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ABSTRACT 

 

 

 
 

High-performance, high-step-up DC-DC converters are required for many 

battery-powered applications. For example, in order to power a high intensity discharge 

(HID) lamp ballast used in vehicle headlamps, the dc–dc converter must boost the battery 

voltage from 12 V to 100 V during steady-state operation. The computer and 

telecommunications industries have evolved, a well-defined 48 V battery plant is an ideal 

solution for supplying hours of reserve time during ac mains outages. The dc-input 

converter must raise the dc bus voltage from 48 V to around 380–400 V. 

High voltage-gain DC–DC converters are typically used to step-up from low 

voltage (24–48 V) to high voltage (380–400 V). The challenge for high voltage-gain 

converters is to create a large voltage gain while maintaining high efficiency over a wide 

input and load range. Soft-switching approaches reduce switching loss and allow for 

large increases in converter switching frequency. 

Early work in this dissertation is based on comparative study of DC-DC step up 

converters consisting Boost, Cuk, Flyback and LLC Resonant Converter for a input 

voltage of 48 volts and output voltage at 380 volts working on switching frequency of 

100 kHz. At next stage closed loop control of converters is compared for output voltage 

regulation at 400 volts while a varying input voltage from 18 to 30 volts. 
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CHAPTER 1  INTRODUCTION 
 

 

1.1   INTRODUCTION AND BACKGROUND 

 
To meet the rapid growth of consumer electronics and to reduce power wastage in 

high Power applications such as telecommunications and switch mode (SM) power 

supplies, among others. The converter is now designed to work at high frequencies, 

although high frequencies result in greater switch loss. In a resonant converter, the soft 

– switching mode lowers switching loss. A few topologies of converters and approaches 

have already been presented forward. In high-power applications, resonant converters 

(RC) are employed instead of PWM converters. Resonant converters have one major 

disadvantage: its non-linear nature, which results in dynamic response for varying output 

conditions and switching frequencies. As we all know, losses in power switching devices 

such as MOSFETs, IGBTs, and SCRs limit the greatest working frequency of converters. 

The term "resonant converter" refers to a type of conversion device that uses a resonant 

circuit which consists an inductor and a capacitor. An RC is a type of converter that has 

minimum one LC tank circuit. A Resonant Tank (RT) is a circuit that contains minimum 

one L (inductor) and one C (Capacitor). In steady state operation, these converters feature 

at least one mode that includes an LC tank. 

The size and weight of the converter will be lowered due to the employment of 

components which work on high-frequency. The frequency of switching is increased. 

Resonant Link Converters:  

Resonant link converters are divided into two categories: 

• Voltage Source RC: 

(a) Series loaded RC (SLR). 

(b) Parallel loaded RC (PLR). 

(c) Hybrid RC. 
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• Current Source Parallel RC. 

• Class E RC. 

Resonant Switch Converters (RSC): 

These provide soft switching by use of RT which helps to make voltage across switch to 

zero before we turn it on. 

Resonant DC-Link Converters: 

RT apart from helping in soft switching provide a buffer between two different natured 

source and load such as DC as a source and Load as AC. This DC link is provided by 

resonant inductor. Zero switching loss topologies are also included in these converters. 

Resonant AC-Link Converters: 

Here resonant inductor acts as a buffer link between the AC supply and the load which 

is DC. 

Benefits of a RC 

1. As switching frequency is increased and switching losses are reduced so device 

heating is less. 

2. As heating is less that’s why cooling demand is lowered. 

3. Size and weight are lowered. 

4. Because power devices work at soft switching, the efficiency of the converter is 

improved by an extent. 

5. There is less noise. 

6. Electro Magnetic Induction levels are lowered. Also, Radio Frequency 

Interference is less in these circuits. 

Resonant Converter Disadvantages 

1. The peak current values of the power devices will be higher. 

2. A control circuit is required in addition to the resonant converter circuit. As a 

result, the complexity rises. 

The LLC type of RC is chosen as the best and effective topology for this project. In 

a variety of industrial applications, LLC combines the advantages of both series RC and 

parallel RC. As no load regulation is not possible in series RC that is a disadvantage 
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which we have to overcome before choosing a converter topology. Also circulating 

current which doesn’t depend on load is a great disadvantage for parallel RC. ZVS and 

ZCS switching are used on the inversion side and rectification sides of the LLC resonant 

converter. RC may operate over a wide frequency range and offer higher efficiency as 

reduction in switching losses which is beneficial as compared to PWM and other hard 

switching converters. For these resonant converters, some literature uses the intellectual 

PI and Fuzzy controllers. This new DC has been tinkered with. In this dissertation, boost 

converter is used for closed loop of this RC. This topology gives high efficiency and 

reliable voltage regulation. 

1.2  DC-DC CONVERTERS: 

 

Buck converter, Boost converter, Buck-Boost Converter, Cuk Converter, and SEPIC 

Converter are non-isolated DC-DC converters.  

