INTELLIGENT CONTROL OF TWO WHEEL SELF
BALANCING ROBOT

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

CONTROL & INSTRUMENTATION
Submitted by:
SHIVAM
2K20/C&1/09
Under the supervision of
Prof. BHARAT BHUSHAN

Dr. BHAVNESH JAINT

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042
MAY, 2022

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi — 110042

CANDIDATE’S DECLARATION

I, SHIVAM, Roll No. 2K20/C&I1/09 of M. Tech (Control & Instrumentation), hereby
declare that the Dissertation titled “INTELLIGENT CONTROL OF TWO WHEEL SELF
BALANCING ROBOT” which is submitted by me to the Department of Electrical
Engineering, Delhi Technological University, Delhi in partial fulfillment of the
requirement for the award of the degree of Master of Technology, is original and not
copied from any source without proper citation. This work has not previously formed the
basis for the award of any Degree, Diploma Associateship, Fellowship or similar title or

recognition.

Place: Delhi SHIVAM

Date:

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled " INTELLIGENT CONTROL OF
TWO WHEEL SELF BALANCING ROBOT " which is submitted by SHIVAM, Roll
No. 2K20/C&l1/09 of Electrical Engineering Department, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of

Master of Technology, is a record of the project work carried out by the student under my

supervision. To the best of my knowledge this work has not been submitted in part or full

for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Date:

Prof. Bharat Bhushan
(Professor)
Supervisor

DELHI TECHNOLOGICAL
UNIVERSITY

(Formerly Delhi College of
Engineering)

Bawana Road. Delhi — 110042

Dr. Bhavnesh Jaint
(Assistant Professor)
Co-Supervisor
DELHI TECHNOLOGICAL
UNIVERSITY

(Formerly Delhi College of
Engineering)

Bawana Road, Delhi — 110042

ACKNOWLEDGEMENT

I have taken efforts in and dedication this Thesis. However, it would not have been
possible without the kind support and help of many individuals and organizations.

I would like to extend my sincerethanks to all of them.

I am highly indebted to Prof. Bharat Bhushan and Dr. Bhavnesh Jaint for their
guidance and constant supervision as well as for providing necessary information

regarding the project & also for their support in completing the project.

I would like to express my gratitude towards my parents & member of Delhi
Technological University for their kind co-operation and encouragement which

help me in completion of this Project.

ABSTRACT

The self-propelled robot is based on the principle of the Modified pendulum, which is a
two wheel-drive vehicle with a vertical position vertically. Contains both hardware and
software implementation. A machine model based on the design of the cart circuit space,
the pendulum system. To find its stable distorted position, I used a standard feedback
controller (i.e., a PID controller). By nature, we have to control both the angel of the
pendulum and the position of the chariot. The Simulink model applied in this project uses
PID controller to provide the necessary control action required for the cart to remain
stable. For the control parameters for PID I have used different tuning methods. These
tuning methods are encoded in MATLAB and the results from there are used in the
Simulink model. For extra comparison of controllers, I have used LQR controller to
observe the difference I control techniques in linear and nonlinear control models. These
parameters are considered as the system parameters and determine the external power

required to measure the robot upwards.

It will be prevented from falling by giving acceleration to the wheels according to
their inclination. If the board is tilted at an angle to the wheels; the robot's weight center

will receive artificial power that will use torque opposite the slope.

CONTENTS

Candidate’s Declaration i
Certificate il
Acknowledgement v
Abstract v
Contents vi
List of Figures ix
List of Tables xi
CHAPTER 1 INTRODUCTION 1
1.1 Introduction To Two Wheel Self Balancing Robot 1
1.2 Control System 1
1.3 Classification of Control System 2
1.4 Introduction to MATLAB SIMUINK 3
1.5 Objective 3
1.6 Motivation 4

CHAPTER 2 LITERATURE REVIEW

2.1 Two Wheel Self Balancing Robot

2.2 MATLAB Simulation model of the Two Wheel Self Balancing Robot
2.3 Two Wheel Self Balancing Robot with PID controller

2.4 The Concept of Genetic Algorithm and GA based PID controller

2.5 Particle Swarm Optimization and PSO based PID Controller

O© o0 o0 9 O O &

2.6 Optimal Control System and LQR Controller
CHAPTER 3 MATHEMATICAL MODELING OF AN APPROXIMATE MODEL10

3.1 Problem Setup And Design Requirements 10
32 Mathematical Analysis of The System 11

vi

3.3 Transfer Function

3.4 State-Space Model

CHAPTER 4 BUILDING THE MODEL
4.1 World Frame
4.2 Building The Robot Model

4.2.1 Making the Wheels
4.2.2 Shaft for connecting the wheels

4.2.3 Making the upper body

CHAPTER 5 BUILDING THE CONTROL SYSTEM
5.1 Basic Control System Design
5.2 PID Controller Overview

5.2 Effects Of Control Parameters On The Close Loop System

5.3 PID Controller Design With State Space

5.4 Pre-Compensation

CHAPTER 6 TUNING OF PID CONTROLLER
6.1 Controller Tuning

6.2 Tuning Methods

6.3 Tuning Of PID With MATLAB Autotuner App

CHAPTER 7 GA BASED TUNING OF PID
7.1 Introduction To GA
7.2 Implementation Of GA For Tuning PID In MATLAB

CHAPTER 8 PSO BASED TUNING OF PID

8.1 Introduction To PSO

8.2 Position And Velocity Calculation

8.3 Tuning Of PID With PSO Algorithm Using MATLAB

CHAPTER 9 LQR CONTROL OF ROBOT

vii

12
13

15
15
16

17

17

18

22
22
23
24
24
25

27
27
27
30

32
32
33

36
36
37
40

42

9.1 Introduction To LQR Controller
9.2 Cost Function For LQR Controller
9.3 Implementation Of LQR Controller

CHAPTER 10 CONCLUSION
10.1 Theoretical Comparison Of PSO And GA

10.2 Practical Comparison Of GA Based PID And PSO Based PID Controller
10.3 Comparison Of PID controller With LQR Technique

REFERENCES

viii

42
43
33

46

46

46
47

49

LIST OF FIGURES

Figure 3.1 A model of an inverted cart pendulum system
Figure 3.2 Free body diagram for inverted pendulum model
Figure 4.1 Simscape Multibody Model

Figure 4.2 Dimensions of Wheels

Figure 4.3 Dimension of wheel tyre

Figure 4.4 Dimensions of shaft connecting the wheels

Figure:4.5 Connection of wheels and shaft for cart formation

Figure 4.6 Dimensions of plates for upper body

Figure 4.7 Rigid Transformation Block

Figure 4.8 Dimensions of Pillars connecting plates

Figure 4.9 Connections of Pillars

Figure 4.10 Connection of Chassis (upper body)

Figure 4.11 The complete Simulink model of Two Wheel Self Balancing Robot with
PID controller.

Figure 4.12 The final model after being assembled

Figure 5.1 Control system design for Two Wheel Self Balancing Robot
Figure 5.2 Control Parameters for PID controller

Figure 5.3 system with PID controller

Figure 5.4 The Cart Pendulum System

Figure 6.1 Random values of controller parameters

Figure 6.2 Angle with reference to the given control parameters

Figure 6.3 Angle disturbance w.r.t. Kp=2, Kd=0.01 and Ki=3

Figure 6.4 PID control parameters with PID tuner app

Figure 6.5 Angle disturbance with tuned PID parameters

Figure 7.1 Flow Chart of Genetic Algorithm

Figure 7.2 Optimization Toolbox

Figure 7.3 Values of Control parameters obtained after § iterations
Figure 7.4 Angle disturbance in Two Wheel Self Balancing Robot due to Control

Parameters by GA
®

Figure 8.1 Momentum part, wv,

Figure 8.2 Cognitive Part, ¢,y (p((f)lb) - xi(t)) Social Part, c,7, (pgb) - xl.(t))

Figure 8.3 Flow Chart of PSO algorithm

Figure 8.4 SIMULINK model for obtaining the tuning parameters with the transfer

function
Figure 8.5 The parameters obtained for PID are Kp=10, Kd=0.0628 and Ki= 2.2210
Figure 8.6 Angle disturbance in TWR due to Control Parameters by PSO

Figure 9.1 Block representation of state space system showing the matrices A, B and C

as well as the gain matrix K

Figure 9.2 Simulink model for Two wheeled self-balancing robot using LQR control

Figure 9.3 Angle disturbance with the LQR control method

LIST OF TABLES

Table 5.1 PID parameter effect comparison

Table 10.1 Comparison of Kp, Kd, and Ki

Table 10.2 Comparison of Angle and time taken to gain stability
Table 10.3 Comparison of PID with LQR

Xi

CHAPTER-1
INTRODUCTION

1.1 Introduction To Two Wheel Self Balancing Robot

For constructing a 2-D robot, it is important to solve the problem of the distorted
pendulum or the distorted pendulum in the cart[1]. The calculations of the inverted
pendulum system and also the expressions have a high level of complexity. The motive
is just to adjust the wheel’s position to keep the angle of the inverted pendulum remains
upright i.e., it should be ninety degrees from the ground. By any chance when the
pendulum rotates in any direction, the two wheels below the cart moves in the direction
so that the angle of the robot remains constant. What I observed from the simulation is
that when the movement of the cart is slow when the disturbance of the angle is less and

the movement of the cart is fast when the disturbance is angle is more.[2][3][4]

For simpler understanding, the movement of the robot is confined to only two
axes. The speed of both the wheels will be similar. Thus, for the purpose of calculation
we only have to consider that the cart will move ahead or back.[5]. While viewing in
MATLAB, it will be shown us to as the cart is moving sideways. For practical
implementation every individual wheel will have a separate control system. But there is
no need to go into that type of complexity from now. When the movement of cart is
restricted to a single plane the equations of the calculation become much easier to operate

on.[6]

1.2 Control System
The best control systems examples are that of the traffic lights and also washing

machines. There are many other examples like motor vehicles, mobile phones etc.

