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ABSTRACT 

 

The continuous rise in the cases of the COVID-19 virus has created a challenging situation for 

the public health system of India. The cities with higher populations and poor air quality have 

been hard hit by coronavirus and fatality rates when the positivity rate increased during each 

wave. This study aims to examine the relation to whether the criteria air pollutants have 

promoted the spread of COVID-19 in Delhi NCR by regularizing the issue of multicollinearity 

among air pollutants.  

It was hypothesized that criteria air pollutants would positively predict the spread of the 

coronavirus during the first wave (September 01, 2020 – December 11, 2020), the second wave 

(April 01, 2021 – May 22, 2021), and the third wave (January 01, 2022 – January 30, 2022) in 

the 25 most polluted districts of Delhi NCR. Elastic net-applied regularization was used in 

model exploration and coefficient estimation using EVIEWS 12 for testing of hypothesis. It 

was found that throughout each wave, PM2.5 was among the most significant predictor of 

COVID-19 transmission in all districts of Delhi NCR.  

This research explains the link between air pollutants and daily new corona case instances or 

how they individually contribute to the virus's transmission. Furthermore, exposure to areas 

with poor air quality may enhance the susceptibility and negatively impact the diagnosis of 

patients suffering from coronavirus. 
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CHAPTER 1  

INTRODUCTION 
 

Wuhan, a city, located in China, has become the control centre of a new coronavirus (SARS-

CoV-2), which has given rise to a new disease named COVID-19 the February month of 2020 

by WHO. (N. Zhu et al., 2020). The Indian government reported around 42,802,505 corona 

cases and 5,11,262 fatalities as of February 19, 2022 (www.mohfw.gov.in). In most Indian 

cities, due to high population density and poor air quality, COVID-19 infection is very high. 

Out of the 100 most polluted cities, 46 are from India (The 2020 World Air Quality Report). 

In India, Delhi NCR is distinguished as the region with the most polluted districts concerning 

air pollution. As to the Indian Government, the influence of coronavirus infection in all these 

districts is powerful during each wave (www.mohfw.gov.in).  

Emerging epidemic and experimental data now suggest the involvement of air pollution in 

COVID-19-related effects. The existing literature on many respiratory infections indicates that 

air pollution may contribute to COVID-19-related morbidity and mortality. In many scientific 

studies, it has been observed that the transmission of COVID-19 is related to air pollution 

(Biktasheva, 2020). Many studies are available in which it has been examined that the 

combined impact of meteorological variables and air pollution will further lead to health 

problems in humans away lead to mortality (Ravindra et al., 2019). Chronic exposure to air 

pollution contributes to adverse health outcomes associated with many chronic diseases, most 

of which overlap with risk factors for severe COVID-19. The receptor for SARS-CoV-2 

angiotensin-converting enzyme 2 (ACE2) is expressed in numerous organs explaining the wide 

range of symptoms associated with COVID-19 (Brandt & Mersha, 2021). As shown in Figure 

1, coronavirus and air pollutants impact the same organ. The COVID-19 course demonstrates 

a vital role in the presence of comorbidities, which significantly increases the patient's risk 

profile. It includes many incurable diseases such as heart and body diseases and air pollution 

that hurts long-term and severe short-term exposure to air pollution. This may explain why 

exposure to air pollution can indirectly place people in the more powerful and dangerous forms 

of COVID-19, as suggested by epidemiological studies (Bourdrel et al., 2021) In, Figure 2, 

Figure 3, and Figure 4 from the collected dataset of this study it can easily be observed that 

http://www.mohfw.gov.in/
http://www.mohfw.gov.in/
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during three waves the fluctuations in corona cases are influenced by some pollutants in the 

NCR region. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1. Target organs and the primary diseases that COVID-19 disease 2019 (blue) and air pollution 

(green) (Bourdrel et al., 2021) 

 

 

 

Figure 2. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the first wave 
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Figure 3. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the second wave 

 

 

Figure 4. Daily COVID-19 cases and daily 24-hour mean concentration of air pollutants during the third wave 
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among PM2.5, PM10, and CO with daily new confirmed cases was reported; (Meo et al., 2022) 

by using Poisson regression analysis concluded that in India's largest metropolitan cities CO, 

O3, and NO2 were positively associated to COVID-19 daily cases and deaths in Delhi from 

March 02, 2020 to March 15, 2021; and (Wen et al., 2022) concluded that PM2.5, increased 

SARS-CoV-2 cases by 0.439% in 10 of India's worst-affected states from March 9, 2020 to 

September 20, 2020. The available scientific literature worldwide spotlights that the presence 

of pollutants in the air is one of the essential sources of COVID-19-related transmissibility and 

deaths (Ayoub Meo et al., 2021).  

So far, the studies conducted in the Delhi region primarily examined correlations at the 

bivariate level, which has the drawback of not considering the presence or effect of other 

independent variables between the two being investigated. Whereas the studies done at the 

multivariate level have excluded the issue of multicollinearity among the predictors. Air 

pollutants showed a  positive correlation at the bivariate level, which further negatively 

impacted the analysis and severely limited the coefficient estimation. 
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1.1 Objective of study 

 

To address these constraints, this study was undertaken to assess the part of air pollutants in 

COVID-19 transmission over National Capital Region (NCR) during three different study 

periods. It was hypothesized that all the criteria air pollutants (PM10, PM2.5, NO2, NOX, O3, 

CO, SO2) would positively predict COVID-19 propagation in Delhi NCR. To test this 

hypothesis, elastic net regression analysis was used because it is a model with minimal crucial 

independent variables; additionally, it punishes the fitting of unwanted independent variables. 

However, none of the studies that used elastic-net have been published to find an association 

between air pollution and COVID-19 transmission in India.  

Many statisticians proved that elastic-net produces accurate results regarding the lucidity and 

precision of regression models (Edouard Grave, 2011). Elastic-net regression provides the most 

uncompromising model with perfect prediction when predicting a dependent variable with 

numerous predictors (Kim et al., 2016). Through cross-validation, it was also discovered that 

model founded by elastic-net regression predicts accurate results out of the bounds of data 

required for regression analysis (McNeish, 2015). 
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CHAPTER 2  

LITERATURE REVIEW 
 

A century after the Spanish Influenza Pandemic, a study reported that cities with more coal had 

tens of thousands of deaths from flu outbreaks compared with cities using less coal, taking into 

account factors such as socioeconomic status and primary health care (Clay et al., 2018; Pope 

et al., 2004). Prolonged exposure to air pollution is associated with increased influenza deaths 

in the USA (Pope et al., 2004). In 2003, a Chinese study on SARS-CoV-1 showed that people 

living in highly polluted areas were twice as likely to die due to SARS compared to people 

living in less polluted areas (Cui et al., 2003).  

In 2015, a study conducted in 195 countries concluded that air pollution is a significant factor 

in the burden of lower respiratory infections (Troeger et al., 2017). As shown by the flu, 

exposure to air pollution increases the severity of respiratory infections caused by bacteria 

(Ciencewicki & Jaspers, 2007). In addition, several studies had shown that increased air 

pollution concentration was associated with an increase in respiratory infections among 

children and adults, especially when viral infection was accompanied by a temporary increase 

in exposure to air pollution. An increase in PM2.5 concentrations has been associated with 

increased viral infections, namely influenza, respiratory syncytial virus (RSV), and measles. In 

these studies, the concentration of PM2.5 was associated with several new cases of respiratory 

infection and a delay period of several days (Chen et al., 2017). 

 

2.1 Studies Between Air pollutants and Covid-19: 

Various studies have reported a link between exposure to air pollution and COVID-19 disease 

and mortality worldwide which are as follows: -  

2.1.1 Particulate matters (PM2.5&10) and COVID-19 

PM2.5 can invade deeply into the lungs and deposit into alveoli. (Liu et al., 2021) done a study 

in 9 countries using discontinuous linear regression between January 21 to May 20, 2020, and 

found that PM10 plays a more substantial role in accelerating the spread of COVID-19 infection 

in China, England, Germany, and France.  
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Another study conducted in Milan of, Italy, between January 01 to April 30, 2020, by (Zoran 

et al., 2020b) found that daily maximum PM2.5 and PM10 were positively associated with new 

COVID-19 cases.  

Using a linear regression model with the dataset of Wuhan and Xiaogan (China) between 

January 26 to February 29, 2020 (Li et al., 2020) found that PM2.5 was prominently correlated 

with COVID-19 incidence. (Jiang & Xu, 2021) did a study in the origin place of coronavirus 

Wuhan between January 25 to April 07, 2020, using Pearson's and Poisson's regression models, 

found that PM2.5 was positively associated (relative risk [RR] = 1.079, 95% CI 1.071-1.086, P 

< 0.01) with COVID-19 deaths and PM10 was inversely related to COVID-19 deaths.  

