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ABSTRACT 

 

         Electric Vehicles are widely considered the future of the transportations industry, most 

developed nations are pushing towards cleaner modes of transportation. EVs are leading 

candidates for the same. One of the key components required for the economic and 

technological success of EVs is Battery Management System. A lot of research is being 

done on the topic, however the topic itself is very big, and the research is usually focused 

on some subtopic like SOH estimation. In this project, the target is to simulate the State Of 

Charge estimation, balancing technique and State Of Health estimation which are key 

functions of Battery Management System. Apart from this battery simulation is also done, 

there are many ways of doing it, they are briefly given in the report, the battery is simulated 

in two ways in the report, each model is specific to some estimation and hence is modelled 

with the details required. The ageing of battery is also simulated and the results under 

different conditions are compared. Different batteries are also compared for their usability 

specifically with respect to electrical vehicles. 

         Overall, this report rather than going into particular functions of BMS has tried present all 

the major functions. The techniques simulated to estimate the SOC involves basic 

techniques like Coulomb Counting and a little more complex technique like PIO. The 

purpose of doing the project this way is to highlight the practical problems with the basic 

technique and how a little complex method overcomes those issues. The SOH estimation 

is done with the help of PSO algorithm, and the empirical battery model is used to validate 

the results. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background: 
 

The rise in levels of greenhouse gases and the limited supply of fossil fuels has pushed us 

to look for alternatives for conventional vehicles. In recent times the world have seen a 

steady shift towards Electric Vehicles. Electric vehicles (EVs) do not emit greenhouse gases 

and are not dependent on fossil fuels [2]. They also help in mitigating noise pollution as they 

are basically noiseless compared to conventional vehicles. While the future with EVs looks 

bright but engineers are far from achieving that future as EVs are facing some major 

technological hurdles along the way. For starters, EVs are installed with a significant number 

of cells and their durability and range per charge possess a great challenge for engineers 

across the globe [2]. One of the key components for improving the life and utilization of 

battery packs is proper management of resources available to us. The battery in an electric 

vehicle should be able to supply not just long-lasting energy but also high power. Li-ion 

batteries are the popular options for the EVS as they have many advantages over other 

potential candidates, but proper monitoring of the batteries is very important as they are 

sensitive to the overcharging [1]. Hence a system is needed which can properly monitor, 

analyze and utilize the battery pack and this system is called Battery Management System 

and this is what this project is based on. In this project the simulation and implementation 

the Battery management system for the EVs will take place. 

 

1.2 Objectives: 

 
1) To simulate the Battery management system for EVs in MATLAB Simulink. 

2) To test the effectiveness of simulated model under controlled experimental conditions. 
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CHAPTER 2:  LITERATURE SURVEY 

 

2.1 Battery Terminology: 

Battery: An electric battery is a device that produces electrical energy by converting chemical 

energy into electrical energy. It is made up of two or more cells connected in series or parallel to 

provide the required operating voltage and capacity. 

 

Battery terminology: 
 

1) Nominal voltage: Nominal voltage is the voltage supplied by a fully charged cell or battery 

when it delivers specified capacity at a specific discharge rate. 

 

2) SOC: The ratio between the energy saved in the battery and the total energy that can be saved 

in the battery is known as SOC (State of Charge). Its value lies between 0 and 1. 

 

SOC= Q(t)/Qn (1) 
 

Where Q(t)= present capacity 

Qn= nominal capacity 

 
3) DOD: Depth of discharge tell us that how much energy is lost by the battery. It is 1-SOC. 

 

4) C rate: The C-rate is the ratio of the charge or discharge current in Amperes to the rated 

capacity in Ah. For example, if the rated capacity is 10Ah, the C/2 rate is 5 A. 

 

5) Capacity: Battery capacity is a measurement of the amount of energy a cell or battery can 

deliver during a single discharge. The capacity of a battery is usually expressed in amp-hours 

or watt-hours. 

 

6)  Cycle Life: The number of times a cell or battery may be charged and drained before its capacity is 

depleted under specified conditions. 

 

7) Specific energy: Specific energy (Wh/kg) is the weighted capacity of a battery. The capacity 

has to do with the amount of time it takes to complete a task. High specific energy is optimized 

for products that require lengthy runtimes at moderate load. 
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8) Specific power: Specific power refers to a device's ability to provide a large current and 

reflects its loading capacity. Power tool batteries are designed for high specific power and 

have a low specific energy. 

 

2.2 Types of Batteries: 
 

Ni-Cd Batteries: 

Ni-Cd batteries have lower specific energy than Li-ion, However, but they have a steady discharge 

voltage and may be continuously overcharged if necessary, making them extremely dependable [3]. 

They can also be used in high-temperature conditions. But they are very costly, and cadmium in itself 

is hazardous to environment. 

 
Lead Acid Batteries: 

Lead-acid batteries require lead plates as they act as electrodes and these electrodes are immersed 

in sulphuric acid. The main advantage of this type of battery is that Lead-acid batteries have the 

lowest cost of any rechargeable battery type for the same amount of power [3]. They are used where 

a large amount of power is needed suddenly which is why they are used in conventional cars. But 

they have lower specific energy, and they cannot be charged quickly. They are also very dangerous 

to deal with and are environmental hazard [3]. 

