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Abstract 

 

                Correlations have been important since the beginning; in some 

circumstances, they are required because it is challenging to quantity the value directly, 

and in others, they are beneficial since the results of other tests may be verified by 

correlations. Machine learning techniques like artificial neural networks (ANN) and 

support vector machines (SVM) were used to create prediction models to estimate the 

required parameters. Compressive strength and durability of blended cement concrete 

have been modelled in this research. The compressive strength of blended cement 

concrete was anticipated given its composition and other characteristics such as time, 

curing, and so on in the first problem. 

                In the second problem, the carb0nation depth of fly-ash c0ncrete has been 

predicted from input factors such as exposure-time, curing, relative humidity, 

temperature, CO2 concentration, fly-ash percentage, cement per cum and studied 

predictability of ensemble methods were f0und to be precise.  

                 In last problem, prediction of sulphate resistance of blended cement 

cօncrete c0ntaining fly-ash and silica fume was done using ANN model.  

 

                 The results of the performance was compared and revealed that the machine 

learning techniques are an effective tool for reducing uncertainty in concrete mix 

design projects. Soft computing may give new ideas and methodologies for reducing 

the risk for correlation inconsistency. 
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CHAPTER 1 

Introduction 

Empirical connections are commonly employed in engineering to analyse 

specific engineering features of engineering materials. These connections are usually 

derived using statistical approaches using data from extensive laboratory or field 

testing. Artificial machine learning includes artificial neural netw0rks (ANN), supp0rt 

vect0r machines, decision trees, random forest, and other regression models. Even 

though the fundamental linkages are unclear or the physical understanding is 

challenging to describe, these methods train from the sets supplied to them in order to 

arrest the relational connections amongst the data. This differs from most standard 

experimental and analytical methods, which require previous knowledge of the 

attributes of the data associations. As a result, AI is highly adapted to modelling the 

complex behaviour of most engineering materials, which display extreme erraticism 

by their own nature. This modelling power, besides the capability to be trained from 

previous training/learning, has given AI an improvement over many conventional 

modelling methods, as there is no necessity to create hypothesis about the elementary 

rules which govern the question at that time. 

Although several researchers have made efforts to modify and explain, ANN 

remains a "black box" technology with minimalism. Support vector machines is a new 

prediction model, the theories such as statistical learning theory and structural risk 

minimization has been used. While SVM is trained, it on restricted minimization, and 

punishes the errors to reduce the error margin. Since the SVM’s the error function is a 

convex, it is more robust to generalisation than ANN. 

Despite the fact that AI techniques have outperformed other traditional 

methods for modelling complicated engineering material performance, it has been 

criticised for its not being transparent, difficulty in understanding information 

abstraction process, and model ambiguity. To combat this, improvised AI techniques 

are being developed. 
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1.1 Need of Study 

The properties of concrete is dependent on variable factors such as mix, curing, 

raw material etc. and testing of the concrete specimen is time consuming. The 

empirical formulas have been developed to design the mix of concrete. The 

requirement of producing high performance concrete or blended cement concrete 

necessities a simpler design approach. For this purpose, the scope of machine learning 

algorithms in evaluation of compressive strength and durability properties such as 

carbonation depth, sulphate resistance of concrete has been studied. To estimate 

particular technical qualities and materials, empirical relationships are employed 

extensively.  

• Computational approaches learn from data samples so as to capture relational 

linkages amongst data, even if the underlying relations between variables are unknown 

or the physical relevance is unclear. 

• The majority of classic experimental and statistical methods necessitate previous 

information of the nature of data interactions. 

• Machine Learning techniques can be used to simulate the multifaceted performance 

of most engineering materials that are highly inconsistent. 

1.2 Objectives  

In spite of the great extent of study undertaken to evaluate the compressive 

strength and durability properties of concrete, the necessity for vigorous models and 

more varied datasets is the basis to develop dependable information on the results of 

the substitution of fly-ash, Rice-husk, or any blending material in cement. ML 

objectives at generating models which after training from definite training database 

can project precise estimation on the data which was never taken while creating a 

model, i.e., a model that can generalise. The use of blending materials will reduce cost 

of concrete used by the construction industry. It will also lead to the use of industrial 

waste in production which will not only reduce cost of disposal of waste but also 

generate revenue from the waste.  

  



3 
 

Consequently, the objects of this thesis are drawn below: 

 To apply various machine learning methods like ANN, SVM, decision trees, 

random forest, and other regression models in parametric estimation of 

engineering problems. 

 To do an investigation of prior study/research on the use of ML approaches to 

forecast the carbonation depth of original c0ncrete technology accessible in the 

0pen research works. Consequently, define the benefits and shortcomings of 

the all the algos used for analysis and their attained accuracy is summarized, 

emphasizing their c0ntributions to the building of mainstream c0ncrete 

mixtures. Thereafter, model carbonation depth of concrete containing fly-ash 

and slag as an admixture. 

 To make a huge and representative dataset to forecast the c0mpressive strength 

of blended cement concrete, safeguarding that the ML models produced 

thereafter can generalise the fundamental rules of the c0mpressive strength of 

blended cement concrete. Thereafter, m0del for c0mpressive strength 0f 

blended cement concrete 

 To make a machine learning model to forecast of the carb0nation depth of 

blended cement concrete taking into consideration the increasing 

acknowledgement that the durability pr0perties of c0ncrete are altered by the 

substitution of blending materials and comparison of the carb0nation-depth ML 

m0del to prior theoretic models and experimental results which were based on 

experimentation. 

 

1.3     Methodology for Machine-Learning 

The analysis of the mechanical & durability pr0perties of blended cement 

c0ncrete was done in this project. The difficulties of the vastly non-linear relation 

between the properties of concrete and its mix components is tackled using ML 

models. The observations of the this dissertation includes: 

1. An previous research of the Machine Learning applications to forecast the 

c0mpressive strength of concrete was reviewed, taking into consideration that prior 

research has analysed wider applications of Machine Learning methods in material 

engineering. 
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2. Created huge datasets so as to evaluate the compressive strength of 

concrete with admixture using prediction model, thus warranting the generalisation 

capacity of the models established in this research. Previous research works have used 

smaller database which may compromise the generalisation ability of the final model. 

3. Machine Learning methods are applied to predict the carbonation depth of concrete 

with blended cement.  

Three methods were applied to make predictions as given below: 

(i) Artificial Neural Network (ANN) 

(ii) Ensemble Machine Learning 

(iii) Regression Machine Learning Algorithm 

Artificial Neural Network (ANN) 

A widely used function approximat0r which is quick to measure novel records. 

Artificial Intelligence (Al) approaches such as Artificial Neural Netw0rks (ANNs) has 

got a lot of interest in recent times. In principle, ANN is an information techn0l0gy that 

learns from familiarity and generalises from earlier examples to produce new output-

target variable by extracting necessary features from input-variables in a arrangement 

of variable interconnected weights among the processing elements, similar to the 

human brain and nervous system. When the problem involves qualitative or 

complicated quantifiable reasoning, traditional statistical and mathematical 

approaches are insufficient, the factors are extremely interrelated, and the data is 

innately noisy, inadequate, or error prone, ANNs are more powerful than traditional 

methods (Bailey and Thompson, 1990). Figure 1.1 depicts segments of AI and ML.  
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Figure 1.1 Depicting the subparts of the artificial intelligence. 

 

ANNs provide numerous benefits over outdated modelling methods. To begin 

with, ANNs are data determined self-adaptive approaches that may arrest refined 

functional links amongst the dataset’s records even if the essential interactions are 

unidentified or difficult to express, as contrast to traditional mathematical and 

statistical methods. Second, ANNs are more accurate at capturing complicated 

nonlinear relationships (Rumelhart et al. 1994). Third, ANNs have a significant 

advantage over mathematical and statistical models in terms of adaptableness. ANN 

system can modify their weights aut0matically to augment their behaviour. 

Classificati0n, clustering, vect0r quantification, pattern ass0ciation, functi0n 

approximati0n, contr0l, optimizati0n, and search have all been done with neural 

networks.  

An artificial neural network (Mehrotra et al., 1997) is a c0mputational m0del 

with 4 parameters: kind of neur0ns, connecti0n architecture, learning alg0rithm, and 

recall alg0rithm.  

ANNs are artificial neural networks that replicate the human nervous system. 

Processing components, that is an artificial m0del of a human neur0n, interc0nnections, 

which act similarly to the ax0n, and synapse, which are the juncti0ns where an 

interconnecti0n meets a neuron, are the three essential components. An input pattern 

is created by signals received from other neurons. This input pattern encourages the 
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neuron to become more active. If there is enough activity, the neuron produces a single 

0utput signal, which is sent to additional neurons via a connection. Figure 1.2 shows 

structure of a neuron. 

 

 

Figure 1.2 Pictorial representation of neuron 

To make good ANN mode, it necessities determination of independent input 

variables, such that the weighted input variables produce one or more dependent target 

variables. The performance of ANN network is dependent on data pre-processing and 

hyperparameter selection. In the last step, the model is validated with the set of 

examples which it has never seen before. The series of steps followed to ANN 

prediction model is described in Figure 1.3.  

 

Figure 1.3 Flow chart describing ANN model 
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 Ensemble Machine Learning 

What exactly are ensemble methods? The ensemble ML techniques are a 

category of ML technique that incorporates various base models to create a single best-

fit predictive model. 

Categories of Ensemble Methods: 

1) Bootstrap AGGregating, or BAGGing. The term BAGGing originates from the 

point that it agregates Bootstrapping and Aggregation into a lone ensemble 

model. Numerous bootstrapped set of samples are taken form a trial data for 

Decision Tree (DT). DT is made using subsamples after bootstrapping. An 

algorithm is utilised to aggregate over the DT results into the most competent 

forecaster once each subsample DT is made. The Figure 1.4 below will clarify 

the process of aggregation.  

