

COMPARISION OF ENSEMBLE LEARNING MODELS

AND IMPACT OF DATA BALANCING TECHNIQUE FOR

SOFTWARE EFFORT ESTIMATION

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE

REQUIREMENTS

 FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By

Misha Jawa

(2K20/SWE/14)

Under the supervision of

Ms. Shweta Meena

(Assistant Professor)

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

 May, 2022

iv

ABSTRACT

Project management is a critical component of every software project's success.

Estimating the cost and effort of software development at the outset of the project is

one of the most important responsibilities in software project management. Estimating

effort allows project managers to more effectively manage resources and activities. The

primary purpose of this study was to construct and compare the usage of two common

ensemble approaches (bagging and boosting) to improve estimator accuracy and to

study the impact of Synthetic Minority Over-Sampling Technique for Regression

(SMOTER) to predict effort estimation by using machine learning algorithms.

Random forest, support vector regression, elastic net, decision tree regressor, linear

regression, lasso regression, and ridge regression are some of the machine learning

techniques we've implemented. For our study we used Albrecht, China, COCOMO81,

Desharnais and Maxwell dataset. We also performed feature selection and considered

only those features that have strong correlation with target feature i.e., effort.

The two-performance metrics Mean Magnitude Relative Error (MMRE) and PRED(25)

results demonstrate that utilising elastic net as the base learner for AdaBoost

outperforms the other models and there is a significant decrease in error of each model

after applying SMOTER.

v

INDEX

Content Page Number

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Index v

List of Figures vii

List of Tables viii

List of Abbreviations ix

CHAPTER 1 INTRODUCTION

 1.1 Motivation 2

 1.2 Research Question 3

 1.3 Thesis Structure 3

CHAPTER 2 LITERATURE REVIEW 4

CHAPTER 3 TERMONOLOGIES USED

3.1 Dataset Used 8

3.1.1 Albrecht Dataset 8

3.1.2 China Dataset 9

3.1.3 COCOMO81 Dataset 9

3.1.4 Desharnais Dataset 10

3.1.5 Maxwell Dataset 10

3.2 Ensemble Models 11

3.2.1 Bagging 11

3.2.2 AdaBoost 11

3.3 Machine Learning Models 11

3.3.1 Decision Tree Regressor 12

3.3.2 Random Forest 12

3.3.3 Linear Regression 12

vi

3.3.4 Lasso Regression 12

3.3.5 Ridge Regression 13

3.3.6 Elastic Net 13

3.3.7 SVR 13

3.4 SMOTER 13

3.5 Performance Metrics 14

3.5.1 MRE 14

3.5.2 MMRE 14

3.5.3 MdMRE 14

3.5.4 PRED(25) 15

CHAPTER 4 PROPOSED WORK

4.1 Flow diagram of Comparative Analysis of Ensemble 16

 Models for Software Effort Estimation

4.1.1 Feature Selection 17

4.1.2 Test-Train Split 19

4.1.3 Analysing ensemble Models with hyperparameter Tuning 20

4.2 Flow diagram of Software Effort Estimation Using Synthetic 21

 Minority Over-Sampling Technique for Regression (SMOTER)

4.2.1 Data Distribution 21

4.2.2 Feature Selection 22

4.2.3 Applied Machine Learning Models 24

4.2.4 Applied Machine Learning Models after Using SMOTER 24

CHAPTER 5 RESULT ANALYSIS

5.1 Result of Comparative Analysis of Ensemble 25

 Models for Software Effort Estimation

5.2 Result of Software Effort Estimation Using Synthetic 31

 Minority Over-Sampling Technique for Regression (SMOTER)

5.3 Threats to Validity 34

CHAPTER 6 CONCLUSION 35

CHAPTER 7 FUTURE WORK 37

REFERENCES 38

vii

LIST OF FIGURES

 Figure Name Page Number

Fig 3.1 Albrecht dataset description 8

Fig 3.2 China dataset description 9

Fig 3.3 COCOMO dataset description 9

Fig 3.4 Desharnais dataset description 10

Fig 3.5 Maxwell dataset description 10

Fig 4.1 Framework of Comparative Analysis of Ensemble 17

 Models for Software Effort Estimation

Fig 4.2 Correlation matrix of Albrecht dataset 18

Fig 4.3 Correlation matrix of China dataset 18

Fig 4.4 Correlation matrix of Desharnais dataset 19

Fig 4.5 Framework of Software Effort Estimation Using Synthetic 21

 Minority Over-Sampling Technique for Regression (SMOTER)

Fig 4.6 Data distribution of effort in China dataset 21

Fig 4.7 Data distribution of effort in COCOMO dataset 21

Fig 4.8 Data distribution of effort in Maxwell dataset 22

Fig 4.9 Correlation matrix of China dataset 22

Fig 4.10 Correlation matrix of COCOMO dataset 23

Fig 4.11 Correlation matrix of Maxwell dataset 23

Fig 5.1 Performance measure for Albrecht dataset

(a) MMRE value 27

(b) MdMRE value 27

(c) PRED(25) value 28

viii

Fig 5.2 Performance measure for China dataset

(a) MMRE value 28

(b) MdMRE value 28

(c) PRED(25) value 29

Fig 5.3 Performance measure for Desharnais dataset

(a) MMRE value 29

(b) MdMRE value 29

(c) PRED(25) value 30

Fig 5.4 Performance measure for China dataset

(a) MMRE value 32

(b) PRED(25) value 32

Fig 5.5 Performance measure for COCOMO dataset

(a) MMRE value 32

(b) PRED(25) value 32

Fig 5.6 Performance measure for Maxwell dataset

(a) MMRE value 33

(b) PRED(25) value 33

ix

LIST OF TABLES

 Table Name Page Number

Table 5.1 Result of Albrecht dataset for ensemble models 26

Table 5.2 Result of China dataset for ensemble models 27

Table 5.3 Result of Desharnais dataset for ensemble models 27

Table 5.4 Results for China dataset 31

Table 5.5 Results for COCOMO dataset 31

Table 5.6 Results for Maxwell dataset 32

1

CHAPTER 1

INTRODUCTION

Project management is an essential component of every software project's

success. Estimating the cost and effort of software development at the outset of the project

is one of the most vital responsibilities in project management. Project managers can

better manage resources and activities by estimating effort. The majority of this software

development cost is made up of human effort, and it gives estimates in person-months.

Effort estimation is used to determine how many months the programme will take to build

and how many resources will be required to accomplish the project on time. Both clients

and developers benefit greatly from realistic cost estimates. It can be used to generate

contract negotiations, proposals, monitoring, scheduling, and control requests.

Management may approve proposed systems that exceed allowable budgets, have

underdeveloped functionalities and poor quality, and fail to execute on time due to major

cost underestimation. Overestimating software projects can result in the project receiving

more assets or the contract being lost during contract bidding, resulting in job loss.