Input Output
p 5 Control tp :
System

Figure 1.1 Block Diagram of Control System

There are many types of control system but some main classifications are the Single
Input Single output control system and the Multiple Input Multiple Output Control
System. Here the type of control system I am going to apply is Multiple Input Multiple
Output Type.

1.3 Classification of Control System

The Based on the Feed Back Path the classification of control system is mainly of two

types i.e., Open Loop control system and Closed Loop control system.

In open loop control system, there is no output fed back to the controller. The control
action is not dependent on the desired output.

The figure 1.2 represents the Block Diagram of open loop control system.

Actuating

Input Signal Output
—p—> Controller ol Plant |,

Figure 1.2 Open Loop Control System

Closed loop control system consists of a feedback element which sends the output
to the controller where this signal is compared with the desired reference signal so that
the output can be changed as per the requirements automatically. The error detector
present in figure 1.2 does the comparison between the output and the reference signal.

The error is then analyzed by the controller and the necessary control action is taken.

Error
Detector

Actuating
Signal

Output
Controller Plant >

Feedback < J
Elements

Feedback
Signal

Figure 1.3 Closed Loop Control System

1.4 Introduction to MATLAB SIMUINK

I have used MATLAB software for the building of my project and implementing the
control system. MATLAB which is the abbreviation of MATrix LABoraory is a
multiplatform programming language developed by MathWorks. It provides us with a

numeric computing environment.

It provides us the ability to perform matrix multiplication, create user interfaces,
help us in implementation of different algorithms, plotting graphs etc. SIMULINK helps
us with the model-based design approach for embedded systems and dynamic systems.

The complete development of this project is based on MATLAB and SIMULINK.

Today many projects are built on MATLAB before it’s practical implementation
in the real world. Because of the availability of this software the ability to see the
performance of a system before hand is increased. The pros an cons of a system can be
observed and its feasibility in the real world can also be studied. Just for example in this
project it would have taken me much more time, effort and capital to build a successful
model which can compare all the algorithms and deriving the results from them would
also be a big challenge. But due to this software it was a seamless process to build this

system and implement different algorithms and get the results.

1.5 Objective:
e Designing a Simulink model of the two-wheel self-balancing robot in MATLAB.

e To compare different control methods that are responsible for balancing the two-

wheel self-balancing robot.

The main motive of the project is balancing the pendulum i.e., the inclination angle is
the basis of the whole modelling. As soon as the angle begins to displace from its
desired position, the movement in the cart happens. We need to get the data from the
gyroscope and accelerometer to maintain the inclination angle in the practical

application.[1]

e Mathematical analysis of approximate model- The reference of the inverted
pendulum on a cart has been taken and with the help of the force balancing

equations I have derived the transfer function.

o System Analysis- The parameters responsible for control action and the required

output is analyzed.

e Simulation- In this part I built the model of the two-wheel self-balancing robot
model in SIMULINK. After that I applied the controller to the model so that the

control action can balance the model and I can get desired results.

e Optimization- The control methods need to be optimized so that we can get he
results which are practically possible to implement in the real world. The main
Optimization control method used here is the LQR controller which compares all
the input parameters and gives the desired result. Further discussion is there in the

following chapters.

e Comparison- at last [have done the comparison of the control systems I have
used and the conclusion shows that which control system is more effective than

others and what parameters are responsible for those results.
1.6 Motivation

The Two Wheel Self Balancing Robot is an extremely extensive system which
contains many areas of the complete control system subject. The development of the
model in SIMULINK taught me the model building process in SIMULINK. The
designing of control system also contains the benefits of the exploration to the

implementation of control systems to different processes.

Moreover, the development of the reusable rockets named Falcon of SpaceX
moved me to think how it would be possible to balance any system upright in midair
and making it land safely on the ground and that too at the accurate position. When 1
studied through different sources, I came to know that the inverter pendulum system

is the base of this engineering marvel.

CHAPTER 2
LITERAURE REVIEW

2.1 Two Wheel Self Balancing Robot

From this project report I got the basic idea of the two wheel self-balancing robot and the
dynamic equations which helped in deriving the transfer function of my model. I also got
the basic idea of control system responsible for the control system of the robot from this
report.[1] Laplace transform, Equations of free body diagram was taken from here. Also,
an insight of LQR control was taken. This report provides very deep learning of the

practical implementation of Two Wheel self-balancing robot.[2]

The idea for the basic structure shown in the MATLAB model is taken from here.
This paper is giving us the idea for the microcontroller-based controller for Two-wheel
self-balancing robot. It also gives light on the PID controller used in project.[3] This
paper provides an insight to the mathematical model of the robot which is derived by the
differential equation method using the state space modelling procedure. Also, a brief idea

of using PID controller is provided in this.[4]

For coming up with a model which can be solved mathematically and
implemented on Simulink, it was very necessary to get the knowledge of the basic
structure of two-wheel self-balancing robot. The papers from [41]-[50] give the
necessary knowledge to help me able to build a feasible model of the robot. These papers

also gives the future scope of this system in the field of robotics.

2.2 MATLAB Simulation model of the Two Wheel Self Balancing Robot

Representation of closed loop control system and the MATLAB Simulink model design
is taken from this paper. Also the state space representation for LQR based controller is
taken from this. Response of open loop transfer function and closed loop transfer function
is given in this.[5] This paper provides the insight in the kinematics model of a two
wheeled self balancing robot. It mainly focuses on the control of wheels for the control of

the motion.[6] Here an optimal PID controller is designed with the help of MATLAB

Simulink. The basic idea of transfer function of the robot is also provided here.[7]

The dynamic model, equations of motion of the robot, the equation for
conservation of energy, free body diagram is given in this paper. This paper provide to
many conference papers and journals in their research. It provides very deep

mathematical analysis of the two-wheel self-balancing robot.[§]

2.3 Two Wheel Self Balancing Robot with PID controller

Working of PID based two-wheel elf balancing robot and the programming flow chart of
the self-balancing robot is provided here. This paper provides the idea of implementation
of the two wheeled self-balancing robot using Arduino microcontroller.[9] Robot’s
controller block diagram and PID tuning is provide here. In addition to that here the
practical implementation of the control system using complementary filters is provided
here.[10] The basic idea of PID controller is taken from here. This provides the deep
analysis od PID controller used in the system and fuzzy logic method is also used as a
controller for the two-wheeled self-balancing robot.[11] The state space analysis of the
robotic system is provided here with extreme clarity. This paper helped very much in
calculating the transfer function and MATLAB coding in the initial stages of the project.
Also, the control loop for LQR controller and the gain matrix for the LQR controller is

given in here.[12]

It provides the idea of type of PID controller to be used on the basis of the
disturbance rejection and system robustness and then the performance of PID controller
is checked. It also provides idea for tuning of PID controllers.[13] It provides a view of
classical and modern approaches used for PID tuning methods and their usage in various
areas. Most of the systems used today still use PID controllers but their tuning methods
are improving constantly. As mentioned, it provides the insight on tuning methods of PID

controller.[14]

The papers referring [23]-[27] have provided with some important details about
how to use the PID controller, what are the control parameters required for using PID

controller, and how to implement it on different systems. PID controller tuning with

algorithms is also explained here.

2.4 The Concept of Genetic Algorithm and GA based PID controller

The basic idea of Genetic Algorithm is given in here. The flow chart of the functioning of
genetic algorithm is also provided here for the better understanding of the algorithm.[15]
The flow chart of genetic algorithm is provided in here. This paper also compares the
difference between PSO and genetic algorithm. It also provides an insight on how to

implement PSO and Genetic Algorithm in practical applications.[16]

The basic idea of Genetic Algorithm based PID tuning is shown here. GA based
PID tuning is successfully applied for the optimum adaptive control.[17] The basic aim of
this research paper was to implement the PSO based PID tuning. Here a model of DC
motor in a plant is tuned with both Ziegler-Nichols method and PSO method and the

results of both are compared hence forth.[18]

Genetic Algorithms is very popular for obtaining optimal or accurate parameters
for different applications. But first the explanation of Genetic Algorithms is very
important. The papers from [28]-[32] helps in the explanation of genetic algorithms to
me. The very vast area of research present in these papers adds to the knowledge of the

arca.

