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ABSTRACT 

 
In this thesis, the wide area of recurrent neural networks is explored to propose a novel structure 

for the purpose of prediction and control of nonlinear systems with unknown dynamics. The 

proposed structure is a locally recurrent neural network with input feed through (LRNNIFT) which 

consists of locally recurrent loops along with input fed through weights directly to the output. The 

proposed network model parameters are tuned using a Back-propagation (BP) algorithm. The 

performance of the proposed model is compared with the state-of-the-art recurrent Elman neural 

network (ENN) and a single layer feed-forward neural network (FFNN). The simulation results 

showed that the proposed model has shown better accuracy as compared to the other two models. 

Furthermore, the above network is presented for control of nonlinear dynamical systems. The 

rationale of using LRNNIFT is due to its modest structure and proven superiority in mathematical 

modeling. Results from simulation showed that the LRNNIFT based controller is able to achieve 

adaptive control in a nonlinear system. It is also tested and observed to counterbalance the effects 

of disturbances. A comparative analysis is presented with the help of simulation, and it is deduced 

that overall performance of the LRNNIFT controller is better than that of FFNN and ENN 

controllers.  

     

    

   

 

 

 

 

 

 
 

 

 

 



 VI 

CONTENTS 

 

 
Candidate’s Declaration                                       II 

Certificate                  III 

Acknowledgement                 IV 

Abstract                              V 

Contents                  VI 

List of Figures               VII 

List of Tables                  IX 

List of Abbreviations                  X 

                  

CHAPTER 1 – INTRODUCTION             1  

1.1 Thesis Organization 

1.2 Soft Computing Techniques 

1.3 Overview on ANN 

1.4 Advantages of ANN 

1.5 Network Topologies 

1.5.1 Feed forward neural networks 

1.5.2 Recurrent neural networks 

1.6 Objectives 

 

CHAPTER 2 - LITERATURE REVIEW             9 

 

CHAPTER 3 - PROPOSED STRUCTURE           11 

3.1 Description of Structure 

3.2 Mathematical Formulation 

 

CHAPTER 4 - IDENTIFICATION SCHEME           14 

4.1 Nonlinear Systems 



 VII 

4.2 Mathematical formulation of a nonlinear dynamical system 

4.3 Identification Scheme 

4.4 Learning Algorithm: Backpropagation 

4.5 Tuning of Weights 

  4.5.1 Tuning of output and feed-through weights 

4.5.2 Tuning of locally recurrent weights 

4.5.3 Tuning of input weights 

 

CHAPTER 5 - SIMULATION STUDY (PART 1)          20 

5.1 Discussion on Simulation Results 

5.2 Validation Stage 

 

CHAPTER 6 - ADAPTIVE CONTROL USING LRNNIFT         25 

6.1 Controller Structure 

6.2 Indirect Adaptive Control of a time-delayed nonlinear system 

 

CHAPTER 7- SIMULATION STUDY (PART 2)          31 

7.1 Discussion on Simulation Results 

7.2 Disturbance Rejection Test 

 

CONCLUSION                35 

 

REFERENCES                36 

 

LIST OF PUBLICATIONS              41 

 

 

 

 

 



 VIII 

LIST OF FIGURES 

 

 
 

Page no. Figure no. Figure Description 

5 Fig 1 Single layer feed forward neural network (SLFFNN) 

6 Fig 2 Recurrent neural network (RNN) 

7 Fig 3 Elman Neural Network (ENN) 

11 Fig 4 Structure of locally recurrent neural network with input feed 

through 

15 Fig 5 Model Identification scheme for LRNNIFT identifier 

21 Fig 6 Response of identifiers during initial stages of training 

21 Fig 7 Response of identifiers post training stage 

22 Fig 8 Comparison of MSE curves of all three identifiers 

22 Fig 9 Comparison of MAE curves of all three identifiers 

24 Fig 10 Comparison of plant output with identifier responses during 

validation 

25 Fig 11 Structure of the proposed controller 

28 Fig 12 Adaptive control scheme using LRNNIFT model (Proposed) 

32 Fig 13 Plant response without controller 

33 Fig 14 Response of controllers during initial phases of training 

33 Fig 15 Response of controllers after successful training 

34 Fig 16 Disturbance Analysis for robustness 

 

 

 

 

 

 



 IX 

LIST OF TABLES 

 

 

 

Page 

no. 

Table no. Table Description 

23 Table 1 

(5.1) 

Comparison of performance of LRNNIFT, ENN & FFNN 

identifiers  

33 Table 2 

(7.1) 

Comparison of performance of LRNNIFT, ENN & FFNN 

controllers 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 X 

LIST OF ABBREVIATIONS 

 

 

ANN    Artificial neural networks 

FFNN    Feed forward neural networks 

SLFFNN   Single layer feed forward neural networks 

MLFFNN   Multi layer feed forward neural networks 

RNN    Recurrent neural networks 

LRNN   Locally recurrent neural networks 

LRNNIFT   Locally recurrent neural networks with input feed through 

BP    Back Propagation 

IF    Induced Field 

MSE    Mean square error 

MAE    Mean average error 

TMSE   Total Mean square error 

TMAE   Total Mean average error



 1 

 

CHAPTER 1 

 

INTRODUCTION 

 
1.1 Thesis Organization 

 

The first chapter is an introduction to set the premise: basic principles of soft computing, overview 

and advantage of ANNs, various neural network topologies used and the objective of work. 

Chapter 2 presents an exhaustive literature survey. This is followed by Chapter 3 which describes 

the proposed structure and its mathematical modelling. Chapter 4 explains a nonlinear system 

supported by equations and the identification scheme using the proposed structure. It also describes 

the learning algorithm along with the mathematical equations for weight adjustment. Chapter 5 

discusses the simulation results of the structure as an identifier obtained by taking a system for 

analysis. Chapter 6 is the second part of the work, it describes the model of the previously proposed 

structure as a controller along with the layout of the control scheme. Finally, in Chapter 7, 

simulation results obtained by implementing the controller on another complex nonlinear system 

is presented with a disturbance rejection test to prove its adaptive nature. 

 
1.2 Soft Computing Techniques    

The world around us is imprecise, uncertain, and randomly changing. However, we can cope 

with such an environment. The desire to mimic such coping leads to the basic premises and the 

guiding principles of soft computing.   

   

The three most popular soft computing methods are as below: 

 

● Genetic algorithms 

● Fuzzy logic 

● Artificial Neural Networks 
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Genetic Algorithms are used to solve problems based on principles of natural selection that come 

under evolutionary algorithms. They are usually used for optimization problems like maximization 

and minimization of objective functions, which are of two types of an ant colony and swarm 

particle. It follows biological processes like genetics and evolution. The fuzzy logic algorithm is 

used to solve the models which are based on logical reasoning like imprecise and vague. It was 

introduced by Latzi A. Zadeh in 1965. Fuzzy logic provides a stipulated truth value with the closed 

interval [0,1]. Where 0 = false value, 1= true value. In the following subsection ANN is described 

in detail. 

   

1.3 Overview on ANN  

Artificial neural networks (ANN), as the name implies, the baseline for their development was the 

realization that the human brain does not work like a computer at all. It has a superior sense for 

intangibility and approximation. The brain can be treated as a highly complex computer that can 

process extremely large amount of data. The brain is a part of the nervous system where sensory 

organs provide the brain with all the data of human experiences. This transmission is done by an 

element known as neurons or nodes. They perform specific calculations (e.g., pattern recognition, 

vision, and motor control) and provides appropriate output we need to engage with nature. This 

makes the human as the most intelligent creature on earth. Specifically, the brain typically 

performs visual tasks at a rate much higher than that of a very powerful computer. A neural 

network is an algorithm designed to model how the brain performs a specific task or activity of 

interest; The process used to train such networks is called a learning algorithm, whose function is 

to change the tune the adjustable weights of a network in a systematic way to achieve the desired 

goal. Here, the backpropagation algorithm is used. 

In a nutshell, an artificial neural network or ANN is an algorithm loosely based on the working of 

the human brain. Just as the brain consists of thousands of neurons and synapses associated with 

them, an artificial neural network also contains a set of nodes (known as neurons) that are 

interconnected via weights. In a sense, the weights determine the degree to which the information 

is to be transmitted to another node. Hence, they play a vital role in the working of a neural 
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network. These weights are updated during the training process using an error reduction algorithm 

to produce desired output. Neural networks are used as black box models as they require only the 

input and output data set to draw patterns and to estimate the mathematical relationship between 

the output and input of a system. On a broad structural classification, artificial neural networks can 

be of two sorts: the feed forward neural network (FFNN) and the recurrent (or repetitive) neural 

network (RNN). Both of these networks contain characteristics which makes them an ideal 

candidate to use flexible real-time dynamic controls. 