Despite the fact that Software Effort Estimation (SEE) is critical in software project

development, there has been relatively little progress in the last thirty or forty years. One

of the most common causes of failure is inaccurate resource estimates. Even though there

are numerous software effort estimation models available, new models are still needed to

improve estimation accuracy since the problem of effort estimation and accuracy remains

the same. As a result of the emergence of software effort prediction models, researchers

are now attempting to estimate software work as precisely as possible.

Cost estimation accuracy is crucial because:

• It is used to identify the resources to be used for the project and how well these

assets will be utilized.

• Impacts of changes are assessed and re-planning is facilitated.

2

• Control and management of project is easier when resources are compatible to

actual needs.

• Customers anticipate the least amount of variance between real and estimated

development expenses.

1.1 Motivation

The biggest issue that data scientists face nowadays is data imbalance. The class

imbalance problem in machine learning relates to classification jobs in which data classes

are not represented equally. In many real-world applications, the nature of the task

necessitates a skewed in the classification process of a binary or multi-class classification

problem [1]. This problem is also faced in dataset when target value is continuous which

is known as imbalanced regression. In reality, the continuous structure of the target

variable in regression data sets complicates the process because there are potentially an

unlimited number of values to deal with [2]. To overcome this issue of imbalance data,

data oversampling is done. Data oversampling is a technique for producing data that

closely reflects the underlying distribution of real data. Synthetic Minority Over-

Sampling Technique (SMOTE) is an oversampling technique for balancing datasets [3].

To model the intricate link between effort and software properties, machine learning

techniques are frequently used. Researchers have used a variety of machine learning-

based estimators such as Regression Trees (RT), Support Vector Regression (SVR), and

ensemble models like random forest, Artificial Neural Network (ANN), Multilayer

Perceptron (MLP), Generalized Linear Model (GLM) [4] [5] [6]. Ensemble learning

approaches have recently gained popularity. The results depicts that in the vast large

majority of cases, Ensemble Effort Estimation (EEE) methods outperform single models

[7]. There have been several different approaches for estimating software expenses, or

SEE, but there have been very few studies on hyperparameter tuning.

Underestimating the software effort or resource requirements for a software project can

result in an unrealistic timeline, cost, and manpower estimates. It also puts more strain

on the engineers' workload. Overestimating the work, on the other side, is likely to

result in low engineer productivity and a contract loss due to prohibitive prices.

3

1.2 Research Questions

This thesis focused on mainly these research questions:

RQ 1: To check whether ensemble techniques improve the prediction performance as

compared to individual regression techniques used or not?

RQ2: Does hyperparameter tuning enhance the results for software effort prediction?

RQ3: Which is the best ensemble technique for software effort prediction?

RQ4: Does data balancing improves the result of prediction?

1.3 Thesis Structure

The main purpose of this thesis is to compare the accuracy of numerous ensemble

learning algorithms for estimating software effort. The results obtained from our studies

will help to improve the prediction in future. To achieve this, we have used two

ensembles learning i.e., AdaBoost and bagging. To improve the results, we have also

tuned the ‘base_learner’ hyperparameter with several weak learners such as SVR, random

forest and elastic net. These techniques are the modern trends in the field of effort

estimation. To evaluate the results three performance metrics MMRE, MdMRE and

PRED(25) have been considered. For results, these techniques are applied on Albrecht,

China and Desharnais dataset consisting of 24, 499 and 81 projects respectably.

The rest of the thesis is organized into varied chapters. In chapter 2, related work done

for the research have been explained in brief. In chapter 3, all the terminologies used are

described which includes datasets, Models of machine learning that have been utilised as

the base learners in our ensemble models and the performance metrics. In chapter 4 the

research methodology which describes the flow of our research is explained. In chapter 5

the results after application of different ensemble techniques have been explained. The

impact of data balancing techniques on prediction has also been discussed. Conclusion

and future work have been explained in chapter 6 and chapter 7 respectively. Finally, all

the references used in out thesis have been mentioned.

4

CHAPTER 2

LITERATURE REVIEW

In calculating the development cost of a software project, software effort

estimation is critical. In a prior study, many methodologies such as empirical techniques,

algorithmic effort estimation, regression techniques, theory-based techniques, and

machine learning were provided, as well as many models. In software project

management, recognising and controlling crucial variables that affect development effort

is critical.

The accuracy of our data prediction is mostly determined by two factors: first, the models

we use, and second, the dataset. We must choose models that will produce the best results

for the type of data we are predicting, whether it is a classification or continuous data.

The dataset we're evaluating should be of high quality, which implies it should be

balanced. Because obtaining a balanced dataset is challenging, data oversampling is used

to achieve that goal.

The large majority of machine learning regression models are based on data that is

balanced or roughly balanced. When dealing with unbalanced data, such models will be

misleading and perform badly. We have two alternatives for dealing with imbalanced data

using these models: increase the representation of the interest observations vs. the other

observations, or lower the representation of the interest observations vs. the other

observations [8]. The SMOTE algorithm employs an oversampling method to rebalance

the original training set. SMOTE's core concept is to create instances rather than simply

replicating minority class occurrences. Interpolating across various minority class

instances within a single neighbourhood in order to produces new data [9]. This problem

also exists in datasets with regression as the target value, and SMOTER is employed to

solve it.

In early 20’s machine learning models had an edge in field of prediction, machine learning

techniques were found in numerous applications like link prediction [10] , fault prediction

[11], customer churn prediction [12], software effort prediction [4] however, it has

5

recently been supplanted by ensemble approaches, which integrate the judgments of

numerous models to increase overall performance. Ensemble approach

comprises Bagging, which incorporates the outputs of many models to produce a

generalised result, boosting, which aims to overcome the weaknesses of the earlier

models, and stacking, which merges the predictions of various weak learners using the

soft or hard voting concept, are all examples of the ensemble approach.

A. Priya Varshini, in her paper tried to address SEE by using different machine learning

techniques namely all types of regression models, random forest and Neural Network

(NN) to recognize best performing model. Mean Squared Error (MSE), Mean Absolute

Error (MAE), Root Mean Square Error (RMSE) and R-Squared performance metrics

were considered for evaluation. Support Vector Machine (SVM) outperform other

machine learning methods in her comparison analysis [13].

The Genetic Algorithm (GA) has been widely utilised to estimate effort accurately.

According to Burgess and Lefley [14], the ability of "Genetic Programming" has been

employed for effort estimation and comparing them, with the ANN, Linear LSR, and

other methods. The comparison is made using the Desharnais dataset, and the findings

are completely dependent on the fitness function utilised.

On the basis of machine learning, Braga et al. [15] suggested an approach that provides

effort estimation and confidence interval. The authors advise that substantial confidence

intervals be used. This confidence range is independent of the error probability

distribution in the training set. Several experiments have been conducted with two

software project datasets: "Desharnais and NAS," which are expected to investigate

machine learning algorithms for reliable effort estimation. Following simulations, the

proposed strategy was able to generate confidence intervals, which are crucial for a client

of the effort estimating system. Martin et al. Lopez-Martin [16] in 2006 proposed a novel

methodology for estimating software development effort and offered an updated Fuzzy

Logic Model for measuring it. Elish [17] conducted a comparative study to develop

software effort prediction systems using machine learning approaches such as ANNs,

CBR, and RI (Rule Induction).