Li-ion Batteries: 

In the present scenario, there are many options available for the batteries but for electric vehicles, 

none is more attractive than the Li-ion batteries and there are good reasons for it. Li-ion batteries 

have many advantages over conventional batteries. One of the major advantages of a Li-ion battery 

is that provides the best charge-to-weight ratio [16]. This helps in reducing the overall weight of 

the vehicle which is a game-changing feat for EVs. Apart from this They have a greater round-trip 

efficiency than many other options, which means they can last longer than other battery types like 

lead-acid [1]. 

The six lithium-ion battery types are lithium cobalt oxide, lithium manganese oxide, lithium nickel 

manganese cobalt oxide, lithium iron phosphate, lithium nickel cobalt aluminium oxide, and 

lithium titanate. [16]. 

Here is the comparison between Lithium Cobalt oxide, Lithium Manganese oxide, Lithium Iron 

Phosphate and Lithium Nickel cobalt [16]. 
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Lithium Cobalt       

Oxide 

Lithium 

Manganese      Oxide 

Lithium 

Iron 

Phosphate 

Lithium 

Nickel 

Cobalt 

Al Oxide 

1)Specific Energy is 
high 

1) Specific Energy is 
higher 

1) Low Specific 
Energy 

1) Highest 
Specific 
Energy 

2)Specific Power is low 2) Specific Power is 
high 

2)Lowest Specific 
Power 

2)Highest 
Specific Power 

3)Life Span is low 3) Life Span is lower 3) High Lifespan 3) Medium 
Lifespan 

4)Cost is high 4) Cost is high 4) High Cost 4) Lowest Cost 

5)Performance is higher 5)Performance is lower 5) Highest 
Performance 

5) Medium 
Performance 

6)Safety is lowest 6) Safety is medium 6) Highest Safety 6) Medium 
Safety 

7)Low thermal Stability 7)Low thermal Stability 7) Highest thermal 

stability among 

Li- ion Batteries 

7)Low 

thermal 

stability 

8)Low C- rate 8)Low C- rate 8)Low C- rate 8)Low C- 
rate 

 
Table 2.1 Comparison of different Li-ion batteries 

 

There are many other merits also such as temperature sensitivity and lower volume. 

The most vital factor for EVs to succeed is the driving range of the vehicle per charge. To enhance 

the range one the most important thing is proper utilization of the battery pack. Particularly Li-ion 

battery pack is very sensitive to overcharging problems. Overcharging in Li-ion batteries leads to 

Shortening the life of the battery and operating at a high-power level overcharging can even lead to 

hazardous situations [2]. 
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2.3 Battery Modelling: 
 

Electrochemical battery modeling is very important to understand and predict the battery performance 

under different conditions. This technique is so fundamental for the development of the batteries for 

electrical vehicles that a lot of research has been going on now [11]. 

 

There are various methodology for battery modelling namely: 

 

1) Physical First Principle Models or Electrochemical Models 

2) Mathematical Modelling of battery 

3) Electrical Modelling 

 

Physical First Principle Models: They are based on the electrochemical reactions and incorporates 

thermal models, parasitic reactions, complex surface structure. Empirical relations are used to 

incorporate the ageing of the battery in the model [26]. They are the most accurate models for the 

battery, but the complexity and requirement of high computational power (days of simulation required) 

makes it method undesirable especially when on board estimation of parameters is required [26]. This 

method however can be used for ageing studies or to optimize the physical design of the batteries. It 

can also be used to relate the battery design parameters with voltage, current and concentration 

distribution [26].  

 

Mathematical Modelling of Battery: This type of modelling is based on complex differential 

equation or state space equations [26]. Apart from being very complex, the error in the parameters 

estimation of the battery is very high compared to other methods [26]. The current and voltage 

information is not given and has to be obtained with great difficulty [26]. This model is useful in 

predicting the efficiency, capacity and battery run time. It is not used much owing to its complexity 

and error in estimation [26]. 

 

Electrical Modelling: In this type of modelling, the battery is replaced by the electrical equivalent 

circuit, the electrical components behavior is used to explain the functioning of the batteries [11]. The 

accuracy of these types of modes is more than what we get through mathematical modelling but less 

than first principle modelling [11]. These types of models are more intuitive to electrical engineers and 

are being widely used for their reasonable complexity and accuracy [26]. 

 

There are three types of Electrical Equivalent Model: 

 
 1)Thevenin Equivalent Model of Li-ion Battery: 

         The Thevenin equivalent model of Li-ion battery consists of open circuit voltage, Voc, internal 
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resistance Ro, and one or two parallel RC circuits. The resistances and capacitances are function of 

SOC, Temperature and ageing of the cells. As the number of parallel branches increases, the 

accuracy of the model also increases. But in general, it does not take more than two branches of 

RC circuit as they give satisfactorily results. The complexity of Battery increases a lot if there is 

further increase in the number of RC branches [11]. In general, the Thevenin electrical equivalent 

models do not provide steady state battery voltage variations as well as runtime information. 

 

 

 

 
Fig. 2.1 Thevenin Equivalent Model for Lithium-ion Battery 

 

      

 

2) Impedance- Based Electrical Model: 

In this type of electrical equivalent models’ electrochemical impedance spectroscopy is used to 

obtain an ac equivalent model [26]. The analysis is usually done in frequency domain and an 

equivalent impedance is used to represent the impedance spectra [26]. The whole procedure of 

representing battery with an impedance that can provide a satisfactory transient and ac response 

is complex [11]. These types of models do not work for variable temperature and SOC. Hence it 

is difficult to predict dc response or battery runtime [26]. 

