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ABSTRACT 

 

Project management is a critical component of every software project's success. 

Estimating the cost and effort of software development at the outset of the project is 

one of the most important responsibilities in software project management. Estimating 

effort allows project managers to more effectively manage resources and activities. The 

primary purpose of this study was to construct and compare the usage of two common 

ensemble approaches (bagging and boosting) to improve estimator accuracy and to 

study the impact of Synthetic Minority Over-Sampling Technique for Regression 

(SMOTER) to predict effort estimation by using machine learning algorithms. 

Random forest, support vector regression, elastic net, decision tree regressor, linear 

regression, lasso regression, and ridge regression are some of the machine learning 

techniques we've implemented.  For our study we used Albrecht, China, COCOMO81, 

Desharnais and Maxwell dataset. We also performed feature selection and considered 

only those features that have strong correlation with target feature i.e., effort.  

 

The two-performance metrics Mean Magnitude Relative Error (MMRE) and PRED(25) 

results demonstrate that utilising elastic net as the base learner for AdaBoost 

outperforms the other models and there is a significant decrease in error of each model 

after applying SMOTER. 
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CHAPTER 1 

INTRODUCTION 

Project management is an essential component of every software project's 

success. Estimating the cost and effort of software development at the outset of the project 

is one of the most vital responsibilities in project management. Project managers can 

better manage resources and activities by estimating effort. The majority of this software 

development cost is made up of human effort, and it gives estimates in person-months. 

Effort estimation is used to determine how many months the programme will take to build 

and how many resources will be required to accomplish the project on time. Both clients 

and developers benefit greatly from realistic cost estimates. It can be used to generate 

contract negotiations, proposals, monitoring, scheduling, and control requests. 

Management may approve proposed systems that exceed allowable budgets, have 

underdeveloped functionalities and poor quality, and fail to execute on time due to major 

cost underestimation. Overestimating software projects can result in the project receiving 

more assets or the contract being lost during contract bidding, resulting in job loss. 

 

Despite the fact that Software Effort Estimation (SEE) is critical in software project 

development, there has been relatively little progress in the last thirty or forty years. One 

of the most common causes of failure is inaccurate resource estimates. Even though there 

are numerous software effort estimation models available, new models are still needed to 

improve estimation accuracy since the problem of effort estimation and accuracy remains 

the same. As a result of the emergence of software effort prediction models, researchers 

are now attempting to estimate software work as precisely as possible. 

 

Cost estimation accuracy is crucial because: 

• It is used to identify the resources to be used for the project and how well these 

assets will be utilized.  

• Impacts of changes are assessed and re-planning is facilitated.  
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• Control and management of project is easier when resources are compatible to 

actual needs.  

• Customers anticipate the least amount of variance between real and estimated 

development expenses. 

 

1.1 Motivation 

The biggest issue that data scientists face nowadays is data imbalance. The class 

imbalance problem in machine learning relates to classification jobs in which data classes 

are not represented equally. In many real-world applications, the nature of the task 

necessitates a skewed in the classification process of a binary or multi-class classification 

problem [1]. This problem is also faced in dataset when target value is continuous which 

is known as imbalanced regression. In reality, the continuous structure of the target 

variable in regression data sets complicates the process because there are potentially an 

unlimited number of values to deal with [2]. To overcome this issue of imbalance data, 

data oversampling is done. Data oversampling is a technique for producing data that 

closely reflects the underlying distribution of real data. Synthetic Minority Over-

Sampling Technique (SMOTE) is an oversampling technique for balancing datasets [3]. 

 

To model the intricate link between effort and software properties, machine learning 

techniques are frequently used. Researchers have used a variety of machine learning-

based estimators such as Regression Trees (RT), Support Vector Regression (SVR), and 

ensemble models like random forest, Artificial Neural Network (ANN), Multilayer 

Perceptron (MLP), Generalized Linear Model (GLM) [4] [5] [6]. Ensemble learning 

approaches have recently gained popularity. The results depicts that in the vast large 

majority of cases, Ensemble Effort Estimation (EEE) methods outperform single models 

[7]. There have been several different approaches for estimating software expenses, or 

SEE, but there have been very few studies on hyperparameter tuning. 

 

Underestimating the software effort or resource requirements for a software project can 

result in an unrealistic timeline, cost, and manpower estimates. It also puts more strain 

on the engineers' workload. Overestimating the work, on the other side, is likely to 

result in low engineer productivity and a contract loss due to prohibitive prices. 
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1.2 Research Questions 

This thesis focused on mainly these research questions: 

 

RQ 1: To check whether ensemble techniques improve the prediction performance as 

compared to individual regression techniques used or not? 

RQ2: Does hyperparameter tuning enhance the results for software effort prediction? 

RQ3: Which is the best ensemble technique for software effort prediction? 

RQ4: Does data balancing improves the result of prediction? 

 

1.3 Thesis Structure 

The main purpose of this thesis is to compare the accuracy of numerous ensemble 

learning algorithms for estimating software effort. The results obtained from our studies 

will help to improve the prediction in future. To achieve  this, we have used two 

ensembles learning i.e., AdaBoost and bagging. To improve the results, we have also 

tuned the ‘base_learner’ hyperparameter with several weak learners such as SVR, random 

forest and elastic net. These techniques are the modern trends in the field of effort 

estimation. To evaluate the results three performance metrics MMRE, MdMRE and 

PRED(25) have been considered. For results, these techniques are applied on Albrecht, 

China and Desharnais dataset consisting of 24, 499 and 81 projects respectably.  