1.4 Advantages of ANN 

                

I. Nonlinearity  

Neural network is designed in a way where the connections between neurons are themselves 

nonlinear in nature. Additionally, this inherent nonlinearity is distributed across the network which 

becomes a major advantage. This makes these networks functionally the most superior to handle 

or process nonlinear inputs. It provides faster and accurate computation.    

    

II. Input–Output Mapping 

There are broadly three types of learning methodologies to train such networks. They are 

supervised learning, unsupervised learning and reinforcement learning. In supervised learning, an 

algorithm governs the network as a teacher or supervisor. Here the input provides an output based 

on some calculation within the network. For training the network, difference between the actual 

and desired output is calculated which acts as an error signal on the basis of which appropriate 

tuning of weights happen. This process is done until the error falls below a permissible threshold. 

This gives us the adjusted weights that can be used for application of this network. This exhibits 

the input output mapping nature of a neural network. Just a set of input output data can help predict 

and map a neual network further outputs for an input. This type of training is implemented in our 

analysis as well. Supervised learning is unlike the algorithm stated previously. The network is 

independent of any supervision algorithm. Here, input vectors of the same type are combined to 

form clusters of data. If a new input pattern is introduced, then the neural network provides an 
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output response that shows the input pattern class. Therefore, in this type of learning, the network 

itself should find patterns and features in the input data, as well as the correlation of the input data 

over the output. Reinforcement Learning, as the name suggests, this type of learning is used to 

strengthen or reinforce the network with some critical information. This learning process is similar 

to supervised learning, yet we may have very little knowledge. During network training under 

reinforced learning, the network receives feedback from the site. This makes it look like a 

supervised reading. However, the answer found here is non-conclusive but rather evaluative, which 

means that no teacher is as supervised as reading. After receiving a response, the network 

underwent weight changes to obtain better criticism information in the future.  

III. Adaptivity 

Neural networks have a built-in ability to adapt and adjust their weights to acclimate with the 

changes in the system environment. Particularly, a neural network trained to work specifically on 

a solution can be smoothly re-trained to deal with small disturbances in environmental conditions. 

In addition, when operating in a stable environment, a neural network can be designed to change 

its synaptic weights in real time by implementing online training. The natural structure of the 

neural network of pattern classification, signal processing, and application controls, combined with 

the network's adaptive capabilities, make it a useful tool for dynamic pattern detection, dynamic 

signal processing, and dynamic control. As a general rule, it can be said that when we make a 

flexible system, we always ensure that the system remains stable, its performance will be even 

stronger when the system is required to operate in a stable environment. To check the full benefits 

of adaptability from training standpoint, the main fixed times of a program should be long enough 

so that the system ignores the false positives, but be short enough to respond to actual changes in 

the system.               

IV. Fault Tolerance 

 A neural network when implemented in hardware such as power systems, have the ability to 

tolerate faults. For example, in case if there is a neuron or its connecting weight that is 

compromised, memory retention deteriorates in quality. But, due to the distributed nature of the 

information stored on the network, the damage must be major enough for the total network 

response to be significantly altered. Thus, from experimentation, the neural network shows a better 
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deterioration in function than catastrophic failure. This very attribute of a neural network is further 

displayed in this work as a part of robustness analysis. 

1.5 Network Topologies          

In general, we may identify two fundamentally different classes of network architectures as 

described in the upcoming subsections. 

   

1.5.1 Feed forward networks (FFNN)       

The first type of neural network is the feed forward neural networks. They are simple yet robust 

networks where the signal flows from the input to the output only, hence unidirectional in nature. 

These networks can be of two types- single layer feed forward networks (SLFFNN) and multilayer 

feed forward neural networks (MLFFNN).       

  

Fig 1: Single layer feed forward neural network (SLFFNN) 

 

These networks are differentiated by the presence of one or more hidden layers for SLFFNN and 

MLFFNN respectively. The term "hidden" refers to the fact that this part of the neural network is 

not determined directly from the input or output of the network. 
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The reason why these hidden layers are added to the network, even though they increase the 

computational complexity is because it helps generate more useful information for the network in 

a faster and accurate manner. Meaning, the addition of extra parameters (weights due to hidden 

layer) increases the efficiency of the network.  This modification is necessary if one is dealing with 

highly complex network, in our case a nonlinear plant whose dynamics aren’t known will be such 

system. Each node of the network contains an activation function based on computational 

requirements. In the figure above, we can observe a simple 3-layer (input, hidden and output) 

SLFFNN. This network is used as a one of the bases for comparison in our analysis as is it one of 

the most widely used, simple yet efficient networks. Moving forward, for the sake of simplicity 

this circuit will be called as FFNN only. 

1.5.2 Recurrent Neural networks 

         

A neural network is said to be recurrent in nature if it has loops in it. A connection where the output 

of a particular neuron goes back to a previous or the same neuron as an input is called a loop. This 

means the there is a bidirectional movement of signal in such networks, unlike FFNNs. 

    

    

   
Fig 2: Recurrent neural network (RNN) 
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The presence of such loops indicates a feedback mechanism in the network and when the signal in 

the loop is propagated via a delay, it develops a certain kind of memory. This attributes to the 

heavy nonlinearity of such networks. In our context, we can say that the circuit somehow retains 

the past values of the system to predict the present values. Therefore, these networks are widely 

used for the purpose of prediction. Figure 2 represents a recurrent neural network which has time 

delayed local recurrent loops within the hidden layer. This network is further modified to propose 

a novel structure.  

 

The below figure (Fig 3) represents the structure of an elman neural network (a type of RNN) 

which is used in this work as a basis of comparison as it is one of the most complex and popular 

recurrent neural networks. 

 
Fig 3: Elman Neural Network (ENN) 
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1.6 Objectives 

 

1. To study about various Artificial Neural Networks and some of its structures and 

applying them for predicting models 

 

2. To propose a better performing recurrent neural network structure to predict the behavior 

of nonlinear dynamical systems and compare the results with existing feed forward and 

elman neural networks 

 

3. To present a detailed simulation of the LRNNIFT for prediction of a nonlinear time-

delayed plant using backpropagation algorithm. 

 

4. To compare the proposed identifier with identifiers based on some of the existing neural 

network structures such as feed forward neural network (FFNN) and Elman neural network 

(ENN) 

 

5. The proposed neural network is further modeled as a controller for nonlinear plants and 

the results are compared with FFNN and ENN. 

 

6. To test the proposed controller for robustness by introducing a disturbance signal 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In the ever-growing world of science, extensive research is being performed in understanding the 

behavior of the universe and its systems. The significance of nonlinear system identification is 

unarguable as most control methods are designed to perform in the linear region only and have a 

restricted range of working. It is evident that linear control methods are popular because they are 

simple but their effectiveness in real-world (nonlinear) system control is very limited. The linear 

identification process involves the selection of a specific appropriate phase of the model in order 

to best measure the behavior of a system. In [1], the authors have proposed a data driven bias 

eliminated subspace identification approach by using coprime factorization to approximate closed 

loop systems whereas in [2] the authors undertook a probabilistic approach to solve the problem 

of identification along with developing conventional error reduction functions such as in [3]. [4] 

encompasses an overview of a wide range of modern data driven identification approaches 

developed. 

 

To overcome this problem, researchers started focusing on modeling advanced techniques for 

systems with partially known dynamics. Nonlinear system modeling techniques are versatile in 

nature and can work in a vast range unlike linear identification methods. In [5], authors have 

implemented a single layer feed forward neural network for an unsupervised learning algorithm 

based upon a Hebbian learning rule which helps in optimal optimisation. A single layer neural 

network being simple fails to converge for systems with higher complexity. This drives the 

implementation of multilayer feed forward networks as described in [6]. In [7], the Chebyshev 

polynomial based method is proposed to unify these two kinds of feed forward networks. Although 

better than a single layer neural network, a multilayer feed forward network could still successfully 

approximate such systems with desirable speed. Advancing to further modification of neural 

network structures, in [8] authors proposed the design and application of recurrent neural networks. 
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These networks had recurrent loops within the structure with allowed them to have a memory 

which in turn provided faster and accurate results. Elman neural network is a type of recurrent 

neural network that has widespread application in the field of approximation and control. [9] 

describes the use of ENN for identification of nonlinear systems whereas [10] encompasses it for 

short-term forecasting of wind power generation. A hybrid of quantised genetic algorithm and 

ENN is also proposed in [11]. Apart of neural networks, other biologically inspired algorithms 

such as particle swarm optimization [12] [13] and fuzzy logic [14] have also been implemented 

majorly for optimization purpose. This paved the way for the rise of the era of soft computing 

techniques, algorithms based on biological phenomena where a varied range of neural networks 

and optimisation algorithms were designed [15]. 