 

Figure 1.4 Flow chart of Ensembling Technique 

 
2) Models of Random Forests (RF) - RF Models are analogous to BAGGing, but 

with a small number of modifications. BAGGed Decision Trees have an 

extensive assortment of variables to select from when determining where to 

split and how to make decisions. Consequently, while the bootstrapped 

subsamples may alter marginally, the data will typically come off at the same 

feature variables in every one of the models. RF models, alternatively, resolve 
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where to divide data centred on a random selection of features. RF models 

incorporate differentiation since every single tree splits constructed on unalike 

features, instead of dividing at similar features at each node all over. Because 

of the greater level of distinction, there is a higher number of ensemble to 

combine over, which results in a more precise predictor. The flowchart of 

decision tree is given in Figure 1.5.  

 

Figure 1.5 Flow chart of Decision Trees 

 
 Regression Machine Learning Algorithm 

It is a method of inspecting the relationship between independent values or 

characteristics and a dependent target value. It's a one of ML methods to make 

predictive model which deploy an algorithm to predict continuous outcome values. 

Amongst the most commonly used application of machine learning models, 

especially in supervised machine learning, one is to solve regression problems. The 

link between independent factors and an output or dependent variable is taught to 

algorithms. The model can then be used to forecast the outcome of fresh and unknown 

input data, or to fill in a data gap. 

In machine learning, there are a variety of methods for performing regression. 

Machine learning regression is achieved using a variety of prominent algorithms. 

Different strategies may use various numbers of independent variables or process 

various sorts of data. Different machine learning regression models may assume 

different relationships between the independent and dependent variables. Linear 

regression approaches, for example, presume that the relationship is linear, hence they 

won't work with datasets with nonlinear relationships. 
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CHAPTER 2 

Literature Review  

The carbon dioXide (CO2) emitted from the Cement industries can have a 

deleterious effect on the environment as it is one of the biggest producers of the 

CO2 around the world [1]. The manufacturing and operation of cement in 

construction projects leads to production of greenhouse gases (GHG) all around 

the world [2]. About seven percent of total CO2 emanations to the environment is 

from production of Portland cement (PC). During the manufacturing of PC, The 

calcination of calcium oXide (CaO) results in the production of CO2 [3]. To 

minimize the emissions and to use the waste from the industries, consumption of waste 

and recycled produce is recommended in cement manufacturing process [4]. As the 

demand of cement has been increasing, it will be suitable to meet the necessity of 

concrete and also curtail the emissions [5]. Portland cement can be replaced by various 

materials such as limestone, blast furnace slag, silica fumes, granite powder, and fly 

ash [6-9]. The solicitation of these waste materials to replace percentage of cement 

will not only be productive to the construction industry but also diminish the 

requirement of alternative means to dispose of the industrial waste [10]. The 

accurate prediction of the compressive strength is difficult using ML techniques. 

Although, The CS of concrete may be accurately assessed in the lab only by 

performing tests on trial mixes, but the time required for preparing the sample is 

minimum 28 days. By the use of ML techniques such as regression and MLP, we can 

minimize the amount of trial mixes to determine the target strength which will be 

economical as it will reduce cost and save time. [11] 

Portland cement manufacture uses a lot of energy and emits a lot of carbon 

dioxide every year (CO2). The environmental effect of concrete manufacturing can be 

decreased by replacing cement with fly ash (FA), which is a by-product of the 

combustion of pulverised coal. High-volume fly ash (HVFA) concrete is defined as 

concrete with an FA replacement level greater than 50%. Fly ash is a pozzolanic 

substance that must be activated by hydration products produced by Portland cement 

hydration. The composition, microstructure, and characteristics of fresh and cured 

concrete are all affected by the substitution of FA for a considerable amount of cement. 

As a result, HVFA concrete has different durability properties than ordinary Portland 
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cement (OPC) concrete. The following paper have been studied and revealed the 

concept for the use of machine learning models to evaluate mechanical property of 

concrete. 

 

Hongwei Song,et.al. [12] used machine learning to forecast compressive 

strength of concrete. In a dynamic environment, cementitious composites have varied 

characteristics. Knowing their mechanical characteristics is therefore critical for 

design. Compressive strength is the most essential factor in concrete (CS). To forecast 

concrete's CS Machine learning (ML) techniques have become critical. The dataset 

from the experimental works will be collected, and machine learning techniques will 

be applied to evaluate the CS of concrete with fly ash as admixture. All of the materials 

utilised in this research had their chemical and physical properties assessed. However, 

the focus of this study is on the utilization of supervised ML algos for evaluation of 

concrete compressive strength. 

For outcome prediction, the Genetic expressi0n pr0gramming (GEP), ANN, 

and decision trees techniques were examined to forecast compressive strength. A 

number of concrete testers (cylindrical) with varying mix ratio were casted to test at 

several time periods in order to keep the necessary dataset for running the models. The 

experimental approach yielded a total of 98 data points, with eight parameters (cement, 

fly ash, super plasticizer, coarse and fine aggregate, water, FA percent and days) being 

used as inputs for prediction of the target variable, which was the compressive 

strength. The experimentation dataset is subsequently evaluated using k-fold cross-

validation with R2, RME, and Root Mean Square Error (RMSE) (RMSE). Statistical 

checks were also included to assess the model's performance. 

In comparison, the bagging method has a high coefficient correlation (R2) 

value of 0.95, but the R2 values for GEP, ANN, and DT are 0.85, 0.80, and 0.76, 

respectively. 

C. Yeh [13] have investigated and separately demonstrated: - c0ncrete 

strength advancement is regulated not merely by the water-to-cement ratio nonetheless 

als0 by the concentration of 0ther c0ncrete constituents. Because high-performance 

concrete (HPC) is such a complicated design, simulating its behaviour is extremely 

challenging. The goal of this research is to show how ANN can be used to evaluate the 
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compressive strength of HPC. In the lab, a fixed number of trials were done. This 

research came to the subsequent deductions: 1) An ANN-based strength m0del has 

higher accuracy than with a regression-base model; and 2) ANN models are handy and 

simple to use for theoretical experiments to assess the impacts of the ratios of 

individual input upon the c0ncrete mix’s batches of HPC were created, with 

satisfactory experimental findings.  

The ANN-based strength model is more precise than the regressive ML 

algorithm-based model. Models created using this technology can be used to calculate 

compressive strength. These models are useful and simple to use for mathematical 

combinations to examine the affects of individual input on mix proportioning. The 

strength model, for instance, may be applied to investigate the impact of time-period 

or the water-to-binder ratio on strength. 

   Chou, J.S. and Tsaie, C.F. [14] used a combination classification and 

regression technique to analyse the compressive strength of concrete. This research 

provides a hierarchical classifier and regressive (HCR) model for increasing HPC 

compressive strength prediction performance. The HCR's first-level analysis, in 

particular, identify precise classification for novel unseen scenarios. The instances are 

subsequently fed in the appropriate predictor to produce the concluding result. The 

HCR technique beats standard flat prediction models in a laboratory dataset, according 

to the analytical results (LR, ANNs, and SVR). The HCR using a four-class support 

vector machine in the first level and a single ANN achieves the minimum MAE. 

One-tenth of the primary data was unsystematically picked from the example 

data to be used as test dataset and perform MAPE evaluations in the hierarchy predictor 

methods after cross-validation training for validation of the hierarchy classifier 

regresser (HCR) method. In languages of MAPE and RMSE parameters, the suggested 

HCR strategy to creating predictor methods beats individual flat regressor method, 

according to the comparative results. For the first level of HCR, the 4-class SVM 

classifier paired with MLP as the regressor method for the second level of HCR (i.e. 

4-class SVM+MLP) performs well. 

Qian Zhang, Houshang Habibi [15] used an experimental-based 

dataset to estimate the effect of blended material such as granulated blast furnace slag, 

fly ash, rice husk, Alccofine and natural puzzolana on the mechanical properties of 
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concrete such as compressive strength, flexural strength and, split tensile strength; and 

the durability property such as rapid chloride permeability test of concrete in various 

ages of sample. This study looked into the accurateness of data using techniques such 

as exploration and visualization, and followed by training models to predict dependent 

output variable value. To do this, a precision-based system was used for to comparison 

of the productivity. The results were compared on the basis of root mean square error, 

mean absolute error, pearson’s R correlation value, R squared value. In both training 

and testing samples, the predicted values of compressive strength, flexural strength 

and, split tensile strength, and rapid chloride permeability test are quite near to the 

experimental values, as shown in the findings. 

The Multi-perceptron-Layer model gave highest precision score value. The 

pearson’s R correlation value for MLP approach was 0.998 for predicting compressive 

strength, 0.998 for predicting flexural strength, and 0.98 for predicting split tensile 

strength. The Additive regression technique provides the maximum precision score in 

terms of chloride test, with the value of total residue as 5. Rendering the ranking system 

by giving highest score as best rank, SMOreg has the lowest rank among the applicable 

models for predicting all four mechanical properties of concrete modified when 

replacement material is present, and GPR may be considered the second-best 

technique. 

An investigational-centred dataset of 200+ data records was collected from 

published research to analyse the impact of flyash and other admixtures on the 

mechanical and durability properties of concrete in various ages of samples. 

The parameters used in the research were binder content, water-to-binder ratio, 

admixture/binder ratio, ratio of coarse aggregate to total aggregate, ratio of coarse 

aggregate to binder ratio, superplasticizer percentage by weight, and age of concrete. 

Ahmet O ztas , et.al. [16] studied application of ANN networks for 

estimating properties of HPC concrete. HPC may be explained as concrete which 

fulfils a unique set of required properties and consistency standards those could not 

be met applying standard composition and mix, placement, and curing techniques. 

Because HSC is such a complicated material, modelling its behaviour is extremely 

tough. The goal of this article was to demonstrate how neural networks (NN) might be 

used to forecast the CS and slump of HSC. Using test dataset from 180+ dissimilar 
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HSC concrete mix-designs acquired from the literature, a NN model is built, trained, 

and tested. The seven input parameters employed in the NN model are water/(sum of 

flyash and cement), water by weight, aggregate ratio, fly ash by weight, air entraining 

agent, superplasticizer, and silica fume. The findings indicated that NNs had a lot of 

promise as a method for predicting compressive strength and workability parameter. 

