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ABSTRACT 

 

Generating hydropower, supporting water supply, and blocking over lasting droughts 

are few crucial tasks of water stored in reservoir. During floods, the water delivery from 

the reservoir must be acceptable, to confirm that the gross volume of water is at a safe 

level and release from the reservoir will not trigger flooding downstream. This study 

aims to develop the well-versed assessments for management of reservoir and pre-

release water outflow using machine learning, a new and exciting area of artificial 

intelligence and the most valuable, time, supervised, and cost-effective approach. In this 

study two data-driven forecasting models, Regression Tree (RT) and Support Vector 

Machine (SVM) are employed using approximately 30 years of hydrological records to 

simulate reservoir outflow. Obtaining accurate monthly river flow discharge prediction 

has always been a challenging task in water resources management for that different 

models of SVM and RT are applied to the data accurately to predict the fluctuations in 

the water outflow of a Bhakra reservoir. Different input combinations were used to find 

the most effective release such as reservoir level (M), monthly reservoir storage (BCM), 

the previous inflow of reservoir (MCM), the current inflow of reservoir (MCM), 

evaporation of reservoir (MCM), the previous outflow of the reservoir (MCM) and time 

(months) and release of the reservoir. . Findings indicate that SVM (medium guassian) 

combination having seven different parameters gives minimum RSME (720.2), 

maximum R2 (0.8), minimum MAPE( 14.0197), minimum scatter index(.4239) and 

minimum MAE (360.69) and therefore, can be considered as the best model for the 

dataset with these techniques. The ability to accurately estimate changes in reservoir 

outflow can aid in the planning and management of reservoir water usage in the long 

run. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

A reservoir is a tangible construct (artificial or natural) used as water storage for water 

supervision, monitoring, and maintenance of water supply [1]. Reservoirs are the most 

valuable element among the various components of a water resources system. Besides, 

due to environmental issues, construction of a new dam is not easy-going, therefore it 

is important that active reservoir needs to be boosted for maximum effective plan to 

handle with the future and present water challenges. Across a flow, a reservoir is built 

by constructing a dam. The major feature of a reservoir is the rule of herbal streamflow 

with the aid of storing surplus water withinside the moist season and liberating the 

saved water in a destiny dry season to complement the discount in river flow. The 

intention is to balance the streamflow and to change the sequential and three-

dimensional water availability. The water stored in a reservoir can be distributed later 

for advantageous uses giving rise to sequential changes or rerouted through waterways 

or pipelines to outlying locations resulting in three-dimensional changes. Reservoir 

outflow projection is guided by various potential constraints example water storage, 

inflow of water, water level, evaporation, infiltration, geomorphology, and others 

which requires to be considered to understand the ambiguity. There have been plentiful 

methods used in forecasting hydrological practices over the past years. Traditional 

tactics used were of linear mathematical relationships based on capability of machinist, 

simple set of curve fitment, and standards employed to quote reservoir water 

outflows [3]. However, undermining, and poor performances of numerical models due 

to unavailability and complexity of statistics, missing datapoints and overemphasized 

constraints. Various machine learning algorithms had been used in previous study in 

intent to overcome the concern and to estimate reservoir water outflows [4, 

5]. Subsequently many Machine Learning (ML) models, such as Artificial Neural 

Networks (ANNs), Radial Basis Neural Networks (RBNN), Support Vector Machines 

(SVMs), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Logistic Regression 
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(LR), etc have been deployed in water management systems progressively owing to 

improve the consistency and precision of the estimated models [6-8]. Modelling a 

machine to work and improvise on its own without each time explicit programming is 

called ML. In intellectual studies, ML has the capability to solve the complex problems 

with high level of accuracy and predictions as demanded for future 

periods [9]. Nowadays, AI models came to be extended successfully to the reservoir 

operation field. Compared to conventional physical prediction models, ML models 

with the help of historical dataset can learn numerous hydrological operations 

independently on correct operating rates. Advantage of this modeling is the capability 

of the software system to map the input-output models [10-12]. To forecast daily water 

levels, five different ANN models were tested each with an increasing number of 

inputs. It has been seen that the accuracy began to decrease after the addition of many 

inputs. The reason for this is that the network starts to be obsolete and irrelevant as 

explained in the study [13]. On comparing the performance of SVM and multilayer 

perceptron (MLP), it is found that due to the optimization algorithm SVM has a great 

deal of capacity to resolve a linearly constrained quadratic programming function, and 

the optimum kernel function in this case is the radial basis kernel function. [14]. During 

the process of creating fuzzy membership functions, a study on the ANFIS technique 

indicated that triangular and trapezoid membership functions are deemed to be more 

suited than bell-shaped membership functions. [15]. A genetic algorithm (GA) is 

successfully utilized in optimizing reservoir operation and by using data from a longer 

period of time, the GA model could be further improved for reservoir water levels 

[16]. Many more AI methods, such as the adaptive network-based fuzzy inference 

system (ANFIS), genetic algorithm (GA), and decision tree, have been effectively 

applied to the reservoir operation field in addition to these AI algorithms (DT). Many 

reservoirs in California use an improved decision tree (DT) algorithm, classification, 

and regression tree to estimate storage or release. [17]. 

1.2 Reservoir operation 

Reservoir operation is frequently viewed as a multilevel stochastic control problem, 

with large gains in benefits even with tiny increases in operational efficiency. Despite 

the emergence of new techniques, implicit stochastic optimisation (ISO) models 

solved with linear programming (LP) continue to be one of the most often used 
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strategies for complex reservoir systems. Finding dependencies from data was done 

using statistical analysis like correlation analysis and multiple regressions in ISO 

models. However, the use of these strategies is limited since the mathematics form of 

the link between independent and dependent variables must be defined explicitly. This 

method may not produce appropriate answers for highly nonlinear issues or those with 

substantial uncertainty. 

Reservoirs are the most significant of the different components of a water management 

system. A dam is built across a stream to create a reservoir. The principal function of 

a reservoir is to control natural streamflow by storing extra water during the rainy 

season and releasing it during the dry season to adjust for the reduction in river flow. 

In a nutshell, the goal of a reservoir is to balance natural streamflow while also 

adjusting the water's temporal and geographic availability. Water kept in a reservoir 

can be transported to distant locations via pipelines or canals, causing spatial changes, 

or it can be held in the reservoir and eventually released for beneficial purposes, 

causing temporal changes. Water is either held in the reservoir or provided from the 

storage, depending on the size of natural inflows and demands at any given time. A 

reservoir provides a head of water that can be used to generate electricity as a result of 

storing water. In the case of flood control projects, it creates vacant space for water 

storage, reducing hydrograph peaks. A reservoir also serves as a pool for navigating 

rapids, as well as providing habitat for aquatic life and recreational and sporting 

amenities. It improves visual attractiveness, encourages afforestation, and protects 

wildlife. In India, reservoirs are built on a regular basis for flood prevention and 

conservation. The Indian subcontinent does have a tropical monsoon, which means 

that the most of the water is gathered from June to September. The conservation 

standards are best met when the reservoir is as full as possible at the completion of the 

filling period. Flood control, on the other hand, necessitates empty storage space in 

order to collect and regulate incoming floods to suitable levels. The conflict between 

the functions is handled in terms of storage capacity limits by effective reservoir 

functioning. Reservoir operating policy specifies the amount of water to be released 

from storage at any particular time, based on the state of the reservoir, consumption 

levels, as well as any information about the reservoir's likely intake. A single-purpose 

reservoir's operational difficulty is choosing which discharges should be taken from 
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the reservoirs in order to reap the benefits for that purpose. In the case of a 

multifunctional reservoir, the discharge must be optimally allocated across various 

functions in addition to the foregoing. 