 

3) Runtime – Based Electrical Model: 

Runtime-based models use a sophisticated electrical network to simulate battery endurance and 

dc voltage response with a constant discharge current in SPICE-compatible simulators. They 

can't predict runtime or voltage responsiveness for varying load currents with any accuracy [26]. 
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2.4 Battery Ageing Mechanism: 
 

Ageing means degradation of battery capabilities over time. This results in a decrease of capacity, 

also known as capacity fading, as well as an increase in impedance, resulting in a decrease in 

efficiency and energy supplying capabilities of battery. The main reason behind capacity fading 

over time is due to the loss of cyclable Li ion due to formation of Solid electrolyte interphase 

(SEI). This led to overall increase in resistance of the batter [21]. 

Factors affecting battery ageing: 

1) Time: As chemical reactions are taking place in the battery overtime the SEI layer 

formed on the anode and cathode which limits the active lithium ion which in turns 

increases the resistance and it also reduces the ability of the cell to supply energy [23]. 

2) Temperature: It is one of the most important factors affecting the ageing mechanisms 

in the battery. The capacity loss at idle state (i.e., calendar losses) follows Arrhenius 

equation. When the temperature rises above 25 degrees Celsius, the ageing rate tends 

to accelerate. When the temperature drops below 25 degrees Celsius, the pace of 

ageing accelerates. [22] 

3) DOD: Depth of discharge do affect the battery ageing process as evident in the capacity 

loss during calendar ageing, but the impact of DOD is not as significant as temperature, 

time and Crate [22]. 

4) Crate: When charging or discharging a cell with a high Crate, the battery's ageing 

process is accelerated. Cell heating increases when the C rate increases, this results in 

rise in temperature of battery which in turn contributes to the ageing of the battery 

[22]. 

There are two types of ageing that occurs in Li ion batteries namely: 1) Calendar ageing 

                                                                                                        2) Cycle ageing    

Calendar ageing: It is referred to as the capacity loss of battery at idle state at elevated temperatures. 

The capacity loss here (due to temperature) follows Arrhenius equation [23]. 

 

                                                          QLoss= B*e(-E
a

+370.3*C_rate)/ R*T *Az 

 

A= Cycle No. *DOD*Full cell capacity 

R=Universal Gas Constant 

T= Temperature (in K) 

B=Constant 

Z= Power Law factor 
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C_rate= C rate of the battery 

Qloss= Capacity loss 

 

 

Cycle Ageing: When the battery is charged or discharged, cycle ageing occurs. This is due to the 

charge level, utilization mode, temperature, and current of the battery. As a result, several factors play 

a role in this type of ageing [23]. It is simply represented as increase of resistance of the battery. 

                                                   

                                                            R_ser= Ka* Nb +Rn 

 

Where, 

Rn= initial value of series resistance 

N= no of cycles 

R_ser= Series Resistance of battery 

 

2.5 Battery Management System: 

 
The battery management system is crucial in this regard; it monitors several battery factors such as 

temperature and SOC. It also uses active or passive biassing to control the charging and discharging 

of the battery packs. Various analog/digital sensors with microcontrollers are utilized for 

monitoring purposes. 

 
Block Diagram of BMS: 

 

 

 

 
 

Fig. 2.2 Block diagram of BMS
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Based on the topology, there are 3 types of BMS available 

1. Modular BMS 

2. Centralized BMS 

3. Distributed BMS 

They all are same with respect to their functionality but differ only in topology. They are following: 

 

1 Modular BMS: A number of controllers, each controlling a certain number of cells, with 

communication between them. 

2 Centralized BMS: The battery cells are connected to a single controller via a tangle of wires. 

3 Distributed BMS: Each cell has its own BMS board, with only one communication wire 

connecting the battery to the controller. 

 

Functionality of BMS: 

 

Fig. 2.3 Functionality of BMS 
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Input of BMS: 

1) Cell Voltages 

2) Cell Temperature 

3) State Request 

4) Output voltage of charger 

5) Battery pack voltage &current 

 

Output of BMS: 

1) SOC 

2) BMS State 

3) Current limits 

4) Balancing Command 

5) Charging Current Requirement 

6) Relay command 

7) Contactor commands  

BMS can be divided in four 

parts: 

1. Main State Machine 

2. Current Power Limits Calculation 

3. SOC Estimation 

4. Balancing Logic 
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CHAPTER 3: BMS Functions 

 

3.1 State of Charge Estimation: 

Since SOC is not a physical quantity. It is not possible to directly measure the state-of-charge. 

Only strongly correlated proxy quantities like as voltage, current, and temperature can be used to 

estimate it [5]. 

 

Categorizing SOC estimation methods: 

1) Conventional Methods: 

▪ Look Up Table Method/OCV Method 

▪ Coulomb Counting Method 

▪ Electrochemical Impedance Spectroscopy 

2) Model Based Approaches: 

▪ Electrical Circuit Model 

▪ Electrochemical Model 

3) Adaptive Filter/Observer Based Methods: 

▪ Kalman filter Based Methods 

▪  H infinity-based Estimation 

▪ PIO 

4) Data Driven Methods: 

▪ PSO Based Estimation 

▪ Artificial Neural Nets 

▪ Fuzzy Logic Based 

 

Some of the different Methods of SOC Estimation: 

 
1) Open Circuit Voltage method/LOOK UP TABLE METHOD: 

The look-up table makes use of the relationship between SOC and the open-circuit voltage 

(OCV), capacity, etc to establish some relation between them. By performing experiments on 

the battery, it tries to establish the relationship between the parameters and hence it tries to 

characterize how battery will behave in similar conditions. The look up table approach can be 

used to estimate the battery's SOC. [6]. 