 

The rest of the thesis is organized into varied chapters. In chapter 2, related work done 

for the research have been explained in brief. In chapter 3, all the terminologies used are 

described which includes datasets, Models of machine learning that have been utilised as 

the base learners in our ensemble models and the performance metrics. In chapter 4 the 

research methodology which describes the flow of our research is explained. In chapter 5 

the results after application of different ensemble techniques have been explained. The 

impact of data balancing techniques on prediction has also been discussed. Conclusion 

and future work have been explained in chapter 6 and chapter 7 respectively. Finally, all 

the references used in out thesis have been mentioned. 
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CHAPTER 2 

LITERATURE REVIEW 

In calculating the development cost of a software project, software effort 

estimation is critical. In a prior study, many methodologies such as empirical techniques, 

algorithmic effort estimation, regression techniques, theory-based techniques, and 

machine learning were provided, as well as many models. In software project 

management, recognising and controlling crucial variables that affect development effort 

is critical. 

The accuracy of our data prediction is mostly determined by two factors: first, the models 

we use, and second, the dataset. We must choose models that will produce the best results 

for the type of data we are predicting, whether it is a classification or continuous data. 

The dataset we're evaluating should be of high quality, which implies it should be 

balanced. Because obtaining a balanced dataset is challenging, data oversampling is used 

to achieve that goal. 

 

The large majority of machine learning regression models are based on data that is 

balanced or roughly balanced. When dealing with unbalanced data, such models will be 

misleading and perform badly. We have two alternatives for dealing with imbalanced data 

using these models: increase the representation of the interest observations vs. the other 

observations, or lower the representation of the interest observations vs. the other 

observations [8]. The SMOTE algorithm employs an oversampling method to rebalance 

the original training set. SMOTE's core concept is to create instances rather than simply 

replicating minority class occurrences. Interpolating across various minority class 

instances within a single neighbourhood in order to produces new data [9]. This problem 

also exists in datasets with regression as the target value, and SMOTER is employed to 

solve it. 

 

In early 20’s machine learning models had an edge in field of prediction, machine learning 

techniques were found in numerous applications like link prediction [10] , fault prediction 

[11], customer churn prediction [12], software effort prediction [4] however, it has 
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recently been supplanted by ensemble approaches, which integrate the judgments of 

numerous models to increase overall performance. Ensemble approach 

comprises Bagging, which incorporates the outputs of many models to produce a 

generalised result, boosting, which aims to overcome the weaknesses of the earlier 

models, and stacking, which merges the predictions of various weak learners using the 

soft or hard voting concept, are all examples of the ensemble approach. 

 

A. Priya Varshini, in her paper tried to address SEE by using different machine learning 

techniques namely all types of regression models, random forest and Neural Network 

(NN) to recognize best performing model. Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE) and R-Squared performance metrics 

were considered for evaluation. Support Vector Machine (SVM) outperform other 

machine learning methods in her comparison analysis [13]. 

 

The Genetic Algorithm (GA) has been widely utilised to estimate effort accurately. 

According to Burgess and Lefley [14], the ability of "Genetic Programming" has been 

employed for effort estimation and comparing them, with the ANN, Linear LSR, and 

other methods. The comparison is made using the Desharnais dataset, and the findings 

are completely dependent on the fitness function utilised. 

 

On the basis of machine learning, Braga et al. [15] suggested an approach that provides 

effort estimation and confidence interval. The authors advise that substantial confidence 

intervals be used. This confidence range is independent of the error probability 

distribution in the training set. Several experiments have been conducted with two 

software project datasets: "Desharnais and NAS," which are expected to investigate 

machine learning algorithms for reliable effort estimation. Following simulations, the 

proposed strategy was able to generate confidence intervals, which are crucial for a client 

of the effort estimating system. Martin et al. Lopez-Martin [16] in 2006 proposed a novel 

methodology for estimating software development effort and offered an updated Fuzzy 

Logic Model for measuring it. Elish [17] conducted a comparative study to develop 

software effort prediction systems using machine learning approaches such as ANNs, 

CBR, and RI (Rule Induction).  
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S. K. Palaniswamy, provide a method for increasing the accuracy of effort estimation 

utilizing the stacking ensemble method and evolutionary algorithms to tune the 

hyperparameters of the base and meta learners. They utilized four distinct base learners 

to improve the accuracy of this stacking ensemble method: Linear Regression (LR), MLP, 

Random Forest Regressor (RFR), and AdaBoost regressor. Based on their findings, they 

believe that a combination of hyperparameter configurations can produce close to optimal 

configuration setting values [18]. 

 

The paper by Bibi and Stamelos [19], has suggested a set of estimation criteria for 

choosing on an acceptable machine learning technique for software development effort 

estimation in terms of comprehensibility, causality, accuracy, handling of missing 

information, dynamic updates, uncertainty, sensitivity, and application. As a result, the 

author suggested various principles for selecting an acceptable estimation method based 

on his needs and for the estimator's research. The paper by Gallego et al. [20], the author 

has demonstrated one of the most significant issues facing developers in terms of 

predicting software development effort regarding project size, complexity, developer 

competencies, and other variables. 

 

In the estimation of effort, machine learning (ML) approaches have been widely applied. 

Finnie and Witting's [21] [22] study looked at the ability of two artificial intelligence (AI) 

approaches, ANN and "Case Based Reasoning" (CBR), to improve application evaluation 

models. Furthermore, rather than relapse models, the capability of ANN and CBR allows 

for improvement in application estimating models. AI models are designed to provide 

adequate evaluation models. Both models' performance is substantially determined by 

training data and to the extent to which data is available. ML techniques such as 

"Classification and Regression Trees" (CART) have been published in addition to ANN 

and CBR [23]. MART as a model of software effort estimation was compared to 

previously existing models such as SVR models with linear regression, RBF kernels, RBF 

neural networks, and linear regression in Elish's [17]study. The accuracy of the final effort 

estimation with MART is higher. 

