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ABSTRACT 

India, the sacred land of deep cultural heritage, has long demonstrated the efficacy of 

mathematics by introducing a faster and more efficient method of obtaining 

mathematical results through the innovative ideas of ancient vedic mathematics. It 

enables us to answer nearly all mathematical problems in much less time. Every fraction 

of a second counts in today's competitive environment to stay ahead. Modulation 

technique used in various communications over the radio carrier, is crucial to any of the 

wireless communication systems. The significant portion of wireless transmissions are 

digital today, and due to the limited bandwidth available, the encoding type is more 

essential than ever. The basic purpose of modulation today is to incorporate as much 

information as possible into the smallest bandwidth. The spectral efficiency goal 

examines how rapidly data may be transferred within the particular available 

bandwidth. To achieve and enhance spectral bandwidth efficiency, a variety of 

strategies have evolved. This dissertation intends to serve as a bridge between modern 

day digital modulations and the ancient Indian vedic mathematics. An extensive work 

has been done to implement a 32-bit vedic multiplier using the most efficient sutra 

(algorithm) called Urdhva Triyakbhyam. A Verilog code for generating sinusoidal 

signals had been written using a technique called Direct Digital Synthesis and by using 

these the present-day digital modulations namely Amplitude Shift Keying (ASK), 

Frequency Shift Keying (FSK) and Phase Shift Keying (PSK) are built. This work is 

carried out in Xilinx vivado simulation software. An idea to implement modulation 

schemes using vedic multiplier and sinusoidal waveforms in Xilinx software with 

Verilog coding has been implemented. The implemented BASK proved impressive in 

the amount of total on chip power consumption. The power results obtained from Xilinx 

power report are furnished herewith. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The main idea behind this project is to show how to create digital modulations using 

the Verilog hardware description language. It has been difficult to incorporate 

sinusoidal signals as analog waves in Xilinx Vivado software. Despite this 

limitation the developed designs are successfully simulated, and power reports of all 

three primary modulation techniques are evaluated. This work contains the analysis of 

the results as well as a comprehensive examination of vedic multipliers, which have 

been used as the framework for building the digital modulation techniques.   

1.2 Literature Review 

Due to the rising demand for faster and more efficient electronic devices, Vedic 

multiplier circuit design with high performance and low power consumption has 

become a prominent research area for researchers throughout the world in recent years. 

This section serves as the foundation for this dissertation work. For acquiring a thorough 

understanding of publications on related topics and tools that have been used. These are 

papers published in prominent conferences or journals by authors with comparable 

interests. This section contains a literature review of these publications that deal with 

vedic multipliers and digital modulations. The review of literature is established as 

follows: 

P. N. Murthy et al: [1] The BASK, BFSK, BPSK, and QAM modulators were 

discussed, with the sinusoidal output being observed through the Xilinx Vivado system 

generator and the Direct Digital Synthesis (DDS) approach. Using a multiplexer and a 

demultiplexer, the modulations were created. The four waveforms stated earlier are 

generated by the input 1:4 demux, which are then passed to the 4:1 mux to construct the 

output data stream. Xilinx simulations have been used to observe the output waveforms. 

N. Pallavi et al: [2] proposed the design part as well as the implementation of Linear 

Frequency Modulation (LFM utilising DDS The MATLAB tool and also the Xilinx 

system are both used in the design. FPGA board is used to implement the generated 
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code. LFM having frequencies of 60MHz and 200MHz are created and studied using 

Xilinx simulations. 

B. R. Jammu et al: [3] This paper demonstrates FPGA-based application of digital 

modulation techniques BASK, BFSK, BPSK and DPSK that can be used in digital 

communication education courses. The user has control over both the input carrier 

signal as well as the modulating waveform. The modulators here were designed in 

System Generator of Xilinx and then integrated into the FPGA Spartan board. The gains 

as indicated by this study include the use of lesser digital blocks, the power to control 

input frequencies, and compatibility with Xilinx FPGA boards. Xilinx ISE 14.7 was 

employed to gather experimental results such as power, temperature, and utilisation 

reports. 

A. Sharma et al: [4] This paper provides a general overview of architecture using 

Verilog HDL-based simulations for foundational and broadly used modulation schemes 

such as BASK, BFSK, BPSK, and QPSK. Although the concept of sinusoidal signal 

generation is not new, this paper strived to optimise it by employing sampling and 

quantization concepts in the time and amplitude domains, respectively. Model Sim and 

Xilinx ISE are used to run the simulations 

Du Weitao et al: [5] An efficient concept for DDS IP core generator has been 

demonstrated in this paper. A wireless connectivity ROM compacted DDS circuit is 

created using this Core generator. For DDS architecture, this employs linear slope ratio 

interpolation. This generator's effectiveness is dependent on ROM compression, which 

effectively reduces waveform ROM size. An FPGA board is used to verify the results. 

Yogita Bansal et al: [6] Multipliers are used in a plethora of circuit designs, spanning 

high-speed arithmetic, digital signal processing, and Multiplier and Accumulator units, 

to highlight a few. The need for more efficient and quick multipliers is becoming more 

evident. Although there are numerous ways of improving the performance of a 

multiplier, including using the booth algorithm or the Wallace tree method, multipliers 

from vedic mathematics have demonstrated to be the quickest and require the least 

amount of electricity. This study uses a vedic sutra called urdhva triyakbhyam to 

demonstrate the use of vedic multipliers in performing the basic multiplication 

operation. The methods, benefits, and drawbacks of vedic multipliers are also examined 

in this work. 
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Yeshwant Deodhe et al: [7] They presented regarding the actual planning and 

execution of an eight-bit CMOS vedic multiplier. This paper explored a novel method 

for leveraging vedic sutras (algorithms) to dramatically reduce computation steps when 

compared to the traditional multiplication procedures. The drawings are created in 

Tanner and evaluated in T-Spice using 180nanometers CMOS technology. A concept 

for a high linearity CMOS low power multiplier is presented. According to the findings, 

the proposed model saves power consumption by up to 75% while occupying 750 um2 

of space. 

A. K. Mehta et al: [8] The Vedic BCD multiplier and the modified binary to BCD 

converter were analysed and examined. Decimal arithmetic is useful when more precise 

data processing is demanded. This work uses multiplexers and BCD adders as the 

foundation for building a BCD 8421vedic multiplier as well as a modified binary to 

BCD converter. The VHDL implementation findings demonstrate that the vedic BCD 

multiplier produces 2x faster results and takes up 4x less space than the conventional 

BCD multiplier. 

F. Quadri et al: [9] Discusses the digital modulation techniques used in FPGAs. As a 

summary, a survey of several digital modulation techniques using various 

methodologies and tools is delivered. This research focuses on the implementation of 

three popular modulation techniques ASK, FSK, and PSK. The verilog language was 

coded using Xilinx software, and the simulated results were authenticated using the 

model sim software. The modulators are also created in the MATLAB/SIMULINK 

environment to analyse the many parameters among the various established designs, 

that influence the choosing of a certain modulation approach. 

1.3 Tools Adopted – Xilinx Vivado 

Vivado is an integrated design environment (IDE) that launched in the year 2012 with 

frameworks relating to system and IC level based on a shared expandable dataset and a 

routine debugging process. It also has electronic system-level (ESL) design implements 

for verification and synthesis of some of the C-predicated algorithm based Ips Standard 

packaging of RTL IP have been reused at system integration level for all building blocks 

in the system and their respective verification methods [10]. The Vivado Design Suite 

aids designers in enhancing their productivity by optimizing their procedures. It is built 

on the latest Xilinx devices and features an improved user interface, which can help 



4 
 

minimize design complexity. The Vivado Design Suite simplifies the implementation 

of complex design projects by providing tools that can analyse and optimize multiple 

design metrics. The new Vivado Design Suite has a comprehensive set of tools that 

replace the previously existing ISE Design Suite of tools. It features a shared, scalable 

data model that enables whole of the design process to run in the memory space without 

the need of translating any intermediate file formats. 

1.4 Structure of Work 

The flow in which this thesis is organised has been described in this section as follows: 

Chapter 1: This chapter describes the broad perspective of the thesis work, including 

the software tools used for verilog coding, as well as a brief introduction to the work 

that follows. It also covers the literary works of several authors who have comparable 

interests in this field of work. Much of their work has been briefly described in order to 

obtain a general understanding of the overall gist of their work. The references have 

been added to the references section of this thesis work. 

Chapter 2: Describes the basic foundation for the thesis work, which is based on vedic 

mathematics. A 32-bit multiplier based on vedic mathematics is constructed. All 

multipliers are built on the base of a 2-bit fundamental vedic multiplier cell. To arrive 

at the 32-bit multiplier, each multiplier uses the previously built multiplier. The 

implemented circuits are displayed as a block diagram with their respective Xilinx 

vivado simulations to validate the multiplication output results, as well as the verilog 

code explanation. 

Chapter 3: Sinusoidal signals, such as sine and cosine, were generated using DDS. This 

chapter discusses the generation of these sinusoidal signals, as well as the code used to 

generate them. The Xilinx vivado simulation results were also included. 

Chapter 4: This chapter will provide an understanding of the three main digital 

modulated signals. Every one of these modulation patterns has been thoroughly 

examined, as well as the usage of vedic mathematics to produce the final modulated 

output. The RTL implementation schematics and simulations from Xilinx are given. 

Chapter 5: This thesis closes with a discussion of the Xilinx vivado results. 