 

Although there is a roughly linear relation between OCV and SOC for different batteries, this 

relationship is not accurate for lithium-ion batteries [13]. The capacity of the battery and the 

composition of the electrodes dictate this. With lithium-ion batteries, the relationship is fairly 
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non-linear. The SOC-OCV connection in LFP batteries is fairly flat, and there is high OCV 

hysteresis. As a result, in LFP batteries, the OCV approach is unreliable [15]. To reach the 

depolarization phase, LIB is first fully charged for a set period of time. After then, current pulses 

are used to fully discharge LIB. The battery is then held at rest for a set period of time, and the 

matching OCV of LIB is measured. The relationship between SOC and open circuit voltage is then 

mapped. One significant disadvantage of look-up table approaches is that they are only relevant 

to batteries in a static condition, that is, batteries that have not been loaded and have had ample 

time to rest to achieve balance [5]. 

That’s why there are not used for online prediction of SOC. 
 

2) Coulomb Counting Method: 
 

Because of its simplicity, it is the most widely used approach for estimating SOC. It is an open 

loop algorithm. Here it integrates the discharge current over a period and then subtract it from 

the initial value of SOC [8]. 

SOC = SOCo - [ ἡ* ∫i_discharge(t)*dt ]/Cn (2)  

here, SOCo = initial state of charge 

η = coulombic 

efficiency, Cn= nominal 

capacity, 

i_discharge(t) = It is the battery's immediate discharge current. 

 

In order to implement the above method, it is important to know the initial value of the state of 

charge, it also need to have properly calibrated current source [10]. This method is utilizing an 

open-loop system, so the probability of errors is very high, apart from this since the error will be 

accumulate in this method hence our final estimation could be far away from the actual value, so 

care must be taken in the measurement of parameters while implementing this method [15]. 

 

This method is not utilized directly because of the problems mentioned above. Several factors 

like ageing of battery, discharge rate and sensor precision also affect the accuracy of this method. 

Hence it cannot be used practically to measure SOC in BMS [15]. 
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3) Electrochemical Impedance Spectroscopy: 

The impedance of the battery is calculated using this method by adjusting the current for a short 

time while using the battery voltage and current. The temperature and C-rate have a big impact 

on the relationship between internal resistance and SOC [13]. 

Except for resistances, capacitors, and voltage sources, the approach is named Electrochemical 

Impedance Spectroscopy (EIS) for online applications, and it uses a Warburg element and a 

constant phase element (CPE) [13]. 

Only similar charging conditions are applicable for this estimation method. As a result, it is not 

ideal for EVs that may be charged in an inconsistent manner with varying current. This 

approach is limited to frequency of very high range because of the high temperature influence 

[14]. 

 
4) Electrical Circuit model-based estimation: 

Model-based approaches use an advanced algorithm and a battery model to estimate the states 

of a battery based on measurable metrics like voltage, current, and temperature [14]. 

In this method, an equivalent electrical circuit is made to explain the battery processes. When a 

battery is discharged with a current pulse, a lot of the properties or qualities of the battery can be 

seen. Three distinct portions of the voltage drop can be identified: a sudden, a delayed or 

exponential reaction and finally towards the end of discharge. Here the Open Circuit Voltage 

is reduced due to lowered SOC [13]. 

The behavior of the separator inside the battery depends on temperature the most and causes 

the sudden drop, is represented by the internal resistance of an ECM [13]. 

  

A series of parallel RC elements influence a battery's overall dynamic responsiveness. A 

nonlinear or SOC-dependent voltage source is used to describe the voltage level [13]. 

A predefined SOC is employed in the modern control design technique to provide OCV data 

and to obtain the battery output voltage. The deployment of an algorithm is the final phase in the 

SOC estimate process. 

The main drawback of this method depending on how accurate the estimation of SOC, the accuracy 

of the battery model will be decided so, it is very difficult to achieve highly accurate model [11]. 
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5) Kalman filter-based SOC & SOH estimation: 

It's a clever tool for calculating a linear system's best state, and it is the most widely used used 

to estimate the battery dynamic state [13]. Based on linear quadratic estimation and under 

conditions of linear-gaussian uncertainty, KF method believes that the optimal solution to the 

Bayesian filter to be an extremely fast approach. [15]. However, it is restricted to linear and 

unimodal systems. Once the system is operational, KF the new state is estimated and corrected. 

The entire process has these two major steps: 

 

• A state prediction step 

• A state update step 

 

The Kalman filter algorithm is self-correcting [15].  

EKF (Extended Kalman Filter): 

 

EKF linearizes the battery model using partial derivatives and a first-order Taylor series 

expansion. KF only utilises one point, the mean, and linearizes each time increment around that 

point. [13]. 

 

           Unscented Kalman Filter: 

 

The method makes use of a set of points (called sigma points) which includes the average and 

approximates around them. Approximation precision increases as number of points increases, but 

as the no. of points increases the method becomes more complex. The KF approach has the 

benefit of being able to accurately estimate the states that are impacted by external disturbances 

[13]. 