2.5 Particle Swarm Optimization and PSO based PID Controller

This paper is about the particle swarm optimization and support vector machines to
improve the accuracy of the datamining system where this system was implemented. It
gives an insight to PSO and the effectiveness of it’s optimization techniques.[19] This
paper represents Arduino based experimental two wheeled self-balancing robot which is
more focused on economical building of the model and implementation. With the help of
computer programming and modelling the authors were able to achieve the

implementation of the project successfully.[20]

There are many types of other nature inspired algorithms which are in use for

many optimization and estimation problems. But the Particle Swarm Optimization
technique is relatively simple and highly effective to implement. I gained the knowledge

about it from the papers [33]-[37].

2.6 Optimal Control System and LQR Controller

No matter how quickly a system responds but it will be of no use if the control system is
not economical. For example, if we apply hard braking on motor vehicles, the vehicle
stops quickly but the quality of the parts of the vehicle gets compromised. That’s why we
apply brakes in a manner that the parts are safe. Same applies for the controller’s design.
The controller should provide quick and smooth response so. In control systems it is
called optimal control of a system. The papers [37]-[41] provides the knowledge about
both Optimal Control Systems and LQR controller.

This paper is based on the control of unstable and non-linear two-wheeled self-
balancing robot using the linear control techniques like LQR and LQG methods. This
paper also shows us that these control methods has the ability to Reject the disturbances

in a much effective way.[21]

For coming up with a model which can be solved mathematically and
implemented on Simulink, it was very necessary to get the knowledge of the basic
structure of two-wheel self-balancing robot. The papers from [41]-[50] give the
necessary knowledge to help me able to build a feasible model of the robot. These papers

also gives the future scope of this system in the field of robotics.

10

CHAPTER-3
MATHEMATICAL MODELING OF AN APPROXIMATE
MODEL

3.1 Problem Setup and Design Requirements

As mentioned above the model used here is the inverted pendulum on a cart.
Mathematical analysis of this model has to be done. This type of model is very common
in the research papers or conferences of inverted pendulum mounted on a cart. The main
reason for its popularity is that without a suitable control system, the cart is extremely
unstable. We need control action for each and every working second to maintain the
pendulum in desired position. Moreover, the dynamics of the system are not very simple.
The main motive of the project is that as soon as the angle begins to displace from its
desired position, the movement in the cart happens and the pendulum obtains a stable
upright position. The Falcon rocket which is able to land back on the ground for its

reusability is an excellent example of this type of system.[7]

Here I have considered a system in which the pendulum moves in a particular
direction which will be provided by some predetermined reference values and as shown
in the figure below. In this inverted pendulum system, the control action moves the cart

in the x direction towards the inclination angle. [8]

m,I

Q Q

Figure 3.1 A model of an inverted cart pendulum system

11

3.2 Mathematical Analysis of The System

The free-body diagrams of the pendulum and the cart of the inverted pendulum system

are shown below.

N
=
F friction
——
P = bx
O O,

Figure 3.2 Free body diagram for inverted pendulum model

Summing the forces in the free-body diagram of the cart in the horizontal direction, I get

the following equation of motion.

M%+bx+N=F (1)

It is to be noted that I can also take a sum of the forces in the direction vertical to the cart,

but it will be of no use.

If I sum the forces in horizontal direction of the free-body diagram of the pendulum in, I

get the following expression for the reaction force V.

N = m# + mlfcos 6 — mlf?sin 6 (2)

12

If T substitute this equation in the 1% equation, I get one of the two equations which

governs this system.

(M + m)& + bx + mlfcos 6 —mlh?sin § = F 3)
To get the 2™ equation of motion, I need to take the sum of the force’s
perpendicular to the pendulum. By solving the equations along the perpendicular axis

simplifies the maths. I should get the following equation.

Psin 6 + Ncos 8 — mgsin 6 = mlf + micos 6 (€]
To remove P and IV terms in the equation above, I need to sum the moments about

the centroid of the pendulum to get the following equation.

—Plsin 6 — Nlcos 6 = 16 (5)

Combining these last two expressions, I get the 2" governing equation.

(I + mi*»)6 + mglsin 6 = —mlicos 6 (6)
Since the analysis and control design techniques I'll be employing during
this example apply only to linear systems, this set of equations has to be
linearized. Specifically, I'll linearize the equations about the vertically upward
equilibrium position, 8 = m, and can assume that the system stays within a tiny
low neighborhood of this equilibrium. This assumption should be reasonably
valid since in check I desire that the pendulum not deviate over 20 degrees from
the vertically upward position. Let ¢ represent the deviation of the pendulum’s
position from equilibrium, that is, 6 =m + ¢. Again, presuming a tiny low
deviation (¢) from equilibrium, I will use the subsequent small angle

approximations of the nonlinear functions in our system equations:

cos 8 =cos(m+¢)=—1 3.7
sin 8 =sin(m+¢) = —¢ (3.8)
sin 8 =sin(m+¢) = —¢ (3.9)

After substituting the above approximated values into our nonlinear equations, I

reach at the 2 linearized equations of motion. Note u# has been substituted for the input F.

(I + mi®)¢ — mglp = mli (3.10)
(I + mi®)¢ — mglp = mli (3.11)

3.3 Transfer Function

13

Laplace transform should be taken of the linearized system equations to obtain the

transfer function assuming the initial conditions as zero. The Laplace transforms that we

get are shown below.

(I + ml»)®(s)s? — mgld(s) = mlX(s)s? (3.12)

(M + m)X(s)s? + bX(s)s — mld(s)s? = U(s) (3.13)
The relationship between a single input and a single output is represented by a

Transfer function at a time. For finding the first transfer function for the output ¢(s) and

an input of U(s), X(s) needs to be eliminated from the above equations. Solving the 1st

equation for X(s).
14+mi?
X(s) = [%—S%] d(s) (3.14)
Then substitute the above into the second equation.
M +m) [M2E — L] (s)s? + b [HEE — L] @(s)s — mid(s)s* = U(s) (3.15)

Rearranging, the transfer function is then the following

ml_,
D(s) el
m - 54.b(1+m12) 3 ?M+m)mgl 2_bmgl (3.16)
=S — s
where,
a = [(M +m)(l +mi2) - (i)’ 617

From the transfer function above I can be see that there is both a pole and a zero

at the origin. These can be cancelled and the transfer function becomes the following.

ml
_D(s) i rad
Ppend (S) - m - <34 b(1+m12)a2 (M+m)mgla bmgl [T] (318)
q q q

Second, the transfer function with the cart X(s) position as the output can be

derived in a similar manner to arrive at the following.

(1+mi?)s?—gm
_X(s) _ q m
Peart (5) = E - o4y b(1+mlz)a3 (M+mymgl_, bmgl_ [F] (3.19)
q a a

3.4 State-Space Model
The linearized equations of motion from above can also be represented in state-
space form if they are rearranged into a series of first order differential equations. Since

the equations are linear, they can then be put into the standard matrix form shown below.

14

0 1 0 0 0
X |[0 —(1+mi?)b m2 gi? 0] x | I1+mi? |
x| I(M+m)+Mmi2 [(M+m)+Mmi2 X 1(M+m)+Mmi2
é _IO 0 0 1I ¢ +I 0 |u (3.20)
—mlb mgl(M+m) ; ml
¢ lO I(M+m)+MmlZ2 I(M+m)+Mml? OJ ¢ ll(M+m)+MleJ
X
11 0 o op|*|, o
y‘[o 0 1 o]ld_)%[o]” (3.21)
¢

The C matrix has 2 rows because both the cart’s position and the pendulum’s
position are part of the output. Specifically, the cart’s position is the first element of the
output y and the pendulum’s deviation from its equilibrium position is the second element

of y.

Robot Parameters used by us:

M=1 mass of the chassis
m=0.2 mass of the wheels and shaft
b=0.1 estimate of viscous friction coefficient (N-m-s)

1=10.0005 moment of inertia of the pendulum
g=9.8 acceleration due to gravity (m/s"2)

1=0.125 length to pendulum center of mass

The transfer function of the Robot Assembled by us in MATLAB is-

0.81s
s3+0.01s2 —-9.60s — 0.80

15

CHAPTER 4
BUILDING THE MODEL

4.1 World Frame

Open the new Simscape Multi body model. For this I have to type smnew in the
MATLAB command window. The new model opens, as shown below, with a few
commonly used blocks already in the model. The PS-Simulink and Simulink-PS blocks
def ne the boundary between the Simulink input / output models where the blocks are
sequent ally tested and the Simscape models where the figures are simultaneously tested.
The Solver Configuration is responsible for the calculation, the World Frame is
responsible for providing the earth-linking axis to the model, and the Pathway Setting

where can determine all the gravitational forces of each model.

r -1
»b
R PP
fx)=9 Simulink-PS D
L - Converter PS-Simulink
q— Converter Scope
Configuration

@
World Frame Rigid
Transform

Brick Solid

O
A D
"
Mechanism
Configuration

Simscape Multibody Resources

1. Find more multibody components in the Simscape Multibody library.
For more information, see Simscape Multibody - Blocks.
2. Find components from other domains in the Simscape library.
3. Connect the components to form a physical network.
For more information, see Essential Steps for Constructing a Physical Model and Creating a Multibody Model.
4. Visualize the simulation using Mechanics Explorer
5. Explore simulation results using sscexplore

Figure 4.1 Simscape Multibody Model

To configure the basic settings in the model, do the following:

16

e Double-click on the Mechanism configuration block and set the gravitational

force to “[0 0 -9.81]”, this represents acceleration due to the 9.8 m /s * 2

gravitational force.

e Open the Solver Configuration block and make sure the Use local solution

checkbox is not selected.

e Type CTRL-E to open the Configuration Parameters box.

e Inthe Solver window, make sure Type is set to “Variable-Step” and that the Solver

is set to “default”, and set the stop time to “10”.