 

Modeling being the first part of the problem for such systems, is then followed by the second part, 

that is, control. One of the earliest significant control techniques in conventional control was the 

Ziegler Nichols method [16] which described rules to tune P, PI or PID controllers for linear 

systems. This was further followed by several modifications such as [17] describes a modified ZN 

method to tune fractional order systems and [18] presents a modification for multiple input and 

multiple output systems. Further modifications followed and advanced forced oscillation 

techniques [19][20] to achieve control on linear plants were also developed. Although [21] does 

present an auto tuning PID control using Runge-Kutta model solution for control of nonlinear 

systems, essentially all these methods were limited to linear systems only. Most processes that 

require control nowadays are nonlinear, the use of conventional proportional- integral-derivative 

controllers has seen a decrease in relevance as the majority of the plants are nonlinear in nature or 

whose dynamics are not fully known. Artificial neural networks [22][23] (ANN) are a major 

breakthrough [24] in this area as these structures help estimate as well as control nonlinear systems 

including industrial applications [25] such as control of a high-performance aircraft [26]. [27] 

presents a recurrent neural network for the identification as well as control of nonlinear systems 

using reinforcement learning. A hybrid of fuzzy logic control and ENN was presented in [28] to 

predict short-term power load. [29] describes an adaptive neural network with predictive control 

for multi-rate networked industrial control. Various structures of ANNs have been developed [30] 

over the time to cater to ever changing modern problems. 
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CHAPTER 3 

 

Proposed Structure (LRNNIFT) 

 

 

3.1 Description of the Structure 

 

LRNNIFT is a locally recurrent neural network whose input is fed through weights to the 

output.  
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Fig 4: Structure of locally recurrent neural network with input feed through 

 

In figure 4, the green arrows in the structure of LRNNIFT, depict the local weights which 

propagate a unit delay as output of the hidden neuron which is looped back as an input to the same 

hidden neuron. This forms the locally recurrent structure. The pink arrows denote the input fed to 

the output via feed-through weights represented as M= {M1, M2...Mq}. The local weights are given 

by the local weight vector, WF = {w1, w2...wq} and WI represents the input weight vector having 

tunable weights. It can be deduced from the figure that if vector Mq is equal to zero, the structure 

of LRNNIFT reduces to an Elman Neural Network (ENN) and similarly if $W^F$ is made zero, 

it reduces the structure to a Feed Forward Neural Network (FFNN). Both these structures are used 

further in this paper to compare the LRNNIFT structure. The output layer and hidden layer neurons 

are connected by a weight vector given as output weight vector, W0 = {w0
1, w0

2
 .... w0

p} . The q-

input vector depicts the external signal which is applied to the network and is represented as a 

vector by X= {x1, x2....xq}.  

 

 

 

3.2 Mathematical Formulation 

 

Additionally, the output of any pth hidden neuron at any kth point in time is given by: 

 

𝑇𝑝(𝑘)  =  𝑓[𝑍𝑝(𝑘)]        (1) 

  

Where 𝑓 is a tangent hyperbolic function 

 

The induced field of any pth hidden neuron is calculated as below: 

 

𝑍𝑝(𝑘) =  𝑊𝑃
𝐹(𝑘)𝑇𝑝(𝑘 − 1) + ∑ 𝑊𝑝𝑞

𝐼 (𝑞 𝑘)𝑥𝑞(𝑘)    (2) 

Further, the induced field of the output neuron is as follows: 

𝑉(𝑘) =  ∑ 𝑊0
𝑝

𝑝 (𝑘)𝑇𝑝(𝑘)       (3) 
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A linear activation function is considered for the output layer neuron; therefore, the output will 

be equal to its own induced field along with summation of external input via feed through 

weights. Subsequently, we can deduce: 

𝑉𝐼𝐹𝑇(𝑘) = 𝑉(𝑘) =  ∑ 𝑊0
𝑝

𝑝 (𝑘)𝑇𝑝(𝑘) + ∑ 𝑀𝑝𝑞𝑞 (𝑘)𝑥𝑞(𝑘)   (4) 
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CHAPTER 4 

 

Identification Scheme 

4.1 Nonlinear Systems 

 

A nonlinear plant can be of two types: 

 

● Static Systems: Output depends on present values of input 

● Dynamic Systems: Output of system depends on past values input & output 

 

In our analysis, we have considered dynamic plants due to their high complexity. 

 

 

4.2 Mathematical representation of a nonlinear dynamical system 

 

 

In any control scheme, the basic feature is to provide the desired control of plant parameters. It is 

noteworthy to mention that in order to implement a control strategy on a plant, it is essential to 

know its dynamics. It is cumbersome to design a controller for plant which does not have a 

mathematical model. Subsequent to this, a major class of real time systems are present whose 

dynamics cannot be mathematically modeled and are non-deterministic in nature. This is where 

ANN has played a major role in recent times by helping estimate the unknown behaviour of 

nonlinear plants that are to be controlled.  

The neural networks are backed by several robust learning algorithms which can be modified as 

per the nature of the system in consideration. With respect to this paper, neural networks are used 

as an identifier for a dynamical system whose properties are partially known. The general 

mathematical expression of a dynamical system is as follows: 

 

𝑦𝑞(𝑘) = 𝐹[𝑦𝑞(𝑘 − 1), 𝑦𝑞(𝑘 − 2) … . 𝑦𝑞(𝑘 − 𝑂) , 𝑟(𝑘 − 1), 𝑟(𝑘 − 2) …  𝑟(𝑘 − 𝐿)]  (5) 
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4.3 Identification scheme 

 

As mentioned above, equation (5) represents a general dynamical system where  𝑦𝑞(𝑘 − 1) is the 

past value of plant (with a difference of one instant) and similarly all past values of 𝑦𝑞(𝑘)output 

are represented till qth instant. In the same manner, the past values of input are also represented 

as 𝑟(𝑘 − 1) to 𝑟(𝑘 − 𝐿). The term O represents the order of the plant and L is generally taken to 

be less than O. It is to be noted that for the sake of simplicity in understanding, the above equation 

is represented for kth time instant, that is, if the above equation is shifted by a unit delay, it will be 

visibly evident that the next value of the plant will depend upon the past as well as the present 

values of input and output. Therefore, in all further discussions this notion has been kept in mind. 

Further, the nonlinear system to be estimated is depicted as the function F. 

 

 

Fig 5: Model Identification scheme for LRNNIFT identifier 
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Our prime objective here is to estimate the behaviour of the above plant, that is, our end result 

should be �̂� ≈ 𝐹. Now, from the structural layout we can conclude that the successive outputs of 

FFNN, Elman neural network and LRNNIFT structures are primarily dependent on the present 

and past values of the plant input-output values. The effectiveness of any estimation technique can 

be proven only if it minimizes the requirement of plant knowledge. Therefore, in case of 

LRNNIFT, the proposed identification structure, we have taken only two inputs from the large set 

of plant variables-one past value, 𝑦𝑝(𝑘 − 1)and a past value of external input, 𝑟(𝑘 − 1). The plant 

behavior is predicted based on these two inputs only and is denoted by 𝑌𝐼𝐹𝑇(𝑘). The selection of 

fewer inputs (in this case, two) tones the structural and computational complexity by reducing the 

number of parameters that are to be updated.  

 

Fig. 5 depicts the block diagram of the proposed LRNNIFT model having below equation: 

 

𝑉𝐼𝐹𝑇(𝑘) = 𝐹[𝑦𝑝(𝑘 − 1), 𝑟(𝑘 − 1)]        (6) 

 

4.4 Learning algorithm: Backpropagation Method 

      

The Back propagation is a technique specific for implementing gradient descent in weight space 

for a multilayer neural network. The main idea behind the algorithm is to find the maximum or 

minimum (in this case, minimum) of a function. It uses the gradient at present value (by calculating 

the partial derivative) to iteratively compute the next value while minimising the function. Our 

aim is to generate an LRNNIFT based identifier which can estimate the plant’s behaviour 

successfully. In order to attain this, we need to reduce the error (the gap between desired and actual 

output) generated during training. Conventionally, mean square error (MSE) function is used as 

the function to be minimised as it provides stable output compared to absolute error. The same is 

used below and expressed as: 

 

𝐸𝑖(𝑘) =  
1

2
[𝑌𝑝(𝑘) − 𝑌𝐼𝐹𝑇(𝑘)]2 =

1

2
𝑒𝑖
2(𝑘)       (7) 
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Here, 𝐸𝑖(𝑘) represents the cost function for the LRNNIFT training model and 𝑒𝑖 (𝑘) represents 

the error which is back propagated. The input weights, locally recurrent weights, feed through 

weights and the output weights are to be updated in this model. The parameter update expression 

of all these are presented subsequently below. 

