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ABSTRACT

Rockets are such fascinating machines that when we look up we feel how far our
universe has expanded over the years. From the beginning of civilization humans
always looked up in the sky and got inspired. Always wanted to fly and get into space
to explore what lies ahead. Counter argues by philosophers that humans first need to
focus on earth but few audacious men and women break the jinx and build vehicles
after years of failures and hard work which takes humanity to another level. It is
because of that fearless and moonshot vision that we achieved a lot in terms of
communication and connectivity. Humans landed on moon & mars, sent satellites in
orbit and sent rovers deep into space and all of this was and is possible because of thrust
produced in tons due to propulsion. Modern rockets used in space missions have thrust
generated of thousands of newtons. On an average countries and private rocket
industries launch more than 100 rockets carrying satellites every year. Thrust generated
due to burning of propellants and oxidiser results in huge temperature and heat
generation. Most heat flux occurs near the proximity of the nozzle throat which needs
cooling as combustion temperature and heat is a threat to structural metals. We have
progressed so far and further deep space exploration needs better machines structurally
to handle thermal temperature and also fuel efficiency and there comes cooling
techniques. Different cooling techniques have been implemented and experiment is still
in continuation to combine different such mechanisms to achieve better results.
Scientists have inspired the future generation to continue R & D on cooling techniques
with different nozzle designs, materials and cooling methods to achieve superior
cooling experiences. In this dissertation rocket nozzle cooling methods have been
discussed and efficacy on rocket chambers and nozzles. In this dissertation
experimental and numerical modelling investigation has been performed and is also
highlighted with results and discussions. A spacex falcon {9 rocket is made in cad also
analysed with volume enclosure to find out thermal stress and maily a merlin 1d engine
is designed and regenerative cooling is performed and results has been compared with
combined regenerative + ablative & film cooling and the cooling results are shown
along with thermal simulation analysis. This dissertation also brings in light of a critical

research gap to be addressed in future.
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Chapter 1
INTRODUCTION

1.1.1 Motivation

As rockets are subjected to extreme conditions in space and in such conditions when
temperature goes beyond 3000 K more than safe conditions of operation then materials and
structural design gets compromised and chances of failure is just a matter of time. That's why
we need effective cooling of the engine and nozzle to decrease combustion temperature,
faster rate of heat transfer to increase efficiency and performance and ultimately rockets
carry heavier payloads as fuels are saved. With increased focus on deep space research
rockets need to be designed keeping in mind distance they need to travel and also cost
reduction on the mission so advanced cooling techniques need to be developed as current
methods cannot be effective in the long run. Since the heat load is highest at the throat region
of nozzles, cooling necessities arise there (Turner, 2010). The author is simulating a model of
Merlin 1d engine of spacex rocket in computational fluid dynamics method for heat transfer
and other in simscale software. Regenerative cooling produces best cooling in nozzles and the
author tested experimental data and also compared it with other methods originally used by
spacex scientists and engineers. Rockets chamber can be made with thickest and titanium like
material which can handle heat but again it can’t be possible to use it as rockets has to carry
payloads and if materials are heavier it will defeat the entire purpose of saving fuels carrying
extra load and being agile say faster to cover larger distance in shorter period of time so the
best possible solution is to find cooling solution like carbon composites on nozzle and
chamber surface which due to ignition higher temperature will burn off and take away heat
which simply states that engine is for one time use only so another best methods like film
cooling, regenerative cooling or radiative cooling like material got red hot and transmit heat
even to vacuum through radiation mode and also combination of heat transfer methods like

film cooling plus in addition to regenerative cooling techniques.
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1.2. Rocketry

1.2.1 Ancient Rocketry

We indians mostly has our first experience of rockets in diwali and in that there is tube in top
and stick and no bottom the tube is mostly filled with gunpowder acted as one of mini solid
propellant rockets which can be ignited putting in a bottle, I used to wonder what's the role of
stick but actually its guiding the direction otherwise it can go in random direction and blasts.
The inspiration for this goes back through many hundred years ago in 1232 used in war
between Mongols and chinese called fire arrows. A lot of experiments after that had been

performed to increase the range of fire arrows [1].