In 337 prefecture-level cities of China, using Spearman's rank correlation analysis and multiple 

linear regression, it was observed by (Q. Wang et al., 2021) that PM2.5 and PM10 were positively 

correlated with newly confirmed findings of COVID-19 cases. Another study by (Pei et al., 

2021) in 325 cities of China using geographically weighted regression up to May 27, 2020, 

concluded that PM2.5 and PM10 had significantly positive impacts on COVID-19. Similarly, 

(Y. Zhu et al., 2020) conducted a study in 120 cities in China using a Generalized additive 

model between January 23 to February 29, 2020, and concluded 10 mg/m3 increase in PM2.5 

was positively associated with 2.24% (95% CI: 1.02-3.46) increase in the daily counts of 

confirmed cases; 10 mg/m3 increase in PM10 was positively associated with 1.76% (95% CI: 

0.89-2.63) increase in the daily counts of confirmed cases. (PM10, PM2.5, NO2, NOX, O3, CO, 

SO2) 

Using Bayesian hierarchical models (Konstantinoudis et al., 2021) executed, a study in England 

up to June 30, 2020. It was observed that every 1 μg/m3 increase in PM2.5 was associated with 

a 1.4% (95% CI: −2.1%-5.1%) increase in COVID-19 mortality risk. (Mele & Magazzino, 

2021)  using correlation analysis in the dataset of Italy's PM2.5 concentration and Daily new 

COVID-19 cases found that PM2.5 was positively associated with the total number of COVID-

19 cases.  

Further, (Frontera et al., 2020) conducted a new large study in which he took a large dataset of 

47 regional European Capitals and 107 major Italian cities for a time period of February 10 to 

April 10, 2020, and used a Binary classifier based on an artificial neural network to analyze the 

large collected dataset observed that PM2.5 and PM10 were positively associated with the 

number of COVID-19 cases. (Setti et al., 2020) also conducted a study at a bivariate level in 

110 Italian provinces from February 07 to March 15, 2020. He was the first to observe that the 
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average number of exceedances of the PM10 daily limit value was positively associated with 

the number of COVID-19 cases in each province.  

In 63 cities in China (B. Wang et al., 2020) used generalized additive models (GAM) with a 

quasi-Poisson's distribution on the dataset from January 01 to March 02, 2020, and found that 

a 10μg/m3 increase in the concentration of PM10 and PM2.5 were positively associated with the 

confirmed cases of COVID-19. The estimated strongest RRs (both at lag 7) were 1.05 (95% 

CI: 1.04-1.07) and 1.06 (95% CI: 1.04-1.07), respectively.  

(Travaglio et al., 2021) by using the dataset of the UK biobank for 2018-2019 and by using 

generalized linear models, negative binomial regression analysis Concluded that an increase of 

1m3 in the long-term average of PM2.5 was associated with a 12% increase in COVID-19 cases 

and a one-unit increase in PM10 was associated with approximately 8% more COVID-19 issues 

in the UK biobank.  

A large study conducted worldwide by (Pozzer et al., 2020) up to June 2020 using the Global 

atmospheric chemistry general circulation model (EMAC) found that PM2.5 contributed 15% 

(95%CI: 7%-33%) to COVID-19 mortality worldwide. A time-series analysis study was done 

in the origin place of coronavirus Wuhan between January 19 to March 15, 2020, and it is 

observed that PM2.5 and PM10 were positively associated with the case fatality rate of COVID-

19 (CFR). (Yao et al., 2020) 

(Magazzino et al., 2020) conducted a study in Paris, Lyon, and Marseille using Artificial Neural 

Networks (ANNs) experiment Machine Learning (ML) methodology for data analysis found 

that PM2.5 and PM10 directly correlated with COVID-19 fatality. In the Northern region of Italy 

(Coker et al., 2020), by using Negative binomial regression for January 01 to April 30, 2020, 

concluded that a one-unit increase in PM2.5 concentration (μg/m3) was associated with a 

9%(95% CI: 6%-12%) increase in COVID-19 related mortality. 

 In 20 districts in Lima (Peru) (Vasquez-Apestegui et al., 2021) conducted, an ecological study 

using linear regression found that higher PM2.5 levels were associated with a higher number of 

cases and deaths of COVID-19. In the USA (Hendryx & Luo, 2020), using Mixed model linear 

multiple regression analyses, Greater diesel particulate matter (DPM) was significantly 

associated with COVID-19 prevalence and mortality rates. (Lembo et al., 2021) in 33 European 

countries, Pearson's correlation analysis found that PM2.5 was positively correlated with 

positive COVID-19 cases and deaths.  
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(Jiang et al., 2020) again conducted a study in 3 regions of China (Wuhan, Xiaogan, 

Huanggang) from January 25 to February 29, 2020, using Multivariate Poisson's regression 

analysed that PM2.5 was positively associated with daily COVID-19 incidence in Wuhan 

(1.036, 95% CI: 1.032-1.039), Xiaogan (1.059, 95% CI: 1.046-1.072), and Huanggang (1.144, 

95% CI: 1.12-1.169), and PM10 was negatively associated with daily COVID-19 incidence in 

Wuhan (0.964, 95% CI: 0.961-0.967), Xiaogan (0.961, 95% CI: 0.95-0.972), and Huanggang 

(0.915, 95% CI: 0.896-0.934).  

(Wu et al., n.d.) using mixed binomial methods in 3000 counties of the USA concluded that a 

1 mg/m3 increase in PM2.5 was positively associated with an 8% increase in the COVID-19 

death rate (95% CI: 2%-15%). In 71 provinces of Italy, a study was conducted by (Fattorini & 

Regoli, 2020) on April 27, 2020, and found that PM2.5 and PM10 were favourable for the spread 

of virulence SARS-CoV-2. 

(Bontempi, 2020) done study at a bivariate level using correlation analysis in 14 cities of Italy 

between February 10 to March 27, 2020, and observed no evidence of correlations between the 

presence of high quantities of PM10 and COVID-19 cases. Facilitate transmission of SARS-

CoV-2 virus droplets and PM in indoor environments (Amoatey et al., 2020) in middle eastern 

countries.  

By using new machine learning techniques for statistical analysis (Magazzino et al., 2021), 

New York observed that PM2.5 accelerated COVID-19 death. (Liang et al., 2020) between 

January 22 to April 29, 2020, a study in 3122 counties of the USA with Zero-inflated negative 

binomial models showed no association between PM2.5 and COVID-19. Similarly, (Adhikari 

& Yin, 2020) in Queens and New York, between March 01 to April 20, 2020, using a Negative 

binomial regression model, observed that a one-unit increase in the moving average of PM2.5 

(μg/m3) was associated with a 33.11% (95% CI: 31.04-35.22) decrease in the daily new 

COVID-19 cases. 

 

2.1.2 NO2 and COVID-19 

(Li et al., 2020) using linear regression in Wuhan and Xiaogan found that in both these cities 

of China, NO2 was prominently correlated with COVID-19 incidence. During a similar period 

(Jiang et al., 2020) conducted a study using Multivariate Poisson's regression in one more 

additional city in China (hanging) and observed that NO2 was positively correlated with daily 
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COVID-19 incidence in Wuhan (1.056, 95% CI: 1.053-1.059) and Xiaogan (1.115, 95% 

CI:1.095-1.136). 

(Yao et al., 2021) in 11 Hubei cities, by using multiple linear regression, residual analysis, 

principal component analysis, and meta-analysis method from January 01 to February 08, 

2020, observed that NO2 concentration (with a 12-day time lag) was positively related to 

transmission ability (primary reproductive number) of the 11 Hubei cities (except Xining City).  

In 3122 US counties from January 22 to April 29, 2020, using Zero-inflated negative binomial 

models (Liang et al., 2020) observed that per interquartile range (IQR) increase in NO2 (4.6 

ppb) was associated with an increase in COVID-19 case-fatality rate (7.1%, 95% CI: 1.2%-

13.4%) and mortality rate (11.2%, 95% CI: 3.4%-19.5%), respectively. 

(Travaglio et al., 2021) by using Generalized linear models, negative binomial regression 

analysis in England during 2018-2019 observed that NO2 and NO were positively associated 

with COVID-19 infectivity, with an odds ratio of approximately 1.03 for both the single-year 

and multiyear model. In 66 administrative regions in  Italy, Spain, France, and Germany from 

Jan to Feb 2020 (Ogen, 2020) concluded that NO2 was positively correlated with COVID-19 

fatality cases. Out of the 4443 fatality cases, 3487 (78%) were in five regions (have the highest 

NO2).  

In 29 provinces of China from January 21 to April 03, 2020 (Lin et al., 2020), by using the 

Chain-binomial model, correlation analysis found that NO2 was inversely correlated to the 

primary reproductive ratio of COVID-19. In England, up to June 30, 2020 (Konstantinoudis 

et al., 2021), Bayesian hierarchical models observed that Every 1 μg/m3 increase in NO2 was 

associated with a 0.5% (95% CI: −0.2%-1.2%) increase in COVID-19 mortality risk. In Milan 

of, Italy, from January 01 to April 30, 2020, using time series analysis (Zoran et al., 2020a), 

ground-level NO2 was inversely correlated with COVID-19 infections.  

