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ABSTRACT 

 

 

Wireless communication networks require smart technique to discover resources in restricted 

shared non-contiguous spectrum in order to make large-scale AIoT a reality. Wideband 

spectrum analyzer, based on sub-Nyquist sampling and used in Artificial Intelligence of Things 

(AIoT) gateway, solves this problem. Because the nature of the channels available to us is 

noncontiguous, so understanding of their occupancy is required. The multi play multi armed 

bandit (MP-MAB) algorithm is used to model problem of selection of subset. 

In this project, we show the ability of learning of such a task using several machine learning 

algorithms, with a subset having K channels within it, that leads to no reconstruction failure. 

Here we observe the comparison among five algorithms which are as follows: 

 K subset learning with UCB 

 K subset learning with SUCB having fixed sparsity 

 K subset learning with SUCB having variable sparsity 

 K subset learning with Thompson 

 K subset learning with Sparse Thompson 

K subset learning with SUCB having variable sparsity and K subset learning with Sparse 

Thompson are the main contribution of my research. 

Key-words: Multi-armed bandit, Upper Confidence Bound, Sparse UCB, non-contiguous 

wideband spectrum analyzer, Thompson sampling, sub-Nyquist sampling. 
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Chapter-1 

   

 Introduction 

 

 

1.1 Motivation 

 

The goal of AIoT is facilitating networking and installation of a large count of smart devices 

supporting new applications such as content - based services, smart and knowledgeable 

surveillance networks, and automated homes, supermarkets and cities [1, 2].  

Making AIoT practically available, constraints such as data processing efficiency at the 

perimeter and gateway, as well as lesser availability of spectrum for transmission of data among 

AIoT devices, must be solved. Although intelligence at the perimeter can help in minimizing 

data transmission expenses, effective wave band usage is required to provide trustworthy and 

reduced latency transmission and reception with more equipment [3-5]. 

Because of its extensive coverage and outstanding propagation characteristics, the sub-6 GHz 

frequency band is one of the most common options for AIoT networks [3, 5]. However, since 

the frequency band available to us is insufficient for large-scale networks and wavelength-band 

costs are very high, so traditional fixed frequency band spectrum distribution is not so much 

adequate and appropriate any more. This necessitates creative ways for identifying spectrum 

resources fast using dynamic spectrum allocation algorithms. 

Sharing of not fixed frequency band spectrum is a strategy for next-generation wireless 

networks to meet reward and deployment at bigger level needs the sub-6 GHz spectrum [6]. 

5G standard describes the spectrum into three categories: reserved, collaborated (2.3 GHz 

Europe / 3.5 GHz USA), and unreserved (2.4 GHz / 5-7 GHz / 57-71 GHz global), allowing 

licensed and unlicensed users to exist side by side in the shared and unlicensed bands [7]. 

Quasi frequency band spectrum like 700, 4400-5000, 37- 43.5, 2500-2690, 3300-4200, 5925-

7125 MHz, and 24.25-29.5 and 2300-2400, GHz are also being investigated to enable diverse 

5G use cases [8]. Similarly, IEEE 802.15.4 has three channel ranges for industrial internet-of-

things (IIoT) networks: 1) One 250-740 MHz channel, 2) Four 3.1-4.8 GHz channels, and 3) 
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Eleven 6-11.6 GHz channels [9]. Spectrum characterization is difficult due to the ultra-wide 

and sparse nature of spectrum. 

Additionally, in comparison to traditional training-based AI solutions, now we need some such 

adjustable and general-purpose AI solutions which can help us for meeting this uncertain 

atmosphere where numerous of independent networks are present.  

Since we have very much frequency spectrum bands available as vacant but they are not 

contiguous, that is why we find some kind difficulties to access them easily, so in order to 

achieve this accessibility easily, there some AIoT algorithms have been made. We shall see 

some such algorithms which have been implemented already and also shall some novelty added 

in in thesis in the same direction.  

 

1.2 Objectives and contribution 

 

In this thesis, our aim is to design following five algorithms for selecting the subset of channels 

from available wide-band spectrum which are as stated below: 

1. K subset learning with Upper Confidence Bound 

2. K subset learning with SUCB having fixed sparsity 

3. K subset learning with SUCB having variable sparsity [Proposed 1] 

4. K subset learning with Thompson sampling 

5. K subset learning with Sparse Thompson sampling [Proposed 2] 

Third and fifth algorithms are the main contribution of our thesis, which have been given result 

as an excellent improvement over all the rest of the algorithms stated above in terms of time as 

well as complexity efficiency, that all we shall see in the upcoming chapters one by one in 

detail.  

 

1.3 Organization 

 

The thesis is organized in this manner. Chapter 2 shows the detailed literature review of many 

multi-armed bandit algorithms. Chapter 3 holds the detailing of our proposed work. Chapter 4 

contains the results of all our work and discussion upon them. And finally in Chapter 5 

conclusion and possible future scope of our work has been mentioned. 
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Chapter-2 

 

 Related work 

 

 

Sometimes there is such situation where user has multiple number of arms to select best one 

among all. For handling such situation multi-armed bandit algorithms have been put forward, 

where user has to pull those arms and collect the rewards associated with those arms. The main 

aim of the user is to maximize her/his reward after certain rounds. The user is unaware of the 

reward behind each arm. Also, the reward associated with each arm is not of a fixed quantity. 

