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ABSTRACT

The continuous rise in the cases of the COVID-19 virus has created a challenging situation for
the public health system of India. The cities with higher populations and poor air quality have
been hard hit by coronavirus and fatality rates when the positivity rate increased during each
wave. This study aims to examine the relation to whether the criteria air pollutants have
promoted the spread of COVID-19 in Delhi NCR by regularizing the issue of multicollinearity
among air pollutants.

It was hypothesized that criteria air pollutants would positively predict the spread of the
coronavirus during the first wave (September 01, 2020 — December 11, 2020), the second wave
(April 01, 2021 — May 22, 2021), and the third wave (January 01, 2022 — January 30, 2022) in
the 25 most polluted districts of Delhi NCR. Elastic net-applied regularization was used in
model exploration and coefficient estimation using EVIEWS 12 for testing of hypothesis. It
was found that throughout each wave, PM.s was among the most significant predictor of
COVID-19 transmission in all districts of Delhi NCR.

This research explains the link between air pollutants and daily new corona case instances or
how they individually contribute to the virus's transmission. Furthermore, exposure to areas
with poor air quality may enhance the susceptibility and negatively impact the diagnosis of

patients suffering from coronavirus.
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CHAPTER 1
INTRODUCTION

Wuhan, a city, located in China, has become the control centre of a new coronavirus (SARS-
CoV-2), which has given rise to a new disease named COVID-19 the February month of 2020
by WHO. (N. Zhu et al., 2020). The Indian government reported around 42,802,505 corona

cases and 5,11,262 fatalities as of February 19, 2022 (www.mohfw.gov.in). In most Indian

cities, due to high population density and poor air quality, COVID-19 infection is very high.
Out of the 100 most polluted cities, 46 are from India (The 2020 World Air Quality Report).
In India, Delhi NCR is distinguished as the region with the most polluted districts concerning
air pollution. As to the Indian Government, the influence of coronavirus infection in all these

districts is powerful during each wave (www.mohfw.gov.in).

Emerging epidemic and experimental data now suggest the involvement of air pollution in
COVID-19-related effects. The existing literature on many respiratory infections indicates that
air pollution may contribute to COVID-19-related morbidity and mortality. In many scientific
studies, it has been observed that the transmission of COVID-19 is related to air pollution
(Biktasheva, 2020). Many studies are available in which it has been examined that the
combined impact of meteorological variables and air pollution will further lead to health
problems in humans away lead to mortality (Ravindra et al., 2019). Chronic exposure to air
pollution contributes to adverse health outcomes associated with many chronic diseases, most
of which overlap with risk factors for severe COVID-19. The receptor for SARS-CoV-2
angiotensin-converting enzyme 2 (ACEZ2) is expressed in numerous organs explaining the wide
range of symptoms associated with COVID-19 (Brandt & Mersha, 2021). As shown in Figure
1, coronavirus and air pollutants impact the same organ. The COVID-19 course demonstrates
a vital role in the presence of comorbidities, which significantly increases the patient's risk
profile. It includes many incurable diseases such as heart and body diseases and air pollution
that hurts long-term and severe short-term exposure to air pollution. This may explain why
exposure to air pollution can indirectly place people in the more powerful and dangerous forms
of COVID-19, as suggested by epidemiological studies (Bourdrel et al., 2021) In, Figure 2,

Figure 3, and Figure 4 from the collected dataset of this study it can easily be observed that

1|Page



http://www.mohfw.gov.in/
http://www.mohfw.gov.in/

during three waves the fluctuations in corona cases are influenced by some pollutants in the
NCR region.

Stroke Stroke

Encephalitis Neuro-degenerative and

I Pneumonia, ARDS taste inflammatorydiseases

Acute coronary syndromeHeart Aieraedlees

failure Myopericarditis Acute coronary syndrome

Pulmonary embolism Vasculitis  § 3 o Heartfailure

Disseminated intravascular
coagulation

Figure 1. Target organs and the primary diseases that COVID-19 disease 2019 (blue) and air pollution
(green) (Bourdrel et al., 2021)
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Figure 2. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the first wave

2|Page




SECOND WAVE DELHI NCR
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Figure 3. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the second wave
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Figure 4. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the third wave

The previous studies which were finding relationship among SARS-CoV-2 and criteria air
pollutants in India, and primarily focusing on Delhi were i.e., (Dutta & Dutta, 2021) used
Spearman rank correlation analysis but found no positive association among air pollutants and
the spread of coronavirus cases throughout two waves (April 2020 and April 2021), only O3
shown an positive association with SARS-CoV-2 mortality during each wave; (Kolluru et al.,

2021) studied five Indian megacities (including Delhi) in which a positive Pearson connection
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among PMas, PM1g, and CO with daily new confirmed cases was reported; (Meo et al., 2022)
by using Poisson regression analysis concluded that in India’s largest metropolitan cities CO,
O3, and NO; were positively associated to COVID-19 daily cases and deaths in Delhi from
March 02, 2020 to March 15, 2021; and (Wen et al., 2022) concluded that PMzs, increased
SARS-CoV-2 cases by 0.439% in 10 of India's worst-affected states from March 9, 2020 to
September 20, 2020. The available scientific literature worldwide spotlights that the presence
of pollutants in the air is one of the essential sources of COVID-19-related transmissibility and
deaths (Ayoub Meo et al., 2021).

So far, the studies conducted in the Delhi region primarily examined correlations at the
bivariate level, which has the drawback of not considering the presence or effect of other
independent variables between the two being investigated. Whereas the studies done at the
multivariate level have excluded the issue of multicollinearity among the predictors. Air
pollutants showed a positive correlation at the bivariate level, which further negatively

impacted the analysis and severely limited the coefficient estimation.
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1.1 Objective of study

To address these constraints, this study was undertaken to assess the part of air pollutants in
COVID-19 transmission over National Capital Region (NCR) during three different study
periods. It was hypothesized that all the criteria air pollutants (PMio, PM25, NO2, NOx, Os,
CO, SO2) would positively predict COVID-19 propagation in Delhi NCR. To test this
hypothesis, elastic net regression analysis was used because it is a model with minimal crucial
independent variables; additionally, it punishes the fitting of unwanted independent variables.
However, none of the studies that used elastic-net have been published to find an association

between air pollution and COVID-19 transmission in India.

Many statisticians proved that elastic-net produces accurate results regarding the lucidity and
precision of regression models (Edouard Grave, 2011). Elastic-net regression provides the most
uncompromising model with perfect prediction when predicting a dependent variable with
numerous predictors (Kim et al., 2016). Through cross-validation, it was also discovered that
model founded by elastic-net regression predicts accurate results out of the bounds of data

required for regression analysis (McNeish, 2015).
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CHAPTER 2
LITERATURE REVIEW

A century after the Spanish Influenza Pandemic, a study reported that cities with more coal had
tens of thousands of deaths from flu outbreaks compared with cities using less coal, taking into
account factors such as socioeconomic status and primary health care (Clay et al., 2018; Pope
et al., 2004). Prolonged exposure to air pollution is associated with increased influenza deaths
in the USA (Pope et al., 2004). In 2003, a Chinese study on SARS-CoV-1 showed that people
living in highly polluted areas were twice as likely to die due to SARS compared to people

living in less polluted areas (Cui et al., 2003).

In 2015, a study conducted in 195 countries concluded that air pollution is a significant factor
in the burden of lower respiratory infections (Troeger et al., 2017). As shown by the flu,
exposure to air pollution increases the severity of respiratory infections caused by bacteria
(Ciencewicki & Jaspers, 2007). In addition, several studies had shown that increased air
pollution concentration was associated with an increase in respiratory infections among
children and adults, especially when viral infection was accompanied by a temporary increase
in exposure to air pollution. An increase in PM2s concentrations has been associated with
increased viral infections, namely influenza, respiratory syncytial virus (RSV), and measles. In
these studies, the concentration of PM.s was associated with several new cases of respiratory

infection and a delay period of several days (Chen et al., 2017).

2.1 Studies Between Air pollutants and Covid-19:
Various studies have reported a link between exposure to air pollution and COVID-19 disease

and mortality worldwide which are as follows: -

2.1.1 Particulate matters (PM2sg10) and COVID-19

PMz2 s can invade deeply into the lungs and deposit into alveoli. (Liu et al., 2021) done a study
in 9 countries using discontinuous linear regression between January 21 to May 20, 2020, and
found that PMyo plays a more substantial role in accelerating the spread of COVID-19 infection

in China, England, Germany, and France.
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Another study conducted in Milan of, Italy, between January 01 to April 30, 2020, by (Zoran
et al., 2020b) found that daily maximum PM2s and PMzo were positively associated with new
COVID-19 cases.