 

Pendharkar [24] proposed a "Probabilistic Neural Networks" (PNN) methodology for 

simultaneous estimation of the values of development parameters, such as effort or size, 

as well as the chance that the estimated value of the attribute will be greater than the 
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actual value in his study. According to Radlinski and Hoffmann [25] , the researcher 

compared the accuracy of software effort estimations using multiple machine learning 

algorithms. The major purpose here is to examine if particular strategies yield the same 

level of accuracy for diverse data sets to investigate the predictability of this result. The 

prediction accuracy results reveal that each ML technique uses a different dataset. 

 

Suherman [26], in their study tune the hyperparameters of random forest and compared 

the results with SVR and Bee Colony Method. The error rate of an experiment is used to 

evaluate its outcomes. Random forest regression outperforms SVR and the Bee Colony 

method, according to the results, the results were measured on the basis of MMRE. 

Dejaeger, K. [27] done comparative study on using data mining techniques in SEE. The 

key finding in their study was that picking a subset of highly predictive qualities can aid 

in a large boost in estimation accuracy, and that data mining techniques can add value to 

the variety of software effort estimating methodologies, but they should not be used in 

place of expert judgement. 

 

Estimating effort is critical in determining the cost of software. Machine learning models, 

algorithmic, empirical, and theory-based effort evaluation techniques are among the 

techniques accessible. Many research initiatives have incorporated machine learning 

techniques. Machine learning algorithms have been proposed to estimate effort in recent 

years like Bayesian Network, Case based reasoning, fuzzy logic, GA, SVM, regression 

tree including deep learning technique ANN have been proposed. We have carried out 

comparative study of several ensemble models like AdaBoost, bagging by tuning their 

hyperparameters with machine learning models like random forest, SVR, elastic net for 

predicting the software effort on different datasets. 
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CHAPTER 3 

TERMONOLOGIES USED 

There are five varied length datasets that we have selected for our research 

namely Albrecht, China, COCOMO81, Desharnais and Maxwell dataset. Considering the 

shift in research from machine learning models to ensemble models, we opted to focus 

on two ensemble models: bagging and AdaBoost. We further tune the hyperparameter of 

ensemble models with random forest, SVR and elastic net. To study the impact of the 

data balancing we used over-sampling technique SMOTER on five popular machine 

learning models random forest, decision tree regressor, linear regression, lasso regression 

and ridge regression. 

 

3.1 Dataset Used 

 

For our studies we have used five freely available datasets namely Albrecht dataset [28], 

China dataset [29], COCOMO81 dataset [30], Desharnais dataset [31] and Maxwell 

dataset [32].  

 

3.1.1 Albrecht Dataset 

The Albrecht dataset was extracted from Zenodo repository. It has eight features and 

consists of 24 software projects data. 

 

 

         Fig 3.1 Albrecht dataset description 
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There are seven independent variables namely ‘Input’, ‘output’, ‘Inquiry’, ‘File’, 

‘FPAdj’, ‘RawFPcounts’, ‘AdjFP’ and one dependent variable ‘Effort’ whose values 

rages from 0.5 to 105.2 person-month. The six features with high correlation with target 

feature are selected for further research and remaining were droped. 

 

3.1.2 China Dataset 

The China dataset was extracted from Zenodo repository. It consists of 499 software 

projects data described by 19 features. 

 

       Fig 3.2 China dataset description 

 

There are eighteen independent features and one dependent feature i.e., ‘effort’. In order 

to get the features that have strong relation with the target feature i.e., ‘Effort’, feature 

selection was applied. We have selected seven features ‘AFP’, ‘Input’, ‘Output’, 

‘Enquiry’, ‘File’, ‘Added’, ‘N_effort’ and dropped the rest. 

 

3.1.3 COCOMO Dataset 

There are 63 software projects in the COCOMO data set, comprising corporate, research, 

and system projects, that are described by 19 features. 

 

 

     Fig 3.3 COCOMO dataset description 
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There are eighteen independent and one dependent feature i.e., ‘actual’. We have applied 

feature selection technique and the features which are less correlated to the effort are 

dropped from the dataset.  

 

3.1.4 Desharnais Dataset 

Desharnais dataset was extracted from PROMISE repository. It is composed of 81 

software projects with 12 features 

 

 

    Fig 3.4 Desharnais dataset description 

There are eleven independent and one dependent feature i.e., ‘Effort’. We have applied 

feature selection technique and the features which are less correlated to the effort are 

dropped from the dataset. The features which we selected for our research are ‘Length’, 

‘Transactions’, ‘Entities’, ‘PointsNonAdjust’, ‘PointsAjust’. 

 

3.1.5 Maxwell Dataset 

The Maxwell dataset comprises information on a number of projects involving Finnish 

trade banks. The Maxwell dataset contains 63 projects data with 25 different attributes. 

 

 

    Fig 3.5 Maxwell dataset description 
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There are 24 independent features and one dependent feature i.e., ‘effort_D’. We have 

applied feature selection technique and the features which are less correlated to the effort 

are dropped from the dataset. There are 14 features which we selected for our research. 

 

3.2 Ensemble Models 

 

Ensemble techniques integrate models provided by different models to produce superior 

outcomes. When compared to a single model, ensemble techniques often produce more 

accurate findings [33]. The two commonly used ensemble models are bagging and 

AdaBoost. In our research we have used these two ensemble models and tune the 

‘base_learner’ hyperparameter with three machine learning models: elastic net, random 

forest and SVR. 