In 9 countries using Discontinuous linear regression from January 21 to May 20, 2020 (Liu et 

al., 2021), observed that the aggravating effect of NO2 on COVID-19 infection appears in 

Canada and France. In 33 European countries (Lembo et al., 2021) conducted a study at the 

bivariate level and found that NO2 was positively correlated with positive COVID-19 cases 

and  deaths. (Mele et al., 2021) using machine learning techniques in 3 major French cities 

from March 18 to April 27, 2020, found that NO2 levels contribute to COVID-19 deaths and 

exist threshold values. (Magazine et al., 2021) also, machine learning experiments found that 

NO2 accelerated COVID-19 deaths in 3 French cities.  



 

11 | P a g e  
 

Using a general additive model (Y. Zhu et al., 2020) concluded that in 120 cities in China, 

every 10 mg/m3 increase of NO2 was associated with a 6.94% (95% CI: 2.38-11.51) increase 

in the daily counts of confirmed COVID-19 cases. (Suez et al., 2020) in Catalonia, Spain 

observed that NO2 was significantly correlated with COVID-19 incidence, mortality, and 

lethality rates using Spearman's nonparametric correlation.  

In 71 Italian provinces (Fattorini & Regoli, 2020) found that NO2 was significantly correlated 

with cases of COVID-19. In 18 Indian states (Chakraborty et al., 2020) by using Pearson's 

correlation coefficient and regression analysis for data analysis, found that NO2 showed a 

strong positive correlation between the absolute number of COVID-19 deaths (r = 0.79, P < 

0.05) and case fatality rate (r = 0.74, P < 0.05). 

(Filippini et al., 2020) with the help of a Multivariable restricted cubic spline regression 

model, concluded that in 28 northern provinces of Italy, NO2 was significantly correlated with 

SARS-CoV-2 infection prevalence rate.  

2.1.3 Surface Level Ozone (O3) and COVID-19 

(Liu et al., 2021) in 9 countries (China, Japan, Korea, Canada, America, Russia, England, 

Germany, and France) from January 21 to May 20, 2020, using Discontinuous linear 

regression for data analysis observed that O3 presents a more pronounced positive effect on 

COVID-19 infection in more countries (such as Japan, Canada, America, Russia, France, 

etc.).  

By using a general additive model for the dataset of 120 cities in China (Y. Zhu et al., 2020) 

found that with per 10 mg/m3 increase in O3 was associated with a 4.76% (95% CI: 1.99-

7.52) increase in the daily counts of confirmed cases, respectively.   

In 47 regional capitals and 107 major cities in Europe, a study was conducted by (Fronza 

et al., 2020)using an artificial neural network for data analysis and observed that O3 was 

negatively associated with the number of COVID-19 cases per million (r = −0.44). A 

study in the UK (Travaglio et al., 2021) using generalized linear models and negative 

binomial regression analyses concluded that O3 was significantly associated with 

COVID-19 deaths and cases at the sub-regional level.  

(Jiang et al., 2020) found that O3 was negatively associated with daily COVID-19 incidence 

in Wuhan (0.99, 95% CI: 0.989-0.991) and Xiaogan (0.991, 95% CI: 0.989-0.993) and 

positively associated with daily COVID-19 incidence in Huanggang (1.016, 95% CI: 
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1.012-1.02) using Multivariate Poisson's regression in 3 Chinese cities.  

In 3122 counties of the USA, a study was conducted using Zero-inflated negative binomial 

models (Liang et al., 2020) observed no significant associations between O3 and COVID-

19 cases.  

In New York (Adhikari & Yin, 2020) conducted a study using negative binomial regression 

mode and concluded that a one-unit increase in O3 was associated with a 10.51% (95% 

CI: 7.47-13.63) increase in the daily new COVID-19 cases. (Zoran et al., 2020b) Milan, 

Italy, conducted a time series analysis study and found that COVID-19 infections showed 

a positive correlation with ground-level O3.  

2.1.4 Carbon Monoxide (CO) and COVID-19 

(Liu et al., 2021) while studying for CO dataset in 9 countries and using discontinuous linear 

regression for data analysis observed that CO will increase the propagation speed of 

COVID-19 infection, which is significant in COVID-19 disease, which is significant in 

Korea and China, respectively.  

(Jiang & Xu, 2021) while studying found that CO was inversely associated with COVID-

19 deaths from January 25 to April 07, 2020, in Wuhan, where this pandemic has originated. 

(Q. Wang et al., 2021) in 337 prefecture-level cities in China, CO was positively correlated 

with newly confirmed cases using bivariate analysis. Similarly, (Pei et al., 2021) in China 

observed that CO harmed COVID-19 deaths up to May 27, 2020.  

(Jiang et al., 2020) when studying for CO concluded that CO was positively correlated with 

the daily incidence in Wuhan (1.932, 95% CI: 1.763-2.118); but negatively correlated with 

the daily incidence in Xiaogan (0.041, 95%CI: 0.026-0.066) and Huanggang (0.032, 95%CI: 

0.017-0.063). Similarly, (Lin et al., 2020), when studying in China, found that CO was 

positively correlated with the primary reproductive ratio of COVID-19.  

 

2.1.5 Sulphur Di Oxide (SO2) and COVID-19 

SO2 increased the propagation speed of COVID-19 infection, which is significant in Korea 

and China, respectively (Liu et al., 2021). SO2 was inversely associated with COVID-19 

deaths (Jiang & Xu, 2021). SO2 was positively correlated with newly confirmed cases (Q. 
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Wang et al., 2021).  

10 μg/m3 increase of SO2 was associated with a 7.79% decrease (95% CI: −14.57 to −1.01) 

in COVID-19 confirmed cases (Y. Zhu et al., 2020). SO2 was positively correlated with 

positive COVID-19 cases and deaths (Lembo et al., 2021). SO2 was not associated with 

daily COVID-19 incidence (Jiang et al., 2020).  

In addition, to examine the link between air pollution and COVID-19 prevalence, several 

studies have analyzed the effect of air pollution on COVID-19 estimates. Although these 

studies answer a different question and may have their drawbacks, examining the prediction 

of COVID-19 is less affected by infection potential. It thus leads to more minor legal threats 

such as undiagnosed confusion. To remove the issue of multicollinearity present, this study 

has been conducted. 
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CHAPTER 3  

MATERIALS AND METHODOLOGY 

 

3.1  Study area 

 

The study analysed the 25 most polluted districts in the Delhi NCR region. These districts lie 

under Delhi, Haryana, and Uttar Pradesh and are portrayed in two different Figure 5, and Figure 

6. They have emerged as important hubs for the commercial, industrial, medical, and 

educational sectors, attracting people from all over the country. All these districts are struggling 

to handle the problem of air pollution and related health hazards due to the increase in 

population. In all these districts, the effect of COVID-19 has been highly observed.  

3.1.1 Delhi 

As shown in the Figure 5, all districts of  Delhi (28.7041° N, 77.1025° E) with 38 CAAQMS 

MONITORING STATIONS have been selected for this study. The 24-hourly air quality and 

COVID-19 cases data have been collected from all these monitoring sites. 

 

Figure 5. The study area (Delhi) 
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3.1.2 Haryana and Uttar Pradesh 

Fifteen districts from Haryana (29.0588° N, 76.0856° E) and Uttar Pradesh (26.8467° N, 80.9462° 

E) with 23 CAAQMS MONITORING STATIONS have been selected for this study. All monitoring 

sites whose data has been used for this study have been portrayed in the Figure 6 using ArcGIS.   

 

 

Figure 6. The study area of NCR 

 

3.2  Data sources 

 

For three study periods, i.e.,  (September 1, 2020 – December 11, 2020), (April 1, 2021 – May 

22, 2021), and (January 1, 2022 – January 30, 2022), the total daily new COVID-19 cases were 

collected for all districts from (http://health.delhigovt.nic.in/), (http://nhmharyana.gov.in), 

(http://rajswasthya.nic.in), and (http://dgmhup.gov.in). The daily 24-hour mean concentration 

data of criteria air pollutants was collected from (https://app.cpcbccr.com/ccr) operated by 

CPCB (https://cpcb.nic.in). Table 1 shows the average quality of the air and the sum of corona 

cases during each study period.  

http://health.delhigovt.nic.in/
http://nhmharyana.gov.in/
http://rajswasthya.nic.in/
http://dgmhup.gov.in/
https://app.cpcbccr.com/ccr
https://cpcb.nic.in/
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Table 1. The average and the total value of datasets 

Variables First wave Second wave Third Wave 

Total Cases (Numbers) 612368 1184479 620572 

Average PM2.5 in µg/m3 113.74 65.31 129.39 

Average PM10 in µg/m3 230.44 183.26 216.06 

Average NO2 in µg/m3 40.35 26.52 34.29 

Average NOx in ppb 40.07 23.32 39.53 

Average O3 in µg/m3 36.84 45.13 20.37 

Average CO in mg/m3 1.2 0.8 1.28 

Average SO2 in µg/m3 16.42 21 9.81 

 

 

 

3.3 Data analysis 

 

The acquired data set was analysed individually at three levels, univariate, bivariate, and 

multivariate. Every aspect influencing the impact of the ecological condition on human health is studied. 