Using a linear regression model with the dataset of Wuhan and Xiaogan (China) between
January 26 to February 29, 2020 (Li et al., 2020) found that PM2s was prominently correlated
with COVID-19 incidence. (Jiang & Xu, 2021) did a study in the origin place of coronavirus
Wuhan between January 25 to April 07, 2020, using Pearson's and Poisson's regression models,
found that PM2 s was positively associated (relative risk [RR] = 1.079, 95% CI 1.071-1.086, P
< 0.01) with COVID-19 deaths and PMz1o was inversely related to COVID-19 deaths.

In 337 prefecture-level cities of China, using Spearman's rank correlation analysis and multiple
linear regression, it was observed by (Q. Wang et al., 2021) that PM2 s and PM1o were positively
correlated with newly confirmed findings of COVID-19 cases. Another study by (Pei et al.,
2021) in 325 cities of China using geographically weighted regression up to May 27, 2020,
concluded that PMs and PMzo had significantly positive impacts on COVID-19. Similarly,
(Y. Zhu et al., 2020) conducted a study in 120 cities in China using a Generalized additive
model between January 23 to February 29, 2020, and concluded 10 mg/m? increase in PMzs
was positively associated with 2.24% (95% CI: 1.02-3.46) increase in the daily counts of
confirmed cases; 10 mg/m3 increase in PM1o was positively associated with 1.76% (95% ClI.:
0.89-2.63) increase in the daily counts of confirmed cases. (PM1o, PM25, NO2, NOx, Oz, CO,
SO2)

Using Bayesian hierarchical models (Konstantinoudis et al., 2021) executed, a study in England
up to June 30, 2020. It was observed that every 1 ng/m? increase in PM2s was associated with
a 1.4% (95% CI: —2.1%-5.1%) increase in COVID-19 mortality risk. (Mele & Magazzino,
2021) using correlation analysis in the dataset of Italy's PM.s concentration and Daily new
COVID-19 cases found that PM2 s was positively associated with the total number of COVID-

19 cases.

Further, (Frontera et al., 2020) conducted a new large study in which he took a large dataset of
47 regional European Capitals and 107 major Italian cities for a time period of February 10 to
April 10, 2020, and used a Binary classifier based on an artificial neural network to analyze the
large collected dataset observed that PM2s and PMio were positively associated with the
number of COVID-19 cases. (Setti et al., 2020) also conducted a study at a bivariate level in
110 Italian provinces from February 07 to March 15, 2020. He was the first to observe that the
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average number of exceedances of the PM1o daily limit value was positively associated with
the number of COVID-19 cases in each province.

In 63 cities in China (B. Wang et al., 2020) used generalized additive models (GAM) with a
quasi-Poisson's distribution on the dataset from January 01 to March 02, 2020, and found that
a 10ug/md increase in the concentration of PM1o and PM2 s were positively associated with the
confirmed cases of COVID-19. The estimated strongest RRs (both at lag 7) were 1.05 (95%
Cl: 1.04-1.07) and 1.06 (95% CI: 1.04-1.07), respectively.

(Travaglio et al., 2021) by using the dataset of the UK biobank for 2018-2019 and by using
generalized linear models, negative binomial regression analysis Concluded that an increase of
1m? in the long-term average of PM,.s was associated with a 12% increase in COVID-19 cases
and a one-unit increase in PMz1o was associated with approximately 8% more COVID-19 issues
in the UK biobank.

A large study conducted worldwide by (Pozzer et al., 2020) up to June 2020 using the Global
atmospheric chemistry general circulation model (EMAC) found that PM2 s contributed 15%
(95%Cl: 7%-33%) to COVID-19 mortality worldwide. A time-series analysis study was done
in the origin place of coronavirus Wuhan between January 19 to March 15, 2020, and it is
observed that PM2 s and PM1o were positively associated with the case fatality rate of COVID-
19 (CFR). (Yao et al., 2020)

(Magazzino et al., 2020) conducted a study in Paris, Lyon, and Marseille using Artificial Neural
Networks (ANNSs) experiment Machine Learning (ML) methodology for data analysis found
that PM2sand PMzo directly correlated with COVID-19 fatality. In the Northern region of Italy
(Coker et al., 2020), by using Negative binomial regression for January 01 to April 30, 2020,
concluded that a one-unit increase in PM2s concentration (ug/m®) was associated with a
9%(95% CI: 6%-12%) increase in COVID-19 related mortality.

In 20 districts in Lima (Peru) (Vasquez-Apestegui et al., 2021) conducted, an ecological study
using linear regression found that higher PM. s levels were associated with a higher number of
cases and deaths of COVID-19. In the USA (Hendryx & Luo, 2020), using Mixed model linear
multiple regression analyses, Greater diesel particulate matter (DPM) was significantly
associated with COVID-19 prevalence and mortality rates. (Lembo et al., 2021) in 33 European
countries, Pearson's correlation analysis found that PM2s was positively correlated with
positive COVID-19 cases and deaths.
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(Jiang et al., 2020) again conducted a study in 3 regions of China (Wuhan, Xiaogan,
Huanggang) from January 25 to February 29, 2020, using Multivariate Poisson's regression
analysed that PM2s was positively associated with daily COVID-19 incidence in Wuhan
(1.036, 95% CI: 1.032-1.039), Xiaogan (1.059, 95% CI: 1.046-1.072), and Huanggang (1.144,
95% CI: 1.12-1.169), and PM1o was negatively associated with daily COVID-19 incidence in
Wuhan (0.964, 95% CI: 0.961-0.967), Xiaogan (0.961, 95% CI: 0.95-0.972), and Huanggang
(0.915, 95% CI: 0.896-0.934).

(Wu et al., n.d.) using mixed binomial methods in 3000 counties of the USA concluded that a
1 mg/m3 increase in PM2s was positively associated with an 8% increase in the COVID-19
death rate (95% CI: 2%-15%). In 71 provinces of Italy, a study was conducted by (Fattorini &
Regoli, 2020) on April 27, 2020, and found that PM2 s and PM1o were favourable for the spread
of virulence SARS-CoV-2.

(Bontempi, 2020) done study at a bivariate level using correlation analysis in 14 cities of Italy
between February 10 to March 27, 2020, and observed no evidence of correlations between the
presence of high quantities of PM1o and COVID-19 cases. Facilitate transmission of SARS-
CoV-2 virus droplets and PM in indoor environments (Amoatey et al., 2020) in middle eastern

countries.

By using new machine learning techniques for statistical analysis (Magazzino et al., 2021),
New York observed that PM2s accelerated COVID-19 death. (Liang et al., 2020) between
January 22 to April 29, 2020, a study in 3122 counties of the USA with Zero-inflated negative
binomial models showed no association between PM2s and COVID-19. Similarly, (Adhikari
& Yin, 2020) in Queens and New York, between March 01 to April 20, 2020, using a Negative
binomial regression model, observed that a one-unit increase in the moving average of PM2s
(ug/m®) was associated with a 33.11% (95% Cl: 31.04-35.22) decrease in the daily new
COVID-19 cases.

2.1.2 NO:and COVID-19

(Liet al., 2020) using linear regression in Wuhan and Xiaogan found that in both these cities
of China, NO2 was prominently correlated with COVID-19 incidence. During a similar period
(Jiang et al., 2020) conducted a study using Multivariate Poisson's regression in one more

additional city in China (hanging) and observed that NO was positively correlated with daily
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COVID-19 incidence in Wuhan (1.056, 95% CI: 1.053-1.059) and Xiaogan (1.115, 95%
Cl:1.095-1.136).

(Yao et al., 2021) in 11 Hubei cities, by using multiple linear regression, residual analysis,
principal component analysis, and meta-analysis method from January 01 to February 08,
2020, observed that NO2 concentration (with a 12-day time lag) was positively related to

transmission ability (primary reproductive number) of the 11 Hubei cities (except Xining City).

In 3122 US counties from January 22 to April 29, 2020, using Zero-inflated negative binomial
models (Liang et al., 2020) observed that per interquartile range (IQR) increase in NO; (4.6
ppb) was associated with an increase in COVID-19 case-fatality rate (7.1%, 95% CI: 1.2%-
13.4%) and mortality rate (11.2%, 95% CI: 3.4%-19.5%), respectively.

(Travaglio et al., 2021) by using Generalized linear models, negative binomial regression
analysis in England during 2018-2019 observed that NO, and NO were positively associated
with COVID-19 infectivity, with an odds ratio of approximately 1.03 for both the single-year
and multiyear model. In 66 administrative regions in Italy, Spain, France, and Germany from
Jan to Feb 2020 (Ogen, 2020) concluded that NO> was positively correlated with COVID-19
fatality cases. Out of the 4443 fatality cases, 3487 (78%) were in five regions (have the highest
NO>).