But rocketry became rocket science after Issac Newton gave three governing laws and
defined how and why of rockets even in outer space, after which scientists started working on
it and Indian king Tipu Sultan and his son Haider Ali also used rockets in first anglo mysore
war against britishers after which they started reverse engineering and developed more lethal
rocket artillery and won many wars and then it opened doors for more advancement in rocket

science [1].

1.2.2 Modern Rocketry & India’s ISRO

Russian school teacher Tsiolkovsky is considered as father of modern rocketry, he proposed
that with better propellants and careful design rockets can be taken to outer space in vacuum
as range depends on escape velocity of exhaust gas and also he had given equations for
rockets still valid to this date. In between 1882-1945 Goddard an american scientists
developed first sounding rocket on solid propellant and he published numerous papers on his
contributions and later he thought that liquid propellant rocket can better perform than solid
counterpart and he made one which flew but fell apart it was quite not upto mark but onset a

beginning of liquid propellant rockets used in modern rockets. He also developed many
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advanced rockets later and thus with such significant contributions he is considered to be the

father of liquid propellant rocketry.

Germans also pioneered rockets and started a society for space travel and many scientists
emerged due to interests, visualization and availability of resources. During the war the
german scientists started making missiles and made V2 a lethal rocket first used it on London
city in world war 2nd. It used a mixture of oxygen and alcohol and thrust generated was
enough to destroy cities and military establishments. When germany falls western part
captured by united states and eastern germany goes to soviet by default and many unused
rockets gone to usa russia and allied countries. Many scientists either settled in these
countries and then started a period of cold war and these countries also realised the potential

of rockets not just in terms of missiles but also outer space [1].

India as a country was never far behind in the space race. Country established INCOSPAR in
1962 renamed in 1969 as ISRO and the then prime minister believed in the potential of Indian
scientists vikram sarabhai and homi jehangir bhabha and despite lot of challenges they were
able to convince that they wanted peaceful uses of space science for development of india.
Indian space interests were not driven by landing on the moon or mars but communication,
remote sensing, connecting Indians through television. The geographical location of India
also gave an advantage as the magnetic equator passes through Thumba in
Thiruvananthapuram, the location in itself has a story of how the church campus became the
so-called mecca of rocket science in india. When indian government ordered village to be
relocated for thumba equatorial launching station in 1963 they protested but it was sarabhai
who convinced father and then father collected people and told them about vision and now a
painted picture published in india today that parts was carried on bullock carts and bicycle
and from there to space india’s story of first sounding rocket. After the mysterious death of
sarabhai batton of ISRO was passed to satish dhawan by indira gandhi. ISRO in partnership
with ROSCOSMOS launched its first satellite aryabhatta and after the first failed launch in
1979 again in 1980 became the 6th country in the world to launch SLV rockets in space [2].

India launched many launch vehicles which includes SLV, PSLV & GSLV. The space
programme of India is focused on peaceful purposes and that success can be seen in India
being the largest collection of remote sensing satellites which helped the Indian government
to help its farmers and increase agriculture capacity and also avoid any natural disasters and

relief programmes. India didn’t stop there but developed its own GPS named IRNSS. Many
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satellites help the military in wars against pakistan and help keep expansionism of china in
check. ISRO launched chandrayaan missions and mangalyan was launched even before china
and we have been successful in our very first attempt. ISRO is the most respected
organisation of India when it comes to space exploration because of its cost efficiency and
success rate of launches. The organisation helped India in its growth and always reminds the
people of the nation of their potential. The long term vision includes, man missions to the
moon, reusable rockets, sending missions to planets like Jupiter and its own international
space station. DOS opened a path for private players in space and it will boost India's

capacity in the space race [2].

The future of space exploration is very promising as NASA, ROSCOSMOS, JAXA, ISRO,
CNSA, CSA ASC & ESA the major space agencies are all heading in the right direction.
From deep space exploration to understanding what lies there to building bases on mars to
start human missions for researching as space has a lot of minerals which can be extracted
and used on earth. To meet all these future perspectives we need rockets that are faster, hold
more payload, more efficient in terms of fuel consumption so that it can go to Jupiter or
beyond and carry payloads. We need better cooling techniques to safeguard rocket materials,
better heat transfer and fuel efficiency. A lot of research is going on materials, cooling
techniques, and combinations of best propulsive fuels. In the next headings we will talk about

cooling techniques in rocket engines.