1.2.1  BOOST CONVERTER: 

 

A boost converter is one of the most basic types of switch-mode converters (also 

known as a step-up converter). As the name says, the converter takes an input voltage 

and boosts it. In other words, it functions similarly to a step-up transformer in that it 

raises DC voltage from low to high while lowering current from high to low while 

retaining the same power output [1]. 

The only components are an inductor, a semiconductor switch, a diode, and a 

capacitor. Boost converters are quite basic and require few components because they 

were invented and built in the 1960s to power electronics on aircraft. 

The output voltage relationship is as follows: 

𝑉𝑜 =
𝑉𝑖𝑛

(1 − 𝐷)
 

1.2.2  CUK CONVERTER: 

 

The Cuk converter is a DC-DC power electronic converter named after its inventor, 

Slobodan Ćuk. When compared to buck, boost, and buck-boost converters, the Cuk 

converter has a higher component count. Two inductors, two capacitors, one diode, and 

one switch make up the Cuk converter [2], [3], [4]. Cuk converter is a hybrid of buck and 
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boost converters, with the input side looking like a boost converter and the output side 

looking like a buck converter, coupled by a single capacitor. 

The main applications for this DC-DC Converter are regulated dc power supply with 

a negative polarity output in reference to the input voltage's common terminals and an 

average output that is either higher or lower than the dc input voltage. 

The capacitor C1 is used to store and transport electricity from the input to the output. 

vc1 is always higher than either the input or output voltage. The average output to input 

relationships are comparable to a buck-boost converter circuit [5]. The switch-duty cycle 

is used to control the output voltage. 

The output voltage relationship is as follows: 

 

Vo

Vi
= −

𝐷

(1 − D)
 

 

1.2.3  FLYBACK DC-DC CONVERTER: 

 

Flyback converter is an isolated DC-DC converter which can do both step-up and 

step-down. A high frequency transformer is present here for isolation and voltage ratio 

purpose. The basic circuit diagram of Flyback DC-DC converter is as shown Fig.2.3. 

This converter consists of two passive elements and one high frequency transformer [6]. 

Overall circuit of flyback consists DC Supply, one switching device as MOSFET, one 

diode, one inductor, one high frequency transformer, one capacitor and load. It also can 

step-up and down with duty ratio around 0.5. 

It can be used to obtain more than one output by using output winding of transformer. 

Flyback converter can be operated on a wide range of input voltage variations. Fly-back 

is less efficient than many converters but it is simple to design as discussed for various 

applications and ratings in [7]–[9]. It is approved in limited output power ranges due to 

its low rate. 

The output voltage relationship is as follows: 

 

𝑉𝑜 =
𝑉𝑖𝑛 ∗ 𝐷

(1 − 𝐷)
∗ (

𝑁2

𝑁1
) 
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1.2.4  LLC RC (RESONANT CONVERTER): 

 

The LLC RC is best known for operation at higher switching frequencies. LLC 

converter improves efficiency because it has low switching losses. Power switches of RC 

works on zero voltage switching this reduces power wastages during switching. FM, 

phase shift and variable resonant frequency can be used for regulation purpose of LLC 

converter. When operating at Fn=1 i.e., Fs=Fr at a gain of 1 this RC will provide best 

efficiency.  Two inductors (Lr, Lm) and one capacitor (Cr) form a tank which is called 

LLC tank. In LLC converter, two resonant frequencies wr1 and wr2 are observed. One is 

given by set of resonant inductor and capacitor. Another one is the resonant frequency 

which is given by summation of  Lm and Lr with resonant capacitor (Cr) [11] .  

This Series–Parallel RC can regulate the output voltage over a wide range of load 

variation. As discussed earlier this topology achieves soft switching of power switches 

over a wide range of variation in load. 

The output voltage relationship is as follows: 

 

𝐾(𝑄,𝑚, 𝐹n) =
𝑉𝑜𝑎𝑐

𝑉𝑖𝑛−𝑎𝑐
=

𝐹𝑛2(𝑚 − 1)

√(𝑚 ⋅ 𝐹𝑛2 − 1)2 + 𝐹𝑛2 ⋅ (𝐹𝑛2 − 1)2 ⋅ (𝑚 − 1)2 ⋅ 𝑄2
 

 

1.2.5  Burst Mode Control of LLC Resonant Converter:  

LLC resonant converters are now used to achieve improved efficiency. However, 

with rising demand, its light-load efficiency is still insufficient. The LLC resonant 

converter's light-load efficiency is improved by using burst-mode control[12]. Burst 

mode operation can be employed for exhausted batteries that require the LLC converter 

to operate. This approach is only used to resurrect neglected batteries. Instead of a train 

of pulses, a continuous pulse pattern will be provided within a particular switching 

frequency in this manner of control. Depending on the duty ratio, the switching device 

will be turned off for the remainder of the time period. This reduces the load on the 

gadget, which reduces the ripple. As a result, overall efficiency improves. To boost 

efficiency even further, the Synchronous Rectification method is created, in which 

switching devices replace the typical diodes of output rectifiers in LLC resonant 

converters and for filter design requirement in various applications this [13] literature 

presents a brief study. 
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1.3  MOTIVATION: 
 

High-performance, high-step-up dc–dc converters are required for many battery-

powered applications. For vehicle headlamps DC-DC converter must provide a gain from 

12 volts of battery to a required voltage of 100 volts. 