In 29 provinces of China from January 21 to April 03, 2020 (Lin et al., 2020), by using the
Chain-binomial model, correlation analysis found that NO2, was inversely correlated to the
primary reproductive ratio of COVID-19. In England, up to June 30, 2020 (Konstantinoudis
et al., 2021), Bayesian hierarchical models observed that Every 1 pg/m3 increase in NO2 was
associated with a 0.5% (95% CI: —0.2%-1.2%) increase in COVID-19 mortality risk. In Milan
of, Italy, from January 01 to April 30, 2020, using time series analysis (Zoran et al., 2020a),

ground-level NO> was inversely correlated with COVID-19 infections.

In 9 countries using Discontinuous linear regression from January 21 to May 20, 2020 (Liu et
al., 2021), observed that the aggravating effect of NO> on COVID-19 infection appears in
Canada and France. In 33 European countries (Lembo et al., 2021) conducted a study at the
bivariate level and found that NO. was positively correlated with positive COVID-19 cases
and deaths. (Mele et al., 2021) using machine learning techniques in 3 major French cities
from March 18 to April 27, 2020, found that NO- levels contribute to COVID-19 deaths and
exist threshold values. (Magazine et al., 2021) also, machine learning experiments found that
NO. accelerated COVID-19 deaths in 3 French cities.
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Using a general additive model (Y. Zhu et al., 2020) concluded that in 120 cities in China,
every 10 mg/m3 increase of NO, was associated with a 6.94% (95% CI: 2.38-11.51) increase
in the daily counts of confirmed COVID-19 cases. (Suez et al., 2020) in Catalonia, Spain
observed that NO was significantly correlated with COVID-19 incidence, mortality, and

lethality rates using Spearman’s nonparametric correlation.

In 71 Italian provinces (Fattorini & Regoli, 2020) found that NO> was significantly correlated
with cases of COVID-19. In 18 Indian states (Chakraborty et al., 2020) by using Pearson's
correlation coefficient and regression analysis for data analysis, found that NO, showed a
strong positive correlation between the absolute number of COVID-19 deaths (r = 0.79, P <
0.05) and case fatality rate (r = 0.74, P < 0.05).

(Filippini et al., 2020) with the help of a Multivariable restricted cubic spline regression
model, concluded that in 28 northern provinces of Italy, NO, was significantly correlated with

SARS-CoV-2 infection prevalence rate.

2.1.3 Surface Level Ozone (O3) and COVID-19

(Liu et al., 2021) in 9 countries (China, Japan, Korea, Canada, America, Russia, England,
Germany, and France) from January 21 to May 20, 2020, using Discontinuous linear
regression for data analysis observed that Oz presents a more pronounced positive effect on
COVID-19 infection in more countries (such as Japan, Canada, America, Russia, France,

etc.).

By using a general additive model for the dataset of 120 cities in China (Y. Zhu et al., 2020)
found that with per 10 mg/m3 increase in O3 was associated with a 4.76% (95% CI: 1.99-

7.52) increase in the daily counts of confirmed cases, respectively.

In 47 regional capitals and 107 major cities in Europe, a study was conducted by (Fronza
et al., 2020)using an artificial neural network for data analysis and observed that Oz was
negatively associated with the number of COVID-19 cases per million (r = —0.44). A
study in the UK (Travaglio et al., 2021) using generalized linear models and negative
binomial regression analyses concluded that Os was significantly associated with

COVID-19 deaths and cases at the sub-regional level.

(Jiang et al., 2020) found that Os was negatively associated with daily COVID-19 incidence
in Wuhan (0.99, 95% CI: 0.989-0.991) and Xiaogan (0.991, 95% CI: 0.989-0.993) and
positively associated with daily COVID-19 incidence in Huanggang (1.016, 95% CI:
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1.012-1.02) using Multivariate Poisson's regression in 3 Chinese cities.

In 3122 counties of the USA, a study was conducted using Zero-inflated negative binomial
models (Liang et al., 2020) observed no significant associations between Oz and COVID-
19 cases.

In New York (Adhikari & Yin, 2020) conducted a study using negative binomial regression
mode and concluded that a one-unit increase in Oz was associated with a 10.51% (95%
Cl: 7.47-13.63) increase in the daily new COVID-19 cases. (Zoran et al., 2020b) Milan,
Italy, conducted a time series analysis study and found that COVID-19 infections showed

a positive correlation with ground-level Os.

2.1.4 Carbon Monoxide (CO) and COVID-19

(Liu etal., 2021) while studying for CO dataset in 9 countries and using discontinuous linear
regression for data analysis observed that CO will increase the propagation speed of
COVID-19 infection, which is significant in COVID-19 disease, which is significant in

Korea and China, respectively.

(Jiang & Xu, 2021) while studying found that CO was inversely associated with COVID-
19 deaths from January 25 to April 07, 2020, in Wuhan, where this pandemic has originated.

(Q. Wang et al., 2021) in 337 prefecture-level cities in China, CO was positively correlated
with newly confirmed cases using bivariate analysis. Similarly, (Pei et al., 2021) in China
observed that CO harmed COVID-19 deaths up to May 27, 2020.

(Jiang et al., 2020) when studying for CO concluded that CO was positively correlated with
the daily incidence in Wuhan (1.932, 95% CI: 1.763-2.118); but negatively correlated with
the daily incidence in Xiaogan (0.041, 95%CI: 0.026-0.066) and Huanggang (0.032, 95%CI:
0.017-0.063). Similarly, (Lin et al., 2020), when studying in China, found that CO was
positively correlated with the primary reproductive ratio of COVID-19.

2.1.5 Sulphur Di Oxide (SO2) and COVID-19

SO; increased the propagation speed of COVID-19 infection, which is significant in Korea
and China, respectively (Liu et al., 2021). SO> was inversely associated with COVID-19

deaths (Jiang & Xu, 2021). SO, was positively correlated with newly confirmed cases (Q.
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Wang et al., 2021).

10 pg/m? increase of SO, was associated with a 7.79% decrease (95% CI: —14.57 to —1.01)
in COVID-19 confirmed cases (Y. Zhu et al., 2020). SO, was positively correlated with
positive COVID-19 cases and deaths (Lembo et al., 2021). SO, was not associated with
daily COVID-19 incidence (Jiang et al., 2020).

In addition, to examine the link between air pollution and COVID-19 prevalence, several
studies have analyzed the effect of air pollution on COVID-19 estimates. Although these
studies answer a different question and may have their drawbacks, examining the prediction
of COVID-19 is less affected by infection potential. It thus leads to more minor legal threats
such as undiagnosed confusion. To remove the issue of multicollinearity present, this study

has been conducted.
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CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 Study area

The study analysed the 25 most polluted districts in the Delhi NCR region. These districts lie

under Delhi, Haryana, and Uttar Pradesh and are portrayed in two different Figure 5, and Figure

6. They have emerged as important hubs for the commercial, industrial, medical, and

educational sectors, attracting people from all over the country. All these districts are struggling

to handle the problem of air pollution and related health hazards due to the increase in

population. In all these districts, the effect of COVID-19 has been highly observed.

3.1.1 Delhi

As shown in the Figure 5, all districts of Delhi (28.7041° N, 77.1025° E) with 38 CAAQMS
MONITORING STATIONS have been selected for this study. The 24-hourly air quality and

COVID-19 cases data have been collected from all these monitoring sites.

Monitoring Stations in Delhi
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Figure 5. The study area (Delhi)
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3.1.2 Haryana and Uttar Pradesh

Fifteen districts from Haryana (29.0588° N, 76.0856° E) and Uttar Pradesh (26.8467° N, 80.9462°
E) with 23 CAAQMS MONITORING STATIONS have been selected for this study. All monitoring

sites whose data has been used for this study have been portrayed in the Figure 6 using ArcGIS.
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Figure 6. The study area of NCR
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For three study periods, i.e., (September 1, 2020 — December 11, 2020), (April 1, 2021 — May
22,2021), and (January 1, 2022 — January 30, 2022), the total daily new COVID-19 cases were
collected for all districts from (http://health.delhigovt.nic.in/), (http://nhmharyana.gov.in),

(http://rajswasthya.nic.in), and (http://dgmhup.gov.in). The daily 24-hour mean concentration

data of criteria air pollutants was collected from (https://app.cpcbccr.com/ccr) operated by

CPCB (https://cpch.nic.in). Table 1 shows the average quality of the air and the sum of corona

cases during each study period.
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Table 1. The average and the total value of datasets

Variables First wave  Second wave  Third Wave

Total Cases (Numbers) 612368 1184479 620572
Average PM;sin ug/m® 113.74 65.31 129.39
Average PMyo in pg/m? 230.44 183.26 216.06
Average NO; in pg/m® 40.35 26.52 34.29

Average NOXx in ppb 40.07 23.32 39.53

Average Oz in pg/m® 36.84 45.13 20.37
Average CO in mg/m? 1.2 0.8 1.28
Average SOz in pg/m? 16.42 21 9.81

3.3 Data analysis

The acquired data set was analysed individually at three levels, univariate, bivariate, and
multivariate. Every aspect influencing the impact of the ecological condition on human health is studied.
Using three methods, primarily the trend in air quality during three waves was observed using
ArcGIS (legend). Secondly, Pearson's correlations were calculated to determine the association
among predictors; due to the presence of high association among pollutants. Stepwise standard
multiple linear regression was calculated to determine the coefficient of determination (R?),
which will further help us determine VIF and tolerance level among multivariate predictors. In
the last step, elastic net regression analysis will be used to predict a better model. All the

methods used in this study are briefly described below sections.

