
IDENTIFICATION OF DEFECTS IN A SOFTWARE USING 

MACHINE LEARNING TECHNIQUES 

 

A DISSERTATION 

 

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR 

THE AWARD OF DEGREE 

OF 

MASTER OF TECHNOLOGY 

IN 

SOFTWARE ENGINEERING 

 

Submitted by: 

 

NISHTHAA 

2K20/SWE/15 

 

Under the supervision of 

Dr. RUCHIKA MALHOTRA 
Head of Department (Software Engineering) 

 Associate Dean IRD, DTU 

 

DEPARTMENT OF SOFTWARE ENGINEERING 
DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

 

MAY, 2022 

 









v 
 

ABSTRACT 

 

The end users who are using the software and its products is vastly increased when 

compared to the earlier days. As we are seeing that the technology has evolved a lot and 

it has delivered an extraordinary technology named artificial intelligence. Identifying 

defects in a software in the current time can be held with Software Development Life 

Cycle (SDLC) and it stays a fundamental and crucial task. In the present days, a few 

instances of flawed and non-defective modules are used to construct prediction models 

which utilize machine learning techniques. To address the software modules, software 

metrics were used as input to these machine learning algorithms. In order to detect the 

defects in a software, few powerful machine learning techniques are implemented and in 

existing system the algorithm named Random Forest (RF) gives an adequate accuracy. 

But we need to identify the defects in a software using machine learning methods with 

better model which must give some improved accuracy when compared with RF. So here 

in this study we are using extra trees classifier and hybrid model to identify the defects in 

a software. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

CONTENTS 

Candidate’s Declaration         ii  

Certificate           iii  

Acknowledgement          iv  

Abstract           v  

Contents          vi 

List of Figures          ix 

List of Tables          x

  

List of Abbreviations         xi  

 

CHAPTER 1     INTRODUCTION       1 

1.1 General         1 

1.2 Problem Formulation        3 

1.3 Objectives of the Project       4 

1.4 Organisation/Dissertion of Thesis                                                             4

       

CHAPTER 2     LITERATURE REVIEW                                                              5

      

2.1 Individual Classifiers For Defect Prediction      5 

2.2 Feature Selection For Software Defect Prediction     6 

2.3 Homogeneous and Heterogeneous Ensemble                                                  7 

 

CHAPTER 3  THEORETICAL CONCEPTS                                                      11 

3.1 Features          11 

3.2 Data PreProcessing                        12 

3.2.1 Importing data into a dataset        13 



vii 
 

3.2.2 Evaluation of Test-Train Split       15 

3.3 Feature Selection                    16 

3.4 Classification          18 

3.5 Ensemble Techniques         19 

3.6 Software Defect Prediction        19 

3.7 SDLC-Software Development Life Cycle                 23 

3.8 Practicability Investigation        25 

3.8.1 Technical Practicability        25 

3.8.2 Social Practicability                    26 

3.8.3 Economic Practicability        26 

3.9 System Requirements Specification       27 

3.9.1 Non-functional and functional requirements                 27 

3.9.2 Non-functional necessities        27 

3.9.3 Functional necessities         28 

 

CHAPTER 4 EXPERIMENTAL DESIGN      29

  

4.1 Independent and Dependent Variable       29 

4.2 Empirical Data Collection        32 

 

CHAPTER 5 WORKING AND ANALYSIS      33 

5.1 Dataset          33 

5.2 Dataset Pre-processing        34 

5.3 Feature Selection         34 

5.4 Classification and Ensemble Techniques      35 

5.5 ML Techniques         36 

5.5.1 CatBoost          36 

5.5.2 Extra Trees Classifier Algorithm       38 

5.5.3 Gradient Boosting         40 

5.5.4 Light GBM          40 

5.5.5 Hybrid Model          41 

5.6 Performance Evaluation Measure       42 



viii 
 

5.6.1 Accuracy          42 

5.6.2 Precision          42 

5.6.3 Recall                      42 

5.7 Probability Score         43 

5.7.1 Probability Analysis Software       44 

5.7.2 Probability Analysis Process       45 

 

CHAPTER 6 RESULTS         46 

 

CHAPTER 7 CONCLUSIONS AND FUTURE SCOPE     54 

 

References           56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

 

 

 

LIST OF FIGURES  

 

 

 

 

2.1 ML Techniques            8 

3.1  Data Variable Types       11 

3.2 Feature Selection       17 

3.3 Representation of Waterfall Model     23 

5.1   Proposed Methodology      35 

5.2 Catboost Algorithm       38 

5.3 Basic Indicators for defect Prediction                                          43 

5.4 Probability Score       45 

6.1 Upload Dataset       51 

6.2 View Dataset        51  

6.3  Pre-processing        52 

6.4  Model Trained with Hybrid Model     52 

  

6.5 Model Trained with Extra Trees Classifier    53 

6.6 Predicting Defected Software      53 

 

 

 

 

 

 



x 
 

 

 

 

 

 

 

 

 

 

LIST OF TABLES  

 

 

 

 

2.1 Summary of Related Work                     9  

  

6.1 Results obtained for jm1 Dataset            46 

6.2 Results obtained for cm1 Dataset            47 

6.3 Results obtained for mw1 Dataset           48 

6.4 Comparison between other's work           49 

 

 

 

 

 

 

 

 



xi 
 

 

 

 

 

 

 

 

LIST OF ABBREVIATIONS 

 

 

 

 

1   ML: Machine Learning 

2   SVM: Support Vector Machine 

3   lgbm: Light Gradient Bossting Machine 

4   RF Classifier: Random Forest Classifier 

5   SDP: Software Defect Prediction 

6   LOG: Logistic Regression 

7   RBF: Radial Basis Function Network 

8   BN: Bayesian Network 

9   DTree: Decision Tree 

10  DTables:   Decision Tables 

11  SDLC: Software Development Life Cycle 

12  GOSS: Gradient Boosting one sided sampler 

13  SMOTE: Synthetic Minority OverSampling Technique 

14   WPDP: Within Project Defect Prediction 

 

 

 

 



1

CHAPTER 1

INTRODUCTION

1.1 GENERAL

For improving the reliability rate of software, few measuring techniques are

used. Software Defect Prediction (SDP) has a lot of test experience in computer

science for finding flaws. Mostly in the present scenario, the curiosity amongst the

individuals has increased a lot because the majority of the devices contain software

programs which have become important to its customers because it includes

appealing features, and buyers want to access them without having to learn

anything. Yet, the focus of interest was that it evolved into a communal requirement

whereby individuals can connect and share knowledge. In the recent decade, people

have been focusing on application frames, where performance enhancement is seen

as the most important aspect of client functioning. Software performance has

remained a perplexing subject, yielding insufficient outcomes for commercial and

facilities services, owing to the clear tremendous growth of utilization. Throughout

the growth phase, firms frequently use fault diagnostic patterns and similar

methodologies to help in anticipating defects, estimating effort, assessing software

dependability, risk assessment, and so on. With a given huge dataset, a controlled

machine learning prediction computation is employed. Following that, the algorithm

learns with the help of the training sample and develops instructions in order to

predict the class name for every newer data set. Using math equations to construct

and improve the indicator work is one of the learning stages. There is a certain

intake esteem and a specific yield esteem in that interaction training set. A generally



2

known result is used to assess the correctness of a typical Machine Learning (ML)

calculation.

Some concepts may be to establish a gathering of associates at a specified

location for casual contact amongst data users. The quality of the Software may be

improved by forecasting the failure areas. The detection of defects is one type of

generating methodologies that many researchers tend to use early in the contact

process to identify problematic frames such as units or categories. It is accomplished

by classifying components into two: one is defective case and other is non-defective

case. Several methodologies have been deployed to recognize the defective modules,

some of them include: CatBoost, XGBoost, SVM, Light Gradient Boosting, RF

classifier and Hybrid algorithm.

Each classifying item (i.e.) connection intermediary to the training dataset

class mark and the attributes, is placed down on the classifier technique and analyzed

using the target order equations. Such parameters will also be used to choose the

names of future data classes. These complicated data may be classified in this way by

using categorization algorithms and classifiers. Identifying software problems,

discovering the defect, and acknowledging it is difficult work for specialists. The

main purpose is to divide the software data into defective and non-defective datasets

as a paradigm for identifying issues. The input software dataset is supplied to the

classifier in this method, and the client knows the real class values. Prior to this

graph, metric strategies centered on need and setup yielded long-term outcomes.

Regardless, the design of methodologies and the accuracy of forecasts remain a

challenge that must be addressed.