 

4.5 Tuning of Weights 

 

4.5.1 Tuning of output and feed-through weights 

 

The error gradient with respect to any j th output layer weight can be expressed as  

 

𝜕𝐸𝑖(𝑘)

𝜕𝑊𝑜
𝑗

(𝑘)
= (

𝜕𝐸𝑖(𝑘)

𝜕𝑌𝐼𝐹𝑇(𝑘)
 ×  

𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑊𝑜
𝑗

(𝑘)
)              (8)  

Where  
𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑊𝑜
𝑗

(𝑘)
=  𝑇𝑗(𝑘) 

Thus, each value in 𝑊0(𝑘) = 𝑤0
1(𝑘), 𝑤0

2(𝑘) … . . 𝑤0
𝑞(𝑘) will be updated to a new value as 

following: 

 

 𝑊0

𝑗(𝑘) =  𝑊0

𝑗(𝑘 − 1) −△ 𝑊0

𝑗(𝑘 − 1)       (9) 

Where  △ 𝑊0
𝑗 (𝑘 − 1) =  −𝜂𝑒𝑖(𝑘 − 1)𝑇𝑗(𝑘 − 1) 

In a similar manner for the feed through weights, each value in M= {M1, M2,...Mq} will be updated 

to a new value as following: 

𝑀0

𝑗(𝑘) =  𝑀0

𝑗(𝑘 − 1) −△ 𝑀0

𝑗(𝑘 − 1)       (10) 

 where △ 𝑀0
𝑗 (𝑘 − 1) = −𝜂𝑒𝑖(𝑘 − 1)𝑇𝑗(𝑘 − 1)  
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4.5.2 Tuning of locally recurrent weights 

 

The update equation for any j th recurrent weight vector can be written as below: 

 

𝜕𝐸𝑖(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
= (

𝜕𝐸𝑖(𝑘)

𝜕𝑌𝐼𝐹𝑇(𝑘)
 ×  

𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
)                 (11) 

 where    
𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
=  

𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑉(𝑘)
 

𝜕𝑉(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
 

 Now, 
𝜕𝑌𝐼𝐹𝑇(𝑘)

𝜕𝑉(𝑘)
= 1 

Hence, evaluation of  
𝜕𝑉(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
 is as below: 

𝜕𝑉(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
=

𝜕𝑉(𝑘)

𝜕𝑇𝑗(𝑘)
 

𝜕𝑇𝑗(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
               (12)     

Where  
𝜕𝑉(𝑘)

𝜕𝑇𝑗(𝑘)
= 𝑊0

𝑗(𝑘)     and, 

 

𝜕𝑇𝑗(𝑘)

𝜕𝑊𝐹
𝑗

(𝑘)
= (1 − 𝑇𝑗

2(𝑘)) [𝑇𝑗(𝑘 − 1) + 𝑊𝐹
𝑗 (𝑘)𝐿𝑗(𝑘 − 1)]    (13) 

where 𝐿𝑗(𝑘) =  
𝜕𝑇𝑗(𝑘)

𝜕𝑊𝑇
𝑗

(𝑘)
        and 𝐿𝑗(0) =  0 

Therefore, each element 

𝑊𝑇
𝑗(𝑘) =  𝑊𝐹

𝑗(𝑘 − 1) −△ 𝑊𝐹
𝑗(𝑘 − 1)         (15) 

Where  

𝑊𝐹
𝑗(𝑘) =  −𝜂𝑒𝑖(𝑘)𝑊0

𝑗(𝑘)[1 − 𝑇𝑗
2(𝑘)][𝑇𝑗(𝑘 − 1) + 𝑊𝑇

𝑗
(𝑘)𝐿𝑗(𝑘 − 1)]          (16) 
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4.5.3 Tuning of input weights 

 

The update equation for input weight vector is also formulated using the above concept. For any j 

th value, the equation can be given as: 

 

𝑊𝐼
𝑗(𝑘) =  𝑊𝐼

𝑗(𝑘 − 1) −△ 𝑊𝐼
𝑗(𝑘 − 1)          (17) 

 △ 𝑊𝐼
𝑗(𝑘) =  −𝜂𝑒𝑖(𝑘)𝑊0

𝑗 (𝑘)[1 − 𝑇𝑗
2(𝑘)] [𝑥𝑖𝑗(𝑘) + 𝑊𝐹

𝑗 𝑄𝑗(𝑘 − 1)]               (18) 

Where 𝑄𝑗(𝑘) =
𝜕𝑇𝑗(𝑘)

𝜕𝑊𝐼
𝑗

(𝑘)
     and  𝑄𝑗(0) = 0 
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CHAPTER 5 

Simulation Study (Part 1) 

 

 

Post mathematical discussion, we now evaluate the efficiency of the proposed LRNNIFT based 

prediction strategy by implementing it on a plant and comparing the results with FFNN and ENN 

based prediction strategies. To conduct exhaustive analysis, we have considered a complex 

dynamic plant. In the below example, we have taken only a single hidden layer, 3 hidden neurons, 

equal learning rate and equal number of epochs in all the identifiers. The reason why we considered 

similar parameters for the proposed LRNNIFT based identification model and the other two 

models (ENN, FFNN) is to form a basis for comparison.  

 

Consider a nonlinear time-delayed dynamical system whose dynamics are not known and is 

represented as mentioned below: 

 

𝑦𝑝(𝑘) = 𝐹[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]             (19) 

Where 𝑥1 = 𝑦𝑝(𝑘 − 1), 𝑥2 = 𝑦𝑝(𝑘 − 2),  𝑥3 = 𝑟(𝑘 − 1), 𝑥4 = 𝑟(𝑘 − 2), 𝑥5 = 𝑟(𝑘 − 3) where 

the form of the unknown function is expressed as below: 

𝑦𝑝(𝑘) = 0.72𝑥1 + 0.025𝑥2𝑥3 + 0.001𝑥4
2 + 0.2𝑥5           (20) 

The identification structure of FFNN, ENN and LRNNIFT is same and is given by following 

equation 

𝑌𝐼𝐹𝑇(𝑘) =  �̂�[𝑥1, 𝑥3]              (21) 

 

In the above case, all the parameters of all three identifiers are trained by each epoch. The number 

of hidden neurons and the number of inputs for all three identifiers are 3 and 2, respectively. The 

total number input-output training data was 500 and the training was done for 500 epochs, post 

which it was graphically observed that the models were successfully trained. The learning rate 𝜂 
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was set to a constant value of 0.0025 for each variable of the identifier. For the training, we have 

considered the external input r(k) to be a bounded sinusoidal signal with a range of [−1, 1]. It is 

defined as  

 

𝑟(𝑘) = 𝑠𝑖𝑛 (
2𝜋𝑘

250
)  

 

 

5.1 Discussion on Simulation Results 

 

Fig.6 and Fig.7 show the responses of identifiers during the initial and final stages of training. 

Evidently, we can conclude that the LRNNIFT has successfully predicted the plant behaviour 

better than the ENN and FFNN identifiers. 

 

Fig 6: Response of identifiers during initial stages of training 

 

 
Fig 7: Response of identifiers post training stage 
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Upon observing the MSE (Mean Square Error) and MAE (Mean Average Error) plots (shown in 

Figs.8-9) obtained during the training, we can again deduce that the LRNNIFT identifier has 

given the lowest value of error along-with fastest convergence of instantaneous error among all 

three identifiers. 

 

 

 
Fig 8: Comparison of MSE curves of all three identifiers 

 

 

 
Fig 9: Comparison of MAE curves of all three identifiers 

 

 

The numerical observations obtained from the MSE and MAE plots are given in form of 

comparison in Table 1. From the table, the average MSE (AMSE) and total MAE (TMAE) values 

are found to be the lowest in case of LRNNIFT identifier. We can also observe that with the same 

number of inputs, LRNNIFT model is performing better both in terms of error reduction and rate 

of convergence. This makes it more computationally efficient than FFNN and ENN.  
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Table 1: Comparison of performance of LRNNIFT, ENN & FFNN identifiers 

 

Neural network 

(No. of epochs=500) 

ENN FFNN LRNNIFT 

Average MSE 8.65x10-5 5.19x10-4 1.5659x10-5 

Total MAE 0.011 0.0083 0.0047 

 

 

 
5.2 Validation Stage 

 

Once the training of models is completed, the models are set to be tested with different inputs to 

the plant. This stage is important because it puts the quality of training on check and we can 

observe the actual efficiency of the identifier. In other words, this stage categorizes how well the 

plant is trained by the sample so that it can successfully predict output for data outside its sample 

space. Here, we take a different external input (having the same range as that of the input used 

during training). The input subjected to the plant is varied in nature to check the versatility of the 

plant's prediction capabilities. 