6

S. K. Palaniswamy, provide a method for increasing the accuracy of effort estimation

utilizing the stacking ensemble method and evolutionary algorithms to tune the

hyperparameters of the base and meta learners. They utilized four distinct base learners

to improve the accuracy of this stacking ensemble method: Linear Regression (LR), MLP,

Random Forest Regressor (RFR), and AdaBoost regressor. Based on their findings, they

believe that a combination of hyperparameter configurations can produce close to optimal

configuration setting values [18].

The paper by Bibi and Stamelos [19], has suggested a set of estimation criteria for

choosing on an acceptable machine learning technique for software development effort

estimation in terms of comprehensibility, causality, accuracy, handling of missing

information, dynamic updates, uncertainty, sensitivity, and application. As a result, the

author suggested various principles for selecting an acceptable estimation method based

on his needs and for the estimator's research. The paper by Gallego et al. [20], the author

has demonstrated one of the most significant issues facing developers in terms of

predicting software development effort regarding project size, complexity, developer

competencies, and other variables.

In the estimation of effort, machine learning (ML) approaches have been widely applied.

Finnie and Witting's [21] [22] study looked at the ability of two artificial intelligence (AI)

approaches, ANN and "Case Based Reasoning" (CBR), to improve application evaluation

models. Furthermore, rather than relapse models, the capability of ANN and CBR allows

for improvement in application estimating models. AI models are designed to provide

adequate evaluation models. Both models' performance is substantially determined by

training data and to the extent to which data is available. ML techniques such as

"Classification and Regression Trees" (CART) have been published in addition to ANN

and CBR [23]. MART as a model of software effort estimation was compared to

previously existing models such as SVR models with linear regression, RBF kernels, RBF

neural networks, and linear regression in Elish's [17]study. The accuracy of the final effort

estimation with MART is higher.

Pendharkar [24] proposed a "Probabilistic Neural Networks" (PNN) methodology for

simultaneous estimation of the values of development parameters, such as effort or size,

as well as the chance that the estimated value of the attribute will be greater than the

7

actual value in his study. According to Radlinski and Hoffmann [25] , the researcher

compared the accuracy of software effort estimations using multiple machine learning

algorithms. The major purpose here is to examine if particular strategies yield the same

level of accuracy for diverse data sets to investigate the predictability of this result. The

prediction accuracy results reveal that each ML technique uses a different dataset.

Suherman [26], in their study tune the hyperparameters of random forest and compared

the results with SVR and Bee Colony Method. The error rate of an experiment is used to

evaluate its outcomes. Random forest regression outperforms SVR and the Bee Colony

method, according to the results, the results were measured on the basis of MMRE.

Dejaeger, K. [27] done comparative study on using data mining techniques in SEE. The

key finding in their study was that picking a subset of highly predictive qualities can aid

in a large boost in estimation accuracy, and that data mining techniques can add value to

the variety of software effort estimating methodologies, but they should not be used in

place of expert judgement.

Estimating effort is critical in determining the cost of software. Machine learning models,

algorithmic, empirical, and theory-based effort evaluation techniques are among the

techniques accessible. Many research initiatives have incorporated machine learning

techniques. Machine learning algorithms have been proposed to estimate effort in recent

years like Bayesian Network, Case based reasoning, fuzzy logic, GA, SVM, regression

tree including deep learning technique ANN have been proposed. We have carried out

comparative study of several ensemble models like AdaBoost, bagging by tuning their

hyperparameters with machine learning models like random forest, SVR, elastic net for

predicting the software effort on different datasets.

8

CHAPTER 3

TERMONOLOGIES USED

There are five varied length datasets that we have selected for our research

namely Albrecht, China, COCOMO81, Desharnais and Maxwell dataset. Considering the

shift in research from machine learning models to ensemble models, we opted to focus

on two ensemble models: bagging and AdaBoost. We further tune the hyperparameter of

ensemble models with random forest, SVR and elastic net. To study the impact of the

data balancing we used over-sampling technique SMOTER on five popular machine

learning models random forest, decision tree regressor, linear regression, lasso regression

and ridge regression.

3.1 Dataset Used

For our studies we have used five freely available datasets namely Albrecht dataset [28],

China dataset [29], COCOMO81 dataset [30], Desharnais dataset [31] and Maxwell

dataset [32].

3.1.1 Albrecht Dataset

The Albrecht dataset was extracted from Zenodo repository. It has eight features and

consists of 24 software projects data.

 Fig 3.1 Albrecht dataset description

9

There are seven independent variables namely ‘Input’, ‘output’, ‘Inquiry’, ‘File’,

‘FPAdj’, ‘RawFPcounts’, ‘AdjFP’ and one dependent variable ‘Effort’ whose values

rages from 0.5 to 105.2 person-month. The six features with high correlation with target

feature are selected for further research and remaining were droped.

3.1.2 China Dataset

The China dataset was extracted from Zenodo repository. It consists of 499 software

projects data described by 19 features.

 Fig 3.2 China dataset description

There are eighteen independent features and one dependent feature i.e., ‘effort’. In order

to get the features that have strong relation with the target feature i.e., ‘Effort’, feature

selection was applied. We have selected seven features ‘AFP’, ‘Input’, ‘Output’,

‘Enquiry’, ‘File’, ‘Added’, ‘N_effort’ and dropped the rest.

3.1.3 COCOMO Dataset

There are 63 software projects in the COCOMO data set, comprising corporate, research,

and system projects, that are described by 19 features.

 Fig 3.3 COCOMO dataset description

10

There are eighteen independent and one dependent feature i.e., ‘actual’. We have applied

feature selection technique and the features which are less correlated to the effort are

dropped from the dataset.

3.1.4 Desharnais Dataset

Desharnais dataset was extracted from PROMISE repository. It is composed of 81

software projects with 12 features

 Fig 3.4 Desharnais dataset description

There are eleven independent and one dependent feature i.e., ‘Effort’. We have applied

feature selection technique and the features which are less correlated to the effort are

dropped from the dataset. The features which we selected for our research are ‘Length’,

‘Transactions’, ‘Entities’, ‘PointsNonAdjust’, ‘PointsAjust’.

3.1.5 Maxwell Dataset

The Maxwell dataset comprises information on a number of projects involving Finnish

trade banks. The Maxwell dataset contains 63 projects data with 25 different attributes.

 Fig 3.5 Maxwell dataset description

11

There are 24 independent features and one dependent feature i.e., ‘effort_D’. We have

applied feature selection technique and the features which are less correlated to the effort

are dropped from the dataset. There are 14 features which we selected for our research.