Predicting the Software defects always aim towards the forecasting of

defect-prone software systems with the deployment of a few essential elements of the

software project. It's usually done by creating forecasting models for known projects

using project attributes reinforced with defective data, and then using these

forecasting models to anticipate defects for unknown projects. SDP is based on the

idea that if a project is created in a defect-prone environment, every module created



3

in a similar environment with comparable job characteristics would be troublesome

as well. The reason for predicting the software defects is done to anticipate defect

affected software modules based on a set of baseline software project characteristics.

Creating a classification algorithm for a known project utilizing project attributes

supplemented with incorrect information, and then applying the prediction system to

new projects to foresee issues, is a common method. If a program generated in a

given environment causes flaws, then every component created in a restricted

sequence with identical project parts would produce errors as well. The RF ensemble

technique performs well, but our major aim is to improve the accuracy gained and

more precisely detect the defective software. As a result, we devised a method that

uses a hybrid algorithm and an extra trees classifier to provide more accuracy than

previous ensemble methods.

1.2 PROBLEM FORMULATION

SDP is a software testing method that can help increase programme

reliability. It has a lot of experience in computer science testing and flaw detection.

Customers have been curious about software programmes in this case because they

have attractive features that they wish to utilise without having to understand

anything. However, what piqued people's interest was how it blossomed into a

collective need for people to connect and share information. In the recent decade,

people have been focusing on application frames, where performance improvement is

seen as the most important aspect of client functioning. Software performance

remains a difficult subject that produces insufficient outcomes for commercial and

facilities services, owing to the clear tremendous growth of utilisation. Organizations

frequently use fault diagnostic patterns, and similar methodologies aid in anticipating

defects, calculating effort, evaluating software reliability, risk assessment, and other

tasks throughout the growth phase.



4

1.3 OBJECTIVES OF THE PROJECT

A regulated ML prediction calculation is utilised with a specified large

dataset. Following that, the algorithm takes what it has learned from its trained set, in

order to create instructions to guess the class name in the fresh set of data. One of the

learning stages is using math equations to develop and improve the indication work.

In that interaction training set, there is a certain intake esteem and a specific yield

esteem. To measure the accuracy of a typical ML computation, a well-known result is

employed. Predicting failure locations helps improve software quality. Defect

detection is a technique for developing models that can be utilised early in the contact

process to identify incorrect frames such as units or categories. It's done by

determining whether or not a component is prone to defects. CatBoost, XGBoost,

SVM, Light Gradient Boosting, RF classifier, and Hybrid algorithm are just a few of

the methods that have been used to identify the damaged modules.

1.4 DISSERTION OF THESIS

This thesis is classified into various chapters. Chapter 2 describes the

related work in the area of study. Chapter 3 gives detailed explanation of all the

theoretical concepts required. Chapter 4 briefly describes the experimental design and

empirical data collection . Chapter 5 contains all the working and analysis.

Chapter 6 outlines the results achieved for our proposed model on all the data sets

used. Chapter 7 describes the conclusion and future scope of the project.



5

CHAPTER 2

LITERATURE REVIEW

In this section, information related to the variety of research papers

concentrating on software defect prediction using different methodologies, challenges

present in defect prediction, and which techniques can perform better, etc. has been

listed. This section provides a brief insight into the previous works done in the field

of software defect prediction.

Many researchers have been trying to build software defect prediction

models using different defect prediction techniques which deliver better performance,

but most of them use static code metrics as independent variables, and few of them

use feature selection to analyze metrics.

2.1 INDIVIDUAL CLASSIFIERS FOR DEFECT PREDICTION

Logistic Regression (LOG), Support Vector Machines (SVM), Radial Basis

Function Network (RBF), Multi-Layer Perceptron (MLP), Bayesian Network (BN),

Decision Tree (DTree), and Decision Tables(DTables), are some of the classifiers,

that can be used to develop a defect prediction model. However, past studies have

shown that there is no obvious winner when it comes to predicting defect proneness.

Their accuracy is determined by the predictor we chose and the dataset we used.



6

Lessman et al. [23] experimented with 22 classification models. The top 17

models were statistically similar to each other on ten publicly available software

development data sets from the NASA repository. Later Shepperd et al. [24] found

that the NASA dataset used was noisy and biased.

2.2 FEATURE SELECTION FOR SOFTWARE DEFECT PREDICTION

Feature selection is the process of selecting N features from the original set

of features to decrease the dimensionality of the feature pool and boost prediction

model performance while reducing cost and time to create it.

The various Feature Selection methods,  are listed below:

a. Wrapper Method: These methods carry out the selection process keeping in

mind the classification algorithms that are going to be used. Wrapper

methods evaluate the variable subset using the predictor as a black box and

the predictor performance as the objective function.[25].

b. Filter Method: These methods carry out the selection process without

considering the algorithm used for classification. Because they function

independently of the classification process, filter methods are faster than

wrapper methods and result in superior generalisation.

c. Embedded method: These methods encompass the benefits of both the

wrapper and filter methods by including interaction of features, while

keeping the computational cost low. Embedded methods are iterative

because they take care of each iteration of the model training process and

carefully extracts those features that contribute the most to the training for a

particular iteration [26].



7

2.3 HOMOGENEOUS AND HETEROGENEOUS ENSEMBLE

Ensemble models have been demonstrated exceptionally successfully to

inspire the precision and the presentation of the models. An ensemble consists of a

set of individually trained classifiers, such as neural networks or decision trees,

whose predictions are combined when classifying new instances [27]. Ensemble

takes place in two steps:

a. Model Training: Training each individual classifier with the same training

dataset but using different subsets.

b. Model Combination: Combining the power of all the trained classifiers

using one of the combining techniques (Averaging or Voting).

The two types of ensemble techniques, are as follows:

a. Homogeneous Ensemble: It consists of classifiers having a single-type base

learner. Example bagging or boosting.

b. Heterogeneous Ensemble: It consists of classifiers having different base

learning algorithms. Example stacking or voting of bagged classifiers.



8

Figure 2.1. ML Techniques

Zhou et al. [28] make an empirical comparison consisting of 32 feature

selection methods and the result of this study shows that feature selection algorithms

significantly improve the defect prediction performance. Also, Wrapper and filter

feature selection algorithms give the best result compared to clustering-based, but

they tend to take more time to select features.

Shivaji et al. [29] conducted research showing that the performance of

defect prediction models is increased by eliminating 90% of the original features.

Also, NOVAKOVIC et al. [30] compares the performance of 5 filter feature selection

algorithms concluding that to rank the algorithms based on their performance, one

will need to keep indices to check, the best feature subset is chosen, and a larger

dataset with additional classifiers is required.



9

The following table also summarizes some of the related work close to our proposed

work

TABLE 2.1 A summary of related research.

Author Proposed Finding/Outcomes

Guisheng Fan,
Xuyang Diao, and
Huiqun Yu [1]

They proposed using an
RNN-based architecture to detect
faults. DP-ARNN, in particular,
parses abstract syntax trees and
returns data in the form of vectors

The test findings show that
DP-ARNN improves the
F1-measure by 14% on average,
and the area under the curves also
improves

Ebubeogu
Amarachukwu
Felix, and Sai
Peck Lee [2]

Using predictor variables obtained
from defect acceleration, such as
defect density, defect velocity, and
defect introduction time, this
paper presents a method for
identifying the connection of each
predictor variable with the number
of defects.

The mean fault speed is
substantially positively associated
with the number of defects, with a
correlation value of 0.98. As a
result, it has been demonstrated
that this strategy can be used to
improve the efficacy of software
design processes by serving as a
blueprint for program testing



10

Zhou Xu, Jin Liu,
Xiapu Luo,
Zijiang Yang,
Yifeng Zhang,
Peipei Yuan,
Yutian Tang, and
Tao Zhang [3]

Kernel Principal Component
Analysis and Weighted Extreme
Learning Machine are two
techniques used in the classifier
architecture. Propose the KPWE
defect prediction framework,
which integrates two techniques:
Kernel Principal Component
Analysis (KPCA) and Weighted
Extreme Learning Machine
(WELM) (WELM)

KPWE outperforms 41 benchmark
approaches, encompassing seven
fundamental classifications using
Kernel Principal Component
Analysis, five versions of KPWE,
8 representational classification
methods with Weighted Extreme
Learning Machine, and 21
unbalanced learning techniques

Zhou Xu, Shuai
Pang, Tao Zhang,
Xia-Pu Luo, Jin
Liu, Yu-Tian
Tang, Xiao Yu,
and Lei Xue [4]

Cross-project defect prediction
systems based on transfer learning
are now in use. In general, such
solutions aim to lessen the
discrepancies in information
dispersion between the two
programs.