The compressive strength and workability of HSC are predicted by the ANN model, 

which runs in Matlab. The mean absolute percentage error for compressive strength 

was determined to be less than 1.95 percent and 5.7 percent for slump values, with R2 

values of around 99.93 percent for compressive strength and 99.34 percent for 

workability for the test dataset. 

Chou, J.S. and Anh-Duc [17] studied application of ensemble technique 

for forecasting high-perf0rmance c0ncrete (HPC) c0mpressive strength using artificial 

intelligence. HPC compressive strength is a greatly not linear equation of the quantities 

of its constituents. Interactions amongst concrete constituents and extra cementing 

constituents are dubious at best. This study compares individual numerical models' 

performance in forecasting the compressive strength of HPC to see how effective 

ensemble models are. Individual and ensemble models were built using the 

presentation of SVM, ANN, CART, chi-squared automatic interaction detector, linear 

regression, and generalised linear regression. The ensemble technique, which 

combines two or more models, has the best prediction performance, according to the 

results. 

The ensemble models outperformed prediction models in earlier studies by 

4.2–69.7% for 5 experimental datasets. This study validated the proposed ensemble 

approach's efficiency and effectiveness in refining the accurateness of forecasted 

compressive strength for HPC. 

In most cases, single AI algorithms with modest changes or traditional 

regression techniques were used. As a result, a hybrid model combining multiple AI 

m0dels ought to improve predicti0n perf0rmance, particularly for estimating HPC 

c0mpressive strength. Such an m0del must be both r0bust and easy to alter when 

modelling uncertainty. However, the prediction accuracy of most of these approaches 

is insufficient in terms of mean abs0lute percentage err0r (MAPE), r00t mean square 

err0r (RMSE), and mean abs0lute err0r (MAE), indicating that their training 
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competency is feeble for advance generalisation due to their not enough correlation 

c0efficients (MAE). 

Meltem özturan, et.al. [18] studied the ability to predict concrete strength 

using ANN as compressive strength is critical in the ready-mixed concrete business, 

particularly when proportioning novel combinations and ensuring the superiority of 

the concrete design. The purpose of his research was to show how ANN may be 

applied to forecast the twenty-eight day strength of varied strength of concrete. The 

composition of freshly prepared concrete, and early strength data collected from 

various batching plants of a ready-mixed concrete company were defined in terms of 

nine independent inputs clustered into five varied models, to which ANN and linear 

regressor algorithms were tested. 

The coefficient of determination is used to measure the accuracy of prediction 

by artificial neural networks, multiple linear regression models, and Abrams' law. 

ANN network that use data of fresh concrete’s early strength appear to produce the 

best outcomes. Because it is founded on the notion of learning through training and 

experience, the machine learning approach to artificial intelligence is intriguing. 

Connectionist models, such as neural networks, are particularly suited to machine 

learning because connection weights may be modified to increase a network's 

performance. 

Taleb Khaled, et.al. [19] compared different waste materials which are 

used as cement replacement in concrete. Diverse discarded resources recycled as 

cement substitutes in concrete are compared. In construction industry, concrete is 

commonly used material. OPC is the key component that holds everything together. 

However, OPC manufacture has an economic and ecological cost, therefore if OPC 

may be partially replaced by a less expensive substance, the economic and ecological 

costs of concrete may be greatly decreased. Specific industrial discarded supplies have 

cementing and pozzolanic qualities, thus they can be utilised to substitute cement in 

some proportions, reducing pollution and costs associated with their disposal.  

When utilised properly, these materials have good affects on both just-

mixed and stiff concrete, including improved strength, durability, workability, conde

nsed permeability, increased acid resistance, and reduced plastic shrinkage cracking. 

As a result, 3 industrial waste materials, namely fly ash, silica fume, and ground 
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granulated blast furnace slag, are evaluated as cement replacement materials in this 

work.  

The compressive strength was used to estimate the mechanical qualities, while 

the durability was assessed using chloride diffusion and permeability. Concrete 

workability was also equated. Because such waste resources are both cost effective 

and environmentally benign, and because these twin words are rarely used   combined, 

additional public mindfulness and improved ideals are required for widespread usage 

of such industrial discarded resources. 

S. Akurt, et.al. [20] evaluated the application of GA-ANN’s in the 

modelling of cement CS. Machine learning (ML) approaches are progressively more 

being utilised to mimic the behaviour of c0ncrete material, and the field has grown in 

importance. Single and ensemble based classifiers are built using four diverse base 

learners: the MLP neural network, SVM, CART, and linear regression (LR). The study 

proves that machine learning, voting, bagging, and stacking approaches may be used 

to simulate concrete compressive strength in a simple and effective manner. To 

forecast the reaction of the classification to dissimilar amounts of the elements 

impacting the strength, the m0del remained exposed to sensitivity analysis. Within the 

model's limits, swelling the quantity of tricalcium silicate, sulphur trioxide, and surface 

area resulted in higher strength, according to the plots generated following sensitivity 

analysis. Dicalcium silicate reduced strength, however tricalcium aluminate increased 

or decreased strength dependent on sulphur trioxide concentration. The predicted 

results were only accurate within the identical range due to the narrow limits of 

database used for training. The model's value lies in its capacity to regulate and iterate 

parameters to achieve the anticipated strength values, as well as in given that 

information on the best experimental settings for achieving highest compressive 

strength. 

The sensitivity analysis was done on the model in order to forecast strength 

values for various blends of input parameters. Surface charts were used to display these 

forecasts. On designed graph founded on the proposed model, the impacts of altering 

Sulphur oxide, calcium silicate, calcium aluminate, potassium oxide, sodium oxide, 

and surface area (Blaine) were plotted. 



16 
 

Halil Ibrahim Erdal [21] evaluated performance of decision tress and its 

ensemble models. The mechanical property such as compressive strength of high 

performance concrete was estimated using two-level and hybrid decision tree 

ensembles. Three alternative ensemble techniques are proposed in this study. The first 

being the use of single ensembles of decision trees (DT); The second being the use of 

two-level ensemble technique, which builds ensemble models using the same 

ensemble learning procedure twice. The last being the use of hybrid ensemble method, 

which combines attribute-based ensemble methods (random sub-spaces RS) with 

instance-based ensemble methods (bagging, batch gradient descent, aggregating, mini-

batch gradient descent, stochastic gradient boosting. The results show that the 

suggested ensemble models can improve the forecast precision of a single decision 

tree model significantly. 

Jui-Sheng Chou, et.al. [22] studied a number of elements which 

influence the strength-gaining capabilities of concrete. The goal of this study is to 

predict strength attributes at various ages using the findings of early compressive 

strength tests. The capacity to estimate the strength and determination of normal 

concrete using the early day strength properties result has been investigated. A basic 

numerical equation is provided that includes both concrete and regional concrete mixes 

to predict concrete strength at any age. This article demonstrates how ANN and ML 

can be used to forecast the compressive strength of high-performance concrete. 

Multination data analytics and machine learning in concrete strength prediction 

ML algorithm. Using genetic algorithms, the train data and test data were segregated 

from the final data set used for making prediction model. On the basis of the cement 

strength training data, a GA–artificial neural network (ANN) model was developed. 

The model was also tested with low average error levels in mind (2.24 percent). 

The model was put through a sensitivity analysis to see how it would react to different 

values of the components that determine strength. The prediction values were only 

precise within the same range due to the narrow data range used for training. 

Jafr Sobhani ,et.al. [23] made a comparison of regression, neural 

network, and ANFIS models for the estimation of the compressive strength of no 

slump concrete. The sensitivity of NSC to its ingredients, mixing percentage, 

compaction, and other factors make compressive strength prediction problematic. The 
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number of regressors, artificial neural networks, and ANFIS models are built, trained, 

and tested in this research using concrete ingredients as input parameters to predict the 

28-day compressive strength of no-slump concrete. The results show that the neural 

networks and ANFIS models are more capable of predicting the 28-CSNSC than the 

usual regression models presented. Because of its closed-form structure, regression is 

a well-known method in engineering system modelling. Unfortunately, regression 

models fail to give good accuracy scores when there is little data, hence sophisticated 

models such as neural networks and ANFIS models are used. Nonetheless, the 

regression with L2 regulareization, which was created using a partial second order 

polynomial, performs admirably. 

CARBONATION OF CONCRETE  

A substantial amount of carbon dioxide (CO2) is produced annually in production and 

utilization of Portland cement from the cement manufacturing industries. This 

accounts for seven percent of total CO2 emissions into the atmosphere [38]. With the 

increasing demand of cement, it is pertinent to use cement replacement materials 

such as fly ash (FA) to reduce lime (CaO) demand which produces CO2 upon 

calcination. Fly-ash, a pozzolanic constituent that requires hydration products 

(Calcium Hydroxide) during the hydration of Portland cement to trigger. The 

composition, microstructure, and characteristics of fresh and cured concrete are all 

influenced by the substitution of fly-ash for a considerable amount of cement. As a 

result, the durability properties of concrete containing fly ash and concrete containing 

ordinary Portland cement (OPC). 

The carbonation depths have been found out experimentally, it was found the concrete 

with puzzolanic materials such as fly ash results have comparatively less carbonation 

resistance [39-45]. Because of the low concentration of CO2 in the surroundings i.e. 

merely 0.03–0.04% by volume, the process of carbonation is slow under natural 

conditions such that process may take quite a few years in a good quality concrete. In 

order to reduce the testing time, the testing is accelerated to estimate long term 

carbonation depths similar to on-site exposure conditions. The accelerated testing may 

be achieved in the laboratory either by swelling the concentration of carbon dioxide 

during the lab experimentation or by exposing it to higher atmospheric pressure [48]. 