Each arm has a probability distribution associated with it. Some of them are discussed below.  

 

2.1 Arm learning with Upper Confidence Bound 

 

Large portion of the useful frequency spectrum was licenced to growing applications of 

wireless communication throughout the previous century. The fixed paradigm of spectrum 

distribution resulted in spectrum scarcity as the count of services that demands spectrum 

increased. However, a recent series of spectrum utilisation measurements [10] revealed that 

various spectrums were underutilised, implying that frequency band scarcity is merely fictious 

and because of the static allotment of the various spectrums to certain wireless services. 

Dynamic Spectrum Access (DSA), which is also known as Opportunistic Spectrum Access 

(OSA), had been proposed like a potential result to the frequency band spectrum limiting 

problem. 

Regarding DSA concerns, an opportunity is typically described as: a particular frequency band 

which is not utilized by the principal operators of that particular band spectrum at specific time 

in a specific geographical location [11]. Secondary user (SU), on the other hand, usually has 

no prior knowledge of the opportunities open to him. 

The Federal Communications Commission (USA) proposed Cognitive Radio, a notion first 

proposed by J. Mitola [12] in 1999, as a practically available solution to this problem. 
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Upper Confidence Bound (UCB) algorithm is proposed as an effective in decision-making 

techniques for secondary users to exploit frequency band resources strategically on the basis 

of prior supervisions. This algorithm employs a value of index which gives an optimistic 

estimate for availability of resource to the secondary user.[13]. 

Machine learning scholars first developed policies based on UCB index computation to tackle 

the problem based on multi-armed bandits ([14, 15]). 

Although this research is in its initial phases, still it is believed that this technique can lead to 

effective CAs for DSA situations. Many problems still remain, particularly when the channel 

cyclical occupancy behaviour does not match Bernoulli distributions or when a greater number 

of SUs employ the UCB-based rules to access the same core channel. 

 

2.2 Arm learning with Sparse Upper Confidence Bound 

 

Sparse UCB, a new algorithm came in to picture as an improvement over classical multi-armed 

bandit problem [16]. 

In classical multi-armed bandit problem, we were forced to explore each and every arm 

(channel) successively to get the best arm (vacant arm i.e. with highest probability of vacancy), 

but in case of sparse UCB we have to explore only good arms, that is why in later case the 

regret is proportional to the square root of total no. of arms available to us, where as in case of 

classical bandits, the regret was directly proportional to the total no. of arms available to us. 

In the designing of Sparse UCB algorithm, there are three phases have been characterised 

within the same experiment: 

 Round robin phase 

 Force-log phase 

 UCB phase 

In this algorithm two lists also have been prepared: 

 J-list— having active arms 
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 K-list— having active and sufficiently sampled arms 

When the algorithm be in Round- robin phase, each and every arm is being pulled successively 

from the given set of arms (channels). 

When the algorithm be in Force-log phase, the arms (channels) existing in the J-list are being 

pulled one by one. 

When the algorithm be in UCB phase, the arms (channels) existing in the K-list are being pulled 

according to the UCB-index rule (making UCB-index value maximum should be pulled). 

In the research of this Sparse UCB, it has been observed that for weak sparsity case (sparsity 

value is high) Sparse UCB behaves poorer to classical UCB, for moderate sparsity case 

(sparsity value is moderate) Sparse UCB behaves similar to classical UCB and for strong 

sparsity case (sparse value is less) Sparse UCB gives excellent improvements over the classical 

UCB. 

These upper both algorithms have been implemented for learning and selecting vacant 

channels, but if we have to select band of channels, then for subset selection with UCB logic 

algorithm has been also implemented in [17], where users can get the best subset among all 

provided them according to UCB role. 

 

2.3 Subset learning with Thompson sampling 

 

Conventional multi-armed bandit algorithm is used for selecting best arm (channel) among all 

the given set of channels in the wireless communication network [18-23]. When we have to 

select a band of channels simultaneously i.e., the extension of the previous work then it is called 

as Multi-play Multi armed bandit (MPMAB) or Combinatorial Multi armed bandit (CMAB) 

[24-27], where users can select the best subset having multiple channels simultaneously. 

Subset selection has been also done with Thompson sampling in [28], where users 

simultaneously calculate power quality index value for all the subsets with the help of beta 

random which is a function of rewards and regrets of all subsets given to us. 
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From the first iteration, users can start learning all the arms simultaneously, that is why Subset 

selection with Thomson gives extremely brilliant performance over both the algorithms UCB 

and SUCB. 

There is high level of complexity associated with the Thompson learning that, in every iteration 

power quality index has to be calculated for all subsets available to us. 

This complexity has been reduced in my novel work, which is giving us benefit also over the 

all algorithms stated till now. We shall see the improvements in further sections. 

The performance of all algorithms is based upon the regret curve versus total count of rounds 

users have applied the algorithm for learning the channels or set of channels together, that 

regret is calculated by subtracting the calculated reward for each subset with the optimal subset 

at each iteration [25]. 

If the total channels in the selected subset is equal to total Analog to Digital converters (ADC) 

available with us, then the reward calculation will be in conventional way, meaning that there 

is no reconstruction loss, and that is why we can get the reward directly for the subset having 

vacant channels and no reward for subset having occupied channels [25]. 

