 -100 1000 2.5 20 0.0 

89 0 100.0000 -210 300 0.016474 20 0.0 

90 0 100.0000 -300 300 0.01 40 0.0 

91 0 100.0000 -100 100 0.01 40 0.0 

92 0 100.0000 -3 9 0.01 40 0.0 

99 0 352.0000 -100 100 0.01 40 0.0 

100 0 140.0000 -50 155 0.039683 20 0.0 

103 0 100.0000 -40 15 0.25 20 0.0 

104 0 100.0000 -8 23 0.01 40 0.0 

105 0 100.0000 -8 23 0.01 40 0.0 

107 0 100.0000 -200 200 0.01 40 0.0 

110 0 136.0000 -8 23 0.01 40 0.0 

111 0 100.0000 -100 1000 0.277778 20 0.0 

112 0 100.0000 -100 1000 0.01 40 0.0 

113 0 100.0000 -100 200 0.01 40 0.0 

116 0 100.0000 -1000 10000 0.01 40 0.0 

 

 

D3: BUS DATA  

Bus No. Type Pd (MW) Qd(MVAR) 

1 2 0.5100 0.2700 

2 3 0.2000 0.0900 

3 3 0.3900 0.1000 

4 2 0.3900 0.1200 

5 3 0 0 

6 2 0.5200 0.2200 

7 3 0.1900 0.0200 

8 2 0.2800 0 

9 3 0 0 

10 2 0 0 

11 3 0.7000 0.2300 

12 2 0.4700 0.1000 

13 3 0.3400 0.1600 

14 3 0.1400 0.0100 

15 2 0.9000 0.3000 

16 3 0.2500 0.1000 

17 3 0.1100 0.0300 

18 2 0.6000 0.3400 

19 2 0.4500 0.2500 

20 3 0.1800 0.0300 

21 3 0.1400 0.0800 

22 3 0.1000 0.0500 

23 3 0.0700 0.0300 

24 2 0.1300 0 

25 2 0 0 

26 2 0 0 

27 2 0.7100 0.1300 

28 3 0.1700 0.0700 

29 3 0.2400 0.0400 
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30 3 0 0 

31 2 0.4300 0.2700 

32 2 0.5900 0.2300 

33 3 0.2300 0.0900 

34 2 0.5900 0.2600 

35 3 0.3300 0.0900 

36 2 0.3100 0.1700 

37 3 0 0 

38 3 0 0 

39 3 0.2700 0.1100 

40 2 0.6600 0.2300 

41 3 0.3700 0.1000 

42 2 0.9600 0.2300 

43 3 0.1800 0.0700 

44 3 0.1600 0.0800 

45 3 0.5300 0.2200 

46 2 0.2800 0.1000 

47 3 0.3400 0 

48 3 0.2000 0.1100 

49 2 0.8700 0.3000 

50 3 0.1700 0.0400 

51 3 0.1700 0.0800 

52 3 0.1800 0.0500 

53 3 0.2300 0.1100 

54 2 1.1300 0.3200 

55 2 0.6300 0.2200 

56 2 0.8400 0.1800 

57 3 0.1200 0.0300 

58 3 0.1200 0.0300 

59 2 2.7700 1.1300 

60 3 0.7800 0.0300 

61 2 0 0 

62 2 0.7700 0.1400 

63 3 0 0 

64 3 0 0 

65 2 0 0 

66 2 0.3900 0.1800 

67 3 0.2800 0.0700 

68 3 0 0 

69 1 0 0 

70 2 0.6600 0.2000 

71 3 0 0 

72 2 0.1200 0 

73 2 0.0600 0 

74 2 0.6800 0.2700 

75 3 0.4700 0.1100 

76 2 0.6800 0.3600 

77 2 0.6100 0.2800 

78 3 0.7100 0.2600 

79 3 0.3900 0.3200 

80 2 1.3000 0.2600 

81 3 0 0 

82 3 0.5400 0.2700 

83 3 0.2000 0.1000 

84 3 0.1100 0.0700 

85 2 0.2400 0.1500 

86 3 0.2100 0.1000 
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87 2 0 0 