 



5 
 

CHAPTER 2 

VEDIC MULTIPLIERS 

2.1 Chapter Outline 

In Sanskrit the word 'Veda' translates to 'knowledge'. Vedic math is quite comparable 

to human mathematical calculations. It reduces the number of steps needed to calculate 

multiplication while also improving accuracy. Vedic multipliers utilise less power and 

memory than traditional multipliers. A multiplier is an important component in 

practically every processor and adds significantly to the system's total area and power 

usage. [7][6]. Sri Bharati Krishna Tirthaji (1884-1960), between the years of 2000 and 

2010, a Sanskrit, math, history, and philosophy scholar uncovered Vedic math concepts 

from ancient Indian literature. It is founded on 16 Vedic sutras having 14 sub sutras 

(algorithms), which are applicable to various streams of math for easier, highly 

optimized and quick to use calculations. Three sutras and two sub-sutras are provided 

for multiplication out of the total of 16, they are Urdhva-tiryakbhyam (vertical & cross-

wise), Nikhilam Navatashcaramam Dashatah (everything from 9 but last digit from 10), 

Anurupyena (Proportionality), Ekanyuena Purvena (By one lower than the one before 

it) and Antyayordasake’pi (numbers where the last digit adds up to 10). Because at least 

one operand must be in the near power of 10, Nikhilam is not considered as a universal 

approach for decimal numbers. Anurupyena, which provides the solution to this issue, 

is not a good alternative because it involves multiplying or dividing the divisor by an 

appropriate proportionality constant to bring it closer to a decimal base. The 

proportionality constant must not be a power of 10, as dividing it by one multiplier 

makes the procedure unappealing in comparison to previous approaches. 

Antyayordasakepi and EkanyunenaPurvena are specific to astronomy, but Urdhva-

Tiryagbhyam is a universally accepted method for all multiplications [8]. 

 

2.2 2-bit vedic multiplier 

The 2-bit vedic multiplier is the fundamental multiplier cell that serves as the foundation 

for all of the other vedic multipliers mentioned in this dissertation. This utilises the 

Urdhva Triyakbhyam Sutra (Algorithm) of Vedic mathematics, which translates to 

vertical and crosswise which can be seen in Fig. 2.1. 
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Fig. 2.1 Urdhva Triyakbhyam Algorithm 

Multiplication has a multiplier and a multiplicand as usual, but the process is done by 

multiplying the first two bits of multiplicand and multiplier, and next cross multiplying 

of side numbers of multiplicand with numbers in multiplier, finally the last digits are 

multiplied parallelly to complete the multiplication process 

 

2.2.1  Design of 2-bit vedic multiplier 

 

The block level representation of the theory discussed above is utilised to implement a 

2-bit multiplier in Xilinx vivado using the Hardware Description Language Verilog. 

The same is depicted in Figure. 2.2, where two half adders have been used. 

 

Fig. 2.2 Block Diagram of 2-bit vedic multiplier 

 

The inputs for this multiplier are a 2-bit multiplicands namely A[1:0] and B[1:0]. When 

A and B when they are multiplied in binary system produces a 4-bit result shown in Fig. 

2.2 as P[3:0] where P[3] is the MSB and P[0] is the LSB. The inputs to the first half 

adder is the A1B0 and A0B1 as shown in Fig. 2.1 as Result 2. The result of this addition 

gives a carry bit and sum bits represented by P[1]. The carry is taken forward and given 

as input to the second half adder along with A1B1 shown as final step in Fig. 2.2 The 
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sum ad carry generated by the second half adder gives the P[3:2] of the result. The result 

P[0] can be directly obtained by a simple AND gate. Refer the Fig. 2.3 

 

 

Fig. 2.3 Gate level structure of 2-bit vedic multiplier 

 

2.2.2 RTL implementation of 2-bit vedic multiplier 

 

The code employs four basic 2-bit AND gates and 2 half adder modules. The half adders 

are in-turn composed of two EXOR gates and two AND gates. as shown in Fig. 2.3. A0, 

A1, B0, B1 are declared as inputs. Output is declared as a 4-bit value. 

 

Fig. 2.4 RTL implementation of 2-bit vedic multiplier 
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The Xilinx synthesis and RTL simulation gives the gate level netlist of the verilog code 

synthesized. Where the module is defined as vedic_2bit_multi and the inputs and 

outputs are defined outside the module.  

 

2.2.3 Xilinx simulation results of 2-bit vedic multiplier 

The simulations are carried out in Xilinx vivado. The figure below shows the output of 

a 2-bit vedic multiplier. The multiplication result of a[1:0] and b[1:0] is stored in m[3:0]. 

A sample multiplication of 0*2, 3*1, 2*3, 1*1 can be seen in Fig. 2.5 The maximum 

value for a 2-bit binary is 11 which is 3 in decimal. When two such are multiplied, it 

gives out a result of 1001 in binary which is 9 in decimal. Since for the output 9 requires 

4 binary bits, the output m is taken to be a 4-bit binary output. 

 

 

Fig. 2.5 Xilinx simulation output of 2-bit vedic multiplier 

 

2.3 4-bit vedic multiplier 

 

A 4-bit multiplier in vedic mathematics utilises the basic 2-bit vedic multiplier as 

depicted in Fig. 2.6. The figure below shows the vertical and cross multiplication 

algorithm of vedic mathematics. A 4-bit multiplier takes two 4-bit binary numbers 

A[3:0] and B[3:0] to produce a 8-bit result.  

 

Fig. 2.6 4-bit vedic multiplier depicting Urdhva Triyakbhyam algorithm  
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The vertical multiplications are depicted as A[3] A[2] B[3] B[2] which takes the first 

two bits from MSB and A[1] A[0] B[1] B[0] which takes the last two bits from the LSB. 

The cross multiplication for 4-bit is obtained by MSB and LSB multiplications of the 

binary inputs. 

 

2.3.1 Design of 4-bit vedic multiplier 

 

The block level design of 4-bit vedic multiplier is as shown in Fig. 2.7 below. To 

multiply two 4-bit binary numbers they can be divided into two parts A1A0 as one block 

and A3A2 as another. Similarly, B can also be divided into two blocks. Each subblock 

will be having its own 2-bit multiplication. This gives an idea that 4-bit multiplication 

can be implemented with the help of 2-bit multiplier blocks created previously. The 

block diagram is shown in Fig. 2.7 utilising 4 modules of 2-bit multipliers and 3 

modules of 4-bit RCAs and 1 half adder. 

 

 

Fig. 2.7 Block diagram of 4-bit vedic multiplier 

 

This work uses the basic ripple carry adder. For an optimised version other faster and 

efficient adder such as Carry Look Ahead adder can also be used. The design of 4-bit 

ripple carry adder is as shown below in Fig. 2.8 
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Fig. 2.8 4-bit Ripple Carry Adder 

An N-bit RCA can be better viewed as a cascaded structure of N- Full adders where the 

carry of one Full adder is propagated to another. This gives the notion that the carry is 

rippled from one adder to another hence, the name ripple carry adder. 

The structure of N-bit RCA consists of basic element called Full Adder. The structure 

of a Full Adder using logical gates is as shown in Fig. 2.9 below 

 

 

Fig. 2.9 Structure of Full Adder 

The sum part of the adder is obtained from output S and Carry part from output Cout. 

Using this structure a RCA of any number of bits can be easily constructed by simply 

cascading them. The operation of this is as follows: Since, initially there is no carry 

generated the Cin for Full Adder 1 is taken as logic 0 by simply grounding it. The outputs 

S0 and Cout of Full Adder 1 is obtained after certain delay because of the internal logic 

gate delays of the Full Adder. The carry from this stage is carried forward to the next 

adder Full Adder 2. This operation is performed untill the final sum S3 and Cout are 

obtained. 
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It is to be noted that only after the final S3 and Cout, the entire result is taken to be of 

valid. All the immediate results are invalid. Thus a RCA produces valid output after the 

final adder gives its output. This accounts for a major delay in RCAs. 

Advantages of RCA: 

Designing is not complex – Designing an RCA requires only full adders. 

Area Efficient – This gives a compact implementation by reducing the area. The chip  

                            density can be greatly increased. 

Disadvantages of RCA: 

Delay in obtaining the result – The major drawback in RCA is the time required to 

produce final result. It is the sum of delays of all the full adders connected in cascade. 

 

2.3.2 RTL implementation of 4-bit vedic multiplier 

 

The code uses modules of half adder, RCA and 2-bit vedic multiplier. The verilog code 

for this multiplier discussed briefly below. 

module four_bit_vedic_mult(input [3:0]a, [3:0]b, output [7:0]mult); 

The module is taken as Vedic4bit_mult with inputs a and b of 4 bits size and output is 

taken as mult of 8 bits. 

vedic_2bit_multi v2m0(a[0], a[1], b[2], b[3], m1[3], m1[2], m1[1], m1[0]); 

A code line depicting the insertion of 2-bit vedic multiplier module 

RCA4bit rca0(m2[3:0], m1[3:0], 1'b0, rcac1s[3:0], rcac1c); 

Code for inserting the RCA module inside 4-bit vedic multiplier module where the 

output of second and third 2-bit multipliers in Fig. 2.7 are taken as input. Another input 

for RCA is taken as bit 0. This produces the output RCA sum and carry. Sum is a 4-bit 

output for a 4-bit adder and carry is 1 bit. 

half_add_dataflow had0(rcac1c, rcac2c, had0s, had0c); 

The half adder takes the input the carry generated from two RCA adders and produces 

the output sum and carry. 
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Fig. 2.10 RTL implementation of 4-bit vedic multiplier 

The Xilinx synthesis and RTL simulation gives the gate level netlist of the verilog code 

synthesized. Where the module is defined as four_bit_ved_mult and the inputs and 

outputs are defined outside the module. 

 

2.3.3 Xilinx simulation results of 4-bit vedic multiplier 

The simulations are carried out in Xilinx vivado. The figure below shows the output of 

a 4-bit vedic multiplier. The multiplication result of a[3:0] and b[3:0] is stored in 

mult[7:0]. A sample multiplication of 3*12, 10*7, 15*15, 13*0, 9*9, 11*4 can be 

verified in Fig. 2.11 The maximum value for a 4-bit binary is 1111 which is 15 in 

decimal. When two such numbers are multiplied, it gives out a result of 1110 0001 in 

binary which is 225 in decimal. Since for the output 225 requires 8 binary bits, the 

output mult is taken to be a 8-bit binary output 

 

 

Fig. 2.11 Xilinx simulation output of 4-bit vedic multiplier 

 

2.4 8-bit vedic multiplier 

 

This multiplier has similar design and implementation compared to the 4-bit multiplier. 