48 V battery plants are coming as a solution when there is electricity outage, mainly 

for application in industrial sector of computer and IT [14]. The dc-input converter must 

raise the dc bus voltages at tenfold from 48 V. In these applications of high gain 

converters must have high effectiveness. 

In this dissertation famous DC-DC step up converter’s performance is compared for 

a DC input voltage of 48V and Output voltage as 400V for 1000-watt application. 

  

1.4  SPECIFIC OBJECTIVES: 

 

The hard-switching is more lossy as compared to soft switching. Also, power density 

is limited by the reactive element size and high frequency transformer size. When 

switching frequency is increased switching losses increases. By increasing switching 

frequency size of reactive components reduces. That’s why high switching frequencies 

are essential for achieving high-power density, reducing size of converter and good 

transient response. 

Low RDS-on device when operated at low voltage waste low power in conduction. 

Soft-switching approaches reduce switching loss, if that can be achieved in a converter 

it will benefit in increasing its efficiency. 

This dissertation introduces comparative study of DC-DC step up converters 

consisting Boost, Cuk, Flyback and LLC Resonant Converter for an input voltage 

considering a battery source application of 48 volts and output voltage at 380 volts 

working on switching frequency of 100 kHz. At Next Stage Closed Loop control of 

converters is compared for output voltage regulation at 400 volts while a varying input 

voltage from 18 to 30 volt. Future work is based on the Closed Loop control of LLC 

Resonant with Magnetic Control [15]. LLC Resonant converter provides following 

merits over other topologies [16] 

1. Better EMI performance. 

2. High efficiency and high energy density 

3. Electrical isolation and low harmonic pollution  
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4. Wide output ranges  

5. Low voltage stress, low switching losses, high operation frequency, high 

gain 

 

1.5  ORGANISATION OF THESIS: 

 

This thesis is divided into four chapters. 

• In chapter 1, the brief introduction of DC-DC step-up converters used and their 

basic theory, output voltage relation and advantages has been described. This part 

also provides the motivation and research purpose. 

• In chapter 2, a literature review on the DC-DC step-up converters used and 

control techniques of these converters has been mentioned.  

• In chapter 3, Design of respective converters, their component table, modelling 

analysis and simulation is presented. 

• In chapter 4, Conclusion based on various comparison parameters is presented. 

Also, Future work on LLC RC is discussed in brief in this section 
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CHAPTER 2  LITERAUTRE REVIEW 
 

We are to adopt renewable energy due to high pollution and depletion of natural 

resources. As we have a lot of solar irradiance available so we can use solar energy more 

conveniently and as a greener energy. For these applications, high voltage-gain efficient 

DC–DC converters must be designed to use to step-up from low voltage in range of 24 

to 48 V to a output of high voltage (380–400 V)[17], [18], [19], [20]. The challenge for 

power electronics engineers is to design a reliable, efficient and high gain converters 

which can operate at a wide input and load range. 

As previously stated, various MPPT approaches are available such as 

• Perturb & Observe (P&O) 

• Incremental Conductance (IC) 

• Open Circuit Voltage method 

• Short Circuit Current method 

For closed-loop applications, some topologies in isolated converters like half-bridge, 

full bridge, flyback, forward and push-pull converter is discussed in [9], [21], [22]. 

Isolation in converters can be used for a variety of purposes. 

Because of high output voltage Reverse Recovery (RR) has to be strong. The simplest 

non-isolation topologies are conventional converters. Regrettably, the switch on high 

output voltage side has a high RDS-on[18]. As duty ratio is high so high amplitude current 

of a short duration passes through rectifier which causes RR to be difficult. High RDS-on 

and weak RR are limiter for output power rating of converters. Isolated converters 

provide tenfold gain even at low duty ratio. When the duty is equal to 0.5, the voltage 

gain of the flyback converter is equal to voltage ratio of transformer. 
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2.1  TOPOLOGIES: 

 

2.1.1  CIRCUIT DIAGRAMS: 

 

BOOST CONVERTER: 

 

 

Fig 2.1 Boost converter circuit diagram 

CUK CONVERTER: 

 

Fig 2.2 Cuk converter circuit diagram 
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FLYBACK CONVERTER: 

 

 

Fig 2.3 Flyback converter circuit diagram 

 

LLC RESONANT CONVERTER: 