88 3 0.4800 0.1000 

89 2 0 0 

90 2 1.6300 0.4200 

91 2 0.1000 0 

92 2 0.6500 0.1000 

93 3 0.1200 0.0700 

94 3 0.3000 0.1600 

95 3 0.4200 0.3100 

96 3 0.3800 0.1500 

97 3 0.1500 0.0900 

98 3 0.3400 0.0800 

99 2 0.4200 0 

100 2 0.3700 0.1800 

101 3 0.2200 0.1500 

102 3 0.0500 0.0300 

103 2 0.2300 0.1600 

104 2 0.3800 0.2500 

105 2 0.3100 0.2600 

106 3 0.4300 0.1600 

107 2 0.5000 0.1200 

108 3 0.0200 0.0100 

109 3 0.0800 0.0300 

110 2 0.3900 0.3000 

111 2 0 0 

112 2 0.6800 0.1300 

113 2 0.0600 0 

114 3 0.0800 0.0300 

115 3 0.2200 0.0700 

116 2 1.8400 0 

117 3 0.2000 0.0800 

118 3 0.3300 0.1500 

 

 

D4: LINE DATA  

 

Line No. From To R X B Tap Setting 

1 1 2 0.0303 0.0999 0.0254 1.0000 

2 1 3 0.0129 0.0424 0.0108 1.0000 

3 4 5 0.0018 0.0080 0.0021 1.0000 

4 3 5 0.0241 0.1080 0.0284 1.0000 

5 5 6 0.0119 0.0540 0.0143 1.0000 

6 6 7 0.0046 0.0208 0.0055 1.0000 

7 8 9 0.0024 0.0305 1.1620 1.0000 

8 8 5 0 0.0267 0 0.9850 

9 9 10 0.0026 0.0322 1.2300 1.0000 

10 4 11 0.0209 0.0688 0.0175 1.0000 

11 5 11 0.0203 0.0682 0.0174 1.0000 

12 11 12 0.0060 0.0196 0.0050 1.0000 

13 2 12 0.0187 0.0616 0.0157 1.0000 

14 3 12 0.0484 0.1600 0.0406 1.0000 

15 7 12 0.0086 0.0340 0.0087 1.0000 

16 11 13 0.0222 0.0731 0.0188 1.0000 

17 12 14 0.0215 0.0707 0.0182 1.0000 

18 13 15 0.0744 0.2444 0.0627 1.0000 
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19 14 15 0.0595 0.1950 0.0502 1.0000 