1.3. Rocket Engine Cooling

Temperature normally at the sun surface is 5800 k and normally at the throat of nozzle it is
more than half of what sun surface is and for that we need a better cooling technique as the
temperature is more than enough to melt any material and change its properties which could
sabotage the missions of the rocket. The several techniques are as follows : Regenerative
cooling, Ablative cooling, Film cooling, Radiative cooling, Mixture of cooling techniques,

Hint sink cooling.
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1.3.1 Regenerative Cooling

It is used generally in cryogenic liquid propellant engines which produce higher thrust. In this
technique to cool the engine propellants passed through combustion chamber understand it
like heat exchanger the outer surface is colder due to cryogenic propellants and inside is hot
due to combustion, propellants passed through tubes and takes heat and when it is preheated
passed directly to main combustion chamber. As we all want to increase heat transfer from
combustion walls to propellants, we need to increase surface area for effective heat transfer
so many experiments were done using materials of high heat transfer coefficients and also
corrugated. Velocity of flow and thermal conductivity of engine materials also increases the
effectiveness of regenerative cooling. The mechanical constraints is that to maintain the flow,
the pressure in tube side must be higher than the combustion chamber pressure as natural
flow happens only from higher to lower side. There is a possibility that leak chances are low
but can’t be ignored due to heavy pressure but even if there is leak it turns out to be
advantageous for cooling as if leak starts acting like film cooling then combination of

regenerative and film cooling will take place [3].

Rocket Fuel Oxidiser Thrust [N] Chamber Country
Pressure
[bar]
Vikas N204 MON3 260,000 70 India
PSLV - C52 | UH25 MMH 220,000 60 India
PSLV - C50 | Kerosene LOX 240,000 50 India
GSLV MK N204 MON3 196,500 75 India
111
PSLV - C51 | UH25 MMH 230,000 55 India

Table 1.1 Rockets cooled with techniques of Regenerative cooling
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Showing below the Cross sectional view of regenerative cooling engine, coolant flow is
highest at the throat of the nozzle to increase heat transfer to maximum as that region is very

critical.
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Fig 1.1 Schematic diagram of thrust chamber in axial direction [3]

1.3.2 Ablative Cooling

Ablative cooling is a technique which utilises latent heat of evaporation and predominant
chemical reaction. It is the simplest and cheapest method for cooling rocket engines. Ablative
materials in the form of liners are attached to the combustion chamber and they act as
insulators as the thermal conductivity of ablative materials is very low. When combustion
gases flow they are having high temperature and they start vaporising the liners of ablative
materials the material will carry heat with it. For example in the Apollo lunar rocket engine
carbon composites were used as ablative liners. This is very effective as it is light weight,
cheap with no moving parts which means no wear and tear and when temperature in the
combustion chamber is very high it starts vaporising layer by layer and takes away heat with

it.
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However the biggest drawback is that it sometimes damages and vaporises engine materials
also which makes it unsuitable for reusing so it is not highly preferred over regenerative and
film cooling techniques. So while designing, more focus is done on thickness to be suitable as

some materials of boundary of liners and engine inner surface could vaporise so that it can be

compensated.
Rockets Fuel Engine
Spacex Falcon 1 UH25/MMH Merlin 1A
United alliance LOX/Kerosene Delta 1v
United alliance Hydrolox Rs 68 A
United alliance N204 Rs 68

Table 1.2 Rocket engines which had ablative chambers for cooling techniques.

1.3.3 Film Cooling

In film cooling the cooling techniques are simple where fuel is passed into the combustion
chamber through porous holes or slots cut into. The fuel impregnates the chamber into vapor
form then it forms a protective layer over the surface so that walls of engines can be protected
and cooled. Thermal Stress is significantly reduced making the rockets reusable for future
missions. To increase effectiveness it is always better to use both film cooling and
regenerative cooling or combination of film cooling with some other cooling techniques. The
film cooling is also divided into gaseous film cooling, liquid film cooling and combination of

both liquid and gaseous film cooling techniques [4].