Kellouche et al.,2017 studied artificial neural network to explore major factors which 
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affects fly-ash concrete carbonation. Chen et al.,2022 studies aimed at developing 

ANN-based machine learning carbonation models. The input parameter taken in the 

study of given papers were limited to binder content (B), percentage fly-ash 

replacement(FA), water-binder ratio (w/b), carbon dioxide CO2) concentration, 

relative humidity (RH) and time of exposure (t). In extension to the previous 

studies, this study evaluates the effect of curing period on carbonation depths. The 

records with varied curing periods were included to study this effect. It has been 

known that when a machine learning model is trained on more number of records, 

the model learns on bigger dataset and perform better on unseen data points. Also, 

additional input parameters such as curing period and aggregate binder ratio were 

considered. The microstructure of concrete containing fly ash determines its 

resistance to carbonation. Because of the pozzolanic reaction, fly ash partially 

reacts with the hydration product i.e. calcium hydroxide. The amount of hydration 

by-product in concrete decreases as a result. According to Neville [58], based on 

Bier's research [59] for the same concentration of CO2, a larger volume of concrete 

is carbonated as concrete’s porosity increases upon puzzolanic reaction and 

thereafter the carbonation depth is higher in concrete. Also, Bier's research shows 

that when the residual calcium hydroxide in the cement paste is reduced, the 

carbonation rate is higher. This concludes that the inclusion of blending material 

such as flyash in concrete speeds up the carbonation rate and enlarge the 

carbonated zone in concrete in this way. Though, concrete with fly ash produce a 

more dense, hardened paste, it may have the opposite effect. As a result, the 

diffusion rate and carbonation rate is altered. As a result, it's possible to conclude 

that fly ash has two opposing effects on carbonation. The first is accelerating which 

is related to the lack of Ca(OH)2, also concentration gradient leads to deep 

diffusion of CO2; and the second is inhibiting which is related to the denser 

microstructure of the hardened concrete due to change in physical properties of 

concrete due to fly ash and due to change in the chemical properties of the 

pozzolanic reaction by-products. Two factors influenced the porosity of the concrete 

in terms of water content: the water-binder ratio (w/b) and the effective water-binder 

ratio (w/(c+ k *f)). Here binder content is sum of fly ash and cement and the k-factor 

of 0.40, factor taken for the concrete exposed in natural environment, this was 

employed for all data-manipulation purposes. The k-factor is stated in the design guild 

of fly-ash concrete for adjusting the amount of fly ash that is really reactive in the 
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mixture. [48] In concrete with fly-ash, the quantity of Ca(OH)2 is considerably 

reduced, the extent of carbonation should reduce but greater carbonation depths have 

been observed owing to the increased permeability due to the result of pozzolanic 

replacement which effects both binding capacity of CO2 and porosity. Hence, it 

becomes important to study the carbonation model. The data (set of 799 records) were 

collected from peer-reviewed research papers, in which it was observed when higher 

is the time of curing, lower is the carbonation. In this study, to predict carbonation 

depths, ensemble machine learning models were used. Compared to the previous 

studies for making robust machine learning prediction model, it was observed the 

model produced better result when additional parameters: curing time, temperature and 

effective water to binder ratio with k factor 0.4 were used. Concrete is a porous 

substance made up of cement, water, sand, and other ingredients that allows gases and 

fluids to pass through it. Steel in concrete resists corrosion owing to the high alkalinity 

of the pore solution, which results in passivation of steel. The diffusion of CO2 gas 

from the environment into reinforced concrete structures from the pores, causes a 

chemical reaction with calcium hydroxide in concrete in wet and humid conditions. 

As a result, the alkalies present in the pore structure of concrete decreases, and the 

passive layer on the steel surface turn out to be unbalanced, resulting in reinforcement 

corrosion. Concrete carbonation leads to corrosion of reinforcement and causes severe 

degraded performance of RCC structures, also leads to reductions in cross-sectional 

area of steel, thus compromising compressive strength, and bond strength of concrete, 

which weakens structural strength, ductility, and life. As a result, it's critical to research 

concrete's carbonation resistance, particularly the relationship between carbonation 

depth and related durability factors. This has significant applied implications for both 

current building durability valuation and new building durability design. Many factors 

influence the rate of carbonation. Husain conducted a long-term study of the 

carbonation of concrete under atmospheric conditions, finding that surface coating, 

water/cement ratio, water-curing period, and the season in which the concrete was first 

made and exposed were the most significant factors influencing carbonation [65]. 

Husain and Sulapha discovered that lowering the water to total binder ratio improves 

concrete carbonation resistance [54, 65]. Sulapha and Sisomphon evaluated the effect 

of fly ash on concrete carbonation rates and discovered that concrete with a greater fly 

ash replacement ratio has a lower carbonation resistance [74]. CO2 diffuses into the 

concrete and dissolves in the pore solution, causing carbonation. CaCO3 is formed 
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when it interacts with dissolved Ca(OH)2. The pH of the pore solution is decreased 

due to the consumption of Ca(OH)2 during the carbonation process, resulting in 

depassivation of the embedded steel. As a result, there appear to be two deciding 

elements in carbonation. (a) The reduced permeability will slow down CO2 diffusion 

rate and consequently carbonation rate. (b) The presence of more of calcium 

hydroxide, will lead to reaction of the more of CO2 molecules, which will result in a 

slower CO2 ingress. The pozzolanic action of fly ash will consume calcium hydroxide. 

As a result, HVFA concrete has less carbonatable material. In the design of RCC 

structures, the identification of the primary elements that determine carbonation 

development is a vital step, as shown in the preceding literature review. The 

replacement of fly ash in cement, on the other hand, is controversial. The advantage of 

using fly ash in cement industry is that firstly there will be the lower cement demand 

of concrete, secondly the pozzolanic reaction will consume calcium hydroxide from 

the cement mortar and thus reduction of the concentration of calcium hydroxide will 

increase the carbonation process. Furthermore, the principal resulting material of the 

pozzolanic reaction of fly ash is calcium-silica-hydroxide gel, which had filled the 

pores will increase the density of the concrete. The identification of the primary 

elements that determine carbonation development is a vital step for the design of 

reinforced concrete structures, as shown in the preceding literature review. The use of 

fly ash in concrete, on the other hand, is controversial. For one thing, the lower cement 

demand of concrete, as well as the pozzolanic reaction, which consumes Ca(OH)2 

from the cement paste and thus reduces the amount of Ca(OH)2, both speed up the 

carbonation process. Furthermore, the principal resulting material of the pozzolanic 

reaction of fly ash is CSH gel, which further fills the pores, increasing the density of 

the concrete. The formulation of general carbonation models for diverse categories of 

concrete could results in the development of valuable tool for building long-lasting 

structures under Eurocode EC2 XC (carbonation threat) categories of exposure. 

The rate of carbonation in ordinary atmospheric conditions is mostly determined by 

the concrete's material qualities, such as the water-to-cement ratio and the binder's 

physical and chemical composition. The majority of test findings show that using fly 

ash in fitting amounts not only reduces concrete's resistance to reinforcing steel, but 

also increases concrete tightness. The addition of fly-ash to cement can be quite 

advantageous to enhance durability properties, for instance, it is useful to increase 

resistance from chlorides present in seawater or deicing salts, etc. Though, in a strongly 
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contaminated atmosphere with increased concentration of CO2 and chlorides, using 

fly ash as a blending material in cement can hasten the reinforcement's degradation. 

As a result, using fly ash in construction industry should be treated with thoughtfulness 

and a series of prior experiments should be done to ensure that the solution is correct.  

Because of the various sorts of ash utilised, their concentration as a percent to the 

cement mass, varied concrete mixes and curing circumstances, and diverse ways of 

experiment conduction, the results produced in different labs under different 

conditions are difficult to compare directly. Many studies have been published on the 

impact of siliceous fly ash on concrete properties, including carbonation. However, 

only a few papers have been published in the recent several years about the carbonation 

of concrete incorporating high-calcium fly ash as an additive [58–63]. The results of 

published research [58,59] disagree on which effect (accelerating or inhibitory) is 

prevalent in the case of calcareous ash carbonation of concrete [64]. It is dependent on 

the interaction of chemicals and external agents; nonetheless, the healing regime is one 

of the most essential aspects. Curing concrete properly is critical for pozzolanic 

reactions and beneficial for obtaining the microstructure densifying effect. It was 

discovered that fly ash concrete that was not cured in the initial days after pouring 

could quickly carbonate [64]. 

First and foremost, the technique of introducing ash into the concrete mix is critical, 

i.e., whether the additive is added as a partial replacement for cement or as a binder 

increase. In the first scenario, the Ca(OH)2 shortage has a significant impact on 

carbonation development; in the second situation, the densifying effect is the most 

important factor [55].  

Wolinski et al. [25] also discovered that using calcareous ash as a partial 

replacement for aggregate (equivalent to 30-70 percent of the cement ) allowed them 

to achieve concrete with a very low carbonation depth (less than 5 mm after 28 days 

in 8 percent CO2 concentration). According to these experiments, there is an optimal 

ash content with a constant cement content and constant w/c ratio, resulting in the least 

sensitivity to carbonation. When the ash content grows, the dynamics of carbonation 

depth development shift, so that intensive progress is noted after the 56th day in 4 

percent CO2 if the ash concentration is high. 
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Yasmina Kellouche,et.al. [26] said concrete carbonation is one of the 

most common reasons of reinforcement deterioration and, as a result, destruction to 

reinforced concrete structures. Many factors influence the advancement of the 

carbonation front, including proportion of mixture and condition of exposure. There 

are a number of carbonation extrapolation methods available, comprising 

mathematical and analytical forecasts. The majority of these models, on the other hand, 

are established on simple regression equivalences that can't effectively forecast or 

reflect the different components that go into concrete carbonation. The goal of research 

is to use an ANN to forecast the carbonation of fly-ash concrete while considering into 

account the most important elements, such as mixing proportions and exposure 

conditions. Covering, binder-content and flyash content, water/binder ratio, CO2 

concentration, relative humidity, and exposure time were all examined as independent 

variables to the ANN model; one result was carbonation depth. 300 datasets from 

experiments and previous research were used to develop, train, and test the ANN 

model. The results of the training, validation, and test sets indicate a strong correlation 

between experimental and ANN predicted carbonation depth values. Furthermore, 

when compared to other models, the projected forecast model was in high agreement 

with the investigational results. The application of this model for numerical research 

on the parameters affecting the carbonation depth in fly-ash concrete is successful, 

according to this study, and it gives scientific direction for durability design. 