But, in case if the total channels in the selected subset is greater than the total ADCs with us, 

then reward calculation will be in different format. If occupied channels in the selected subset 

are less than total ADCs with us then reward is calculated conventional way but if total number 

of occupied channels becomes equal or greater than the total number of ADCs available with 

us then users will not be entertained with any kind of reward, this is the case of reconstruction 

failure. 
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Chapter-3 

 

 Proposed work 

 

 

In this chapter we will know about all the algorithms on which this project has been based. 

There are certain algorithms which have been already implemented but still they are being used 

in this project so we will have a quick glance about them briefly. And there are some new 

algorithms which has been implemented with novelty providing improvements and benefits 

over the existed algorithms, we shall know and learn about them in quite detail with their 

Pseudo codes. 

 

3.1 K- subset learning using Upper Confidence Bound [17] 

 

In the series of all the algorithms selection of optimal arm with the help of Upper confidence 

bound is the foremost algorithm used in my project. 

So, in this algorithm player plays with all the arms randomly at the initial rounds and by doing 

so on gradually she learns about the nature of the arms (about their vacancy probability), and 

with the passage of time she settles down with the optimal one according to her knowledge and 

experiences. 

 

3.1.1 The pseudo code of the K subset learning using Upper Confidence Bound 

 

Inputs:  

N= total no. of available channels   

K = total no. of ADC’s 

SoC = set of channels [1:N] 

SoS = set of subsets  

L = total no. of iterations 

NR= total no. of subsets 

 



8 
 

Initialization:   

X_s=ones[1 X NR], % vector storing no. of times subsets have given reward. 

T_s=ones[1 X NR], % vector storing no. of times subsets have been pulled. 

UCB_index=zeros[1 X NR], % vector storing the upper confidence bound for each subsets  

reward=zeros[1 X NR], % vector storing the reward for each subsets 

mean=zeros[1 X NR], % vector storing the mean for each subsets 

 

Outputs:  

Beta (selected subset), Total no. of pulls for each subset, Regret of the algorithm 

 

Start: 

1. for 1:L 

 

2. Select a subset from given set of all the subsets to us randomly.  

 

3. Index of the selected subset would be chosen with the UCB rule, i.e., we have to choose 

that index which will make value of UCB_index maximum among all the indexes. 

 

4.      Update UCB_index ((X_s/T_s) + sqrt(alpha*log(T_s)/T_s)) 

 

5.      Determine status s_beta of the channels present in beta (selected subset) 

 

6.      Determine total no. of vacant channels (s_b_c) and store their indices in beta_v 

 

7.      Update 

 X_s(n) = X_s(n) +s_b_c / K where n = index of beta,  

 reward(n) = reward(n) + p where n = index of beta and p = sum of vacancy 

probabilities of vacant channels presents in beta 

 T_s(n)=T_s(n) + 1 where n = index of beta,  

 mean = X_s /T_s. 

 

8. Calculate optimal reward for best subset in similar way to calculated reward. 

 

9. end for 

 

10. Regret= optimal reward- calculated reward 

 

11.  Plot the cumulative sum of Regret Vs iterations 

End  
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3.2 K- subset learning using Sparse UCB having fixed sparsity [16] 

 

The next algorithm is learning subsets having K channels within themselves, this algorithm has 

come as an improvement over the earlier one. Main role of this algorithm is that, this reduces 

the exploration time.  

We need not to explore each and every arm again and again while using this, but here we 

prepare two lists, first having good arms from the all arms given to us and the second list will 

hold the better arms filtering from the good arms existing in j-list, and finally we shall select 

the best optimal arm from the set of better arms according to the UCB rule. 

As sparse means something which is rare i.e. not dense, specifying that in sparse UCB case we 

do not explore all the arms always, here we explore better arms only which are good arms. And 

fixed sparsity means here we shall always filter out the half of the total number of good arms 

available to us, then we keep on exploiting those good arms to get better and so on to get best 

optimal arm maximizing reward and hence minimizing regret.  

This algorithm gives us very good improvement over the earlier one. The pseudo code of the 

SUCB having fixed sparsity is described as below. 

 

3.2.1 Pseudo code of K subset learning algorithm using Sparse UCB having fixed sparsity  

 

Inputs:  

N= total no. of available channels   

K = total no. of ADC’s 

SoC = set of channels [1:N] 

SoS = set of subsets  

L = total no. of iterations 

NR= total no. of subsets 

 

Initialization:   

X_s=ones[1 X NR], % vector storing no. of times subsets have given reward. 

T_s=ones[1 X NR], % vector storing no. of times subsets have been pulled. 

UCB_index=zeros[1 X NR], % vector storing the upper confidence bound for each subsets  
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UCB_J=zeros[1 X NR], % vector storing the criteria for making list of active subsets 

UCB_K=zeros[1 X NR], % vector storing the criteria for making list of active and 

sufficiently sampled subsets 

reward=zeros[1 X NR], % vector storing the reward for each subsets 

mean=zeros[1 X NR], % vector storing the mean for each subsets 

j=zeros[1 X NR], % vector storing the active subsets 

k= zeros[1 X NR], % vector storing the active and sufficiently sampled subsets 

Phase = Round robin, % considering by default phase as round robin. 