20 12 16 0.0212 0.0834 0.0214 1.0000 

21 15 17 0.0132 0.0437 0.0444 1.0000 

22 16 17 0.0454 0.1801 0.0466 1.0000 

23 17 18 0.0123 0.0505 0.0130 1.0000 

24 18 19 0.0112 0.0493 0.0114 1.0000 

25 19 20 0.0252 0.1170 0.0298 1.0000 

26 15 19 0.0120 0.0394 0.0101 1.0000 

27 20 21 0.0183 0.0849 0.0216 1.0000 

28 21 22 0.0209 0.0970 0.0246 1.0000 

29 22 23 0.0342 0.1590 0.0404 1.0000 

30 23 24 0.0135 0.0492 0.0498 1.0000 

31 23 25 0.0156 0.0800 0.0864 1.0000 

32 26 25 0 0.0382 0 0.9600 

33 25 27 0.0318 0.1630 0.1764 1.0000 

34 27 28 0.0191 0.0855 0.0216 1.0000 

35 28 29 0.0237 0.0943 0.0238 1.0000 

36 30 17 0 0.0388 0 0.9600 

37 8 30 0.0043 0.0504 0.5140 1.0000 

38 26 30 0.0080 0.0860 0.9080 1.0000 

39 17 31 0.0474 0.1563 0.0399 1.0000 

40 29 31 0.0108 0.0331 0.0083 1.0000 

41 23 32 0.0317 0.1153 0.1173 1.0000 

42 31 32 0.0298 0.0985 0.0251 1.0000 

43 27 32 0.0229 0.0755 0.0193 1.0000 

44 15 33 0.0380 0.1244 0.0319 1.0000 

45 19 34 0.0752 0.2470 0.0632 1.0000 

46 35 36 0.0022 0.0102 0.0027 1.0000 

47 35 37 0.0110 0.0497 0.0132 1.0000 

48 33 37 0.0415 0.1420 0.0366 1.0000 

49 34 36 0.0087 0.0268 0.0057 1.0000 

50 34 37 0.0026 0.0094 0.0098 1.0000 

51 38 37 0 0.0375 0 0.9350 

52 37 39 0.0321 0.1060 0.0270 1.0000 

53 37 40 0.0593 0.1680 0.0420 1.0000 

54 30 38 0.0046 0.0540 0.4220 1.0000 

55 39 40 0.0184 0.0605 0.0155 1.0000 

56 40 41 0.0145 0.0487 0.0122 1.0000 

57 40 42 0.0555 0.1830 0.0466 1.0000 

58 41 42 0.0410 0.1350 0.0344 1.0000 

59 43 44 0.0608 0.2454 0.0607 1.0000 

60 34 43 0.0413 0.1681 0.0423 1.0000 

61 44 45 0.0224 0.0901 0.0224 1.0000 

62 45 46 0.0400 0.1356 0.0332 1.0000 

63 46 47 0.0380 0.1270 0.0316 1.0000 

64 46 48 0.0601 0.1890 0.0472 1.0000 

65 47 49 0.0191 0.0625 0.0160 1.0000 

66 42 49 0.0715 0.3230 0.0860 1.0000 

67 42 49 0.0715 0.3230 0.0860 1.0000 

68 45 49 0.0684 0.1860 0.0444 1.0000 

69 48 49 0.0179 0.0505 0.0126 1.0000 

70 49 50 0.0267 0.0752 0.0187 1.0000 

71 49 51 0.0486 0.1370 0.0342 1.0000 

72 51 52 0.0203 0.0588 0.0140 1.0000 

73 52 53 0.0405 0.1635 0.0406 1.0000 

74 53 54 0.0263 0.1220 0.0310 1.0000 

75 49 54 0.0730 0.2890 0.0738 1.0000 
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76 49 54 0.0869 0.2910 0.0730 1.0000 