Ziyu Chen ,et.al. [27] studied carbonation as Carbonation of concrete has 

a substantial impact on the service life of structures, and considerable energy has gone 

into developing a precise and proficient carbonati0n m0del which takes b0th core and 

outside elements into account. We introduce a hybrid ML method that combines two 

separate ML models: the ANN and the SVM. A review of the works yielded a dataset 

with 530 data points of accelerated carb0nation-depth quantities for concrete mixtures 

that included fly-ash composites. Cement content, fly-ash replacement percent, water 

to binder ratio (w/b), CO2 concentration, relative humidity, and exposure period were 

chosen for modelling, with grey relational analysis justifying their selection.  

The 4 ML models were extremely accurate in forecasting concrete carb0nation depth, 

with c0rrelation c0efficients extending from 0.87 to 0.89, but the two hybrid ML 

models outperformed the single ANN and SVM models, with higher c0rrelation 

c0efficients, l0wer mean abs0lute err0r, and l0wer standard deviation for their 
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distribution. Furthermore, when equated to other well-known experimental 

carbonation m0dels, the hybrid ML m0dels predicted carbonati0n depth with a lower 

root mean square error. Additionally, increments of the contributions of five selected 

components to carbonation depth revealed that carbon dioxide conc., water/binder, and 

cement content had higher relative prominence to carbonation depth. 

Hodhod, O and Salama G.A. [28] studied applicability of ANN to 

evaluate sulphate resistance of concrete. USBR4908 is one of the existing tests for 

evaluating concrete sulphate resistance. However, there are flaws in this type of 

testing. The ANN is used in this work to examine the sulphate expansion as an alternate 

method. USBR4908 investigated three types of cement in combination with 

Flyash/Silica-Fume, as well as a variable W/B. Water/Binder, cement content, 

Flyash/Silica-Fume, calcium aluminate, and exposure period were used to create an 

ANN model, using expansion as the output parameter. The ANN was trained using a 

back propagation approach, with a ReLu function as the nonlinear transfer function. 

The ANN models clearly provide great prediction accuracy. Furthermore, the engineer 

can avoid using marginal 2.45–5.1% calcium aluminate content in severe sulphate 

settings and marginal 6.1–8.1% calcium aluminate in moderate sulphate environments, 

especially when the Water/Binder ratio is more than 0.40. 

A process for dimension increase of cured concrete exposed to alkali sulphates is one 

of the existing tests for estimating concrete's sulphate resistance (USBR4908). 

However, this test method has flaws, such as a long testing duration and a measurement 

equipment that is insensitive to the course of sulphate attack. Furthermore, due to time 

and expense constraints, obtaining experimental expansion is difficult. A reasonable 

expansion prediction in USBR4908 is essentially required. ANN is used in this model 

training to evaluate the sulphate resistance of concrete as an alternate method. The 

experimental programme yielded 273 distinct data for 3 varieties of Portland cement 

concrete mixes containing fly ash (FA) or silica fume (SF), as well as varied 

water/cement ratios of 0.30, 0.40, and 0.50. ANN models have been created. The 

water/cement ratio, cement content (CC), FA or SF content, tricalcium aluminate 

content (C3A), and exposure length were among the five input parameters employed 

in the ANN model (D). The expansion parameter determines the output parameter (E). 

For ANN training, a ReLu function was used as the transfer function, and the back 

propagation (BP) approach was applied. It was obvious that the ANN models provide 
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good estimation accurateness when the estimated outcomes from the ANN models 

were compared to experimental data. Furthermore, the findings show that utilising 

ANN models to forecast percentage change in length in concrete cylinders is feasible 

and useful. 

The lowering in concrete permeability and the replacement of Portland cement are two 

clear advantages of mineral admixtures. Reduced permeability delays sulphate ion 

penetration into cemented concrete, whereas replacing Portland cement with a mineral 

additive decreases the presence of ettringite-causing chemicals like C3A. FA, SF, and 

blast furnace slag are the most commonly studied mineral admixtures for usage in 

sulphate settings (GGBFS). Ettringite production is caused by chemicals like C3A. 

FA, SF, and blast furnace slag are the most commonly studied mineral admixtures for 

usage in sulphate settings (GGBFS).  

Calcium, alumina, iron oxide, silica, and sulphate are the five chemical and 

mineralogical components of FA that determine sulphate resistance. The calcium 

content is the most crucial of these five factors. Low calcium, pozzolanic FA (Class 

F) are called pozzolanic because they hydrate predominantly by interacting with 

calcium hydroxide (CH) generated during Portland cement hydration. FA (Class C) 

with high calcium, pozzolanic, and cementitious properties are cementitious because 

they may offer their own calcium source and so hydrate without Portland cement.  

If the design desired low permeable concrete to safeguard longevity in a harsh 

environs, the mix design water/cement ratio would be kept below a stipulated max 

value under today's regulations.  

The increased length of mortar bars prepared from a mix of Portland cement and 

gypsum is measured using the ASTM C 452 test procedure. The increases in the 

quantity of ettringite due to gypsum, formed in fresh and set concrete and speeds up 

the sulphate attack processes. For moderate sulphate-resistant Type 2 cements, ASTM 

subcommittee C01.29 recommends 0.06 percent expansion at 14 days, and 0.04 

percent expansion at 28 days for severe sulphate-resistant Type V cements. The short 

duration of the ASTM C 452 test is its main advantage. The test's main flaw is that it 

has been demonstrated to be inaccurate when used to assess mortars constructed with 

cement and a mineral additive blends. The first issue is that the mixed cement does not 

mature sufficiently over the 14-day expansion phase. Second, the experiment does not 
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reflect field circumstances since the gypsum in the mix exposes the mortar to sulphate 

attack before it has hydrated. Because of these shortcomings in the test, researchers 

have limited the scope of ASTM C452. The United States Bureau of Reclamation 

(USBR) has developed a standardised test protocol, USBR 4908, for length change of 

hardened concrete cylinders subjected to alkali sulphate instead of mortar bars. 

However, this test method has flaws, such as a long measuring duration (typically over 

and above 0.5 year), measurement tool insensitivity to the advancement of sulphate 

attack, the influence of curing (particularly in the case of mineral admixture), and the 

effect of pH change throughout the time in the solution.  

The ANN approach, which is commonly used in mixture design and strength 

evaluation, is used in this study to estimate the expansion in the USBR4908, concrete 

cylinders test, while taking into account various mixture design parameters.  

Sulfate degradation might be reduced by fly ash in the following ways: 

1. The binding of flyash with free CaO in cementitious materials chemically, 

preventing it from reacting with sulphate. 

2. The limiting of permeability of concrete due to Fly ash presence etrigue formation, 

which prevents sulphates ingression. 

3. The replacement of percentage of cement with flyash decreases the quantity of 

reactive aluminates accessible for sulphate reaction, particularly tricalcium aluminate. 
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CHAPTER 3 

Prediction of Compressive Strength of Blended 

Cement Concrete 

 

Introduction 

The design of concrete mix is iterative procedure which includes a large amount 

of preparation of trial mixes and testing. This study aims at evaluating trial mixes 

such that number of test involved can be reduced. 

3.1 Machine-learning algorithm 

The following machine leaning algorithms were used to make prediction and the 

best model is selected on the basis of performance which is measured using evaluation 

metric discussed below. 

3.1.1 Linear regression  

It is the most general algorithm based on supervised learning for machine 

learning prediction. In many previous studies, this algorithm was used to predict the 

compressive strength of concrete, because it is the most basic and easy to apply. Linear 

regression performs the task to predict a dependent variable value (y) based on a given 

independent variable (x). Therefore, this regression technique identifies a linear 

relationship between xn (input) and by ŷ (output) as follows: 

 ŷ = xn + θ1 x1 + θ2 x2 + … + θn xn                                                                             (1)                                            

where ŷ is the target variable value, xn is an input variable value, and θ is the bias. 

 

3.1.2 Lasso Regressor 

Lasso regressor is an algorithm using the L1-norm (absolute regulation) and is 

similar to Ridge regression as regulation term is added to cost function which is 

defined as follows: 

𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) +  𝛼 ∑ |𝜃 |                                                                               (2)                                   

In case of lasso regression, a number of coefficients might be equalled to zero and get 

excluded from the regression model. This helps in reducing overfitting as the effect of 

that characteristic property is zeroed on the model which increases the bias and hence 
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prevent overfitting. Like ridge regression, the hyper-parameter α controls the amount 

of penalty. The penalty added by L1 regularization is equal to the absolute value of the 

magnitude of the coefficient, which results in sparse models with few coefficients. 

 

3.1.1.3     Ridge Regressor 

Ridge regressor is a model tuning method which performs L2-norm (square 

regulation). It is used for the data that has multicollinearity. The regulation term is 

given by: 

𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) +  𝛼 ∑ |𝜃 |                                                                                                            (3)                                                                                                                           

where α is the intensity of regulation. By changing penalty term α, we are controlling 

the penalty i.e. regulating the ridge regression model. The higher values of α, all 

weights approach to zero, but are not actually zero as in case of lasso regression. It 

shrinks the parameters, which reduces multi-collinearity. It also reduces the model 

complexity. 

The addition of regulation (𝛼 ∑ |𝜃 |) term to the cost function which is MSE(𝜃) is 

applicable only during model building. The regulation term is not applied when 

performance of a test set is assessed. The prediction of the sample data is done using 

reduced coefficients. 

 

3.1.1.4         Decision Tree (DT) Regressor 

DT is a supervised regression learning technique. It breaks down a dataset 

subsets that contain instances with similar values and simultaneously connected 

decision tree is developed in a form of tree structure. The branches or edges of the tree 

represents the result of node and the nodes have either conditions or results. 

Information gain is used to split a node by the DT regressor. The measure used for 

computing the information gain are “Gini index” and “Entropy” which is measure of 

the node impurity.  

 

3.1.1.5           Random Forest Regressor 

Random Forest Regressor is bagging algorithm which uses multiple decision 

trees for ensembling results of “weak learners” to produce a “strong learner”, this 

technique is known as Bootstrap and Aggregation. The advantages of this algorithm 

are: reduces the overfitting problem as observed in case of decision trees; reduces the 
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variance; less impacted by noise; robust to outliers; handle missing value; no feature 

scaling is required to build the model. 