3.3.1 Mapping of air quality in Delhi NCR using ArcGIS

The air maps were created using ArcGIS version 10.5, a cutting-edge GIS program, at all
detected locations. Combining GIS with air models allows for the automatic generation of air
data models from digital geographic data. The air data is collected, stored, managed, and
controlled using a GIS database management system. The interpolation techniques available in

GIS are used to create air pollutants concentration contours.

3.3.2  Pearson Correlation Coefficients: -
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It is calculated by using the formulae stated in Equation (1): -

_ n(EXY)—(EX)CY) (1)
JInZ X2 —EX)?«[nXY2 - (X Y)?]

Wherein r is the Pearson correlation coefficient; n is the number of observations, and X and

Y are the first and second variables in the context. This test was conducted to check the
higher values of correlation coefficients among the selected predictors (air pollutants) for this
study, which will further indicate the possibility of multicollinearity (correlation coefficients

near 0.8 indicate the presence of collinearity)(Chatterjee, 2013).

3.3.3  Testing for multicollinearity

The variance inflation factor (VIF) is utilized to calculate how much variance of the predicted
regression coefficient is inflated when the predictors are correlated. VIF is determined as
stated in Equation (2): -

1 @)

VIF = =
1—R? Tolerance

Tolerance is the inverse of VIF, which means that the lower the tolerance, the more variables
are prone to be multicollinear. Furthermore, VIF =1 shows that independent variables are not
linked to each other. If VIF is around 1 to 5, it means that variables are relatively related to
each other; when VIF is approximately 5 to 10, it means that variables are highly linked; if
VIF > 5 to 10. It means that there is multicollinearity among independent variables in the
regression model, and VIF > 10 specifies that regression coefficients are not accurately

estimated due to the presence of multicollinearity.

3.3.4 Elastic Net Regression

The hypothesis tests were conducted to find whether the criteria air pollutants carry an
important influence on the spread of the corona virus in the 25 most polluted districts lying
under Delhi NCR when the cases were spreading at a high rate. The daily new SARS-CoV-2
cases in all 25 districts of Delhi NCR were used as a dependent variable, and 24-hour mean air
quality over all communities was taken as predictors to find how much variance each parameter
was created on the spread of new daily corona cases. All the statistical analyses of elastic net
regression were performed using EVIEWS 12 (www.eviews.com). Due to the presence of high
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multicollinearity (VIF > 10) between most of the predictor's elastic net-applied regularisation
has been used in model exploration and coefficient estimation (Zou & Hastie, 2005) as shown

in Equation (3), where « is the mixing parameter between ridge (« = 0) and lasso (a = 1).

AN 2 m m
. *o(yi—x{p 1-—«a . .
Lener (B) = ”(2‘n ‘)+A< =) f+a) Iﬁ,-|>
j=1 j=1

By minimizing regression coefficients to zero, the L1-norm (lasso) of penalty creates a sparse

3)

model. The L2-norm (ridge) of penalty removes the constraint on the number of selected
variables, stimulates grouping, and stabilizes the L1 regularization route (Kuang et al., 2015).
Elastic net reduces the regression coefficients by combining the L1-norm (lasso) and L2-norm
(ridge) penalties; a = 0.5 was utilized, a midpoint among L1 and L2. Additionally, to reduce
the threat of overfitting, elastic net regression was done with K-Fold cross-validation to
measure the mean square error. The complete dataset was randomly split into ten folds. One
block of split datasets (90% of the entire dataset) was used to calculate coefficients for every

test.

Furthermore, the predictive performance of our prediction model was calculated with the
remaining data block (10% of the entire dataset). For each test, a separate set of coefficients
quantity was calculated while changing A. Lambda (4) at minimum error is used to calculate
the most straightforward model with high prediction accuracy and regularized beta coefficients.
To estimate an accurate algorithm OLS with 500 maximum iterations and 0.0001 convergence

was used.
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CHAPTER 4
RESULTS AND DISCUSSIONS

4.1  Air mapping of Air Pollutants

In most regions selected for study, a lockdown is imposed during each wave, but even after
that, the air quality condition in most areas is deplorable. In the below sections, the trends of
each pollutant during all three waves have been portrayed

4.1.1  Air mapping of PM2s during each wave

The Figure 9 shows air quality mapping of PM2s in the NCR region during the first COVID-
19 wave (September 01 to December 11, 2020). PM2 5 average concentration varies from 38.6
pg/m® to 308.11 pg/md for the first wave and further shows that most districts of Delhi,
Haryana, and Uttar Pradesh lying under the NCR region are facing the problem of bad air
quality even after the lockdown. The monitoring site which recorded the worst average PMz s
concentration during the first wave was RK Puram ranging from 278.1 pg/m? to 308.11 pg/m?3.
During the first wave, the monitoring stations with good average air quality were Bhiwani,
Palwal, Alwar, and Hapur, ranging from 38.6 pug/m?® to 68.5 pg/md.

The Figure 7 shows the air quality mapping of PM2s in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). PM2s average concentration varies from 20.5
pg/m? to 105.2 pg/m? for the second wave. The monitoring site which recorded the worst
average PM_ s concentration during the second wave was Bawana ranging from 95.8 pg/m® to
105.2 pg/m?. During the second wave, the monitoring stations with good average air quality
were Bhiwani and Hapur, ranging from 20.5 pg/m?3 to 29.9 pg/md.

The Figure 8 shows the air quality mapping of PM.s in the NCR region during the third
COVID-19 wave (January 01 to January 31, 2022). PM2s average concentration varies from
19.3 pg/md to 222.7 pg/m? for the third wave. The monitoring site which recorded the worst
average PM s concentration during the third wave was Bahadurgarh ranging from 204.5 pug/m?
to 227.7 pug/me. During the third wave, the monitoring stations with good average air quality
were Mandikhera, Palwal, and Rohtak, ranging from 19.3 pg/m?® to 42.4 pg/m®.

4.1.2 Air mapping of PM1 during each wave

The Figure 12 shows air quality mapping of PM1o in the NCR region during the first COVID-
19 wave (September 01 to December 11, 2020). PM1o average concentration varies from 87.7
pg/m? to 361.9 pug/m? for the first wave. The monitoring sites which recorded the worst average
PMyo concentration during the first wave were Rohini and Mundka, ranging from 330.8 pg/m®
to 361.9 pg/m?®. During the first wave, the monitoring stations with good average air quality
were Panipat and Alwar, ranging from 87.7 ug/m? to 112.9 pg/m?.
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Figure 19. Air Mapping of Oz in Delhi NCR during first
wave

Figure 20. Air mapping of O3 in Delhi NCR during second
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Figure 22. Air Mapping of CO in Delhi NCR during
first wave
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Figure 23. Air mapping of CO in Delhi NCR during second
wave
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The Figure 10 shows the air quality mapping of PMso in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). PMyo average concentration varies from 73.5
ug/mé to 290 pg/m? for the second wave. The monitoring site which recorded the worst average
PM_s concentration during the second wave was Baghpat ranging from 266.3 pg/m? to 290
pg/m?®. During the second wave, the monitoring stations with good average air quality were
Karnal and Alwar, ranging from 73.5 pg/m?® to 97.6 ug/me.

The Figure 11 shows the air quality mapping of PMyo in the NCR region during the third
COVID-19 wave (January 01 to January 31, 2022). PMyo average concentration varies from
81.8 pg/m?® to 430.6 pg/m?® for the third wave. The monitoring site which recorded the worst
average PM1o concentration during the third wave was ITO ranging from 391.6 pg/m? to 430.6
pg/m®. During the third wave, the monitoring stations with good average air quality were
Narnaul, Alwar, Mandikhera, Palwal, and Rohtak, ranging from 81.8 pg/m? to 120.6 pg/m?.

4.1.3 Air mapping of NO2 during each wave

The Figure 14 shows the air quality mapping of NO2 in the NCR region during the first COVID-
19 wave (September 01 to December 11, 2020). NO> average concentration varies from 9
pg/m? to 88.1 ug/m? for the first wave. The monitoring sites which recorded the worst average
NO: concentration during the first wave were 1TO and Sirifort, ranging from 79.3 pg/m® to
88.1 pug/me. During the first wave, the monitoring stations with good average air quality were
Muzzaffarnagar ranging from 9 pg/m? to 17.8 pg/m?.