In comparison to 12 baseline
approaches, balanced distribution
adaptation obtains average gains of
23.8%, 12.5%, 11.5%, 4.7%,
34.2%, and 33.7% across datasets

Ruchika Malhotra,
Shine Kamal [5]

This paper examines the
performance of machine learning
classifiers for software defect
prediction on twelve imbalanced
National Aeronautics and Space
Administration datasets using
sampling techniques and cost
sensitive classifiers

The performance of machine
learning techniques improved
dramatically when oversampling
approaches were used to address
the uneven nature of datasets

Ruchika Malhotra,
Shine Kamal [6]

Adaptive Synthetic (ADASYN),
SPIDER, and Safe-Level-SMOTE
are three of the unexplored
oversampling strategies used in
this work to create a tool

The findings obtained utilising
three machine learning algorithms,
namely random forest, J48, and
naive bayes, demonstrate that the
approaches utilised in this work
are better than SMOTE in the
majority of cases for the Object
Oriented (OO) defect dataset in
terms of ROC and recall

https://www.sciencedirect.com/topics/computer-science/extreme-learning-machine
https://www.sciencedirect.com/topics/computer-science/extreme-learning-machine


11

CHAPTER 3

THEORETICAL CONCEPTS

3.1 FEATURES

A feature is an individual measurable property , or characteristic of a

phenomenon being observed [38]. Data objects are described by many features,

which captures the essence of the object under consideration.

Fig. 3.1 Data Variable Types [5]

There are 2 types of features:

1. Categorical - values taken from a defined set. Example: Days of the week.

2. Numerical - values are continuous or integer-valued. Ex.: Speed of the car.



12

3.2 DATA PREPROCESSING

Pre-processing refers to the transformations applied to our data before

feeding it to the algorithm. Data Pre-processing is a technique that is used to convert

the raw data into a clean data set.

The pre-processing of data is the method for making the raw data ready for

deployment in a ML approach. The pre-processing is the initial and most significant

step in establishing any type of ML approach.

Many of us might not be provided with well-prepared and clean data while

we work on a ML process. Furthermore, before we take up any kind of data-based

project, it is necessary to clean up the data in order to format that data as per our

project requirements and desired outcomes/ applications. Thus, the pre-processing of

data has become indispensable now-a-days.

Practical data might sometimes contain missing values or noises and is in an

unsuitable/ undesirable format that cannot be used directly in machine learning

models. Thus, the data pre-processing is a necessary task for cleaning data and

making it suitable for the ML projects, which improves the efficiency and accuracy

of the model. The processes in a typical ML project are as follows:

· Getting the dataset

· Importing libraries

· Importing datasets

· Finding Missing Data

· Encoding Categorical Data

· Splitting dataset into training and test set

· Scaling of Feature



13

Practicing with various categorical datasets is the reason for the success of

the ML as a field or it is also the reason for the success of a data scientist from the

career perspective. However, identifying the appropriate dataset for our deployed ML

project is always a daunting task. Thus, we will list the info of various sources from

which you can get the appropriate datasets that suit your ML project.

3.2.1 Importing data into a dataset

· Choose your dataset when required from the dropdown list available on the web

page of the shared Datasets in order to access the tab ‘Import’.

· Select the source of import for the data from any of the following: Cloud Storage,

BigQuery, or your local Personal Computer. Give all the data needed.

· You should define the Cloud Storage bucket when you open the CSV formatted

files from your local Personal Computer. Those files get opened to the defined

bucket before they get imported onto the AutoML Tables. Those files would be

present there after the data import, until you pull out them.

· The bucket should be in a location, which should be same as that of the dataset

location.

· Select ‘Import’ for initiating the import operation.

· Once the import operation gets completed, the tab ‘Train’ is shown in order to

get ready for training your model.

There are 5 steps for ensuring missing data recognition to appropriately dealt with it,

which are as follows:

· Ensure your data are coded correctly.

·    Recognize missing values within each variable.

https://cloud.google.com/automl-tables/docs/train


14

·       Look out for patterns of missingness.

·       Check for relations between observed and missing data.

·       Decide on how to handle missing data.

Encoding categorical data is a process of converting categorical data into

integer format so that the data with converted categorical values can be provided to

the different models. In the field of data science, before going for the modeling, data

preparation is a mandatory task

The fulfillment of ML projects lie not only on the hyperparameters and

project itself, but also the way we operate and feed varied categorical variables to the

project. As many ML projects could only acquire the numerical variables,

pre-processing of the various kinds of variables has become an indispensable step.

The data scientists have to convert these various kinds of variables to numbers format

in a way that the project has the capability to comprehend and extricate the useful

data.

As a matter of fact, a data scientist utilizes 70% to 80% of his/ her time in

cleaning up and making the data ready to use. Also, the conversion of various kinds

of data has become an indispensable operation, which not only raises the quality of

the project, but also aids in proper feature handling.

The test-train split methodology is utilized to compute the fulfillment of ML

algorithms for making forecasting on the data, which was not utilized for training the

project.

The test-train split methodology is a quick and smoother methodology that

yields various outcomes that would permit you to differentiate the fulfillment of ML

algorithms towards the forecasting building issue. Though this methodology is easy

to utilize and elucidate, there are certain circumstances in which you don’t have to

use this methodology. For instance, the circumstances where we deploy the small

datasets and where the supplementary configuration is needed, we don’t utilize



15

test-train split methodology. Note that the supplementary configuration might be

needed for the classification purposes and for the cases of non-balanced datasets.

3.2.2 Evaluation of Test-Train Split

The test-train split methodology is done for examining the fulfillment of the ML

methods.

● It is utilized for regression or classification issues.

● It is utilized for the supervised learning categorical methods.

● In this methodology, we take a dataset and then split the taken dataset into 2

segments. The initial segment is utilized to fit the project, which is known as

the “training dataset”. The second and next segment is not utilized for the

project training purpose, but the input part of it is given to the project, based

on which the forecasting is done and further we infer the differentiations by

comparing with the desired values. This type of dataset is known as the

“testing dataset”.

● Training Dataset: It is utilized to fit our ML project.

● Testing Dataset: It is utilized to examine our fitted ML project.

● The goal is to compute the fulfillment of the ML project on the latest (new)

data- the data which has not been utilized for training the project.

● This way we desire to utilize the project in real-time by fitting on data

available with familiar inputs as well as the outputs. Then, we execute the

forecasting on newer samples in future without having any desired target

values or outputs in mind.

● The test-train split methodology is suitable where a sufficient enough huge

dataset is available.

Feature scaling is a process that we deploy for normalizing the independent

parameters range or features in the data. From the context of data processing, Feature



16

scaling is also known by the name “data normalization”, which is commonly

executed at the time of data pre-processing operation.

· Absolute Maximum Scaling.

· Min-Max Scaling.

· Normalization.

· Standardization.

· Robust Scaling.

Feature scaling through standardization (or Z-score normalization) can be

an important preprocessing step for many machine learning algorithms.

Standardization involves rescaling the features such that they have the properties of a

standard normal distribution with a mean of zero and a standard deviation of one.

3.3 FEATURE SELECTION

While generating the forecasting project, the feature selection is the method

by which we carry out the minimization of the count of input parameters.

The count of input parameters must be lowered to reduce the cost of the

computation in the modeling and, in few circumstances, to raise the performance of

the project.

The association between every input parameter and the target parameter is

examined with the deployment of statistics, and then we select the type of input

parameters that has the powerful link with the target parameter. Though the selection

of statistical estimates relies on the input data type and output parameters, these

methodologies are yet able to be quick and victorious.



17

Thus, choosing an allowable statistical estimate for the dataset during the

execution of the filter-oriented feature selection could be challenging for a ML

expert.

In this post, we'll learn how to use statistical measures to choose numerical

and categorical data for filter-based feature selection.

· Unsupervised methodologies are divided into filter, wrapper, and intrinsic

methodologies and the supervised methodologies also get divided into filter,

wrapper, and intrinsic methodologies.

· Filter-oriented feature selection methodologies have its dependence or correlation

existing between the input parameters, which might be subjected to filtering

operations for selecting the most appropriate features with the deployment of the

statistical estimates.

· On the basis of input data type parameters and the response or output parameter,

statistical estimates for feature selection should be estimated carefully.

Fig. 3.2 Feature Selection



18

3.4 CLASSIFICATION

The Classification type of methodology is a Supervised Learning method

that utilizes the training data for determining the categories of new observation.

Classification is the method of acquiring the software knowledge from numerous

observations or a dataset and then we execute the classification of the new

observations into one among the several groupings or categories. Those groupings

include 0 or 1, Yes or No, cat or dog, Spam or non-Spam, and many more. For

describing the classes, the terms that we tend to use are: Targets/ categories or labels.

Dissimilar from the regression methodology, Classification generates a class

instead of a value, such as “animal or fruit”, “Blue or Green”, and many more. Since

the Classification methodology is a type of supervised learning approach, it utilizes

input data that are labeled by comprising both input as well as the output.