Rocket Engine Cooling techniques Country

F1 Liquid Film Cooling USA

2 Liquid Film Cooling USA

LES Liquid Film Cooling Japan

Vulcain 2 Gas-Liquid Film Cooling EADS Astrium
RS 27 Gaseous Film Cooling ESA

RD 171 Gaseous Film Cooling Russia

RD 180 Gaseous Film Cooling Russia

Table 1.3 Rocket engines which used film cooling or combination of film cooling..

Film coolant T T 77 A
injECtiDn ﬁw— R
Core T Temperature |
ﬂt;:-'ai.rgE15 ‘ x Loy profile
Coolant loss =
Film coolant $ 444 ‘T Coolant film
injection v v s
- Film cooled >
length

Figure 1.2 Rocket engines diagram of chamber for film cooling [4].
Factors which affects film cooling are as follows :-

e Radiation effects on rocket surfaces.
e Pressure, temperature and heat flux.
e Highly accelerated propellants flow.

e Two phase liquid flow conditions.
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e Unsteady and turbulent flows.

e Density gradient & compressibility effects.

s Coolant film
3000 -
.ﬁ .
% 24001 A «—Chamber wall
Z 18000 &
o 2 |
2 .
£ 12001 & \'..
= l P
6004 + _
- Typical
0- ‘— temperature
distribution
Temperature -
drop across
wall

A r

L
Distance from thrust chamber axis

v

Figure 1.3 Schematics of chamber temperature profile [4].

In most missiles and nuclear warheads the cooling techniques used is gaseous film cooling
instead of film cooling as in many experimental research carried out it was found that multi
slots was possible in gaseous propellants mainly nitrogen and propane and high energy with
minimal erosion was possible. From the nozzle wall it has lower heat load. External shock
wave, coolant mach number, turbulence in mainstream, injector geometry & blowing ratio
effects gas cooling in rockets. These parameters are mostly taken care of while designing

cooling techniques.
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Liquid propellant Annular zone
injector of extra fuel
injection

Film coolant
injection holes
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solid propellant propellant
injection
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film coolant
injection
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insert
Layer of Layer of
relatively relatively
cool gas cool gas

Figure 1.4 Schematics of engine chamber showing film protection layer [3].

It is shown in figure how fuel is injected through multiple injector holes and it forms a layer
with low velocity and in large amounts it quickly covers the surface . Solid propellants near
throat regions get cooled extra and cannot burn properly leading to reduction of impulse in
rocket engines. That's the reason it is more suitable to use film cooling with a combination of

other techniques [3].

1.3.4 Radiation Cooling

In radiation cooling techniques the converging side is much smaller than diverging side

means the nozzle area ratio which is diverging area upon converging area is between 250 to
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375 and converging side surface is coated with rhenium with iridium till throat section and
upper nozzle exit section surface is coated with niobium and disilicate and lower nozzle cross
section surface with titanium. In the diverging section radiation has almost negligible effects
as compared to the converging side where temperature at the throat is similar to peak

temperature of converging side. In general while heat transfer through radiation it increases

the temperature of the surface up to 20-30 %.

Solenoid Unlike doublet pattern — -
operated injector with additional -

fuel valve film coolant injection holes ]
\ near periphery - ’

[a]
- e | | =
— E
i | I | : §
Solenoid Combustion [ [ Lower nozzle exit section, 5
operated chamber with integral b J ~ titanium |
oxidizer .-"‘ nozzle throat, rhenium, Upper |
/ coated with indium — |
Ve f nozzle exit | N
section, —
niobium with TTe—
Mounting disilicide coating ~—~— | 3
flange and
injector - -
assembly 551.94 mm

Thrust 100 Ibf
Chamber pressure ~ 140 psia
MNozzle area ratio 250 to 375
Specific impulse up to 323 sec
Mass 10.5 Ibm

Figure 1.5 Schematics of engine chamber showing radiation cooling [3].
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Chapter 2
LITERATURE REVIEW

2.1: Literature Reviews

Two prominent scientists of Japan society for aeronautical and space sciences in their paper
of radiative heating in the combustion chamber of liquid propellant rocket engines found the
relationship between length of cylindrical section of thrust chamber and its diameter. The key
finding was that radiative heat flux upon total heat flux varies between 25-35 %. Fuel used

was O2 as oxidiser and methane along with ethanol and hydrogen [5].