The Figure 13 shows the air quality mapping of NO- in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). NO- average concentration varies from 5 pg/m?
to 128.2 pg/m? for the second wave. The monitoring site which recorded the worst average
NO; concentration during the second wave was Hapur ranging from 114.5 pg/m® to 128.2
pg/me. The monitoring stations with good average air quality during the second wave were
Bhiwani, Panipat, Palwal, Bahadurgarh, Najafgarh, Karnal, and Bulandshahr, ranging from 5
pg/m? to 18.7 pg/md,

The Figure 15 shows the air quality mapping of NO2 in the NCR region during the third
COVID-19 wave (January 01 to January 31, 2022). NO; average concentration varies from 5.3
pg/m? to 106.2 pg/mé for the third wave. The monitoring sites that recorded the worst average
NO2 concentration during the third wave were ITO and Dr. Karni Singh, shooting from 95
pg/m? to 106.2 pg/me. During the third wave, the monitoring stations with good average air
quality were Bawana, Charkhi Dadri, Jind, Mandikhera, Panipat, and Karnal, ranging from 5.3
pg/m? to 16.5 pg/m?®.

4.1.4  Air mapping of NOx during each wave

The Figure 17 shows the air quality mapping of NOx in the NCR region during the first
COVID-19 wave (September 01 to December 11, 2020). NOx average concentration varies
from 14.3 ppb to 138.1 ppb for the first wave. The monitoring site which recorded the worst
average NOx concentration during the first wave was Sirifort ranging from 124.4 ppb to 138.1
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ppb. During the first wave, the monitoring stations with good average air quality were Bhiwani,
Muzzaffarnagar, Jind, and Mundka, ranging from 14.3 ppb to 28.1 ppb.

The Figure 18 shows the air quality mapping of NOx in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). NOx average concentration varies from 1.6 ppb
to 121.1 ppb for the second wave. The monitoring site which recorded the worst average NOx
concentration during the second wave was ITO ranging from 107.8 ppb to 121.1 ppb. The
monitoring stations with good average air quality during the second wave were Bhiwani,
Hapur, Panipat, Manesar, Bahadurgarh, Karnal, and Bulandshahr, ranging from 1.6 ppb to 14.8

ppb.

The Figure 16 shows the air quality mapping of NOx in the NCR region during the third
COVID-19 wave (January 01 to January 31, 2022). NOx average concentration varies from 3.5
ppb to 142.4 ppb for the third wave. The monitoring sites which recorded the worst average
NOx concentration during the third wave were 1TO and Sirifort shooting, ranging from 126.9
ppb to 142.4 ppb. The monitoring stations with good average air quality during the third wave
were Bawana, Charkhi Dadri, Jind, Mandikhera, Palwal, Aya Nagar, Manesar, and Karnal,
ranging from 3.5 ppb to 18.9 ppb.

4.1.,5 Air mapping of Oz during each wave

The Figure 21 shows the air quality mapping of Oz in the NCR region during the first COVID-
19 wave (September 01 to December 11, 2020). O3 average concentration varies from 9.2
pg/m? to 106.3 pg/m? for the first wave. The monitoring site which recorded the worst average
Os concentration during the first wave was Bhiwani ranging from 95.5 pg/m? to 106.3 pg/m®.
During the first wave, the monitoring stations with good average air quality were Palwal,
Mandikhera, and Muzzaffarnagar, ranging from 9.2 pg/m? to 20 pg/m?®.

The Figure 19 shows the air quality mapping of Oz in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). O3 average concentration varies from 3.6 pg/m?
to 100.9 pg/m? for the second wave. The monitoring site which recorded the worst average Os
concentration during the second wave was Bhiwani ranging from 90.1 pg/m? to 100.9 pg/m?3.
During the second wave, the monitoring stations with good average air quality were Narnaul
and Mandikhera, ranging from 3.6 pg/m? to 14.4 ug/m?3.

The Figure 20 shows the air quality mapping of Oz in the NCR region during the third COVID-
19 wave (January 01 to January 31, 2022). Oz average concentration varies from 2.7 pg/m?® to
68.4 pg/m? for the third wave. The monitoring site which recorded the worst average Os
concentration during the third wave was Bhiwani shooting, ranging from 61.1 pug/m?® to 68.4
pg/m®. During the third wave, the monitoring stations with good average air quality were
Charkhi Dadri and Narnaul, ranging from 2.7 pg/m?® to 10 pg/m®.
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4.1.6 Air mapping of CO during each wave

The Figure 24 shows air quality mapping of CO in the NCR region during the first COVID-19
wave (September 01 to December 11, 2020). CO average concentration varies from 0.64 mg/m?
to 1.8 mg/m?® for the first wave. The monitoring site which recorded the worst average CO
concentration during the first wave was ITO ranging from 8 mg/m? to 9.2 mg/m?. During the
first wave, the monitoring stations with good average air quality were all the area apart from
ITO, ranging from 0.64 mg/m?® to 1.8 mg/m?.

The Figure 23 shows the air quality mapping of CO in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). For the second wave, the CO average
concentration varies from 0.3 mg/m3 to 2.4 mg/m3. The monitoring site which recorded the
worst average CO concentration during the second wave was 1TO ranging from 2.2 mg/m? to
2.4 pg/m®. During the second wave, the monitoring stations with good average air quality were
Manesar, Narnaul, and Karnal, ranging from 0.3 mg/m? to 0.5 mg/m®.

The Figure 22 shows the air quality mapping of CO in the NCR region during the third COVID-
19 wave (January 01 to January 31, 2022). CO average concentration varies from 0.2 mg/m?
to 3.7 mg/me for the third wave. The monitoring site which recorded the worst average CO
concentration during the third wave was Charkhi Dadri shooting, ranging from 3.3 mg/m? to
3.7 mg/m3. During the third wave, the monitoring stations with good average air quality were
Panipat, Sonipat, Narnaul, Gurugram, Manesar, and Mandikhera, ranging from 0.2 mg/m? to
0.6 mg/m?.

4.1.7  Air mapping of SOz during each wave

The Figure 27 shows the air quality mapping of SO2 in the NCR region during the first COVID-
19 wave (September 01 to December 11, 2020). SO, average concentration varies from 3 pg/m®
to 37.2 pg/md for the first wave. The monitoring site which recorded the worst average SO,
concentration during the first wave was Jind ranging from 124.4 pg/m3 to 138.1 pg/m?. During
the first wave, the monitoring stations with good average air quality were Charkhi Dadri,
Hapur, Narnaul, and Palwal, ranging from 3 pg/m? to 6.8 pg/m?®.

The Figure 26 shows the air quality mapping of SOz in the NCR region during the second
COVID-19 wave (April 01 to May 22, 2021). SO, average concentration varies from 2.6 pg/m?
to 57 pg/m? for the second wave. The monitoring site which recorded the worst average SO
concentration during the second wave was Panipat ranging from 51 pg/m? to 57 pug/m?. During
the second wave, the monitoring station with good average air quality was Charkhi Dadri
ranging from 1.6 pug/md to 14.8 pg/m?®.

The Figure 25 shows the air quality mapping of SO, in the NCR region during the third
COVID-19 wave (January 01 to January 31, 2022). SO, average concentration varies from 2
pg/m? to 24.1 pg/m? for the third wave. The monitoring site which recorded the worst average
SO, concentration during the third wave was Bhiwani ranging from 21.6 pg/m?® to 24.1 pug/m®.
During the third wave, the monitoring stations with good average air quality were Bawana,
Sonipat, Najafgarh, Palwal, Aya Nagar, Manesar, and Narnaul, ranging from 2 pg/m? to 4.4
ug/mé,
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4.2 Pearson's Correlation Coefficients

This method helps in determining the collinearity among predictors. (Table 2, Table 3, and
Table 4) are showing the correlation analysis between new daily corona cases and 24-mean air
quality. During each study period over Delhi, NCR results in a moderately significant positive
correlation (r) for the first and second wave, whereas for the third wave, a weak association has
been seen in most cases at p < 0.001.

Table 2 Pearson Correlation Matrix of the first wave
CASES PM; 5 PMio NO, NOx OZONE CcO SO,

0.398
PMuo 0.338
NO, 0.463 0914 0911
NOX 0.489 0.847 0861  0.951
OZONE | 0091 0414 0500 0374  0.306
co 0.453 0919 0888 0925  0.904 0.332
SO, 0.383 0.662 0728 0739  0.677 0.609 0597 | 1.000

Table 3 Pearson Correlation Matrix of the second wave
CASES PM; 5 PMap NO, NOx OZONE CcO SO,

0.512 0.540
SO; 0.008 0.698 0.759 0.811 0.803

Table 4 Pearson Correlation Matrix of the third wave
CASES PM; 5 PMyo NO; NOx OZONE CO SO,

0.259
0.897 0.886 0.877 0.908 0.104
0.387 0.365 0.560 0.513 0.310

CO
SO,
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The results that appeared after running Pearson correlation analysis in the collected dataset are
also represented in the graphical format (Figure 28, Figure 29, and Figure 30) for each wave and

individually discussed in below sections:

1. PMzsand COVID-19 Cases
In Delhi, NCR during the first, second, and third wave PM2s has shown moderate
positive, weak positive, and moderate positive association with daily new COVID-19
cases, respectively.