· Binary Classifier: This type of classifier is used when there are only two

possible outputs to a classification task. YES or NO, MALE or FEMALE,

SPAM or NOT SPAM, CAT or DOG, and so on are some examples.

· Multi-class Classifier: A Multi-class Classifier is used when a classification

task involves more than two outcomes. Classifications of different sorts of

crops, for example, or classifications of different types of music.



19

3.5 ENSEMBLE TECHNIQUES

Ensemble learning is a common meta method in ML that merges

forecasting made from a variety of projects in order to improvise the performance of

the forecasting. Though there is no restriction in the number of ensembles, still the

ensemble learning field is found dominated by the three methodologies from the

perspective of forecasting modeling tasks. These Ensemble learning methodologies

not only serve the purposes of the conventional algorithms, but also serve the various

kinds of specialised processes. Boosting, Stacking, and Bagging are the three key

groups of the ensemble learning methodologies. Note that everyone should need to

develop a thorough comprehension of every aspect in your project for utilizing them

towards successful forecasting.

· Boosting consists of orderly attaching ensemble associates, which get corrected

before the project predictions in order to obtain a weighted mean of the

forecasting.

· Stacking is the method of fitting several categorical projects to the identical data

and then utilizing the other project for learning to achieve integration of the

forecasting in the most suitable way.

· Bagging is the method of fitting several decision trees to varying samples of the

identical dataset and then estimating the mean of the outcomes.

Boosting is an ensemble method that could learn from the flaws made by

the earlier forecasters for making the forecasting far better in the time ahead. This

method merges the numerous weak foundation learners for creating one powerful

learner in order to improvise the forecasting abilities of the projects. Works are

boosted by placing the weak learners in such an order to empower the weak learners

to learn from the successive learner in order for achieving better forecasting projects.



20

Boosting is of different forms that include Adaptive Boosting (AdaBoost),

XGBoost (Extreme Gradient Boosting), and gradient boosting. AdaBoost utilizes the

weak learners in the structure of decision trees in order to indulge one split, which is

well known by the name “decision stumps”. The major decision stump of the

AdaBoost consists of observations having the same weights.

Likewise, XGBoost is another kind of ensemble method that utilizes

decision trees along with the boosted gradient to yield improvised performance and

speed. This boosting methodology depends majorly on the performance of the target

project and speed of the computational operation. The training of the project with

gradient boosted devices must adhere to a certain order, due to which the

implementation of it is slower.

These gradient boosting methodologies ensure that the forecasters get added

orderly onto the ensemble, wherein every preceded predictor corrects the flaws made

by those that succeed to raise the accuracy of the model. Every newly added

forecaster is ready for countering the adverse effects due to the flaws caused by the

earlier forecasters. These gradient boosters detect the issues in the forecasting made

by the learners and act against it appropriately with the help of the gradient of

descent.

Stacking is a yet another ensemble methodology, which is mostly known as

“stacked generalization”. This methodology operates by permitting the training

method to ensemble the forecasting made by numerous other identical learning

processes. This Stacking ensemble methodology is found to be applied in density

computations, regression, classifications, and distance learning. This could also be

utilized to compute the rate of errors that take place at the time of bagging.

Bagging, otherwise known as the bootstrap aggregating is majorly

implemented in regression and classification applications. It raises the accuracy of

the projects via the decision trees in order to reduce the variance suddenly. Reducing

the variance will help in avoiding the overfitting and raising the accuracy, which

were the problems existing in several forecasting projects.

https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe
https://corporatefinanceinstitute.com/resources/knowledge/other/gradient-boosting/
https://corporatefinanceinstitute.com/resources/knowledge/finance/regression-analysis/


21

This Bagging method could be further classified into two varieties such as

aggregation and bootstrapping. Aggregation in the bagging is carried out to include

every suitable output of the forecasting for randomizing the output. The forecasting

can’t be accurate enough since the consideration of all outputs would not be possible

without aggregation. Hence, the aggregation is dependent on the possibility of

bootstrapping strategies or it is based on all the outputs from the forecast project.

Bootstrapping is a type of sampling method, wherein the samples get

extracted from the entire occupants (set) with the deployment of the substitution

process. The sampling done via replacement methodology aids to randomize the

selection process. The foundation learning methodology could operate based on the

samples for completing the process.

Bagging is beneficial as the weakly foundation learners get merged to

develop a sole powerful learner, which is more robust than the individual learners.

Bagging also avoids the deviation, which in turns helps in lessening the overfitting of

projects. Only challenge that the bagging method has to suffer is higher

computational cost. Hence, bagging could result in higher bias in projects if the

appropriate strategy of bagging is disregarded.

3.6 SOFTWARE DEFECT PREDICTION

Software Defect Prediction (SDP) is one of the most assisting activities of

the Testing Phase of SDLC. It identifies the modules that are defect prone and require

extensive testing. This way, the testing resources can be used efficiently without

violating the constraints.



22

Software Defect means a genuine error, malfunction, fault or failure within

the Source Code of the Software, which prevents the Software from operating as

intended model of defect prediction, reliability-based models use the. operational

profile of a system to predict failure rate that the project will face. Also in most

projects, information. collected in the testing and defect detection is analyzed too.

Usually, defect prediction models are investigated in the literature using a

within-project context that assumes the existence of previous defect data for a given

project [2]. This approach is called Within-Project Defect Prediction (WPDP).

Defect forecasting: Turn past mistakes into future gains

Gather data from previous releases. ...

Use prior defect reports to develop baseline predictions. ...

Organize projected defect identification instances according to sprint cycle and

testing functions. ...

Re-evaluate predictions as velocity becomes more consistent.

Software defects originate in multiple origins. The approximate U.S. total

for defects in requirements, design, code, documents, and bad fixes is 5.00 per

function point. Best in class projects are below 2.00 per function point. Projects in

litigation for poor quality can top 7.00 defects per function point.

Defect Software prediction is regarded as one of the most beneficial and

cost-effective operations. It is regarded by software professionals as a critical phase

that determines the quality of the product being built. It has played a significant role

in refuting claims that the software industry is incapable of delivering requirements

on time and on budget. Aside from that, client feedback on product quality has

shifted dramatically from poor to satisfactory.

For defect prediction, various data miners have now supplanted earlier

statistical approaches. The classification model, which places the component in one



23

of two classes: fault prone or non-fault prone, is the foundation of data mining.

Initially, the classifier is given cases that are previously known and whose class we

recognise. After the model has been trained, it is tested on unknown examples and

the technique's prediction performance is evaluated. The requirement and design

metrics were used for the majority of the research.

3.7 SDLC- SOFTWARE DEVELOPMENT LIFE CYCLE

In this project, we are going to make use of the waterfall model as our

software development cycle. The waterfall model was selected due to the ease that

the model offers via its step-by-step process during the implementation.

Fig 3.3  Pictorial Representation of the Waterfall Model



24

· Necessity Gathering and investigation – Every suitable necessity of the system

that is to be devised are detained in this stage and then we document in a

necessity specification record.

· Design of System − The necessity specifications from the initial stage are

investigated in this stage for preparing the design of the system. This prepared

design of the system aids in itemizing both the system and hardware necessities.

This will in turn aid in specifying the architecture of the entire system.

· Implementation − The system is initially devised in compact programs known as

units by using the inputs derived from the design of the system. This will be

desegregated in the succeeding stage. Every unit is devised and investigated for

their functionality. This is called Unit Testing.

· Desegregation and Investigating − All the units developed in the

implementation phase are desegregated into a system once the testing of every

unit gets completed. The whole system is investigated for any malfunctions and

faults after the completion of desegregation.

· Utilization of the system – After the completion of both the non-functional and

functional investigation, the product is applied in the environment of the

customer or it is directly let out into the outer market.

· Sustainment − There will be few problems that might arise when utilized in the

environment of the customer. For fixing these problems, patches are let out

periodically. Furthermore, for enhancing the released product, far better versions

of it are also let out in order to fulfill the customer’s needs and thereby retaining

them. Sustainment is carried out to implement the desired variations in the

environment of the customer.



25

3.8 PRACTICABILITY INVESTIGATION

The Practicability of the taken-up project is investigated in this stage and

then we prepare the business proposal report consisting of a fundamental common

strategy for the project along with few cost estimations. When we investigate the

system, the practicability investigation of the devised system is done. This

investigation is done to ensure that the devised system is not anyway a burden to the

firm. To complete the Practicability investigation, the main necessities for the system

must be understood well.