In the msc thesis submitted by Mustafa emre boysal performed simulation modelling on a
liquid propellant engine running on fuel of LOX/Kerosene with combustion chamber
pressure of 60 bar and thrust produced of 300 kN. Established relationship with the effect of
number of rectangular cooling channels and geometry on efficiency of cooling. Results
produced that cooling efficiency at 4x2 mm2 cross section area of channel with 110 cooling
channels is best and also pressure drop is higher. If The Increasing Number Of Cooling
Channels Is Up To 40-45 %, Pressure Drop Is Approximately 47-53 %. One of the major
achievements is increasing aspect Ratio which in turn increases cooling efficiency and drop

in pressure also increases. [6]

In the aiaa conference paper Alexander W. Miranda and Mohammad H. Naraghi conducted a
simulation Cfd Modeling at film layer with variation in composition and Flow Rate, it was
also published that in film layer purest hydrogen produced maximum film cooling but it is
minimal with injection of mixture of rich hydrogen and oxygen also when mass flow rate

increased simultaneously heat flux decreased. [7]
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Figure 2.1 Diagram showing maximum wall heat flux for various cases as functions

of wall temperature [7].

Kevin Ciasullo Modelled a Converging Regenerative Nozzle For An Aluminum- Water

Combustor, Nozzle Has Single Pass Circular Channel That Spirals Around The Converging

Wall. The Model Was Developed To Determine Potential Energy Transfer Into Nozzle,

Chemical Equilibrium Analysis In Order To Calculate The Convection And Radiation Heat

Transfer Into The Nozzle From The Combustion Reaction And Also Pressure Drop [8].
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Figure 2.2 Diagram showing two phase flow & flow boiling regime [9].
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A Adami, et al. in a paper published in an international journal of aerospace engineering that
they replaced high heat flux costly materials by composites or steel, an algorithm they wrote
actually minimises the wall temperature, the minimum total mass comes out through an
equation between propellant minimum mass and the dry minimum mass. lower Isp Increases
of having a total mass minimalistic and total mass heavier. Increase in leads to having a
higher total mass for their algorithm as per their perspective could be brought in and can be

better used for total impulse and thrust level required at all levels. [10]
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Figure 2.3 Diagram showing variation with respect to Lf in total mass [10].
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Figure 2.5 Diagram showing design algorithm for optimised hydrazine propulsion

system [10].



30

In the paper published in the international journal of thermal sciences Mo Bai evaluated
numerically and simulated open cell foam heat transfer and pressure drop which is a critical
condition sometimes it is too high and is not suitable for optimum heat transfer and
performance. Diamond unit cell computational fluid dynamics in fluent was presented, the
call really has unit cell microstructure of aluminium tetrakaidecahedron. As we know in
engineering materials if porosity is high then surface area increases which ultimately

increases heat transfer rate as it has high surface area to volume ratio [11]

Two NASA scientists J. Stoll And J. Strau performed many experiments for heat transfer
analysis and film cooling analysis found out that there was turbulence mixing of gases when
air passed is highly compressed also with their experimentally calculated value was then
compared with theoretical data to find out how much there was deviation then continued on

changing pressure and velocity of compressed air [12].

In lewis research centre of NASA two young and dynamic scientists C.J. Marek and R.R.
Tacina performed an experiment to check how effective film cooling is inversely related to
free stream turbulence intensity and also found that when increase in turbulence Intensity was

7 to 35 % simultaneously it was found 50 % decrement in film Cooling [13].
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Table 2.1 Data observed in experiment conducted [13].
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Figure 2.6 Diagram showing wall temperature in y axis and downstream distance

and temperature of gas is 500 k [13].



32

Chuan Fan, et al. conducted experimentation on supersonic combustors to check dependence
of film cooling effectiveness on injection temperature, injection angle and mass flux. They

found out that film cooling is more effective with an increase in coolant mass flux [14].
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Figure 2.7 Diagram showing film cooling effectiveness at different mass flux,

injection angle and injection temperature [14].
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Figure 2.8 Diagram showing film cooling effectiveness at distance from combustion

entrance [14].