4.2 Building The Robot Model

4.2.1 Making the Wheels

For wheels I will follow the following instructions- Simulink library > Simscape >

Multibody > Body Elements > Cylindrical Solid. Now double click on the cylinder and

specify the measurements.

Wheel Body:

Description

Represents a solid combining a geometry, an inertia and mass,
a graphics component, and rigidly attached frames into a
single unit. A solid is the common building block of rigid
bodies. The Solid block obtains the inertia from the geometry
and density, from the geometry and mass, or from an inertia
tensor that you specify.

In the expandable nodes under Properties, select the types of
geometry, inertia, graphic features, and frames that you want
and their parameterizations.

Port R is a frame port that represents a reference frame
associated with the geometry. Each additional created frame
generates another frame port.

Properties
Radius 30 mm v
Length 12.7 mm v
| Export
s
& Grap
o

«

2ot QQaddIIHT W L

z
k,
X

Figure 4.2 Dimensions of Wheels

Wheel Tyre:

17

Description

Represents a solid combining a geometry, an inertia and mass, a
graphics component, and rigidly attached frames into a single unit.
A solid is the common building block of rigid bodies. The Solid
block obtains the inertia from the geometry and density, from the
geometry and mass, or from an inertia tensor that you specify.

In the expandable nodes under Properties, select the types of
geometry, inertia, graphic features, and frames that you want and
their parameterizations.

Port R is a frame port that represents a reference frame associated
with the geometry. Each additional created frame generates
another frame port.

Properties

ke qQUQI@ddTIIEI S| -

K

Zz

k.

Figure 4.3 Dimension of wheel tyre

After this model is built just make a copy of the same and name it as Right Wheel.

Now after doing that all, [have to do is to connect these wheels with a shaft. So, I can use

the shaft option from the Simscape multibody model and define the parameters.

4.2.2 Shaft for connecting the wheels:

Description

Represents a solid combining a geometry, an inertia and mass, a graphics
component, and rigidly attached frames into a single unit. A solid is the
common building block of rigid bodies. The Solid block obtains the inertia
from the geometry and density, from the geometry and mass, or from an
inertia tensor that you specify.

In the expandable nodes under Properties, select the types of geometry,
inertia, graphic features, and frames that you want and their
parameterizations.

Port R is a frame port that represents a reference frame associated with the
geometry. Each additional created frame generates another frame port.

Properties
= Geometry <<

Dimensions [1120]

OK Cancel Help Apply

2o+ QUlld@®IITOIE| L

Figure 4.4 Dimensions of shaft connecting the wheels

18

The connection of all these components will complete the cart formation of our model.

@ B>Z<F Conn1

Conn1
right wheel
- i
|
4
L
tConn1
left wheel

Figure:4.5 Connection of wheels and shaft for cart formation

4.2.3 Making the upper body:
With the help of Brick Solid Block in the Simscape Multibody I will form the

plates by defining proper dimensions.

Description oot QQewdIIONIE| -

p a solid cc ining a y, an inertia and mass, a graphics
component, and rigidly attached frames into a single unit. A solid is the
common building block of rigid bodies. The Solid block obtains the inertia
from the geometry and density, from the geometry and mass, or from an
inertia tensor that you specify.

In the expandable nodes under Properties, select the types of geometry,
inertia, graphic features, and frames that you want and their
parameterizations.

Port R is a frame port that represents a reference frame associated with the
geometry. Each additional created frame generates another frame port.

Properties

= Geometry
Dimensions [1880.3] cm v

Expo

e

Figure 4.6 Dimensions of plates for upper body

19

For the other two plates I just have to copy this model to form a new one. Then |
will connect these using Rigid Transform Block. This Rigid Transform block connects

two frames in a time- invariant transformation ().

e
2|

Figure 4.7 Rigid Transformation Block

I will have to connect the plates with the help of cylindrical pillars so I will have

to define the dimensions of that also.

Description

“u

Neo+AANNBTTH O -

Represents a solid combining a geometry, an inertia and mass, a graphics
component, and rigidly attached frames into a single unit. A solid is the
common building block of rigid bodies. The Solid block obtains the
inertia from the geometry and density, from the geometry and mass, or
from an inertia tensor that you specify.

In the expandable nodes under Properties, select the types of geometry,
inertia, graphic features, and frames that you want and their
parameterizations.

Port R is a frame port that represents a reference frame associated with
the geometry. Each additional created frame generates another frame
port.

Properties <<

B Geometry
Radius 5 |mm v
Length 25 lem v
Export

+

-+ ap

+

k.

OK Cancel Help Apply

Figure 4.8 Dimensions of Pillars connecting plates

20

Conn1 @—
Conn2
Conn4 Conn3
rod 2
PL1_R3
_ B ‘7<.= R
' R F >§< B >_’ '
H m PL1_R2
rod 3

@ PLIR4| 1
| BT LS

. rod 1 ¥
. rod 4

Figure 4.9 Connections of Pillars

plate 3 ‘

‘Ti‘k. PL1_PL3

et plate 2
onn

'R B>2_,<F f

Y

plate 1 PL1_PL2

pillars

Conn1
Conn2
Conn3
Conn4

Figure 4.10 Connection of Chassis (upper body)

21

The two extra connections required for completing our model is the combination
of prismatic joints and revolute joints. [know that prismatic joints are joints which
can move in a translational motion but not in rotational motion. The connection
between the cart and the chassis will be of revolute joint as due to the wheel, the
cart will rotate. And the force applied to the cart will be of translational type. This

force will balance the cart so that it is upright.

fx)=0p two wheeled self balancing
robot
ek B“/_<F - ks :?F B"?,{F Conn1
SRR e— - L S
chassis
“%C-— Conn1
Lol
rad 2 deg
cart
———eeld—— PID(s) 14@/__‘*<I‘H<‘ —

angle

initial perturbation

L

Figure 4.11 The complete Simulink model of Two Wheel Self Balancing Robot

with PID controller.

'y

Figure 4.12 The final model after being assembled

22

CHAPTER 5
BUILDING THE CONTROL SYSTEM

5.1 Basic Control System Design

The system gives us
the angle of
SYSTEM inclination of the
Robot (6)

Feed this error to this e=0-6

part of the loop which PID/LQR SUM We compare the angle
will give the with the desired angle
appropriate force to i.e. 0 and this will be the
stabilize the Robot ' input to the PID

controller

Figure 5.1 Control system design for Two wheel Self Balancing Robot

I can see that for building the control system I need to obtain the input
which I get as the angle of inclination from the system as angle (8). Now I just need to
compare this angle with the desired angle which I want to be maintained by the system. I
can see that our desired angle is 0, so I will obtain an error value by subtracting the angle
obtained from the system from 0 and feed this input to the controller, namely PID or
LQR.[8]

Now the controller will feed this error to the loop which will give the

appropriate force to stabilize the Robot.[9]

23

5.2 PID Controller Overview

A proportional-integral-derivative controller is a standard response control. The
PID controller considers "error" as the difference between the output and the given

references | wish and attempts to reduce the error by adjusting the control parameters.[1]

Figure 5.2 Control Parameters for PID controller

PID control parameters:

In the time-domain analysis, the output of a PID controller, which is proportional

to control input is given by:

. i . _de
u(t) = Ke(t) + h;ff,[!-]rﬂ. hpfz’f_ @

To check how the PID controller works in a closed loop system using system
variables. ‘e’ represents a system error due to both system sound and measurement noise,
the difference between the output I want and the actual output. This error signal is
provided by the PID controller, and the controller determines both the output and the
value of the error. Plant inputs should be the sum of the recurring outflows with the
outflow error, the equals of constant proportional error and significant periods of total

€1ror.

The transfer function of a PID controller is found by taking the Laplace transform
of Eq

K - H-:f“ﬁ + K8+ K;
— + Wy ;

i s- 4.2)

24

Kp = Proportional gain
Ki = Integral gain

Kd = Derivative gain

The structure of a plant:

controller plant

oot g u y

T n C(s) P(s)

Figure 5.3 system with PID controller

F

v
k

L 4

5.3 Effects Of Control Parameters On The Close Loop System

Due to proportional controller, [will have reduced the rise time but no effect
on steady state error. An integral control (%) reduces the steady-state error for step
input, butnegative effect on rise time. A derivative increases the stability of the system as

well as reduces the overshoot.