 

             Disadvantages of KF: 

High complexity, high computing expense, and instability plague the algorithms [14]. Complex 

matrix operations are used in the approach, which can cause numerical instabilities and make 

the process difficult to implement on a standard, cheap microcontroller [14]. KF techniques are 

constrained by Jacobian matrices' linearization accuracy and filter stability, and they rely 

largely on the battery model and sensor precision. [14]. 
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6) SOC estimation using PIO controller: 

In this method PI controller (as observer) is used. The feature of a PIO controller is to converge 

the predicted voltage to the measured voltage in an correct and rapid manner The outcomes 

display that the mistake is constrained to %2. But it requires trial and error method for tuning 

of the gains in the controller [16]. 

Here the algorithm compares the estimated terminal voltage with the actual terminal voltage, 

the error between the two will be fed to the PI controller. The output of PI controller is a 

control signal which is fed back to the model for estimation of SOC. 

Here major drawback is it is difficult to tune the PIO [16]. 

 
 

7) H∞ filter: 

H infinity (H∞) is an effective device to limit the impact of disturbances of external origin on 

output. The H∞-based approach is to assure that the noises remain under given level, so that 

error in SOC estimation is much less than tolerance levels [14]. 

This method is very similar to KF method here a strong design model which is robust under 

certain conditions is used. The next state of model is estimated by the H∞ filter like KF [16]. 

Essentially, it inherits all pitfalls of the KF primarily. Also, nonlinear constraints which include 

saturation aren't well-handled, and aging, hysteresis and temperature outcomes ought to vary the 

error offered by the method [16]. 

8) SOC & SOH estimation using PSO algorithm: 

Particle Swarm Optimization (PSO) can be used to look for a global minimum and personal 

minimum iteratively looking to enhance candidate on the subject of a cost function [17]. It 

has been found that PSO is frequently utilized in aggregate with the model- primarily based 

on techniques for SOC prediction of batteries. PSO is used to optimize important elements 

of the model together with voltage, resistances, and temperature [17]. 

Main drawback of PSO based estimation is its complexity and poor convergence rate [14]. 

                
Cost function = Error in measured terminal voltage 

Particles of PSO = Battery ECM parameters like Voltage, Resistance and Capacitor etc. [17]. 
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3.2 SOH estimation:  
 

State of Health (SOH) is used to measure the health of the battery. It is an extremely important 

parameter. The ability of a cell or battery to perform a specified discharge (or charge) function at a 

given point in the charge-discharge stand cycle regime is referred to as SOH [19]. 

To comment on SOH, we first need to establish the end of life (EOL) for the battery, EOL is taken as 

a period when the battery power is 60% of its initial maximum power at constant SOC and temperature. 

[19] 

The maximum discharge or charge current at a given SOC and temperature depends mainly on 

resistance offered by the battery as OCV (open circuit voltage) is largely dependent on SOC which is 

kept constant.  

So, in turn SOH is directly linked with the resistance offered by the battery. 

 

SOH= (𝑅𝑒𝑜𝑙 − 𝑅) ÷ (𝑅𝑒𝑜𝑙 −Rnew) 

 

Where Reol is resistance offered by the battery at EOL & Rnew is resistance offered by the battery 

when the battery is brand new. 

 

PSO Algorithm based battery parameter estimation and SOH estimation: 

 

PSO:  It is a metaheuristic algorithm which is based on the behavior of birds or fishes in group (swarm 

behavior). In this algorithm we iteratively tried to find the optimum solution to the problem by 

constantly trying to improve on the candidate solution based on personal best and global best solutions 

of the swarm particles. It is based on the principle of communication and learning [17]. 

 

The governing equations for PSO are given below: 

 

Xi(t+1) = Xi(t) +Vi(t+1) 

 

Vi(t+1) = w*Vi(t) +c1*[Pi(t)-Xi(t)] +c2*[ G(t)- Xi(t)] 

 Where 

 

 Vi= Velocity of particle i 

 Xi= Position of particle i 

 t= Number of iteration 

Pi= best position of particle i 
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G= Best Position for all the particles 

c1 & c2= Acceleration constant 

w= Inertia constant 

 

By comparing the model's terminal voltages to the genuine value, the PSO algorithm is utilised to 

optimise the equivalent circuit parameters of the battery model. [24]. As shown below first the SOC is 

calculate as all the parameters of Thevenin equivalent model depends on the SOC This model is being 

used to compare the result of PSO estimation , then PSO algorithm iteratively tries to obtained the 

components of the battery model according to the personal and global best solution until the error is 

minimum .After optimizing the parameters we use the series resistance of equivalent circuit to find the 

SOH of the battery as discussed before [25]. 

 

 

 

 
 

Fig. 3.1 SOH estimation using PSO algorithm 
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3.3 Balancing of Cells: 
 

Inside the battery pack, a lot of cells are connected in different configuration according to the 

voltage and other requirements but mostly they are connected in series to achieve the high voltage 

requirement of the battery pack. Since every cell cannot be the same, they charge or discharge at 

different rates, hence over time their SOC differs a lot, they share different voltages in the string 

and this phenomenon is detrimental for the battery pack [2]. Hence it needs a system to maintain 

the SOC of the cells in the battery pack, at the same level. This system or process of balancing 

SOC to enhance of the utilization     of cells in a battery pack is called cell balancing. The types of 

balancing used are: 

 

1) Passive balancing: 

 

The aim behind the passive cell balancing technique is to discharge the cells through a bypass route 

that is primarily dissipative [18]. Because the bypass can be external or integrated, it is simpler and 

easier to deploy than active balancing solutions, and it keeps the system more cost-effective in either 

case [18]. However, because all of the excess energy is wasted as heat, the battery's run time suffers, 

and it is less likely to be used during discharge [18]. 