77 54 55 0.0169 0.0707 0.0202 1.0000 

78 54 56 0.0027 0.0095 0.0073 1.0000 

79 55 56 0.0049 0.0151 0.0037 1.0000 

80 56 57 0.0343 0.0966 0.0242 1.0000 

81 50 57 0.0474 0.1340 0.0332 1.0000 

82 56 58 0.0343 0.0966 0.0242 1.0000 

83 51 58 0.0255 0.0719 0.0179 1.0000 

84 54 59 0.0503 0.2293 0.0598 1.0000 

85 56 59 0.0825 0.2510 0.0569 1.0000 

86 56 59 0.0803 0.2390 0.0536 1.0000 

87 55 59 0.0474 0.2158 0.0565 1.0000 

88 59 60 0.0317 0.1450 0.0376 1.0000 

89 59 61 0.0328 0.1500 0.0388 1.0000 

90 60 61 0.0026 0.0135 0.0146 1.0000 

91 60 62 0.0123 0.0561 0.0147 1.0000 

92 61 62 0.0082 0.0376 0.0098 1.0000 

93 63 59 0 0.0386 0 0.9600 

94 63 64 0.0017 0.0200 0.2160 1.0000 

95 64 61 0 0.0268 0 0.9850 

96 38 65 0.0090 0.0986 1.0460 1.0000 

97 64 65 0.0027 0.0302 0.3800 1.0000 

98 49 66 0.0180 0.0919 0.0248 1.0000 

99 49 66 0.0180 0.0919 0.0248 1.0000 

100 62 66 0.0482 0.2180 0.0578 1.0000 

101 62 67 0.0258 0.1170 0.0310 1.0000 

102 65 66 0 0.0370 0 0.9350 

103 66 67 0.0224 0.1015 0.0268 1.0000 

104 65 68 0.0014 0.0160 0.6380 1.0000 

105 47 69 0.0844 0.2778 0.0709 1.0000 

106 49 69 0.0985 0.3240 0.0828 1.0000 

107 68 69 0 0.0370 0 0.9350 

108 69 70 0.0300 0.1270 0.1220 1.0000 

109 24 70 0.0022 0.4115 0.1020 1.0000 

110 70 71 0.0088 0.0355 0.0088 1.0000 

111 24 72 0.0488 0.1960 0.0488 1.0000 

112 71 72 0.0446 0.1800 0.0444 1.0000 

113 71 73 0.0087 0.0454 0.0118 1.0000 

114 70 74 0.0401 0.1323 0.0337 1.0000 

115 70 75 0.0428 0.1410 0.0360 1.0000 

116 69 75 0.0405 0.1220 0.1240 1.0000 

117 74 75 0.0123 0.0406 0.0103 1.0000 

118 76 77 0.0444 0.1480 0.0368 1.0000 

119 69 77 0.0309 0.1010 0.1038 1.0000 

120 75 77 0.0601 0.1999 0.0498 1.0000 

121 77 78 0.0038 0.0124 0.0126 1.0000 

122 78 79 0.0055 0.0244 0.0065 1.0000 

123 77 80 0.0170 0.0485 0.0472 1.0000 

124 77 80 0.0294 0.1050 0.0228 1.0000 

125 79 80 0.0156 0.0704 0.0187 1.0000 

126 68 81 0.0018 0.0202 0.8080 1.0000 

127 81 80 0 0.0370 0 0.9350 

128 77 82 0.0298 0.0853 0.0817 1.0000 

129 82 83 0.0112 0.0367 0.0380 1.0000 

130 83 84 0.0625 0.1320 0.0258 1.0000 

131 83 85 0.0430 0.1480 0.0348 1.0000 

132 84 85 0.0302 0.0641 0.0123 1.0000 
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133 85 86 0.0350 0.1230 0.0276 1.0000 

134 86 87 0.0283 0.2074 0.0445 1.0000 

135 85 88 0.0200 0.1020 0.0276 1.0000 

136 85 89 0.0239 0.1730 0.0470 1.0000 

137 88 89 0.0139 0.0712 0.0193 1.0000 

138 89 90 0.0518 0.1880 0.0528 1.0000 

139 89 90 0.0238 0.0997 0.1060 1.0000 

140 90 91 0.0254 0.0836 0.0214 1.0000 

141 89 92 0.0099 0.0505 0.0548 1.0000 

142 89 92 0.0393 0.1581 0.0414 1.0000 

143 91 92 0.0387 0.1272 0.0327 1.0000 

144 92 93 0.0258 0.0848 0.0218 1.0000 

145 92 94 0.0481 0.1580 0.0406 1.0000 

146 93 94 0.0223 0.0732 0.0188 1.0000 

147 94 95 0.0132 0.0434 0.0111 1.0000 

148 80 96 0.0356 0.1820 0.0494 1.0000 

149 82 96 0.0162 0.0530 0.0544 1.0000 

150 94 96 0.0269 0.0869 0.0230 1.0000 

151 80 97 0.0183 0.0934 0.0254 1.0000 

152 80 98 0.0238 0.1080 0.0286 1.0000 

153 80 99 0.0454 0.2060 0.0546 1.0000 

154 92 100 0.0648 0.2950 0.0472 1.0000 

155 94 100 0.0178 0.0580 0.0604 1.0000 

156 95 96 0.0171 0.0547 0.0147 1.0000 

157 96 97 0.0173 0.0885 0.0240 1.0000 

158 98 100 0.0397 0.1790 0.0476 1.0000 

159 99 100 0.0180 0.0813 0.0216 1.0000 

160 100 101 0.0277 0.1262 0.0328 1.0000 

161 92 102 0.0123 0.0559 0.0146 1.0000 

162 101 102 0.0246 0.1120 0.0294 1.0000 

163 100 103 0.0160 0.0525 0.0536 1.0000 

164 100 104 0.0451 0.2040 0.0541 1.0000 

165 103 104 0.0466 0.1584 0.0407 1.0000 

166 103 105 0.0535 0.1625 0.0408 1.0000 

167 100 106 0.0605 0.2290 0.0620 1.0000 

168 104 105 0.0099 0.0378 0.0099 1.0000 

169 105 106 0.0140 0.0547 0.0143 1.0000 

170 105 107 0.0530 0.1830 0.0472 1.0000 

171 105 108 0.0261 0.0703 0.0184 1.0000 

172 106 107 0.0530 0.1830 0.0472 1.0000 

173 108 109 0.0105 0.0288 0.0076 1.0000 

174 103 110 0.0391 0.1813 0.0461 1.0000 

175 109 110 0.0278 0.0762 0.0202 1.0000 

176 110 111 0.0220 0.0755 0.0200 1.0000 

177 110 112 0.0247 0.0640 0.0620 1.0000 

178 17 113 0.0091 0.0301 0.0077 1.0000 

179 32 113 0.0615 0.2030 0.0518 1.0000 

180 32 114 0.0135 0.0612 0.0163 1.0000 

181 27 115 0.0164 0.0741 0.0197 1.0000 

182 114 115 0.0023 0.0104 0.0028 1.0000 

183 68 116 0.0003 0.0040 0.1640 1.0000 

184 12 117 0.0329 0.1400 0.0358 1.0000 

185 75 118 0.0145 0.0481 0.0120 1.0000 

186 76 118 0.0164 0.0544 0.0136 1.0000 
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