 

The external input is given as follows:  

 

If 𝑘 is greater than 4 and less than or equal to 250, 

 

𝑟(𝑘) = 𝑠𝑖𝑛 (
𝜋𝑘

25
) 

If 𝑘 is greater than 250 and less than or equal to 500, 

 

𝑟(𝑘) = 1  
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If 𝑘 is greater than 500 and less than or equal to 750, 

 

𝑟(𝑘) = −1 

If 𝑘 is greater than 750, 

 

𝑟(𝑘) = 0.3𝑠𝑖𝑛 (
𝜋𝑘

25
) + 0.1𝑠𝑖𝑛 (

𝜋𝑘

32
) + 0.6𝑠𝑖𝑛 (

𝜋𝑘

10
) 

 

 

 
Fig 10: Comparison of plant output with identifier responses during validation 

 

 

The validation response plots of all three identifiers can be seen in Fig.10. It can be observed that 

all three identifiers have been trained successfully with LRNNIFT showing superior results. 
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CHAPTER 6 

  

Adaptive Control using LRNNIFT 

After successfully testing the LRNNIFT structure as an identifier, we move on to the second part 

of the analysis. Based on the proposed structure, a controller is designed to control such nonlinear 

dynamical systems. Output of the controller will act as the corrected input to the plant. 

 

6.1 Controller Structure 

The structure of the controller (similar to the identifier) is shown below. 

 
 

 
Fig 11: Structure of the proposed controller 
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In figure 11, the bright red arrows represent the local recurrent weights generated as output of 

hidden neuron or node and propagated through a lag of a unit instant as connected back to the same 

neuron. This leads to the formation of a locally recurrent structure. The maroon arrows represent 

feed through weights connecting the input layer neurons to the output layer node through weights 

denoted as N= {N1, N2...Nq}. The recurrent weights are defined as WL = {w1, w2...wp} while Wa 

represents the input weight vector. All weights can be updated. From the figure, it can be seen that 

if WL and N are removed or made equal to, the structure is reduced to a FFNN. Furthermore, FFNN 

and ENN structures are considered to compare the LRNNIFT controller structure. The reason 

behind these structures to be chosen for comparison was primarily for their proven performance 

in the fields of both estimation and control. 

FFNN is a simple structure with no recurrent weights whereas ENN has a rather complex structure 

with every recurrent weight fed back to each hidden node. 

 

The output weight vector is given as Wb = {wb
1, wb

2....wb
p}. 

 

The input vector is defined as X= {x1, x2....xq}. Subsequently, the output of any p th recurrent node 

at any k th instant can be calculated as: 

 

𝑂𝑝(𝑘) = [𝑓𝑈𝑝(𝑘)]                (22) 

The function 𝑓 is a hyperbolic tangent function. 

The induced field (IF) of any p th recurrent node can be given as: 

 

𝑈𝑝(𝑘) = 𝑊𝑝
𝐿(𝑘)𝑂𝑝(𝑘 − 1)  + ∑ 𝑊𝑝𝑞

𝑏
𝑞 (𝑘)𝑥𝑞(𝑘)       (23) 

The IF of the output node is described below: 

𝑆(𝑘) = ∑ 𝑊𝑏
𝑝

𝑝 (𝑘)𝑂𝑝(𝑘)         (24) 

The output value from the output neuron will be equal to the sum of its own IF and the feed-

through factor (from input) as a linear function has been considered as the activation function. 

Hence, we write it as: 

𝑆𝐼𝐹𝑇𝐶 (𝑘) = 𝑆(𝑘) =  ∑ 𝑊0
𝑝

𝑝 (𝑘)𝑈𝑝(𝑘) + ∑ 𝑁𝑝𝑞𝑞 (𝑘)𝑥𝑞(𝑘)     (25) 
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6.2 Indirect Adaptive Control of a time-delayed nonlinear system 

 

As discussed previously, designing a controller for a system which is dynamic and nonlinear in 

nature is a complicated task as linear control techniques fail on such plants. Artificial neural 

networks have majorly solved this problem due to their flexible nature as there is a vast majority 

of structures from which an appropriate structure can be chosen whose parameters can be tuned 

based on system requirements. In this brief, a modified recurrent neural network is used as a 

controller for a dynamic plant which is to be controlled along a reference model. The general 

mathematical formulation of a nonlinear time delayed plant can be given as: 

 

𝑌𝐿𝑅𝑁(𝑘) = 𝐹[𝑌𝐿𝑅𝑁
𝑞 (𝑘 − 1), 𝑌𝐿𝑅𝑁

𝑞 (𝑘 − 2) … 𝑌𝐿𝑅𝑁
𝑞 (𝑘 − 𝑂), 𝑢𝑐(𝑘 − 1), 𝑢𝑐(𝑘 − 2), 𝑢𝑐(𝑘 − 𝐷)]   

 

In the above equation, 𝑌𝐿𝑅𝑁
𝑞 (𝑘 − 1) represents a previous value of the system delayed by an instant. 

In a similar fashion, all the outputs of 𝑌𝐿𝑅𝑁(𝑘) are mentioned till qth instant. Similarly, input past 

values are written 𝑢𝑐(𝑘 − 1) to 𝑢𝑐(𝑘 − 𝐷). Here, 𝑢𝑐(𝑘) is essentially the controller output which 

will act as an input to the plant. The actual input which will be fed to the controller is 𝑟(𝑘).The 

aim here is to control the above plant, that is, to align its response with the reference model (desired 

response of the plant). This simply translates to 𝐹 ≈ 𝐹𝑚, where 𝐹𝑚is the reference model. The 

potency of any nonlinear control method is established only if it reduces the dependency on plant 

parameters and structural complexity along-with providing faster control response. Therefore, in 

case of LRNNIFT controller, only three inputs are taken from the vast array of system variables-

the present value of input to plant, 𝑢𝑐(𝑘), one previous value of output, 𝑌𝐿𝑅𝑁
𝑞 (𝑘 − 1), and a 

previous value of external input, 𝑟(𝑘 − 1). The control scheme is estimated relying on these three 

inputs only and is calculated as 𝑌𝐿𝑅𝑁(𝑘). Motivation behind selecting few inputs (here, three) is 

that this minimizes plant parameter dependency of the controller along with reducing the 

computation load by lowering the number of weights to be adjusted. Figure 12 represents the block 

diagram of the proposed LRNNIFT controller. 
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Fig 12: Adaptive control scheme using LRNNIFT model (Proposed) 

 

 

6.3 Learning Algorithm for LRNNIFT controller 

 

The versatile back propagation method is applied for error minimization during incremental 

training. Let e(k) denote the instantaneous error between the output of plant and reference model 

at kth instant and is given as: 

 

𝐸(𝑘) =
1

2
[𝑌𝑚(𝑘) − 𝑌𝑐(𝑘)]2 =

1

2
𝑒2(𝑘)        (26) 

 

 

6.3 Tuning of Weights 

 

6.3.1 Tuning of output and feed-through weights 

 

The error gradient with respect to any j th output layer weight can be expressed as  
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𝜕𝐸(𝑘)

𝜕𝑊𝑏
𝑗

(𝑘)
=  (

𝜕𝐸(𝑘)

𝜕𝑌𝑐(𝑘)× 
𝜕𝑌𝑐(𝑘)

𝜕𝑊
𝑏
𝑗

(𝑘)

)            (27) 

where  
𝜕𝑌𝑐(𝑘)

𝜕𝑊𝑏
𝑗

(𝑘)
= 𝑂𝑗(𝑘) 

 

Thus, each value in 𝑊𝑏(𝑘) = 𝑤𝑏
1(𝑘), 𝑤𝑏

2(𝑘), … . 𝑤𝑏
𝑞(𝑘)  will be updated to a new value as 

following: 

 

𝑊𝑏(𝑘) = 𝑊𝑏
𝑗(𝑘 − 1) −△ 𝑊𝑏

𝑗(𝑘 − 1)         (28) 

Where  △ 𝑊𝑏
𝑗

(𝑘 − 1) =  −𝜂𝐽(𝑘)𝑒(𝑘 − 1)𝑂𝑗(𝑘 − 1)  

In a similar manner for the feed through weights, each value in N= {N1, N2...Nq} will be updated 

to a new value as following: 

𝑁𝑗(𝑘) = 𝑁𝑗(𝑘 − 1) −△ 𝑁𝑗(𝑘 − 1)              (29) 

 where △ 𝑁0
𝑗 (𝑘 − 1) =  −𝜂𝐽(𝑘)𝑒(𝑘 − 1)𝑂𝑗(𝑘 − 1)   

where J(k) is the Jacobian for the plant. 