 

2) Active balancing: 

 

Charge is transferred between the cells with inductive charge shuttling or capacitive charge 

shuttling using active cell balancing [18]. This is an efficient method, as it transfers energy directly 

to where it is needed instead of wasting it. The downside of method is it demands additional 

components which in turn increase the cost [18]. 
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Chapter 4: Simulations & Results 

 

4.1 PASSIVE BIASING: 

 
 

 

 

Fig. 4.01 Simulink Model for passive balancing 
Initial SOC:  

             Battery 1 = 25% 

Battery 2= 30% 

Battery 3=20% 

 

Final SOC of all batteries after 3600 sec =15% 

 

In this Simulation, a passive balancing technique has been demonstrated here it is using external 

loads(resistances) to dissipate the energy to balance the SOC, generally in EV’s the SOC of 

battery should not go below 70% but in this experiment a lower initial SOC is taken just to 

demonstrate the effectiveness of this model. 

The logic for switches to close and open according to the respective SOC is provided in the 

Function block, the MATLAB code for the same is provided below. 
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Fig. 4.02 Algorithm for passive balancing 

 

 
The waveforms below show the SOC and discharging current of the battery 3. It can be seen clearly 

since the SOC is at 20% initially the battery is cutoff from the circuit. 

 

 

 
 

Fig. 4.03 Battery 3 parameters 
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In figure below it is showing SOC and Current waveforms for battery 1 

Initial SOC=25%. 

 

 

Fig. 4.04 Battery 1 parameters 

 

 
In figure below it is showing SOC and Current waveforms for battery 2 

Initial SOC=30%. 

 

Fig. 4.05 Battery 3 
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The below Figure shows that SOC of three batteries is converging and becoming equal after 

3500 seconds 

 

 

 

Fig. 4.06 SOC comparison 
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4.2 Battery simulation: 
 

 

4.2.1 Look Up Table Method of battery simulation (used for SOC 

estimation using PIO method): 

 

 

 

 

 
 

Fig. 4.07 MATLAB Simulink model for Li-ion batteries 

The mathematical relation used to implement the model of battery: 
 

SOC = SOCo + [ ἡ* ∫i_charge(t)*dt ]/Cn (1) 
 

Vt = Voc(SOC)-i*R(T,SOC) (2) 

 

The look up table is used to establish the relation between open circuit voltage and SOC. Similar 

method is used to establish relation between resistor and temperature. Finally, it obtained the 

terminal voltage and SOC curve as shown below. 

The terminal voltage curve shows the average terminal voltage curve between charging and 

discharging of the battery. 

The SOC is steadily rising over time as expected from the implementation of the equation (1), the 

SOCo (initial value of State of charge) is taken as 0. 

Since the cells in a battery pack are in series the current remains constant, so it has taken current as 

constant. 
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The figure below shows the Terminal Voltage(V) over time(sec) 
 

 

Fig. 4.08 Terminal Voltage 

 

 
The figure below Shows SOC (0 to 1) over time(in sec): 

 
 

                                                               Fig. 4.09 SOC (during Charging)
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4.2.2 Battery simulation using empirical modelling: 
 

 
 

 

                                                              Fig. 4.10 Simulink model of Empirical battery model  
 

 

 

Empirical Battery Model: 

 
To obtain the relation between the battery parameters experiments on the battery are performed and 

with the help of curve fitting, the relation between parameters is obtained. Although to simplify the 

relationship approximation has been done. 

 R & C parameters of the battery model are almost constant between 20% and 100% of SOC and 

change exponentially between 0% and 20% SOC due to the electrochemical reaction inside the battery. 

However, the open-circuit voltage varies significantly with the SOC throughout. 

The parameters were applied to the proposed model under similar conditions (temperature, etc.) to 

mimic the real battery voltage response for the same pulse discharge currents that were used to extract 

the parameters to ensure that the results were accurate. 
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Fig. 4.11 Thevenin Equivalent Model for Lithium-ion Battery 
 

The relationships between parameters are shown below: 

 
 

Voc = -1.031*e-35*SOC + 3.685 + 0.1256*SOC-0.1178*SOC2 +0.3201*SOC3 

 

Rp1 = 0.3208*e-29.14*SOC +0.04669 

 

RP2 =6.603 * e-155.2*SOC +0.04984 

 

Cp1= 752.9*e-13.51*SOC + 703.6 

 

Cp2= -6056*e-27.12*SOC + 4475 

 

Ro= 0.001907 N0.4699 +0.008391 

 

Vt= Voc – I* (Ro +Zp1 +Zp2) 

 
 

The above equations show Voc(open circuit voltage), Rp1, Cp1, Rp2, and Cp2 branch impedances to 

capture the transient behavior of the battery as the nonlinear function of SOC. On the other hand, Ro 

is the series resistance of the battery used to capture the steady-state behavior of the battery it depends 

non-linearly on the number of cycles of the battery. 