 

3.2.1 Bagging 

Bootstrap aggregation is sometimes known as 'bagging.' It's a meta-algorithm that 

improves the accuracy of machine learning models for classification and regression. It 

aids to prevent overfitting by reducing variance. It's most typically seen in decision tree 

methods. A subdivision of the model averaging method is bagging [34]. 

 

3.2.2 AdaBoost 

Boosting is an ensemble technique used to build a robust classifier from a huge number 

of weak ones. It's done by joining together weak models to generate a model. To begin, a 

model is built using the training data. The second model is then created in order to resolve 

problems of the first. This approach is repeated unless the entire training data set has been 

successfully forecasted [34]. 

 

3.3 Machine Learning Models 

 

Machine learning is a branch of computer science that allows machines to learn without 

being explicitly programmed. One of the most amazing technologies one has ever 

encountered is machine learning. As the name suggests, it allows the computer to 
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understand, making it more human-like. Machine learning is presently used in far more 

locations than one might imagine. 

 

3.3.1 Decision Tree Regressor 

The Decision Tree is one of the most popular and useful supervised learning models. It 

has the ability to handle both regression and classification problems. Decision tree 

regression analyses an object's attributes and trains a model in the shape of a tree to 

forecast future data and deliver meaningful continuous output [35]. 

 

3.3.2 Random Forest 

Random Forest is built on ensemble learning, which is an approach for addressing 

complicated problems by combining numerous classifiers and enhancing the performance 

of the model. Random Forest is a learner that averages the outcomes of numerous decision 

trees on different subsets of a dataset to enhance the dataset's anticipated accuracy. 

Instead, then relying on a decision tree, it collects forecasts from every tree and predicts 

the final output based on the majority of votes. It becomes more accurate as the forest 

grows denser [36]. 

 

3.3.3 Linear Regression 

Linear regression is one of a supervised machine learning algorithm. It's largely utilised 

for forecasting and figuring out how features interact. Different regression models look 

at various types of correlations between dependent and independent features and employ 

various amounts of independent features Given an independent feature (x), linear 

regression is used to predict the value of a dependent feature (y). A linear relationship 

between x (input) and y (output) is discovered using this regression technique. [37]. 

 

3.3.4 Lasso Regression 

This is a regularisation strategy that uses a Shrinkage method, also known as the penalised 

regression method, to choose features. The Least Absolute Shrinkage and Selection 

Operator, or Lasso, is a regularisation and model selection tool. Lasso regression refers 

to a model that employs the L1 regularisation technique [38]. 
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3.3.5 Ridge Regression 

Ridge regression, like lasso regression, constrains the coefficients by inserting a penalty 

component. Unlike lasso regression, ridge regression uses the square of the coefficients. 

L2 Regularization is another term for ridge regression [38]. 

 

3.3.6 Elastic Net 

To regularise regression models, elastic net linear regression employs both lasso and  

ridge penalties. The methodology combines the lasso and ridge regression methods to 

improve the regularisation of statistical models by learning from their flaws. Variable 

selection and regularisation are done simultaneously with the elastic net approach [39]. 

 

3.3.7 SVR 

SVR is a machine learning regression technique that relies on SVMs. Support vector 

techniques to machine learning tasks have a huge variety of applications due to their 

performance as well as the fact that they can be effectively linked with "kernel functions," 

allowing for a true nonlinear transformation of the input data space. Within a given 

threshold value, SVR tries to match the best line (distance between hyperplane and 

boundary line). 

 

3.4 SMOTER 

 

Many learning algorithms have issues with imbalanced domains. These issues are 

distinguished by an uneven proportion of cases accessible for the most critical ranges of 

the target variable to the user. To combat this problem, SMOTE is a well-known 

algorithm for classification problems. The basic idea behind this method is to leverage 

the cases' closest neighbours to artificially insert additional minority class examples. 

Furthermore, the majority of class examples are under-represented, resulting in a more 

balanced data collection. Torgo [40] proposed a new algorithm SMOTER which is a 

variant of the SMOTE algorithm that addresses the problem of imbalanced domains in 

regression applications [41]. 
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3.5 Performance Metrics 

The next step is to verify the model's effectiveness on test datasets after performing 

feature selection, applying different models, and obtaining the output in the form of a 

class or a continuous value. Machine learning models are evaluated using a variety of 

performance criteria. We used three performance indicators in our research: MMRE, 

MdMRE, and PRED (25). 

 

3.5.1 MRE 

MRE is a well-known criterion for picking the best software effort prediction model from 

a pool of competing models. The difference between actual and planned effort is 

calculated by MRE. It is used to find if differences in performance are statistically 

significant [42]. 

                                               𝑀𝑅𝐸𝑖 =
|𝑥𝑖 − �̂�𝑖|

𝑥𝑖
                                                               (5.1) 

 

(Where 𝑥𝑖 , �̂�𝑖 are the actual and predicted values, respectively, for test instance i). 

 

3.5.2 MMRE 

An estimate of the effort is the mean of this distribution, that gives the relative and mean 

relative errors. It has become the de facto standard for evaluating the precision of software 

prediction models. The model with the lowest MMRE is the one to be used [43]. 

                                    𝑀𝑀𝑅𝐸 =  
∑ 𝑀𝑅𝐸𝑖

𝑁
𝑖=1

𝑁
                                                                  (5.2) 

 

3.5.3 MdMRE 

MdMRE value provides the median of the relative error. 

                          𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸1,𝑀𝑅𝐸2, 𝑀𝑅𝐸3, … )                                  (5.3) 
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3.5.4 PRED(25) 

PRED(25), is defined as the percentage of forecasts that are within 25% of the actual 

values, is a popular alternative error metric [42]. This phrase is commonly used in the 

literature to refer to the percentage of projects that are accurate to a particular degree. 