 

4.5.2 Tuning of locally recurrent weights 

 

The update equation for any j th recurrent weight vector can be written as below: 

 

𝜕𝐸(𝑘)

𝜕𝑊
𝐿
𝑗

(𝑘)
=  (

𝜕𝐸(𝑘)

𝜕𝑌′(𝑘)× 
𝜕𝑌𝑐(𝑘)

𝜕𝑢𝑐(𝑘)
×

𝜕𝑢𝑐(𝑘)

𝜕𝑆(𝑘)
×

𝜕𝑆(𝑘)

𝜕𝑊
𝐿
𝑗

(𝑘)

)          (30) 

 where    
𝜕𝑌𝑐(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
=  

𝜕𝑌𝑐(𝑘)

𝜕𝑆(𝑘)
 

𝜕𝑆(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
 

 Now, 
𝜕𝑌𝑐(𝑘)

𝜕𝑆(𝑘)
= 1 

Hence, evaluation of  
𝜕𝑆(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
 is as below: 
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𝜕𝑆(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
=

𝜕𝑉(𝑘)

𝜕𝑂𝑗(𝑘)
 

𝜕𝑂𝑗(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
                (31) 

Where  
𝜕𝑉(𝑘)

𝜕𝑂𝑗(𝑘)
= 𝑊𝑏

𝑗(𝑘)     and, 

 

𝜕𝑂𝑗(𝑘)

𝜕𝑊𝐿
𝑗

(𝑘)
= (1 − 𝑂𝑗

2(𝑘)) [𝑂𝑗(𝑘 − 1) + 𝑊𝐿
𝑗 (𝑘)𝐿𝑗(𝑘 − 1)]     (32) 

where 𝐿𝑗(𝑘) =  
𝜕𝑂𝑗(𝑘)

𝜕𝑊𝑜
𝑗

(𝑘)
        and 𝐿𝑗(0) =  0 

Therefore, each element 

𝑊𝐿
𝑗(𝑘) =  𝑊𝐿

𝑗(𝑘 − 1) −△ 𝑊𝐿
𝑗(𝑘 − 1)          (33) 

Where  

𝑊𝐿
𝑗(𝑘) =  −𝜂𝐽(𝑘)𝑒(𝑘)𝑊𝑏

𝑗(𝑘)[1 − 𝑂𝑗
2(𝑘)][𝑂𝑗(𝑘 − 1) + 𝑊𝐿

𝑗
(𝑘)𝐿𝑗(𝑘 − 1)]           (34) 

 

 

4.5.3 Tuning of input weights 

 

The update equation for input weight vector is also formulated using the above concept. For any j 

th value, the equation can be given as: 

 

𝑊𝑎
𝑗(𝑘) =  𝑊𝑎

𝑗(𝑘 − 1) −△ 𝑊𝑎
𝑗(𝑘 − 1)         (35) 

 △ 𝑊𝑎
𝑗 (𝑘) =  −𝜂𝐽(𝑘)𝑒(𝑘)𝑊𝑏

𝑗
(𝑘) [1 − 𝑂𝑗

2(𝑘)] [𝑥𝑖𝑗(𝑘) + 𝑊𝐿
𝑗 𝑄𝑗(𝑘 − 1)]              

 (36) 

Where 𝑄𝑗(𝑘) =
𝜕𝑂𝑗(𝑘)

𝜕𝑊𝑎
𝑗

(𝑘)
     and  𝑄𝑗(0) = 0 
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CHAPTER 7 

  

Simulation Study (Part 2) 

 
In order to evaluate the efficacy of the proposed LRNNIFT based control strategy, the scheme is 

implemented on a complex dynamic system. Furthermore, the results obtained from the proposed 

controller are compared with the FFNN and ENN controllers. Structurally, a single input, hidden 

and output layer, 4 hidden neurons, uniform learning rate and instantaneous training is applicable 

to all the three controllers. The reason why we considered uniformity among structure parameters 

for our analysis is to better judge the performance of the LRNNIFT controller. 

For simulation, the following nonlinear dynamical plant has been considered: 

 

𝑦0(𝑘) =
𝑦0(𝑘−1)𝑦0(𝑘−2)[𝑦0(𝑘−1)+2.5]

1+𝑦0
2(𝑘−1)+𝑦0

2(𝑘−2)
+ 𝑢𝑐(𝑘 − 1)      (37) 

Where 𝑢𝑐(𝑘) denotes the input to the plant. The reference model is given as: 

𝑦𝑚(𝑘) = 0.6𝑦𝑚(𝑘 − 1) + 0.3𝑦𝑚(𝑘 − 2) + 𝑟(𝑘)      (38) 

 

Where 𝑟(𝑘) is the BIBO stable external input to the system given as: 

 

𝑟(𝑘) = 𝑠𝑖𝑛 (
𝜋𝑘

25
)           (39) 

 

The control objective here is to bring the difference between reference model and plant's response 

𝑒𝑐(𝑘) = 𝑦𝑚(𝑘) − 𝑦0(𝑘) approximately equal to zero by introducing an optimal control signal 

𝑢𝑐(𝑘) at every instant, to the plant via LRNNIFT as a rectified input to it. 𝑢𝑐(𝑘) can be computed 

from the knowledge of 𝑦0(𝑘) and its past values as 

 

𝑢𝑐(𝑘) = 𝐹[(𝑦𝑜(𝑘), 𝑦𝑜(𝑘 − 1)] + 0.6𝑦𝑚(𝑘 − 1) + 0.3𝑦𝑚(𝑘 − 2) + 𝑟(𝑘) 
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For our analysis, the following parameter values have been considered:  

 

Learning rate = 0.028 

Total number of hidden neurons = 4 

 

7.1 Discussion on Simulation Results 

 

Figure 13 represents the plant output response (in dotted pink) along with reference model 

response (in solid green) without control scheme implementation. From the plot, it can be clearly 

observed that the two responses do not coincide (as desired). Therefore, we use the adaptive control 

configuration shown in Fig. 12 and apply it to the plant.  

 

 
Fig 13: Plant response without controller 

 

Figure 14 shows the response of LRNNIFT controller compared with FFNN and ENN based 

controllers and plant during the early stages of training. The instantaneous training was done for 

60,000-time steps after which it was terminated. Post training, the controllers started tracking the 

reference plant’s output which can be seen in figure 15. From figure 14, we can clearly observe 

that the LRNNIFT controller has the fastest response among all three. Additionally, it is able to 

force the plant to track the reference model from the very first instant. Time of response being a 

critical aspect in controller design makes the proposed controller better than ENN and FFNN based 

control. Table 2 shows the Average Mean Square Error (AMSE) and Total Mean Average Error 

values for all the three controllers which is also the least for the proposed controller. 

 



 33 

 

 
Fig 14: Response of controllers during initial phases of training 

 

 

 
Fig 15: Response of controllers after successful training 

 

 

Table 2: Comparison of performance of LRNNIFT, ENN & FFNN controllers 

 

Parameters 
Performance Comparison Table 

ENN FFNN LRNNIFT 

Average MSE 0.0469 0.0907 0.0453 

Total MAE 0.1329 0.1956 0.1261 
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7.2 Disturbance rejection test 

 

The proposed controller is also checked for robustness against disturbance signals in the system. 

This is one of the key aspects of closed loop control. 

A step signal of amplitude 5 is added as disturbance to the plant at k=55000th instant. 

 

 

 
Fig 16: Disturbance Analysis for robustness 

 

The disturbance leads to a spike in controller response and the instantaneous mean square errors 

and mean average errors also experience the same. In figure 16, we can see the noise signal causing 

disturbance at k=55000 instant but as the training went on it rapidly recovered and went back on 

the track within few instants. This proves the robust or adaptive nature of the controller. On 

comparison, we can observe that the FFNN controller has under-performed whereas the ENN 

controller has performed only slightly better than the LRNNIFT controller. This is because the 

ENN is an extremely complex structure, that is- for equal number of inputs and hidden neurons, 

the number of update parameters (or weights) for ENN is 32 whereas for LRNNIFT it is only 20. 

FFNN controller has 16 weights only but it is slow and less accurate as it cannot track the plant's 

past values. 
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CONCLUSION 
      

In this thesis, an alternative neural network is proposed for prediction of nonlinear systems with 

unknown dynamics. The LRNNIFT structure developed consists of locally recurrent loops along 

with input fed through weights directly to the output. The error back-propagation method is 

implemented for tuning of parameters and error reduction by optimizing the cost function. The 

model is tested on a complex nonlinear system and compared with feed forward (FFNN) and 

Elman neural network (ENN) identification models. From the simulation study, it is observed that 

this model performs better in terms of learning dynamics for fewer inputs when compared to the 

other two reference models. Although the results of ENN and FFNN are comparable, despite the 

slightly high error in ENN model, we can observe that it has a better convergence rate as compared 

to FFNN.  In further continuation to above, an adaptive controller is designed based on this network 

for nonlinear plants. Parameter tuning is again done via back-propagation method. The controller 

is implemented on a nonlinear complex system and its results are compared with FFNN and ENN 

controllers. The simulation results clearly depict that the proposed controller performs better than 

the other two controllers both in terms of error mitigation and speed of tracking. The controllers 

are also tested for robustness by introducing a disturbance signal in the plant equation. It is 

observed that the proposed controller successfully adapts by moving back to the original track. 