Sparsity = NR/2, % fix the sparsity value to the half of the total no. of subset 

 

Outputs:  

Beta (selected subset), Total no. of pulls for each subset, Regret of the algorithm 

 

Start: 

1. for 1:L 

 

2.      select each subset one by one for once 

 

3.      Update UCB_index, UCB_J and UCB_K 

 

4.      Update j list (according to mean (X_s / T_s) >= UCB_j) 

     Update k list (according to mean (X_s / T_s) >= UCB_k) 

 

5.     If sum(j) < sparsity  

 Phase is “Round robin”  

 Select each subset one by one for once 

 

6.      Else if sum(k) < sparsity 

 Phase is “Forcelog”  

 Index for next subset to be chosen should be taken from true values in j list 

one by one till the algo remain in Forcelog. 

 

7.      Else  

 Phase is “UCB”  

 Index for next subset to be chosen should be taken from true values in k list 

making max UCB_index 
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8.      Determine status s_beta of the channels present in beta (selected subset) 

 

9.      Determine total no. of vacant channels (s_b_c) and store their indices in beta_v 

 

10.      Update 

 X_s(n) = X_s(n) +s_b_c / K where n = index of beta,  

 reward(n) = reward(n) + p where n = index of beta and p = sum of vacancy 

probabilities of vacant channels presents in beta 

 T_s(n)=T_s(n) + 1 where n = index of beta,  

 mean = X_s /T_s. 

 

11. Calculate optimal reward for best subset in similar way to calculated reward. 

 

12. end for 

 

13. Regret= optimal reward- calculated reward 

 

14.  Plot the cumulative sum of Regret Vs iterations 

End 

 

3.3 Proposed K subset learning with the help of Sparse UCB having varying sparsity 

 

Since in Sparse UCB algorithm, we fixed the value of sparsity to the half of the total number 

of arms given to us, so in if we have much larger set given, in that case we will have even a 

larger set to explore, so the Sparse UCB is not much feasible in case of much larger set of arms 

(channels or band of channels) have been given. 

So, this new algorithm, which is one of the main contributions of my thesis, provides 

improvement over both the algorithm described earlier (KSL with UCB and KSL with SUCB). 

In this algorithm, initially we put sparsity as equal to total number of arms, then as number of 

rounds of playing the algorithm increase learning is being enhanced about the nature (vacant 

or occupied) of all arms, then we shift towards the lesser value of sparsity in order to make sure 

that now exploration should be done among very less, better and prone to more vacant arms. 

Less value of sparsity represents that learning of the algorithm has been done quicklier than in 

that of higher sparsity value. If sparsity value is exactly equal to the number of arms available 

to us to explore, that means there is no sparsity at all, and every arm would be picked and 
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played successively irrespective of their vacancy and occupancy nature, that leads to a very 

poor performance, even poorer to UCB. 

So, we move to higher values of sparsity (higher but lesser than total number of arms) which 

is known as weak sparsity domain, in this case also we are not moving to better arms quickly, 

we are forced to explore each arm unless there are at-least enough number of arms (one’s equal 

to sparsity value) is not available in the j-list.  

So again, we want to shift to some more compact value of sparsity in order to get exploration 

of all arms for lesser time and going to last phase may happen little earlier than the previous 

cases (which we do in KSL with SUCB with fixed sparsity), this gives us benefit over the 

classical MAB and previous two cases.  

But if we want to make our exploration some more compact like a very few values of sparsity 

that is known as strong sparsity case, so according to our this much of research, we hope that 

strong sparsity case would give us excellent result over all, which does but, in some cases, in 

some other cases learning is not being done properly so our algorithm starts giving us selection 

of bad arms. This means fixing sparsity value in SUCB (apart from half of the total arms 

available to us) will not give much improvement over the classical MAB. 

That is why we made this algorithm having all the sparsity value within the same experiment 

(Keeping initially sparsity high and then lowering it as learning is enhanced). This gives me 

proper learning of every arm and also provides outstanding performance over both the 

algorithms for every case, for every kind of vacancy statics, for any number of arms and for 

any number of channels in the subset. 

Hence this a better and improved novelty in the algorithm of Sparse UCB. Pseudo code of this 

novel algorithm is mentioned as below. 

 

3.3.1 Proposed pseudo code for K subset learning algorithm with Sparse UCB having 

varying sparsity 

 

Inputs:  

N= total no. of available channels   

K = total no. of ADC’s 
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SoC = set of channels [1:N] 

SoS = set of subsets  

L = total no. of iterations 

NR= total no. of subsets 

 

Initialization:   

X_s=ones[1 X NR], % vector storing no. of times subsets have given reward. 

T_s=ones[1 X NR], % vector storing no. of times subsets have been pulled. 

UCB_index=zeros[1 X NR], % vector storing the upper confidence bound for each subsets  

UCB_J=zeros[1 X NR], % vector storing the criteria for making list of active subsets 

UCB_K=zeros[1 X NR], % vector storing the criteria for making list of active and 

sufficiently sampled subsets 

reward=zeros[1 X NR], % vector storing the reward for each subsets 

mean=zeros[1 X NR], % vector storing the mean for each subsets 

j=zeros[1 X NR], % vector storing the active subsets 

k= zeros[1 X NR], % vector storing the active and sufficiently sampled subsets 

Phase = Round robin, % considering by default phase as round robin. 