 

3.1.1.6          Multilayer perceptron (MLP) 

Artificial neural network (ANN) is a statistical learning algorithm and is a class 

of feedforward neural networks. A fully connected dense layer neural network which 

consists of many neurons such that output of some neurons are inputs of other neurons. 

An MLP consists of three layers of neurons which are input layer, any number of 

hidden layers and an output layer. The learning occurs in the perceptron by changing 

connection weights, which is carried out through backpropagation. The weighted sum 

of input values is calculated using the following equation: 

𝑛 =  ∑ 𝑤 𝑥 + 𝜃           (4) 

where for each neuron j, 𝑛  is the weighted sum, 𝑤  are the weights of ith variable of 

jth neuron, 𝑥  are the input variables, and θ is the bias. 

 

 

 

Figure 3.1: Function of MLP 
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3.2. Methodology  

Data Pre-processing/ data-preparation is the first step before building the 

machine-learning models is. It is necessary to prepare the raw data before model 

building. The steps involved in making machine learning model are as follows: 

3.2.1. Collecting Data 

In this study, the data containing a total of 305 records of compressive 

strength testing results of blended cement concrete were used which was collected 

from different references. The details of references used is tabulated in Table 3.1. 

Table 3.1: Data Acquisition 

Reference No. of Records Percentage Records 

Ahmad et al. (2021) 18 5.63% 

Vigneshwari et al. (2008) 15 5.00% 

Neville et al. (2010) 13 4.50% 

Ramezanianpour et al. (2008) 20 6.75% 

Ramezanianpour et al. (2010) 21 7.00% 

Ikpong et al. (2010) 12 4.25% 

Sakr et al. (2006) 21 6.62% 

Sensale et al. (2005) 15 5.00% 

Shekarchi et al. (2010) 31 10.51% 

Erhan et al. (2007) 13 4.50% 

Carotte et al. (2005) 24 6.38% 

Zhang et al. (2010) 30 9.75% 

Cook et al (1982) 21 6.62% 

Thomas et al. [15] 20 6.25% 

 

Since this research involves building machine-learning models and predict 

CS of blended cement concrete containing silica fumes, limestone, fly ash and slag 

as CRM, the dataset was built with the data from the test results of blended cement 

concrete. The dataset is comprised of many variables apart from cement, water, 

aggregates and plasticizers, the variables that describes the chemical properties of 

cement and blending material was included. The chemical composition variables 
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of cement and BM such as lime (CaO), silica (SiO2), iron oxides (Fe2O3), alumina 

(Al2O3) and alkalis were aggregated as we know the percentage replacement of 

cement with BM. Subsequently, the number of features were reduced to ten 

features, comprising of nine input variables and one output variable.  Input 

variables are (Concrete constituents – cement, fine/coarse aggregate, water; 

Composites – lime, silica, iron, alumina; Age), for modeling of output variable i.e. 

CS of concrete with blended cement. The ranges of components of dataset has 

been tabulated in Table 3.2 and the ranges of Chemical Constituents of the 

components of dataset has been tabulated in Table 3.3. 

TABLE 3.2: Ranges of components of data sets. 

Component Minimum(kg/m3) Miximum(kg/m3) Average(kg/m3) 

Cement 136.10 534 291.24 

BM 0 168.3 72.51 

Water/Cement 0.32 0.59 0.48 

Coarse 801 1275 1071.57 
Fine Aggregates 580 960 729.63 

 

TABLE 3.3: Ranges of Chemical Constituents of the components of data sets. 

 

BM 

Chemical Constituents Refere

nces SiO2 CaO Fe2O3 Al2O3 MgO K2O Na2O SO3 LOI 

OPC 23.9 64.7 3.7 5.4 3.5 2.4 1.2 - - [12-13] 

Marble 

waste 

5.13 47.5

5 

8.23 22.20 3.32 2.9 2.6 - - [12] 

RHA 85-

95 

0.2-

1.5 

0.2-

0.75 

0.1-

0.9 

0.2-

1.6 

0.7-

4.0 

0-0.8 0-

0.15 

- [26-28] 

Trass          [29-31] 

Metakaol

in 

51.8 0.01 0.35 45.8 0.03 0.06 0.13 - 0.91 [22] 

Flyash 47.1 1.21 20.4 23.0 1.17 3.16 0.54 0.67 2.88 [32-33] 

Natural 

Pzzolana 

65-

75 

1.1-

4.0 

1.-4.2 12-15 0-1 0.01

-0.5 

0.2-3 - - [13] 
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3.2.2  Handling Missing Data 

If the dataset contains missing values, it may create a huge problem for the 

machine learning model. For this purpose, the missing values in the dataset were 

filled using statistical methods. In this study, the mean of the column which 

contained the missing value was calculated and put it in the place of missing value. 

This strategy was useful since we have numeric data. Here, the imputer class of 

sklearn.preprocessing library was used to impute the missing value. 

3.2.3  Encoding Categorical Data 

In our dataset, there is one categorical column i.e. replacement material. 

The values of this columns are: fly ash, limestone, slag and silica fumes. The 

machine learning models work on mathematics and numbers, it is necessary to 

encode categorical variables into numbers. The dummy encoding is suitable where 

categorical variables are distinct. After dummy encoding, we had a number of 

columns equal to the number of categories. For this purpose, the OneHotEncoder 

class of sklearn.preprocessing library was used.  

3.2.4    Splitting dataset for training and testing 

The performance of machine learning model can be enhanced by following 

this step of pre-processing. The reason being if we train and test the complete 

dataset, it will create difficulties for the model to understand the correlations 

between the models. The training accuracy achieved upon training the whole 

dataset although may be high but it might not perform well on the unseen data. For 

this reason, the model which performs well with the both training set and testing 

dataset, we split the data into two. For this purpose, the train_test_split class of 

sklearn.model_slection library was used.  

Machine learning performance was assessed using k-fold validation. The 

value of k depends on the number of sets we want to split the data. This helps to 

reduce over fitting in training results. In this model is validated k-times in which 

each iteration one set is set aside for testing and rest of the sets are trained. Figure 

3.1 shows how the data is split in five-fold validation. 
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Figure 3.1: Schematic description of five-fold validation 

3.2.5. Scaling Features 

Feature Scaling is the final step of Data Pre-Processing. It is a technique to 

standardize the independent variables of the dataset such that it is in a specific 

range. As we put our variables in the same range and in the same scale by the 

method of feature scaling, no variable dominate the other variable. The reason of 

using this technique is that when ML model is based on Euclidean distance, and 

if the variables are not scaled, it will produce incorrect result as it will give 

different weightage to different variables. For feature scaling, the StandarScaler 

class of sklearn.preprocessing library was used. 

3.3    Making prediction model and results comparison 

The evaluation metric used to weigh the accuracy of machine-learning 

algorithms, was root-mean-square error (RMSE), mean-absolute-error (MAE), mean-

square-error (MSE), and R-squared score (R2). 

3.4.   Model Training Results 

       The model training results are tabulated in Table 3.4. The compressive strengths 

of blended cement concrete was predicted and cross-validated using regression and 

ANN models. The predicted values and the real values from the data collected from 

the experimental results were compared to establish the possibility of using machine-

learning algorithms in predicting CS of blended cement concrete. The root mean 

square error of predicted values from the different machine learning algorithms is 
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shown in Figure 3.2. It was observed MLP model gave highest of 0.89 (R2 score) 

compared to regression models. 

TABLE 3.4: Training Results. 

Model RMSE MSE MAE R2 

Linear Regression 8.60 74.03 6.58 0.68 

Lasso Regression 8.70 75.71 7.00 0.67 

Ridge Regression 8.59 73.78 6.57 0.68 

Decision Tree 

Regressor 

8.50 72.28 6.25 0.69 

Random Forest 

Regressor 

6.44 41.42 4.72 0.82 

Multilayer 

Perceptron 

5.08 25.80 3.91 0.86 

 

 

 

Figure 3.2: Training Results 
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3.5. Conclusions 

 

Although, concrete is a highly complex material but fair predictions can be 

made if we know the chemical composition of its constituents. This study 

demonstrated that silica, lime, iron and alumina has high correlation with the 

compressive strength of concrete and also enables  the possibility of adapting MLP 

model (ANN model) to forecast the compressive strength of Blended cement 

concrete. However, the data collected is limited which results in the model which 

might not be valid upon extrapolation beyond the purview of the data accumulated 

as variables vary upon changing material source, testing procedure, and many 

more. This study concludes that the ML algorithm can be used for predicting 

concrete properties. The results drown from the dataset collected is as follows: 

 

1. MLP Model is more precise than the model created on regression analysis for 

predicting CS as R2 score is maximum for MLP Model. 

2. The estimates of compressive strength can be premeditated using the model, 

which is convenient to use for numerical experiments to find out actual mix 

proportions of each variable such as age, water-cement ratio, proportion of fine 

and coarse aggregates. 
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CHAPTER 4 

Prediction of Carbonation Depth of Blended Cement 

Concrete 

 

4.1 INTRODUCTION 

Many researchers have undertaken investigation on the formulation of general 

simulations of carbonation and considered innumerable quantifiable and scientific 

variables. One complex topic to describe when looking for a carbonation model is the 

concentration of the CO2 flow in concrete. The first Fick's law, which is used to 

describe diffusion, presupposes that the microstructure of concrete remains constant 

over time. As a result, the carbonation model, in the form of a power function of 

carbonation depth over time, might be developed. 

Carbonation depth in a concrete increases with exposure time, as is well 

known. The rate of carbonation, on the other hand, decreases with time and is usually 

related to the square root of the time of exposure. Even in carbonation under 

accelerated settings, such as natural indoor exposure conditions and natural out-of-

doors exposure situations beneath a lodging, the depths of carbonation are proportional 

to the square root of exposure duration. According to square root theory, the depth of 

carbonation, x, can be thought of as being connected to the exposure length, t, as 

demonstrated in the given equation: 

𝑥 = 𝑘 √𝑡 

The law of diffusion is used to get the carbonation coefficient in yet another 

method. The transfer of gas or liquid through porous media as a function of 

concentration gradient is known as diffusion. When a concrete is exposed to CO2, 

carbon dioxide ingress into the concrete pores occurs as a result of the concentration 

gradient of the exposed CO2 in the environment. The amount of CO2 ingress into 

concrete is easily proved using Fick's first law of diffusion, as illustrated in the 

succeeding equivalence: 

𝐽′ =  −𝐷′′ (
𝜕𝑐′

𝜕𝑥′
)  
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where 𝐽′ denotes carbon dioxide flux (g/m2 s), 𝐷′′  denotes diffusion coefficient (m2/s), 

𝑐′ denotes CO2-concentration (g/m3), and 𝑥′ denotes penetration depth (m). 