Using three methods, primarily the trend in air quality during three waves was observed using 

ArcGIS (legend). Secondly, Pearson's correlations were calculated to determine the association 

among predictors; due to the presence of high association among pollutants. Stepwise standard 

multiple linear regression was calculated to determine the coefficient of determination (R2), 

which will further help us determine VIF and tolerance level among multivariate predictors. In 

the last step, elastic net regression analysis will be used to predict a better model. All the 

methods used in this study are briefly described below sections.   

 

3.3.1 Mapping of air quality in Delhi NCR using ArcGIS  

The air maps were created using ArcGIS version 10.5, a cutting-edge GIS program, at all 

detected locations. Combining GIS with air models allows for the automatic generation of air 

data models from digital geographic data. The air data is collected, stored, managed, and 

controlled using a GIS database management system. The interpolation techniques available in 

GIS are used to create air pollutants concentration contours.  

 

3.3.2   Pearson Correlation Coefficients: - 



 

17 | P a g e  
 

It is calculated by using the formulae stated in Equation (1): - 

𝑟 =  
𝑛 (∑ 𝑋𝑌) − (∑ 𝑋) (∑ 𝑌) 

√[𝑛 ∑ 𝑋2 − (∑ 𝑋)2] ∗ [𝑛 ∑ 𝑌2 − (∑ 𝑌)2]
 

(1) 

 

Wherein r is the Pearson correlation coefficient; n is the number of observations, and X and 

Y are the first and second variables in the context. This test was conducted to check the 

higher values of correlation coefficients among the selected predictors (air pollutants) for this 

study, which will further indicate the possibility of multicollinearity (correlation coefficients 

near 0.8 indicate the presence of collinearity)(Chatterjee, 2013).  

 

3.3.3   Testing for multicollinearity  

The variance inflation factor (VIF) is utilized to calculate how much variance of the predicted 

regression coefficient is inflated when the predictors are correlated. VIF is determined as 

stated in Equation (2): - 

𝑉𝐼𝐹 =  
1

1 − 𝑅2
=  

1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
 

(2) 

 

Tolerance is the inverse of VIF, which means that the lower the tolerance, the more variables 

are prone to be multicollinear. Furthermore, VIF =1 shows that independent variables are not 

linked to each other. If VIF is around 1 to 5, it means that variables are relatively related to 

each other; when VIF is approximately 5 to 10, it means that variables are highly linked; if 

VIF ≥ 5 to 10. It means that there is multicollinearity among independent variables in the 

regression model, and VIF > 10 specifies that regression coefficients are not accurately 

estimated due to the presence of multicollinearity.  

 

3.3.4  Elastic Net Regression 

The hypothesis tests were conducted to find whether the criteria air pollutants carry an 

important influence on the spread of the corona virus in the 25 most polluted districts lying 

under Delhi NCR when the cases were spreading at a high rate. The daily new SARS-CoV-2 

cases in all 25 districts of Delhi NCR were used as a dependent variable, and 24-hour mean air 

quality over all communities was taken as predictors to find how much variance each parameter 

was created on the spread of new daily corona cases. All the statistical analyses of elastic net 

regression were performed using EVIEWS 12 (www.eviews.com). Due to the presence of high 

http://www.eviews.com/
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multicollinearity (VIF > 10) between most of the predictor's elastic net-applied regularisation 

has been used in model exploration and coefficient estimation (Zou & Hastie, 2005) as shown 

in Equation (3), where α is the mixing parameter between ridge (α = 0) and lasso (α = 1). 

𝐿enet (𝛽̂) =
∑  𝑛

𝑖−1   (𝑦𝑖 − 𝑥𝑖
′𝛽̂)

2

2𝑛
+ 𝜆 (

1 − 𝛼

2
∑  

𝑚

𝑗=1

  𝛽̂𝑗
2 + 𝛼 ∑  

𝑚

𝑗=1

  |𝛽̂𝑗|) 

(3) 

 

By minimizing regression coefficients to zero, the L1-norm (lasso) of penalty creates a sparse 

model. The L2-norm (ridge) of penalty removes the constraint on the number of selected 

variables, stimulates grouping, and stabilizes the L1 regularization route (Kuang et al., 2015). 

Elastic net reduces the regression coefficients by combining the L1-norm (lasso) and L2-norm 

(ridge) penalties; α = 0.5 was utilized, a midpoint among L1 and L2. Additionally, to reduce 

the threat of overfitting, elastic net regression was done with K-Fold cross-validation to 

measure the mean square error. The complete dataset was randomly split into ten folds. One 

block of split datasets (90% of the entire dataset) was used to calculate coefficients for every 

test. 

Furthermore, the predictive performance of our prediction model was calculated with the 

remaining data block (10% of the entire dataset). For each test, a separate set of coefficients 

quantity was calculated while changing 𝜆. Lambda (𝜆) at minimum error is used to calculate 

the most straightforward model with high prediction accuracy and regularized beta coefficients. 

To estimate an accurate algorithm OLS with 500 maximum iterations and 0.0001 convergence 

was used.  
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CHAPTER 4  
RESULTS AND DISCUSSIONS 

 

4.1  Air mapping of Air Pollutants 

In most regions selected for study, a lockdown is imposed during each wave, but even after 

that, the air quality condition in most areas is deplorable. In the below sections, the trends of 

each pollutant during all three waves have been portrayed 

 

4.1.1  Air mapping of PM2.5 during each wave 

The Figure 9  shows air quality mapping of PM2.5 in the NCR region during the first COVID-

19 wave (September 01 to December 11, 2020). PM2.5 average concentration varies from 38.6 

µg/m3 to 308.11 µg/m3 for the first wave and further shows that most districts of Delhi, 

Haryana, and Uttar Pradesh lying under the NCR region are facing the problem of bad air 

quality even after the lockdown. The monitoring site which recorded the worst average PM2.5 

concentration during the first wave was RK Puram ranging from 278.1 µg/m3 to 308.11 µg/m3. 

During the first wave, the monitoring stations with good average air quality were Bhiwani, 

Palwal, Alwar, and Hapur, ranging from 38.6 µg/m3 to 68.5 µg/m3. 

The Figure 7 shows the air quality mapping of PM2.5 in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). PM2.5 average concentration varies from 20.5 

µg/m3 to 105.2 µg/m3
 for the second wave. The monitoring site which recorded the worst 

average PM2.5 concentration during the second wave was Bawana ranging from 95.8 µg/m3 to 

105.2 µg/m3. During the second wave, the monitoring stations with good average air quality 

were Bhiwani and Hapur, ranging from 20.5 µg/m3 to 29.9 µg/m3. 

The Figure 8 shows the air quality mapping of PM2.5 in the NCR region during the third 

COVID-19 wave (January 01 to January 31, 2022). PM2.5 average concentration varies from 

19.3 µg/m3 to 222.7 µg/m3 for the third wave. The monitoring site which recorded the worst 

average PM2.5 concentration during the third wave was Bahadurgarh ranging from 204.5 µg/m3 

to 227.7 µg/m3. During the third wave, the monitoring stations with good average air quality 

were Mandikhera, Palwal, and Rohtak, ranging from 19.3 µg/m3 to 42.4 µg/m3. 

 

4.1.2 Air mapping of PM10 during each wave 

The Figure 12 shows air quality mapping of PM10 in the NCR region during the first COVID-

19 wave (September 01 to December 11, 2020). PM10 average concentration varies from 87.7 

µg/m3 to 361.9 µg/m3 for the first wave. The monitoring sites which recorded the worst average 

PM10 concentration during the first wave were Rohini and Mundka, ranging from 330.8 µg/m3 

to 361.9 µg/m3. During the first wave, the monitoring stations with good average air quality 

were Panipat and Alwar, ranging from 87.7 µg/m3 to 112.9 µg/m3. 
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Figure 7. Air Mapping of PM2.5 in Delhi NCR during first 
wave 

Figure 8. Air mapping of PM2.5 in Delhi NCR during 
second wave 

Figure 9. Air mapping of PM2.5 in Delhi NCR during third wave 
third wave 
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Figure 10. Air Mapping of PM10 in Delhi NCR during 

first wave 
Figure 11. Air mapping of PM10 in Delhi NCR during second 

wave 
Figure 12. Air mapping of PM10 in Delhi NCR during third wave 

third wave 

 

  



22 | P a g e  
  

 

Figure 13. Air Mapping of NO2 in Delhi NCR during 
first wave 

Figure 14. Air mapping of NO2 in Delhi NCR during second 
wave 

Figure 15. Air mapping of NO2 in Delhi NCR during third wave 
third wave 
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Figure 16. Air Mapping of NOx in Delhi NCR during 
first wave 

Figure 17. Air mapping of NOx in Delhi NCR during second 
wave 

Figure 18. Air mapping of NOx in Delhi NCR during third wave 
third wave 
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Figure 19. Air Mapping of O3 in Delhi NCR during first 
wave 

Figure 20. Air mapping of O3 in Delhi NCR during second 
wave 

Figure 21. Air mapping of O3 in Delhi NCR during third wave 
third wave 
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Figure 22. Air Mapping of CO in Delhi NCR during 

first wave 
Figure 23. Air mapping of CO in Delhi NCR during second 

wave 
Figure 24. Air mapping of CO in Delhi NCR during third wave 

third wave 
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Figure 22. Air Mapping of SO2 in Delhi NCR during 
first wave 

Figure 23. Air mapping of SO2 in Delhi NCR during second 
wave 

Figure 24. Air mapping of SO2 in Delhi NCR during third wave 
third wave 
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The Figure 10 shows the air quality mapping of PM10 in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). PM10 average concentration varies from 73.5 

µg/m3 to 290 µg/m3
 for the second wave. The monitoring site which recorded the worst average 

PM2.5 concentration during the second wave was Baghpat ranging from 266.3 µg/m3 to 290 

µg/m3. During the second wave, the monitoring stations with good average air quality were 

Karnal and Alwar, ranging from 73.5 µg/m3 to 97.6 µg/m3. 