It uses four modules of 4-bit vedic multiplier along with three modules of 8-bit RCA. 

The 8-bit RCA is developed from the 4-bit RCA adder. The verilog code has been 

written and the output simulations are verified in Xilinx vivado 
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2.4.1 Design of 8-bit vedic multiplier 

4-bit vedic multiplier acts as the basic building module of 8-bit Vedic multiplier 

depicted in Fig. 2.12 can be constructed by using four similar four-bit Vedic multipliers 

and three eight-bit RCAs (consisting 2 inputs of 8 bits each) are required. The 4-bit 

Vedic multiplier takes the inputs, and the eight-bit output taken from the multiplier. 

Now, the 1st RCA adder input taken to be the output value of the second and third 4-bit 

vedic multipliers generating an output totalling to eight bits along with one carry.  

 

Fig. 2.12 Block diagram of 8-bit vedic multiplier 

The Second RCA will add the eight-bit output of  the first RCA and four bits taken from 

the output of first 4-bit multiplier, other 4 bits are taken to be 0. As a result, the output 

is given to be eight bits along with one carry in this case the carry generated is discarded. 

The third RCA will add the output taken from the fourth 4-bit multiplier and four output 

bits of second RCA, remaining four carry bits of the initial RCA are 0s. The initial vedic 

multiplier output along with mult[7:4], mult[15:8] and carry bit generated from the last 

RCA together make the output of the eight bit multiplier shown in Fig. 2.12 

 

2.4.2 Implementation of 8-bit vedic multiplier 

The code uses modules of RCA and 4-bit vedic multiplier. The verilog code for this 

multiplier discussed briefly below. 

module eightbit_ved_mult( input [7:0]a,  

                                                         input [7:0]b,  
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                                                         output [15:0]mult ); 

The module is taken as eightbit_ved_mult with inputs a and b of 8 bits size and output 

is taken as mult of 16 bits. 

four_bit_ved_multi fvm0(a[3:0], b[3:0], o1[7:0]); 

A code line depicting the insertion of 4-bit vedic multiplier module 

eight_rca erca1(o2[7:0], o3[7:0], 1'b0, rcas1[7:0], cout1); 

Code for inserting the RCA module inside 8-bit vedic multiplier module where the 

output of second and third 4-bit multipliers in Fig. 2.12 are taken as input. Another input 

for RCA is taken as bit 0. This produces the output RCA sum and carry. Sum is a 8-bit 

output for a 8-bit adder and carry is 1 bit. 

The Xilinx synthesis and RTL simulation gives the gate level netlist of the verilog code 

synthesized. Where the module is defined as eightbit_ved_mult and the inputs a[7:0], 

b[7:0] and outputs mult[15:0] are defined outside the module. All the modules inside 8-

bit vedic multiplier are clearly depicted in Fig. 2.13 

 

 

Fig. 2.13 RTL implementation of 8-bit vedic multiplier 

 

2.4.3 Xilinx simulation results of 8-bit vedic multiplier 

The simulations are carried out in Xilinx vivado. The figure below shows the output of 

a 8-bit vedic multiplier. The multiplication result of a[7:0] and b[7:0] is stored in 

mult[15:0]. A sample multiplication of 64*2, 255*255, 12*25, 23*0, 19*200, 111*111 

can be verified in Fig. 2.14  
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Fig. 2.14 Xilinx simulation output of 8-bit vedic multiplier 

The maximum value for a 8-bit binary is 1111 1111 which is 255 in decimal. When two 

such numbers are multiplied, it gives out a result of 1111 1110 0000 0001 in binary 

which is 65,025 in decimal. Since for the output 65,025 requires 16 binary bits, the 

output mult is taken to be a 16-bit binary output 

 

2.5 16-bit Vedic Multiplier 

This multiplier has similar design and implementation compared to the 8-bit multiplier. 

It uses four modules of 8-bit vedic multiplier along with three modules of 16-bit RCA. 

The 16-bit RCA is developed in similar manner as the 8-bit RCA adder. The verilog 

code has been written and the output simulations are verified in Xilinx vivado 

 

2.5.1 Design of 16-bit vedic multiplier 

The 16-bit multiplier block has a similar structure as of 8×8 blocks as in Fig. 2.15. 8-

bit multiplier block acts as the starting block for constructing 16-bit Vedic Multiplier. 

The same 16-bit module shown in Fig. 2.15 can be constructed by utilising four 8-bit 

Vedic multipliers and three 16-bit RC Adders (having 2 inputs of 16 bits) are required. 

The 8-bit Vedic multiplier takes the inputs, and the output of the multiplier is given as 

16 bits. Now, the input of the 1st RCA adder is the output of the 2nd and 3rd 8-bit 

multipliers which gives output of 16 bits and one carry.  

The RCA-2 will add the output of RCA-1 and 8 bits from the generated output of  initial 

Vedic multiplier, all the other bits are taken as 0. As a result, 16-bit output and the 

corresponding carry are obtained and this carry can be discarded. The RCA-3 will add 

the output of the last 8-bit multiplier along with the output of RCA-2, the other bits have 

been as depicted in the Fig. 2.15. The combined results from all the RCAs along with 

the carry generated from RCA-3 will be taken to be the output of eight-bit vedic 

multiplier. 
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Fig. 2.15 Block diagram of 16-bit vedic multiplier 

 

2.5.2 Implementation of 16-bit vedic multiplier 

The code uses modules of 16-bit RCA and 8-bit vedic multiplier. The verilog code for 

this multiplier discussed briefly below. 

module sixteenbit_vedic_mult( 

                                input [15:0]a,  

                                input [15:0]b,  

                                output [31:0]mult 

         ); 

The module is taken as sixteenbit_vedic_mult with inputs a and b of 16 bits size and 

output is taken as mult of 32 bits. 

eightbit_ved_mult evm1(a[7:0], b[7:0], o1[15:0]); 

A code line depicting the insertion of 8-bit vedic multiplier module 

sixteen_rca srca1(o2[15:0],o3[15:0],1'b0,rcas1[15:0],rcacout1); 

Code for inserting the RCA module inside 16-bit vedic multiplier module where the 

output of second and third 8-bit multipliers in Fig. 2.15 are taken as input. Another input 
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for RCA is taken as bit 0. This produces the output RCA sum and carry. Sum is 16-bit 

output for a 16-bit adder and carry is 1 bit. 

 

Fig. 2.16 RTL implementation of 16-bit vedic multiplier 

The Xilinx synthesis and RTL simulation gives the gate level netlist of the verilog code 

synthesized. Where the module is defined as sixteenbit_vedic_mult and the inputs 

a[15:0], b[15:0] and outputs mult[31:0] are defined outside the module. All the modules 

inside 16-bit vedic multiplier are clearly depicted in Fig. 2.16 

 

2.5.3 Xilinx simulation results of 16-bit vedic multiplier 

The simulations are carried out in Xilinx vivado. The figure below shows the output of 

a 16-bit vedic multiplier. The multiplication result of a[15:0] and b[15:0] is stored in 

mult[31:0]. A sample multiplication of 65535*65535, 4660*4369, 135*0, 

38200*28422, 7341*9, 39321*39321 can be verified in Fig. 2.17  

 

 

Fig. 2.17 Xilinx simulation output of 16-bit vedic multiplier 

 

The maximum value for a 16-bit binary is 1111 1111 1111 1111 which is 65535 in 

decimal. When two such numbers are multiplied, it gives out a result of 1111 1111 1111 

1110 0000 0000 0000 0001 in binary which is 4294836225 in decimal. Since for the 
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output 4294836225 requires 32 binary bits, the output mult is taken to be a 32-bit binary 

output 

 

2.6 32-bit vedic multiplier 

This multiplier has similar design and implementation compared to the 16-bit 

multiplier. It uses four modules of 16-bit vedic multiplier along with three modules of 

32-bit RCA. The 32-bit RCA is developed in similar manner as the 16-bit RCA adder. 

The verilog code has been written and the output simulations are verified in Xilinx 

vivado 

 

2.6.1 Design of 32-bit vedic multiplier 

The design of 32×32 block follows the same procedure as discussed for the previous 

vedic multipliers in a simplified diagram as in Fig. 2.18. 16-bit Multiplier Module is 

taken to act as the basic constructing module of 32-bit Vedic multiplier shown in Fig. 

2.18 can be constructed by using four blocks of 16-bit Vedic multipliers and three 

similar blocks of RCA which are essentially having 2 inputs of 32 bits each are required. 

The 16-bit Vedic multiplier takes the inputs, and the output of the multiplier is 32 bits. 

Now, the RCA-1 input is taken as the output of the middle multipliers which each of 

these gives output of 32 bits and along with one generated carry.  

 

Fig. 2.18 Block diagram of 32-bit vedic multiplier 
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The RCA-2 adds the RCA-1and the initial block of 16-bit multiplier along with sixteen 

zeroes. This results an output of 32 bits and also one carry which is being discarded. 