3.2 Ensemble Models

Ensemble techniques integrate models provided by different models to produce superior

outcomes. When compared to a single model, ensemble techniques often produce more

accurate findings [33]. The two commonly used ensemble models are bagging and

AdaBoost. In our research we have used these two ensemble models and tune the

‘base_learner’ hyperparameter with three machine learning models: elastic net, random

forest and SVR.

3.2.1 Bagging

Bootstrap aggregation is sometimes known as 'bagging.' It's a meta-algorithm that

improves the accuracy of machine learning models for classification and regression. It

aids to prevent overfitting by reducing variance. It's most typically seen in decision tree

methods. A subdivision of the model averaging method is bagging [34].

3.2.2 AdaBoost

Boosting is an ensemble technique used to build a robust classifier from a huge number

of weak ones. It's done by joining together weak models to generate a model. To begin, a

model is built using the training data. The second model is then created in order to resolve

problems of the first. This approach is repeated unless the entire training data set has been

successfully forecasted [34].

3.3 Machine Learning Models

Machine learning is a branch of computer science that allows machines to learn without

being explicitly programmed. One of the most amazing technologies one has ever

encountered is machine learning. As the name suggests, it allows the computer to

12

understand, making it more human-like. Machine learning is presently used in far more

locations than one might imagine.

3.3.1 Decision Tree Regressor

The Decision Tree is one of the most popular and useful supervised learning models. It

has the ability to handle both regression and classification problems. Decision tree

regression analyses an object's attributes and trains a model in the shape of a tree to

forecast future data and deliver meaningful continuous output [35].

3.3.2 Random Forest

Random Forest is built on ensemble learning, which is an approach for addressing

complicated problems by combining numerous classifiers and enhancing the performance

of the model. Random Forest is a learner that averages the outcomes of numerous decision

trees on different subsets of a dataset to enhance the dataset's anticipated accuracy.

Instead, then relying on a decision tree, it collects forecasts from every tree and predicts

the final output based on the majority of votes. It becomes more accurate as the forest

grows denser [36].

3.3.3 Linear Regression

Linear regression is one of a supervised machine learning algorithm. It's largely utilised

for forecasting and figuring out how features interact. Different regression models look

at various types of correlations between dependent and independent features and employ

various amounts of independent features Given an independent feature (x), linear

regression is used to predict the value of a dependent feature (y). A linear relationship

between x (input) and y (output) is discovered using this regression technique. [37].

3.3.4 Lasso Regression

This is a regularisation strategy that uses a Shrinkage method, also known as the penalised

regression method, to choose features. The Least Absolute Shrinkage and Selection

Operator, or Lasso, is a regularisation and model selection tool. Lasso regression refers

to a model that employs the L1 regularisation technique [38].

13

3.3.5 Ridge Regression

Ridge regression, like lasso regression, constrains the coefficients by inserting a penalty

component. Unlike lasso regression, ridge regression uses the square of the coefficients.

L2 Regularization is another term for ridge regression [38].

3.3.6 Elastic Net

To regularise regression models, elastic net linear regression employs both lasso and

ridge penalties. The methodology combines the lasso and ridge regression methods to

improve the regularisation of statistical models by learning from their flaws. Variable

selection and regularisation are done simultaneously with the elastic net approach [39].

3.3.7 SVR

SVR is a machine learning regression technique that relies on SVMs. Support vector

techniques to machine learning tasks have a huge variety of applications due to their

performance as well as the fact that they can be effectively linked with "kernel functions,"

allowing for a true nonlinear transformation of the input data space. Within a given

threshold value, SVR tries to match the best line (distance between hyperplane and

boundary line).

3.4 SMOTER

Many learning algorithms have issues with imbalanced domains. These issues are

distinguished by an uneven proportion of cases accessible for the most critical ranges of

the target variable to the user. To combat this problem, SMOTE is a well-known

algorithm for classification problems. The basic idea behind this method is to leverage

the cases' closest neighbours to artificially insert additional minority class examples.

Furthermore, the majority of class examples are under-represented, resulting in a more

balanced data collection. Torgo [40] proposed a new algorithm SMOTER which is a

variant of the SMOTE algorithm that addresses the problem of imbalanced domains in

regression applications [41].

14

3.5 Performance Metrics

The next step is to verify the model's effectiveness on test datasets after performing

feature selection, applying different models, and obtaining the output in the form of a

class or a continuous value. Machine learning models are evaluated using a variety of

performance criteria. We used three performance indicators in our research: MMRE,

MdMRE, and PRED (25).

3.5.1 MRE

MRE is a well-known criterion for picking the best software effort prediction model from

a pool of competing models. The difference between actual and planned effort is

calculated by MRE. It is used to find if differences in performance are statistically

significant [42].

 𝑀𝑅𝐸𝑖 =
|𝑥𝑖 − �̂�𝑖|

𝑥𝑖
 (5.1)

(Where 𝑥𝑖 , �̂�𝑖 are the actual and predicted values, respectively, for test instance i).

3.5.2 MMRE

An estimate of the effort is the mean of this distribution, that gives the relative and mean

relative errors. It has become the de facto standard for evaluating the precision of software

prediction models. The model with the lowest MMRE is the one to be used [43].

 𝑀𝑀𝑅𝐸 =
∑ 𝑀𝑅𝐸𝑖

𝑁
𝑖=1

𝑁
 (5.2)

3.5.3 MdMRE

MdMRE value provides the median of the relative error.

 𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸1,𝑀𝑅𝐸2, 𝑀𝑅𝐸3, …) (5.3)

15

3.5.4 PRED(25)

PRED(25), is defined as the percentage of forecasts that are within 25% of the actual

values, is a popular alternative error metric [42]. This phrase is commonly used in the

literature to refer to the percentage of projects that are accurate to a particular degree.

 𝑃𝑅𝐸𝐷(25) =
100

𝑁
∑ {1, 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤

25

100
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝑁

𝑖=1

 (5.4)

16

CHAPTER 4

PROPOSED WORK

The purpose of our first research is to compare the usage of two common

ensemble approaches (bagging and boosting) to reduce the error for prediction. We used

random forest, SVR and elastic net as the base learners. In this study Albrecht,

Desharnais, and China datasets were used for experimentation. We also performed feature

selection and considered only those features that have strong correlation with target

feature i.e., effort. The MMRE and PRED(25) results demonstrate that utilising elastic

net as the base learner for AdaBoost outperforms the other models.

Another research was carried out to study the impact of SMOTER to predict effort

estimation by using machine learning algorithms. The different machine learning models

that we have applied are decision tree regressor, random forest, linear regression, lasso

regression and ridge regression. In this study we used three datasets i.e., China, Maxwell

and COCOMO81. The two-performance metrics MMRE and PRED(25) were used to

evaluate the results of each model using SMOTER and without using SMOTER. We have

seen a significant decrease in error of each model after applying SMOTER.

4.1 Flow Diagram of Comparative Analysis of Ensemble Models for

Software Effort Estimation.

For our study we selected three freely available datasets namely Albrecht dataset,

Desharnais dataset and China dataset. The framework of research methodology is

represented in Fig 4.1. Firstly, we imported all the necessary libraries and these three

datasets. After importing the datasets, the pre-processing technique was applied for

removing null values and negative values if exist.