The Figure 11 shows the air quality mapping of PM10 in the NCR region during the third 

COVID-19 wave (January 01 to January 31, 2022). PM10 average concentration varies from 

81.8 µg/m3 to 430.6 µg/m3 for the third wave. The monitoring site which recorded the worst 

average PM10 concentration during the third wave was ITO ranging from 391.6 µg/m3 to 430.6 

µg/m3. During the third wave, the monitoring stations with good average air quality were 

Narnaul, Alwar, Mandikhera, Palwal, and Rohtak, ranging from 81.8 µg/m3 to 120.6 µg/m3. 

 

4.1.3 Air mapping of NO2 during each wave 

The Figure 14 shows the air quality mapping of NO2 in the NCR region during the first COVID-

19 wave (September 01 to December 11, 2020). NO2 average concentration varies from 9 

µg/m3 to 88.1 µg/m3 for the first wave. The monitoring sites which recorded the worst average 

NO2 concentration during the first wave were ITO and Sirifort, ranging from 79.3 µg/m3 to 

88.1 µg/m3. During the first wave, the monitoring stations with good average air quality were 

Muzzaffarnagar ranging from 9 µg/m3 to 17.8 µg/m3. 

The Figure 13 shows the air quality mapping of NO2 in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). NO2 average concentration varies from 5 µg/m3 

to 128.2 µg/m3
 for the second wave. The monitoring site which recorded the worst average 

NO2 concentration during the second wave was Hapur ranging from 114.5 µg/m3 to 128.2 

µg/m3. The monitoring stations with good average air quality during the second wave were 

Bhiwani, Panipat, Palwal, Bahadurgarh, Najafgarh, Karnal, and Bulandshahr, ranging from 5 

µg/m3 to 18.7 µg/m3. 

The Figure 15 shows the air quality mapping of NO2 in the NCR region during the third 

COVID-19 wave (January 01 to January 31, 2022). NO2 average concentration varies from 5.3 

µg/m3 to 106.2 µg/m3 for the third wave. The monitoring sites that recorded the worst average 

NO2 concentration during the third wave were ITO and Dr. Karni Singh, shooting from 95 

µg/m3 to 106.2 µg/m3. During the third wave, the monitoring stations with good average air 

quality were Bawana, Charkhi Dadri, Jind, Mandikhera, Panipat, and Karnal, ranging from 5.3 

µg/m3 to 16.5 µg/m3. 

 

4.1.4  Air mapping of NOX during each wave 

The Figure 17 shows the air quality mapping of NOX in the NCR region during the first 

COVID-19 wave (September 01 to December 11, 2020). NOX average concentration varies 

from 14.3 ppb to 138.1 ppb for the first wave. The monitoring site which recorded the worst 

average NOX concentration during the first wave was Sirifort ranging from 124.4 ppb to 138.1 
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ppb. During the first wave, the monitoring stations with good average air quality were Bhiwani, 

Muzzaffarnagar, Jind, and Mundka, ranging from 14.3 ppb to 28.1 ppb. 

The Figure 18 shows the air quality mapping of NOX in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). NOX average concentration varies from 1.6 ppb 

to 121.1 ppb for the second wave. The monitoring site which recorded the worst average NOX 

concentration during the second wave was ITO ranging from 107.8 ppb to 121.1 ppb. The 

monitoring stations with good average air quality during the second wave were Bhiwani, 

Hapur, Panipat, Manesar, Bahadurgarh, Karnal, and Bulandshahr, ranging from 1.6 ppb to 14.8 

ppb. 

The Figure 16 shows the air quality mapping of NOX in the NCR region during the third 

COVID-19 wave (January 01 to January 31, 2022). NOX average concentration varies from 3.5 

ppb to 142.4 ppb for the third wave. The monitoring sites which recorded the worst average 

NOX concentration during the third wave were ITO and Sirifort shooting, ranging from 126.9 

ppb to 142.4 ppb. The monitoring stations with good average air quality during the third wave 

were Bawana, Charkhi Dadri, Jind, Mandikhera, Palwal, Aya Nagar, Manesar, and Karnal, 

ranging from 3.5 ppb to 18.9 ppb. 

 

4.1.5 Air mapping of O3 during each wave 

The Figure 21 shows the air quality mapping of O3 in the NCR region during the first COVID-

19 wave (September 01 to December 11, 2020). O3 average concentration varies from 9.2 

µg/m3 to 106.3 µg/m3 for the first wave. The monitoring site which recorded the worst average 

O3 concentration during the first wave was Bhiwani ranging from 95.5 µg/m3 to 106.3 µg/m3. 

During the first wave, the monitoring stations with good average air quality were Palwal, 

Mandikhera, and Muzzaffarnagar, ranging from 9.2 µg/m3 to 20 µg/m3. 

The Figure 19 shows the air quality mapping of O3 in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). O3 average concentration varies from 3.6 µg/m3 

to 100.9 µg/m3
 for the second wave. The monitoring site which recorded the worst average O3 

concentration during the second wave was Bhiwani ranging from 90.1 µg/m3 to 100.9 µg/m3. 

During the second wave, the monitoring stations with good average air quality were Narnaul 

and Mandikhera, ranging from 3.6 µg/m3 to 14.4 µg/m3. 

The Figure 20 shows the air quality mapping of O3 in the NCR region during the third COVID-

19 wave (January 01 to January 31, 2022). O3 average concentration varies from 2.7 µg/m3 to 

68.4 µg/m3 for the third wave. The monitoring site which recorded the worst average O3 

concentration during the third wave was Bhiwani shooting, ranging from 61.1 µg/m3 to 68.4 

µg/m3. During the third wave, the monitoring stations with good average air quality were 

Charkhi Dadri and Narnaul, ranging from 2.7 µg/m3 to 10 µg/m3. 
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4.1.6 Air mapping of CO during each wave 

The Figure 24 shows air quality mapping of CO in the NCR region during the first COVID-19 

wave (September 01 to December 11, 2020). CO average concentration varies from 0.64 mg/m3 

to 1.8 mg/m3 for the first wave. The monitoring site which recorded the worst average CO 

concentration during the first wave was ITO ranging from 8 mg/m3 to 9.2 mg/m3. During the 

first wave, the monitoring stations with good average air quality were all the area apart from 

ITO, ranging from 0.64 mg/m3 to 1.8 mg/m3. 

The Figure 23 shows the air quality mapping of CO in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). For the second wave, the CO average 

concentration varies from 0.3 mg/m3 to 2.4 mg/m3. The monitoring site which recorded the 

worst average CO concentration during the second wave was ITO ranging from 2.2 mg/m3 to 

2.4 µg/m3. During the second wave, the monitoring stations with good average air quality were 

Manesar, Narnaul, and Karnal, ranging from 0.3 mg/m3 to 0.5 mg/m3. 

The Figure 22 shows the air quality mapping of CO in the NCR region during the third COVID-

19 wave (January 01 to January 31, 2022). CO average concentration varies from 0.2 mg/m3 

to 3.7 mg/m3 for the third wave. The monitoring site which recorded the worst average CO 

concentration during the third wave was Charkhi Dadri shooting, ranging from 3.3 mg/m3 to 

3.7 mg/m3. During the third wave, the monitoring stations with good average air quality were 

Panipat, Sonipat, Narnaul, Gurugram, Manesar, and Mandikhera, ranging from 0.2 mg/m3 to 

0.6 mg/m3. 

 

4.1.7  Air mapping of SO2 during each wave 

The Figure 27 shows the air quality mapping of SO2 in the NCR region during the first COVID-

19 wave (September 01 to December 11, 2020). SO2 average concentration varies from 3 µg/m3 

to 37.2 µg/m3 for the first wave. The monitoring site which recorded the worst average SO2 

concentration during the first wave was Jind ranging from 124.4 µg/m3 to 138.1 µg/m3. During 

the first wave, the monitoring stations with good average air quality were Charkhi Dadri, 

Hapur, Narnaul, and Palwal, ranging from 3 µg/m3 to 6.8 µg/m3. 

The Figure 26 shows the air quality mapping of SO2 in the NCR region during the second 

COVID-19 wave (April 01 to May 22, 2021). SO2 average concentration varies from 2.6 µg/m3 

to 57 µg/m3
 for the second wave. The monitoring site which recorded the worst average SO2 

concentration during the second wave was Panipat ranging from 51 µg/m3 to 57 µg/m3. During 

the second wave, the monitoring station with good average air quality was Charkhi Dadri 

ranging from 1.6 µg/m3 to 14.8 µg/m3. 