The RCA-3 will add the output of the last module of 16-bit multiplier and RCA-2, other 

16 are carry bits of 1st RC Adder and fifteen 0s. Now, the output of 32-bit multiplier is 

mult[15:0] output of 1st 16-bit multiplier, mult[31:16] is output of 2nd RC Adder and 

mult[63:32] is output of 3rd RCA adder. These outputs along with the carry generated 

from third RCA will add up to the 64-bit output for 32-bit vedic multiplier 

 

2.6.2 RTL Implementation of 32-bit vedic multiplier 

The code uses modules of 32-bit RCA and 16-bit vedic multiplier. The verilog code for 

this multiplier discussed briefly below. 

module thirtytwobit_vedic_mult( 

                                    input [31:0]a,  

                                    input [31:0]b,  

                                    output [63:0]mult 

                     ); 

The module is taken as thirtytwobit_vedic_mult with inputs a and b of 32 bits size and 

output is taken as mult of 64 bits. 

sixteenbit_vedic_mult svm1(a[15:0],b[15:0],o1[31:0]); 

A code line depicting the insertion of 16-bit vedic multiplier module 

thirtytworca ttrca1(o2,o3,1'b0,rcares1,cout1); 

Code for inserting the RCA module inside 32-bit vedic multiplier module where the 

output of second and third 16-bit multipliers in Fig. 2.18 are taken as input. Another 

input for RCA is taken as bit 0. This produces the output RCA sum and carry. Sum is 

32-bit output for a 32-bit adder and carry is 1 bit. 
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Fig. 2.19 RTL implementation of 32-bit vedic multiplier 

 

2.6.3 Xilinx simulation results of 32-bit vedic multiplier 

The simulations are carried out in Xilinx vivado. The figure below shows the output of 

a 32-bit vedic multiplier. The multiplication result of a[31:0] and b[31:0] is stored in 

mult[63:0]. A sample multiplication of FFFFFFFF*FFFFFFFF, 0abcdefa*efabcdef, 

0000feda*feda0000, f456d231*76549721, 45982841*0 can be verified in Fig. 2.20  

 

  

Fig. 2.20 Xilinx simulation output of 32-bit vedic multiplier 

 

The maximum value for a 32-bit binary is FFFF FFFF in hexadecimal system. When 

two such numbers are multiplied, it gives out a result of FFFF FFFE 0000 0001 in 

hexadecimal system. Since for the output FFFF FFFE 0000 0001 requires 64 binary 

bits, the output mult is taken to be a 64-bit binary output 

 

 

 

 

 

  



21 
 

CHAPTER 3 

SINUSOID GENERATION 

3.1 Chapter Outline 

This chapter describes how to generate the sinusoidal signals sine and cosine using 

Xilinx vivado's Direct Digital Synthesis (DDS) IP core generator. Direct Digital 

Synthesis (DDS) is a waveform generator that uses a frequency synthesizer. This 

approach generates sine, square, triangle, and sawtooth waves, all of which can be 

tweaked to a great degree of amplitude and frequency precision. It works by digitally 

recording the points of a waveform. The waveform is then reconstructed by recalling 

these digital data. The hardware description language code used to generate them will 

be briefly described as well. The fact that sine and cosine signals are 90º out of phase 

with each other makes it easier to generate them. 

Xilinx vivado simulations were used to generate the appropriate results. The output 

signals have been validated. These generated sinusoidal signals serve as the foundation 

for the digital modulations addressed in Chapter 4. 

 

3.2 Direct Digital Synthesis (DDS) 

Direct digital synthesis (DDS) converts a analog continuous time waveform digitally. 

DDS devices are small and power-efficient. They can provide rapid switching between 

output frequencies, excellent frequency resolution, and operating across a wide 

frequency range. Sinusoidal waveforms are constructed by the core and can be 

employed in a wide range of applications. 

Many sectors have made it a need to be able to reliably produce and regulate waveforms 

of varied frequencies and characteristics. Important design factors are convenience, 

compactness, and low cost. In both communications and industrial applications, the 

DDS technique is quickly gaining favor for solving frequency (or waveform) generating 

requirements. 

A phase accumulator, a mechanism of phase and amplitude conversion of a typical 

sinusoidal, and DAC are the three primary components of a DDS device's internal 

circuitry. At a certain frequency, a DDS generates a sine wave. The clock frequency 
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and the binary value together are entering a special register for frequency tuning. The 

phase accumulator receives its main input from the frequency register, which is a binary 

number. If a sine LUT is employed, phase accumulator calculates the phase address, 

which then sends the DAC the digital amplitude relative to the sine of phase angle. The 

DAC then translates that number to an analogue voltage or current measurement. For 

every cycle of the clock, a constant phase increment value which is defined by the binary 

value adds to the accumulator to form a sinusoidal waveform having single frequency. 

If the increment value is made substantial, the accumulator will rapidly step resulting 

in a sinusoidal waveform having higher. When the angle increment is minimal, the 

number of steps needed by the accumulator increases significantly which results in a 

sinusoidal of very low frequency. A Phase Generator and a SIN/COS Lookup Table 

(phase to sinusoid conversion) make up a DDS. A lookup table strategy serves as a 

standard approach for digital generation of complex sinusoidal by storing their sample 

value [2]. 

 

Theory of Operation  

 

Fig. 3.1 Phase Generator of DDS 

 

The angular phase range of sinusoidal transmissions is 0 – 2ᴨ. The digital 

implementation follows the same pattern. In the DDS implementation, the carry 

function of the counter allows the phase accumulator to operate as a phase wheel. 

Envision the sinusoidal waveform oscillation as a vector circling around a phase circle 

to grasp this aspect. Each indicated point on the phase wheel relates to a sine wave 

cycle's corresponding point. Analyze the sine function of the angle generating a 

relatively similar sine wave as the vector moves around the circle. One complete cycle 

of the output sinusoidal waveform is produced by rotating the vector around the phase 
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axis at a consistent pace. The phase accumulator generates uniformly distributed 

angular values as the vector rotates linearly around the phase axis. The points on the 

loop of the output sinusoidal waveform correspond to the values of the phase 

accumulator. 

 

 

Fig. 3.2 DDS block diagram generated 

 

The number of observations for every cycle diminishes as the output frequency rises. 

The maximum basic output frequency of a sinusoidal DDS is 
fc

2
, because sampling 

theory mandates that at least 2 different samples for each cycle are necessary to 

recreate the output waveform. However, for real world scenarios, the output 

frequency is restricted to a fraction to improve overall quality of the output 

waveform. 

The DDS Compiler core's standard mode employs phase truncation. The integrator 

generates a phase slope, to be mapped to a sinusoid through the LUT. phase angle 

having two precision levels are denoted separately as θ(n) and Θ(n) These angles 

are supplied to a lookup table's address port, which performs the phase-space to time 

mapping. If an analogue output is required, the DDS sends these samples to a DAC 

and a low-pass filter, which produces an analogue waveform with the desired 

frequency structure [1]. The basis waveform's quarter wave symmetry are used to 

create a waveform. For the case in study, the two MSB bits of Θ(n) are used for 

phase mapping. Because the memory requirements are lowered, this design is more 

resource efficient, allowing for either reduced FPGA block RAMs or lesser 

distributed memory. 
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There are two types of applications that now use DDS method of waveform 

formation: DDS's combination of spectrum performance and frequency-tuning 

resolution. Communications design engineers frequently choose this when they need 

fast-changing frequency sources with a wide phase variation and low spurious. With 

reference to PLL the DDS method actually increases controllability in frequency 

domain, as a LO, and sometimes for direct Radio communications also  

A DDS is also used as a customizable signal generator in various biotechnological 

and industry related applications. Since DDS is digitally configurable, it is possible 

to change the frequency and phase of a waveform without needing to alter the 

external necessary components when using standard analogue waveforms generators.  

DDS allows for actual time frequency alterations to find resonance frequencies or 

mitigate for temperature fluctuation. To use DDS in variable frequency sources to 

monitor impedance inside an impedance sensor, to develop pulse modulated 

waveforms, or perhaps to research loss in Local area networks or telephone lines are 

instances of such applications. 

 

3.3 DDS Code 

This subsection made a legitimate attempt at explaining the program that is being used 

to construct the sinusoidal frequencies that would use the Direct Digital Synthesis 

technique, which had already been taken into account in detail in subsection 3.2. 

 

The module which has been used contains the following elements taken as input and 

output to the module. 

 

module sincos (clock, reset, increment, phase, sine_out, cos_out);  

input clock, reset;  

input [31:0] increment ;  

input [7:0] phase;  

output wire signed [15:0] sine_out,cos_out;  

 

reg [31:0] accumulator; 
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Clock – Acts as the main input for supplying the entire module with continuously 

running clock pulses 

Reset – Used to reset the counter value 

Increment – acts as an increment for generating the sinusoidal signal. This takes up 32 

bits 

Phase – represents the phase of the sinusoid. This is taken as an 8-bit input 

Sine_out – Outputs the 16-bit signed magnitude sinusoid signal sine 

Cos_out – Outputs the 16-bit signed magnitude signal cosine 

Accumulator – Is a 32-bit register that serves the purpose of storing the intermediate 

outputs obtained during the code run 

 always@(posedge clock)  

begin  

if (reset)  

accumulator <= 0 ; // increment phase accumulator  

else accumulator <= accumulator + increment;  

end 

 

Represents the simple module for incrementing the phase value of the sinusoid by 

utilising the 32-bit accumulator register. A simple if and else statements are 

presented. The if statement takes the argument reset and if the reset=1’b1 then it will 

go inside the if loop and executed the following statements within it. 

 

To link the value stored in the accumulator register sine cos lookup table is needed. 

This requires creating another verilog module having the inputs clock, address, cos 

and sine. Sine and cos are assigned an initial value of hexadecimal number of 16 

bits which is 2bytes worth of data  

  

assign sine_out = 16'haa ;  

assign cos_out = 16'haa ; 

 

The sine and cosine wave ROM table produces twos complement 16-bit approximation 

of a sine and cosine waveform if it is given an input phase address. 
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The ROM module begin with an always block which is triggered at the positive edge of 

every clock cycle. 

For every phase address the values of sine and cosine are stored in a table. The values 

of quarter waves are stored. The remaining points for the sine and cosine waves are 

generated by simply utilising the fact that both sine and cosine are perfectly 

synchronized waveforms with repetitive values for various cycles. 

 

Once the sine waveform has been stored in the look up table the values of the same for 

co-sinusoidal can be obtained by simply phase shifting the values by 90º 

As an example, consider 

8'h00: sine = 16'h0000  

The above line indicates that at phase address 00 representing the phase angle 0º the 

value of sine is 0. As sin(0)=0. These zero value is stored digitally as a 16-bit binary 

input 16’h0000. 