 

                            𝑃𝑅𝐸𝐷(25) =  
100

𝑁
∑ {1, 𝑖𝑓 𝑀𝑅𝐸𝑖  ≤

25

100
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.         

𝑁

𝑖=1

                                  (5.4) 
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CHAPTER 4 

PROPOSED WORK 

The purpose of our first research is to compare the usage of two common 

ensemble approaches (bagging and boosting) to reduce the error for prediction. We used 

random forest, SVR and elastic net as the base learners. In this study Albrecht, 

Desharnais, and China datasets were used for experimentation. We also performed feature 

selection and considered only those features that have strong correlation with target 

feature i.e., effort. The MMRE and PRED(25) results demonstrate that utilising elastic 

net as the base learner for AdaBoost outperforms the other models. 

 

Another research was carried out to study the impact of SMOTER to predict effort 

estimation by using machine learning algorithms. The different machine learning models 

that we have applied are decision tree regressor, random forest, linear regression, lasso 

regression and ridge regression. In this study we used three datasets i.e., China, Maxwell 

and COCOMO81. The two-performance metrics MMRE and PRED(25) were used to 

evaluate the results of each model using SMOTER and without using SMOTER. We have 

seen a significant decrease in error of each model after applying SMOTER. 

 

4.1 Flow Diagram of Comparative Analysis of Ensemble Models for 

Software Effort Estimation. 

For our study we selected three freely available datasets namely Albrecht dataset, 

Desharnais dataset and China dataset. The framework of research methodology is 

represented in Fig 4.1. Firstly, we imported all the necessary libraries and these three 

datasets. After importing the datasets, the pre-processing technique was applied for 

removing null values and negative values if exist. 
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         Fig 4.1 Framework of Comparative Analysis of Ensemble Models for Software Effort Estimation. 

 

4.1.1 Feature Selection 

After importing necessary data next step is feature selection. 

To train a model, we collect massive amounts of data to assist the machine in learning 

better. Typically, a huge amount of the data obtained is noise, and some of the features in 

our dataset may not have a substantial impact on our model's performance. Furthermore, 

having a large amount of data can slow down the training process, resulting in a slower 

model. This useless data may also cause the model to learn incorrectly. Apart from 

selecting the appropriate model for our data, we must also select the appropriate data for 

our model. 

Feature selection is a technique for limiting the input features to your model by removing 

noise and only considering useful characteristics. It's the process of selecting suitable 

machine learning model based on the type of problem you're trying to solve. This is 
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achived by adding or eliminating crucial traits without changing their meaning. It 

improves in the reduction of data noise as well as the size of input data [44]. 

Feature selection was done with the help of correlation matrix. All the independent 

features having correlation greater than 0.5 with our dependent feature ‘effort’ considered 

for experimentation and rest of the features are dropped.  

 

 

                  Fig 4.2 Correlation matrix of Albrecht datset 

Fig 4.2, is the correlation matrix of Albrecht dataset and the features having correlation 

greater than 0.5 with target variable are considered. We have selected six independent 

features for our research.  

 

         Fig 4.3 Correlation matrix of China datset 



 

19 

 

Fig.4.3, is the correlation matrix of China dataset and seven independent features which 

has a strong correlation i.e., correlation value greater than 0.5 with dependent feature 

‘effort’ are selected. 

 

        Fig 4.4 Correlation matrix of Desharnais datset 

  

Fig 4.4, shows the correlation matrix of Desharnais dataset and five features were selected 

having correlation greater than 0.5 with effort.  

 

4.1.2 Train-Test Split 

The train-test split is a technique for assessing a machine learning model’s performance. 

It can be used for both classification and regression tasks. A dataset is split into two 

subsets as part of the method. The training dataset is the first subset employ to fit the 

model. Instead, the model receives the dataset's input element, which generates 

predictions and we compares that prediction with the predicted values.  

 

For our research we have split our dataset in 70-30 ratio. 70% of the dataset was 

considered for training our models and 30% of the dataset considered for testing our 

result. 
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4.1.3 Applying Ensemble Models with Hyperparameter Tuning 

After splitting our data, we train our data with the ensemble models. For predicting the 

software effort, we have used two ensemble models i.e., bagging and AdaBoost. Firstly, 

we have applied randomized search CV with a cross validation of 10 on three machine 

learning models i.e., random forest, SVR and elastic net and obtained the best parameters 

from them. The parameters that gave us the most accurate values of effort was further 

considered and were passed as the base learners for bagging and AdaBoost. We have 

applied randomized search CV with cross validation value of 5 on bagging and AdaBoost. 

In this study we have compared the results on the basis of three performance measures 

i.e., MMRE, MdMRE and PRED(25). 
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4.2 Flow Diagram of Software Effort Estimation Using Synthetic 

Minority Over-Sampling Technique for Regression (SMOTER) 

 

For our research we choose three freely available datasets i.e., China, COCOMO81 and 

Maxwell. The framework of research methodology is represented in Fig 4.5. We imported 

all the libraries and these three datasets that were required for our study. After this we 

pre-processed our datasets by checking null and missing values. There was no missing 

value present in our datasets.  

 

 

 
Fig 4.5 Framework of Software Effort Estimation Using Synthetic Minority Over-Sampling Technique for 

Regression (SMOTER) 

 

4.2.1 Data Distribution 

          

Fig 4.6 Data distribution of effort in China dataset               Fig 4.7 Data distribution of effort in COCOMO 

dataset 
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      Fig 4.8 Data distribution of effort in Maxwell dataset           

   

Data distribution of the target variable effort of China, COCOMO and Maxwell dataset 

is represented by Fig 4.6, Fig 4.7 and Fig 4.8 respectively. We can conclude from the 

histogram that the target variable is not evenly distributed. There are lot of missing data 

and distribution of data is not balance. To get better accuracy of our models the data 

should be balanced. 