17

 Fig 4.1 Framework of Comparative Analysis of Ensemble Models for Software Effort Estimation.

4.1.1 Feature Selection

After importing necessary data next step is feature selection.

To train a model, we collect massive amounts of data to assist the machine in learning

better. Typically, a huge amount of the data obtained is noise, and some of the features in

our dataset may not have a substantial impact on our model's performance. Furthermore,

having a large amount of data can slow down the training process, resulting in a slower

model. This useless data may also cause the model to learn incorrectly. Apart from

selecting the appropriate model for our data, we must also select the appropriate data for

our model.

Feature selection is a technique for limiting the input features to your model by removing

noise and only considering useful characteristics. It's the process of selecting suitable

machine learning model based on the type of problem you're trying to solve. This is

18

achived by adding or eliminating crucial traits without changing their meaning. It

improves in the reduction of data noise as well as the size of input data [44].

Feature selection was done with the help of correlation matrix. All the independent

features having correlation greater than 0.5 with our dependent feature ‘effort’ considered

for experimentation and rest of the features are dropped.

 Fig 4.2 Correlation matrix of Albrecht datset

Fig 4.2, is the correlation matrix of Albrecht dataset and the features having correlation

greater than 0.5 with target variable are considered. We have selected six independent

features for our research.

 Fig 4.3 Correlation matrix of China datset

19

Fig.4.3, is the correlation matrix of China dataset and seven independent features which

has a strong correlation i.e., correlation value greater than 0.5 with dependent feature

‘effort’ are selected.

 Fig 4.4 Correlation matrix of Desharnais datset

Fig 4.4, shows the correlation matrix of Desharnais dataset and five features were selected

having correlation greater than 0.5 with effort.

4.1.2 Train-Test Split

The train-test split is a technique for assessing a machine learning model’s performance.

It can be used for both classification and regression tasks. A dataset is split into two

subsets as part of the method. The training dataset is the first subset employ to fit the

model. Instead, the model receives the dataset's input element, which generates

predictions and we compares that prediction with the predicted values.

For our research we have split our dataset in 70-30 ratio. 70% of the dataset was

considered for training our models and 30% of the dataset considered for testing our

result.

20

4.1.3 Applying Ensemble Models with Hyperparameter Tuning

After splitting our data, we train our data with the ensemble models. For predicting the

software effort, we have used two ensemble models i.e., bagging and AdaBoost. Firstly,

we have applied randomized search CV with a cross validation of 10 on three machine

learning models i.e., random forest, SVR and elastic net and obtained the best parameters

from them. The parameters that gave us the most accurate values of effort was further

considered and were passed as the base learners for bagging and AdaBoost. We have

applied randomized search CV with cross validation value of 5 on bagging and AdaBoost.

In this study we have compared the results on the basis of three performance measures

i.e., MMRE, MdMRE and PRED(25).

21

4.2 Flow Diagram of Software Effort Estimation Using Synthetic

Minority Over-Sampling Technique for Regression (SMOTER)

For our research we choose three freely available datasets i.e., China, COCOMO81 and

Maxwell. The framework of research methodology is represented in Fig 4.5. We imported

all the libraries and these three datasets that were required for our study. After this we

pre-processed our datasets by checking null and missing values. There was no missing

value present in our datasets.

Fig 4.5 Framework of Software Effort Estimation Using Synthetic Minority Over-Sampling Technique for

Regression (SMOTER)

4.2.1 Data Distribution

Fig 4.6 Data distribution of effort in China dataset Fig 4.7 Data distribution of effort in COCOMO

dataset

22

 Fig 4.8 Data distribution of effort in Maxwell dataset

Data distribution of the target variable effort of China, COCOMO and Maxwell dataset

is represented by Fig 4.6, Fig 4.7 and Fig 4.8 respectively. We can conclude from the

histogram that the target variable is not evenly distributed. There are lot of missing data

and distribution of data is not balance. To get better accuracy of our models the data

should be balanced.

4.2.2 Feature Selection

Feature selection was done with the help of correlation matrix. All the independent

features having correlation greater than 0.5 with our dependent feature ‘effort’ are

considered for our further research.

 Fig 4.9 Correlation matrix of China dataset

23

Feature selection to remove the features that doesn’t have high impact on our target

variable. Correlation matrix was used for the feature selection process. Correlation matrix

of China dataset (Fig 4.9) shows that there are two features which have very low impact

on the target variable so we removed those features from the dataset.

 Fig 4.10 Correlation matrix of COCOCMO dataset

Fig 4.10 is a correlation matrix of COCOMO dataset. Correlation matrix reveals that there

are seven features out of sixteen features which have low impact on target variable so, we

can remove those features. So, for further study we considered only nine features.

 Fig 4.11 Correlation matrix of Maxwell dataset

24

Maxwell correlation matrix (Fig. 4.11) shows that we can drop nine features from the

dataset as they have low correlation with target variable. We split data into training and

testing set in 70:30 ratio respectively.

4.2.3 Applied Machine Learning Models

After selecting the necessary features and splitting our dataset in training and testing data

we applied machine learning models to get the estimated value of the software effort. We

have considered five machine learning algorithms in our study they are decision tree

regressor, random forest, linear regression, lasso regression and ridge regression. After

training our models with training dataset we test our models using testing. We used two

performance metrics to evaluate the performance i.e., MMRE and PRED(25).

4.2.4 Applied Machine Learning Models after Using SMOTER

In order to improve the results of our models and to study the impact of data balancing

on our models we applied SMOTER which is a data balancing technique.

After balancing our data with the help of SMOTER we again train and test our machine

learning models on the balanced dataset. Later check the performance of our models and

compared the results with the previous results.

25

CHAPTER 5

RESULT ANALYSIS

We have acquired the results of ensemble models with different base learners

on the three selected datasets. For data balance, we used an over-sampling technique that

resulted in a considerable reduction in error. For comparing the performance of our

models we have used two performance metrics namely MMRE and PRED(25) values.

The results are shown below with the help of tables and bar graphs.

5.1 Result of Comparative Analysis of Ensemble Models for Software

Effort Estimation

The MMRE value was used to determine the difference between the estimated and actual

effort. To get a better prediction, the difference between the two should be as minimum

as possible. Table 5.1, shows the result of Albrecht dataset. AdaBoost with elastic net as

the base learner gives us the best result for Albrecht dataset with the MMRE value of

0.373 which is the least among the rest of the models followed by bagging with elastic

net i.e., 0.460. AdaBoost is a boosting technique which offers an iterative approach to

turn weak classifiers into strong ones by learning from their mistakes. It improves

prediction accuracy by learning from its mistakes and correcting them.