 

 

 

Fig 2.4 LLC Resonant DC-DC converter circuit diagram 
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Fig 2.5 Equivalent circuit of LLC Resonant circuit 

 

CLOSED LOOP LLC RESONANT CONVERTER USING BOOST CONVERTER: 

 

 

Fig 2.6 Closed loop LLC resonant converter using boost converter 
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Fig 2.7 Theoretical waveforms across components of LLC Converter 
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2.2  LLC RESONANT CONVERTER: 

 

Gain of LLC converter depends on switching frequency, resonant frequency and 

quality factor. So variable switching frequency, variable resonant frequency and resonant 

capacitor voltage can be used to control the output of this converter. Also secondary side 

phase shift control is employed in some applications [23]. 

Many literatures introduce various controlling techniques for controlling of LLC 

Resonant converter for various applications [24]–[27][28].  For Electric vehicle charging 

applications various high efficiency AC-DC and DC-DC converters are studied in [29]. 

The most common charger architecture, as shown in Fig. 2.8, has a DC-DC 

conversion at stage 2 and a boost type rectification stage for active power factor 

adjustment. 

 

Fig 2.8 Typical power architecture of a battery charger 

 

2.2.1   Compression Network (CN): 

 

The transformer's secondary output side has an uncontrolled rectifier stage. A 

network consisting inductor and capacitor in series is connected before rectification stage 

to further reduce ripples and smoothen the output waveforms of converter. Load is 

resistive. It includes LR and CR, as well as filtering the input of rectifier stage. In this 

particular network CDC capacitor is used to stop dc current. 
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2.3  Fast-Charging System: 

 

Constant current constant voltage charging is known as a fast charging method. At 

earlier when State of Charge of a battery is below 70% then it charged at a constant 

current which is equal to 0.1C where C is the capacity of battery. After this stage battery 

is charged with constant voltage to avoid overcharging and to improve battery life. Super 

Capacitor has different charging characteristics compared to Li-ion battery. Li-ion 

battery is charged with constant current constant voltage method. 

 

 

Fig 2.9 CC-CV Charging Algorithm of LIB 
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Fig 2.10 Transition before a) and after b) of Algorithm 

 

CC-CV charging block diagram is given in Fig 2.11. Whereas Transition state is 

given by Fig 2.12. Low pass filter improves quality of digital controller and minimizes 

noise. For a battery of capacity 40 Ah and open circuit voltage of 48 V we can charge it 

with constant current charge stage at a maximum current of 4 amperes and after that, in 

Constant voltage charging state it is charged with a constant voltage around 48 V. 
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2.4  PV CHARACTERSTICS OF NON-IDENTICAL CELLS: 
 

When non-identical cells are connected in series then at a particular stage of 

operation some cells act as a sink in same circuit and it makes it less efficient. 

 

 

Fig 2.11 Combined cell characteristics of non-identical cells without bypass diode 

 

 

Fig 2.12 Combined cell characteristics of non-identical cells with bypass diode 
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Fig 2.13 I-V and P-V characterstics of non-identical cells connected in series 

 

Fig 2.14 Comparison of I-V characteristics of non-identical cells 
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CHAPTER 3  DESIGN AND SIMULATION 
 

3.1  DESIGN OF CONVERTERS 

 

3.1.1  DESIGN OF BOOST CONVERTER: 

 

Solving for Vo = 380 V        Vi = 48 V        Po = 1 kW    f = 100 kHz    ∆V = 5% and ∆I = 2% 

We get       𝑅 = 144.4 Ω    and Io =
380

144.4
=  2.63 A 

Basic formula 

Vo

Vi
=

1

(1 − D)
 

We get D = 87.37%  

for L and C: 

Ripple Current =
(D∗Vi)

f∗L
      And the Ripple Voltage is =

(D∗Io)

f∗C
=

(D∗Vo)

R∗f∗C
 

𝐿𝑚=
𝑉𝑖𝑛𝐷

∆𝑖𝐿𝑚𝑓
= 167.75 mH       C=

𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
= 5.75 µF      𝐼𝐿 =

𝐼𝑜

(1−𝐷)
= 20.84 𝐴 

  

3.1.2  DESIGN OF CUK CONVERTER: 

 

Basic formula 

Vo

Vi
= −

D

(1 − D)
 

We get D = 88.79% 

for L and C: 

 

  ∆IL1 =
(D∗Vi)

f∗L1
                                              ∆IL2 =

(D∗Vi)

f∗L2
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∆VC1 =
(D ∗ Io)

f ∗ C1
=

(D ∗ Vo)

R ∗ f ∗ C1
          ∆VC2 =

(1 − D) ∗ Vo

8 ∗ L2 ∗ C2 ∗ 𝑓2
 

𝐿1 =
𝑉𝑖𝐷

∆𝑖𝐿1𝑓
= 1.025 mH                      𝐿2 =

𝑉𝑖𝐷

∆𝑖𝐿2𝑓
= 8.2 mH 

C1 =
𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
= 1.09 µF          C2 =