2. PMyo and COVID-19 Cases
In Delhi, NCR, during the first, second, and third waves, PM1o has shown moderate
positive, weak positive, and moderate negative association with daily new COVID-19
cases.
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Figure 28. Pearson correlation among COVID-19 and air pollutants during the first wave
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4.3

NO, and COVID-19 Cases

In Delhi, NCR during the first, second, and third wave NO> has shown moderate
positive, weak positive, and strong negative association with daily new COVID-19
cases, respectively.

NOx and COVID-19 cases

In Delhi, NCR during the first, second, and third wave NOx has shown moderate
positive, weak positive, and strong negative association with daily new COVID-19
cases, respectively.

. Surface ozone (Oz) and COVID-19 cases

In Delhi, NCR during the first, second, and third wave Oz has shown weak positive,
moderately positive, and strong negative association with daily new COVID-19 cases,
respectively.

. Carbon Monoxide (CO) and COVID-19 cases

In Delhi NCR, during the first, second, and third waves, CO has shown moderate
positive, weak positive, and moderate positive association with daily new COVID-19
cases, respectively.

. SO, and COVID-19 cases

In Delhi NCR, during the first, second, and third waves, CO has shown moderate
positive, weak positive, and weakly positive association with daily new COVID-19
cases, respectively.

From the above results, it is observed that (PM2s, CO, and SO.) were among the
pollutants which were showing a positive association with daily new coronavirus
cases (p < 0.001). Additionally, (PM10, NO2, NOx, and O3z) were among the
pollutants, which has shown a positive association with the spread of the virus during
two out of three waves at bivariate level analysis (p < 0.001). From the above tables,
it can be seen that the air pollutants (predictors) are showing a high correlation among
them (r > 0.8), which indicates the presence of collinearity among variables. In the
next step, the dataset will be analysed at a multivariate level using a multiple linear
regression model to draw out some strong evidence for the existence of collinearity
among variables.

Variance Inflation Factor (VIF)

The stepwise procedure of multiple linear regression was performed to find collinearity among

predictors. Results appeared after analysing the dataset using the "least square (NLS and

ARMA)" regression model for the dataset of each wave in Delhi NCR are as follows:

1.

In Delhi NCR, during first wave the result shows that 40.53% of the variance in cases can
be accounted for by the air pollutants, collectively, (F-statistic) = 9.153, p < 0.000001.
Looking at the unique individual contributions of the predictors, the results show that PM2 s
(#=50.91, t= 3.627, p < 0.0005), NOx (= 93.7, t= 2,99, p < 0.0035), and SO (5= 178.7,
t=2.81, p < 0.006) were among the most significant (p < 0.05) air pollutants that influenced
the incidence of SARS-CoV-2 in Delhi NCR.
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2. In Delhi NCR, during the first wave, the result shows that 28.1% of the variance in cases
can be accounted for by the air pollutants, collectively (F-statistic) = 2.46, p < 0.03.
Looking at the unique individual contributions of the predictors, the results show that Os
(f=998.71, t= 2.71, p < 0.009) was among the most significant (p < 0.05) air pollutants
that influenced the incidence of SARS-CoV-2 in Delhi NCR.

3. In Delhi NCR, during the first wave, the result shows that the air pollutants can account for
68.96% of the variance in cases, collectively, (F-statistic) = 6.98, p < 0.0001. Looking at
the unique individual contributions of the predictors, the results show that SO, (5= 259.99,
t=2.09, p < 0.04) was among the most significant (p < 0.05) air pollutants that influenced
the incidence of SARS-CoV-2 in Delhi NCR.

Table 5 shows that 36.1 %, 16.7 %, and 59.1 % variance in COVID-19 cases can be accounted
for by the pollutants in NCR during the first, second, and third wave, respectively, at p < 0.001.
Furthermore, PM2s, PM1o, NO2, NOx, and CO were the predictors whose VIF value is more
significant than ten and tolerance level is less than 0.10 during each wave, which specifies that
the pollutants are highly correlated with each other. The high values of VIF corresponding to
the variables show that there is a problem with collinearity. From all these findings, it can be
said that the association can't be determined using standard regression models because they
will not be able to predict the correct coefficients. In the next section, to deal with this issue,
elastic net regularization has been applied to find the best output for our collected dataset and

to predict better results.

Table 5 Multicollinearity statistics (p <0.001)

First Wave Second Wave Third Wave
(R?=0.361) (R?=0.167) (R?=0.591)
Variables | Tolerance VIF Tolerance VIF Tolerance VIF
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4.4 Association among air pollutants and SARS-CoV-2 daily cases using elastic net
In the previous section, a high correlation was found among most of the predictors

(collinearity). To remove this discrepancy and predict a better model, elastic net regularization
has been used in model exploration and coefficient estimation. The results that appeared after

analysing the dataset are mentioned below lines:

4.4.1 During First Wave

In Delhi NCR, the result shows that air pollutants can account for 38.5% of the variance in
cases, collectively shown in the Figure 31 of model output. As shown in Figure 32 Lambda (1)
at minimum error, RMSE (Root mean square error) and MAE (Mean absolute error) came out
as 13.7, 1549.7, and 1279.7, respectively, after testing and training the model with K-Fold
cross-validation with (K=10 folds) (Figure 33). In the Figure 34, this model's actual, fitted, and
residual lines are portrayed in a graph that indicates the justifications for model output. Looking
at the unique individual contributions of the predictors (pollutants), the results show that the
air pollutants which influenced the occurrence of SARS-CoV-2 daily cases in Delhi NCR are

portrayed in Equation (4)

New Casesgirs; wave = 4240.13 + 40.28 x PM, 5 + 68.58 x NOy + 16.72 O3 + 82.52 * CO +
85.64 * SO, — 3.9 * NO, — 32.6PM,, (5)

Furthermore, the Figure 35 displays the equation derivatives of new covid cases during the first
wave. It is observed from the output of the first wave dataset that for every 1 ug/m? increase in
PMa2s, Oz, CO, and SOz, COVID-19 cases will increase by 40.28, 16.7, 82.5, and 85.6,
respectively, and when there will be 1 ug/m? decrease in PM1o, and NO,, COVID-19 cases will
decrease by 32.6, and 3.9 provided that at all the other parameter remain unchanged at a
particular time. Additionally, with every one ppb increase in NOx COVID-19, cases will
increase by 68. Hence, during the first wave, mainly every pollutant has shown a significant

association with the spread of the virus in the NCR region.
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(=] Equation: UNTITLED Workfile: DELHI NCR FIRST WAVE...| — || (2] ||wt-3m

[Viewlprcclobject] [PrinthamelFreeze] [EatimateIForecaﬁtIStatEIReaidE]

seed=1574489245

Dependent Variable: CASES
Method: Elastic NMet Regularization
Date: 05/28/22 Time: 15:
Sample: 9/01/2020 12/11/2020
Included ocbservations: 102

Penalty type: Elastic Net (alpha = 0.5)
Lambda at minimum errar: 13.7
Regressor transformation: Mone
Cross-validation method: K-Fold {number of folds = 10}, rng=kn,

19

Selection measure: Mean Squared Error

(rminimum) (+ 1 3E) (+ 2 SE)
Lambda 13.7 3555 2285
YVariable Coefficients
C 4240130 47899 343 4722 495
PMZ2_5 40.28699 17.15347 6602102
PM10 -32.66565 -89.813955 0.812498
MNO2 -3.890125 1327180 3.323408
MO 6858684 22 01408 5117417
OZOME 16.72402 0000000 0000000
CO 82.52030 0.000000 0000000
S502 85.64206 5900027 0228754
d.f. T 5 5
L1 Morm 4570 546 4867 497 4T738.579
R-squared 0387350 0271950 0.168983

Figure 31. Model output summary of the first wave
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Forecast: CASESO1F
10,000 Actual: First Wave Cases
9,000 Forecast sample: 9/01/2020 to 12/11/2020
3,000 Included observations: 102
’ Root Mean Squared Error ~ 1549.658
7,000 /\ Mean Absolute Error 1279.723
6,000 Mean Abs. Percent Error  23.21285
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Figure 32. Results after analysing the dataset for the first wave
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Figure 33. Training and testing of the dataset with K-Fold cross-validation for the first wave