Characteristics and requirement of water of various water uses  

The degree to which the multiple intended aims are compatible determines the 

difficulty of the reservoir management challenge. When the goals are more 

compatible, it takes less effort to coordinate them. The following are the numerous 

uses for which a reservoir is utilised, as well as the technical specifications for these 

applications: 

• Irrigation needs vary depending on farming trends in the command area. Irrigation 

demands are high, and only a small portion of the water delivered is accessible as 

return flow to the system. The precipitation with in command area has a direct 

impact on these requirements. Demands will be lowest during the monsoon and 

highest throughout the  summer and winter months. Unless the command area 

grows or the cropping pattern changes dramatically from year to year, the average 

annual demands remain rather stable. Drought resistance is determined by the 

amount of available storage in the reservoir, so it's best to keep as much backup 

water in stored as possible while meeting current demands.  

• Seasonally, and to a smaller extent daily and hourly, hydroelectric power demand 

varies. The degree of variability is determined by the types of loads provided, 

which include industrial, municipal, and agricultural loads. Hydroelectric 

demands, for example, are highest in municipal areas during the prime summer 

months. Furthermore, two demand peaks are recorded throughout the day, one in 

the early and the other in the evening. Because water can be used for consumptive 

purposes downstream after passing through turbines, hydroelectric power demand 

falls under the non-consumptive use of water. The quantity of power generated is 

determined by the water volume and effective head. 

• Flood prevention reservoirs are built to manage flood flows into them. Flood 

control is accomplished by holding a portion of inflows in a reservoir and releasing 

the rest. The amount of flood attenuation or moderation is determined by the 

amount of empty storage space in the reservoir at the time the flood hits. The 
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availability of vacant storage capacity in the reservoir is required to accomplish 

this goal. The discharges from such storage are kept as low as possible in relation 

to the downstream safe capacity. 

• Storage reservoirs are frequently constructed to keep a stretch of river erupting 

from the reservoir passable by maintaining a suitable flow depth in the river 

channel used for transportation. Seasonal differences in water needs for navigation 

can be seen. When enough depth of flow is present in the channel during the 

monsoon season, there is rarely any demand. During the dry season, when 

significant releases are needed to maintain the required depth, the demands are at 

their peak. The kind and volume of travel on navigable waterways determines 

demand at any given time. 

• This component of the reservoir provides benefits when it is used for swimming, 

boating, fishing, and other water activities and picnics. Recreational benefits are 

usually unintended consequences of other reservoir activities, and reservoirs are 

rarely used for recreation. During the recreation season, when the reservoir is 

nearly full, the recreational activities are best supported. Large and quick changes 

in water level are detrimental to recreational interests since they can result in 

marshy plains around the reservoir's rim. 

1.3 Machine learning 

A subset of artificial intelligence is machine learning (AI). Rather than being explicitly 

programmed to do so, it focuses on educating computers to learn through data and 

improve over time. AI is described as a programme with cognitive abilities comparable 

to those of a person. One of the major concepts of artificial intelligence is to have 

computers think like people and solve problems in the same manner we do. Artificial 

intelligence (AI) is a broad phrase that refers to all computer programmes that can 

think like humans. AI is defined as any computer programme that exhibits features 

such as self-improvement, inference learning, or even basic human tasks like image 

recognition and language processing. Algorithms are taught in machine learning to 

detect patterns and connections in massive data sets and then make good decisions and 

estimates based on that analysis. Machine learning algorithms grow over time and be 

more accurate as more data is available. Machine learning is used in our homes, 
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shopping carts, entertainment media, and healthcare. ML theory is linked to pattern 

classification and statistical inference, and it states that a model can learn to enhance 

its task performance based on its own prior experience [18]. Artificial neural networks 

(ANNs), support vector machines (SVMs), and relevance vector machines are 

examples of machine learning models (RVMs). 

Deep learning and neural networks are machine learning subcategories that are 

concentric. AI analyses data to make decisions and forecasts. Machine learning 

approaches allow AI not only to analyse data, but to understand from it and grow 

without requiring additional programming. Artificial intelligence is the ancestor of all 

machine learning subsets. The first subgroup includes machine learning, deep learning, 

and neural networks. 

 

 

Fig 1.1 Diagram of the relationship between AI and machine learning 

Because it uses multiple layers of neural networks and large amounts of complex and 

heterogeneous data, this type of machine learning is referred to as "deep." The system 

interacts with numerous layers of the network to achieve deep learning, collecting 

increasingly higher-level outputs. By human standards, big data is time-consuming 

and difficult to handle, yet good data is the finest feed for training a machine learning 

algorithm. In a large dataset, the more clean, useable, and machine-readable 

information there is, the more effective the machine learning algorithm's training will 

be. Machine learning algorithms, as previously said, can enhance themselves through 

training. Today, three common strategies are used to train machine learning 
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algorithms. Machine learning can be divided into three categories: supervised learning, 

unsupervised learning, and reinforcement learning. 

1.4 Working of Machine learning 

Various types of machine learning models employ distinct algorithmic strategies in 

machine learning. Depending on the nature of the information and the desired 

outcome, one of four learning models can be used: unsupervised, supervised, semi-

supervised, or reinforced. One or even more algorithmic strategies may be used under 

both of those models, based on data sets being used and outputs expected. Machine 

learning algorithms are used to categorise objects, detect patterns, anticipate outcomes, 

and make informed judgments. Algorithms can be used alone or in combination to 

achieve the highest level of accuracy when dealing with complex and unexpected data.

 

Fig 1.2 Working of Machine learning process 

 

i) Supervised learning 

Amongst the most basic types of machine learning is supervised learning. In this 

example, the machine learning algorithm is trained using labelled data. Regardless of 

the fact that data should be appropriately labelled for it to work, supervised learning is 

very successful when utilised in the right situations. 

In supervised learning, the machine learning algorithm is given a small training 

dataset. This training dataset is a subset of the broader dataset that provides the 

algorithm with a foundational understanding of the problem, solution, and data points 

to be dealt with. The training dataset has many of the same qualities as the final dataset 
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and provides the labelled parameters that the algorithm requires to solve the problem. 

At the completion of the training, the algorithm learns how the data operates and the 

relationship between input and output. 

After that, the solution is deployed for use with the testing dataset, from which it learns 

in the very same way it did with the training dataset. As it learns from new data, 

supervised machine learning algorithms will enhance even after they have been 

deployed, recognising new patterns and relationships. 

ii) Unsupervised learning 

Unsupervised machine learning has the advantage of being able to deal with unlabeled 

data. This eliminates the need for human labour in the creation of the dataset device, 

allowing the computer to handle considerably larger datasets. In supervised learning, 

the labels allow the algorithm to find the correct nature of any connection between the 

two data points. Unsupervised learning, on the other side, lacks labels to work with, 

causing hidden structures to emerge. The programme perceives relationship between 

the data points in an abstract manner, with little or no human input required. Because 

they can generate these hidden structures, unsupervised learning techniques are 

versatile. Instead of a planned and fixed problem statement, unsupervised learning 

algorithms can respond to the data by dynamically altering hidden structures. This 

enables for further post-deployment development than supervised learning techniques. 

iii) Reinforcement learning 

Reinforcement learning is based on how people learn from data. It includes a trial-and-

error algorithm that builds onto itself learns from different scenarios. Positive 

outcomes are rewarded or ‘reinforced,' while negative outcomes are discouraged or 

'punished’. Reinforcement learning is based on the psychology concept of 

conditioning, and it works by putting the algorithm in a workplace environment with 

an interpreter and a reward system. The interpreter receives the final output of each 

step of the algorithm and determines whether the outcome is useful or not. The 

interpreter reinforces the algorithm by rewarding it if the programme discovers the 

correct solution. If the outcome is unfavorable, the algorithm is forced to repeat until 
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a good results is discovered. The reward system is usually closely tied to the 

productivity of the result.  