Although the results of ENN are slightly better than LRNNIFT in terms of robustness, the 

drawback here would be the high complexity of the ENN network which again leads to the 

proposed controller to be a better choice. After extensive mathematical analysis and simulation 

results, we can conclude that the proposed network, LRNNIFT, can be regarded as a general 

identification model that can be applied to a wide class of nonlinear dynamic systems for the 

purpose of behavior prediction as well as provides better control over such plants. 
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Abstract—This paper presents a locally recurrent neural net-
work with input feed through (LRNNIFT) for the identification
of nonlinear time-delayed system. The proposed network model
parameters are tuned using a Back-propagation (BP) algorithm.
The performance of the proposed model is compared with the
well known recurrent Elman neural network (ENN) and a single
layer feed-forward neural network (FFNN). The simulation re-
sults showed that the proposed model has shown better accuracy
as compared to the other two models.

Index Terms—locally recurrent neural network with input feed
through, Recurrent neural network, Identification, Elman neural
network, back-propagation method

I. INTRODUCTION

In the ever-growing world of science, extensive research
is being performed in understanding the behavior of the
universe and its systems. This has led to the development of
various types of mathematical formulations. The significance
of nonlinear system identification is unarguable as most
control methods are designed to perform in the linear region
only and have a restricted range of working [1]. It is evident
that linear control methods are popular because they are
simple but their effectiveness in real-world (nonlinear) system
control is very bounded. Conventional control methods such
as the Zieglar Nichols method is found to be inadequate
when it is mandatory to control systems in real time.
The linear identification process involves the selection
of a specific appropriate phase of the model in order to
best measure the behavior of a system[2–4]. To overcome
this problem, researchers started focusing on modeling
techniques for control of such systems. Nonlinear system
modeling techniques are versatile in nature and can work in
a vast range unlike linear identification methods. Artificial
neural networks have been repeatedly implemented in the
field of nonlinear control systems for their inherent nonlinear
behaviour. This has given rise to studies on various models for
dynamical systems control and identification. It was observed
that static (feed forward) neural networks are not efficient
enough for control engineering applications, since they do not
have the dynamical attribute. Consequently, recurrent neural
networks have been regarded more importance in the recent
years for the same [5-7].

978-1-6654-5883-2/22/$31.00 ©2022 IEEE

In compliance with the above approach, in this paper we
discuss a locally recurrent neural network which has a set of
weights directly fed to the output node from the external input.
Our purpose here is not to exhaustively search for the best
possible results, but to compare output of this novel structure
with existing feed forward neural network and elman neural
network models maintaining uniformity among all parameters.
This is done to observe the true behavior of the structure taking
the preexisting models as a reference for nonlinear system
identification.

II. ARTIFICIAL NEURAL NETWORKS-BRIEF OVERVIEW

An artificial neural network or ANN is an algorithm loosely
based on the working of human brain. Just as the brain consists
of thousands of neurons and synapses associated with them, an
artificial neural network also contains a set of nodes (known
as neurons) that are interconnected via weights. In a sense,
the weights determine the degree to which the information is
to be transmitted to another node. Hence, they play a vital
role in the working of a neural network. These weights are
updated during the training process using an error reduction
algorithm to produce desired output. Neural networks are used
as black box models as they require only the input and output
data set to draw patterns and to estimate the mathematical
relationship between the input and output of a system. On a
broad structural classification, artificial neural networks can
be of two sorts: the feed forward neural network (FFNN) and
the recurrent (or repetitive) neural network (RNN) [8]. Both
of these networks contain characteristics which makes them
an ideal candidate to use flexible real-time dynamic controls
[9–11].

III. STRUCTURE OF LRNNIFT

LRNNIFT or locally recurrent neural network with input
feed through is represented in Fig.1. In the figure, the green
arrows in the structure of LRNNIFT, depict the local weights
which propagate a unit delay as output of the hidden neuron
which is looped back as an input to the same hidden neuron.
This forms the locally recurrent structure. The pink arrows
denote the input fed to the output through feed through weights
represented as M= M1, M2,...Mq . The local weights are
given by local weight vector, WF = w1, w2...wq and WI
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represents the input weight vector having tunable weights. It
can be deduced from the figure that if vector Mq is equal
to zero, the structure of LRNNIFT reduces to an Elman
Neural Network (ENN) and similarly if WF is made zero,
it reduces the structure to a Feed Forward Neural Network
(FFNN). Both these structures are used further in this paper
to compare the LRNNIFT structure. The output layer and
hidden layer neurons are connected by a weight vector given as
output weight vector, W0 = w1

0 , w2
0 ....wp

0 . The q-input vector
depicts the external signal which is applied to the network
and is represented as a vector by X= x1(k), x2(k)....xq(k).
Additionally, the output of any pth hidden neuron at any kth

point in time is given by:

Tp(k) = f [Zp(k)] (1)

It is to be noted that f here is taken as the tangent hyperbolic
function.

Fig. 1. Structure of locally recurrent neural network with input feed through

The induced field of any pth hidden neuron is calculated as
below:

Zp(k) = WF
p (k)Tp(k − 1) +

∑
q

W I
pq(k)xq(k) (2)

Further, the induced field of the output neuron is as follows:

V (k) =
∑
p

W p
0 (k)Tp(k) (3)

A linear activation function is considered for the output
layer neuron, therefore the output will be equal to its own
induced field along with summation of external input via feed
through weights. Subsequently, we can deduce:

VIFT (k) = V (k) =
∑
p

W p
0 (k)Tp(k) +

∑
q

Mpq(k)xq(k)

(4)

A. Identification of time-delayed nonlinear system

In any control scheme, the basic feature is to provide the
desired control of plant parameters. It is noteworthy to mention
that in order to implement a control strategy on a plant, it is
essential to know its dynamics. It is cumbersome to design a
controller for plant which does not have a mathematical model.
Subsequent to this, a major class of real time systems are
present whose dynamics can not be mathematically modelled
and are non-deterministic in nature. This is where ANN has
played a major role in the recent times by helping estimate
the unknown behaviour of nonlinear plants that are to be
controlled. The neural networks are backed by several robust
learning algorithms which can be modified as per the nature
of system in consideration. With respect to this paper, neural
networks are used as an identifier for a dynamical system
whose properties are partially known. The general mathemat-
ical expression of a dynamical system is as follows:

yq(k) = F [yq(k − 1), yq(k − 2)...yq(k −O),

r(k − 1), r(k − 2)...r(k − L)]
(5)

As mentioned above, equation (5) represents a general
dynamical system where Yq(k-1) is the past value of plant
(with a difference of one instant) and similarly all past values
of yq output are represented till qth instant. In the same
manner, the past values of input are also represented as r(k-1)
to r(k-L). The term O represents the order of the plant and L
is generally taken to be less than O. It is to be noted that for
the sake of simplicity in understanding, the above equation is
represented for kth time instant, that is, if the above equation is
shifted by a unit delay, it will be visibly evident that the next
value of the plant will depend upon the past as well as the
present values of input and output. Therefore, in all further
discussions this notion has been kept in mind. Further, the
nonlinear system to be estimated is depicted as the function
F.

Our prime objective here is to estimate the behaviour of the
above plant, that is, our end result should be F̂ ≈ F . Now,
from the structural layout we can conclude that the succes-
sive outputs of FFNN, Elman neural network and LRNNIFT
structures are primarily dependent on the present and past
values of the plant input-output values. The effectiveness of
any estimation technique can be proven only if it minimises
the requirement of plant knowledge. Therefore, in case of
LRNNIFT, the proposed identification structure, we have taken
only two inputs from the large set of plant variables-one past
value, Yp(k-1) and a past value of external input, r(k-1). The
plant behaviour is predicted based on these two inputs only and
is denoted by YIFT (k). The selection of fewer inputs (in this
case, two) tones the structural and computational complexity
by reducing the number of parameters that are to be updated.
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Fig. 2 depicts the structure of suggested LRNNIFT model
which is of series-parallel orientation having the below dy-
namical model:

VIFT (k) = F̂ [yq(k − 1), r(k − 1)] (6)

Fig. 2. Series-parallel identification model structure for LRNNIFT (Proposed).