12,000
10,000
//\ 8,000
x/\ 6,000
6,000 ~
{V& WIM\%W ) V/V W 4,000
4,000
2,000

g AA/”\VMVMQ

-2,000 2 V o M/WN\/ v

-4,000
7 14 21 28 5 12 19 26 2 9 16 23 30 7
Sep Oct Nov Dec
——— Residual ——— Actual ——— Fitted

Figure 34. Residual, Actual and Fitted lines of regression model for first wave dataset
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Derivatives of the COVID-19 First Wawe Equation Specification
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Figure 35. Equation derivatives for the first wave

4.4.2 During the Second wave

In Delhi NCR, the result shows that air pollutants can account for 19.28% of the variance in
cases, collectively shown in the Figure 36 of model output. As shown in Figure 37 Lambda (1)
at minimum error, RMSE (Root mean square error) and MAE (Mean absolute error) came out
as 61.4, 10851.9, and 9406.1, respectively, after testing and training the model with K-Fold
cross-validation with (K=5 folds) (Figure 38). In the Figure 39, this model's actual, fitted, and
residual lines are portrayed in a graph. Looking at the unique individual contributions of the
predictors (pollutants), the results show that the air pollutants which influenced the occurrence
of SARS-CoV-2 daily cases in Delhi NCR are portrayed in Equation (5)

New Casesecond wave = 359.4 + 136.5 x PM, s + 382.3 x O3 + 13.8 x PM;o — 2.2 % CO — 20.2 x
NO, — 94.8 * NOy — 168.4 x SO, (5)

Furthermore, the Figure 40 displays the equation derivatives of new covid

cases during the first wave. It is observed from the output of the second wave dataset that for
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every 1 ug/m®increase in PMzs, PM1o, and O3, COVID-19 cases will increase by 136.5, 13.8,
and 382.3, respectively. When there is a 1 ug/m? decrease in SOz, CO, and NO2, COVID-19
cases will decrease by 168.4, 2.2, and 20.2, provided that all the other parameters remain
unchanged at a particular time. Additionally, with every one ppb increase in NOx COVID-19,
cases will increase by 94.8. Hence, during the second wave, mainly every pollutant has shown

a significant association with the spread of the virus in the NCR region.

(=] Equation: UNTITLED Workfile: DELHI NCR SECOND WAVE:Un... | = | [2] || 5w

[Viewlproclobject] [PrinthameIFreeze] [EstimateIForecaﬁtl StatSIRESidS]

Dependent Variable: CASES

Method: Elastic Net Regularization

Date: 05/28/22 Time: 14:36

Sample: 4/01/2021 5/22/2021

Included observations: 52

Penalty type: Elastic Met (alpha = 0.5)

Lambda at minimum error: 6§1.38

Regressor transformation: Mone

Cross-validation method: K-Fold (number of folds = 5), rng=kn,
seed=1527321226

Selection measure: Mean Squared Error

(rminimum’ (+ 1 SE) (+ 2 SE)
Lambda 51.38 3.2e+05 3.2e+05
Variable Coefficients
C 359 3781 2274202 2274202
PM2_5 136 4681 0000000 0000000
PM10 13 84291 0198775 0198775
M2 -20.18806 0000000 0000000
M -84 83591 0000000 0.000000
QLOMNE 382 3332 0000000 0000000
(] -2.162392 0000000 0000000
S0O2 -168. 4494 0000000 0000000
d.f T 1 1
L1 Marm 1177.658 22742 21 22742 21
R-squared 0192728 0000517 0000517

Figure 36. Model output summary of the second wave
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Figure 37. Results after analysing the dataset for the second wave
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Figure 38. Training and testing of the dataset with K-Fold cross-validation for the second wave
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Figure 39. Residual, Actual and Fitted lines of regression model for second wave dataset

Derivatives of the COVID-19 second wave Equation Specification
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Figure 40. Equation derivatives for the second wave
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4.4.3 During Third Wave

In Delhi NCR, the result shows that the air pollutants collectively account for 55.32% of the
variance in cases as shown in Figure 41. As shown in Figure 42 Lambda (1) at minimum error,
RMSE (Root mean square error), and MAE (Mean absolute error) came out as 63.1, 6859.2,
and 38.34, respectively, after testing and training the model with K-Fold cross-validation with
(K=10 folds) (Figure 43). In the Figure 44, this model's actual, fitted, and residual lines are
portrayed in a graph. Looking at the unique individual contributions of the predictors
(pollutants), the results show that the air pollutants which influenced the occurrence of SARS-

CoV-2 daily cases in Delhi NCR are portrayed in Equation (6)

New Caserpira wave = 42102.3 + 164.8 x PM, 5 + 69.5 * SO, + 20.1 * CO — 86.8 * PM;( —
229.1x NO, — 272.5 x NOy — 297.5 % 05 (6)

Furthermore, the Figure 45 displays the equation derivatives of new covid cases during the first
wave. It is observed from the output of the third-wave dataset that for every 1 ug/m?® increase
in PM2s, CO, and SOz, COVID-19 cases will increase by 164.8, 20.1, and 69.5, respectively.
When there is a 1 ug/m3decrease in PMio, O3, and NO,, COVID-19 cases will decrease by 86.8,
297.5, and 229.1, provided that the other parameters remain unchanged at a particular time.
Additionally, with every one ppb increase in NOx COVID-19, cases will increase by 272.5.
Hence, during the third wave, mainly every pollutant has shown a significant association with

the spread of the virus in the NCR region.
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Regressor transformation: None

Cross-validation method: K-Fold (number of folds = §), rng=kn,

seed=159469012

Selection measure: Mean Squared Error

{minimumy) (+13SE) (+ 2 SE)
Lambda 6312 2322 536.4
Wariable Coefficients
C 42102 27 3738624 3470490
PM2_5 164 7669 86 41279 a7 .94661
PM10 -86.81093 -56.49266 -41.71044
MNO2 -229. 0758 -148 2330 -93.09820
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Figure 41. Model output summary of the third wave
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Figure 42. Results after analysing the dataset for the third wave

43| Page




Train/Test Error Evolution

160,000,000

140,000,000

120,000,000

100,000,000

Errors

80,000,000
60,000,000

40,000,000
100,000 200,000 300,000 400,000 500,000 600,000 700,000

Lambda

— Test — Train

Figure 43. Training and testing of the dataset with K-Fold cross-validation for the third wave
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Figure 44. Residual, Actual and Fitted lines of regression model for the third-wave dataset
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Derivatives of the COVID-19 Third Wave Equation Specification
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Figure 45. Equation derivatives for the third wave

4.5 Association among air pollution and COVID-19
4.5.1 Revelation to air pollutants when the spread rate of SARS-COV-2 is high

Findings appeared after running the best available method (as shown in Figure 46, and Table
6) to resolve the issue of collinearity among predictors and establish a relationship between

daily new SARS-COV-2 cases and air pollutants using elastic net regression.

This study indicates that PM2.5 was the primary pollutant showing high correlation with daily
new cases. Its influence on corona virus is also increasing during each consecutive study
period. Which is making it a severe cause of concern for citizens, as it is seen that the virus is

unstoppable even after taking the vaccine.

Additionally, Os, CO, and SO, were among the pollutants which have shown a significant
positive association with cases during two out of three study periods, while NOx and PM1o
were the pollutants that have shown positive association only during one out of three study

periods. Finally, nitrogen dioxide was the only pollutant showing negative association during
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each study period. Findings of Study show that most of the contaminants present in our
atmosphere have a significant positive impact on the propagation of the SARS-COV-2 virus in
Delhi NCR.

Few previous studies are available worldwide (countries or cities with the problem of poor air
quality and COVID-19 infection). The association is examined at the multivariate level for
different pollutants. Below sections show a comparison between the findings of this study with
the results of previous studies, and the effects of the combination of pollutants and corona virus

on human health will be discussed.