K.A. Juhany, et al. published a research paper in the journal of thermophysics and studied the
effect of injection of mach number and temperature on supersonic film cooling temperature
range was 210-240 k and mach number 2.2 to 2.6 so the result when mach number was
increased then film cooling effectiveness rate also increased heat transfer. The film cooling

technique is more effective at 2.4 mach number and temperature was 220 kelvin [15].

Maximillian. Hombsch and Herbert Olivier published a research paper journal of spacecraft
and rockets and conducted Experiments in shock wave laboratory in RWTH aachen film

cooling of supersonic flat flows for boundary region for laminar and turbulent region by
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flowing coolant through different plate surface geometries, Coolant mass flow rate and
injection angle was varied by them and film cooling effectiveness and efficiency curve was

plotted and compared with theoretical say empirical formulae [16].

Transpirational cooling has been modelled by Valentina Koonig, Michael Rom, and Siegfried
Muller for hot gas and poros medium coupling at interfaces in subsonic and supersonic two
types of combustors and results has been compared and for two domains solver RANS has

been solved and also porous medium has been solved one by one [17].

hot gas ['W HG iso

reservoir T I T I _
cooling gas | Lpm _

Figure 2.9 Diagram showing setup of transpirational cooling [17].
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Figure 2.10 Diagram showing Non uniform and uniform flow of injection [17].
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Figure 2.11 Wall heat flux and temperature boundary layer during circumferential

injection [17].
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Figure 2.12 Diagram showing injection in nozzle flow in slots and circumferential

[17].

Johannes M. F. Peter and Markus J. Kloker published a research paper in which they passed
compressed gas in supersonic combustors at mach number of 3.2 at turbulent boundary layer
also the gas used is helium and wall condition is adiabatic and turbulence modeling used is

DNS and flow assumed is periodic in Z direction [18].



Table 2.2 Data observed in cooling condition of stream and blowing ratio [18].

Case F Geometry | 5" (mm) pr(Pa) Pef Poa Coolant exit
condition

cl 033 GOl 0.6 15015 0584  Overcxpanded

CII 0.59 Gol 0.6 28000 1000 Matched

Il 0.66 Gol 0.6 80 1168 (weakly)
underexpanded

Cllla 066 G2 0.9 830 1168 (weakly)
underexpanded

cIv 100 Gol 06 47745 1752 Underexpanded

C-IVa 1.00 Gz 0.9 47745 1782 Underexpanded
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Figure 2.13 Comparison of mean cooling effectiveness n and for variation of the coolant

mass flow rate [18].
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Figure 2.14 Diagram showing turbulence stress in contours [18].

Table 2.3 Investigated coolant Mach numbers with momentum ratio M [18].
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Case F Geometry | 5" (mm) p: (Pa) Ma, M

C-lla 0.66 G02 09 31830 1.80 0.221
C-Illa-Ma |0.66 G02 09 22200 242 0.254
C-IV 1.00 Gol 06 47745 1.80 0.331
CIV-Ma | 1.00 Gol 0.6 32037 12,50 10.387

08F - _
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Figure 2.15 Diagram showing efficiency and correlating cooling data efficiency [18].

2.2: Objective of the present study

The study presented focussed on collective relevant information from the topic of current

research. Literature review provides concrete information for further studies and helps

improve cooling efficiency in author’s research. Different combination cooling techniques

provided authors a step to conduct research on spacex rocket engines and improve cooling of

the merlin 1d vacuum engine used mostly in falcon 9. Cooling efficiency has been compared

with coolant mass flow, different geometries, injection ratios and their correlation with

cooling effectiveness. In this current research the author has simulated and tried to establish

relation between pressure, velocity, turbulent kinetic energy, specific dissipation ratio and

cooling with change in injection angle and geometry of nozzle.
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Chapter 3
METHODOLOGY

3.1 Theoretical Hand Analysis Of Heat Transfer In Engine

Theoretical analysis has been performed and hand calculation for rocket equation,

combustion analysis and heat transfer has been performed.

Figure 3.1 Hand calculation of rocket equation



Figure 3.2 Hand calculation of payload, structure & propellant.