Finally, the terminal voltage is the function of all the above parameters and the discharging 

current/charging current of the battery. 
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Fig. 4.12 Open Circuit and Terminal Voltage @ 1cycle   
 

 

 

 

  
Fig. 4.13 Open Circuit and Terminal Voltage @ 50 cycles   
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Fig. 4.14 Open Circuit and Terminal Voltage @ 200 cycles   

 

 

 

 

 

4.2.3 Battery Capacity Fading Model (Ageing Model): 
 

 
Fig. 4.15 Ageing Model   

 

 

QLoss= B*e(-31700+370.3*C_rate)/ R*T *Az 

 

 

 

A= Cycle No. *DOD*Full cell capacity 

 

R=8.314 

T= Temperature in Kelvin 

B=30330 

Z=0.55 

Ea= 31700 
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The above simulation shows capacity fading, it is based on power law equation described in Bloom et 

al. [28] 

Here B is a constant whose value at C/2 is taken as 30,330 [27], the activation energy (Ea) and power 

law slope(z) is generalized for all values of C rate [27]. 

The capacity loss at different value of temperature and DOD is shown below: 

 

 

 
Fig. 4.16 Capacity fading @333 K and DOD=0.8  

 

 

 
 

Fig. 4.17 Capacity fading @300 K and DOD=0.8 
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Fig. 4.18 Capacity fading @318 K and DOD=0.8 

 

 

 

 

Fig. 4.19 Capacity fading @300 K and DOD=0.2 
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4.3  SOC Estimation: 

 

4.3.1 Coulomb Counting:     

 

Here a simple coulomb counting method is implemented in MATLAB simulink to estimate State 

of Charge of the Li-ion battery. The mathematical equation used to estimate SOC is: 

SOC = SOCo - [ ἡ* ∫i_discharge(t)*dt ]/Cn 

 

 Initial value of SOC=100 % 

The battery is discharged till it’s SOC reaches 50%. 

 

 

                                                                                                                                                         

Fig. 4.20 Simulink Model for SOC estimation (Coulomb Counting) 

 

 
As seen from the figure below that battery current is going to fall to zero from 7.55A after the 

battery reaches 50% SOC. Here the value of SOC has been accurately estimated as 50% as 

shown in display after the function block. 
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Fig. 4.21 Battery Current 

In the figure below, the SOC falling because battery is getting discharged until 50% SOC is 

reached. 

 

 

Fig. 4.22 SOC Estimation
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4.3.2 SOC estimation using PIO method: 
 

 

 
 

Fig. 4.23 MATLAB Simulink Model (PIO) 

 

The block diagram of the PIO method is given below: 

 

Fig. 4.24 Block Diagram of PIO based estimation of SOC 
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Fig. 4.25 Comparison of Terminal Voltages  

 

Fig. 4.26 Comparison of SOC
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4.4 SOH Estimation: 

 

 
 

 

Fig. 4.27 Block diagram for SOH estimation using PSO algorithm 
 

 

 

 

 

 

Fig. 4.28 SOH estimation Vs No. of cycles 
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Chapter 5: Conclusion 

 

In this project the discussion started with the batteries, the battery parameters like SOC, DOD 

and Nominal Voltage etc are defined. Then some examples of rechargeable batteries like Li- 

ion batteries and their types are given. Brief Discussion on the modelling of the Li-ion battery 

was done. Later the battery is modelled using lookup table and Thevenin equivalent model of 

battery is modelled using empirical modelling. 

From the above discussion the need of BMS has been established, and from there the report 

went on to define the basic of BMS for example functionality of the BMS and so on. Then 

discussion on methods of estimation of SOC, for example Coulomb Counting method took 

place, after that discussion about the disadvantages and advantages of the method along with 

other important methods such as PIO, KF and PSO based estimation, later on in the report 

discussion on the needs of balancing are briefly discussed active and passive biasing. Then 

SOH estimation using PSO algorithm is discussed. 

Then in the report has been established our objectives has been established and that ends the 

chapter one. In chapter 2 these simulations are shown  

1. Passive Balancing 

2. Modelling of batteries for EVs using look up table 

3. Modelling of batteries for EVs using empirical Model 

 
4. SOC estimation using Coulomb Counting method    

5.  SOC estimation using PI observer 

6.  SOH estimation using PSO algorithm 

  

At the end the MATLAB codes used for the simulation has been provided. 
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Appendix 

 

MATLAB codes: 
 

 

*For Biasing Circuit 

function [y1, y2,  y3] = fcn(s1, s2, s3) 
 

 

 s1=int16(s1); 

 s2=int16(s2); 

 s3=int16(s3); 
 

 

 

 

a=min([s1, s2 ,s3]); 
 

 

if (s1 == a) 

    if(s1 == a && s2==a) 
 

 

 

 

    elseif(s1 == a && s2==a) 
 

 

 

 

    elseif(s1 == a) 
 

 

 

 

    else 

y1=0; 

y2=0; 

y3=0; 

y1=0; 

y2=1; 

y3=0; 

y1=0; 

y2=1; 

y3=1; 
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y1=0; 

y2=0; 

y3=0; 
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    end 

elseif(s2 == a) 

    if(s2 == a && s3 == a) 
 

 

 

 

    elseif(s2 ==a) 
 

 

 

 

  else 
 

 

 

 

    end 

elseif(s3==a) 

    y1=1; 

    y2=1; 

    y3=0; 

  else 
 

 

 

 

end 

end 

 

 

 
MATLAB CODE: 

For Battery modelling 

clc 

y1=1; 

y2=0; 

y3=0; 

y1=1; 

y2=0; 

y3=1; 

y1=0; 

y2=0; 

y3=0; 

y1=0; 

y2=0; 

y3=0; 
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clear all 

close all 

data=xlsread('Battery_Parameters') 