The Figure 25 shows the air quality mapping of SO2 in the NCR region during the third 

COVID-19 wave (January 01 to January 31, 2022). SO2 average concentration varies from 2 

µg/m3 to 24.1 µg/m3 for the third wave. The monitoring site which recorded the worst average 

SO2 concentration during the third wave was Bhiwani ranging from 21.6 µg/m3 to 24.1 µg/m3. 

During the third wave, the monitoring stations with good average air quality were Bawana, 

Sonipat, Najafgarh, Palwal, Aya Nagar, Manesar, and Narnaul, ranging from 2 µg/m3 to 4.4 

µg/m3. 
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4.2  Pearson's Correlation Coefficients 

 

This method helps in determining the collinearity among predictors. (Table 2, Table 3, and 

Table 4) are showing the correlation analysis between new daily corona cases and 24-mean air 

quality. During each study period over Delhi, NCR results in a moderately significant positive 

correlation (r) for the first and second wave, whereas for the third wave, a weak association has 

been seen in most cases at p < 0.001. 

Table 2 Pearson Correlation Matrix of the first wave 

  CASES PM2.5 PM10 NO2 NOx OZONE CO  SO2 

CASES 1.000        
PM2.5 0.398 1.000       
PM10 0.338 0.973 1.000      
NO2 0.463 0.914 0.911 1.000     
NOx 0.489 0.847 0.861 0.951 1.000    
OZONE 0.091 0.414 0.500 0.374 0.306 1.000   
CO  0.453 0.919 0.888 0.925 0.904 0.332 1.000  

SO2 0.383 0.662 0.728 0.739 0.677 0.609 0.597 1.000 

 

Table 3 Pearson Correlation Matrix of the second wave 

  CASES PM2.5 PM10 NO2 NOx OZONE CO  SO2 

CASES 1.000        

PM2.5 0.272 1.000       

PM10 0.233 0.939 1.000      

NO2 0.052 0.673 0.683 1.000     

NOx 0.028 0.684 0.689 0.951 1.000    

OZONE 0.405 0.081 0.029 -0.349 -0.310 1.000   

CO  0.128 0.705 0.527 0.512 0.540 0.062 1.000  
SO2 0.008 0.698 0.759 0.811 0.803 -0.197 0.455 1.000 

 

Table 4 Pearson Correlation Matrix of the third wave 

  CASES PM2.5 PM10 NO2 NOx OZONE CO SO2 

CASES 1        

PM2.5 0.345 1.000       

PM10 -0.387 0.978 1.000      

NO2 -0.672 0.756 0.755 1.000     

NOx -0.622 0.748 0.727 0.960 1.000    

OZONE -0.585 0.017 0.068 0.455 0.259 1.000   

CO 0.479 0.897 0.886 0.877 0.908 0.104 1.000  

SO2 0.150 0.387 0.365 0.560 0.513 0.310 0.459 1.000 

 



 

31 | P a g e  
 

The results that appeared after running Pearson correlation analysis in the collected dataset are 

also represented in the graphical format (Figure 28, Figure 29, and Figure 30) for each wave and 

individually discussed in below sections: 

1. PM2.5 and COVID-19 Cases  

In Delhi, NCR during the first, second, and third wave PM2.5 has shown moderate 

positive, weak positive, and moderate positive association with daily new COVID-19 

cases, respectively. 

2. PM10 and COVID-19 Cases 

In Delhi, NCR, during the first, second, and third waves, PM10 has shown moderate 

positive, weak positive, and moderate negative association with daily new COVID-19 

cases. 

 

 

Figure 28. Pearson correlation among COVID-19 and air pollutants during the first wave 

 

CO
V

ID
-1

9 
Ca

se
s

PM
2.

5

PM
10

N
O

2

N
ox

O
ZO

N
E

CO SO
2

COVID-19 Cases

PM2.5

PM10

NO2

Nox

OZONE

CO

SO2

0.636 - > 0.818

0.818 - > 1

0.091 - > 0.273

0.273 - > 0.455

0.455 - > 0.636

- 0.455 - > - 0.273

- 0.273 - > - 0.091

- 0.091 - > 0.091

- 1 - > - 0.818

- 0.818 - > - 0.636

- 0.636 - > - 0.455



 

32 | P a g e  
 

 

Figure 29. Pearson correlation among COVID-19 and air pollutants during the second wave 

 

 

 

Figure 30. Pearson correlation among COVID-19 and air pollutants during the third wave 
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3. NO2 and COVID-19 Cases 

In Delhi, NCR during the first, second, and third wave NO2 has shown moderate 

positive, weak positive, and strong negative association with daily new COVID-19 

cases, respectively. 

4. NOx and COVID-19 cases 

In Delhi, NCR during the first, second, and third wave NOX has shown moderate 

positive, weak positive, and strong negative association with daily new COVID-19 

cases, respectively. 

5. Surface ozone (O3) and COVID-19 cases 

In Delhi, NCR during the first, second, and third wave O3 has shown weak positive, 

moderately positive, and strong negative association with daily new COVID-19 cases, 

respectively. 

6. Carbon Monoxide (CO) and COVID-19 cases 

In Delhi NCR, during the first, second, and third waves, CO has shown moderate 

positive, weak positive, and moderate positive association with daily new COVID-19 

cases, respectively. 

7. SO2 and COVID-19 cases 

In Delhi NCR, during the first, second, and third waves, CO has shown moderate 

positive, weak positive, and weakly positive association with daily new COVID-19 

cases, respectively. 

From the above results, it is observed that (PM2.5, CO, and SO2) were among the 

pollutants which were showing a positive association with daily new coronavirus 

cases (p < 0.001). Additionally, (PM10, NO2, NOX, and O3) were among the 

pollutants, which has shown a positive association with the spread of the virus during 

two out of three waves at bivariate level analysis (p < 0.001).  From the above tables, 

it can be seen that the air pollutants (predictors) are showing a high correlation among 

them (r > 0.8), which indicates the presence of collinearity among variables. In the 

next step, the dataset will be analysed at a multivariate level using a multiple linear 

regression model to draw out some strong evidence for the existence of collinearity 

among variables. 

 

4.3  Variance Inflation Factor (VIF)  

The stepwise procedure of multiple linear regression was performed to find collinearity among 

predictors. Results appeared after analysing the dataset using the "least square (NLS and 

ARMA)" regression model for the dataset of each wave in Delhi NCR are as follows: 

1. In Delhi NCR, during first wave the result shows that 40.53% of the variance in cases can 

be accounted for by the air pollutants, collectively, (F-statistic) = 9.153, p < 0.000001. 

Looking at the unique individual contributions of the predictors, the results show that PM2.5 

(β= 50.91, t= 3.627, p < 0.0005), NOX (β= 93.7, t= 2,99, p < 0.0035), and SO2 (β= 178.7, 

t= 2.81, p < 0.006) were among the most significant (p < 0.05) air pollutants that influenced 

the incidence of SARS-CoV-2 in Delhi NCR. 
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2. In Delhi NCR, during the first wave, the result shows that 28.1% of the variance in cases 

can be accounted for by the air pollutants, collectively (F-statistic) = 2.46, p < 0.03. 

Looking at the unique individual contributions of the predictors, the results show that O3 

(β= 998.71, t= 2.71, p < 0.009) was among the most significant (p < 0.05) air pollutants 

that influenced the incidence of SARS-CoV-2 in Delhi NCR. 

3. In Delhi NCR, during the first wave, the result shows that the air pollutants can account for 

68.96% of the variance in cases, collectively, (F-statistic) = 6.98, p < 0.0001. Looking at 

the unique individual contributions of the predictors, the results show that SO2 (β= 259.99, 

t= 2.09, p < 0.04) was among the most significant (p < 0.05) air pollutants that influenced 

the incidence of SARS-CoV-2 in Delhi NCR. 

Table 5 shows that 36.1 %, 16.7 %, and 59.1 % variance in COVID-19 cases can be accounted 

for by the pollutants in NCR during the first, second, and third wave, respectively, at p < 0.001. 

Furthermore, PM2.5, PM10, NO2, NOx, and CO were the predictors whose VIF value is more 

significant than ten and tolerance level is less than 0.10 during each wave, which specifies that 

the pollutants are highly correlated with each other. The high values of VIF corresponding to 

the variables show that there is a problem with collinearity. From all these findings, it can be 

said that the association can't be determined using standard regression models because they 

will not be able to predict the correct coefficients. In the next section, to deal with this issue, 

elastic net regularization has been applied to find the best output for our collected dataset and 

to predict better results. 