Since the value of co-sinusoidal at 90º is 0 which is mathematically represented as  

 Cos(π
2⁄ ) = 0 

Post applying the 90º the value of phase address in hexadecimal number system is given 

by 

 8'h40: cos = 16'h0000 

The output sine wave in signed hexadecimal has a total of 16-bits. 16 binary bits gives 

a total of 256 values. These values represent the phase of the sinusoid. Usually one full 

cycle of sine wave will have 0 to 2π. Where the sine wave starts at 0º reaches the peak 

value at 90º falls down to 0 at π goes into the negative half cycle at 3π
2⁄  and again 

reaches the zero value at 2π thus completing one full cycle.  The entire 360º range can 

be classified into 4 regions. These 4 regions are represented by 256 phase values. 

  

 Region 1  0º – 90º  8’h00 – 8’h40   

 Region 2  90º – 180º  8’h40 – 8’h80   

 Region 3  180º – 270º  8’h80 – 8’hC0   
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 Region 4  270º – 360º  8’hC0 – 8’hFF   

The maximum hexadecimal number for 8bits is FF. The Sinusoidal values are taken 

accordingly. For 360º duration. Each region above depicts the quarter wave of the 

sinusoid. All 4 regions together make up one full cycle of the sinusoidal wave. 

 

Similarly the same can be observed for a cosine sinusoidal wave by simply shifting the 

Sinusoidal wave by 90º by phase. The respective regions for the cosine sinusoid is given 

below 

 Region 1  90º – 180º  8’h00 – 8’h40   

 Region 2  180º – 270º  8’h40 – 8’h80   

 Region 3  270º – 360º  8’h80 – 8’hC0   

 Region 4  360º – 90º  8’hC0 – 8’hFF   

 

Sine and cosine will have the exact same values given the phase difference is taken to 

be 90º between each and every value. The same has been shown above. 

 

Sine waveform one quarter cycle (Region 2, 90º – 180º) : 

 40h 3fffh  41h3ffah  423febh  

43h 3fd2h    44h 3fb0h  45h 3f83h   

46h 3f4dh    47h 3f0dh    48h 3ec4h   

49h  3e70h    4ah 3e14h    4bh 3dadh   

4ch 3d3dh    4dh 3cc4h    4eh 3c41h   

4fh 3bb5h    50h 3b1fh   

 

Cosine waveform one quarter cycle (Region 1, 90º – 180º) : 

00h3fffh   01h3ffah   02h3febh  
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03h3fd2h   04h3fb0h   05h3f83h  

06h3f4dh   07h3f0dh   08h3ec4h  

09h3e70h   0ah3e14h   0bh3dadh  

0ch3d3dh   0dh3cc4h   0eh3c41h  

0fh3bb5h   10h3b1fh 

 

Given the 90º phase shift in the angle the values for the sine and cosine remains equally 

similar. 

 

3.4 DDS Testbench Code 

Every verilog code requires a testbench code to perform simulations. Testbenches are 

composed of non-synthesizable verilog code that creates design inputs and verifies that 

the results are appropriate. We can employ a modelling tool that lets us to examine 

waveforms instantaneously. This mechanism is provided by Xilinx's Vivado a widely 

accessible software package. 

The very first aspect of developing a testbench is to construct a verilog module that 

serves as the test's top level. 

we would like to design a module without any input output values. The reason to do it 

is because we would like the testbench component to be entirely self-contained. 

The code below demonstrates how to construct an initial module that would function as 

our test platform. 

We should then implement the architecture that we are investigating after building a 

testbench component. This permits us to attach signals to the structure and invigorate 

the code. 

The testbench code begins by declaring the reg and wire data types as given below 

 reg clk_50, clk_25, reset 

 reg [31:0] index; 
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 wire signed [15:0]  sin_tb_out; 

Two types of clocks are required to generate the sinusoidal waveform. clk_50 and 

clk_25 generates sinusoids of two different frequency components. sin_tb_out which is 

a 16-bit signed wire data type generates the sinusoid output waveform. 

Initialization of clocks and index need to use initial begin and always begin statements 

of verilog language.  

The generation of clocks can happen in two different methods. We could therefore write 

a program to do this in two contexts together within initial block and always block. The 

vhdl delay function can then be used to arrange the transitions. 

Whenever it refers to the system clock, we have used the forever term to keep things 

operating throughout our experiments. 

Users execute an inverted clock every 1 ns that use this technique, producing in an 

operating clock speed of 1GHz. 

This clock speed was being used solely to provide a speedy computation time. In reality, 

1GHz frequency speeds in FPGAs are really not achievable, hence the benchmarking 

tool frequency must reflect the equipment clock rate. 

The verilog program below illustrates how well clock and resetting pulses in our 

simulation environment are handled. 

 // Clock-1 

initial begin 

clk = 1'b0; 

forever #1 clk = ~clk; 

end 

 

// Clock-2 

initial begin 

reset = 1'b1; 
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#10 

reset = 1'b0; 

end 

 

For incrementing the index register the following verilog program using always begin 

statements have been shown 

 

always @ (posedge clk_50) begin 

  index  <= index + 32'd1; 

 end 

Every increment of the clk_50 pulse at the positive edge of the clock the index register 

is incremented by a value of 1 in a 32-bit decimal number 

 

3.5 DDS Simulation Results 

The code structure discussed in section 3.2 follows the same for generating both the 

sine and co sine sinusoidal signals. The simulations from the Xilinx vivado software 

have been presented in Fig. 3.2 From the figure it can be noted that whenever the value 

of the sine waveform is 0 at the same instant of time we can observe that the value of 

co sine waveform is 1. This verifies the basic sine and co sine waveforms. The 

frequency of these waveforms can be altered by making changes in the program code 

of verilog to obtain different frequencies of both sine and co sine. 

 

 

Fig. 3.3 Generation of sine and cosine waveforms 
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CHAPTER 4 

DIGITAL MODULATIONS 

 

4.1 Modulation Overview 

The transmission of digitally altered carrier analog waveforms between two end points 

is termed as digital modulation in a communications system. These signals are also 

known as radio waves or radio signals as they travel through the atmosphere of earth. 

These find applications is many of the wireless systems in communication. Traditional 

analogue modulation systems, such as amplitude modulation (AM), frequency 

modulation (FM), and phase modulation (PM), are frequently replaced by digital 

schemes which are in more modern way. which provide several significant advantages 

over traditional analogue systems, including simplicity in processing methods, 

multiplexing, and these also studied to have better noise margin. 

The word digital communications is a bit of a misnomer, as it can signify different 

things to different individuals. Digital communications in this context refers to systems 

in which carrier waves having higher frequency are modulated by their counterpart 

waves at lower frequencies digital radio signals and systems in which digital pulses are 

transmitted (digital transmission). Because digital transmission technologies transfer 

data in digital form, a real path between the transmitter and receiver is required, such as 

a wire made of some metals, coaxial cable, or even in the case of light transmission, the 

optical fibre cable. The carrier facility in digital radio systems could be a physical cable 

or open space. The nature of the modulating signal distinguishes digital radio systems 

from traditional analogue modulation communications systems. Analog carriers are 

used in both analogue and digital modulation systems to transmit information. The 

information signal in analogue modulation systems is analogue, but the information 

signal in digital modulation systems is digital, which could be computer generated data 

or digitally encoded analogue signals.  

Binary data contains strings of 1’s and 0’s. If this data is to be transmitted over copper 

wires, they can be directly transmitted as appropriate voltage levels. Data in the form of 

digital signals is difficult to transmit long distances or to radiate into free space. To 

overcome this problem sinusoidal carrier is added to binary data and resultant signal is 

transmitted using antenna. This process usually termed as modulation. The modulation 
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process involves keying the voltage, time or angle of the sinusoidal carrier in some 

manner that variates according to input digital stream. 

There are three digital bandpass transmission schemes  

1. Amplitude Shift keying (ASK) 

2. Phase Shift Keying (PSK) 

3. Frequency Shift Keying (FSK) 

A digitally modulated signal termed amplitude shift keying (ASK) is obtained when the 

transmitted signal is digitized and the carrier's amplitude is altered proportionally to the 

data signal. Frequency shift keying (FSK) is created in the cases where carrier frequency 

is altered proportionally to the data signal, while phase shift keying (PSK) is generated 

when the carrier angle is varied proportionally to the data signal. 

Band pass signals can be of two types  

1. Binary  

2. M-ary  

A binary bandpass signals have two symbols which are represented by binary logic 

values of 1 and 0. whereas M-ary has M different symbols each having log2M bits. 

This dissertation focuses mainly on the Binary bandpass signal transmissions ASK, 

PSK and FSK. 

 

4.2 Amplitude Shift Keying (ASK) 

In the context of digital communications, ASK is a modulation procedure that assigns 

two or more than two discrete voltage levels to a sinusoid. Digital modulation systems 

include this form of modulation. The term "keying" is important here since it refers to 

the transmission of a digital signal via a channel. 

Two input signals are needed for ASK, a sequence of binary data and a carrier signal. 

The most crucial note to memorise is that the carrier needs to have wider range than the 

input data signal 
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The voltage of the input data v of the input binary signal fluctuates in accordance with 

the carrier frequency in ASK method. The carrier frequency and its time intervals are 

multiplied with the input data sequence in ASK. The similar process is repeated for all 

time intervals in between the time interval of input data signal. If the input digital signal 

is at logic level high for a given time, will be seen at the output terminals with an 

increase in the amplitude level. The main aim of amplitude keying approach is to modify 

or improve the amplitude properties of the data signal in accordance to the carrier. The 

incoming binary data and sinusoidal signal carrier are simply applied to two inputs of a 

product modulator (balanced modulator) to form an ASK signal [9]. Here, in this 

dissertation a vedic multiplier which acts as a product modulator is utilized to obtain 

ASK output signal. The block diagram of the ASK modulator can be as shown in Fig. 

4.1 

 

Fig. 4.1 Block diagram of ASK generation 

 

Let m(t) be the data signal which can be a string of 1’s and 0’s. c(t) be the carrier 

sinusoid signal which is represented as  

c(t) = Accos2πfct 

where Ac is the carrier signal amplitude, fc is the carrier signal frequency. 