The three crucial considerations indulged in the Practicability investigation

are as follows:

¨ Technical Practicability

¨ Social Practicability

¨ Economical Practicability

3.8.1 Technical Practicability:

This investigation is done to inspect the technical Practicability (i.e.) the

technical necessities of the devised system. The devised system should not be having

a higher demand on the accessible technical assets. Otherwise, higher demand would

get developed for the system, which will raise the demand levels in the client side

too. The devised system should have an unpretentious necessity, as negligible or nil

variations are needed towards the implementation of the system.



26

3.8.2 Social Practicability:

The reason for the investigation is inspecting the rate of system acceptance

by the customer. This investigation includes the operation of training the customer to

utilize the system much more efficiently. The customer should not be frightened by

the system, rather the customer should feel its necessity. The rate of acceptance by

the customer relies only on the methods, which are deployed to teach the customer

regarding the system in order to make it familiar to them. Their rate of confidence

should also be raised so as to enable them to make few constructive criticisms as the

customer is the one who is the final utilizer of the system.

3.8.3 Economical Practicability:

This investigation is done to inspect the economic effects that the devised

system would be having in the firm. The quantum of money which the firm could

invest into R&D- Research and Development activities of the devised system is

restricted. The spend pattern is made justifiable. Hence, the devised system is able to

be well inside the budget range. This economical practicability was possible since we

had utilized the technologies that are easily available. If the cost is not the constraint,

then the personalised products could be bought.



27

3.9 SYSTEM REQUIREMENTS SPECIFICATION

3.9.1 Non-functional and functional requirements:

The investigation of the necessity is a much crucial operation that

encourages the success of the devised system or the software project that is to be

investigated. Necessities can be commonly divided as two kinds like non-functional

and functional necessities.

3.9.2 Non-functional necessities:

The Non-functional necessities are normally the quality restrictions that the

system should fulfill depending upon the contract of the project. The extent or

priority up to which these elements are applied are not the same and it differs from

one project to another. It is also known as a non-behavioral necessity.

These necessities normally deal with the following problems:

· Transportability

· Flexibility

· Supportability

· Security

· Dependability

· Performance

· Recyclability

· Scalability

Typical samples for non-functional necessities are listed below.

1) The Mails must be delivered by consisting of a latency of not in excess of 12

hours whosoever the considered task.



28

2) Site must open in 3 seconds of time whenever the simultaneous users are

more than 10,000

3) The processing of every request must be carried out inside the time of 10

seconds.

3.9.3 Functional necessities:

These necessities are specifically demanded by the customer as the

fundamental facilities that the system is desired to provide. All of the usefulness is

required to be essentially established onto the system as per the contract parts. These

necessities are stated or represented in the input form that is needed to be provided to

the system, the processes executed, and the output desired. They are normally the

necessities expressed by the customer, which one could notice straightly in the end

product, which is the exact opposite of the non-functional necessities.

Typical samples for functional necessities are listed below.

1) Shutdown of the system is done if a cyber-attack takes place.

2) User authentication is executed every time the customer gets logged into the

system.

3) The validation Mail is delivered for the customer unless he/she submit their

details for the initial occasion registration in a few program systems.



29

CHAPTER 4

EXPERIMENTAL DESIGN

4.1 INDEPENDENT AND DEPENDENT VARIABLE

In mathematical modeling, statistical modeling, and experimental sciences,

independent and dependent variables are the variables. Independent variables are not

considered as being dependent on any other variable in the experiment at hand. Time,

mass, space, fluid flow rate, density, and prior values of any observed value of

interest (e.g., human population count) are few frequent independent variables used

to predict future values (the dependent variable). Dependent variables, on the other

hand, get their name as their values are studied in an experiment under the

assumption or demand that they are dependent on the values of other variables

according to some law or rule (e.g., a mathematical function).

The dependent variable is always the one whose variation is being

investigated by changing inputs, often known as regressors in a statistical setting.

Any variable in an experiment that can be given a value without affecting the value

of any other variable is referred to as an independent variable. Models and

experiments are used to investigate the effects of independent variables on dependent

variables. Independent variables are also included for various purposes, such as to

account for their potential confounding effect, even though their influence is not

directly of interest.



30

An independent variable is that type of variable which we could control or

change in an experimental investigation to search for its effects. The name

“independent” is coined from its ability of being not influenced by any other

variables considered in the study.

Independent variables are known by the following other names:

· Predictor variables

· Right-hand-side variables

· Explanatory variables

These names are particularly utilized in the field of statistics, where we

could compute the extent up to which the change in the independent variable change

could be detailed or could forecast the variations taking place in the dependent

variable.

The independent variable (IV) is a characteristic of any psychological

experiment, which could be controlled or varied by the researchers instead of other

kinds of variables. For example, the examination of the independent variable is

possible when we examine the effects of investigating on the test scores.

If you're having problems identifying an experiment's independent

variables, consider the following questions:

· Is the variable one that the researchers are tinkering with?

· Are researchers attempting to determine how one variable affects another?

· Is the variable something that can't be modified but isn't affected by the

experiment's other variables?

The impacts of the independent variable on other variables, known as

dependent variables, are of interest to researchers (DV). The independent variable is

https://www.scribbr.com/methodology/experimental-design/
https://www.scribbr.com/methodology/explanatory-and-response-variables/
https://www.scribbr.com/category/statistics/


31

one that the researchers either control or that already exists but is unaffected by other

factors.

A dependent variable is a type of variable that varies because of the

controlling of the independent variables. This variable is the outcome that we expect

to compute and this variable will rely on the utilized independent variable.

In the field of statistics, these dependent variables are known by the following names:

· Responsive variables

· Left-hand-side variables

· Outcome variables

The dependent variable is what we report once the controlling of the

independent variable is completed. We utilize this computational data to inspect up to

what extent and whether the utilized independent variable impacts the dependent

variable by the conduct of various statistical investigations.

We could infer from the discovery that we could compute the degree up to

which the variation in an independent variable can influence the variation in the

dependent variable. We could even forecast how much the dependent variable would

vary because of the variation taking place in an independent variable.

The dependent variable will be tested or examined in any experimental set

up. For instance, in an investigation aiming for tutoring of effect test scores, the

dependent variable would be the test scores achieved by the participants, as we only

compute them.

Likewise for a psychology experiment, the researchers investigate how the

variations in one particular variable (the independent variable) is able to influence the

dependent variable. Controlling the independent variables and examining its impact

on the dependent variables would permit various researchers to infer various

conclusions regarding the cause-and-effect associations.

https://www.scribbr.com/category/statistics/
https://www.verywellmind.com/what-is-the-independent-variable-2795278


32

4.2 EMPIRICAL DATA COLLECTION

The term empirical refers to data collecting that is based on evidence

gathered through observation, experience, or the use of calibrated scientific

instruments.

Empirical analysis is a method of studying and interpreting data that is

based on evidence. Rather than ideas and conceptions, the empirical approach relies

on real-world facts, measures, and outcomes. Empiricism is the belief that knowledge

is gained largely via experience and the five senses.

During an experiment, empirical evidence is acquired. Analytical evidence

is derived from previously stored data or historical data. In other words, rather than

being obtained during a single experiment or observation, it was gathered through

investigation of previous data.

In the world today, the word empirical refers to the gathering of data by

having proof that is gathered through experience or observation or by deploying

calibrated scientifical devices. Thus, we could infer that various conclusion could be

drawn only based on the examination or observation and through the experiments

that we conduct to collect data.

https://www.questionpro.com/blog/data-collection/


33

CHAPTER 5

WORKING AND ANALYSIS

5.1 DATASET

jm1.csv: Dataset collected from Kaggle .

· JM1 is a C-based real-time forecast ground technology. To make forecasts, it uses

simulations.

· Halstead has source code extractors, and McCabe's data is being used. Those

characteristics have been created in the 1970s in order to precisely characterise

code features associated with software quality.

· Number of instances: 10,885.

· Each observation consists of 22 features.

cm1.csv: Dataset collected from Kaggle

· CM1 is a C-based NASA spacecraft instrument.

·     Halstead contains source code extractors, and McCabe's data is used. These traits

were created in the 1970s to scientifically characterise code attributes related to

software quality. The definition of affiliation is a point of contention.

· Number of instances: 328.



34

· Each observation consists of 38 features.

mw1.csv: Dataset collected from Kaggle

· MW1 is written in C.

· Number of instances: 254.

· Each observation consists of 38 features.

5.2 DATASET PRE-PROCESSING

· The preprocessing includes imputing null values, removing and cleaning

unwanted data available in the dataset.

· If the categorization categories are not roughly equally represented, the

dataset is unbalanced. One method for addressing this issue is to

oversample the samples in the outvoted class.

5.3 FEATURE SELECTION

Feature Selection is performed with the help of the most extensively utilized

technique known as Synthetic Minority Oversampling Technique (SMOTE).