Sparsity = NR, % initially the sparsity value equal to the total no. of subset 

 

Outputs:  

Beta (selected subset), Total no. of pulls for each subset, Regret of the algorithm 

 

Start: 

1. for 1:L 

 

2.      select each subset one by one for once 

 

3.      Update UCB_index, UCB_J and UCB_K 

 

4.      Update j list (according to mean (X_s / T_s) >= UCB_j) 

     Update k list (according to mean (X_s / T_s) >= UCB_k) 

 

5.      If sum(j) < sparsity  

 Phase is “Round robin” 
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 Select each subset one by one for once 

 Counter=0 

 Counter new=0 

 

6.      Else if sum(k) < sparsity 

 Phase is “Forcelog”  

 Index for next subset to be chosen should be taken from true values in j list 

one by one till the algo remain in Forcelog. 

 Counter new=0 

 Counter= Counter+1 

 If Counter > N and sparsity > 4 

 Sparsity=sparsity/2 

 

7.      Else  

 Phase is “UCB”  

 Index for next subset to be chosen should be taken from true values in k list 

making max UCB_index 

 Counter new= Counter new+1 

 If Counter new > NR and sparsity > 4 

 Sparsity=sparsity/2 

 

8.      Determine status s_beta of the channels present in beta (selected subset) 

 

9.      Determine total no. of vacant channels (s_b_c) and store their indices in beta_v 

 

10.      Update 

 X_s(n) = X_s(n) +s_b_c / K where n = index of beta,  

 reward(n) = reward(n) + p where n = index of beta and p = sum of vacancy 

probabilities of vacant channels presents in beta 

 T_s(n)=T_s(n) + 1 where n = index of beta,  

 mean = X_s /T_s. 

 

11. Calculate optimal reward for best subset in similar way to calculated reward. 

 

12. end for 

 

13. Regret= optimal reward- calculated reward 

 

14.  Plot the cumulative sum of Regret Vs iterations 

End 
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3.4 K subset learning with the help of Thompson sampling 

 

This algorithm is very simple and very basic but it gives even more excellent results than the 

all three algorithms described till now.  

In this, user has to calculate power quality index value for each subset at each iteration with 

the help of rewards and regret calculated for each arm at each iteration. Then the index where 

power quality index value is maximum that is chosen as the index of next subset to be selected. 

There is no chance of poor learning in this algorithm because it starts calculating the power 

quality index of each arm from the first iteration and it calculates this for each arm and every 

iteration, so learning is being very properly in this algorithm. 

Also, it learns the best arm very quickly so it is very much time efficient, so probability of 

getting reward is quite higher that leads to quite lower regret compare to all the upper three 

algorithms. 

Pseudo code of K subset learning with Thompson is as follows. 

 

3.4.1 Pseudo code for K subset learning algorithm with Thompson sampling [28] 

 

Inputs:  

N= total no. of available channels   

K = total no. of ADC’s 

SoC = set of channels [1:N] 

SoS = set of subsets  

L = total no. of iterations 

NR= total no. of subsets 

 

Initialization:  

 

X_s=ones[1 X NR],  % vector storing no. of times channels have given reward.  

T_s=ones[1 X NR], % vector storing no. of times subsets have been pulled. 

reward=zeros[1 X NR], % vector storing the reward for each subsets 
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Outputs:  

Beta (selected subset), Total no. of pulls for each subset, Regret of the algorithm 

 

Start: 

1. for 1:L 

 

2. Select the best subset from all the subsets available to us for once according to 

Thompson rule. 

 By calculating Power quality index (Q_s) for all subsets 

 Q_s = Beta (X_s, T_s – X_s) 

 

 Index of selected subset = maximum (Q_s) 

 

3.      Determine status s_beta of the channels present in beta (selected subset) 

 

4.      Determine total no. of vacant channels (s_b_c) and store their indices in beta_v 

 

5.      Update 

 X_s(n) = X_s(n) +s_b_c / K where n = index of beta,  

 reward(n) = reward(n) + p, where n = index of beta and p = sum of vacancy 

probabilities of vacant channels presents in beta 

 T_s(n)=T_s(n) + 1 where n = index of beta,  

 

6. Calculate optimal reward for best subset in similar way to calculated reward. 

 

7. end for 

 

8. Regret= optimal reward- calculated reward 

 

9.  Plot the cumulative sum of Regret Vs iterations 

End 

 

3.5 Proposed K subset learning algorithm with the help of Sparse Thompson sampling 

 

Since KSL with Thompson was showing outstanding performance over the mentioned 

algorithms as we have seen section 3.4, but still, it also has a disadvantage and that is 

complexity is very high in this algorithm. 
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If there is much larger number of arms given to user to find out the best one among all of them, 

then she has to calculate power quality index for all arms, which leads to quite higher 

complexity, even if algorithm identifies the best one after certain rounds of exploration still 

power quality index is keep on being calculated for each iteration. 

So, to reduce this complexity I have designed a new algorithm, which is the second novelty of 

my thesis. Here I have introduced varying sparsity concept with the Thompson. 

There are three phases of this algorithm: 

1. Thompson Phase 

2. Restricted Thompson Phase 

3. Most Restricted Thompson Phase 

Here again two lists are being prepared: 

i. J-list list having the active arms 

ii. K-list list having the active and sufficiently sampled arms 

So, when learning of arms will be started, simultaneously we prepare these two lists, and by 

the time first list will have as much number of true values equal to the sparsity defined, we 

keep on calculating power quality index value for each and every arm given to us. 