ML strives to automate the knowledge engineering process by replacing much of the 

time-consuming human effort with automated algorithms that improve the results or 

efficiency by detecting and utilizing regularities in training data. [19]. Given this, 

machine learning has long been utilised in mathematics, statistics, and engineering 

with models or algorithms such as linear, polynomial, and time series regression. Some 

of the tasks learning machines have been used for are include in Table 1.1: 

Table 1.1 Example of Data-driven models in Water Resources 

Task Example of use 

Anomaly 

detection  

Identification of anomalous data records in meteorological or 

hydrologic time series variables (outliers, pattern shift, data 

deviation) 

Association 

rule learning  

Finding links (dependence) between variables from several 

sources to describe a specific phenomenon, such as identifying 

crucial meteorological factors, vegetation cover, and urban 

growth data to explain the change in lake water levels over time. 

Clustering  Detection of similar groupings and structures in data without 

using existing data structures or relationships. The Western 

United States, for example, has been identified as having similar 

weather-hydrological trends. 

Classification  Structures in data are discovered in order to identify patterns. 

Identification of vegetation covertures in aerial or satellite 

images, for example. 

Regression Finding a mathematical phrase or equation that accurately 

models the data. Prediction of river flow based on the weather 

parameters and specific geographical variables, for example. 

1.5 Importance of machine learning in water resource  

To better understand the behaviour of hydrological and water resources systems, many 

modelling tools based on physical principles have been created. The input-output 

relationship is determined in physically based modelling by developing and solving 

fluid mechanics and thermodynamics equations with adequate and detailed boundary 

conditions to explain the dynamics of water across the hydrologic system in issue. 
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Because the physiographic and geomorphic properties of most hydrological systems 

are intricate, and the boundary conditions are typically unclear, solutions for physically 

based models frequently require simplifying assumptions [20]. 

Furthermore, the lack of essential data and the cost of data collecting can limit the 

practical implementation of physically based models. Researchers have employed 

data-driven models based on machine learning as an alternative to physically based 

models to overcome these constraints [21,22].A model is constructed in the ML 

technique to link the macro-description of a system's behaviour (output) to the 

behaviour of its constituents (inputs) [23]. 

Many, if not all, time series characteristics of hydrology and water resource systems 

are nonstationary nowadays. As a result, to optimise water systems, approaches that 

can represent nonstationary behaviours of environmental variables are needed 

[24].This means that traditional statistics (such as ARMA models) that presume the 

temporal series are stationary are ineffective. ARIMA models could be employed 

because they account for non-stationary time series behaviour. They do, however, take 

a linear parametric approach, that can result in poor performance when the model is 

evaluated with unknown data. ARIMA models are also unsuitable for long-term 

forecasting (e.g., streamflow forecasting up to a year ahead), because the long-term 

forecast asymptotically approaches the mean value of the time series data 

[25].Machine learning techniques have been shown to be more effective than ARIMA 

models in understanding the nonlinear dynamics and nonstationary behaviour of water 

resources systems with the goal of providing accurate predictions for previously 

unknown variables [26,27]. 

1.6 Objective of the study  

1. Application of Support vector machine (SVM) and regression tree (RT) algorithms 

for   Prediction of outflow  

2. To compare the forecasting efficiency of SVM and RT model 

3. To summarize the influence of parameters settings on model performance. 

4. Comparison of above mentioned technique on basis of calculations of RMSE 

MAPE, Scatter index , R2 and Mean Absolute Error. 
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1.7 Organization of thesis: 

Chapter 1 presents a brief introduction covering an overview of Reservoir operation, 

Machine Learning, its type and how it works. Importance of Data Driven Model in 

water resource engineering. Need of machine learning in water resource response 

study and its impact, also objectives behind this study have been described.  

Chapter 2 gives the details about the literature review done for this dissertation work 

and which have been used throughout for investigation work.  

Chapter 3 deals with the methodology i.e. support vector machine(SVM), Regression 

tree(RT) involved for the whole and sole process of analysing and predicting the 

release from the reservoir. and gives description about study area, Bhakra Nangal Dam 

in Uttarakhand, about the data used in the study. 

Chapter 4 describes and discuss the results obtained from the two different 

methodologies used in the present study. 

Chapter 5 gives the conclusion of the present study resulting from two different 

methodologies and gives the need for future. 
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CHAPTER 2 

LITERATURE REVIEW 

The necessary literature review and studies were carried out through national and 

international journals, periodicals, conferences, books, codes of practice of different 

countries and the data available on the internet and sources. 

Tomasa and Milosa et al. (2020) 

He performed single research to looks into the possibilities of applying adaptive 

control on the Dyje River reservoir Vranov Reservoir. The control technique employs 

a fuzzy model to approximate the I/O relationships found in the target reservoir's 

behaviour matrix, which was built using the differential evolution 

optimization method. A fuzzy model is used to create recurring projections of water 

inflows into to the reservoir, which would be built on the concept of consistency of the 

path of a true series of average monthly flows throughout the course of the year. The 

entire controls is tested for the span 2004–2018 after the control and prediction models 

have been calibrated. The outcomes of the described models are compared to the 

outcomes of graph dispatching. The adaptive control findings suggest that the system 

is well suited to driving during long periods of low water. When there is plenty of 

water, the results are almost same [28] 

Yaseen et al.(2015) 

As AI has made great strides in forecasting and modelling nonlinear hydrological 

applications, as well as in capturing the dataset's noise complexity. His research looks 

on a state-of-the-art use of artificial intelligence in stream-flow forecasting, with a 

focus on defining data-driven AI, the advantages of complementary models, and the 

literature and their possible future application in stream-flow modelling and 

forecasting. A new method for modelling inflow, a unique manner of pre-processing 

time series frequency utilising Fast Orthogonal Search (FOS) approaches, and Swarm 

Intelligence (SI) as an optimization strategy are all discussed in the study. [29]. 

Gavahi et al.(2018) 
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The performance of a proposed adaptive real-time optimum reservoir operation model 

is studied utilising two data-driven inflow prediction approaches, according to his 

research. The model consists of three modules: a forecasting module that forecasts 

monthly future inflows, a reservoir operation optimization module that estimates 

monthly optimum reservoir releases through the end of the year, and an updated 

module that updates the current state of the system and feeds the other two modules 

the most recent seen information on future inflows. The K-nearest neighbour (KNN) 

and adaptive neuro fuzzy inference system (ANFIS) approaches are used to anticipate 

monthly inflows to the reservoir. The results demonstrate that ANFIS surpasses the 

KNN approach by 25, 23, and 25 percent in terms of RMSE, PWRMSE, NSCE, and 

correlation coefficient indices. [30]. 