China dataset results are shown in Table 5.2. AdaBoost with elastic net as a base learner

offers the best result for our China dataset with the MMRE value of 0.193 which is the

least among the rest of the models followed by bagging with elastic net as a base learner

i.e., 0.209. AdaBoost with base learner as random forest and elastic net and bagging with

base learner as random forest has more percentage of values close to the actual value i.e.,

80%. The findings China dataset demonstrate that AdaBoost with base learner as elastic

For Albrecht dataset AdaBoost with elastic net shows the best results.

26

net predicts software effort with the maximum accuracy, as the relative error is quite low

and the predicted values are very close to the actual value.

Table 5.3, shows the results of Desharnais dataset. AdaBoost with base learner as elastic

net gives us the best result for our Desharnais dataset with the MMRE value of 0.626

which is the best compared to the other models followed by bagging with elastic net as a

base learner i.e., 0.710.

AdaBoost with base learner as random forest and SVR and bagging with base learner as

SVR has more percentage of values close to the actual value i.e., 48%

Table 5.1 Results of Albrecht dataset for ensemble models

Models MMRE MdMRE PRED (25)

RF 3.162 0.839 12.0

SVR 2.609 0.737 20.01

Elastic Net 1.655 0.522 20.0

AdaBoost with RF 0.513 0.423 25.0

AdaBoost with SVR 0.789 0.602 25.0

AdaBoost with Elastic Net 0.373 0.311 37.5

Bagging with RF 0.591 0.661 12.5

Bagging with SVR 0.790 0.593 25.0

Bagging with Elastic Net 0.460 0.428 25.0

According to MMRE value AdaBoost with elastic net gives the best value for

Desharnais dataset.

According to MMRE and PRED(25) value, AdaBoost with elastic net gives the

best value for China dataset.

27

Table 5.2 Results of China dataset for ensemble models

Table 5.3 Results of Desharnais dataset for ensemble models

(a)MMRE values (b) MdMRE value

Models MMRE MdMRE PRED (25)

RF 3.943 0.857 11.60

SVR 5.942 2.012 9.82

Elastic Net 3.433 0.968 12.0

AdaBoost with RF 0.221 0.093 80.66

AdaBoost with SVR 1.461 0.594 23.33

AdaBoost with Elastic Net 0.193 0.103 80.0

Bagging with RF 0.232 0.095 80.0

Bagging with SVR 1.163 0.598 29.33

Bagging with Elastic Net 0.209 0.110 76.66

Models MMRE MdMRE PRED (25)

RF 0.915 0.388 29.4

SVR 1.84 0.504 20.0

Elastic Net 0.990 0.993 0.0

AdaBoost with RF 0.764 0.264 48.0

AdaBoost with SVR 0.913 0.353 48.0

AdaBoost with Elastic Net 0.626 0.340 36.0

Bagging with RF 0.794 0.298 44.0

Bagging with SVR 0.934 0.353 48.0

Bagging with Elastic Net 0.710 0.381 36.0

28

 (c) PRED(25) value

 Fig 5.1 Performance measures for Albrecht dataset

Fig 5.1(a), shows the graphical representation of MMRE value for Albrecht dataset.

AdaBoost with random forest gives better MMRE value than boosting with random forest

i.e., 0.513. SVR as the base learner for AdaBoost shows slightly better results as

compared when used with bagging. AdaBoost with elastic net provides the best MMRE

value for Albrecht dataset i.e., 0.373.

Fig 5.1(b) shows the result for MdMRE. Random forest and elastic net when used as base

learner with AdaBoost give better MdMRE values than with bagging. AdaBoost with

elastic net provides best MdMRE value i.e., 0.311.

Fig 5.1(c) shows PRED(25) values. AdaBoost gives better results with all the base

learners as compared to bagging. AdaBoost with elastic net provides the best result of

PRED(25) i.e., 37.5.

(a)MMRE values (b) MdMRE value

29

 (c) PRED(25) value

 Fig 5.2 Performance measures for China dataset

Fig 5.2(a), shows the graphical representation of MMRE value for China dataset.

AdaBoost with random forest gives slightly better MMRE value than boosting with

random forest i.e., 0.221. SVR as the base learner for boosting gives better results as

compared when used with AdaBoost. AdaBoost with elastic net provides the best MMRE

value for China dataset i.e., 0.193.

Fig 5.2(b) shows the result for MdMRE. AdaBoost with all the base learners gives the

better value as compared to bagging.

Fig 5.2(c) shows PRED(25) value. AdaBoost with random forest, AdaBoost with elastic

net and bagging with random forest gives the best results for PRED(25) i.e., 80.

(a)MMRE values (b) MdMRE value

30

 (c) PRED(25) value

 Fig 5.3 Performance measures for Desharnais dataset

Fig 5.3(a), shows the graphical representation of MMRE value for Desharnais dataset.

AdaBoost with random forest gives better MMRE value than boosting with random forest

i.e., 0.764. SVR as the base learner for AdaBoost gives slightly better results (0.913) as

compared when used with bagging (0.934). AdaBoost with elastic net provides the best

MMRE value for Desharnais dataset i.e., 0.626.

Fig 5.3(b) shows the result for MdMRE. Random forest and elastic net when used as base

learner with AdaBoost give better MdMRE values than with bagging. SVR as the base

learner provides the same value when used with bagging and AdaBoost i.e., 0.353.

Fig 5.3(c) shows PRED(25) values. AdaBoost with random forest, AdaBoost with SVR

and bagging with SVR gives best PRED(25) value i.e., 48.

AdaBoost with elastic net provides the best results for all the datasets

followed by bagging with elastic net.

31

5.2 Result of Software Effort Estimation Using Synthetic Minority

Over-Sampling Technique for Regression (SMOTER)

Table 5.4 gives the result for China dataset, there is a significant decrease in MMRE value

after applying SMOTER on our dataset. Random Forest gives the error of 0.09 before

balancing our dataset, which was later decreased to 0.06 after using data oversampling

technique (SMOTER). PRED(25) which is the predicted effort that falls in 25% of the

actual value. This depicts the percentage of value that is close to 25% of our actual effort.

All the models show an increase in PRED percentage after applying SMOTER. The

highest percentage we got is 98 percentage for random forest.

Table 5.6 depicts the result for COCOMO81 dataset. Here all the models perform better

after using oversampling technique for regression on the dataset. There is notable

decrease in error i.e., MMRE value and an increase in number of results close to the actual

value i.e., PRED(25) value.

Table 5.7 shows result for Maxwell dataset. There is a decrease in MMRE value for all

the machine learning models and slight increase in PRED(25) value.

Table 5.4 Results of China dataset

Table 5.5 Results of COCOMO dataset

Models
Before applying SMOTER After applying SMOTER

MMRE PRED(25) MMRE PRED(25)

Decision Tree Regressor 0.10 94.0 0.09 94.5

Random Forest 0.09 98.6 0.06 98.6

Linear Regression 0.28 75.3 0.12 87.6

Lasso Regression 0.24 74.6 0.16 83.5

Ridge Regression 0.26 79.3 0.12 87.2

Models
Before applying SMOTER After applying SMOTER

MMRE PRED(25) MMRE PRED(25)

Decision Tree Regressor 1.5 5.2 1.14 46.6

Random Forest 2.6 5.2 2.6 20.0

Linear Regression 15.1 10.5 4.8 20.0

Lasso Regression 14.4 15.7 4.5 20.0

Ridge Regression 7.9 10.5 2.3 13.3

32

Table 5.6 Results of Maxwell dataset

(a) MMRE values (b) PRED(25) values

Fig 5.4 Performance measures for China dataset.