4.2. Materials and methods 
 
4.2.1. Data Collection 
 

            The experimental dataset is collected from 16 peer-reviewed research papers 

which was collected from different references [48-62]. Most of these research papers 

have been used by Kellouche et al.,2017 and Chen et al.,2022 to develop machine-

learning based carbonation models. The dataset used by Kellouche et al.,2017 consists 

of 300 records and Chen et al.,2022 consists of 532 records. The final dataset (799 

samples) of concrete containing fly ash was investigated from different research labs 

(Woyciechowski et al., 2019; Atis et al., 2003; Jiang et al., 2000; Hussain et al., 2017; 

Rozi`ere et al., 2009; Younsi et al.,2013;Chen et al., 2018; Khunthongkeaw et al., 

2006; Sulapha et al., 2003; Sisomphon et al.,2007; Lammertijn et al., 2008; Das et al., 

2011; Zhang et al., 2013; Van et al., 2014; Xu et al., 2010; Burden et al., 2000) All 

tests were produced under  the accelerated carbonation  process Table 1 depicts the 

inputs of experimental fly ash concrete dataset used in this investigation. The fly ash 

concrete carbonation depth is modeled as a function of cement, fly-ash, water, 

exposure, aggregate, relative humidity (RH), temperature, CO2 concentration and 

curing time. 

 
This study incorporated 9 variables (i.e., 8 inputs and 1 output) based on the 

primary factors determining carbonation depth and the characteristics utilised in other 

ML-based carbonation models. Cement content (B), fly-ash replacement level (FA), 

modified water–binder ratio (w/b), CO2 concentration, relative-humidity (RH), 

temperature, curing time, and exposure time are among the eight input variables whose 

distributions are described in Table 4.1. (t). The target variable i.e. carbonation depth 

was the result. 

 

As shown in Table 4.2, a total of 799 sets of records were obtained from 16 

diverse references. The acquired dataset was then normalised and divided into three 

groups at random: training (70 percent, 562 sets), validation (10 percent, 77 sets) and 

testing (20 percent, 160 sets).  
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TABLE 4.1: Ranges of input parameters used in dataset. 

Parameter Min Max Mean 

Cement 67 500 268.6 

Fly ash 0 310 106.1 

Aggregates 1680 2262 1803 

Exposure time 3 364 53.13 

Relative Humidity 40 100 65 

Temperature 10 40 23 

Curing Period 1 90 18 

 

Table 4.2: Data Acquisition 

Reference No. of Records Percentage Records 

Woyciechowski et al. [2] 45 5.63% 

Atis et al. [3] 40 5.00% 

Jiang et al. [4] 36 4.50% 

Hussain et al. [5] 6 0.75% 

Rozi`ere et al. [6] 8 1.00% 

Younsi et al. [7] 34 4.25% 

Chen et al. [8] 21 2.62% 

Khunthongkeaw et al. [9] 24 3.00% 

Sulapha et al. [10] 84 10.51% 

Sisomphon et al. [11] 36 4.50% 

Lammertijn et al. [12] 24 3.00% 

Das et al. [13] 30 3.75% 

Zhang et al. [14] 5 0.62% 

Van et al. [15] 10 1.25% 

Xu et al. [16] 16 2.00% 

Burden et al.[17] 380 47.55% 
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4.2.2  Building Model 

4.2.2.1     Evaluation metric 

The evaluation metric used to weigh the accuracy of machine-learning 

algorithms, was correlation coefficient (R), and R-squared score (R2). 

4.2.2.2    Ensemble Machine-learning algorithms  

The ensemble methods objective is to increase generalizability and robustness 

over a single estimator by aggregating the estimates of many base estimators 

established with a specific learning technique. The flowchart of series of steps 

followed in Random forest regressor is shown in Figure 4.1. 

 
Figure 4.1 Flow Chart of Random Forest Regressor 
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In boosting methods, basic estimators are created successively and the 

aggregate estimator's bias is condensed. The objective is to create a robust ensemble 

by aggregating numerous weak models. The flowchart to make machine learning 

model in shown in Figure 4.2. 

 

Fig. 4.2. Flowchart of the proposed method. 
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4.3.2.2.1 Random Forest 

To predict final predictions, this algorithm combines distinct trees prediction. 

The trees are not identical such that each tree captures distinct signals from the data. 

In each tree, different sets of features are used to obtain best split. The advantage of 

this algorithm is that every successor tree is made to reduce errors of the previous tree. 

4.3.2.2.2 Gradient Tree Boosting 

To calculate final predictions, this algorithm pools dissimilar trees prediction. 

The trees are not identical such that each tree captures distinct signals from the data. 

In each tree, different sets of features are used to obtain best split. The advantage of 

this algorithm is that every successor tree is made to reduce errors of the previous tree. 

4.3.2.2.3 AdaBoost 

The Adaboost aggregates numerous ‘weak learners’ to make classifications or 

regression. The weak learners at all times are stumps. While making splitting node, 

certain stumps get more weightage in the classification than rest. Each stump is made 

by taking the previous stump’s errors into the account.  

4.3. Results And Hypothesis 

4.3.1. Rationalisation of input variables selection 

As shown in Table 2, data were obtained from 16 different research 

papers/thesis, and the learned set of records was then normalised/standardized and split 

into three sets at random: training (70 percent, 562 sets), validation (10 percent, 77 

sets) and testing (20 percent, 160 sets). The relationship between the input and output 

values was formed during training by altering the parameters in the algorithm, whereas 

the goal of testing was to generalise the model and assess its predictive potential. 

 

Furthermore, according to the present database, CO2 concentration has the 

highest positive correlation with carbonation depth, whereas binder content have 

highest negative correlation with carbonation depth. This can be observed on 

correlation heatmap (Fig1). It's worth noting that the bulk of input parameters in 

Kellouche's model, particularly the coefficient of RH, have smaller grey relational 

coefficients (GRCs) than those in our proposed hybrid models. Given the current 
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dataset's larger size and the majority of input parameters with higher GRCs, our current 

database contains a more diverse collection of input properties. Sisomphon et al., used 

modified water to binder ratio with factor k=0.4. The same is employed in the 

machine learning model developed as it had higher correlation with the 

carbonation depth compared with water to binder ratio without k factor.  The 

relation between input parameters and target variables is analyzed using heatmap 

as shown in Fig 4.4. 

 

4.3.2. Model Training Results 

It is observed of all the ensemble methods, Gradient Boosting algorithm 

achieved highest accuracy as it has higher R and R2 score. The results are tabulated in 

Table 4.3. The data validation results are tabulated in Table 4.4. 

TABLE 4.3: Training Results. 

Machine 

Learning 

Algorithm 

R R2 

Training  Testing Validation Training  Testing Valida

tion 

Random 

Forest 

0.9910 0.9390 0.8996 0.9821 0.8818 0.8094 

AdaBoost 0.9996 0.9263 0.9049 0.9994 0.8581 0.8190 

Gradient 

Boosting 

0.9996 0.9610 0.9251 0.9993 0.9236 0.8559 

Extra Trees 0.9996 0.9593 0.9209 0.9994 0.9203 0.8482 

 

Table 4.4: Data Validation 

cemen

t 

wate

r 

flyash Exposure 

time 

RH Temp CO2 curi

ng 

Ensemb

le 

Model 

Exp E1 

(%) 

312.5 175 0 1.73 70 20 20 28 6.99 8.62 18.9 

283.5 175 32 1.73 70 20 20 28 8.65 9.21 6.1 

250 175 66 1.73 70 20 20 28 10.82 10.27 5.4 

234.4 175 84 1.73 70 20 20 28 12.43 10.76 15.5 
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312.5 175 0 2.65 70 20 20 28 8.5 13.19 35.6 

283.5 175 32 2.65 70 20 20 28 10.60 14.09 24.8 

250 175 66 2.65 70 20 20 28 13.43 15.71 14.5 

234.4 175 84 2.65 70 20 20 28 15.37 16.46 6.6 

312.5 175 0 3.74 70 20 20 28 10.49 18.62 43.7 

283.5 175 32 3.74 70 20 20 28 13.17 19.89 33.8 

250 175 66 3.74 70 20 20 28 16.82 22.18 24.1 

234.4 175 84 3.74 70 20 20 28 19.09 23.24 17.8 

312.5 175 0 5.29 70 20 20 28 13.56 21.25 36.2 

283.5 175 32 5.29 70 20 20 28 17.13 22.04 22.3 

250 175 66 5.29 70 20 20 28 21.85 25.27 13.5 

234.4 175 84 5.29 70 20 20 28 24.39 26.77 8.9 

312.5 175 0 6.48 70 20 20 28 15.98 24.2 34.0 

283.5 175 32 6.48 70 20 20 28 20.22 26.4 23.4 

250 175 66 6.48 70 20 20 28 25.55 29.11 12.2 

234.4 175 84 6.48 70 20 20 28 28.13 30.24 7.0 

480 225 0 1.73 70 20 20 28 2 1.3 3.3 

384 225 96 1.73 70 20 20 28 2.3 2.68 16.5 

336 225 144 1.73 70 20 20 28 3 3.79 26.4 

480 225 0 2.65 70 20 20 28 2.5 2.14 14.5 

384 225 96 2.65 70 20 20 28 3.2 3.04 4.9 

336 225 144 2.65 70 20 20 28 4 4.23 5.9 

480 225 0 3.74 70 20 20 28 3.8 2.42 36.4 

384 225 96 3.74 70 20 20 28 4.4 3.54 19.7 

336 225 144 3.74 70 20 20 28 5.5 4.82 12.3 

480 225 0 5.29 70 20 20 28 5.9 2.9 50.9 

384 225 96 5.29 70 20 20 28 7.2 4.37 39.5 

336 225 144 5.29 70 20 20 28 8.8 5.77 34.5 

480 225 0 7.48 70 20 20 28 8 3.77 52.9 

384 225 96 7.48 70 20 20 28 10.8 5.73 46.9 

336 225 144 7.48 

 

70 20 20 28 12.5 7.3 41.6 
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4.4 CONCLUSION 

The most influential elements were used as inputs in prediction model to 

forecast carbonation-depth in concrete with fly-ash admixture. Three concrete mix 

parameters (modified water-to-binder ratio, binder and fly-ash content), three exposure 

situations (CO2 concentration, temperature and relative humidity), curing period, and 

the age of exposure were among these factors (t). 