Bai et al.(2015) 

He suggested that inflow forecasting uses data to help with reservoir operations and 

management. This research proposes a multiscale deep feature learning (MDFL) 

strategy using hybrid models for daily reservoir inflow predictions. Multiscale (trend, 

period, and random) characteristics are extracted via ensemble empirical mode 

decomposition & Fourier spectrum, which are subsequently represented by 3 deep 

belief networks (DBNs). Following that, the weights of the each DBN are used to 

initialise a neural network (D-NN). The predicting results are eventually reconstructed 

utilising the outputs of the 3 D-NNs using a sum-up technique. The suggested MDFL 

using hybrid models investigates a historical everyday inflow dataset (from 1/1/2000 

- 31/12/2012) of a Three Gorges reservoir in China. For the same goal, four peer 

models are being used for comparison. In terms of mean absolute percentage error 

(MAPE = 11.2896%), normalised root-mean-square error (NRMSE = 0.2292), 

determination coefficient criteria (R2 = 0.8905), and peak percent threshold statistics 

(PPTS(5) = 10.0229%), the current model outperforms all peer models. The suggested 

method merges a deep framework using multiscale and hybrid observations to 

investigate complicated natures in reservoir inflow predictions[31]. 
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Zainab et al. (2019) 

He claimed that his research demonstrates how to predict streamflow patterns in semi-

arid environments using a novel hybrid model known as Multivariate Adaptive 

Regression Spline coupled with Differential Evolution (MARS-DE). This is 

accomplished by inspecting month time series river discharge data at the Baghdad 

station, which is coordinated at the Tigris River in Iraq. The model is validated using 

Least Square Support Vector Regression (LSSVR) and standalone MARS models. To 

demonstrate the analysis of the undertaken models, various statistical indicators are 

developed to verify the modelling accuracies. The MARS-DE model demonstrated 

outstanding hybrid predictive modelling capabilities over monthly time scale river 

discharge in the semi-arid region based on the obtained results. For the same goal, 

4 peer models are used for comparison. In respect of mean absolute percentage error 

(MAPE = 11.2896%), normalised root-mean-square error (NRMSE = 0.2292), 

determining coefficient criteria (R2 = 0.8905), & peak percent threshold statistics 

(PPTS(5) = 10.0229%), the current model outperforms other peer models. The 

suggested method incorporates a deep framework with multiscale and hybrid 

observations to investigate complicated natures in reservoir inflow predictions [32]. 

Yilmaz et al. (2018) 

He estimated suspended sediment load (SSL) at two gauging stations on the Oruh 

River in Turkey using artificial bee colonies (ABC), teaching-learning-based 

optimization algorithm (TLBO), and multivariate adaptive regression splines 

(MARS). These models were compared to one another as well as traditional regression 

analysis (CRA). Model inputs were river discharge values and previously acquired 

SSL data, with anticipated SSL data as an output. To improve model accuracy, 2 

different testing and training dataset combinations were used. The root mean square 

error value for the MARS technique was found to vary between 35 and 39 percent for 

both the test two gauging stations, which would have been lower than other models' 

errors. Using a different dataset, error values were considerably lower (7 to 15 

percent). Our findings show that simultaneous streamflow and SSL measurements are 

the most effective factor for developing reliable predictive models, and also that 

MARS is the best accurate model for forecasting SSL [33]. 
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Jieqiong et al. (2014) 

According to him, reservoir storage forecasting is critical for reservoir operation and 

management. In this paper, a genetic algorithm (GA)-based support vector machine 

(SVM) model was formulated to predict monthly reservoir storage at Miyun Reservoir 

(Beijing's only surface drinking` water source) from 1995 to 2011. Simultaneously, 

two more SVM-based models were utilised for comparison, each combining linear 

search and particle swarm approaches for parameter optimization. The findings 

revealed that the created GA-SVM model seemed to have the best calibration and 

prediction performance. The GA-SVM model will be widely used to predict reservoir 

storage in various places due to its excellent accuracy [34]. 

Hipni et al.(2013) 

The research done by him proposes a new expert system approach that employs SVM 

to predict the daily dam level of water of the Klang gate. The input situation, the kind 

of SVM regression, the amount of V-fold cross-validation, and the time lag are all 

factors in determining the optimal model. The both rainfall R(t-i) as well as the dam 

water level L are used in the optimum input scenario (t-i). The best regression kind is 

Type 2 SVM regression, and most accurate results are obtained using 5-fold cross-

validation. The findings are compared to those produced with ANFIS: all of the 

RMSE, MAE, and MAPE values show that SVM outperforms ANFIS. Finally, all of 

the findings are added together to establish the optimal time lag, yielding R(t-2) L(t-

2) as the best system with only 1.64 percent inaccuracy[35]. 

Fathiana et al. (2019) 

He proposed that two time series analysis approaches, namely self-exciting threshold 

autoregressive (SETAR) and generalised autoregressive conditional heteroscedasticity 

(GARCH) models, be investigated first, followed by three artificial intelligence 

approaches, namely artificial neural networks (ANN), multivariate adaptive regression 

splines (MARS), and random forests (RF) models, to predict monthly river flow. 

Monthly river flow data from the Brantford and Galt stations on the Grand River in 

Canada were used for this purpose, and its performances were evaluated using multiple 

assessment criteria during October 1948 to September 2017. In terms of predicting 
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flow of the river at the study stations, the SETAR model outperformed the GARCH 

model. Furthermore, the standalone MARS and RF models outperformed the ANN by 

a small margin. Following that, hybrid models were created by combining the 

previously employed ANN, MARS, and RF models using non-linear time series 

models SETAR and GARCH[36]. 

Shaokun et al. (2021) 

In this study, the popular Génie Rural à 9 Paramètres Journalier (GR4J-9) hydrological 

model is utilised to predict streamflow, with the simulated series and remote sensing 

data being used to train the long short-term memory (LSTM) technique. The improved 

GR4J9–LSTM model chain effectively improves the performance of the river 

discharge simulation by integrating more remote sensing data connected with the 

hydrological response variables, according to the findings. We were able to 

demonstrate the potential use of our suggested methodology by integrating the LSTM-

based simulation findings into a reservoir operation model. [37]. 

Zhanga et al. (2018) 

The goal of this research is to summarise the impact of parameters on model 

performance and to investigate the LSTM model's applicability to reservoir operation 

modeling. The following are the findings: (1) The impacts of the amount of maximum 

iterations of model performance should be prioritised for the BP neural network and 

LSTM models; for the SVR model, simulation performance is closely linked to the 

kernel function selection, and sigmoid and RBF kernel functions should indeed be 

prioritised; (2) the BP neural network and SVR are suited for the model to learn 

reservoir operating rules from a limited quantity of data. (3) The LSTM model can 

effectively minimise the time and memory storage requirements of existing AI models, 

as well as display good capabilities in modelling low-flow conditions as well as the 

outflow curve during peak operation periods[38]. 

Ahmadi et al.(2029) 

This research presents 2 reservoir operation optimization models regarding water 

allocation to various customers. Both models' goal functions are dependent  on the 
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Nash Bargaining Theory, which may take into account the utility functions of water 

users and stakeholders, as well as their relative water allocation authority. The initial 

optimization model is known as GA–KNN (Genetic Algorithm–K Nearest 

Neighbourhood). In this model, a KNN strategy for predicting initial solutions is 

employed to speed up the GA convergence process. In addition, each month, KNN is 

used to generate operational rules based on the optimization findings. The Bayesian 

Stochastic GA (BSGA) optimization model is the second model. This model takes into 

account the conditional probability of inflow and the reservoir's forecast. The inherent 

and predicted uncertainty of reservoir input are therefore taken into account. The 

proposed models are tested by applying them to a Satarkhan reservoir system in Iran's 

north western region[39]. 
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CHAPTER 3 

 METHODOLOGY 

3.1 Study Area  

Bhakra Dam on the Sutlej River( Bilaspur, Himachal Pradesh) is a concrete gravity 

dam in the northern part of India. The dam has geographic coordinates 

of 31°24′39″N  latitude and 76°26′0″ E longitude. The dam is considered the highest 

gravity dam in the world. The Sutlej River, a major tributary of the Indus River, 

originates in Tibet and flows into the Indo-Gangetic plains nearby Bhakra. The overall 

catchment area upriver of the Bhakra River is 56,980 km2. The precipitation 

in the catchment changes according to an annual average of about 875 mm. The dam 

is situated in a canyon near the (now submerged) upstream Bhakra community in the 

Himachal Pradesh district of Bilaspur, at a height of 226 metres. The dam is 518.25 

metres long and 9.1 metres wide. Its "Gobind Sagar" reservoir can hold up to 9.34 

billion cubic metres of water. The Bhakra dam generated a 90-kilometer-long reservoir 

that covers 168.35 square kilometres. It is India's third-largest reservoir in terms of 

water storage capacity. The Bhakra Beas Management Board is in charge of the dam's 

operation and maintenance (BBMB). Bhakra Dam is a straight gravity cum concrete 

dam with four radial spillway gates and an 8212 cumec designed overflow capacity. 