 

4.2.2 Feature Selection 

Feature selection was done with the help of correlation matrix. All the independent 

features having correlation greater than 0.5 with our dependent feature ‘effort’ are 

considered for our further research. 

 

 

          Fig 4.9 Correlation matrix of China dataset 
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Feature selection to remove the features that doesn’t have high impact on our target 

variable. Correlation matrix was used for the feature selection process. Correlation matrix 

of China dataset (Fig 4.9) shows that there are two features which have very low impact 

on the target variable so we removed those features from the dataset.  

 

         Fig 4.10 Correlation matrix of COCOCMO dataset 

 

Fig 4.10 is a correlation matrix of COCOMO dataset. Correlation matrix reveals that there 

are seven features out of sixteen features which have low impact on target variable so, we 

can remove those features. So, for further study we considered only nine features. 

 

        Fig 4.11 Correlation matrix of Maxwell dataset 
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Maxwell correlation matrix (Fig. 4.11) shows that we can drop nine features from the 

dataset as they have low correlation with target variable. We split data into training and 

testing set in 70:30 ratio respectively. 

 

4.2.3 Applied Machine Learning Models 

After selecting the necessary features and splitting our dataset in training and testing data 

we applied machine learning models to get the estimated value of  the software effort. We 

have considered five machine learning algorithms in our study they are decision tree 

regressor, random forest, linear regression, lasso regression and ridge regression. After 

training our models with training dataset we test our models using testing. We used two 

performance metrics to evaluate the performance i.e., MMRE and PRED(25). 

 

4.2.4 Applied Machine Learning Models after Using SMOTER 

In order to improve the results of our models and to study the impact of data balancing 

on our models we applied SMOTER which is a data balancing technique. 

After balancing our data with the help of SMOTER we again train and test our machine 

learning models on the balanced dataset. Later check the performance of our models and 

compared the results with the previous results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 

 

CHAPTER 5 

RESULT ANALYSIS 

We have acquired the results of ensemble models with different base learners 

on the three selected datasets. For data balance, we used an over-sampling technique that 

resulted in a considerable reduction in error. For comparing the performance of our 

models we have used two performance metrics namely MMRE and PRED(25) values. 

The results are shown below with the help of tables and bar graphs. 

 

5.1 Result of Comparative Analysis of Ensemble Models for Software 

Effort Estimation 

 

The MMRE value was used to determine the difference between the estimated and actual 

effort. To get a better prediction, the difference between the two should be as minimum 

as possible. Table 5.1, shows the result of Albrecht dataset. AdaBoost with elastic net as 

the base learner gives us the best result for Albrecht dataset with the MMRE value of 

0.373 which is the least among the rest of the models followed by bagging with elastic 

net i.e., 0.460. AdaBoost is a boosting technique which offers an iterative approach to 

turn weak classifiers into strong ones by learning from their mistakes. It improves 

prediction accuracy by learning from its mistakes and correcting them. 

 

 

 

China dataset results are shown in Table 5.2. AdaBoost with elastic net as a base learner 

offers the best result for our China dataset with the MMRE value of 0.193 which is the 

least among the rest of the models followed by bagging with elastic net as a base learner 

i.e., 0.209. AdaBoost with base learner as random forest and elastic net and bagging with 

base learner as random forest has more percentage of values close to the actual value i.e., 

80%. The findings China dataset demonstrate that AdaBoost with base learner as elastic 

For Albrecht dataset AdaBoost with elastic net shows the best results. 
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net predicts software effort with the maximum accuracy, as the relative error is quite low 

and the predicted values are very close to the actual value. 

 

 

 

 

Table 5.3, shows the results of Desharnais dataset. AdaBoost with base learner as elastic 

net gives us the best result for our Desharnais dataset with the MMRE value of 0.626 

which is the best compared to the other models followed by bagging with elastic net as a 

base learner i.e., 0.710.  

AdaBoost with base learner as random forest and SVR and bagging with base learner as 

SVR has more percentage of values close to the actual value i.e., 48% 

 

 

 

 

 

 

Table 5.1 Results of Albrecht dataset for ensemble models 

 

 

 

 

 

 

 

 

 

 

 

Models MMRE MdMRE PRED (25) 

RF 3.162 0.839 12.0 

SVR 2.609 0.737 20.01 

Elastic Net 1.655 0.522 20.0 

AdaBoost with RF 0.513 0.423 25.0 

AdaBoost with SVR 0.789 0.602 25.0 

AdaBoost with Elastic Net 0.373 0.311 37.5 

Bagging with RF 0.591 0.661 12.5 

Bagging with SVR 0.790 0.593 25.0 

Bagging with Elastic Net 0.460 0.428 25.0 

According to MMRE value AdaBoost with elastic net gives the best value for 

Desharnais dataset. 

 

According to MMRE and PRED(25) value, AdaBoost with elastic net gives the 

best value for China dataset. 
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Table 5.2 Results of China dataset for ensemble models 

 

Table 5.3 Results of Desharnais dataset for ensemble models 

 

 

 

           

(a)MMRE values               (b) MdMRE value 

 

Models MMRE MdMRE PRED (25) 

RF 3.943 0.857 11.60 

SVR 5.942 2.012 9.82 

Elastic Net 3.433 0.968 12.0 

AdaBoost with RF 0.221 0.093 80.66 

AdaBoost with SVR 1.461 0.594 23.33 

AdaBoost with Elastic Net 0.193 0.103 80.0 

Bagging with RF 0.232 0.095 80.0 

Bagging with SVR 1.163 0.598 29.33 

Bagging with Elastic Net 0.209 0.110 76.66 

Models MMRE MdMRE PRED (25) 

RF 0.915 0.388 29.4 

SVR 1.84 0.504 20.0 

Elastic Net 0.990 0.993 0.0 

AdaBoost with RF 0.764 0.264 48.0 

AdaBoost with SVR 0.913 0.353 48.0 

AdaBoost with Elastic Net 0.626 0.340 36.0 

Bagging with RF 0.794 0.298 44.0 

Bagging with SVR 0.934 0.353 48.0 

Bagging with Elastic Net 0.710 0.381 36.0 
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       (c) PRED(25) value 

       Fig 5.1 Performance measures for Albrecht dataset 

Fig 5.1(a), shows the graphical representation of MMRE value for Albrecht dataset. 