The output when these two are multiplied is the output ASK signal 

 

ASK = m(t) ∗ Accos2πfct 

                   = 1 ∗ Accos2πfct ;       When m(t) = logic 1 

                  = 0 ∗ Accos2πfct = 0 ; When m(t) = logic 0                                           (1) 
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In its basic sense, a radio frequency burst is only transmitted when a binary 1 appears 

and is silenced when a binary 0 appears 

 

 

Fig. 4.2 Sample waveforms of ASK generation 

 

In communications, modulation is very significant. Applications for amplitude shift 

keying are listed below. They are: 

 

Low frequency radio frequency applications 

Devices for smart home devices 

Devices for industrial control systems 

Area network for wireless 

Monitoring methods for tyre pressure 

 

As a result, ASK (amplitude shift keying) is a digital signal processing technique for 

enhancing the amplitude properties of a binary signal input. However, its 

shortcomings limit it. And the other modulation scheme, FSK, can solve these 

disadvantages. 

In ASK information is transmitted by change in amplitude as can be seen from the Fig. 

4.2 where the input data for example is taken as 101101001011101111 which is 

represented by return to zero signal levels where logic 1 is represented by maximum 
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voltage level and logic 0 is represented by zero volts. The sinusoidal signal is generated 

by using Direct Digital Synthesis (DDS) using Xilinx Vivado software A detailed study 

on DDS is presented in [5]. when sinusoidal is multiplied with logic 1 the output will 

be the same sinusoidal signal. Similarly, when it is multiplied with logic 0 i.e., zero 

volts it gives an output of 0 volts ASK. This is clearly represented in the Fig. 22 

Therefore, it is sometimes implied that ASK, PSK, and FSK are "binary" methods 

(BASK, BPSK, and BFSK), which means that the signal characteristics only change 

between two values. ASK in here can also be represented as BASK. At the changeover 

points, there are abrupt discontinuities. As a result, the signal's bandwidth becomes 

unnecessarily wide [10]. Before transmission, band limiting is usually applied to ensure 

that the breaks are rounded by exposing to limitations in the frequency bands. The 

digital message or the modulated signal itself can be subjected to band limitation. Often 

the data rate is set to be a multiple of the carrier frequency. 

 

4.2.1 ASK Code 

The verilog coding for ASK modulation using Direct Digital Synthesis that has been 

used in the project has been presented briefly as listed 

The module is declared with the inputs din which is a 16-bit digital data input and clk 

input. The output is taken to be a ASK signed 16-bit output  

  

module ASK( 

input [15:0]din, 

                  output signed [15:0] ASK, 

                   input clk 

         ); 

The clock inputs for generating the sinusoid that needs to be used in the generation of 

ASK signal remains the same as discussed in DDS module. This ASK module uses two 

clocks for synchronising purpose  

     reg clk_50, clk_25, reset; 

  reg [31:0] index; 

  wire signed [15:0] sine;  
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By utilising the Sixteen-bit vedic multiplier generated previously the basic concept of 

ASK generation as depicted in the Fig. 4.2 can be administered as seen below 

sixteenbit_vedic_mult svm1(.a(din),.b(sine),.mult(ASK));  

The 16 bit input from the 16-bit vedic multiplier A[15:0] can be assigned to be the input 

digital data signal of 16 binary bits. Similarly another input to the sixteen bit vedic 

multiplier B[15:0] is used to input the sine wave obtained from the output of DDS 

module. 

The two inputs, binary data input signal and sinusoidal signal are multiplied together 

using the 16-bit vedic multiplier to finally obtain the output ASK modulated signal 

 

4.2.2 ASK RTL implementation 

In the RTL implementation of the verilog code for ASK modulation the output 

functionality of the generated ASK signal is verified. The RTL synthesis tool generates 

the synthesized schematic 

The netlist is shown graphically in the schematic. It's created to:  

• View the netlist as a graphical representation. 

• Go through the gates, hierarchies, and connections. 

• Trace and expand logic cones 

• Examine the design. 

• Gain a better understanding of what's going on inside the design. 

The Fig. 4.3 taken from the Xilinx vivado presents the elaborated schematic, we 

understand in what way the device has construed your code. In Synthesized and 

Implemented design, we see the gates generated by the synthesis tool. 

 

 

Fig. 4.3 Xilinx RTL implemented schematic of ASK                                          
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Fig. 4.4 Xilinx RTL Elaborated Schematic of ASK                                               

The overall RTL blocks can be seen as shown in Fig. 4.3 sixteenbit_vedic_mult 

contains 8-bit, 4-bit and 2-bit vedic multipliers inside it. 8-bit contains 4-bit and 2-bit 

inside it. 4-bit contains 2-bit inside it. The block showing input and output for a DDS 

is also shown with clock signal, phase value, increment value and reset signal. This 

block produces a sinusoidal as an output wave. 

 

Fig. 4.5 DDS module Xilinx implemented block 

 

Fig. 4.6 Sixteen-bit vedic multiplier Xilinx implemented block 
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As can be seen from the Fig. 4.3 the generation of ASK using vedic multiplier can be 

clearly understood. The vedic multiplier takes the input data signal as one of it’s input 

and the other input is provided from the output of DDS module. The vedic multiplier 

generates the 16 big signed output ASK waveform 

 

4.2.3 ASK Synthesized Design 

The synthesized implementation from Xilinx vivado of the ASK modulator has been 

presented in the Fig. 4.7 and the elaborated design obtained by expanding the design to 

the leaf cells has been presented in Fig. 4.8 It can be seen that entire connections 

between each and every module, input and output connections in the figure. 

 

Fig. 4.7 Xilinx synthesized design of ASK                                                                       
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Fig. 4.8 Xilinx elaborated synthesized design of ASK 

 

4.2.4 ASK Simulation Waveforms 

 

Fig. 4.9 Xilinx output of ASK simulations                                                                       
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Fig. 4.10 ASK with sinusoidal waveform 

 

The sinusoidal signal is generated by using Direct Digital Synthesis (DDS) using Xilinx 

Vivado software A detailed study on DDS is presented in [4]. when sinusoidal is 

multiplied with logic 1 the output will be the same sinusoidal signal. Similarly, when it 

is multiplied with logic 0 i.e., zero volts it gives an output of 0 volts ASK. This is clearly 

represented in the Fig. 4.10 Therefore, it is sometimes implied that ASK, PSK, and FSK 

are "binary" methods (BASK, BPSK, and BFSK), which means that the signal 

characteristics only change between two values. ASK in here can also be represented as 

BASK. At the changeover points, there are abrupt discontinuities. As a result, the 

signal's bandwidth becomes unnecessarily wide [7]. Before transmission, band limiting 

is usually applied, in which circumstance these breaks are rounded. The data signal can 

be exposed to limitations at frequency band level. Often the data rate is set to be a 

multiple of the carrier frequency.  

4.2.5 ASK Power Report 

The Xilinx tool calculates power for the implemented design and generates a power 

report [3][4] as shown in Fig. 4.11  

The power components in the power report are divided into static and dynamic. Static 

power is when the device is idle it still consumes some power This can be because of 

leakage currents flowing in the transistors. Dynamic power is when the device is 

powered on and various components like clocks, signals, logic, BRAM and Input output 

signals make up the dynamic component of power. The static and dynamic power sum 

up to Total on-chip power. A particular circuit can have an estimated power which is 

the design power budget. The power budget margin is the amount of power saved from 

the estimated budget. Junction temperature is the highest operating temperature of the 
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semiconductor. Thermal margin is the difference between the current and maximum 

temperature. 

As can be seen the total power consumption is 0.239 W which is 1.761 W less than the 

defined power budget 2 W. The percentage of dynamic power is reported as 62% and 

static power at 38%.  

The detailed power consumption of clocks taking up <0.001 W power which amounts 

to <1% of the total power consumed, signals taking 0.019W amounting to 13% of the 

total power consumption, logic taking up 0.011 W amounting to 8% of the total power 

consumption, BRAM consuming <0.001 W amounting to <1% total power 

consumption similar to the clocks, and it is interesting to note that the I/O amounts to 

0.117 W which is 77% taking the majority of the dynamic component of the power 

 

Fig. 4.11 Power report of ASK 

 

4.3 Phase Shift Keying (PSK) 

In a radio telecommunications system, the term PSK, or phase shift keying, is 

commonly used. This process is generally used in transmission of data signal. In 
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comparison to additional modulation forms, it permits data to be transported through 

telecommunications transmission more efficiently. Presently this method of 

communication is preferred widely, with many communication transmission formats. 

each having their own compensations and difficulties.  

This method communicates data by modifying the angle of the carrier, repeatedly 

recognized as a reference signal. This scheme of modulation contains increments of 

angle which in turn can be allotted binary logic values encoding the identical quantity 

of bits. The exact phase denotes the symbol formed by each bit pattern. 

 

Fig. 4.12 Sample waveforms of PSK generation 

 

In PSK the information is transmitted in the form of phase shift. The Fig. 4.12 shows 

the sample waveform. Where sinusoidal carrier is taken to be sinusoidal and the 

waveform also incorporates sinusoidal carrier with 180° shift which is generated by 

DDS and shifted using Verilog coding. PRK (phase reversal keying) or 2PSK are other 

names for PSK. This type of phase-shift keying makes use of two 180-degree split 

phases. This is why it's sometimes also referred to as 2-PSK. 

The general equation for a PSK wave is given by 

𝑆𝑃𝑆𝐾(𝑡) = √
2𝐸𝑏

𝑇𝑏
cos(2𝜋𝑓𝑐𝑡 + 𝜋(1 − 𝑛)) 𝑛 = 0,1                                                            (2) 

Where Eb is the average energy per bit. Tb is the bit duration. fc is the carrier frequency. 