The following conclusions were drawn based on the carbonation depths 

predicted by this study: 

1. Between the experimental and projected carbonation depths, the GradientBoosting 

Regression algorithm training, testing, and validation sets produced high correlation 

with little inaccuracies. 

2. Despite the complexity of the carbonation phenomena, which involves several 

influencing elements, the suggested ensemble model gives accuracy more than 0.92 

on training, test and validation combined. 

3. At all degrees and ages of fly-ash replacement, carbonation depth was inversely 

related to the sum of cement and flyash content and proportionate to the modified w/b 

as depicted in heatmap (Figure 4.4). 

4. Curing is significant factor to control carbonation depths, its correlation with the 

carbonation depth is 0.24 as depicted in heatmap (Figure 4.4). 

 

Figure 4.4 – Correlation Heatmap 
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CHAPTER 5 

Prediction of Sulphate Resistance of Blended Cement 

Concrete 

5.1 Introduction 

The ANN was trained using a back propagation approach, with a ReLu 

function as the nonlinear transfer function. The ANN models clearly provide great 

prediction accuracy. 

5.2. Materials and methods 

5.2.1. Data Collection  

The experimental dataset is collected from one peer-reviewed research paper 

i.e by O.A. Hodhod et al.,2019 and second from research by center for transportation 

research,university of texas  was collected from different references. Most of the 

records have been taken from O.A. Hodhod et al.,2019 who used ANN to develop 

machine-learning based sulphate resistance prediction models. The dataset used by 

O.A. Hodhod et al.,2019 consists of 273 records and from research 140 . The final 

dataset (413 samples) of concrete containing fly ash, GBBS, silica fume (SF) was 

investigated from different research labs All tests were produced under the USBR 

process and ASTC 33  process Table 1 depicts the inputs of experimental fly ash, 

GBBS, silica fume (SF) concrete dataset used in this investigation. The blended 

cement concrete sulphate resistance is modelled as a function of cement, fly-

ash/GBBS/silica fume (SF), water, aggregate, chemical composition of cement and 

puzzolana used for blending and time. 

 

This study incorporated 9 variables (i.e., 8 inputs and 1 output) based on the 

primary factors determining carbonation depth and the characteristics utilised in other 

ML-based carbonation models. The target variable i.e. expansion was the result. 

As shown in Table 2, a total of 413 sets of records were obtained from 2 references. 

The acquired dataset was then normalised and divided into two groups at random: 

training (80 percent, 330 sets), and testing (20 percent, 83 sets).  
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5.2.2. Data Pre-processing 

The first step before building the machine-learning models is data-preparation. 

It is necessary to prepare the raw data before model building. The steps involved in 

making machine learning model are as follows: 

5.2.2.2. Handling Missing Data 

If the dataset contains missing values, it may create a huge problem for the 

machine learning model. For this purpose, the missing values in the dataset were 

filled using statistical methods. In this study, the mean of the column which 

contained the missing value was calculated and put it in the place of missing value. 

This strategy was useful since we have numeric data. Here, the imputer class of 

sklearn.preprocessing library was used to impute the missing value. 

5.2.2.3. Encoding Categorical Data 

In our dataset, there is one categorical column i.e. replacement material. 

The values of this columns are: fly ash, limestone, slag and silica fumes. The 

machine learning models work on mathematics and numbers, it is necessary to 

encode categorical variables into numbers. The dummy encoding is suitable where 

categorical variables are distinct. After dummy encoding, we had a number of 

columns equal to the number of categories. For this purpose, the OneHotEncoder 

class of sklearn.preprocessing library was used.  

5.2.2.4 Splitting dataset for training and testing 

The performance of machine learning model can be enhanced by following 

this step of pre-processing. The reason being if we train and test the complete 

dataset, it will create difficulties for the model to understand the correlations 

between the models. The training accuracy achieved upon training the whole 

dataset although may be high but it might not perform well on the unseen data. 

For this reason, the model which performs well with the both training set and 

testing dataset, we split the data into two. For this purpose, the train_test_split 

class of sklearn.model_slection library was used. 

5.2.2.5. Scaling Features 

Feature Scaling is the final step of Data Pre-Processing. It is a technique to 

standardize the independent variables of the dataset such that it is in a specific 
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range. As we put our variables in the same range and in the same scale by the 

method of feature scaling, no variable dominate the other variable. The reason of 

using this technique is that when ML model is based on Euclidean distance, and 

if the variables are not scaled, it will produce incorrect result as it will give 

different weightage to different variables. For feature scaling, the StandarScaler 

class of sklearn.preprocessing library was used. 

 

5.3 Building Model 

5.3.1 Evaluation metric 

The evaluation metric used to weigh the accuracy of machine-learning 

algorithms, was root-mean-square error (RMSE), mean-absolute-error (MAE), 

mean-square-error (MSE), and R-squared score (R2). 

 

5.4. Model Training Results 

The model training results are tabulated in Table 1. The expansion of blended 

cement concrete was predicted and cross-validated using ANN model. The predicted 

values and the real values from the data collected from the experimental results were 

compared to establish the possibility of using machine-learning algorithms in 

predicting expansion due to sulphate action on blended cement concrete. The root 

mean square error of predicted values from the ANN machine learning algorithms is 

shown in Table 5.1. It was observed ANN model gave highest of 0.945 (R2 score). 

TABLE 5.1: Training Results. 

Model RMSE MSE MAE R2 

ANN 0.02 0.0004 0.025 0.945 
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5.5. Conclusions 

Although, concrete is a highly complex material but fair predictions can be 

made if we know the chemical composition of its constituents. This study 

demonstrated that silica, lime, iron and alumina has high correlation with the 

expansion of concrete and also enables the possibility of adapting ANN model to 

forecast the sulphate resistance of Blended cement concrete. However, the data 

collected is limited which results in the model which might not be valid upon 

extrapolation beyond the purview of the data accumulated as variables vary upon 

changing material source, testing procedure, and many more. This study concludes 

that the ML algorithm can be used for predicting concrete properties. The results 

drown from the dataset collected is as follows: 

1. The use of an ANN modelling technique can make it easier, faster, and more 

accurate to analyse the influence of conventional Portland cement, as well as 

blended cements with FA or SF, on the sulphate attack of concrete, based on the 

value of expansion generated from a neural network algorithm. 

2. The USBR 4908 test method has several flaws, including a long measuring 

duration, insensitivity of the measurement tool to the course of sulphate attack, the 

influence of curing, and pH variation over time in the solution. It is also powerful 

and inexpensive. 
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CHAPTER 6 

Conclusions 

(I) Compressive Strength of Blended Cement Concrete 

Although, concrete is a highly complex material but fair predictions can be 

made if we know the chemical composition of its constituents. This study 

demonstrated that silica, lime, iron and alumina has high correlation with the 

compressive strength of concrete and also enables  the possibility of adapting MLP 

model (ANN model) to forecast the compressive strength of Blended cement 

concrete. However, the data collected is limited which results in the model which 

might not be valid upon extrapolation beyond the purview of the data accumulated 

as variables vary upon changing material source, testing procedure, and many 

more. This study concludes that the ML algorithm can be used for predicting 

concrete properties. The results drown from the dataset collected is as follows: 

1. MLP Model is more precise than the model created on regression analysis for 

predicting CS as R2 score is maximum for MLP Model. 

2. The estimates of compressive strength can be premeditated using the model, 

which is convenient to use for numerical experiments to find out actual mix 

proportions of each variable such as age, water-cement ratio, proportion of fine 

and coarse aggregates. 

(II) Carbonation Depth of Blended Cement Concrete with Fly Ash 

The most influential elements were used as inputs in prediction model to 

forecast carbonation-depth in concrete with fly-ash admixture. Three concrete mix 

parameters (modified water-to-binder ratio, binder and fly-ash content), three exposure 

situations (CO2 concentration, temperature and relative humidity), curing period, and 

the age of exposure were among these factors (t). 

The following conclusions were drawn based on the carbonation depths predicted by 

this study: 

1. Between the experimental and projected carbonation depths, the GradientBoosting 

Regression algorithm training, testing, and validation sets produced high correlation 

with little inaccuracies. 
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2. Despite the complexity of the carbonation phenomena, which involves several 

influencing elements, the suggested ensemble model gives accuracy more than 0.92 

on training, test and validation combined. 

3. At all degrees and ages of fly-ash replacement, carbonation depth was inversely 

related to the sum of cement and flyash content and proportionate to the modified w/b 

as depicted in heatmap. 

4. Curing is significant factor to control carbonation depths, its correlation with the 

carbonation depth is 0.24 as depicted in heatmap. 

(III) Sulphate Resistance of Blended Cement Concrete with Fly Ash 

This study concludes that the ML algorithm can be used for predicting 

concrete properties. The results drown from the dataset collected is as follows: 

1. The use of an ANN modelling technique can make it easier, faster, and more 

accurate to analyse the influence of conventional Portland cement, as well as 

blended cements with FA or SF, on the sulphate attack of concrete, based on the 

value of expansion generated from a neural network algorithm. 

2. The USBR 4908 test method has several flaws, including a long measuring 

duration, insensitivity of the measurement tool to the course of sulphate attack, the 

influence of curing, and pH variation over time in the solution. It is also powerful 

and inexpensive. 
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