B. Learning algorithm for LRNNIFT identification model

The standard back-propagation method is implemented for
error reduction during training stage. It is based on the popular
gradient-descent algorithm used for optimisation. The main
idea behind the algorithm is to find the maximum or minimum
(in this case, minimum) of a function. It uses the gradient
at present value to iteratively compute the next value while
minimising the function. Our aim is to generate an LRNNIFT
based identifier which can estimate the plant’s behaviour
successfully. In order to attain this, we need to reduce the error
(the gap between desired and actual output) generated during
training. Conventionally, mean square error (MSE) function
is used as the function to be minimised as it provides stable
output compared to absolute error. The same is used below
and expressed as:

Ei(k) =
1

2
[Yp(k)− YIFT (k)]

2 =
1

2
e2i (k) (7)

Here, Ei(k) represents the cost function for LRNNIFT
training model and ei(k) represents the error which is back
propagated. The input weights, locally recurrent weights, feed
through weights and the output weights are to be updated in
this model. The parameter update expression of all these are
presented subsequently below.

C. Tuning of Output and Feed-through Weights

The error gradient with respect to any jth output layer
weight can be expressed as

∂Ei(k)

∂W j
O(k)

=

(
∂Ei(k)

∂YIFT (k)
× ∂YIFT (k)

∂W j
O(k)

)
(8)

where ∂YIFT (k)

∂W j
0 (k)

= Tj(k)

Thus, each value in W0(k) = w1
0(k), w

2
0(k),....w

q
0(k) will

be updated to a new value as following:

W j
0 (k) = W j

0 (k − 1)−∆W j
0 (k − 1) (9)

where ∆W j
0 (k − 1) = −ηei(k − 1)Tj(k − 1)

In a similar manner for the feed through weights, each
value in M= M1, M2,...Mq will be updated to a new value as
following:

M j
0 (k) = M j

0 (k − 1)−∆M j
0 (k − 1) (10)

where ∆M j
0 (k − 1) = −ηei(k − 1)Tj(k − 1)

D. Tuning of locally recurrent weights

The update equation for any jth recurrent weight vector can
be written as below:

∂Ei(k)

∂W j
F (k)

=

(
∂Ei(k)

∂YIFT (k)
X

∂YIFT (k)

∂W j
F (k)

)
(11)

where ∂YIFT (k)

∂W j
F (k)

= ∂YIFT

∂V (k)
∂V (k)

∂W j
F (k)

Now ∂YIFT

∂V (k) = 1. Evaluation of ∂V (k)

∂W j
F (k))

is as below:

∂V (k)

∂W j
F (k)

=
∂V (k)

∂Tj(k)

∂Tj(k)

∂W j
F (k))

(12)

where

∂V (k)

∂Tj(k)
= W j

0 (k) (13)

and

∂Tj(k)

∂W j
F (k)

=
(
1− T 2

j (k)
)
[Tj(k−1)+W j

F (k)Lj(k−1)] (14)

where Lj(k) = ∂Tj(k)

∂W j
T (k)

and Lj(0) = 0. So, each element of
local weight vector will be updated as:

W j
T (k) = W j

F (k − 1)−∆W j
F (k − 1) (15)

where

∆W j
F (k) = −ηei(k)W

j
0 (k)[1− T 2

j (k)][Tj(k − 1)

+W j
T (k)Lj(k − 1)]

(16)
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E. Tuning of Input Weights

The update equation for input weight vector is also formu-
lated using the above concept. For any jth value, the equation
can be given as:

W j
I (k) = W j

I (k − 1)−∆W j
I (k − 1) (17)

where

∆W j
I (k) = −ηei(k)W

j
0 (k)[1− T 2

j (k)][xj(k)

+W j
FQj(k − 1)]

(18)

where Qj(k) = ∂Tj(k)

∂W j
I (k)

and Qj(0) = 0

IV. SIMULATION STUDY

Post mathematical discussion, we now evaluate the effi-
ciency of the proposed LRNNIFT based prediction strategy
by implementing it on a plant and comparing the results
with FFNN and ENN based prediction strategies. To conduct
exhaustive analysis we have considered a complex dynamic
plant. In the below example, we have taken only single
hidden layer, 3 hidden neurons, equal learning rate and equal
number of epochs in all the identifiers. The reason why we
considered similar parameters for the proposed LRNNIFT
based identification model and the other two models (ENN,
FFNN) is to form a basis for comparison.

Consider a nonlinear time-delayed dynamical system whose
dynamics are not known and is represented as mentioned
below:

yp(k) = F [x1, x2, x3, x4, x5] (19)

where x1 = yp(k − 1), x2=yp(k − 2), x3 = r(k − 1), x4 =
r(k−2), x5 =r(k−3) where the form of the unknown function
is expressed as below:

yp(k) = 0.72x1 + 0.025x2x3 + 0.001x2
4 + 0.2x5 (20)

The identification structure of FFNN, ENN and LRNNIFT is
same and is given by following equation

YIF T (k) = F̂ [x1, x3] (21)

In the above case, all the parameters of all three identifiers
are trained by each epoch. The number of hidden neurons
and the number of inputs for all three identifiers are 3 and 2,
respectively. The total number input-output training data was
500 and the training was done for 500 epochs, post which it
was graphically observed that the models were successfully
trained. The learning rate (η) was set to constant value of
0.0025 for each variable of identifier. For the training, we have
considered the external input r(k) to be a bounded sinusoidal
signal with a range of [1, 1]. It is defined as r(k) = sin( 2πk250 ).
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Fig. 3. Response of identifiers during initial stages of training
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Fig. 4. Response of identifiers post training stage

A. Discussion on Simulation Results

Fig.3 and Fig.4 show the responses of identifiers during
the initial and final stages of training. Evidently, we can
conclude that the LRNNIFT has successfully predicted the
plant behaviour better than the ENN and FFNN identifiers.
Upon observing the MSE (Mean Square Error) and MAE

(Mean Average Error) plots (shown in Figs.5-6) obtained
during the training, we can again deduce that the LRNNIFT
identifier has given the lowest value of error along-with fastest
convergence of instantaneous error among all three identifiers.

The numerical observations obtained from the MSE and
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Fig. 5. Comparison of MSE curves of all three identifiers
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Fig. 6. Comparison of MAE curves of all three identifiers

MAE plots are given in form of comparison in Table 1.
From the table, the average MSE (AMSE) and total MAE
(TMAE) values are found to be the lowest in case of LRNNIFT
identifier. We can also observe that with the same number of
inputs, LRNNIFT model is performing better both in terms of
error reduction and rate of convergence. This makes it more
computationally efficient than FFNN and ENN.
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TABLE I
DETAILED OUTPUT COMPARISON OF ENN, FFNN AND LRNNIFT

Parameters Comparison Table
ENN FFNN LRNNIFT

Average MSE 8.615x10−5 5.19x10−5 1.5659x10−5

Total MAE 0.011 0.0083 0.0047

B. Validation/Testing

Once the training of models is completed, the models are
set to be tested with different inputs to the plant. This stage is
important because it puts the quality of training on check and
we can observe the actual efficiency of the identifier. In other
words, this stage categorizes how well the plant is trained by
the sample so that it can successfully predict output for data
outside its sample space. Here, we take a different external
input (having same range as that of the input used during
training). The input subjected to plant is varied in nature to
check the versatility of the plant’s prediction capabilities.

The external input is given as follows:
If k is greater than 4 and less than or equal to 250,
r(k) = sinπk

25
If k is greater than 250 and less than or equal to 500,
r(k) = 1
If k is greater than 500 and less than or equal to 750,
r(k) = −1
If k is greater than 750,
r(k) = 0.3sinπk

25 + 0.1sinπk
32 + 0.6sinπk

10
The validation response plots of all three identifiers can be

seen in Fig.7. It can be observed that all three identifiers have
been trained successfully with LRNNIFT showing superior
results.
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Fig. 7. Comparison of plant output with identifier responses during validation

V. CONCLUSION

In this paper, an alternative model is proposed for prediction
of nonlinear systems with unknown dynamics. The LRNNIFT
structure developed consists of locally recurrent loops along
with input fed through weights directly to the output. The
error back-propagation method is implemented for tuning
of parameters and error reduction by optimising the cost
function. The model is tested on a complex nonlinear system
and compared with feed forward (FFNN) and Elman neural
network (ENN) identification models. From the simulation
study, it is observed that this model performs better in terms
of learning dynamics for fewer inputs when compared to the
other two reference models. Although the results of ENN and

FFNN are comparable, despite the slightly high error in ENN
model, we can observe that it has better convergence rate as
compared to FFNN. Thus, LRNNIFT can be regarded as a
general identification model that can be applied to wide class
of nonlinear dynamic systems for the purpose of behavior
prediction.
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