1−D

8∗∗L2∗(
∆𝑉𝑜
𝑉𝑜

)∗𝑓2
= 3.42 𝑛𝐹 

𝐼𝐿 =
𝐼𝑜

(1 − 𝐷)
= 20.84 𝐴 

 

 

3.1.3  DESIGN OF FLYBACK CONVERTER: 

 

𝑉𝑜 =
𝑉𝑖𝑛 ∗ 𝐷

(1 − 𝐷)
∗ (

𝑁2

𝑁1
) 

 

We get    D = 49.74%        
𝑁2

𝑁1
= 8 

for L and C: 

𝐼𝐿𝑚
=

𝐼𝑖𝑛

(𝐷)
= 41.885 𝐴                           ∆𝑖𝐿𝑚

 = 𝐼𝐿𝑚
∗

𝐼𝑟𝑖𝑝𝑝𝑙𝑒

100
= 0.838 𝐴 

𝐿𝑚 =
𝑉𝑖𝑛∗𝐷

∆𝑖𝐿𝑚∗𝑓
=  0.000285 = 285 µH            𝐶 =

𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
= 688.92 𝑛𝐹 

𝐿𝑚𝑖𝑛 =
(1 − 𝐷)2𝑅

2𝑓
∗ (

𝑁1

𝑁2
)2                            [𝐹𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡] 

𝐿𝑚𝑖𝑛 = 2.84µH                                                    Lm ≥ Lmin 
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3.1.4  DESIGN OF LLC RESONANT CONVERTER: 

 

𝐺 =
𝑉𝑜

𝑉𝑖𝑛
=

1

2
⋅ 𝐾(𝑄,𝑚, 𝐹𝑛) ⋅

𝑁𝑠

𝑁𝑝
𝐾(𝑄,𝑚, 𝐹n) 

=
𝑉𝑜𝑎𝑐

𝑉𝑖𝑛−𝑎𝑐
=

𝐹𝑛2(𝑚 − 1)

√(𝑚 ⋅ 𝐹𝑛2 − 1)2 + 𝐹𝑛2 ⋅ (𝐹𝑛2 − 1)2 ⋅ (𝑚 − 1)2 ⋅ 𝑄2
    

𝐹n =
𝑓𝑠
𝑓𝑟

               𝑓𝑟 =
1

2𝜋√𝐿𝑟𝐶𝑟

              𝑄 =
[√

𝐿𝑟

𝐶𝑟
 ]

𝑅𝑎𝑐
 

 𝑅𝑎𝑐 =
8

𝜋2
⋅
𝑁𝑝

2

𝑁𝑠
2
⋅ 𝑅𝑜        𝑚 =

𝐿𝑟 + 𝐿𝑚

𝐿𝑟
 

 

3.2  COMPONENTS: 

 

3.2.1  COMPONENT RELATIONSHIP OF CONVERTERS: 

 

Table 3-1 COMPONENT RELATIONSHIP OF CONVERTERS 

Components BOOST 

CONVERTER 

CUK 

CONVERTER 

FLYBACK 

CONVERTER 

L1 𝑉𝑖𝑛𝐷

∆𝑖𝐿𝑚
𝑓

 
𝑉𝑖𝐷

∆𝑖𝐿1
𝑓

 
𝑉𝑖𝑛 ∗ 𝐷

∆𝑖𝐿𝑚
∗ 𝑓

 

C1 𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
 

𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
 

𝐷

𝑅(
∆𝑉𝑜
𝑉𝑜

)𝑓
 

𝐿2 NA 𝑉𝑖𝐷

∆𝑖𝐿2
𝑓

 
NA 

C2 NA 1 − D

8 ∗∗ L2 ∗ (
∆𝑉𝑜
𝑉𝑜

) ∗ 𝑓2
 

NA 
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3.2.2  COMPONENT VALUES OF BOOST CONVERTER: 

 

Table 3-2 COMPONENT VALUES OF BOOST CONVERTER 

D 88.37% 

L 167.75 mH 

C 5.75 µF 

Ro 144.4 Ω 

 

3.2.3  COMPONENT VALUES OF CUK CONVERTER: 

 

Table 3-3 COMPONENT VALUES OF CUK CONVERTER 

D 88.79% 

L1 1.025 mH 

C1 1.09 µF 

𝐿2 8.2 mH 

C2 3.42 nF 

Ro 144.4 Ω 

 

3.2.4  COMPONENT VALUES OF FLYBACK CONVERTER: 

 

Table 3-4 COMPONENT VALUES OF FLYBACK CONVERTER 

D 47.94% 

L 285 µH 

C 0.6889 µF 

𝑁2/𝑁1 8 

Ro 144.4 Ω 

Lmin 2.84 µH 
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3.2.5  COMPONENT VALUES OF LLC CONVERTER: 