Once J-list will cross the limits of true values than the sparsity, now power quality index values 

will be calculated only for those arms, which indexes are having true in J-list, and optimal arm 

would be coming from that list only. 

And again, now we shall check the K-list, if once this crosses the limits of true values than the 

sparsity, now for selecting best subset we shall calculate power quality index value only for 

those arms, which indexes are having true in K-list. 

That is how we became able to reduce the complexity of K subset learning with Thompson, 

which was the drawback of this algorithm. Varying sparsity helps to learn all the arms properly 

in the beginning and later on reducing sparsity leads us towards the best arms only with reduced 

complexity.  

And if we observe the performance of this algorithm, it is giving super excellent performance 

over all the four algorithms described in previous sections of this chapter in all the scenario in 

terms of different vacancy probability statistics, any number of channels present in the selected 

subset, any number of total subsets given to us to explore and of course the least complexity. 
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Pseudo code of this novel algorithm is described below. 

 

3.5.1 Proposed pseudo code for K subset learning algorithm with the help of Sparse 

Thompson sampling 

 

Inputs:  

N= total no. of available channels   

K = total no. of ADC’s 

SoC = set of channels [1:N] 

SoS = set of subsets  

L = total no. of iterations 

NR= total no. of subsets 

 

Initialization:   

X_s=ones[1 X NR], % vector storing no. of times subsets have given reward. 

T_s=ones[1 X NR], % vector storing no. of times subsets have been pulled. 

UCB_J=zeros[1 X NR], % vector storing the criteria for making list of active subsets 

UCB_K=zeros[1 X NR], % vector storing the criteria for making list of active and 

sufficiently sampled subsets 

reward=zeros[1 X NR], % vector storing the reward for each subsets 

mean=zeros[1 X NR], % vector storing the mean for each subsets 

j=zeros[1 X NR], % vector storing the active subsets 

k= zeros[1 X NR], % vector storing the active and sufficiently sampled subsets 

Phase = Thompson, % considering by default phase as round robin. 

Sparsity = NR/2, %  initially the sparsity value equal to the total no. of subset 

 

Outputs:  

Beta (selected subset), Total no. of pulls for each subset, Regret of the algorithm 
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Start: 

1. for 1:L 

 

2.  Select the best subset from all the subsets available to us for once according to 

Thompson rule. 

 

 By calculating Power quality index (Q_s) for all subsets 

 Q_s = Beta (X_s, T_s – X_s) 

 Index of selected subset = maximum (Q_s) 

 

3.      Update UCB_J and UCB_K 

 

4.      Update j list (according to mean (X_s / T_s) >= UCB_j) 

     Update k list (according to mean (X_s / T_s) >= UCB_k) 

 

5.      If sum(j) < sparsity  

 Phase is “Thompson” 

 Select the best subset from all the subsets available to us for once according to 

Thompson rule. 

 Counter=0 

 Counter new=0 

 

6.      Else if sum(k) < sparsity  

 Phase is “Restricted Thompson” 

 Select the best subset i.e. index of best subset would be taken from all the true 

values available in the J-list according to Thompson rule. 

 Counter new=0 

 Counter= Counter+1 

 If (Counter > N) and (sparsity > 4) 

 Sparsity=sparsity/2 

 

7.      Else  

 Phase is “Strictly Restricted Thompson”  

 index of best subset would be chosen from all the true values available in k list 

according to Thompson rule. 

 Counter new= Counter new+1 

 If Counter new > NR and sparsity > 4 

 Sparsity=sparsity/2 

 

8.      Determine status s_beta of the channels present in beta (selected subset) 

 

9.      Determine total no. of vacant channels (s_b_c) and store their indices in beta_v 
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10.      Update 

 X_s(n) = X_s(n) +s_b_c / K where n = index of beta,  

 reward(n) = reward(n) + p, where n = index of beta and p = sum of vacancy 

probabilities of vacant channels presents in beta 

 T_s(n)=T_s(n) + 1 where n = index of beta,  

 mean = X_s /T_s. 

 

11. Calculate optimal reward for best subset in similar way to calculated reward. 

 

12. end for 

 

13. Regret= optimal reward- calculated reward 

 

14.  Plot the cumulative sum of Regret Vs iterations 

End 

 

3.6 Regret Calculation 

 

For this project we have calculated regret by using following methodology. Calculate the 

optimal reward directly as the summation of vacancy probabilities of the channels present in 

the best subset. Then calculate regret by subtracting the addition of vacancy probabilities of 

channels present in selected subset from the optimal reward. 

 

3.7 Summary 

 

Till this chapter we have quite sound knowledge about performance and behavior of all the five 

algorithms theoretically. In the next chapter we will see these things practically through 

simulation and discuss the characteristics in detail. 
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Chapter-4 

 

 Results and Discussion 

 

 

4.1 Simulation setup 

All the five algorithms have been simulated and verified on MATLAB. 

 

4.2 Simulation Parameters 

All the algorithms are simulated over the average of ten experiments and for ten thousand 

rounds for the following parameters. 