The location of the study area on the map is shown in Figure 3.1. The Nangal reservoir 

is built by a 28-95 m high dam which is situated about 11 km downstream of the 

Bhakra dam. It controls irrigation releases by acting as a head regulator. During the 

monsoon, the dam retains extra water and releases it gradually throughout the year. It 

also protects against flood damage caused by monsoon rains. This dam feeds the 

Bhakra canal, which irrigates 10 million acres (40,000 km2) of land in, Haryana 

Punjab, and Rajasthan. Table 3.1 shows the characteristics of the Bhakra Nangal dam 

and reservoir. 
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Figure 3.1. Bhakra Dam's location 

 

Table 3.1Characteristics of Bhakra Nangal Dam and Reservoir 

 

 

Item Description 

Catchment area 56980 square kilometers 

Normal reservoir level EL. 512.06 meters (EL.1680 feet) 

Dead storage level EL.445.62 meters 

New area irrigated 60 lakh acres 

Area of the reservoir. 
162.48 square kilometers (62.78 sq. 

miles) 

Length of the reservoir. 96.56 kilometers 

Live storage capacity at EL.1680 ft. 6911 million cum (5.60 MAF) 

Gross storage capacity at EL.1680 ft. 9340 million cum (7.57 MAF) 

Dead storage capacity 2430 million cum (1.97 MAF) 
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3.2 Data Collection 

In this study, 20 years data were collected from Jan 1989 to Dec 2009 and then 

extrapolated for the next 10 years from Jan 2010 to Dec 2019 by decade wise simple 

moving average method. A total of 2976 (30 years) historical data points used are 

reservoir level (M), monthly reservoir storage (BCM), the previous inflow of reservoir 

(MCM), the current inflow of reservoir (MCM), evaporation of reservoir (MCM), the 

previous outflow of the reservoir (MCM) and time (months) and release of the 

reservoir. All the data were acquired from the websites of “UK Centre for Ecology and 

Hydrology”, “Bhakra Beas Management Board” and “India Meteorological 

Department”. The range for reservoir water level was determined by the hydraulic 

features of the Bhakra dam; the maximum water level was 512.06 metres and the 

minimum operating level was 450.45 metres. Table 3.2 shows the essential statistical 

properties of the inputs, such as minimum, maximum, and total count. 

During modeling nonlinear hydrological processes, one of the tasks is selecting the 

most significant variables from the entire set of input variables [40]. when there is a 

vast dataset and a large number of variables mainly during the identification process, 

selection of input is critical for learning systems[41]. 

Table 3.2 Data acquired with descriptive statistic 

Input Unit Minimum Maximum Average Count 

Inflow MCM 352.04 10267.8 1764.88 372 

Reservoir 
level 

Meter 450.45 512.06 489.01 372 

Monthly 
reservoir 
storage  

BCM 0.2 6.23 3.13 372 

Evaporation MCM -28.10 41.20 -6.80 372 

Previous 
inflow 

MCM 352.04 10267.8 1764.62 372 

Previous 
outflow 

MCM 402.3 8942.3 1819.95 372 

The major goal of data collecting and study is to choose appropriate input variables 

depending on the data available. The selection of the best subset of inputs in the model, 
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also known as feature selection, is a method of selecting the best subset of inputs based 

on defined governing rules[42]. To increase model accuracy and efficiency through 

such selection of input for change of models. During the modelling phase in this study, 

various input variable combinations are used. For this study, initially five scenarios are 

defined shown in Table 3.3 at a different number of folds to find the most effective 

output and then, for each scenario, the prediction accuracy was evaluated. 

Table 3.3  The selected scenarios for input combination 

Number Different Input Combinations Output 

1 Inflow, Evaporation Outflow 

2 Inflow, Evaporation, Reservoir level Outflow 

3 
Inflow, Evaporation, Reservoir level, Monthly 

reservoir storage 
Outflow 

4 
Inflow, Evaporation, Reservoir level, Monthly 

reservoir storage, Previous inflow 
Outflow 

5 
Inflow, Evaporation, Reservoir level, Monthly 

reservoir storage, Previous inflow, Previous outflow 
Outflow 

3.3 Matlab 

Data Preparation 

Data for this study were secondary data, data points of 20 years were collected from 

Jan1989 to Dec 2009 and then extrapolated for next 10 years  from Jan 2010 to Dec 

2019 by decade wise simple moving average method. A total of 2976 (30 years) 

historical data points used are reservoir level (M), monthly reservoir storage(BCM), 

previous inflow of reservoir(MCM), current inflow of reservoir (MCM), evaporation 

of reservoir (MCM), previous outflow of reservoir (MCM) and time(Months) and 

release of reservoir from Jan1989 to Dec 2019 were acquired from the the website of 

“UK Centre for Ecology and Hydrology” and from the website of “Bhakra Beas 

Management Board and from the websites of India Meteorological Department (IMD). 
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SVM regression model, RT model has been trained by using hyperparameter 

optimization in the regression learner app in the MATLABR2021b. Figure 3.2 shows 

the flow chart using machine learning algorithms to forecast values. 

Data set variable has been selected from workspace for the new session. Default 

validation option is used to protect against overfitting. Then all the model are trained 

and at each iteration, the app tries a different combination of hyperparameter values. 

Then list out the optimized hyperparameters in both the Optimization Results section 

to the right of the plot and the Model Hyperparameters section of the 

model Summary tab. The model is exported to the MATLAB workspace.  

 

 

Fig-3.2 Methodology flow chart using machine learning algorithms to forecast 

values.  

3.4 Support Vector Machine (SVM) 

Support Vector Machine has gained popularity as a novel statistical learning method 

in the recent two decades, and for both classification and regression, it has been 

demonstrated to be an efficient and reliable approach. [43-45]. when compared to the 

Data collection

Input selection

Data Partition
(train-80%, test-20%)

ML Algorithm MODEL
(SVM,)

Test Model

Model Performance Evaluation
(RMSE, Mean Absolute Error)

Conclusion
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use of traditional chaotic methods, The SVM method is based on the idea of mapping 

input data into a high-dimensional feature space to aid classification and simulate an 

unknown relationship between both the set of input variables and the set of output 

variables. The sights to see the mechanism's simplicity, the two advantages of this 

method are that it is sufficiently known by scientists and that it dominates prediction. 