Table 4.1 PID parameter effect comparison

Kp Decrease | Increase Small Decreas
Change e
Ki Decrease | Increase Increase elimina
te
Kd Small Decrease Decrease No
Change change

5.3 Pid Controller Design With State Space

The easiest method one should try to make the pendulum balanced is to rotate the wheels
within the inclined direction until the inclination angle approaches to zero where the
pendulum is in balance. Basically, the rotation speed of the wheel should be proportional

to the angle of inclination (e.g. move faster when the inclination is more and vice versa)

25

in order that the robot move with a greater settle time. this can be called the best PID

control with neglecting both the I and also the D terms. [10]

Proceeding to the subsequent step within the design process, I've to search out state-
feedback control gains represented during a vector assuming that I are cognizant (i.e. can
measure) all the state variables (four state variables are there). There are various methods
to try to it. If I recognize the specified closed-loop pole locations, I will use the advanced
control theory. I am able to also use the “LQR” command which returns the optimal
controller gain by heat and trial method for a linear plant, cost function must be power of

two at the most and initial conditions must up to zero. [11]

I've got to test that the system is controllable before design a controller. By meeting all of
this property of controllability implies that I am able to set the state of the system
anywhere within the controllable region (under the physical constraints of the system).
The system to fulfil all the conditions to be completely state controllable, the rank of the

controllability is that the number of independent rows (or columns).

C = [A|AB|A%B| - |A*B]

The controllability matrix of the system is shown by the above equation. The
quantity of powers indicates to the amount of state variables of the system. Addition of
terms to the controllability matrix with higher powers of the matrix cannot increase the

rank of the matrix because they're linear combination of each other.

Controllability matrix is consisting of 4 variables; the rank of the matrix should be 4 to be
controllable. By using the command ctrl in MATLAB to get the controllability matrix.
Likewise using rank command, I am able to find the rank. So, I am going to test in

simulation chapter. [12]

5.4 Pre-Compensation

The designed controller meets our transient requirements so, but now I should always
focus upon the steady-state error. With relation to the opposite design methods, where I

feedback the output and compare it to the reference input to compute a slip, with a full-

26

state feedback controller I are feeding back all of the states. I'd like to compute what the
steady-state value of the states should be, multiply that by the chosen gain, and use a

brand-new value as our "reference" for computing the input. I will mate by adding a

continuing gain after the reference input.[13]

Figure 5.4 The Cart Pendulum System

27

CHAPTER 6
TUNING OF PID CONTROLLER

6.1 Controller Tuning

When a mathematical model of a system is obtainable, the parameters of the controller
may be explicitly determined. However, due to the unavailability of a mathematical
model, experimental determination of parameters is a must. Controller tuning is that the
process of determining the controller parameters which produce the specified output.
Controller tuning allows for optimization of a process and minimizes the error between

the variable of the method and its point.[14][15]

6.2 Tuning Methods

e MATLAB PID Auto Tuner Application (For Reference Values)

e Particle Swarm Optimization based Tuning of PID controller

e Genetic Algorithm based Tuning of PID controller
I also use hit and trial method for observing the controller reaction of Robot to the given
control values. For example, I will set the value of Kp=2, Kd=0 and Ki=0. For changing
these values, I will double click on the PID block on the Simulink model and change the
values.

The figure 5.1 represents the controller parameters with random values. First, I
have used random parameters to observe the control action and the result of what happens
to the cart after applying these values. After that I have used actual tuning methods so
that the accurate control action can be observed and the correct controller parameter rage

can be determined.

The controller responds differently with different parameters obviously and sine
there are three values to be determined, I have to be very careful in choosing the values
with the hit and trial method. The result of choosing a not suitable value of the controller

parameters can be perfectly seen in the figure 5.1.

Bl
| PID 1dof (mask) (link)
| This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-
| windup, external reset, and signal tracking. You can tune the PID gains automatically using the ‘Tune..." button (requires
Simulink Control Design).
Controller: PID ~ Form: Parallel
Time domain: Discrete-time settings
O Continuous-time

o) Sample time (-1 for inherited): -1
O Discrete-time

¥ Compensator formula

P+1i+D N]
s 1+N
8

Main Initialization ~ Output Saturation ~ Data Types State Attributes
Controller parameters

Source: internal
Proportional (P): 2
Integral (I): 0

Derivative (D): 0

Figure 6.1 Random values of controller parameters

Now I will see the reaction of the cart to these values.

28

25—

] M I

11| I

Figure 6.2 Angle with reference to the given control parameters

29

I can see that the disturbance of the angle keeps on increasing with respect to time
and this shows us that the system is obviously not stable. So, I will try some different
control parameters.

Now I will take the value of Kp=2, Kd=0.01 and Ki=3 and see the response of robot

to these control parameters.

25 &

201 =

20 -

Figure 6.3 Angle disturbance w.r.t. Kp=2, Kd=0.01 and Ki=3

I can see that with new parameters I are able to achieve stabilization of the robot after
some time. But I cannot always rely on hit and trial as it does not ensure the desired results

after many trials also.

So, from now onwards I will try different tuning parameters of PID so that I can get
ensured control parameters which will give us the best results.
For the first tuning method [will look forward to the MATLAB PID Tuner Application
present in the Simulink. For this I have to double click on the PID block in the Simulink

model, select the tuning method as Transfer Function Based (PID Tuner App) and

30

click on Tune.

[5] Block Parameters: PID Controller
O Continuous-time) o
i Sample time (-1 for inherited): -1

iscrete-time
¥ Compensator formula

p+1lip X
L 1+N
8

Main Initialization ~ Output Saturation ~ Data Types State Attributes
Controller parameters

Source: internal

Proportional (P): 3.23458121413695

Integral (I): 12.9744261549199
Derivative (D): 0.196719119457425
Use filtered derivative

Filter coefficient (N): 500.359902770551

Automated tuning
Select tuning method: Transfer Function Based (PID Tuner App) v | Tune..

Figure 6.4 PID control parameters with PID tuner app

6.3 Tuning Of PID With MATLAB Autotuner App

Figure 6.5 Angle disturbance with MATLAB autotuner PID parameters

31

The values obtained are, Kp= 3.245, Kd=12.9744 and Ki=0.1967

Now I can see that with the PID tuner app the disturbance or oscillation in the
angle of the robot after initial disturbance is very less and the time taken to achieve the
stability is extremely less as compared to the previous hit and trial method. Sine this
application is inbuilt in the MATLAB I will consider these values as the standard values
of Kp, Kd, Ki and compare these values to the other tuning parameters namely, PSO

based PID tuning and GA based PID tuning.

32

CHAPTER 7
GA BASED TUNING OF PID CONTROLLER

7.1 Introduction To GA

Genetic Algorithms are a family of computer models inspired by evolution. These
algorithms incorporate a potential solution to a specific problem in a simple data structure
such as a chromosome and use regenerative operators in these structures to store sensitive
information. Genetic algorithms are often regarded as operating systems, although the

scope of the problems with which the genetic algorithms are used is much broader.[16]

The implementation of a genetic algorithm begins with the human population
(usually random) of chromosomes. Man, then examines these structures and assigns them
to reproduction in such a way that those chromosomes represent a better solution to the
intended problem given more opportunities for "reproduction” than those chromosomes
are the worst solutions. The "advantage" of a solution is usually defined in terms of the

current population.[16]

This particular definition of a genetic algorithm is deliberately absurd because in a
sense, the word genetic algorithm has two meanings. In solid translation, the genetic
algorithm refers to a model that was developed and researched by John Holland (1975)
and Holland students (e.g., DeJong. 1975). Yet most of the existing theory of genetic
algorithms applies only to or primarily to the model presented by Holland, as IlI as the
variance in what will be referred to in this paper as a canonical genetic algorithm. Recent
theoretical developments in genetic algorithms are particularly applicable to the

canonical genetic algorithm (overall, 1993).

In the broader application of the term, the genetic algorithm has any human-based
model that uses selecting and reassembling operators to generate new sample points in
the search field. Many models of the genetic algorithm have been developed by highly
functional researchers from a experimental point of view. Many of these researchers are

prone to use and are often interested in genetic algorithms as development tools.

33

Population Initialization

v

Fitness Function

Calculation
:,‘!‘"' Crossover
Lobp
until %
Termination
Criteria feached .
Mutation

¥

Survivor Selection

¥

Terminate and Return
Best

Figure 7.1 Flow Chart of Genetic Algorithm[17]
7.2 Implementation Of GA For Tuning PID In MATLAB [18]

Here the Survivor Selection is nothing but the objective function which decides the fitness

of the value. Here objective function is also known as cost function.

So, I will define the cost function in MATLAB and use the Global optimization
toolbox for implementing the Genetic Algorithm solver to tune the parameters of the PID
with the help of the transfer function obtained in the first chapter.

Now I will open the optimization toolbox and define the function which will be used as

cost function.