 

Table 4.1: Simulation parameters for different scenarios 

Scenario 

count 

Total 

channels 

(N) 

Total 

channels in 

the subset 

(K) 

Vacancy Probability Statistics 

of channels (P) 

Total 

arms to 

explore 

(NR) 

Scenario 1 8 2 0.95:0.05:0.6 28 

Scenario 2 8 3 0.95:0.05:0.6 56 

Scenario 3 12 2 0.95:0.05:0.4 66 

Scenario 4 12 3 0.95:0.05:0.4 220 

Scenario 5 8 2 0.9 0.4 0.7 0.8 0.5 0.1 0.2 0.3 28 

Scenario 6 8 3 0.9 0.4 0.7 0.8 0.5 0.1 0.2 0.3 56 
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4.3 Simulation Results 

 

4.3.1 Scenario 1 

 

 

Fig 4.1: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 8, K=2, Prob = [0.9:0.05:0.6] 

 

Figure 4.1 presents the comparison among regret plots among all the algorithms which we have 

gone through in detailing in chapter 3. Here graphs have been plotted for both kind of regret 

calculation. In this figure, the parameters are according to case 1, where total no. of subsets are 

28 and statistics are more prone to be vacant. That is why regret value is lesser. 

The total number of times each arm has been pulled according to the algorithms UCB, SUCB 

with fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively 

for the parameters of this scenario. Since here vacancy probability statistics are such as that 

first subset holds the maximum chance to be vacant compare to others, but there are others also 

with very lesser difference than the first one.  

So, if we observe carefully then we would find that in all the algorithms, first subset is being 

pulled maximum number of times compare to others but there are some differences while 

selecting the best in different algorithms. 
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In UCB, of course compare to other arms the first one is being pulled maximum times, but 

others are also being pulled sufficient number of times, coming in to SUCB with fixed sparsity 

we can see that still half of the arms are being pulled quite sufficient number of times along 

with the first one maximum times, and then if we observe SUCB with varying sparsity, in this 

the best one is being selected quite number of times, but sometimes second best can also be 

pulled maximum no. of times, this because of statistics and number of rounds player plays the 

algorithm. But even if some times user selects the second-best arm, then also SUCB with fixed 

sparsity is improvement over UCB and SUCB with varying sparsity is improvement over 

SUCB with fixed sparsity, this is because the latter two algorithms do not entertain bad arms 

maximum number of times. Coming to KSL with Thompson, it selects the best one maximum 

number of times along with quite a greater difference than the other all arms, and some arms 

having least vacancy probabilities among all are not even being pulled a single time. The only 

problem with this was complexity, that is being reduced by using the last algorithm, KSL- 

Sparse Thompson. In KSL-Sparse Thompson the best arm is pulled maximum number of times 

with a very large difference than the others along with maintaining the lesser complexity. 

 

4.3.2 Scenario 2 

 

Fig 4.2: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 8, K=3, Prob = [0.9:0.05:0.6] 
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Figure 4.2 also shows the comparison among regret plots among all the algorithms which we 

have gone through in detailing in chapter 3. In this figure, the parameters are according to case 

2, where total no. of subsets are 56 and statistics are more prone to be vacant (same as the 

previous case). In this case total arms to be explored are greater than the previous case that is 

why regret value is higher than the previous one. 

The total number of times each arm has been pulled according to the algorithms UCB, SUCB 

with fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively 

for the parameters of this case. Since here vacancy probability statistics are such as that first 

subset holds the maximum chance to be vacant compare to others. So, selection of arms has 

been done accordingly for all the algorithms as it has been discussed in detail in section 4.4.1. 

Since statistics are such that user gets confused sometimes and learns the second best in case 

of SUCB (for both types of sparsity), which is very much practically possible situation. 

 

4.3.3 Scenario 3 

 

 

Fig 4.3: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 12, K=2, Prob = [0.9:0.05:0.4] 
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Fig 4.3 again shows the comparison among regret plots among all the algorithms which we 

have gone through in detailing in chapter 3. In this figure, the parameters are according to case 

3, where total no. of subsets are 66 and statistics are kind of both types vacant as well as 

occupied (not same as the previous case). In this case total arms to be explored are again greater 

than the previous both cases that is why regret value is higher in this than the previous both 

cases. 

Total number of times each arm has been pulled according to the algorithms UCB, SUCB with 

fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively for 

the parameters of this case. Here also learning of all the arms in every algorithm is as per the 

logic. 

 

4.3.4 Scenario 4 

 

 

Fig 4.4: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 12, K=3, Prob = [0.9:0.05:0.4] 
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Figure 4.4 shows the comparison among regret plots among all the algorithms which we have 

gone through already in detailing in the previous chapter. In this figure, the parameters are 

according to case 4, where total no. of subsets are 220 and statistics are kind of both types 

vacant as well as occupied (same as the previous case). In this case total arms to be explored 

are much greater than the previous all cases that is why regret value is higher in this than the 

previous all cases. 

The total number of times each arm has been pulled according to the algorithms UCB, SUCB 

with fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively 

for the parameters of this case. Here also learning of all the arms in every algorithm is as per 

the logic. 

 

4.3.5 Scenario 5 

 

 

 

Fig 4.5: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 8, K=2, Prob= [0.9 0.4 0.7 0.8 0.5 0.1 0.2 0.3] 
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Figure 4.5 also presents the comparison among regret plots among all the algorithms which we 

have gone through already in detailing in the previous chapter. In this figure, the parameters 

are according to case 5, where total no. of subsets are 28 and statistics are exactly both types 

vacant as well as occupied (0.1 - 0.9 in random order, just to check the authenticity of the 

algorithm). In this case total arms to be explored are lesser than the previous all cases except 

the first one, that is why regret value is lesser in this than the previous all cases and quite similar 

to the first one, because the best subset for both the cases first and fifth are having quite similar 

vacancy probability. 