SMOTE:

· Choose data from the minority class at random.

· To construct a synthetic sample for the outvoted class, compute the variance

by a random range from 0 to 1.

· Repeat this until you reach the required outvoted class proportion.



35

5.4 CLASSIFICATION AND ENSEMBLE TECHNIQUES

· Once the dataset is prepared and pre-processed, we upload our dataset into

the model.

· After uploading data, we perform necessary feature engineering techniques

on the considered dataset. In this step, we remove noise from the data and

divide the dataset into two different types of data such as train and test data.

· With the help of replace technique we will encode the dependent variable in

order to move before building a model.

· In the train process, we build our proposed algorithm with the help powerful

ML techniques with the help of Sklearn, CatBoost, LightGBM, extra trees

classifier modules and the hybrid model is built using stacking classifier.

· The proposed architecture is based on machine learning data mining

architecture. The proposed model is built using the methods involved in

building a machine learning model.

· Here the proposed model mainly classifies whether software is defective or

not.

Fig. 5.1 Proposed Methodology



36

5.5 ML TECHNIQUES

An artificial intelligence (AI) technique which enables the computers to

learn automatically without any obvious programming or any such interference is

known as Machine Learning. It is a technique which is involved with creating

computer programmes for adapting to new data. Let’s look at the brief explanation

about the method of utilizing Python for creating a basic form of machine learning

algorithm and the basic concepts of machine learning.

Machine learning is one of the fast-emerging technologies which enables

the computers to study and understand automatically based on the previous data

entered. It utilizes different types of algorithms for creating the mathematical models

that help to predict the upcoming data based on the previously entered data. It is

applied to a wide range of applications like speech recognition, recommender

systems, filtering emails, identifying images, auto-tagging in Facebook, etc.

Through using sample historical data which is also referred to as training

data, a mathematical model is created by the machine learning algorithms. The

necessary predictions or judgements are made using the generated mathematical

models without any external programming being done. Since machine learning

makes use of certain algorithms which learn automatically from the previously

entered data, the more information given as input determines the performance that is

received as output.

Machine learning is normally categorized into three different categories like

supervised learning, unsupervised learning and reinforcement learning. Various

concepts like clustering approaches, classification models, regression models, hidden

Markov models, etc. comes under the hood of machine learning.

5.5.1 Cat Boost

CatBoost is an extremely high tree-based gradients boosting program.

CatBoost is a technique for enhancing decision trees using gradients. Yandex

researchers and developers built it, and this is utilized by Yandex and some other



37

companies like Careem taxi, CERN and Cloudflare for performing different jobs like

self-driving the vehicles, personal assistantance, weather forecasting,

recommendation systems, search, etc. CatBoost is an open-source program and

anybody can make use of it. Since it is open-source, anybody can use it. Putting Cat

Boost & LightGBM to the test.

CatBoost comes out on top in the benchmark, which is fantastic. When it

comes to datasets with a lot of categorical variables, however, this increase is

considerable and clear.

CatBoost is an algorithm for gradient boosting in decision trees. It is

developed by Yandex researchers and engineers, and is used for search,

recommendation systems, personal assistant, self-driving cars, weather prediction

and many other tasks at Yandex and other companies, including Careem taxi,

Cloudflare, CERN.

The data from the machine learning model must be subjected to data

preparation before subjecting the model to training. The important steps involved in

the data preparation process are mentioned below:

· The survived column is removed initially which normally acts as the target

variable.

· The data is then divided by forming two data frames such as x and y, among

which one possess the target variable whereas other possess the valuable

features for the model.

· Then the ‘Pclass’ column is converted to string data form. Then the null

values existing within the features are filled to eliminate the null values.

Since CatBoost algorithm is a great machine learning algorithm especially

for the categorical features, a list of column indices possessing the categorical data

are generated by creating two helper functions. Then all the columns are converted to

the category data forms.



38

While training time may be greater The Yandex benchmark reveals that

prediction time is 13–16 seconds, which is faster than previous GBDT

implementations. Times quicker than the other libraries. The default settings in

CatBoost are better GBDT algorithms, which is fantastic news for newbies looking

for a ready-to-use model to get starting with tree ensembles or Kaggle.

Fig. 5.2 Catboost Algorithm

Tournaments. CatBoost's other notable innovations include features

interactivity, objects significance, and snapshots. Support CatBoost provides ranking

right out of the box, in addition to classification and regression.

5.5.2 Extra Trees Classifier Algorithm

Extra Trees Classifier seems to be a collective approach that uses tree structure as its

foundation and combines other decision tree algorithms like random forest and

bootstrap aggregation (bagging). Extra Trees Classifier when acting as a Random

Forest, randomizes specific decisions as well as portions of data can prevent

overlearning as well as over-fitting from the data. When it comes to decision trees, it

learns from only one trail of decisions and a single decision tree frequently fits the

data it is learning from. Predictions based on a single decision tree are seldom

reliable when applied to fresh data. Building many trees (n estimators) in a random

forest model reduces the risk of over fitting and substitute for drawing notes (i.e., a

bootstrapped sample) and nodes are split based on the best splitting or separation

among a random group of characteristics chosen at each node. Extra Trees is similar

to Random Forest because it generates several trees as well as divides nodes with



39

random feature subsets, but somehow it differs in two major ways: it does not

bootstrap observations and nodes are divided on random splits rather than optimal

splits. One is, as defaults, it constructs multiple decision trees with bootstrap is set to

be False that implies it samples has no substitution and the second is, these nodes are

divided randomly splits across a randomly selected subset of the characteristics

chosen at each node. Randomness in Extra Trees is generated through random splits

of all observations rather than by bootstrapping of data.

Huge quantity of unpruned decision trees is created from the training

dataset and the functioning of Extra Trees algorithm takes place through this decision

trees. In the regression phase, the predictions are done through taking mean for the

prediction of decision trees and in the classification phase, the process of majority

voting is utilized.

Extra Trees algorithm is capable of sampling the features in a random

manner at each separating spot of a decision tree just as such in the case of random

forest. But unlike the random forest classifier, the extra trees algorithm makes use of

a greedy algorithm for gathering an ideal separating spot and thus gathers the

separating spot in random manner.

Normally there are three different types of hyperparameters that helps in the

tuning of Extra Trees algorithm. They are:

· The number of decision trees present in the collective group,

· The number of input features that are selected in a random manner and

considered for each separating spot and

· The minimum number of samples in a node that are needed for creating a

new separating spot.

There are few collective techniques responsible for the creating extra trees classifier.

They are ordered from high variance to low variance in this section.



40

5.5.3 Gradient Boosting

Gradient boosting technique is one among the most effective methods in

machine learning. Normally mistakes tend to occur even in the machine learning

algorithm and thus occurred mistakes are categorized into two different types like

variance errors and bias errors. It has been the most popular boosting procedure

utilized for minimizing the bias error occurring in a model. The gradient boosting

procedure, unlike the AdaBoosting approach, doesn't really allow us to choose any

base estimator. The base estimator of the Gradient Boost method is constant, i.e.,

Decision Stump. We may use AdaBoost to modify the n estimator of the gradient

boosting approach. Nevertheless, the computation default value becomes 100, if the

number of n estimators are not supplied. The gradient boosting method can predict

either continuous or categorical target variables. Their cost function is Mean Square

Error (MSE) if it is utilized as a regressor, and Log loss if it is used as a classifier. So,

look at an example to see how the Gradient Boosting Algorithm works. Age is the

target variable in the following example, whereas LikesExercising, GotoGym, and

DrivesCar are independent variables. Gradient Boosting Regressor is utilized in this

case since the target variable is continuous. Let us now determine the estimator-2.

Despite AdaBoost, the Gradient Boosting technique uses the first estimator's residues

(agei – mu) as root nodes, as seen below. Assume that another dependent variable is

utilized for predictions using this estimate. As a result, the records with False

GotoGym.

5.5.4 Light GBM

LightGBM is really a decision tree-based gradient boosting system which

boosts effectiveness of the model while consuming less memory.

It uses two recent techniques: Gradient-based One Side Sampler exclusivity

and Feature Bundling, that overcome the shortcomings of the histogram-based

technique used in most GBDT frameworks. The LightGBM Algorithm's qualities are



41

generated by the two techniques of GOSS & EFB, which are discussed here.

Researchers try hard to make the system function successfully and to offer it a

competitive advantage over rival gradient boosting decision tree architectures.

Gradient-based LightGBM One-Side Sampling Technique:

Distinct data examples play different roles in the computation of

information gain. For scenarios with larger gradients, the supervised learning will be

higher. GOSS keeps examples with substantial gradients and removes cases with

modest gradient at randomized to ensure the informativeness gain estimation. So,

when quantity of mutual information varies widely, this approach can provide a more

accurate gain estimation than uniform random sampling at same desired sampling

frequency.