% Vr=OCV(SOC)-i*R(T,SOC) 

%SOC=SOCo-(1/Cn)*integrate(i(t))dt 

%% data reading 
 

 

soc=data(:,1) 

OCV=data(:,2) 

r_charge=data(:,3) 

r_discharge=data(:,4) 

 

%% input data 

i=2.3 

Cn=(2.3*3600) 

% sim_time=3600 
 

 

%% simulate 
 

 

sim('bat_mod') 

%% plot 

plot(soc,OCV) 

 

figure 
 

 

plot(soc,r_discharge) 
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MATLAB CODE: 
 

 

PSO estimation  of  battery  parameters 

 

function out = fcn(Vt,I) 

  

   

    %% problem defination 

 CostFunction =@(x,I,Vt) Sphere(x,I,Vt); %cost function 

nVar=4; %no of decision variables 

Varsize=[1 nVar]; %matrix size of decsion variables 

VarMin= 0; %lower bopund of decision Var 

VarMax=4; %Upper bopund of decision Var 

  

  

  

  

  

  

%% Parameters of PSO 

MaxIt =100; % maximum no of iteration 

nPop=50;  %Population size(swarm size) 

w=0.8;  %inertia coffecient 

c1=2; %personal acceleration coffecient 

c2=2; %social acceleration coffecient 

  

  

  

%% Intialisation 

%particle template 

empty_particle.Position=zeros([1 4]); 

empty_particle.Velocity=zeros([1 4]); 

empty_particle.Cost=zeros([1 1]); 

empty_particle.Best.Position=zeros([1 4]); 

empty_particle.Best.Cost=zeros([1 1]); 

  

%to achieve 50 particles 

  

particle=repmat(empty_particle, nPop ,1); 

%initialise the global best 

GlobalBest.Cost=inf; 

GlobalBest.Position=zeros([1 4]); 

%initialise population members 

for i=1:nPop 

    particle(i).Position(1,1)=unifrnd(VarMin, VarMax, 1); 

    particle(i).Position(1,2)=unifrnd(0, 0.1, 1); 

    particle(i).Position(1,3)=unifrnd(0, 1, 1); 

    particle(i).Position(1,4)=unifrnd(0, 1, 1); 

    particle(i).Velocity=zeros(Varsize); %intialise the velocity 

     

     

particle(i).Cost= CostFunction( particle(i).Position,I,Vt); %evaluation 

%particle(i).Cost= (Vm-Vt).^2 
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%update personal best 

particle(i).Best.Position= particle(i).Position; 

particle(i).Best.Cost= particle(i).Cost 

%update global best 

if particle(i).Best.Cost<GlobalBest.Cost 

    GlobalBest.Cost=particle(i).Best.Cost; 

end 

end 

%array to hold best cost value at each iteration 

 BestCosts= zeros(MaxIt,1); 

  

%% Main loop of PSO 

for it=1:MaxIt 

    for i=1:nPop 

        particle(i).Velocity=w*particle(i).Velocity+c1*rand(Varsize).*(particle(i).Best.Position-

particle(i).Position)+c2*rand(Varsize).*(GlobalBest.Position-particle(i).Position); 

         

        particle(i).Position=particle(i).Position+particle(i).Velocity; 

        if (particle(i).Position(1,1) >=0) && (particle(i).Position(1,1) <=4 ) 

            particle(i).Position(1,1)=particle(i).Position(1,1) 

        else 

            particle(i).Position(1,1)=3.4 

        end 

        if (particle(i).Position(1,2) >0.0103) && (particle(i).Position(1,2) <0.025 ) 

            particle(i).Position(1,2)=particle(i).Position(1,2) 

        else 

            particle(i).Position(1,2)=0.0103 

        end 

        if (particle(i).Position(1,3) >0.001) && (particle(i).Position(1,3) <0.4) 

            particle(i).Position(1,3)=particle(i).Position(1,3) 

        else 

            particle(i).Position(1,3)=0.001 

        end 

        if (particle(i).Position(1,4) >0.0003) && (particle(i).Position(1,4) <0.8) 

            particle(i).Position(1,4)=particle(i).Position(1,4) 

        else 

            particle(i).Position(1,4)=0.0003 

        end 

      particle(i).Cost=CostFunction(particle(i).Position,I,Vt); 

% particle(i).Cost=(Vm-Vt).^2 

        if particle(i).Cost<particle(i).Best.Cost 

            particle(i).Best.Position=particle(i).Position 

            particle(i).Best.Cost=particle(i).Cost; 

     

    %update global best 

if particle(i).Best.Cost<GlobalBest.Cost 

    GlobalBest.Cost=particle(i).Best.Cost; 

%     if particle(i).Best.Position > 4 

%          GlobalBest.Position=0 

%     else if particle(i).Best.Position <= 4 

    GlobalBest.Position=particle(i).Best.Position; 

        end 

     

end 

        end 

%     end 
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    BestCosts(it)=GlobalBest.Cost 

%     disp(['Iteration' num2str(it) ': Best Cost= ' num2str(BestCosts(it))]); 

out=GlobalBest.Position 

end 

%% Results 

% figure; 

% plot(BestCosts, 'LineWidth',2); 

% xlabel('Iteration'); 

% ylabel('best Cost'); 

  

  

end 
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