AdaBoost with random forest gives better MMRE value than boosting with random forest 

i.e., 0.513. SVR as the base learner for AdaBoost shows slightly better results as 

compared when used with bagging. AdaBoost with elastic net provides the best MMRE 

value for Albrecht dataset i.e., 0.373. 

Fig 5.1(b) shows the result for MdMRE. Random forest and elastic net when used as base 

learner with AdaBoost give better MdMRE values than with bagging. AdaBoost with 

elastic net provides best MdMRE value i.e., 0.311.  

Fig 5.1(c) shows PRED(25) values. AdaBoost gives better results with all the base 

learners as compared to bagging. AdaBoost with elastic net provides the best result of 

PRED(25) i.e., 37.5.     

 

 

          

(a)MMRE values               (b) MdMRE value 
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           (c) PRED(25) value 

       Fig 5.2 Performance measures for China dataset 

 

Fig 5.2(a), shows the graphical representation of MMRE value for China dataset. 

AdaBoost with random forest gives slightly better MMRE value than boosting with 

random forest i.e., 0.221. SVR as the base learner for boosting gives better results as 

compared when used with AdaBoost. AdaBoost with elastic net provides the best MMRE 

value for China dataset i.e., 0.193. 

Fig 5.2(b) shows the result for MdMRE. AdaBoost with all the base learners gives the 

better value as compared to bagging.  

Fig 5.2(c) shows PRED(25) value. AdaBoost with random forest, AdaBoost with elastic 

net and bagging with random forest gives the best results for PRED(25) i.e., 80.  

 

 

          

(a)MMRE values               (b) MdMRE value 
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       (c) PRED(25) value 

       Fig 5.3 Performance measures for Desharnais dataset 

Fig 5.3(a), shows the graphical representation of MMRE value for Desharnais dataset. 

AdaBoost with random forest gives better MMRE value than boosting with random forest 

i.e., 0.764. SVR as the base learner for AdaBoost gives slightly better results (0.913) as 

compared when used with bagging (0.934). AdaBoost with elastic net provides the best 

MMRE value for Desharnais dataset i.e., 0.626. 

Fig 5.3(b) shows the result for MdMRE. Random forest and elastic net when used as base 

learner with AdaBoost give better MdMRE values than with bagging. SVR as the base 

learner provides the same value when used with bagging and AdaBoost i.e., 0.353. 

Fig 5.3(c) shows PRED(25) values. AdaBoost with random forest, AdaBoost with SVR 

and bagging with SVR gives best PRED(25) value i.e., 48. 

 

 

 

 

 

 

 

 

 

 

 

 

 

AdaBoost with elastic net provides the best results for all the datasets 

followed by bagging with elastic net. 
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5.2 Result of Software Effort Estimation Using Synthetic Minority 

Over-Sampling Technique for Regression (SMOTER) 

 

Table 5.4 gives the result for China dataset, there is a significant decrease in MMRE value 

after applying SMOTER on our dataset. Random Forest gives the error of 0.09 before 

balancing our dataset, which was later decreased to 0.06 after using data oversampling 

technique (SMOTER). PRED(25) which is the predicted effort that falls in 25% of the 

actual value. This depicts the percentage of value that is close to 25% of our actual effort. 

All the models show an increase in PRED percentage after applying SMOTER. The 

highest percentage we got is 98 percentage for random forest.  

Table 5.6 depicts the result for COCOMO81 dataset. Here all the models perform better 

after using oversampling technique for regression on the dataset. There is notable 

decrease in error i.e., MMRE value and an increase in number of results close to the actual 

value i.e., PRED(25) value.  

Table 5.7 shows result for Maxwell dataset. There is a decrease in MMRE value for all 

the machine learning models and slight increase in PRED(25) value. 

 

Table 5.4 Results of China dataset  

 

Table 5.5 Results of COCOMO dataset  

 

Models 
Before applying SMOTER After applying SMOTER 

MMRE PRED(25) MMRE PRED(25) 

Decision Tree Regressor 0.10 94.0 0.09 94.5 

Random Forest 0.09 98.6 0.06 98.6 

Linear Regression 0.28 75.3 0.12 87.6 

Lasso Regression 0.24 74.6 0.16 83.5 

Ridge Regression 0.26 79.3 0.12 87.2 

Models 
Before applying SMOTER After applying SMOTER 

MMRE PRED(25) MMRE PRED(25) 

Decision Tree Regressor 1.5 5.2 1.14 46.6 

Random Forest 2.6 5.2 2.6 20.0 

Linear Regression 15.1 10.5 4.8 20.0 

Lasso Regression 14.4 15.7 4.5 20.0 

Ridge Regression 7.9 10.5 2.3 13.3 
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Table 5.6 Results of Maxwell dataset  

 

 

           

(a) MMRE values               (b) PRED(25) values 

Fig 5.4 Performance measures for China dataset.  