It had a level of precision that set it apart from several approaches; for example, nearest 

neighbours and ANNs. The SVM is a strategy that uses a kernel trick to learn 

everything there is to know about an issue while simultaneously lowering the 

complexity of the model and prediction error. SVM Classification is the first step in 

making a decision limitation for the feature space, which stands out by generating an 

ideal separation hyperplane  between the two classes to maximize the margin by 

minimizing the generalization error. In theory, SVM classification has the potential to 

predict outcomes that can be comprehended using three essential concepts: (1) 

function of the kernel (2) the soft-margin (3) separation hyperplane[46,47]. 

Polynomial, radial basis and sigmoid, functions are exemplary kernel functions. 

Algorithm like SVM is mostly used to forecast classification problems, and the support 

vector regression (SVR) is the expansion of the support vector machine (SVM) that 

adds an insensitive loss function to allow it to be used in regression analysis. [46, 48]. 

In other words, in a classification problem, the SVM is utilised for partition of data 

into "+1" and "-1" classes, the SVR, on the other hand, is a generalized SVM approach 

for predicting random real values. [49, 50]. To improve reservoir inflow forecasting, a 

modified SVM-based prediction system was created. [51]. Climatic data from the 

previous time was used, as well as highly connected climate precursors. To understand 

the non-linear pattern underlying climatic systems more flexibly, the SVM parameters 

were determined using a genetic algorithm-based parameter determination approach. 

The median of forecasts from the created models was then used to reduce the variation 

in the prediction by using bagging to construct several SVM models. In terms of 

predictive ability, the suggested modified SVM-based model outperformed a bagged 

multiple linear regression (MLR), a simple SVM, and a simple MLR model. In terms 

of prediction ability, the suggested modified SVM-based model outperforms the 

previous models. 
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A regression with an alternate loss function is an example of an SVM. Loss functions 

are frequently used in the estimate, model selection, and prediction, and they are 

critical in determining any disparity between the null and nonparametric models' fitted 

values [52]. In terms of hydrology, researchers must consider loss function while 

making predictions. In this study, the usage of the hydrologic loss function is linked to 

two primary variables: rainfall and runoff. A distance measure must be supplied, which 

necessitates a change in the loss function [53]. SVR's main notion is to nonlinearly 

translate the initial data into a higher-dimensional feature space and solve the linear 

regression issue there. (Figure. 3.3). As a result, as demonstrated in Eq. (4), SVR is 

usually required to construct a suitable function f(x) to reflect the non-linear 

relationship between feature xi and target value yi. 

f(𝑥𝑖)=w.𝜑(𝑥𝑖)+b‖𝑤‖2                                                                                                (1)            

where w is the coefficient vector, 𝜑 (𝑥𝑖) is the transformation function, and w and b 

denotes the weight and bias. W and b are calculated by minimising the so-called 

regularised risk function, as shown in Eq. (5). 

R(w)=
1

2
‖𝑤‖2 + 𝑐 ∑ 𝐿𝜀(𝑦𝑖

𝑛
𝑖=1 , f(𝑥𝑖 ))                                                                        (2) 

where 
1

2
‖𝑤‖2is the regularization term; 𝑐 is the penalty coefficient; 𝐿𝜀(𝑦𝑖 , f(𝑥𝑖 ))the 

𝜀-insensitive loss function, which is calculated according to Eq. (6). 

𝐿𝜀(𝑦𝑖 , f(𝑥𝑖 ))=max{0,|𝑦𝑖 − f(𝑥𝑖 )|-𝜀}                                                                       (3) 

Where ε signifies the allowed error threshold, and is ignored if the projected value is 

inside the threshold; otherwise, the loss equals a number greater than ε 

To solve the optimization boundary, two slack factors 𝜉+and 𝜉−are introduced: 

minf(w,𝜉+, 𝜉−)=
1

2
‖𝑤‖2+𝑐 ∑ ( 𝜉+, 𝜉−)𝑛

𝑖=1                                                                    (4)        

Subject to 

𝑦𝑖 − [w. 𝜑 (𝑥𝑖 )] − b ≤  ε + 𝜉−, 𝜉−  ≥ 0                                                            
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[w. 𝜑 (𝑥𝑖 )] + b − 𝑦𝑖 ≤  ε + 𝜉+, 𝜉+  ≥ 0                                                                   (5)            

         

 
                                          

Figure 3.3. SVR schematic diagram [54] 

process normally used for assessment of existing offshore structures involves two 

different type of analysis: 

The minimization of a Lagrange function, which is formed from the objective function 

and the problem constraints, yields the dual version of this optimization problem: 

maxα,  α∗=  
1

2
∑  (α𝑖 

𝑁
𝑖,𝑗=1 − α∗

𝑖), (α𝑗 − α∗
𝑗 )K(𝑥𝑖 , 𝑥𝑗) − ε ∑ ( α𝑖 + α∗

𝑖)𝑁
𝑖=1                

+ ε ∑ 𝑦𝑖( α𝑖 − α∗
𝑖)

𝑁

𝑖=1

, 

s.t    ∑  (α𝑖 
𝑙
𝑖=1 − α∗

𝑖) = 0,             i=1to N,                                                               (7) 

       α𝑖 , α
∗

𝑖  ≥ 0                             i=1to N,            

     −α𝑖 , −α∗
𝑖  ≥ −C                      i=1to N. 

The inner product {𝜑 (𝑥𝑖 ), 𝜑 (𝑥𝑗  )}in the feature space is denoted by the function K(x 

i,x j) in the dual formulation of the issue. 

Any function K(𝑥𝑖 , 𝑥𝑗) can become a kernel function if it satisfies the inner product 

criteria. Hence, the regression function is as follows: 
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f(x)=∑  (α𝑖 
𝑁
𝑖=1 − α∗

𝑖)K(𝑥𝑖 , 𝑥𝑗) + b                                                                           (8) 

 

3.5 Regression tree (RT) 

Regression Trees are machine-learning algorithm for building prediction models off 

of datasets. Regression Trees employs a clustering tree with post-pruning processing. 

Various papers have referred to the clustering tree algorithm as the forecasting 

clustering tree and the monothetic clustering tree [55, 56]. Regression Trees are used 

to model-dependent variables having a finite number of values which is not arranged 

in order, with prediction error commonly assessed as the squared difference between 

predicted and observed values [57]. The clustering tree algorithm is based on the top-

down induction technique of the decision tree. [58]. Regression Trees algorithm takes 

a collection of data for training and creates a new internal node that is as good as 

possible. Based on their decreased variance, the system chooses the top test scores. 

The lower the variance, the more homogeneous the cluster is and the more accurate 

the forecast. The programme generates a leaf and marks it as data representative if 

none of the tests significantly reduce variance [55,56]. By recursively splitting the data 

space and fitting a prediction model within each partition, a hierarchical tree -like 

division of the input space can be created.[59]. A sequence of recursive splits divide 

the input space into local regions, which are designated by a series of recursive splits. 

Internal decision nodes and terminal leaves make up the tree. Starting at the root node, 

a sequence of tests and decision nodes will determine the path through the tree till it 

approaches a terminal node, provided a test data point. A prediction is made at the 

terminal node based on the model linked with that node locally 

3.6 Water Balance 

The theory of mass conservation wherein variations in total water volume, intake 

(precipitation), and outflow (surface and subsurface runoff, evaporation, transpiration) 

on a particular area are balanced is known as water balance. The learning of the water 

balance combined with prior knowledge of the meteorological and physical parameters 

of the basin gives information on current and future water volumes as well as 

additional insight into the complicated process of basin runoff. 
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The determination of water balance is utilised for a variety of research and applied 

challenges, including estimating a regional water balance and assessing the impact of 

human activities and climate fluctuations on basin discharge. Understanding water 

balance in connection to climatic and morphological basin factors provides insight into 

complicated processes that take place over a variety of geographical and temporal 

scales. Droughts will be more frequent and last longer, and floods will be more intense, 

indicating the need for a more complete understanding of current and future watershed 

conditions. The computation of water balance is necessary for this understanding, and 

it may also provide trustworthy information for developing climate change mitigation 

plans for the watershed. 