 

Table 3-5 COMPONENT VALUES OF LLC CONVERTER 

Components Values 

Vi 48 V 

Vo 380 V 

Po 1000 W 

Q 0.4 

m 6.5 

Lr 1.165 µH 

Lm 6.41 µH 

Cr 2.1765 µF 

Co 200 µF 

Ro 144.4 Ω 

Fs for LLC 100 kHz 

Fr 100 kHz 

 

3.3  MODELING ANALYSIS: 

 

State-space modeling is used to complete the modeling. Modeling is used to 

collect data for the system model and to forecast system behavior based on various 

input scenarios. Although there are other ways for modeling converters, state-space 

modeling is the most advantageous. [51], [52] presents ZVS modelling and 

synchronous reference frame. Assuming zero initial conditions, transfer function 

modeling can be applied to linear, time invariant systems. Using equivalent circuit 

as given in Fig 2.5 and modes of operation of LLC converter State Space model is 

prepared.  

A. Analysis of State-Space: Before achieving state space model some 

assumptions were made so first discuss these assumptions. The following are the 

assumptions that were assumed: 

a) All the components of boost DC-DC converter are considered as ideal.  

b) The Fn is less than 1.  

c) The output filter is large enough so that output voltage Vo is fixed.  
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d) The losses are negligible 

 

B. Stability analysis:  

One key benefit State-space modeling offers is: 

It can be used to realize the system's internal state. By plotting and studying the 

bode plot of whole operation of the RC, the system's stability can be determined 

using the state–space model. Figure 5 in chapter 2 depicts the LLC's equivalent 

circuit. 

 

The state-space input matrix for LLC RC by using equivalent circuit is 

given as: 

 

[
𝑖1
′

𝑖2
′ ] = [

0 1

[−
𝐿𝑚𝐶0 + 𝐿𝑚𝐶1

𝐿𝑟𝐿𝑚𝐶0
] 0] [

𝑖1
𝑖2

] + [
0
1

𝐿𝑟𝐿𝑚𝐶0

] [𝑉dc ] 

 

And the output equation is, 

[y]  =  [0  L1C1C0] [
i1
i2

] 

 

The stability analysis of the system is used to design the closed loop system. 

The bode shows the magnitude and phase plot for the LLC RC, from the phase plot 

it can be depicted whether closed loop system is stable or not. 
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3.4  STATE SPACE MODEL OF LLC RC: 

 

 

𝐴

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐻𝑖𝑝 + 𝑟𝑠

𝐿𝑠
−

[Ω𝑠𝐿𝑠 + 𝐻𝑖𝑐]

𝐿𝑠
−

1

𝐿𝑠
0

𝐻𝑖𝑝

𝐿𝑠

𝐻𝑖𝑐

𝐿𝑠
−

𝐻𝑣𝑐𝑓

𝐿𝑠

Ω𝑠𝐿𝑠 − 𝐺𝑖𝑝

𝐿𝑠
−

[𝐺𝑖𝑐 + 𝑟𝑠]

𝐿𝑠
0 −

1

𝐿𝑠

𝐺𝑖𝑝

𝐿𝑠

𝐺𝑖𝑐

𝐿𝑠
−

𝐺𝑣𝑐𝑓

𝐿𝑠

1

𝐶𝑠
0 −

𝐶𝑠Ω𝑠

𝐶𝑠
0 0 0

0
1

𝐶𝑠

𝐶𝑠Ω𝑠

𝐶𝑠
0 0 0 0

𝐻𝑖𝑝

𝐿𝑚

𝐻𝑖𝑐

𝐿𝑚
0 0 −

𝐻𝑖𝑝

𝐿𝑚
−

𝐻𝑖𝑐 + 𝐿𝑚Ω𝑠

𝐿𝑚

𝐻𝑣𝑐𝑓

𝐿𝑚

𝐺𝑖𝑝

𝐿𝑚

𝐺𝑖𝑐

𝐿𝑚
0 0 −

𝐺𝑖𝑝 − 𝐿𝑚Ω𝑠

𝐿𝑚
−

𝐺𝑖𝑐

𝐿𝑚

𝐺𝑣𝑐𝑓

𝐿𝑚

𝐾𝑖𝑠𝑟𝑐
′

𝐶𝑓𝑟𝑐

𝐾𝑖𝑐𝑟𝑐
′

𝐶𝑓𝑟𝑐
0 0 −

𝐾𝑖𝑠𝑟𝑐
′

𝐶𝑓𝑟𝑐
−

𝐾𝑖𝑐𝑟𝑐
′

𝐶𝑓𝑟𝑐
−

𝑟𝑐
′

𝑅𝐶𝑓𝑟𝑐]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

𝐵

= [−
[𝐿𝑠𝑤0𝐼𝑐]