Fig 5.4(a) depicts MMRE value and Fig 5.4(b) depicts the PRED(25) value. Both shows 

the better performance after using SMOTER 

 

        

(a) MMRE values               (b) PRED(25) values 

Fig 5.5 Performance measures for COCOCMO dataset.  

 

Models 
Before applying SMOTER After applying SMOTER 

MMRE PRED(25) MMRE PRED(25) 

Decision Tree Regressor 0.76 31.5 0.60 56.6 

Random Forest 1.31 31.5 0.49 66.6 

Linear Regression 1.25 26.3 0.86 33.3 

Lasso Regression 1.25 26.3 0.85 33.3 

Ridge Regression 1.18 31.5 0.80 33.3 
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Fig 5.5 (a) depicts MMRE value and Fig 5.5(b) depicts the PRED(25) value. Linear 

regression and lasso regression shows a huge difference in MMRE value after applying 

SMOTER. Other models also perform better after balancing the data.   

 

           

(a) MMRE values               (b) PRED(25) values 

Fig 5.6 Performance measures for Maxwell dataset.  

 

Fig 5.6(a) depicts MMRE value and Fig 5.6(b) depicts the PRED(25) value. Both shows 

the better performance after using SMOTER but random forest gave the best result after 

data balancing. 

 

 

 

 

 

 

 

 

 

The result shows that there is a significant decrease in error value 

for all the model after using oversampling technique. 
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5.3 Threats to Validity 

 

Internal Validity – In this study we used correlation metrics as a feature selection 

strategy in this study, however depending on the type of dataset, other techniques might 

be used alternatively. Any parameter with a real number domain can have an endless 

number of values, however testing all conceivable parameter values in our study is 

unfeasible. Although more values can be examined, we believe that the values for each 

of the parameters studied are within a suitable range. 

All models used in our research regarding the impact of SMOTER are generic machine 

learning models. We can hyper tune the parameters and apply randomized search CV or 

grid search CV to increase the accuracy. By doing hyperparameter tuning we can test 

various parameters of our models with different values and can find the best parameters 

which in turn can give us the better results. 

 

External Validity – The external threat to the study's validity is whether the findings can 

be applied to other contexts. As a result, it's critical to determine how extensively the 

study's conclusions can be applied. For all datasets, AdaBoost with elastic net yields the 

best results, followed by bagging with elastic net. To address this threat, we selected three 

datasets including data from a variety of software projects. Because these datasets were 

acquired from many organisations, they are diverse and cover a wide range of 

features. Taking into account both category and numerical features could change the 

results of this study. Another threat is that we only utilised three machine learning models 

to tune the base learner hyperparameter; other models are recommended to generalise the 

results of this study. 

 

Construct Validity – Measurement validity is one of the important threats under 

construct validity. In our research we used three performance metrics: MMRE, MdMRE 

and PRED(25). MMRE is one of the most widely used performance measure for 

numerical type of data. 
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CHAPTER 6 

CONCLUSION  

Estimating software effort accurately is very crucial step that has to be taken 

care during the planning phase of the software as failing to do so can affect the quality of 

the software. Machine learning and ensemble models have been employed in the past for 

predicting software effort. Hyperparameter tuning has also been observed in a number of 

researches. We extended these studies and tune the base learners of ensemble models.  

We have done our research on Albrecht, Desharnais and China dataset. Feature selection 

is a very important as it improves the accuracy and reduce the underfitting problem of the 

model. The features that were not correlated with our target variable were eliminated from 

the dataset. We used ensemble models and tune their base learners to predict the SEE. 

We have applied randomized search CV on our base learners i.e., random forest, SVR 

and elastic net to obtained the best parameters. Tuning the hyperparameters helped us to 

test the datasets with different values and get the best parameters. We passed those best 

parameters to our ensemble models, bagging and AdaBoost. The performance of models 

were calculated using MMRE, MdMRE, PRED(25).  

The results show that the AdaBoost with elastic net surpasses rest of the models on all 

evaluation criteria especially for Albrecht and China dataset. As a result of these findings, 

we conclude that the AdaBoost with elastic net model is a promising approach for 

estimating software effort. 

 

For our research on effort estimation using SMOTER, we have tried to decrease the error 

of effort prediction by improving the quality of the datasets. Research was done on China, 

Maxwell and COCOMO81 datasets by using machine learning models. In our study we 

implemented five models which are decision tree regressor, random forest, linear 

regression, lasso regression and ridge regression. In order to enhance the quality of 

datasets we tried to balance the dataset by using SMOTER. We calculated the MMRE 

and PRED(25) values of our models before and after applying SMOTER. We have seen 

that this over-sampling technique has reduced the error of our models. The result shows 
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a remarkable decrease in error rate for each of the machine learning models after applying 

data balancing technique. All the datasets show the similar results.  

So, we can conclude from our research that SMOTER can be used as one of the pre-

processing techniques to balance our data for regression problems.  
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CHAPTER 7 

FUTURE WORK 

As for the further research we can work on AdaBoost with elastic net for other 

datasets also as it has given us the best results for all the three datasets that we have used. 

We can improve the research by tuning the hyperparameters of bagging and AdaBoost 

with other values. Feature selection techniques can also be improved by using different 

methods for selection of relevant features. We can try other weak learners as base learners 

in bagging and AdaBoost for SEE. 

We can use ensemble machine learning models like bagging, boosting or stacking instead 

of machine learning models for effort prediction using SMOTER. In our study we have 

used only three freely available datasets but there are many paid software effort estimation 

datasets also available, we can extend our study on those datasets with ensemble models. 

As results of our research shows a significant decrease in error rate after applying 

SMOTER, so in order to get better results we can use this technique on other datasets 

having continuous and imbalanced type target feature. 
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