Water is almost always in motion in the natural world, and it can change state from 

liquid to solid or vapour given the right conditions. Water inflows must equal water 

outflows inside a specified area during a specific length of time, plus or minus any 

change in storage within the area of interest, according to the conservation of mass 

principle. Simply put, water that enters a region must either depart or be kept within 

the space. The most basic form of the water balance equation 9 is shown below: 

P = Q + E ± ∆S                                                                                                           (9) 

Therefore, Q = P – (E ± ∆S) 

Where, P is precipitation, Q is release , E is evaporation and ∆S is the storage in the 

reservoirs 

An analysis of water balance can be used to:  

i) Examine the present state and trends in the availability of water resources in a 

given area throughout time.  

ii) Assess and improve the validity of visions, scenarios, and strategies to improve 

water management decision-making.  

 

Estimates of water balance are frequently reported as precise. In fact, due to 

insufficient data capture networks, sampling error, and the complex geographical and 

temporal heterogeneity that defines hydrological processes, there is always 
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uncertainty. It is often reasonable to eliminate components that do not effect changes 

when data sources are imprecise. For example, if year-to-year storage variations (such 

as reservoirs) are minor, storage might be omitted from a yearly water balance. The 

prediction capability of water balance equation, for predicting monthly outflow of 

Bhakra reservoir is carried out and the result shows RMSE(1166.331), R2 (0.52), 

MAE(659.338), MAPE(30.16). Figure 3.4 show variation of observed outflow with 

the outflow predicted from conventional method. 

 

 

 

Figure 3.4 Comparison of predicted outflow using conventional method and 

observed monthly outflow 

3.7 K- fold Cross Validation 

The holdout approach is employed when the amount of data available for training and 

testing is restricted. A subset of the data is saved for validation, while the rest is used 

for training. It is customary in engineering practice to keep one-third of the data for 

validation and utilize the other two-thirds for training and testing [60]. Divide the 

obtained data into a specified number of equally sized observations or folds to improve 

on the holdout approach (k). The dataset used for testing is chosen from among these 

(k) folds, whereas the rest (k-1) are employed in the training process. This procedure 

is repeated k times, with each time a different fold being tested and the remaining folds 

(k-1) serving as the training dataset. As a result, the approach generates k different 

degrees of accuracy. The variance of the resulting estimate diminishes as, k is 
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increased. Consider the 5-fold cross-validation scenario (K=5). Figure 3.5 shows how 

the dataset is divided into five folds. The first fold is used to test the model, while the 

others are used to train it in the first iteration. The second iteration uses the second fold 

as the testing set and the rest as the training set. This procedure is repeated until each 

of the five folds has served as a testing set. 

 

 

Figure 3.5 Different Fold 5 Cross-Validation 
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CHAPTER 4 

RESULT AND DISCUSSION 

In this section, the observed Bhakra Nangal reservoir outflows are compared with 

simulated results based on the two different AI models, i.e. SVM, and RT, combined 

with various model parameters. Best value of each model results in most precise 

estimating model, and later the unsurpassed grouping combination is chosen. The data 

was divided into two categories: Regression tree and SVM analysis. Following that, 

two models are employed to make data projections based on five diverse scenarios. 

The most appropriate and exact prediction scenario is determined by each model's best 

estimation. To decide whether model was best, estimating power of both models was 

examined. To evaluate the suggested model's execution in varied in preparing, 

checking, and testing information, five of measurable assessments are used i.e., 

RMSE, MAE , MAPE, Scatter Index and R2. Figure 4.1- 4.5 represents the comparison 

of observed values with predicted values of outflow on monthly basis using SVM for 

5-fold cross validation of different scenario. It is clear from the figure 4.5 that predicted 

values are much closer with observed ones for scenario 5 a medium gaussian as a 

kernel function. As for the scenario 5, the points are more narrowed around the line, 

which shows a better correlation of its outputs with respect to the observed inflows as 

presented in figure 4.5. Also, the R-square value is maximum amid all the situations 

i.e.( R2=.8). In all other scenario points are more scattered, which is indicating lower 

prediction performance, especially for discharge between 4000 to 1000 MCM. 

Data observed from the table 4.1 clearly shows that in SVM, scenario 5 relates with 

the lowest RMSE(720.1), MAPE(14.0197),SI(0.423962929) and MAE(360.69) values 

and a maximum R2 (.8) value amid all the situations  Moreover, Data forecasting in 

scenario 5 offers the most accurate results, while Scenario 4 provides the second-

lowest. Besides, scenario 1 has erratic forecasts compared to all other scenarios as also 

shown in figure 4.1. Lowest value for authentication oversights RMSE is also held by 

Scenario 5 i.e.(RMSE = 720.1). Continuous development can be seen in results from 

scenario 3-4 in SVM Regression. A big inaccuracy from scenarios 2 to 3 of the SVM 

was recorded in the values of MAPE, MAE, SI increased while the coefficient of 
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correlation decreased from 0.68 to 0.67. All the result of statistical calculation of 

Support Vector Machine for all the five scenarios are summarized in table 4.1.  

 

Figure 4.1- Relationship between observed outflow and predicted outflow using 

SVM (model-1). 

 

Figure 4.2- Relationship between observed outflow and predicted outflow using 

SVM (model-2). 
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Figure 4.3- Relationship between observed outflow and predicted outflow using 

SVM (model-3). 

 

 

Figure 4.4 - Relationship between observed outflow and predicted outflow using 

SVM (model-4). 
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Figure 4.5- Relationship between observed outflow and predicted outflow using 

SVM (model-5). 

 

Table 4.1 Statistical calculation of Support Vector Machine for 5 scenario. 

 SVM BEST SVM RSME 
R-

SQUARE 
MAE Scatter Index MAPE 

Scenario-1 QUADRATIC 961.33 0.56 542.71 0.528218721 27.88 

Scenario-2 
MEDIUM 

GUASSIAN 
827 0.68 402.99 0.454408873 16.114 

Scenario-3 CUBIC SVM 838.84 0.67 421.51 0.460914558 18.3536 

Scenario-4 
MEDIUM 

GUASSIAN 
815.44 0.68 380.25 0.44805704 14.707 

Scenario-5 
MEDIUM 

GUASSIAN 
720.1 0.8 360.69 0.423962929 14.0197 

 

Figure 4.6 show the scatter plot of observed data and the predicted outflow by SVM 

algorithm and conventional method on monthly basis. It can be observed from Figure 

4.6 that SVM scatter plots clearly demonstrate that the discharged predicted from SVM  

have less scattered estimates compared to discharge predicted from conventional 
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method and SVM regression provides a better fit to the data. As for the SVM method, 

the points are more narrowed around the y=x line, which shows a better correlation of 

its outputs with respect to the conventional method. In case of  conventional method, 

points are more scattered showing lower prediction performance, especially for 

outflows greater than 5000 MCM. 

 

Figure 4.6- scatter plot of observed outflow and predicted discharge by SVM 

algorithm and conventional method. 