5.5.5 Hybrid Model

Ensemble classifiers are commonly used to improve classification task

accuracy. Throughout the current study, a hybrid model based on stack-based

ensemble classifiers is used to determine whether or not software is faulty. To

improve classification accuracy, the feature vector added with the resultant of a basic

classifier for creating an enhanced feature set, along with the employment of

collective model that is based on the hybrid stack for enhancing the set of features.

CatBoost, gradient boosting, extra trees classifier, and LightGBM classifier are

utilized to develop a stacking-based ensemble classifier using LGBM as Meta

learners. The suggested model is implemented using our data set JM1. Python's

Mlxtend package is used to build the stack-based ensemble of classifiers. The

experimental findings exhibit that the proposed hybrid model and extra tree classifier

with the feature set gives better performance and improved accuracy, on comparing

with other existing machine learning techniques.



42

5.6 PERFORMANCE EVALUATION MEASURE

5.6.1 Accuracy:

The classification models are basically evaluated in terms of the accuracy

parameter. Irrespective of definitions, let’s say that accuracy refers to percentage of

exact predictions made by the proposed model. The correct definition of accuracy is

given as the number of exact predictions equal to that of total accuracy number of

predictions.

The calculation of accuracy is done by dividing the total number of samples

by the number of valid predictions (the appropriate diagonal in the matrix).

5.6.2 Precision:

The binary classification issues occurring in the proposed model does not

limit or affect the precision parameter. The precision calculation for the imbalanced

classification issue having more than two classes is done through the expression

where the sum of true positives among all classes divided by the sum of true

positives and false positives among all classes. The expression for precision

calculation is given below:

Precision = Sum c in C TruePositives_c / Sum c in C (TruePositives_c +

FalsePositives_c)

5.6.3 Recall:

Similar to precision, the binary classification issues occurring in the

proposed model does not limit or affect the recall parameter. And the calculation of

recall value for the imbalanced classification issue having more than two classes is

also done through the similar expression as before where the sum of true positives

among all classes divided by the sum of true positives and false negatives among all



43

classes. The only difference exists in the calculation of false negatives among all

classes instead of the calculation of false positives among all classes as in the case of

precision. The expression for recall calculation is given below:

Recall = Sum c in C TruePositives_c / Sum c in C (TruePositives_c +

FalseNegatives_c)

Figure 5.3 Basic Indicators for defect Prediction

5.7 PROBABILITY SCORE

Statistical analysis consists of numerous advantages to both the

organizations as well as the individuals and hence it is considered to be a great boon

to the mankind. Some of the main reasons considered before investing in the

statistical analysis are mentioned below:



44

· The decisions can be made easily through determining the sales profits either

in yearly or quarterly or monthly basis.

· The wrong decisions can be corrected and helps the sales persons to be

informed all time.

· The issue or the main reason of failure can be identified and thus helps to

correct those failures. Let’s take an instance where the wasteful expenses

can be eliminated by identifying the reason for the increase in total costs.

· An efficient sales and marketing strategy can be made through conducting

proper market analysis.

· The efficiency of various methods can be improved.

5.7.1 Probability Analysis Software

Statistical analysis can’t be made by everyone as it is a very complex

statistical calculations and normally tend to be very costly and time-consuming

process. Nowadays, numerous companies implement statistical software as it is

considered to be a very significant tool for performing data analysis. Many complex

calculations are made, new trends and patterns are identified, and various graphs,

charts and tables are created accurately by the software within few minutes as it

utilizes the concept of machine learning and artificial intelligence in it.

In Statistical we plot each algorithm got different accuracy value so show

the plot in the build the bar plot in the shoes below figure



45

Figure 5.4 Probability Score

5.7.2 Probability Analysis Process

The statistical analysis process is performed by following the 5 significant steps

mentioned below:

Step 1: The nature of the data that is to be analysed are identified and described

initially.

Step 2: A relationship is established among the data analysed and the sample

population to which it belongs to.

Step 3: A model is created for clearly presenting and summarizing the relationship

among the data and population.

Step 4:   The validity of the model is then verified.

Step 5: The future events and trends likely to occur are predicted using the

predictive analysis.



46

CHAPTER 6

RESULTS

In this section, we'll discuss the results obtained by employing the

forementioned technique, as well as compare the accuracy, precision, and recall of

each model. Compare accuracy, precision and recall for all machine learning

technique we used.

TABLE 6.1. Results Obtained  for jm1 Dataset

Model Accuracy

(%)

Precision

(%)

Recall

(%)

CatBoost Classifier 86.35 94.18 81.51

LGBM Classifier 86.31 94.03 81.54

Gradient Boosting

Classifier

80.77 89.64 76.24

Stacking Classifier 87.85 86.99 88.60

Extra Trees Classifier 87.40 86.20 88.40



47

TABLE 6.2. Results Obtained for cm1 Dataset

Model Accuracy

(%)

Precision

(%)

Recall

(%)

CatBoost Classifier 87.04 97.92 88.68

LGBM Classifier 87.96 96.88 90.29

Gradient Boosting

Classifier

87.04 95.83 90.20

Stacking Classifier 86.11 95.83 89.32

Extra Trees Classifier 85.19 95.83 88.46



48

TABLE 6.3. Results Obtained for mw1 Dataset

Model Accur

acy

(%)

Precisio

n (%)

Recall

(%)

CatBoost Classifier 85.71 100.00 85.71

LGBM Classifier 85.71 98.61 86.59

Gradient Boosting

Classifier

86.90 98.61 87.65

Stacking Classifier 85.71 98.61 86.59

Extra Trees Classifier 85.71 100.00 85.71



49

Table 6.4. Comparison between other’s work.

Author Algorithms Used

Guisheng Fan, Xuyang Diao, and
Huiqun Yu [1]

· Random Forest

· Random Forest method with hidden features learned
by Restricted Boltzmann Machine

· Random Forest method with hidden features
generated by Deep Belief Network

· Convolutional Neural Network

· Recurrent Neural Network

· Attention-Based Recurrent Neural Network

Ebubeogu Amarachukwu Felix,
and Sai Peck Lee [2]

· Naïve Bayes

· Logistic Regression

· Neural Network

· K-nearest neighbor (KNN)

· Support Vector Machine

· Random Forest

Zhou Xu, Jin Liu, Xiapu Luo,
Zijiang Yang, Yifeng Zhang,

Peipei Yuan, Yutian Tang, and Tao
Zhang [3]

· Kernel Principal Component Analysis (KPCA)

· Weighted Extreme Learning Machine (WELM)

https://www.sciencedirect.com/topics/computer-science/extreme-learning-machine


50

Zhou Xu, Shuai Pang, Tao Zhang,
Xia-Pu Luo, Jin Liu, Yu-Tian

Tang, Xiao Yu, and Lei Xue [4]

· Logistic Regression

Ruchika Malhotra, Shine Kamal
[5]

· Decision Tree

· Random Forest

· Naïve Bayes

· AdaBoost

· Bagging

Ruchika Malhotra, Shine Kamal
[6]

· Random Forest

· J48

· Naïve Bayes

This Study · CatBoost Classifier

· XGB Classifier

· SVM

· LGBM Classifier

· Random Forest Classifier

Table 6.4 compares the models/algorithms utilized in this study with those utilized in

previously existing research works. We employed the Synthetic Minority

Oversampling Technique, which is the most widely used technique for imbalanced

datasets, because all of the datasets are imbalanced. The Stacking Classifier

algorithm is employed in the work, which is a collaborative learning technique that

uses a meta-classifier to merge numerous classification models. Furthermore, the

Extra Trees Classifier algorithm is also employed, which is a form of collaborative

learning method that gathers the outcomes of several de-correlated decision trees



51

collected in a "forest" to get a classification result. In comparison to all other

algorithms, the Extra Trees Classifier algorithm considerably improves performance.

Also Flask was used to create the web application. Flask is a Python-based microweb

toolkit. It is known as a microframework because it does not require the usage of any

specific tools or libraries. It includes a database layer of abstraction, data validation,

as well as other common-task-accomplishing components that rely on third-party

libraries.

Figure 6.1 Upload Dataset.

The above images represent the loading procedure of required dataset in order to

implement the project.

Figure 6.2. View Dataset.

The above shown figure is showing us a sample data which was uploaded to the

system.



52

Figure 6.3. Preprocessing

The above shown figure is the place where preprocessing was implemented.

Figure 6.4  Model trained with Hybrid Model.



53

Figure 6.5 Model Trained with Extra Trees Classifier

Figure 6.6 Predicting Defected Software

The above shown figure is taking input fields provided by the user to detect whether

a software is defected or not depending on the attributes.