The value of n yields two phases. In the equation 2, The value of n is dependent on the 

logic level of data signal. when n=1 the value of output is the input sinusoidal signal 
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The product modulator takes the input sinusoidal carrier1 and when n =0 the output is 

a sinusoidal with a ‘ – ‘ in front of it i.e. 180° shifted sinusoid.  

This dissertation work utilises the sinusoidal obtained from the output of DDS as the 

input and by using Verilog coding we impart 90° shift to the co-sinusoidal thereby 

producing a total shift of 180°.  

Thus, vedic multiplier multiplies the data signal and sinusoidal either with 0° shift or 

180° shift based on the logic state of the input data signal to produce an output PSK 

modulated waveform. 

 

 

Fig. 4.13 Block diagram of PSK generation 

 

The output waveform will be similar to sinusoidal carrier for a logic 1 data signal and 

the output is 180° out of phase with sinusoidal carrier in case of a logic 0 data signal. 

The output waveform for a sample binary data of 101101001011101111 is as depicted 

in the Fig. 4.12 

The following are some of the benefits of phase-shift keying. 

In contrary to FSK, this sort of PSK allows information to be transmitted with a 

radio communications transmission signal more efficiently. 

When compared to ASK modulation, it is less susceptible to defects and 

consumes a similar bandwidth. 

The following are some of phase-shift keying's drawbacks. 

When compared to ASK modulation, the efficiency of bandwidth of PSK is 

lower. 
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It's a reference signal that's not coherent. 

The binary information can be deciphered by determining the phase levels of 

the signal. Recovery and detection algorithms are extremely challenging. 

Because of reference signal for demodulation is not stable, the fault might 

accumulate with time, resulting in inaccurate demodulations. 

PSK could be used for the following purposes. 

Biostatistics, Bluetooth, Near Field Communication, RFID or even in many of 

the additional wireless communications  

Optical Fibre  

LO 

WDM 

 

4.3.1 PSK Code 

The verilog coding for PSK modulation using Direct Digital Synthesis that has been 

used in the project has been presented briefly as listed 

The module is declared with the inputs din which is a 16-bit digital data input and clk 

input. The output is taken to be a PSK signed 16-bit output  

  

module PSK( 

input [15:0]din, 

                  output signed [15:0] PSK, 

                   input clk 

                  ); 

The clock inputs for generating the sinusoid that needs to be used in the generation of 

PSK signal remains the same as discussed in DDS module. This PSK module uses two 

clocks for synchronising purpose namely clk_50 and clk_25. It also uses a sixteen-bit 

wire named as din_bar which stores the negated value of the input data signal. Along 
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with the sine wave output from DDS this PSK modulation also requires testbench_out, 

p_out and shifted_180 declared as a wire data type of 16 bits signed inputs 

wire [15:0] din_bar; 

            reg clk_50, clk_25, reset; 

 reg [31:0] index; 

 wire signed [15:0]  testbench_out,p_out,shifted_180,sine; 

To create a negated value of data input signal which will function in synchronization 

with the input data logic value the following verilog code has been written 

assign din_bar=din-1'b1; 

This utilises the assign keyword from the verilog code to assign the value of din-1’b1 

to the din_bar. This ensures that whenever input data signal is 0. The output waveform 

will be imparting a negated value to apply the phase shift. When the din logic value is 

1, the assign statement gives the output value of 1-1=0. This will ensure that the output 

PSK waveform will not be applied with 180º phase shift.  

By utilising the Sixteen-bit vedic multiplier generated previously the basic concept of 

PSK generation as depicted in the Fig. 4.12 can be administered as seen below 

sixteenbit_vedic_mult svm1(.a(din),.b(sine),.mult(p_out)); 

sixteenbit_vedic_mult svm2(.a(din_bar),.b(sine),.mult(shifted_180)); 

The 16 bit input from the 16-bit vedic multiplier A[15:0] can be assigned to be the input 

digital data signal of 16 binary bits. Similarly another input to the sixteen bit vedic 

multiplier B[15:0] is used to input the sine wave obtained from the output of DDS 

module. This will give out the output waveform with 0º phase shift taken to be as p_out. 

Another vedic multiplier of 16 bits is instantiated to generate another sinusoid with 180º 

out of phase to the p_out generated waveform. One input of the multiplier is taken to be 

the din_bar obtained form the assign statements. Another input is taken to be the sine 

wave output from DDS module. When these two inputs are multiplied this produces an 

output waveform termed as shifted_180. 

To obtain the final PSK waveform another assign statement has been used as follows 

  assign PSK[15:0]=p_out[15:0]+shifted_180[15:0]; 
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Both the outputs from each of the vedic multipliers employed are taken and a simple 

addition operation is performed to finally obtain PSK modulated waveform. 

 

4.3.2 PSK RTL Implementation 

In the RTL implementation of the verilog code for PSK modulation the output 

functionality of the generated ASK signal is verified. The RTL synthesis tool generates 

the synthesized schematic 

RTL level schematic when elaborated through the Xilinx vivado tool generates the 

figure as shown in Fig. 4.14. This is helpful in the cases where the user can comprehend 

the interpretation of their code to essentially see the gate level synthesis  

 

Fig. 4.14 Xilinx RTL implemented schematic of PSK                                          

 

 

Fig. 4.15 Xilinx RTL Elaborated Schematic of PSK                                              

 

 

4.3.3 PSK Synthesized Design 

The synthesized implementation from Xilinx vivado of the PSK modulator has been 

presented in the Fig. 4.16 and the elaborated design obtained by expanding the design 
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to the leaf cells has been presented in Fig. 4.17 It can be seen that entire connections 

between each and every module, input and output connections in the figure. 

 

Fig. 4.16 Xilinx synthesized design of PSK 

 

 

Fig. 4.17 Xilinx elaborated synthesized design of PSK 
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4.3.4 PSK Simulation Waveforms 

 

 

Fig. 4.18 Xilinx output of PSK simulations 

 

 

Fig. 4.19 Xilinx output of 180° phase shifted sinusoidal waveforms 

 

The simulation results obtained from the Xilinx vivado are presented in the figures 4.18 

and 4.19. The Fig. 4.19 shows two sinusoidal waveforms sine and shifted_180 which 

are 180º out of phase to each other.  

From the Fig. 4.18 the basic functionality of the PSK modulation depicted in the 

previous section in the Fig. 4.12 can be verified. Whenever the input data signal is 1’b1 

the output PSK waveform will be the sine waveform. When the input data signal is 1’b0 

the output PSK waveform will be shifted_180 waveform. So that When the input data 

signal changes from 1-0 or from 0-1the phase of the PSK output waveform changes. 

 

4.3.5 PSK Power Report 

The Xilinx tool calculates power for the implemented design and generates a power 

report [3][4] as shown in Fig. 4.20 

The power components in the power report are divided into static and dynamic. Static 

power is when the device is idle it still consumes some power This can be because of 

leakage currents flowing in the transistors. Dynamic power is when the device is 

powered on and various components like clocks, signals, logic, BRAM and Input output 
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signals make up the dynamic component of power. The static and dynamic power sum 

up to Total on-chip power. A particular circuit can have an estimated power which is 

the design power budget. The power budget margin is the amount of power saved from 

the estimated budget. Junction temperature is the highest operating temperature of the 

semiconductor. Thermal margin is the difference between the current and maximum 

temperature. 

As can be seen the total power consumption is 0.299 W which is 1.701 W less than the 

defined power budget 2 W. The percentage of dynamic power is reported as 69% and 

static power at 31%.  

The detailed power consumption of clocks taking up <0.001 W power which amounts 

to <1% of the total power consumed, signals taking 0.032W amounting to 16% of the 

total power consumption, logic taking up 0.040 W amounting to 19% of the total power 

consumption, BRAM consuming <0.001 W amounting to <1% total power 

consumption similar to the clocks, and it is interesting to note that the I/O amounts to 

0.135 W which is 63% taking the majority of the dynamic component of the power 

 

 

Fig. 4.20 Power report of PSK 
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4.4 Frequency Shift Keying (FSK) 

Frequency shift keying, commonly recognized as FSK, one among the digital 

modulation technique that are discussed as part of this work. The qualities which all 

waveforms possess are its amplitude, frequency, and phase.  

Modulation process to progresses any of these properties. Because the modulation 

practice has numerous compensations. The size of the antenna can be made smaller or 

to avoid the multiplexing of the signal, reduce the component of the noise are some 

among the numerous benefits FSK offers. 

The carrier signal is used to change or improve the frequency features of an input binary 

sequence. Major downsides of ASK is volatility in its amplitude levels. As a result, it is 

only employed in a few cases. It also results in surplus power being unused because of 

low power efficiency. Frequency Shift Keying is recommended to alleviate these 

disadvantages. Binary Frequency Shift Keying is another name for FSK (BFSK).  

This frequency shift keying method demonstrates how the carrier signal changed the 

frequency properties of a binary sequence. Binary communication can take place by a 

carrier signal with frequency shifts in FSK. The block diagram of Frequency modulator 

used in this dissertation is shown in Fig. 4.21 below 

 

 

Fig. 4.21 Block diagram of FSK generation 

 

FSK modulated signals are created uses carrier components that differs in their 

frequency levels. FSK modulated transmissions are expressed in the form of distinct 

frequencies. "Sinusoidal Carrier Frequency 1" and "Sinusoidal Carrier Frequency 2" are 

the corresponding frequencies. Logic 1 was defined by Sinusoidal Carrier Frequency 1, 

and logic 0 was defined by Sinusoidal Carrier Frequency 2. Only one distinction 



51 
 

exists between the two carrier signals: one of the carrier sources has a higher frequency 

than the other. 

Frequency shift keying takes in two sinusoidal signals of different frequencies and 

produces a frequency modulated output depending upon the logic level of input data 

signal. The output FSK wave will be at high frequency when the input data signal is at 

logic level 1 and the output FSK wave will be at lower frequency when the input data 

signal is at logic 0. The same is represented in diagrams. Refer to Fig. 4.22. Here the 

high frequency signal is taken as sinusoidal wave of frequency f1 and low frequency 

signal is taken as sinusoidal wave of frequency f2. Here f1 & f2 taken as general 

representation and they can be of any frequencies as long as f1 > f2. 