Figure 4.7-4.11 shows scatter plots of the monthly observed and predicted outflow by 

the Regression tree models. It is evident from the error variations that the predictions 

of scenario 4 is closer to the corresponding observed values than the other scenario 

having lowest RMSE (748.03),  and highest value of R2 (0.73). It is obviously seen 

from Figure 4.10 that the model 4 of regression tree have less scattered outflow 

estimate. Table 2 displays the results of 5-fold cross-validation of regression tree 

models us various assessment criteria. We found that according to our statistical 

assessment standards. Scenarios had achieved best, due to having the highest R2 value 

(0.73) as medium tree, followed by the scenario 5, scenario 3, scenario 2, and scenario 

1. In terms of RMSE, scenario 4 had the best predictive power RMSE (748.03), 

followed by scenarios 2, 3, 2, and 1. In Figure 4.1 points are more scattered, which is 
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indicating lower prediction performance, especially for outflow greater than 4000 

MCM. All the result of statistical calculation of Regression tree for all the five 

scenarios are summarized in table 4.2. 

 

Figure 4.7 - Relationship between observed outflow and predicted outflow using RT 

(model-1). 
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Figure 4.8 - Relationship between observed outflow and predicted outflow using RT 

(model-2). 

Figure 4.9 - Relationship between observed outflow and predicted outflow using RT 

(model-3). 
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Figure 4.10 - Relationship between observed outflow and predicted outflow using 

RT  (model-4). 

 

Figure 4.11 - Relationship between observed outflow and predicted outflow using 

RT (model-5). 
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Table 4.2  Statistical calculation of Regression tree for 5 scenario. 

 

 

Fig 4.12 scatter plot of observed outflow and predicted outflow by regression tree 

and conventional method. 

It is clear from the above figure 4.12 that points are more scattered in case conventional 

method, which is indicating lower prediction performance when compare to regression 

tree. As for the Regression tree method, the points are more narrowed around the line, 

which shows a better correlation of its outputs with respect to the observed inflows.  

 BEST RT  RMSE 
R-

SQUARE 
MAE 

SCATTER 

Index 
MAPE 

Scenario-1 COARSE 989.36 0.53 572.36 0.54362027 27.23 

Scenario-2 MEDIUM 921.53 0.6 470.05 0.506349951 18.448 

Scenario-3 MEDIUM 871 0.64 470.01 0.478585404 18.518 

Scenario-4 MEDIUM 748.03 0.73 408.41 0.411017496 15.711 

Scenario-5 FINE 809.47 0.69 381.68 0.444776724 9.0982 
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In Table 4.3, comparison of predicted outcomes based on the two distinct AI models, 

i.e., Regression Tree and Support Vector Machine united with various parameters of 

the model are presented. The findings reveal that SVM model (scenario-5) having 

(RMSE (452.17), R2 (0.9)) performs the best when compared to other SVM and RT 

models. It is also evident from the figure 4.13 that the predicted discharge of reservoir 

by SVM is in good fit with the original streamflow in comparison of that RT model 

and also discharge calculated by conventional method.  

Table 4.3 Statistical calculation of Regression Tree Model and Support Vector 

Machine Model. 

BEST MODEL   RMSE  R-SQUARE  MAE  
SCATTER 

INDEX  
MAPE  

SVM 

(MEDIUM 

GUASSIAN) 

720.1 0.8 360.69 0.423962929 14.0197 

RT (FINE) 809.47 0.69 381.68 0.444776724 9.0982 

  

 

Figure 4.13: Scatter plots of forecasted outflow using SVM for scenario 5 and 

observed outflow. 
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Figure 4.14: : Scatter plots of forecasted outflow using RT for scenario 5 and 

observed outflow. 

 

Figure 4.15: Scatter plots of forecasted outflow using SVM and RT models. 
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The observed and forecasted monthly streamflow’s by the SVM and RT models for 

the input combination data are shown in Figure. 4.14 in the form of scatterplot. It is 

clear from the scatterplots that the fit line coefficients a and b (assume that the fit line 

equation is (y=ax+b) of the SVM model are respectively closer to the 1 and 0 with a 

higher R2 value than that of RT model. 

The estimates of the best models are compared in Figure. 4.15. It is obviously seen 

from the variation that graphs that SVM estimates closely follow the corresponding 

observed values while the Regression Tree considerably underestimate outflow values. 

Scatter plots clearly demonstrate that the SVM have less scattered estimates compared 

to Regression Tree models. therefore it is clear SVM is the best fit. The results 

indicated that the SVM performed better than the Regression tree models. 
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CHAPTER 5 

CONCLUSION  

5.1 CONCLUSIONS  

Reservoir operation is a crucial part of reservoir management, and multi - reservoir 

theory and procedures have evolved through time as hydropower and 

reservoirs stations were created in the early twentieth century. Models based on the 

physical ideas and AI models developed from data mining technology are now 

categorised into two types based on the theory underlying the model: models based on 

the physical ideas and models based on physical concepts. A physical-based model, 

but in the other hand, is only useful if the simulation's operating rules truly represent 

how the system works in real life. In practise, several unknown factors, such as natural 

circumstances and artificial needs, influence the operation of a reservoir, and the 

operation often differs from the operating rules, restricting the applicability of such 

models. Artificial intelligence (AI) models, often defined as data-driven models, are 

capable of learning operating rules. Artificial intelligence (AI) models, also referred 

as data-driven models, may learn operating rules directly from a reservoir's historical 

operation data, increasing their robustness and able to handle with complicated 

situations. 

Over the decades, traditional hydrological forecasting models have changed, and SVM 

has acquired prominence in this sector by offering accurate data forecasts for a variety 

of hydrological processes. The ability to accurately estimate changes in reservoir 

outflow can aid in the planning and management of reservoir water usage in the long 

run. In present study two distinct machine learning approaches; regression tree and 

SVM are used and compared to find the most accurate method for predicting reservoir 

outflow based on monthly hydrological records for the past 30 years. A variety of 

scenarios based on number of data inputs are evaluated to find the best parameters for 

reservoir outflow and for this evaluation, RMSE, MAE, MAPE, scatter index and  R2 

indices are used to quantify the performance of the forecasted models. In summary, 

scenario 5 is the optimum combination of input data; it comprises of inflow, 
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evaporation, water level, reservoir storage, previous inflow and previous outflow. The 

best SVM regression is with medium gaussian kernel function and is employed for the 

optimal scenario selection. The findings of present study revealed that all of the models 

performed well and were able to match the actual values.As a result of the comparative 

analysis of water outflow prediction through two algorithms, SVM is the best 

algorithms for outflow prediction. However, when performed individually the outflow 

of reservoir calculated from SVM algorithm is also compared with outflow data of 

Bhakra reservoir and outflow calculated from conventional method. It is observed that 

outflow of reservoir predicted by SVM algorithm give accurate results as compare to 

conventional method. Similarly, outflow of reservoir calculated from RT algorithm 

give more accurate result as compare to conventional method.This highlights its 

unique capabilities and benefits in detecting hydrological time series with nonlinear 

properties. The best input scenario is one that takes into account all input factors i.e. 

scenario-5. In comparison to Regression tree, the SVM model is able to estimate 

reservoir outflow precisely. This suggests that SVM has some generality and may be 

used as a model for reservoir outflow predictions. 

5.2 Future scope 

i) Future studies should include additional hydrological data, such as infiltration 

rates, transpiration rates, low inflow circumstances, and other pertinent 

characteristics, to produce more precise projections. Hopefully, data collectors 

will follow suit, enabling for the construction of a more robust SVM-based 

forecasting model. 

ii) Furthermore, it is suggested that the methodology given in this study be used 

to future studies involving the modelling of other hydrological processes such 

as rainfall, rainfall, runoff, and so on. 

iii)  Use remote sensing data to test the ML-based method's generalizability in 

more ungauged basins in the future. 
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