Figure 3.3 Hand calculation of propulsion efficiency




Figure 3.4 Hand calculation of heat transfer analysis in 4 stages of rocket

Figure 3.5 Hand calculation and variation curve of Kinetic energy




Figure 3.6 Surface regression of solid propellant rockets

Figure 3.7 Hand calculation of propulsive speed of 4 stage booster rockets
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Figure 3.8 Characteristics curve plotted for composite propellant burning rate vs

pressure.

Figure 3.9 Hand calculation of gas energy according to st roberts law

Generally if chamber pressure is small, mass flow rate is small and Isp {Specific Impulse}is
not much affected, gg cycle is more suited for low pressure engine and scc cycle is applicable

for high pressure engine.



44

CHAPTER 4
RESULTS &
DISCUSSION

Simulation Results

4.1 Nozzle design

A converging diverging Nozzle has been designed as cad modelling for heat transfer analysis
in combustion chamber and in throat area and entire nozzle area. Inspiration has been taken
from spacex merlin vacuum 1d engine. Nozzles are the most important part of all kinds of
rockets whether solid propellant, liquid propellant and hybrid propellant rockets. Design of
nozzle is very important as the small change in parameters could bring a lot of impact in heat
transfer. The converging side has been taken 0.37 m and the length of the diverging section
has been taken 0.63 m. The length of the converging side is smaller as compared to the
diverging side to facilitate greater thrust in rockets. The throat has minimum radius because
to increase mach number greater than 1 and room for diverging section. It is also the critical

part of the nozzle during heat transfer analysis.
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Figure 4.2 Diagram showing cutout of converging diverging nozzles
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The radius can be seen decreasing first then decreasing which is critical for proper functions
of rocket engines. The nozzle temperature can go up to 3300 k so it's very important to use

proper cooling mechanisms.

~ &% GEOMETRIES + <) =] ﬁ ij =
« Part_Studio_1 - Part 1

> & SIMULATIONS (1)

Job status

Figure 4.3 Proper visualisation of converging diverging nozzles with radius.

4.2 Simulation Conditions

When nozzle geometry is finalised then for simulations initial condition is set and for cooling

techniques effectiveness heat transfer analysis is done and then compared for validation.
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Figure 4.4 Proper visualisation of specific dissipation rate

The figure 3.4 shows the turbulence dissipation using the Low-Re k-¢ model; it generally
shows amount of energy is lost when flow is nearly turbulent due to viscosity. The model is
very useful in heat transfer analysis with flow separation in turbulent flows. When Reynolds
number increases the eddies increase sharply so does the losses. It affects heat transfer greatly
as kinetic energy is converted into a low form of energy which is heat. We chose
incompressible analysis, then we went to turbulence modeling and chose the k-¢ model then
we specified the boundary conditions with respect to the nozzle domain of our rocket engine

cooling.
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Figure 4.5 Proper visualisation of medium selection for analysis.

In previous figure we have chosen the turbulence modeling equation now we chose medium
which is to be air and the viscosity modeling will be newtonian and we specify kinematic
viscosity and density, once this is done then we specify the assigned volumes where this

compressed air or gas passes through for proper modeling and mathematical analysis.
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Figure 4.6 Proper visualisation of pressure boundary condition.

Now after medium we start setting boundary conditions and first it comes to pressure inlet 3
and pressure inlet 4. The pressure type is total pressure and total gauge pressure is 1.8 bar and
also faces have been assigned. The pressure is directly linked to temperature and heat transfer
analysis as pressure is very high in the combustion chamber and especially in the region of
the throat. Now the rocket functions in extreme temperatures and pressures, the simulation
modelling is also set on the same inputs to really bring the same environment to read and put

exact data to be used by researchers in future.
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Figure 4.7 Proper visualisation of numerics.
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The normal relaxation parameter is selected and at the same time for residual controls

tolerance, turbulence kinetic energy and specific dissipation rate is filled. The important

parameters which solver used are smooth for velocity and GAMG for pressure.
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Figure 4.8 Proper visualisation of simulation control
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In advance concepts time set is 1000 sec with timestamp and decompose algorithm is scotch.
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Figure 4.9 Proper visualisation of turbulent kinetic energy

Turbulent kinetic energy is associated with the number of eddies in flow.
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Figure 4.10 Proper visualisation of pressure in entire nozzle
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The pressure is the reason gases flow inside the nozzle, key parameter for jet kinetic energy.
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Figure 4.11 Proper visualisation of velocity magnitude.
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Figure 4.12 Proper visualisation of velocity magnitude in Y direction.
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Figure 4.13 Proper visualisation of velocity in Z direction.
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Figure 4.14 Proper visualisation of velocity in X direction.
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Figure 4.15 Proper visualisation of residual velocity, pressure, omega vs time in X, Y, Z

directions.