54

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

Software faults can degrade the quality of software, causing problems for

both customers and developers. As software designs and technology have become

more intricate, manual programme identification has become a challenging and

time-consuming task. As a result, autonomous software detection has been a hotspot

for industrial research in recent years. The purpose of this research is to use

data-mining techniques to predict software flaws. Furthermore, this problem has

grown in importance as a research area, with numerous approaches being explored to

increase the effectiveness of detecting software flaws or anticipating defects in some

way.

In this research study, machine learning is utilized to resolve the issues

caused. Using three datasets from the NASA Promise dataset repository, we examine

the performance of state-of-the-art machine learning approaches. We develop

predictions using a variety of algorithms and can detect poor software. This is

accomplished in a user-friendly environment using Python programming and

machine learning techniques such as CatBoost, Gradient Boosting, LightGBM,

Random Forest, and MlXtend to construct a hybrid model and extra trees classifier,

both of which outperform with higher accuracy.

In Hybrid Model, all three Accuracy, Precision, and Recall values had

attained maximum equal values. Values of these three performance measures indicate

how well the proposed model performs.

If same values are attained for all, it suggests that the proposed prediction

method is correct and accurate.



55

The use of many datasets aids in the detection of software flaws. If the

number of datasets is increased, the results may be improved. Other strategies can be

compared as well. The most popular and broadly utilized techniques were taken into

considered in this study. In the future, new methods are likely to be proven and used

in deeper investigation. This is an area where there is still a lot of opportunity for

improvement. We can think about a few different ways that advanced deep learning

algorithms are used, as well as the necessity for more data collection by academics.

Additional experimental tests using other datasets would be one topic of

future investigation. These datasets would be obtained from open repositories or

software companies. The second topic of future research would be to undertake an

experiment combining machine learning and deep learning approaches. Another

possible study direction is to combine already existing features to generate new

qualities. Finally, doing a case study using a variety of software quality datasets

acquired from real-world projects of various sizes of software companies would be

beneficial. Another method for enhancing the accuracy of the prediction model to

include more software measures in the learning process.



56

References:

[1]. G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, Software Defect Prediction via

Attention-Based Recurrent Neural Network, Hindawi, 2019.

[2]. E. A. Felix, and S. P. Lee, Predicting the number of defects in a new software

version, PLOS ONE (2020).

[3]. Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T. Zhang, Inform.

Softw. Technol. 106, 182–200 (2019).

[4]. Z. Xu, J. Xuan, J. Liu, and X. Cui, Cross project defect prediction via balanced

distribution adaptation based transfer learning. Journal of Computer Science and

Technology 34(5), 1039–1062 (2019).

[5]. R. Malhotra, and S. Kamal, Neurocomputing 343, 120–140 (2019).

[6]. R. Malhotra, and S. Kamal, Tool to handle imbalancing problem in software

defect prediction using oversampling methods. In: 2017 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), IEEE, 2017,

pp. 906–912.

[7]. R. Malhotra, and J. Jain, Int. J. Softw. Eng. Knowl. Eng. 31, 193–215 (2021).

[8]. D. Ryu, J. Baik, Effective multi-objective naïve Bayes learning for cross-project

defect prediction. Appl. Soft Comput. 49, 1062 (2016).

[9]. C. Shan, B. Chen, C. Hu, J. Xue, and N. Li, Software defect prediction model

based on LLE and SVM. In: Proceedings of the Communications Security

Conference (CSC ’14), 2014, pp. 1–5.

[10]. Z. R. Yang, A novel radial basis function neural network for discriminant

analysis. IEEE Trans. Neural Netw. 17(3), 604–612 (2006).

[11]. K. Han, J. -H. Cao, S. -H. Chen, and W. -W. Liu, A software reliability

prediction method based on software development process. In: 2013 International

Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering

(QR2MSE). IEEE, 2013, pp. 280–283.

[12]. K. Han, J. -H. Cao, S. -H. Chen and W. -W. Liu, “A software reliability
prediction method based on software development process,” in 2013 International
Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
(QR2MSE) (IEEE, 2013), pp. 280–283.



57

[13]. Y. Zhou, Y. Yang, H. Lu, et al., ACM Trans. Softw. Eng. Methodol. 27,
1–51 (2018).

[14]. M. H. Halstead, “Elements of software science,” in Operating and
Programming Systems Series, vol. 2 (Elsevier, Amsterdam, Netherlands, 1977).

[15].        T. J. McCabe, IEEE Trans. Softw. Eng. SE-2, 308–320 (1976).

[16]. M. Jureczko and D. Spinellis, “Using object-oriented design metrics to
predict software defects,” in Models and Methods of System Dependability (Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland, 2010).

[17]. F. Yamaguchi, M. Lottmann and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th Annual
Computer Security Applications Conference (ACM, Orlando, FL, USA, 2012), pp.
359–368.

[18]. T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ and S. Khudanpur,
“Recurrent neural network based language model,” in Proceedings of the Eleventh
Annual Conference of the International Speech Communication Association,
Makuhari, Japan (September 2010).

[19].        D. M. Powers, J. Mach. Learn. Technol. 2, pp. 37–63 (2011).

[20]. J. M. Lobo, A. Jiménez-Valverde and R. Real, Glob. Ecol. Biogeogr. 17,
pp. 145–151 (2008).

[21]. N. Nagappan and T. Ball, “Using software dependencies and churn metrics
to predict field failures: an empirical case study,” in Proceedings of the First
International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007) (IEEE, Madrid, Spain, September 2007), pp. 364–373.

[22]. R. Moser, W. Pedrycz and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction,” in
Proceedings of the 30th International Conference on Software Engineering (ACM,
Leipzig, Germany, May 2008), pp. 181–190.

[23]. Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking
classification models for software defect prediction: A proposed framework and
novel findings. ​IEEE Transactions on Software Engineering, ​ ​34​(4), 485-496.

[24]. Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: Some

comments on the nasa software defect datasets. ​IEEE Transactions on Software

Engineering​, ​39 ​(9), 1208-1215.



58

LIST OF PUBLICATIONS

[1]Nishthaa,Ruchika Malhotra , “Identification Of Defects in a Software using Machine

Learning” accepted at Parul University International Conference on Engineering and

Technology

Indexed by Scopus

Paper Id- 177

Abstract- Now a days, the usage of software among the individuals have increased a lot

when compared with earlier days. As the technology is increasing rapidly, the evolution of

artificial intelligence has taken place. In the underlying time of the Software Development

Life Cycle (SDLC), Software Defect Prediction (SDP) remains a basic and important duty.

There have been a lot of trials going on in the previous few days to detect the quality of the

program, which leads to giving the software a guaranteed quality. SDP indicates the

probability of software shortcoming at a beginning phase of software development process

and henceforth it will be more straightforward to distinguish and address them and

furthermore diminish issues that would happen at later stages. This will work on the

general nature of the software item. In the recent years, a few machine learning(ML)

algorithms have utilized instances of defective and non-defective modules to construct

prediction models. Software metric have been utilized as input to these ML algorithms to

address the software modules. Here in this project for the detection of defects in software

we are using ML algorithms namely CatBoost, XGBoost (Extreme Gradient Boosting),

Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM) and

Random Forest (RF).We perform these on Promise repository dataset used for SDP. Most

of the software defect datasets have imbalanced output results (count of defect and not

defect too much vary), so we perform SMOTE technique to overcome this problem. From

our research, CatBoost and RF Classifier are best algorithms for detecting software defects.

We will discuss more about our dataset, pre-processing techniques, modeling, evaluation



59

and model comparison in this paper, and we also compare our work with previous other

author works.

[2]Nishthaa,Ruchika Malhotra , “Software Defect Identification with Hybrid and Extra

Tree Models”, accepted at International Conference on Emerging Trends in IoT and

Computing Technologies-2022

Indexed by Scopus

Paper id-93

Abstract- The end users who are using the software and its products is vastly increased

when compared to the earlier days. As we are seeing that the technology has evolved a lot

and it has delivered an extraordinary technology named artificial intelligence. Identifying

defects in a software in the current time can be held with Software Development Life Cycle

(SDLC) and it stays a fundamental and crucial task. In the present days, a few instances of

defective and non-defective modules are used to construct prediction models which utilize

machine learning(ML) algorithms. To address the software modules, software metrics were

used as input to these ML algorithms. In order to detect the defects in a software, few

powerful ML algorithms are implemented and in existing system the algorithm named

CatBoost & Random Forest (RF) gives an adequate accuracy. But we need to identify the

defects in a software using ML algorithms with better model which must give some

improved performance when compared with RF and CatBoost. So here in this paper we

are using extra trees classifier and hybrid model to identify the defects in a software.