The total number of times each arm has been pulled according to the algorithms UCB, SUCB 

with fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively 

for the parameters of this case. Here also learning of all the arms in every algorithm is as per 

the logic. 

 

4.3.6 Scenario 6 

 

 

Fig 4.6: The plots showing the comparison of average regret of the existing state-of-the-art 

and the proposed algorithms for scenario 1: N= 8, K=3, Prob= [0.9 0.4 0.7 0.8 0.5 0.1 0.2 0.3] 
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Figure 4.6 again presents the comparison among regret plots among all the algorithms which 

we have gone through already in detailing in the previous chapter. In this figure, the parameters 

are according to case 6, where total no. of subsets are again 56 and statistics are exactly both 

types vacant as well as occupied (0.1 - 0.9 in random order, just to check the authenticity of 

the algorithm i.e., same as just previous case). In this case total arms to be explored are higher 

than the previous cases (only first and fifth), equal to the second case, and lower than the third 

case), that is why regret value is in the similar order with all cases. 

The total number of times each arm has been pulled according to the algorithms UCB, SUCB 

with fixed sparsity, SUCB with varying sparsity, Thompson and Sparse Thompson respectively 

for the parameters of this case. Here also learning of all the arms in every algorithm is as per 

the logic. 

 

4.4.7 Summary 

 

Discussion till now is about the differences among all the cases, now if we talk about difference 

among regret of all the algorithms for all cases, so we find that value of regrets are in 

descending order for the algorithms KSL-UCB, KSL-SUCB with fixed sparsity and KSL-

SUCB with varying sparsity respectively, for KSL-Thompson and KSL-SThompson regret is 

quite similar to each other and lowest among all the algorithms for all the cases.  

This is the exactly same behavior which we were analyzing in the chapter 3 theoretically, here 

we are verifying the same behavior practically by simulation. 

We have plotted comparison of regret graphs for all cases among all algorithms for two 

different types of regret calculation. Regret plot of the upper part of the result is with 1st 

methodology of regret calculation and lower part is with the 2nd methodology of regret 

calculation. If we observe carefully then we will be able to see that value of the regret in first 

part is always being remain higher than in the second part.  

It is because in the first regret calculation, we are considering the situation for the channel 

existing in the subset to be vacant or occupied but in the second regret calculation we are 

directly considering the subset to be fully vacant. This is the reason regret in the first one is 

being remain higher than in the second one.  
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Chapter-5 

 

Conclusion and Future scope 

 

 

5.1 Conclusion 

 

In this thesis basically we are dealing with subsets having K channels within themselves. K is 

the total amount of ADCs with us, so the same number of channels in the subsets represents 

that there is no chance of reconstruction failure. We shall always get the channels providing us 

reward if they would be vacant. 

So, for selecting optimal subset from all the subsets given to us, several algorithms have been 

designed and existed already. In the same context we have also designed two novel algorithms, 

which are providing excellent improvement over the existing algorithms in all aspects like for 

all kind of vacancy probability statistics, for any count of channels and ADCs with reduced 

complexity. 

In the first algorithm, we select the best subset having K channels within it from the various 

subsets available to us with the help of UCB method, there we select each and every subset 

available to us and then select the subset making the upper confidence bound maximum among 

all. 

In the second algorithm, we select the best subset having K channels within it from the various 

subsets available to us with the help of Sparse UCB method, where we able to explore and 

exploit the better subsets among all the subsets and then finally select the best one from the 

better subsets. 

In the third algorithm, initially we explore each and every subset given to us then we start 

exploiting the subsets, thus we keep to learn the behavior of the subset and with the passage of 

time we keep reducing exploration of each subset, means we focus towards the better subsets 

and finally we get the best subsets efficiently. 

In the fourth algorithm, we learn all the subsets provided to us according to Thompson 

sampling where we can identify the best subset among all very quickly and in the very efficient 

way. 
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The fifth algorithm is the most efficient algorithm among all because of the following reasons: 

 It provides us the best subset very quickly as the fourth one. 

 Also, the complexity is extremely lesser in this algo, because we keep reducing the no. 

of subsets to explore with Thompson sampling. 

 Lesser complexity and quickly identification of the best subset makes this algorithm 

most efficient and useful to users. 

 

5.2 Future scope 

 

With many different types of algorithms for no reconstruction failure case, we have seen in this 

thesis. Now if we have such subsets which have greater number of channels within themselves 

than the total count of ADCs available, then there is chance of occurring reconstruction failure.  

Since greater number of channels within the subsets than total ADCs available obviously leads 

to reconstruction failure some times, but it is always beneficial to select such band or subset 

which include larger number of channels within themselves over the subsets having lesser 

channels within themselves. 

So, there are some following directions of future scope for our thesis:  

 Extension of the proposed algorithms for the selection of optimal subset having larger 

and vacant channels within itself from the given set of all subsets having different count 

of channels within themselves, this situation will be actually real time scenario of 

shared frequency band spectrum. 

 Design of a reconfigurable architecture where users can switch dynamically between 

arms and algorithms. 
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