Fig 5.4(a) depicts MMRE value and Fig 5.4(b) depicts the PRED(25) value. Both shows

the better performance after using SMOTER

(a) MMRE values (b) PRED(25) values

Fig 5.5 Performance measures for COCOCMO dataset.

Models
Before applying SMOTER After applying SMOTER

MMRE PRED(25) MMRE PRED(25)

Decision Tree Regressor 0.76 31.5 0.60 56.6

Random Forest 1.31 31.5 0.49 66.6

Linear Regression 1.25 26.3 0.86 33.3

Lasso Regression 1.25 26.3 0.85 33.3

Ridge Regression 1.18 31.5 0.80 33.3

33

Fig 5.5 (a) depicts MMRE value and Fig 5.5(b) depicts the PRED(25) value. Linear

regression and lasso regression shows a huge difference in MMRE value after applying

SMOTER. Other models also perform better after balancing the data.

(a) MMRE values (b) PRED(25) values

Fig 5.6 Performance measures for Maxwell dataset.

Fig 5.6(a) depicts MMRE value and Fig 5.6(b) depicts the PRED(25) value. Both shows

the better performance after using SMOTER but random forest gave the best result after

data balancing.

The result shows that there is a significant decrease in error value

for all the model after using oversampling technique.

34

5.3 Threats to Validity

Internal Validity – In this study we used correlation metrics as a feature selection

strategy in this study, however depending on the type of dataset, other techniques might

be used alternatively. Any parameter with a real number domain can have an endless

number of values, however testing all conceivable parameter values in our study is

unfeasible. Although more values can be examined, we believe that the values for each

of the parameters studied are within a suitable range.

All models used in our research regarding the impact of SMOTER are generic machine

learning models. We can hyper tune the parameters and apply randomized search CV or

grid search CV to increase the accuracy. By doing hyperparameter tuning we can test

various parameters of our models with different values and can find the best parameters

which in turn can give us the better results.

External Validity – The external threat to the study's validity is whether the findings can

be applied to other contexts. As a result, it's critical to determine how extensively the

study's conclusions can be applied. For all datasets, AdaBoost with elastic net yields the

best results, followed by bagging with elastic net. To address this threat, we selected three

datasets including data from a variety of software projects. Because these datasets were

acquired from many organisations, they are diverse and cover a wide range of

features. Taking into account both category and numerical features could change the

results of this study. Another threat is that we only utilised three machine learning models

to tune the base learner hyperparameter; other models are recommended to generalise the

results of this study.

Construct Validity – Measurement validity is one of the important threats under

construct validity. In our research we used three performance metrics: MMRE, MdMRE

and PRED(25). MMRE is one of the most widely used performance measure for

numerical type of data.

35

CHAPTER 6

CONCLUSION

Estimating software effort accurately is very crucial step that has to be taken

care during the planning phase of the software as failing to do so can affect the quality of

the software. Machine learning and ensemble models have been employed in the past for

predicting software effort. Hyperparameter tuning has also been observed in a number of

researches. We extended these studies and tune the base learners of ensemble models.

We have done our research on Albrecht, Desharnais and China dataset. Feature selection

is a very important as it improves the accuracy and reduce the underfitting problem of the

model. The features that were not correlated with our target variable were eliminated from

the dataset. We used ensemble models and tune their base learners to predict the SEE.

We have applied randomized search CV on our base learners i.e., random forest, SVR

and elastic net to obtained the best parameters. Tuning the hyperparameters helped us to

test the datasets with different values and get the best parameters. We passed those best

parameters to our ensemble models, bagging and AdaBoost. The performance of models

were calculated using MMRE, MdMRE, PRED(25).

The results show that the AdaBoost with elastic net surpasses rest of the models on all

evaluation criteria especially for Albrecht and China dataset. As a result of these findings,

we conclude that the AdaBoost with elastic net model is a promising approach for

estimating software effort.

For our research on effort estimation using SMOTER, we have tried to decrease the error

of effort prediction by improving the quality of the datasets. Research was done on China,

Maxwell and COCOMO81 datasets by using machine learning models. In our study we

implemented five models which are decision tree regressor, random forest, linear

regression, lasso regression and ridge regression. In order to enhance the quality of

datasets we tried to balance the dataset by using SMOTER. We calculated the MMRE

and PRED(25) values of our models before and after applying SMOTER. We have seen

that this over-sampling technique has reduced the error of our models. The result shows

36

a remarkable decrease in error rate for each of the machine learning models after applying

data balancing technique. All the datasets show the similar results.

So, we can conclude from our research that SMOTER can be used as one of the pre-

processing techniques to balance our data for regression problems.

37

CHAPTER 7

FUTURE WORK

As for the further research we can work on AdaBoost with elastic net for other

datasets also as it has given us the best results for all the three datasets that we have used.

We can improve the research by tuning the hyperparameters of bagging and AdaBoost

with other values. Feature selection techniques can also be improved by using different

methods for selection of relevant features. We can try other weak learners as base learners

in bagging and AdaBoost for SEE.

We can use ensemble machine learning models like bagging, boosting or stacking instead

of machine learning models for effort prediction using SMOTER. In our study we have

used only three freely available datasets but there are many paid software effort estimation

datasets also available, we can extend our study on those datasets with ensemble models.

As results of our research shows a significant decrease in error rate after applying

SMOTER, so in order to get better results we can use this technique on other datasets

having continuous and imbalanced type target feature.

38

REFERENCES

[1] G. Douzasa, F. Bacao and F. Last, “Improving Imbalanced Learning,” in Lecture

Notes in Computer Science, 2013.

[2] P. Branco, L. Torgo and R. P. Ribeiro, “SMOGN: a Pre-processing Approach for

Imbalanced Regression,” in 1st International Workshop on Learning with

Imbalanced Domains - Theory and Applications, 2017.

[3] J. D. D. Santos, “Kite,” 21 08 2019. [Online]. Available:

https://www.kite.com/blog/python/smote-python-imbalanced-learn-for-

oversampling/. [Accessed 06 05 2022].

[4] Z. Abdelalia, H. Mustapha and N. Abdelwahed, “Investigating the use of random

forest in software effort estimation,” in Intelligent Computing in Data Sciences,

2019.

[5] P. Pospieszny, B. Czarnacka-Chrobot and A.Kobyliński, “An effective approach

for software project effort and duration,” The Journal of Systems & Software, vol.

137, pp. 184-196, 2017.

[6] P. Rijwani and S. Jain, “Enhanced Software Effort Estimation using Multi Layered

FeedForward Artificial Neural Network Technique,” in Information Processing,

2016.