Then the GA solver will come into play and run several iterations and then
stabilize at some particular range of values. I can stop after 5 iterations as it is enough for

getting the desired values and note the values of Kp, Kd, and Ki.

-

Optimization

Figure 7.2 Optimization Toolbox

34

Solver: |ga - Genetic Algorithm v
Problem
Fitness function: @(x) cost_iae(x)

Number of variables: 3

Constraints:

Linear inequalities: A b:
Linear equalities: Aeq: beq:
Bounds: Lower: |[00 0] Upper: [10 10 0.1]

Nonlinear constraint function:
Integer variable indices:
Run solver and view results
() Use random states from previous run
Start Pause Stop

Current iteration: 9 Clear Results

Optimization running.

Stop requested.

Objective function value: 163.320126796257
Optimization terminated: Stop requested

AV

Final point:

14 2 3
9.762| 4098 0.068

Figure 7.3 Values of Control parameters obtained after 8 iterations

As shown above, I get the values of control parameters as, Ki=9.762, Kp=4.098 and
Kd=0.068.

Now I will put these PID parameter values in the PID block in our Simulink model of the
Robot. After that I will run the model and observe the results.

The x-axis in the graph shows time and the y axis in the graph shows angle. Figure 6.5
represents the result of the GA based PID controller method. We can observe that the

initial rise in angle is lesser in comparison to the MATLAB Autotuner App.

25

20

35

Figure 7.4 Angle disturbance in TWR due to Control Parameters by GA

36

CHAPTER 8
PSO BASED TUNING OF PID

8.1 Introduction To PSO [19]

I am sure that each of us in our lives has heard from those who wish the best, “Have a
good relationship. It helps I to cultivate a positive attitude.” When I talk about ‘good
company,’ I are talking about the unequal distribution of good qualities among team
members in order to achieve the same better goal. That’s why I always say ‘Work as a
Team.” The Particle Swarm Optimization (PSO) Algorithm is based on that. In 1995,
Kennedy and Eberhart wrote a research paper based on the social behavior of animal
groups, in which they argued that sharing information between groups increased the
survival rate. Just as a bird seeks its prey at random, it can enhance its search when
working with a herd. The benefit of the operation is to share the best information, which

can help the herd to find the best hunting ground.[20]

In computational science, particle swarm optimization (PSO) is a calculation
method that makes the problem over and over again try to improve the candidate's
solution for a certain level of quality. It solves the problem by having a number of
candidate solutions, here called particles, and moving these particles to the search
according to a simple mathematical formula for particle structure and speed. The
movement of each particle is influenced by its known location, but is also directed to the
most I1l-known areas in the search field, which are updated as better areas are found by

other particles. This is expected to advance the best solutions.

In short, the PSO is encouraged to seek food and social morality. It was initially
suggested that there should be continuous indirect activities. The PSO is developed using
two methods, Artificial Life which mimics a herd of birds, fish learning, and swarm

theory and the other is the Evolutionary Computation.

The group seeks food in a collaborative way and each member of the group learns

experience with them and other members by changing the search pattern to find food. The

37

PSO is developed using simple concepts and older operators. The PSO is mathematically
inexpensive in both memory and speed, and can be easily implemented using a computer
program. The PSO starts by launching a random population like GA. Unlike GA
operators, solutions are provided at a random speed to check the search space. Each
solution in the PSO is called a particle.
Three distinct features of PSO

e Best fitness of each particle

e Best fitness of swarm

e Velocity and position update of each particle
pbest i: the best solution (fitness) achieved so far by particle i
gbest: the best solution (fitness) achieved so far by any particle in the swarm
Velocity and position update: for exploring and exploiting the search space to locate the

optimal solution.

8.2 Position And Velocity Calculation [20]

Position of particle (i) is adjusted as

xi(t+1) _ xi(t) + vi(t+1) (7.1)

Velocity of particle (i) is updated as follows:

t t t t ‘
vl.(Hl) = in() 4 11 (péi,)lb) - xi()) + Czrz(péb) B xi()) (7-2)

e [isthe i — th particle.

e (, and c, are the acceleration coefficients.
e tis the generation counter

e 1, and r, are random numbers € [0,1].

©
i

° p((f)lb) is the local best of i — th particle

e v’ set randomly

e w adds to the inertia of the particle

pé? is the global best.

38

®

Momentum part, wv,
e Inertia component
e Memory of previous flight direction

e Prevents particle from drastically changing direction

Cognitive Part, ¢i7y (p((it')lb) - xi(t)).

¢ Quantifies performance relative to past performances
e Memory of previous best position

e Nostalgia

Social Part, c,7, (p(t) - (t)):

gp — Xi

¢ Quantifies performance relative to neighbors

e Envy

Geometrical Illustration of Velocity Components

o (©
p i,Ib
pgb (10

®
WVi
e — —
_____ e
[G !
s

®)

Figure 8.1 Momentum part, wv;

@ ®

\’ Pd,ib)

4

()

e —
=i =
=
—_—

®

i

) Social Part, ¢,7(p

Figure 8.2 Cognitive Part, c;7q (p((it,)lb) X

p((lt)lb) is the personal best position of i — th particle in t+ generation.

Initialization of PSO
parameters, random
initialization of particle
position and velocity

v

Ewvaluate the Fitness Function for each particle
for local and global best solution

v

® _

)

Update the velocity of each particle Time iteration
r=r+1

l y Y

Update the position of each particle

Is the stopping
riteria satisfied?

Figure 8.3 Flow Chart of PSO algorithm

39

40

8.3 Tuning Of PID With PSO Algorithm Using MATLAB:[19]
Some key steps in coding the PSO algorithm to tune PID are-

1- Choose number of variables as 3
2- Use the objective function as used earlier
3- The codes like 'particleswarm','MaxIterations',20,'SwarmSize',50,'PlotFcns', are

already present in MATLAB Simulink and is the part of Global optimization
toolbox.

Set Point

Kp/

1 num(s) D

den(s) !

Output

>
DEE

u
-) x : ITAE

Figure 8.4 SIMULINK model for obtaining the tuning parameters with the

transfer function.

Name ~

i best
HITAE
Hkd
o Ki
Hxp
b
i n_var
W obj_fun
£l opt
L tout
I ub
o x

41

Value

5.3710e+04
5001x1 double
0.0628

2.2210

10

[0,0,0]

3
@(x)itae_cost(x)
1x1 struct
50017x1 double
[10,10,0.1000]
[10,2.2210,0.0628]

Figure 8.5 The parameters obtained for PID are Ki=10, Kd=0.0628 and Kp=2.2210

Now I will update these values of Kp, Kd and Ki in the Two Wheel Self Balancing model

and trace the response w.r.t these control parameters.

Figure 8.6 Angle disturbance in TWR due to Control Parameters by PSO

42

CHAPTER 9
LQR CONTROL OF TWO WHEEL SELF BALANCING ROBOT

9.1 Introduction To LQR Controller [13]

Complete control theory is about flexible system performance at low cost. A case
in which the dynamics of a system is defined by a set of dividing line calculations and the
cost is defined by a quadratic function is called the LQ problem. One of the main
implications of this theory is that the solution is provided by a linear-quadratic regulator
(LQR), a response control with the numbers given below. LQR is an integral part of the
solution of the LQG (linear-quadratic — Gaussian) problem. Like the LQR problem itself,
the LQG problem is one of the basic problems in control theory.

The settings of the controller (controller) that controls the machine or process
(such as a plane or chemical reactor) are obtained using a mathematical algorithm that
reduces the cost of work by the weight features provided by the person (engineer). Cost
work is often defined as the sum of the basic measurements, such as height or processing
temperature, from the desired values. The algorithm thus detects those control settings
that minimize unwanted deviations. The magnitude of the regulatory action itself can also

be incorporated into the cost function.[21]

The LQR algorithm reduces the amount of work done by the control system
engineer to improve control. However, the engineer still needs to specify cost work
parameters, and compare the results with the specific design goals. This usually means
that the construction of the controller will be a repetitive process in which the engineer
judges the "correct" simulated controls and then adjusts the parameters to produce a

controller that best complies with the design principles.

The LQR algorithm is actually the default way to find the right state response
controller. Thus, it is not uncommon for control engineers to choose alternatives, such as
a complete country response, also known as pole placement, where there is a clear

relationship between control parameters and control behavior. Difficulty in obtaining

43

appropriate weight characteristics limits the use of LQR based controls.

LQR is one of the ways to design control systems in the region. Compared to how
to place the poles, this method gives us a way to get the best poles for the system. In
addition, this method is able to maintain a balance between the performance of the poles

in providing the maximum response and power applied to the actuators.

9.2 Cost Function For LQR Controller [22]

The quadratic cost function responsible for measuring is:

J=1J, %" Qx+u"Ru (8.1)
The optimal feedback control law is:

u=-K.x (8.2)
Where K, is the optimal feedback gain matrix obtained as:

K, =R™IBTP (8.3)

P is a real symmetric matrix, the solution to Riccati equation:
PA+ATP—PBR™'BTP+Q =0 (8.4)
In order to design LQR controller in MATLAB first of all I should examine the system to
check whether it is controllable. If the system is controllable, the poles are placed where
the system is stable. Then, LQR controller is designed by determining the optimal state
feedback gain matrix K, using the following function in MATLAB:

K, =lqr(A4,B,Q,R) (8.5)

The values of Q and R have been chosen by trial in simulation.