𝑆𝐹𝑆𝐾 (𝑡) =  √
2𝐸𝑏

𝑇𝑏
𝑐𝑜𝑠(2𝜋𝑓1𝑡),          0 ≤ 𝑡 ≤ 𝑇𝑏,  

                                          =  √
2𝐸𝑏

𝑇𝑏
𝑐𝑜𝑠(2𝜋𝑓2𝑡),            0 ≤ 𝑡 ≤ 𝑇𝑏,                    (3) 

 

 

Fig. 4.22 Sample FSK waveforms 

 

The pros and downsides of frequency shift keying are given below. 

Advantages 

           The circuit is built in a simple manner. 

No variations in amplitude 



52 
 

Allows for a high data transfer rate. 

Error probability is low. 

Has significant signal to noise ratio 

Noise immunity is stronger than the ASK 

With FSK, error-free transmission is achievable. 

High-frequency radio communications benefit from it 

Disadvantages 

It necessitates more bandwidth than either the ASK or the PSK transmissions 

This FSK can only be used in low-speed modems due to the massive bandwidth 

demands. 

In comparison to phase shift keying, the BER in AEGN channel is lower. 

 

4.4.1 FSK Code 

The verilog coding for FSK modulation using Direct Digital Synthesis that has been 

used in the project has been presented briefly as listed 

The module is declared with the inputs din which is a 16-bit digital data input and clk 

input. The output is taken to be a FSK signed 16-bit output 

module FSK( 

input [15:0]din, 

                   output signed [15:0] FSK, 

                    input clk 

         ); 

The clock inputs for generating the sinusoid that needs to be used in the generation of 

FSK signal remains the same as discussed in DDS module. This FSK module uses two 

clocks for synchronising purpose namely clk_50 and clk_25. It also uses a sixteen-bit 

wire named as din_bar which stores the negated value of the input data signal. Along 

with the sine wave output from DDS this FSK modulation also requires testbench_out, 
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testbench_out_1, sine_freq_1, sine_freq_2 declared as a wire data type of 16 bits signed 

inputs 

wire [15:0] din_bar; 

     reg clk_50, clk_25, reset; 

 reg [31:0] index; 

 wire signed [15:0] sine_out,sine_out_1,sine_freq_1,sine_freq_2; 

To create a negated value of data input signal which will function in synchronization 

with the input data logic value the following verilog code has been written 

assign din_bar=din-1'b1; 

This utilises the assign keyword from the verilog code to assign the value of din-1’b1 

to the din_bar. This ensures that whenever input data signal is 0. The output waveform 

will be imparting a negated value to apply the phase shift. When the din logic value is 

1, the assign statement gives the output value of 1-1=0.  

By utilising the Sixteen-bit vedic multiplier generated previously the basic concept of 

FSK generation as depicted in the Fig. 4.23 can be administered as seen below 

 

sixteenbit_vedic_mult svm4(.a(din),.b(sine_out),.mult(sine_freq_1)); 

sixteenbit_vedic_mult svm5(.a(din_bar),.b(sine_out_1),.mult(sine_freq_2)); 

 

The 16 bit input from the 16-bit vedic multiplier A[15:0] can be assigned to be the input 

digital data signal of 16 binary bits. Similarly another input to the sixteen bit vedic 

multiplier B[15:0] is used to input the sine wave obtained from the output of DDS 

module. This will give out the output waveform having frequency 1 taken to be as 

sine_freq_1. 

Another vedic multiplier of 16 bits is instantiated to generate another sinusoid with 

frequency 2. One input of the multiplier is taken to be the din_bar obtained form the 

assign statements. Another input is taken to be the sine wave of lesser frequency output 
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from DDS module. When these two inputs are multiplied this produces an output 

waveform with frequency 2 termed as sine_freq_2. 

To obtain the final FSK waveform another assign statement has been used as follows 

  assign FSK[15:0]=sine_freq_1[15:0]+sine_freq_2[15:0]; 

Both the outputs from each of the vedic multipliers employed are taken and a simple 

addition operation is performed to finally obtain FSK modulated waveform. 

 

4.4.2 FSK RTL Implementation 

In the RTL implementation of the verilog code for FSK modulation the output 

functionality of the generated ASK signal is verified. The RTL synthesis tool generates 

the synthesized schematic 

vivado tool generates the elaborated schematic shown in Fig. 4.14. This is helpful in the 

cases where the user can comprehend the interpretation of their code to essentially see 

the gate level execution. 

 

Fig. 4.23 Xilinx RTL implemented design of FSK 



55 
 

 

Fig. 4.24 Xilinx RTL Elaborated Schematic of FSK                                               

 

4.4.3 FSK Synthesized Design 

The synthesized implementation from Xilinx vivado of the PSK modulator has been 

presented in the Fig. 4.25 and the elaborated design obtained by expanding the design 

to the leaf cells has been presented in Fig. 4.26 It can be seen that entire connections 

between each and every module, input and output connections in the figure. 

 

Fig. 4.25 Xilinx synthesized design of FSK 
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Fig. 4.26 Xilinx elaborated synthesized design of FSK 

4.4.4 FSK Simulation Waveforms 

 

Fig. 4.27 Xilinx output of FSK simulations 
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Fig. 4.28 Xilinx output of sinusoidal waveforms with different frequencies 

 

The simulation results obtained from the Xilinx vivado are presented in the figures 4.27 

and 4.28. The Fig. 4.28 shows two sinusoidal waveforms sine_freq_1 and sine_freq_2 

which are having different frequencies and also the frequency of sine_freq_1 is ensured 

to be greater than the frequency of sine_freq_2. 

From the Fig. 4.27 the basic functionality of the FSK modulation depicted in the 

previous section in the Fig. 4.22 can be verified. Whenever the input data signal is 1’b1 

the output FSK waveform will be having the sine waveform of frequency sine_freq_1. 

When the input data signal is 1’b0 the output FSK waveform will be having the sine 

waveform of frequency sine_freq_2.  

 

4.4.5 FSK Power Report 

The Xilinx tool calculates power for the implemented design and generates a power 

report [3][4] as shown in Fig. 4.29 

The power components in the power report are divided into static and dynamic. Static 

power is when the device is idle it still consumes some power This can be because of 

leakage currents flowing in the transistors. Dynamic power is when the device is 

powered on and various components like clocks, signals, logic, BRAM and Input output 

signals make up the dynamic component of power. The static and dynamic power sum 

up to Total on-chip power. A particular circuit can have an estimated power which is 

the design power budget. The power budget margin is the amount of power saved from 

the estimated budget. Junction temperature is the highest operating temperature of the 
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semiconductor. Thermal margin is the difference between the current and maximum 

temperature. 

As can be seen the total power consumption is 0.293 W which is 1.707 W less than the 

defined power budget 2 W. The percentage of dynamic power is reported as 69% and 

static power at 31%.  

The detailed power consumption is as follows, clocks taking up <0.001 W power which 

amounts to <1% of the total power consumed, signals taking 0.028W amounting to 14% 

of the total power consumption, logic taking up 0.039 W amounting to 19% of the total 

power consumption, BRAM consuming <0.001 W amounting to <1% total power 

consumption similar to the clocks, and it is interesting to note that the I/O amounts to 

0.135 W which is 65% taking the majority of the dynamic component of the power 

 

 

Fig. 4.29 Power report of FSK 
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CHAPTER 5 

CONCLUSIONS AND RESULTS 

 

A 32-bit multiplier using ancient Indian mathematics called Vedic mathematics has 

been implemented using Verilog coding in Xilinx Vivado Software tool. This was 

achieved by first creating a 2x2 multiplier using Urdhva Triyagbhyam Principle of vedic 

mathematics. The subsequent blocks of multipliers are created based on this. A 4x4, 

8x8, 16x16 and finally 32x32 multipliers are created. The output of each was verified 

by running the Xilinx simulation. 

A Sine and Cosine waveform using the concept of Direct Digital Synthesis has been 

studied and implemented to obtain the analog waveforms of these sinusoids.  

A digital modulation technique has been implemented by using the vedic multiplier and 

sinusoid carrier signal. The design is synthesized to obtain gate level netlist and 

implemented to obtain the power consumption of the entire project. The on – chip power 

with static and dynamic power consumptions are clearly stated. 

TABLE I 

POWER COMPARISON OF ASK, PSK AND FSK 

 ASK PSK FSK 

Static power 0.091 W 0.091 W 0.091 W 

Dynamic power 0.147 W 0.207 W 0.202 W 

Clocks <0.001 W <0.001 W <0.001 W 

Signals 0.014 W 0.032 W 0.028 W 

Logic 0.014 W 0.040 W 0.039 W 

BRAM < 0.001 W < 0.001 W < 0.001 W 

I/O 0.118 W 0.135 W 0.135 W 

Total on chip power 0.238 W 0.299 W 0.293 W 



60 
 

 

 

 

 

 

Future Scope 

This project has wide level key concepts for implementing different projects based on 

the same idea that has been presented throughout this work. The future scope for this 

project has been detailed below: 

 This work uses Ripple Carry Adder for generating the Multiplier design. 

For further scope RCA can be replaced with other efficient and low 

power consuming adders such as Carry Look Ahead Adder to further 

reduce the power consumption and make this design more efficient for 

low power applications. 

 Various other Vedic algorithms such as Nikhilam can be utilised for 

better results in the mathematic and arithmetic operations. 

 Area optimization of the DDS algorithm can be carried out as can be 

seen from the synthesised and RTL implemented designs, most of the 

chip area is being consumed by LUT in the DDS module. 

 

 

 

 

 

 

 

 

Design power budget 2 W 2 W 2 W 

Power budget margin 1.762 W 1.701 W 1.707 W 

Junction temperature 25.6 ºC 25.8 ºC 25.8 ºC 

Thermal margin 59.4 ºC 59.2 ºC 59.2 ºC 
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