Table 5 Multicollinearity statistics (p <0.001) 

Variables 

First Wave 

 (R2 = 0.361) 

Second Wave  

(R2 = 0.167) 

Third Wave  

(R2 = 0.591) 

Tolerance VIF Tolerance VIF Tolerance VIF 

PM2.5 0.028 35.19 0.054 18.51 0.034 29.51 

PM10 0.031 31.75 0.066 15.25 0.032 31.07 

NO2 0.043 23.1 0.084 11.93 0.015 64.74 

NOx 0.7 14.31 0.089 11.22 0.02 48.96 

O3 0.484 2.06 0.693 1.44 0.202 4.96 

CO 0.083 12.04 0.323 3.09 0.059 16.81 

SO2 0.27 3.71 0.249 4.01 0.647 1.54 
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4.4  Association among air pollutants and SARS-CoV-2 daily cases using elastic net  

In the previous section, a high correlation was found among most of the predictors 

(collinearity). To remove this discrepancy and predict a better model, elastic net regularization 

has been used in model exploration and coefficient estimation. The results that appeared after 

analysing the dataset are mentioned below lines: 

4.4.1 During First Wave 

In Delhi NCR, the result shows that air pollutants can account for 38.5% of the variance in 

cases, collectively shown in the Figure 31 of model output. As shown in Figure 32 Lambda (𝜆) 

at minimum error, RMSE (Root mean square error) and MAE (Mean absolute error) came out 

as 13.7, 1549.7, and 1279.7, respectively, after testing and training the model with K-Fold 

cross-validation with (K=10 folds) (Figure 33). In the Figure 34, this model's actual, fitted, and 

residual lines are portrayed in a graph that indicates the justifications for model output. Looking 

at the unique individual contributions of the predictors (pollutants), the results show that the 

air pollutants which influenced the occurrence of SARS-CoV-2 daily cases in Delhi NCR are 

portrayed in Equation (4) 

𝑁𝑒𝑤 𝐶𝑎𝑠𝑒𝑠𝐹𝑖𝑟𝑠𝑡 𝑊𝑎𝑣𝑒 = 4240.13 + 40.28 ∗ 𝑃𝑀2.5 + 68.58 ∗ 𝑁𝑂𝑋 + 16.72 ∗ 𝑂3 + 82.52 ∗ 𝐶𝑂 +

85.64 ∗ 𝑆𝑂2 − 3.9 ∗ 𝑁𝑂2 − 32.6𝑃𝑀10   (5)                

Furthermore, the Figure 35 displays the equation derivatives of new covid cases during the first 

wave. It is observed from the output of the first wave dataset that for every 1 μg/m3 increase in 

PM2.5, O3, CO, and SO2, COVID-19 cases will increase by 40.28, 16.7, 82.5, and 85.6, 

respectively, and when there will be 1 μg/m3 decrease in PM10, and NO2, COVID-19 cases will 

decrease by 32.6, and 3.9 provided that at all the other parameter remain unchanged at a 

particular time. Additionally, with every one ppb increase in NOX COVID-19, cases will 

increase by 68. Hence, during the first wave, mainly every pollutant has shown a significant 

association with the spread of the virus in the NCR region. 
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Figure 31. Model output summary of the first wave 

 

 

 

Figure 32. Results after analysing the dataset for the first wave 
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Figure 33. Training and testing of the dataset with K-Fold cross-validation for the first wave 

 

 

 

Figure 34. Residual, Actual and Fitted lines of regression model for first wave dataset 
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Figure 35. Equation derivatives for the first wave 

 

4.4.2 During the Second wave 

In Delhi NCR, the result shows that air pollutants can account for 19.28% of the variance in 

cases, collectively shown in the Figure 36 of model output. As shown in Figure 37 Lambda (𝜆) 

at minimum error, RMSE (Root mean square error) and MAE (Mean absolute error) came out 

as 61.4, 10851.9, and 9406.1, respectively, after testing and training the model with K-Fold 

cross-validation with (K=5 folds) (Figure 38). In the Figure 39, this model's actual, fitted, and 

residual lines are portrayed in a graph. Looking at the unique individual contributions of the 

predictors (pollutants), the results show that the air pollutants which influenced the occurrence 

of SARS-CoV-2 daily cases in Delhi NCR are portrayed in Equation (5) 

𝑁𝑒𝑤 𝐶𝑎𝑠𝑒𝑆𝑒𝑐𝑜𝑛𝑑 𝑊𝑎𝑣𝑒 = 359.4 + 136.5 ∗ 𝑃𝑀2.5 + 382.3 ∗ 𝑂3 + 13.8 ∗ 𝑃𝑀10 − 2.2 ∗ 𝐶𝑂 − 20.2 ∗

𝑁𝑂2 − 94.8 ∗ 𝑁𝑂𝑋 − 168.4 ∗ 𝑆𝑂2  (5) 

                                Furthermore, the Figure 40 displays the equation derivatives of new covid 

cases during the first wave. It is observed from the output of the second wave dataset that for 
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every 1 μg/m3 increase in PM2.5, PM10, and O3, COVID-19 cases will increase by 136.5, 13.8, 

and 382.3, respectively. When there is a 1 μg/m3 decrease in SO2, CO, and NO2, COVID-19 

cases will decrease by 168.4, 2.2, and 20.2, provided that all the other parameters remain 

unchanged at a particular time. Additionally, with every one ppb increase in NOX COVID-19, 

cases will increase by 94.8. Hence, during the second wave, mainly every pollutant has shown 

a significant association with the spread of the virus in the NCR region. 

 

 

Figure 36. Model output summary of the second wave 
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Figure 37. Results after analysing the dataset for the second wave 

 

 

 

Figure 38. Training and testing of the dataset with K-Fold cross-validation for the second wave 
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Figure 39. Residual, Actual and Fitted lines of regression model for second wave dataset 

 

 

Figure 40. Equation derivatives for the second wave 
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4.4.3 During Third Wave 

In Delhi NCR, the result shows that the air pollutants collectively account for 55.32% of the 

variance in cases as shown in Figure 41. As shown in Figure 42 Lambda (𝜆) at minimum error, 

RMSE (Root mean square error), and MAE (Mean absolute error) came out as 63.1, 6859.2, 

and 38.34, respectively, after testing and training the model with K-Fold cross-validation with 

(K=10 folds) (Figure 43). In the Figure 44, this model's actual, fitted, and residual lines are 

portrayed in a graph. Looking at the unique individual contributions of the predictors 

(pollutants), the results show that the air pollutants which influenced the occurrence of SARS-

CoV-2 daily cases in Delhi NCR are portrayed in Equation (6) 

𝑁𝑒𝑤 𝐶𝑎𝑠𝑒𝑇ℎ𝑖𝑟𝑑 𝑊𝑎𝑣𝑒 = 42102.3 + 164.8 ∗ 𝑃𝑀2.5 + 69.5 ∗ 𝑆𝑂2 + 20.1 ∗ 𝐶𝑂 − 86.8 ∗ 𝑃𝑀10 −

229.1 ∗ 𝑁𝑂2 − 272.5 ∗ 𝑁𝑂𝑋 − 297.5 ∗ 𝑂3 (6) 

Furthermore, the Figure 45 displays the equation derivatives of new covid cases during the first 

wave. It is observed from the output of the third-wave dataset that for every 1 μg/m3 increase 

in PM2.5, CO, and SO2, COVID-19 cases will increase by 164.8, 20.1, and 69.5, respectively. 

When there is a 1 μg/m3 decrease in PM10, O3, and NO2, COVID-19 cases will decrease by 86.8, 

297.5, and 229.1, provided that the other parameters remain unchanged at a particular time. 

Additionally, with every one ppb increase in NOX COVID-19, cases will increase by 272.5. 

Hence, during the third wave, mainly every pollutant has shown a significant association with 

the spread of the virus in the NCR region. 
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Figure 41. Model output summary of the third wave 

 

 

 

 

Figure 42. Results after analysing the dataset for the third wave 
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Figure 43. Training and testing of the dataset with K-Fold cross-validation for the third wave 

 

 

 

Figure 44. Residual, Actual and Fitted lines of regression model for the third-wave dataset 
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Figure 45. Equation derivatives for the third wave 
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6) to resolve the issue of collinearity among predictors and establish a relationship between 

daily new SARS-COV-2 cases and air pollutants using elastic net regression.  

This study indicates that PM2.5 was the primary pollutant showing high correlation with daily 

new cases. Its influence on corona virus is also increasing during each consecutive study 

period. Which is making it a severe cause of concern for citizens, as it is seen that the virus is 

unstoppable even after taking the vaccine.  

Additionally, O3, CO, and SO2 were among the pollutants which have shown a significant 

positive association with cases during two out of three study periods, while NOx and PM10 

were the pollutants that have shown positive association only during one out of three study 
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each study period. Findings of Study show that most of the contaminants present in our 

atmosphere have a significant positive impact on the propagation of the SARS-COV-2 virus in 

Delhi NCR.  

Few previous studies are available worldwide (countries or cities with the problem of poor air 

quality and COVID-19 infection). The association is examined at the multivariate level for 

different pollutants. Below sections show a comparison between the findings of this study with 

the results of previous studies, and the effects of the combination of pollutants and corona virus 

on human health will be discussed.   