9.3 Implementation Of LQR Controller

r— o B

K yomd
=

K

|-

L
0
*

Figure 9.1 Block representation of state space system showing the system matrices A, B

and C as well as the gain matrix K.[22]

44

f()= 0 p— two wheeled self balancing
robot LQR control

B\ \F Conn1

—B
.\ , [|
uj‘ chassis

Conn1

position cart

anglular velocity

rad 2 deg

angle

initial perturbation

L

Figure 9.2 Simulink model for Two wheeled self-balancing robot using LQR control

The LQR controller first linearizes the model and then provides the control
parameters to the system. The value of gain matrix obtained in the MATLAB script code
is directly fed to the Simulink model and henceforth the control action is provided by the
controller.

The figure 8.4 gives the result of the disturbance of angle faced by the system in
the LQR controller. We can evidently observe that the oscillations in the angle is very
less and the stabilization graph of the system is very smooth. Obviously the time taken

by the system to stabilize itself is more but the change in angle is very less.

Figure 9.3 Angle disturbance with the LQR control method

45

46

CHAPTER 10

CONCLUSION

10.1 Theoretical Comparison Of PSO And GA

Particle Swarm Optimization (PSO) is a relatively recent heuristic algorithm which is
based on the behavior of swarming characteristics of living organisms. PSO is closely
similar to the GA as these two are efficient search methods which means that PSO and the
GA change from one set of points to another set of points within each iteration with
remarkable improvement from the previous data using some probabilistic and
deterministic rules. Conversely, the GA is a well-established and popular algorithm with

many applications and different versions.

Although both GA and PSO are an important part of the evolutionary optimization
algorithms, they do have some disadvantages which limits their usage to only a few
problems. In order to solve these problems a combination of both GA and PSO can be
used to improve the overall performance. Combining these two algorithms together can
lead to create a strong algorithm that has practical values and combines the advantages of
PSO and GA. So, a hybrid algorithm of GA and PSO can be a good topic for future

research.

10.2 Practical Comparison Of GA Based PID And PSO Based PID Controller

First of all, lets take a look at the control parameters i.e., Kp, Kd and Ki obtained from
different Tuning methods used above.

Table 10.1 Comparison of Kp, Kd, and Ki

Kp Kd Ki
MATLAB AUTO TUNER APP 3.235 12.974 0.1967
GA based PID Tuning 4.363 9.610 0.083
PSO based PID Tuning 2.221 10 0.062

I are taking the MATLAB auto tuner app as the reference and hence I are

comparing the GA based PID and PSO based PID results to see that which method can

47

be used for effective results.

As the results shows, Both the algorithms namely GA and PSO are able to produce
results close enough to the MATLAB auto tuner app. So, this motivates us to tell that
both the algorithms can be effectively used to perform search operations or optimization
problems effectively with right parameters known to us.

There is one more parameter which I can consider, which is the time our cart took
to achieve stability. In the table below I can see the time taken by each method to help
the cart gain stability.

Table 10.2 Comparison of Angle and time taken to gain stability

Time taken to Gain stability | Maximum Amplitude of
(Approximately) Angle reached (degrees)
MATLAB AUTO TUNER APP 0.75 seconds 15
GA based PID Tuning 0.5 seconds 12.5
PSO based PID Tuning 0.65 seconds 12

Though I can see that GA and PSO tuning methods are able to produce better results but
oscillations present in the MATLAB Auto tuner app is extremely less compared to both
the algorithm. Nevertheless, it is some sort of achievement of this project that [am able

to produce better results than the reference at some aspects.

10.3 Comparison Of PID Controller With LQR Technique

It is known that PID controller does not linearizes the model and gives the control action
with the help of control parameters which we are able to provide the system. The PID
controller may give a result which is quick or which makes the response of the system
fast. But the result may not be optimal. In practical world I need optimal solutions because

the cost of reducing the time may be a lot more.

That’s why at some places I use optimal control methods to control the system.
The reason for using LQR exclusively in this project is only to check how the results will
be affected. LQR uses the state space representation of the model and generates the gain
matrix K. which is the used in the Simulink model to provide the control action to our

model.

48

Table 10.3 Comparison of PID with LQR

Time taken to Gain | Maximum Amplitude of
stability (Approximately) | Angle reached (degrees)
MATLAB AUTO TUNER APP 0.75 seconds 15
LQR 5 seconds 1.75

I can clearly see that LQR control method takes significant amount of time to

stabilize the robot but the Angle disturbance is a lot less. If implemented practically it

will be very useful in long run as the low the angle disturbance will be, the physical toll

on the body of the robot will also be very less and the maintenance cost would be a lot

less. Due to this the life of the model will also increase significantly. So, in practical

implementation I need to look at the aspect of optimal control.

49

REFERENCES

P. Kumar Tripathy, “SELF-BALANCING BOT USING CONCEPT OF
INVERTED PENDULUM.” [Online]. Available: www.nitrkl.ac.in [2013] Project
Report

H. Hellman, H. Sunnerman, and M. E. Grimheden, “Two-Wheeled Self-Balancing

Robot Design and control based on the concept of an inverted pendulum,” 2015.
A. v. Putov, E. v. Ilatovskaya, and M. M. Kopichev, “Self-balancing Robot
Autonomous Control System,” Jun. 2021. doi:
10.1109/MEC052532.2021.9459720.

U. Adeel, K. Saleem Alimgeer, and A. Hameed, “Autonomous Dual Wheel Self
Balancing Robot Based on Microcontroller Robotics View project Designing
MIMO antenna with reduced coupling View project,” 2013. [Online]. Available:
www.textroad.com

L. Kakinada and K. Singh, “Modelling and analysis of two-wheeled self balanced
robot,” May 2021. doi: 10.1109/INCET51464.2021.9456255. [2021] “2nd
International Conference for Emerging Technology (INCET) Belgaum, India. May
21-23, 2021~

F. Jeremic, Lecture Notes “Background Inverted Pendulum Visualization
Derivation Without Oscillator Derivation With Oscillator Derivation of Equations
of Motion for Inverted Pendulum Problem Background Inverted Pendulum
Visualization Derivation Without Oscillator Derivation With Oscillator Kinetic
Energy Definition The energy which an object possesses due to its motion
Background,” 2012.

H. Bin, L. W. Zhen, and L. H. Feng, “The kinematics model of a two-wheeled self-
balancing autonomous mobile robot and its simulation,” in 2010 2nd International
Conference on Computer Engineering and Applications, ICCEA 2010, 2010, vol.
2, pp. 64-68. doi: 10.1109/ICCEA.2010.169.

A. Mathew, R. Ananthu, P. Binsy, A. Vahid, C. Thomas, and S. Sidharthan,
“Design and control of a two-wheel self-balancing robot,” IOP Conference Series:
Materials Science and Engineering, vol. 1114, no. 1, p. 012058, Mar. 2021, doi:
10.1088/1757-899x/1114/1/012058.

[12]

50

Y. Zhuang, Z. Hu, and Y. Yao, “Two-wheeled self-balancing robot dynamic model
and controller design,” in Proceedings of the World Congress on Intelligent
Control and Automation (WCICA), Mar. 2015, vol. 2015-March, no. March, pp.
1935-1939. doi: 10.1109/WCICA.2014.7053016.

T. Nikita and K. T. Prajwal, “PID Controller Based Two Wheeled Self Balancing
Robot,” in Proceedings of the 5th International Conference on Trends in
Electronics and Informatics, ICOEI 2021, Jun. 2021, pp. 1-4. doi:
10.1109/ICOEI51242.2021.9453091.

F. F. Rabbany, A. Qurthobi, and A. Suhendi, “Design of Self-Balancing Virtual
Reality Robot Using PID Control Method and Complementary Filter,” in
Proceedings - 2021 IEEE International Conference on Industry 4.0, Artificial
Intelligence, and Communications Technology, IAICT 2021, Jul. 2021, pp. 15-19.
doi: 10.1109/1AICT52856.2021.9532576.

A. S. Wardoyo, S. Hendi, D. Sebayang, 1. Hidayat, and A. Adriansyah, “An
investigation on the application of fuzzy and PID algorithm in the two wheeled
robot with self balancing system using microcontroller,” in Proceedings - 2015
International Conference on Control, Automation and Robotics, ICCAR 2015, Jul.
2015, pp. 64-68. doi: 10.1109/ICCAR.2015.7166003.

J. Dabbagh and I. H. Altas, “Nonlinear Two-Wheeled Self-Balancing Robot
Control Using LQR and LQG Controllers.” .”[2019 11th International Conference

on Electrical and Electronics Engineering (ELECQO)]
W. Tan, J. Liu, T. Chen, and H. J. Marquez, “Comparison of some Ill-known PID

tuning formulas,” Computers and Chemical Engineering, vol. 30, no. 9, pp. 1416—
1423, Jul. 2006, doi: 10.1016/j.compchemeng.2006.04.001.