The residuals are important because it shows variation, say imbalances in value theoretical

according to mathematical conditions and practical simulations in extreme environments.
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further
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We took a full spacex falcon 9 rocket to visualize the temperature profile for heat transfer
analysis in rockets. It will also visualize temperature in the entire volume region. The idea is

to show temperature ranges which is shown in figure below

Temperature = K

-52.25 7114 194.4 318 4414 564.8
D ' . mm
rFs F s

Figure 4.17 Temperature profile of outer surface of entire falcon 9 rockets in enclosed

volume where heat transfer is taking place.

In the above figure we can see that the temperature around the front body is between 240 -
318 k but around the nozzle and when flue gases come out the temperature is too high, more
than 441.4 k due to cooling techniques used otherwise it can reach up to 3200-3400k in
throat of nozzles. External factors are also responsible like solar irradiation, electric
equipment used in rockets and also the vacuum environment in space also induces more heat

and that heat transfer has to be transferred out of the chamber for that purpose we used
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combined more regenerative and little film cooling effect for maximum output. This reduces

our fuel consumption and our rockets can travel much farther than other methods.

Effectiveness = V kp/ hAc

Efficiency = tanhmL/mL

m2 =hP /kAc

Apmajorﬁloss =A (1 / dh) (pf V2 / 2)

Table 4.1 Heat transfer analysis formula used shown in table.

Figure 4.18 Figure showing fully meshed nozzles used for simulations of heat transfer

analysis.
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Figure 4.19 Temperature profile of outer surface of entire falcon 9 rockets in enclosed

volume where heat transfer is taking place.
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In meshing 16 core advance processor has been used with hex element in core and also
automatic boundary layer, physics based meshing is selected and algorithm used is hex
dominant parametric. Fineness level selected is 5. The number of nodes in the event log is
89643, the number of edges is 1327, the number of faces is 39042, the number of volumes
269769. the number of triangles is 38172, the number of quadrangles is 870 the number of
prism is 99805, the number of pyramids is 1163, the number of tetrahedral is 168781 and the

number of hexahedral is 20.

wolumeRatio
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average: 1.338742cREXTTZO
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99.9—th percentile: 3I.55B369981575678
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Figure 4.20 Figure showing mesh log event for volume ratio, aspect ratio, non orthogonality

and skewness.



59

~ o SIMULATIONS

2 P g g

- & Convective Heat Transfer
.'oGeometrv
@ Model
- Materials
@ Air
+ @ Initial conditions
- Boundary conditions
@ Velocityinlet 1
@ Pressure outlet 2
@ slipwalls
+ Advanced concepts
@ Numerics
@ Simulation control
+ Resultcontrol

+ ), Mesh

Simulation Runs

+ ™% 0B0820 Convective Heat Tr...

&+ 101030 Convective Heat Tr...

- © Geometry
@ Model
7 Materials Temperature = K v
@ Air
N L DU PR TR P 288.1 2901 2921 2941 296.1 2981
Job status I 4

Figure 4.21 Figure showing convective heat transfer simulations and temperature profile of

falcon 9 merlin 1 d vacuum engine rocket.

While doing convective heat transfer analysis in modelling radiation has also been taken,
flow has taken to be compressible, k-sst omega has been chosen as turbulence modeling and

then we get the desired results.
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CHAPTER 5
CONCLUSIONS

Future Works

Different cooling techniques can be blended together and can be simulated to find the effect
mostly temperature inside nozzle of not just merlin engine but various other engines and also
the simulation platform can be advance like that used in ISRO, Spacex, NASA, JAXA,
ROSCOSMOS or other commercial companies so that results coming could be more

accurate. The author in the future in PHD will continue expansion on this work.
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