𝐿𝑠

[𝐿𝑠𝑤0𝐼𝑠]

𝐿𝑠
−

[𝐶𝑠𝑤0𝑉𝑐]

𝐶𝑠

[𝐶𝑠𝑤0𝑉𝑠]

𝐶𝑠
−

[𝐿𝑚𝑤0𝐼𝑚𝑐]

𝐿𝑚

[𝐿𝑚𝑤0𝐼𝑚𝑠]

𝐿𝑚
0] 

 

𝐶 = [𝐾𝑖𝑠 ∗ 𝑟𝑐
′ 𝐾𝑖𝑐 ∗ 𝑟𝑐

′ 0 0 −𝐾𝑖𝑠 ∗ 𝑟𝑐
′ −𝐾𝑖𝑐 ∗ 𝑟𝑐

′
𝑟𝑐

′

𝑟𝑐
] 

 

𝐷 = 0 

 

𝑑𝑥̂

𝑑𝑡
= 𝐴𝑥̂ + 𝐵𝑢̂   
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𝑦̂ = 𝐶𝑥̂ + 𝐷𝑢̂ 

 

𝑣̂𝑜

𝑤̂𝑠𝑛
= 𝐶(𝑆𝐼 − 𝐴)1𝐵 + 𝐷 

 

Where 𝐴, 𝐵, 𝐶 and 𝐷 are the state-space system matrices, 

 𝑥̂ = (𝑖𝑠, 𝑖𝑐, 𝑣̂𝑠, 𝑣̂𝑐, 𝑖𝑚𝑠, 𝑖𝑚𝑐, 𝑣̂𝑐𝑓) is a state vector of the state-space model, 

 𝑢̂ = (𝑤̂𝑠𝑛) is the control input vector, and 𝑦̂ = (𝑣̂𝑜) is the output vector  
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3.5  CLOSED LOOP LLC RESONANT CONVERTER 

USING BOOST CONVERTER: 

 

 

 

Fig 3.1 Block diagram of closed loop LLC resonant converter with boost converter and PI controller 
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3.6  GAIN CURVE: 

 

3.6.1  MATLAB CODE to plot Gain curve: 

 

 

 

Fig 3.2 MATLAB code for plotting gain curves of LLC Converter 

 

  



28 
 

3.6.2  GAIN CURVE USED FOR DESIGN OF LLC RESONANT 

CONVERTER: 

 

Gain curve with different m 

 

Fig 3.3 Gain Curves of LLC with m=3 

 

 

Fig 3.4 Gain Curves of LLC with m=5 
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Fig 3.5 Gain Curves of LLC with m=6 

 

 

Fig 3.6 Gain Curve used for designing LLC Tank with m=6.5 and Q=0.4 
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Fig 3.7 Gain Curves of LLC with m=7 

 

 

Fig 3.8 Gain Curves of LLC with m=15 
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3.7  MATLAB SIMULATION 

 

3.7.1  BOOST DC-DC CONVERTER 

 

 

Fig 3.9 MATLAB Simulation of Boost DC-DC converter 

 

3.7.2  CUK CONVERTER 

 

 

Fig 3.10 MATLAB Simulation of CUK converter 
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3.7.3  FLYBACK CONVERTER 

 

 

Fig 3.11 MATLAB Simulation of Flyback DC-DC Converter 

 

 

3.7.4  LLC RESONANT DC-DC CONVERTER 

 

 

Fig 3.12 MATLAB Simulation of LLC Resonant DC-DC Converter 
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3.7.5  CLOSED LOOP LLC RESONANT CONVERTER USING BOOST 

 

 

Fig 3.13 MATLAB Simulation of Closed Loop LLC Resonant converter using Boost Converter at input side 

 

3.8  RESULTS OF MATLAB SIMULATION: 

 

3.7.1  OUTPUT VOLTAGE AND CURRENT COMPARISON: 

 

Comparison between the outputs of topologies used for an input voltage of 48 volts 

and output voltage expected at 380 volts when all converters are working on switching 

frequency of 100 kHz is presented in this section. Ripple percentage at output was taken 

as 2 percentage. 

 

Fig 3.14 Output voltage waveform of Boost converter 
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Fig 3.15 Output voltage waveform of Cuk DC-DC converter 

 

 

Fig 3.16 Output voltage waveform of Flyback converter 
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Fig 3.17 Output Voltage waveform of LLC Resonant converter 

 

3.7.2  OUTPUT VOLTAGE RIPPLE AND CURRENT RIPPLE 

COMPARISON: 

As comparison of output voltage is presented in previous section. For Ripple 

percentage taken as 2 percentage. Below given waveforms presents the ripple in output 

voltages of respective converters. 