Table 6. Elastic net regularization output (α = 0.5) 

Variables First Wave Second Wave Third Wave 

Intercept 4237.7 359.4 42102.3 

PM2.5 39.6 136.5 164.8 

PM10 -32.1 13.8 -86.8 

NO2 -1.2 -20.2 -229.1 

NOx 67.0 -94.8 -272.5 

O3 16.9 382.3 -297.5 

CO 69.5 -2.2 20.1 

SO2 80.2 -168.4 69.5 

Lambda (𝜆) at 

minimum error 

13.7 61.4 63.1 

L 1 Norm 4544.3 1177.6 43242.5 

Adjusted R2 0.385 0.1928 0.5532 

 

 

Figure 46. Most influencing predictor during each wave 
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4.5.2 COVID-19 and Particulate matters (PM2.5 & PM10)  

The influence of particulate matter less than 2.5 and 10 microns on SARS-COV-2 has been 

linked with oxidative stress, immunological dysregulation, cytotoxicity of polycyclic aromatic 

hydrocarbons, malfunctioning surfactants, inflammatory effects, metabolic pathways, and 

ACE-2 (it works as a receptor for COVID-19). PM2.5 is the only main pollutant which has 

consistently shown a strong and positive relationship with SARS-COV-2 daily cases during 

the first (β = 40.2, R2= 38.5%, 𝜆min error = 13.7), second (β = 136.5, R2= 19.28%, 𝜆min error = 61.4), 

and third (β = 164.8, R2= 55.32%, 𝜆min error = 63.1) waves. There are some previous studies 

available worldwide that claim a positive relationship between PM2.5 and daily new corona 

cases, i.e., (Adhikari & Yin, 2020; Fattorini & Regoli, 2020; Frontera et al., 2020; Jiang et al., 

2020; Jiang & Xu, 2021; Konstantinoudis et al., 2021; Li et al., 2020; Pei et al., 2021; Travaglio 

et al., 2021; Vasquez-Apestegui et al., 2021; B. Wang et al., 2020; Q. Wang et al., 2021; Y. 

Zhu et al., 2020),clearly indicating that PM2.5 acts as a carrier for the virus. Air pollution 

(PM2.5) can contribute to the COVID-19 pandemic in two ways. First, by making people more 

sensitive to COVID-19 infection by increasing their susceptibility to chronic diseases and 

putting COVID-19 infected persons at immediate risk, if not death. Second, because COVID-

19 can be transferred by microscopic particles or mixed with ultrafine aerosols, the risk of 

exposure to it is increased, and this situation is also explained in Figure 47 (Annesi‐Maesano et 

al., 2021). 

 

Figure 47. Air pollution and COVID-19 transmission. (Annesi‐Maesano et al., 2021) 
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On the other hand, the findings for PM10 exhibited major contradictions since it showed a 

positive connection with corona virus instances during the second (β = 13.8, R2= 19.28%, 𝜆min 

error = 61.4) wave; earlier studies in other nations showed a positive association, i.e., (Liu et al., 

2021; Pei et al., 2021; Setti et al., 2020; Travaglio et al., 2021; B. Wang et al., 2020; Q. Wang 

et al., 2021; Y. Zhu et al., 2020) establish a role of PM10 in virus spread. However, the model 

a revealed negative correlation for the first (β = -32.6, R2= 38.5%, 𝜆min error = 13.7) and third (β 

= -86.8, R2= 55.32%, 𝜆min error = 63.1) wave, which is also seen by (Bontempi, 2020), he gave 

an observation that city with serve PM10 pollution are negatively associated with cases. 

 

4.5.3  COVID-19 and Nitrogen Dioxide (NO2)  

The effects of nitrogen dioxide on COVID-19 have been correlated with monocyte enrichment, 

increased pneumonic epithelial permeability, inflammatory impacts, immunological 

dysregulation, and lipid pathways. In this study NO2 shown negative association among SARS-

COV-2 daily cases during the first (β = -3.9, R2= 38.5%, 𝜆min error = 13.7), second (β = -20.2, 

R2= 19.28%, 𝜆min error = 61.4), and third (β = -229.2, R2= 55.32%, 𝜆min error = 63.1) wave, which 

indicate that there is an inverse relationship among both, which is also has been studied by 

other researchers (Lin et al., 2020; Zoran et al., 2020a). Previous studies in the Delhi region 

also found a negative connection with NO2, but epidemiological studies reveal that nitrogen 

dioxide increases our respiratory system's vulnerability to coronavirus infection (Mele & 

Magazzino, 2021). 

 

4.5.4 COVID-19 and Ground-level Ozone (O3)  

The effects of ground-level ozone on COVID-19 have been because it can ameliorate 

inflammation and pain because of antiparasitic, bactericidal, and virucidal properties 

(Fernández-Cuadros et al., 2020). Additionally, O3, with the help of its metabolites, can 

regulate our immune structure by administering the release of cytokines (Alberto, 2011). As a 

result of the presence of the host immune system, it can enhance the development of bacterial 

activity with the help of ozone (Babior et al., 2003). O3 shown a positive connection with new 

daily cases during first (β = 16.72, R2= 38.5%, 𝜆min error = 13.7) and second (β = 382.3, R2= 
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19.28%, 𝜆min error = 61.4) wave, also seen in other studies, i.e., (Adhikari & Yin, 2020; Liu et 

al., 2021; Travaglio et al., 2021; Y. Zhu et al., 2020; Zoran et al., 2020a). However, during the 

third wave, ozone showed a negative correlation with corona cases (β = -297.5, R2= 55.32%, 

𝜆min error = 63.1), which also has been observed by several researchers, i.e., (Fronza et al., 2020; 

Jiang et al., 2020; Liang et al., 2020). (Nassan et al., 2021), claimed that ozone does not induce 

metabolite changes, but its provisional exposure is associated with the SAM metabolism 

cysteine, a member of taurine, cysteine, and methionine. 

 

4.5.5 COVID-19 and Carbon Monoxide (CO)  

The effects of carbon monoxide on COVID-19 have been correlated. It produces anti-

inflammatory effects, vasodilation, and the high concentrations of CO may enhance COVID-

19 spread because of the damaged alveolar-capillary unit. Positive associations among carbon 

monoxide and corona cases were observed in this study during the first (β = 82.52, R2= 38.5%, 

𝜆min error = 13.7) and third (β = 20.1, R2= 55.32%, 𝜆min error = 63.1) wave, indicating that CO has 

helped in increasing corona virus spread during both waves, i.e., (Jiang et al., 2020; Lin et al., 

2020; Liu et al., 2021; Q. Wang et al., 2021) also studied the same. However, a minor negative 

relationship was observed during the second wave (β = -2.2, R2= 19.28%, 𝜆min error = 61.4), 

which is also seen in another research, i.e., (Jiang and Xu, 2021; Pei et al., 2021). 

4.5.6 COVID-19 and Sulfur Dioxide (SO2)  

The effects of sulfur dioxide on COVID-19 have been correlated, i.e., as the concentrations of 

sulfur dioxide rise, it starts to damage our respiratory tract and increase the susceptibility of a 

host in our body. In this study, a positive relationship was discovered between SO2 and corona 

cases during the first (β = 85.64, R2= 38.5%, 𝜆min error = 13.7) and third (β = 69.5, R2= 55.32%, 

𝜆min error = 63.1) waves, indicating that SO2 increased cases in the NCR region during both 

waves, which is also seen in other researches, i.e., (Lembo et al., 2021; Liu et al., 2021; Q. 

Wang et al., 2021; Y. Zhu et al., 2020). However, during the second wave (β = -168.4, R2= 

19.28%, 𝜆min error = 61.4), it has shown a negative relationship, also studied by Jiang et al., 2020; 

Jiang and Xu, 2021. 
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4.5.7 COVID-19 and NOx  

The effects of oxides of nitrogen on COVID-19 have been correlated, as it can cause 

inflammation of our airway system at a high level when its concentration is high in our 

surroundings. In this study, there was a positive correlation between NOx and cases only during 

the first (β = 68.58, R2= 38.5%, 𝜆min error = 13.7) wave, while in the second (β = -94.8, R2= 

19.28%, 𝜆min error = 61.4) and third (β = -272.5, R2= 19.28%, 𝜆min error = 61.4) waves, there was 

an inverse effect concerning the daily COVID -19 cases was found which indicates that NOx 

was playing a role in the transmission of coronavirus in some circumstances.   
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CHAPTER 5  
CONCLUSION 

 

Beginning from 7 criteria air pollutants and using the best available method to remove 

multicollinearity among predictors, the results were obtained in which PM2.5 pollutant was a 

strong predictor of daily SARS-COV-2 transmission in Delhi NCR. Furthermore, results also 

reveal that the (O3), (CO), and (SO2) showed a significant positive association in the spread of 

daily new corona cases. Additionally, PM10, NO2, and NOx have a significantly less or inverse 

relationship with the spread of the virus.  

From these findings, it can be said that air pollutants have played a significant favourable 

influence on the rate of multiplication of SARS-COV-2 daily cases in the regions where 

pollution levels are high during each study period. The Indian Government has to make 

effective policies to control the emission of pollutants in the NCR region, which will further 

help minimize the influence of climate change and air pollution on current and future 

pandemics.  
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