R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID
control, tuning methods and applications,” International Journal of Dynamics and
Control. Springer, 2020. doi: 10.1007/s40435-020-00665-4.

D. Whitley, “A Genetic Algorithm Tutorial.” 1994, Springer

S. Shabir and R. Singla Professor, “A Comparative Study of Genetic Algorithm
and the Particle Swarm Optimization,” 2016. [Online]. Available:
http://www.irphouse.com International Journal of Electrical Engineering.ISSN
0974-2158 Volume 9, Number 2 (2016)

D. S. Pereira and J. O. P. Pinto, “Genetic Algorithm based system identification

and PID tuning for optimum adaptive control,” in I[EEE/ASME International

[21]

[22]

(23]
[24]

51

Conference on Advanced Intelligent Mechatronics, AIM, 2005, vol. 1, pp. 801—
806. doi: 10.1109/aim.2005.1511081.

M. L. Solihin, L. F. Tack, and M. L. Kean, “Tuning of PID Controller Using Particle
Swarm Optimization (PSO),” International Journal on Advanced Science,
Engineering and Information Technology, vol. 1, no. 4, p. 458, 2011, doi:
10.18517/ijaseit.1.4.93.

C. L. Huang and J. F. Dun, “A distributed PSO-SVM hybrid system with feature
selection and parameter optimization,” Applied Soft Computing Journal, vol. 8, no.
4, pp. 1381-1391, Sep. 2008, doi: 10.1016/j.as0¢.2007.10.007.

C. Gonzalez, 1. Alvarado, and D. M. la Pefia, “Low cost two-wheels self-balancing
robot for control education,” in IFAC-PapersOnlLine, Jul. 2017, vol. 50, no. 1, pp.
9174-9179. doi: 10.1016/j.ifacol.2017.08.1729.

J. Dabbagh and I. H. Altas, “Nonlinear Two-Wheeled Self-Balancing Robot
Control Using LQR and LQG Controllers.”[2019 11th International Conference
on Electrical and Electronics Engineering (ELECO)]

S. Skogestad, “Probably the best simple PID tuning rules in the world.”

Q. G. Wang, T. H. Lee, H. W. Fung, Q. Bi, and Y. Zhang, “PID tuning for

improved performance,” IEEE Transactions on Control Systems Technology, vol.
7, no. 4, pp. 457465, Jul. 1999, doi: 10.1109/87.772161.

R. C. Panda, C.-C. Yu, and H.-P. Huang, “PID tuning rules for SOPDT systems:
Review and some new results,” 2004.

0. A. Somefun, K. Akingbade, and F. Dahunsi, “The dilemma of PID tuning,”
Annual Reviews in Control, vol. 52. Elsevier Ltd, pp. 65-74, Jan. 01, 2021. doi:
10.1016/j.arcontrol.2021.05.002.

H. A. Varol and Z. Bingul, “A new PID tuning technique using ant algorithm,” in
Proceedings of the American Control Conference, 2004, vol. 3, pp. 2154-2159.
doi: 10.23919/acc.2004.1383780.

J. Stender, “Introduction to Genetic Algorithms.”

K. De, “Learning with Genetic Algorithms: An Overview,” 1988.

M. Srinivas and L. M. Patnaik, “Genetic Algorithms: A Survey,” Computer
(Long Beach Calif), vol. 27, no. 6, pp. 17-26, 1994, doi: 10.1109/2.294849.

M. A. S. Barbosa and M. M. Gouvéa, “Access point design with a genetic
algorithm,” in Proceedings - 2012 6th International Conference on Genetic and

Evolutionary Computing, ICGEC 2012, 2012, pp. 119-123. doi:

[35]

[36]

52

10.1109/ICGEC.2012.39.

M. Chen and Z. Yao, “Classification techniques of neural networks using
improved genetic algorithms,” in Proceedings - 2nd International Conference on
Genetic and Evolutionary Computing, WGEC 2008, 2008, pp. 115-119. doi:
10.1109/WGEC.2008.23.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942—1948.
doi: 10.1109/ICNN.1995.488968.

R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” in Proceedings of the IEEE Conference on
Evolutionary Computation, ICEC, 2001, vol. 1, pp. 81-86. doi:
10.1109/cec.2001.934374.

Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in
Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999,
1999, vol. 3, pp. 1945-1950. doi: 10.1109/CEC.1999.785511.

C. L. Huang and J. F. Dun, “A distributed PSO-SVM hybrid system with feature
selection and parameter optimization,” Applied Soft Computing Journal, vol. 8,
no. 4, pp. 1381-1391, Sep. 2008, doi: 10.1016/j.as0c.2007.10.007.

M. L. Solihin, L. F. Tack, and M. L. Kean, “Tuning of PID Controller Using
Particle Swarm Optimization (PSO),” International Journal on Advanced
Science, Engineering and Information Technology, vol. 1, no. 4, p. 458, 2011,
doi: 10.18517/ijaseit.1.4.93.

D. Masti, M. Zanon, and A. Bemporad, “Tuning LQR Controllers: A Sensitivity-
Based Approach,” IEEE Control Systems Letters, vol. 6, pp. 932-937, 2022, doi:
10.1109/LCSYS.2021.3087556.

L. M. Argentim, W. C. Rezende, P. E. Santos, and R. A. Aguiar, “PID, LQR and
LQR-PID on a quadcopter platform,” 2013. doi: 10.1109/ICIEV.2013.6572698.
Y. M. Sam, M. R. H. A. Ghani, and N. Ahmad, “LQR controller for active car
suspension,” in /[EEE Region 10 Annual International Conference,
Proceedings/TENCON, 2000, vol. 1. doi: 10.1109/tencon.2000.893707.

H. Shousong and Z. Qixin, “Stochastic optimal control and analysis of stability of
networked control systems with long delay,” Automatica, vol. 39, no. 11, pp.
1877-1884, Nov. 2003, doi: 10.1016/S0005-1098(03)00196-1.

E. Vinodh Kumar and J. Jerome, “Robust LQR controller design for stabilizing

[46]

[47]

53

and trajectory tracking of inverted pendulum,” in Procedia Engineering, 2013,
vol. 64, pp. 169—178. doi: 10.1016/j.proeng.2013.09.088.

R. Khusainov!, I. Afanasyev!, L. Sabirova', and E. Magid?, “Bipedal robot
locomotion modelling with virtual height inverted pendulum and preview control
approaches in Simulink environment.”

M. Jibril, A. Tadese, and M. Tadese, “Robust Control Theory Based Performance
Investigation of an Inverted Pendulum System using Simulink,” 2020. [Online].
Available: www.ijariie.com808

S. J. Huang and C. lo Huang, “Control of an inverted pendulum using grey
prediction model,” IEEE Transactions on Industry Applications, vol. 36, no. 2,
pp. 452458, 2000, doi: 10.1109/28.833761.

E. Vinodh Kumar and J. Jerome, “Robust LQR controller design for stabilizing
and trajectory tracking of inverted pendulum,” in Procedia Engineering, 2013,
vol. 64, pp. 169-178. doi: 10.1016/j.proeng.2013.09.088.

O. Boubaker, “The inverted pendulum benchmark in nonlinear control theory: A
survey,” International Journal of Advanced Robotic Systems, vol. 10. May 07,
2013. doi: 10.5772/55058.

S. Irfan, A. Mehmood, M. T. Razzaq, and J. Igbal, “Advanced sliding mode
control techniques for Inverted Pendulum: Modelling and simulation,”
Engineering Science and Technology, an International Journal, vol. 21, no. 4,
pp. 753-759, Aug. 2018, doi: 10.1016/j.jestch.2018.06.010.

A. 1. Roose, S. Yahya, and H. Al-Rizzo, “Fuzzy-logic control of an inverted
pendulum on a cart,” Computers and Electrical Engineering, vol. 61, pp. 31-47,
Jul. 2017, doi: 10.1016/j.compeleceng.2017.05.016.

J. J. Wang, “Simulation studies of inverted pendulum based on PID controllers,”
Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 440449, Jan.
2011, doi: 10.1016/j.simpat.2010.08.003.

Name: -

Date of Birth: -

Qualification: -

Email: -

RESUME

SHIVAM

26-12-1996

B.Tech in Electrical Engineering from
Government Engineering College Ajmer

M.Tech in Control and Instrumentation from
Delhi Technological University

$s4274009@gmail.com

54

?_I turnitinﬁ Similarity Report ID: 0id:27535:17947789

PAPER NAME

Intlligent Control Of Two Wheel Self Bala
ncing Robot-.pdf

WORD COUNT CHARACTER COUNT
8515 Words 44631 Characters

PAGE COUNT FILE SIZE

48 Pages 3.3MB

SUBMISSION DATE REPORT DATE

May 31, 2022 11:41 AM GMT+5:30 May 31, 2022 11:42 AM GMT+5:30

® 14% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

* 7% Internet database « 4% Publications database
» Crossref database » Crossref Posted Content database
* 12% Submitted Works database

Summary