 

Fig 3.18 Output Voltage Ripple of Boost converter 
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Fig 3.19 Output Voltage ripple of Cuk converter 

 

Fig 3.20 Output Voltage ripple of Flyback converter 
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Fig 3.21 Output Voltage ripple of LLC Converter 

 

3.7.3  SWITCH WAVEFORMS COMPARISON: 

 

As we know the very reason to limit the maximum switching frequency of a converter 

is switching losses across its power switching devices such as MOSFETs, IGBT, SCR, 

diodes etc. To fully utilize magnetic components in a circuit and reduce its bulkiness it 

is a necessary step to switch to high switching frequency converters which has low 

switching losses because of their soft switching capability of power switching devices. 

One of these types of converters is LLC Resonant converter which uses it’s LC tank for 

ZVS of its primary switches i.e., on inverting side and ZCS of its secondary switches i.e., 

on rectification side. 

This section compares the switching waveforms of respective converters to highlight 

the difference between their switching mechanism i.e., Hard Switching or Soft 

Switching. Also, we can realize the voltage stress across switching devices in this section. 
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Fig 3.22 Waveforms across switch of Boost Converter 

 

 

Fig 3.23 Waveforms across switch of Cuk Converter 
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Fig 3.24 Waveforms across switch of Flyback DC-DC Converter 

 

 

Fig 3.25 Waveforms across switch of LLC Resonant Converter 
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Fig 3.26 Waveforms across secondary side switches in LLC converter 

 

 

Fig 3.27 Output Power of LLC Resonant converter 
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3.7.4  COMPONENT VALUES OF CLOSED LOOP LLC 

CONVERTER: 

 

Table 3-6 COMPONENT VALUES OF CLOSED LOOP LLC RC USING BOOST CONVERTER 

Components Values 

Vi 18-30 V 

Vo 400 V 

Po 250 W 

Q 0.4 

m 6.5 

Lr 2.3 µH 

Lm 12.65 µH 

Cr 1.1 µF 

Co 200 µF 

Ro 640 Ω 

Fs for LLC 100 kHz 

Fr 100 kHz 

L1 2.42 mH 

C1 60 µH 

 

3.7.5  SIMULATION RESULT OF CLOSED LOOP LLC RESONANT 

CONVERTER 

 

Fig 3.28 Waveforms of LLC Closed Loop converter a) Output Voltage b) Output Power c) Variable Input 

Voltage 
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CHAPTER 4  CONCLUSION 
 

 

Table 4-1 COMPARISON OF DISCUSSED CONVERTER ON PARAMETERS LIKE VOLTAGE, RIPPLE 

AND EFFICIENCY 

CONVERTER\PARAMETER Voavg  

(At 

steady 

state) 

Vripple Efficiency 

BOOST CONVERTER 380.4 V 2 V 999*100/1086=91.99 

CUK CONVERTER 387.6 V 7 V 1040*100/1080=96.3 

FLYBACK CONVERTER 384 V 17 V 1020*100/1065=95.77 

LLC RESONANT CONVERTER 379.1 V 0.014 V 995.27*100/1021=97.48 
 

After going through the comparison table, we can conclude that LLC Resonant 

converter is best suitable DC-DC converter for the application of stepping-up a battery 

pack’s voltage of 48 V to a tenfold gain output voltage of 380. It was observed from the 

voltage waveform comparison that output voltage ripple of LLC Resonant converter is 

least and negligible as compared to other discussed topologies. Also output voltage of 

LLC Converter and boost converter are close to desired output voltage than rest 

topologies. 

By comparing settling time of discussed topologies, we can observe that for boost 

converter Ts is about 400 ms, for cuk converter it is 2-3 ms, Flyback has a settling time 

of 3-4 ms and LLC has output waveform settling at time between 15-20 ms. Cuk and 

flyback converter has fast response but are less accurate and more ripple prone. On other 

side boost converter has a reliable average output voltage and a ripple of 2 volts but its 

settling time is very high. LLC converter has a moderate settling time, reliable output 

voltage and minimal ripple at output side.  

Hence LLC converter emerges as best DC-DC converter out of all discussed 

converters for this particular application. 

In closed loop LLC Converter, a variable input voltage from 18 to 30 volts was given 

and a regulated voltage of 400 volts was observed at output side of this topology. 

  



43 
 

4.1  FUTURE WORK: 

 

Gain of LLC converter depends on switching frequency, resonant frequency and 

quality factor. So variable switching frequency, variable resonant frequency and 

resonant capacitor voltage can be used to control the output of this converter. 

As we have discussed, conventionally LLC converter is controlled by using variable 

frequency or phase shift control is adopted. These methods are complex in designing 

control circuit and magnetic components are not fully utilized in this approach. Also 

varying frequency over a large range is difficult and Soft Switching of devices is 

achieved within a range of operation on gain curve of converter. 

Future work includes the closed loop control of LLC resonant converter using 

magnetic control [53]. The magnetic control is done by varying resonant inductor value 

to achieve a variable resonant frequency and hence the output regulation of LLC 

converter. 
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