[7] S. G. MacDonell and M. J. Shepperd, “Combining techniques to optimize effort

predictions,” The Journal of Systems and Software, vol. 66, no. 2, pp. 0164-1212,

2001.

[8] H. Ahmed, “Towards Data Science,” 07 07 2020. [Online]. Available:

https://towardsdatascience.com/regression-for-imbalanced-data-with-application-

edf93517247c. [Accessed 12 05 2022].

[9] A. Fernandez, S. Garcia, F. Herrera and N. V. Chawla, “SMOTE for Learning from

Imbalanced Data: Progress andChallenges,” Journal of Artificial Intelligence

Research, vol. 61, pp. 863-905, 2018.

[10] A. Mallik, S. Kumar and B. Panda, “Link prediction in complex networks using

node centrality and light gradient boosting machine,” World Wide Web, 2022.

[11] R. Malhotra, “A Systematic Review of Machine Learning,” Applied Soft

Computing, vol. 27, pp. 504-518, 2014.

39

[12] M. Kumar and K. S., “Predicting Customer Churn Using Artificial Neural

Network,” Engineering Applications of Neural Networks, vol. 1000, 2019.

[13] A. Kumari, P. Varshini and K. Anitha, “Predictive analytics approaches for

software effort,” Indian Journal of science and Technology, vol. 13, no. 21, pp.

2094-2103, 2020.

[14] M. Lefley and C. J. Burgess, “Can genetic programming improve software effort

estimationn? a comparative evaluation,” Information and Software Technology,

vol. 43, no. 14, 2001.

[15] B. L. Petronio , A. L. Oliveira and S. R. Meira, “Software effort estimation using

machine learning techniques with robust confidence intervals,” in 19th IEEE

International Conference on Tools with Artificial Intelligence, 2007.

[16] C. L. Martin, J. L. Pasquier, C. M. Yanez and A. G. Tornes, “Software

development effort estimation using fuzzy logic: A case study,” in Sixth Mexican

International Conference on Computer Science (ENC’05), 2005.

[17] M. O. Elish, “Improved estimation of software project effort using multiple

additive regression trees,” Expert System. Application, vol. 36, no. 7, 2009.

[18] S. K. Venkatesan and P. R., “Hyperparameters tuning of ensemble model for

software effort,” Journal of Ambient Intelligence and Humanized Computing, vol.

12, p. 6579–6589, 2020.

[19] S. Bibi and I. Stamelos, “Selecting the appropriate machine learning techniques

for the prediction of software development costs,” in Artificial Intelligence

Applications and Innovations: 3rd IFIP Conference on Artificial Intelligence

Applications and Innovations (AIAI), Athens, Greece, 2006.

[20] J. Gallego, D. Rodríguez and M. Sicilia, “Software project effort estimation based

on multiple parametric models generated through data clustering,” Journal of

Computer Science and Technology, vol. 22, no. 3, 2007.

[21] G. Finnie, G. Wittig and J.-M. Desharnais, “A comparison of software effort

estimation techniques: Using function points with neural networks, case-based

reasoning and regression models,” Journal of System and software, vol. 39, no. 3,

1997.

[22] G. R. Wittig and F. G. E., “AI tools for software development effort estimation,”

in Proceedings of the 1996 International Conference on Software Engineering:

Education and Practice., Washington, DC, USA, 1996.

40

[23] N. Sund, T. M. Khoshgoftaar and N. Seliya , “An empirical study of predicting

software faults with case-based reasoning,” Software Quality Journal, vol. 14, no.

2, 2006.

[24] P. C. Pendharkar, “Probabilistic estimation of software size and effort,” Expert

System Application, vol. 37, no. 6, 2010.

[25] W. Hoffmann and L. Radlinski,, “On predicting software development effort using

machine learning techniques and local data on predicting software development

effort using machine learning techniques and local data,” 2017.

[26] K. Dejaeger, W. Verbeke, D. Martens and B. Baesens, “Data Mining Techniques

for Software Effort,” IEEE Transactions on Software Engineering, vol. 38, no. 2,

pp. 375-397, 2012.

[27] K. Dejaeger, W. Verbeke, D. Martens and B. Baesens, “Data Mining Techniques

for Software Effort,” IEEE Transaction on Software Engineering, vol. 38, no. 2,

pp. 375-397.

[28] Y. L. a. J. W. Keung, “zenodo,” 2010. [Online]. Available:

https://doi.org/10.5281/zenodo.268467. [Accessed 02 2022].

[29] F. H. Yun, “zenodo,” 2010. [Online]. Available:

https://doi.org/10.5281/zenodo.268446. [Accessed 02 2022].

[30] B. Boehm, “promise,” 1981. [Online]. Available:

http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.arff. [Accessed

02 2022].

[31] M. Shepperd, “promise,” 2005. [Online]. Available: M. Shepperd,

http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff. [Accessed

02 2022].

[32] Y. Li., “Zenodo,” 2019. [Online]. Available:

https://doi.org/10.5281/zenodo.268461. [Accessed 02 2022].

[33] N. Demir, “Developers,” [Online]. Available: https://www.toptal.com/machine-

learning/ensemble-methods-machine-learning.

[34] Soumya, “GeeksforGeeks,” 07 07 2021. [Online]. Available:

https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning/.

[Accessed 2022 05 15].

41

[35] A. Das, “GeeksforGeeks,” [Online]. Available:

https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/.

[Accessed 15 05 2022].

[36] “java T point,” [Online]. Available: https://www.javatpoint.com/machine-

learning-random-forest-algorithm. [Accessed 15 05 2022].

[37] M. Gupta, “GeeksforGeeks,” [Online]. Available:

https://www.geeksforgeeks.org/ml-linear-regression/.

[38] “data camp,” 25 03 2022. [Online]. Available:

https://www.datacamp.com/tutorial/tutorial-lasso-ridge-regression. [Accessed 15

05 2022].

[39] “Corporate Finance Institute,” [Online]. Available:

https://corporatefinanceinstitute.com/resources/knowledge/other/elastic-net/.

[Accessed 15 05 2022].

[40] L. orgo, R. P. Ribeiro, B. Pfahringer and P. Branco, “SMOTE for Regression,”

Artificial Intelligence, pp. 378-389.

[41] “RDocumentation,” [Online]. Available:

https://www.rdocumentation.org/packages/UBL/versions/0.0.6/topics/SmoteRegr

ess. [Accessed 15 05 2022].

[42] E. Kocaguneli, T. Menzies and J. W. Keung, “On the value of Ensemble Effort

Estimation,” 2012.

[43] V. Anandhi and R. M. Chezian, “Regression Techniques in Software Effort

Estimation Using COCOMO Dataset,” in International Conference on Intelligent

Computing Applications, 2014.

[44] K. Menon, “Simpli learn,” [Online]. Available:

https://www.simplilearn.com/tutorials/machine-learning-tutorial/feature-

selection-in-machine-learning.