Table 6. Elastic net regularization output (o. = 0.5)

Variables First Wave Second Wave Third Wave
Intercept 4237.7 359.4 42102.3
PM_s 39.6 136.5 164.8
PMzg -32.1 13.8 -86.8

NO; -1.2 -20.2 -229.1
NOXx 67.0 -94.8 -272.5
Os 16.9 382.3 -297.5
Cco 69.5 -2.2 20.1
SO, 80.2 -168.4 69.5
Lambda (1) at 13.7 61.4 63.1

minimum error

L 1 Norm 4544.3 1177.6 43242.5
Adjusted R? 0.385 0.1928 0.5532

Most Influencing Factor during all waves in Delhi NCR

400.0
300.0

200.0

100.0 I I I
o —_ml N_ —

- | |
First Wave Second Wave Third W
-100.0
-200.0 l

-300.0

EPM2.5 mPM10 ®NO2 Nox mO3 mCO mSO2

Figure 46. Most influencing predictor during each wave
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4.5.2 COVID-19 and Particulate matters (PMzs & PM1g)

The influence of particulate matter less than 2.5 and 10 microns on SARS-COV-2 has been
linked with oxidative stress, immunological dysregulation, cytotoxicity of polycyclic aromatic
hydrocarbons, malfunctioning surfactants, inflammatory effects, metabolic pathways, and
ACE-2 (it works as a receptor for COVID-19). PM_5 is the only main pollutant which has
consistently shown a strong and positive relationship with SARS-COV-2 daily cases during
the first (5 = 40.2, R?= 38.5%, Aminerror = 13.7), second (8 = 136.5, R?= 19.28%, Aminerror = 61.4),
and third (8 = 164.8, R?>= 55.32%, Amineror = 63.1) waves. There are some previous studies
available worldwide that claim a positive relationship between PM.s and daily new corona
cases, I.e., (Adhikari & Yin, 2020; Fattorini & Regoli, 2020; Frontera et al., 2020; Jiang et al.,
2020; Jiang & Xu, 2021; Konstantinoudis et al., 2021; Li et al., 2020; Pei et al., 2021; Travaglio
et al., 2021; Vasquez-Apestegui et al., 2021; B. Wang et al., 2020; Q. Wang et al., 2021; Y.
Zhu et al., 2020),clearly indicating that PM2s acts as a carrier for the virus. Air pollution
(PM2.5) can contribute to the COVID-19 pandemic in two ways. First, by making people more
sensitive to COVID-19 infection by increasing their susceptibility to chronic diseases and
putting COVID-19 infected persons at immediate risk, if not death. Second, because COVID-
19 can be transferred by microscopic particles or mixed with ultrafine aerosols, the risk of
exposure to it is increased, and this situation is also explained in Figure 47 (Annesi-Maesano et
al., 2021).
(1) (2]

Increased risk of exposure to

Air pollution - related effects: SARS-CoV-2 suspended in the air

a) impaired airways permeability in polluted zones
b) development of diseases known Transmission |
COVID-19 biditi s SARS-CoV-2
as comorbidities o & ‘.\‘dmp‘ets
Lung diseases rﬂ'\ 3 ‘ p
o = ®

. Cardiovascular diseases

Airborne SARS-CoV-2 droplet
Kidney diseases S nuclei that join or merge to
= other UFP to form an aerosol
.. & Neural diseases

Metabolic diseases

Cancer

Increased risk of
COVID-19

Figure 47. Air pollution and COVID-19 transmission. (Annesi-Maesano et al., 2021)
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On the other hand, the findings for PM1o exhibited major contradictions since it showed a
positive connection with corona virus instances during the second (8 = 13.8, R?>= 19.28%, Amin
error = 61.4) wave; earlier studies in other nations showed a positive association, i.e., (Liu et al.,
2021; Pei et al., 2021; Setti et al., 2020; Travaglio et al., 2021; B. Wang et al., 2020; Q. Wang
et al., 2021; Y. Zhu et al., 2020) establish a role of PM1o in virus spread. However, the model
a revealed negative correlation for the first (8 = -32.6, R?= 38.5%, Aminerror = 13.7) and third (8
= -86.8, R?= 55.32%, Amin error = 63.1) Wave, which is also seen by (Bontempi, 2020), he gave

an observation that city with serve PM1o pollution are negatively associated with cases.

453 COVID-19 and Nitrogen Dioxide (NO2)

The effects of nitrogen dioxide on COVID-19 have been correlated with monocyte enrichment,
increased pneumonic epithelial permeability, inflammatory impacts, immunological
dysregulation, and lipid pathways. In this study NO2 shown negative association among SARS-
COV-2 daily cases during the first (8 = -3.9, R?= 38.5%, Amin error = 13.7), second (8 = -20.2,
R?=19.28%, Amin error = 61.4), and third (8 = -229.2, R?= 55.32%, Amin error = 63.1) wave, which
indicate that there is an inverse relationship among both, which is also has been studied by
other researchers (Lin et al., 2020; Zoran et al., 2020a). Previous studies in the Delhi region
also found a negative connection with NO2, but epidemiological studies reveal that nitrogen
dioxide increases our respiratory system's vulnerability to coronavirus infection (Mele &
Magazzino, 2021).

45.4 COVID-19 and Ground-level Ozone (O3)

The effects of ground-level ozone on COVID-19 have been because it can ameliorate
inflammation and pain because of antiparasitic, bactericidal, and virucidal properties
(Fernandez-Cuadros et al., 2020). Additionally, Os with the help of its metabolites, can
regulate our immune structure by administering the release of cytokines (Alberto, 2011). As a
result of the presence of the host immune system, it can enhance the development of bacterial
activity with the help of ozone (Babior et al., 2003). Oz shown a positive connection with new
daily cases during first (8 = 16.72, R*= 38.5%, Amin eror = 13.7) and second (8 = 382.3, R*=
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19.28%, Amin error = 61.4) wave, also seen in other studies, i.e., (Adhikari & Yin, 2020; Liu et
al., 2021; Travaglio et al., 2021; Y. Zhu et al., 2020; Zoran et al., 2020a). However, during the
third wave, ozone showed a negative correlation with corona cases (8 = -297.5, R?= 55.32%,
Aminerror = 63.1), which also has been observed by several researchers, i.e., (Fronza et al., 2020;
Jiang et al., 2020; Liang et al., 2020). (Nassan et al., 2021), claimed that ozone does not induce
metabolite changes, but its provisional exposure is associated with the SAM metabolism

cysteine, a member of taurine, cysteine, and methionine.

455 COVID-19 and Carbon Monoxide (CO)

The effects of carbon monoxide on COVID-19 have been correlated. It produces anti-
inflammatory effects, vasodilation, and the high concentrations of CO may enhance COVID-
19 spread because of the damaged alveolar-capillary unit. Positive associations among carbon
monoxide and corona cases were observed in this study during the first (8 = 82.52, R?= 38.5%,
Aminerror = 13.7) and third (8 = 20.1, R?= 55.32%, Aminerror = 63.1) Wave, indicating that CO has
helped in increasing corona virus spread during both waves, i.e., (Jiang et al., 2020; Lin et al.,
2020; Liu et al., 2021; Q. Wang et al., 2021) also studied the same. However, a minor negative
relationship was observed during the second wave (8 = -2.2, R?= 19.28%, Amin error = 61.4),

which is also seen in another research, i.e., (Jiang and Xu, 2021; Pei et al., 2021).

456 COVID-19 and Sulfur Dioxide (SO2)

The effects of sulfur dioxide on COVID-19 have been correlated, i.e., as the concentrations of
sulfur dioxide rise, it starts to damage our respiratory tract and increase the susceptibility of a
host in our body. In this study, a positive relationship was discovered between SO» and corona
cases during the first (8 = 85.64, R?= 38.5%, Amin eror = 13.7) and third (8 = 69.5, R*= 55.32%,
Amin error = 63.1) waves, indicating that SO, increased cases in the NCR region during both
waves, which is also seen in other researches, i.e., (Lembo et al., 2021; Liu et al., 2021; Q.
Wang et al., 2021; Y. Zhu et al., 2020). However, during the second wave (8 = -168.4, R?>=
19.28%, Aminerror = 61.4), it has shown a negative relationship, also studied by Jiang et al., 2020;
Jiang and Xu, 2021.

49| Page




45.7 COVID-19 and NOx

The effects of oxides of nitrogen on COVID-19 have been correlated, as it can cause
inflammation of our airway system at a high level when its concentration is high in our
surroundings. In this study, there was a positive correlation between NOx and cases only during
the first (8 = 68.58, R?= 38.5%, Amin eror = 13.7) wave, while in the second (8 = -94.8, R*=
19.28%, Amin error = 61.4) and third (8 = -272.5, R?= 19.28%, Amin error = 61.4) waves, there was
an inverse effect concerning the daily COVID -19 cases was found which indicates that NOx

was playing a role in the transmission of coronavirus in some circumstances.
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CHAPTER S
CONCLUSION

Beginning from 7 criteria air pollutants and using the best available method to remove
multicollinearity among predictors, the results were obtained in which PM2s pollutant was a
strong predictor of daily SARS-COV-2 transmission in Delhi NCR. Furthermore, results also
reveal that the (Oz), (CO), and (SO2) showed a significant positive association in the spread of
daily new corona cases. Additionally, PM1o, NO2, and NOx have a significantly less or inverse

relationship with the spread of the virus.

From these findings, it can be said that air pollutants have played a significant favourable
influence on the rate of multiplication of SARS-COV-2 daily cases in the regions where
pollution levels are high during each study period. The Indian Government has to make
effective policies to control the emission of pollutants in the NCR region, which will further
help minimize the influence of climate change and air pollution on current and future

pandemics.
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