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ABSTRACT 

 

 
Recently, a neural network based approach to automatic generation of image descriptions has 

become popular. Originally introduced as neural image captioning, it refers to a family of 

models where several neural network components are connected end-to-end to infer the most 

likely caption given an input image. Neural image captioning models usually comprise a 

Convolutional Neural Network (CNN) based image encoder and a Recurrent Neural Network 

(RNN) language model for generating image captions based on the output of the CNN. 

 

Generating long image captions – commonly referred to as paragraph captions – is more 

challenging than producing shorter, sentence-length captions. When generating paragraph 

captions, the model has more degrees of freedom, due to a larger total number of combinations 

of possible sentences that can be produced. In this thesis, we describe a combination of two 

approaches to improve paragraph captioning: using a hierarchical RNN model that adds a top-

level RNN to keep track of the sentence context, and using richer visual features obtained from 

dense captioning networks. In addition to the standard MS-COCO Captions dataset used for 

image captioning, we also utilize the Stanford-Paragraph dataset specifically designed for 

paragraph captioning. 

 

This thesis describes experiments performed on three variants of RNNs for generating 

paragraph captions. The flat model uses a non-hierarchical RNN, the hierarchical model 

implements a two level, hierarchical RNN, and the hierarchical-coherent model improves the 

hierarchical model by optimizing the coherence between sentences. 
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CHAPTER 1 

INTRODUCTION 

The amount of data that is available in digital form has grown exponentially in recent 

years. Image Digitization and metadata associated with it are also a constituent of it. 

Large volumes of digital photographs are available readily thanks to the growing 

popularity of internet platforms such as social media sites, online news sites, and 

digital libraries. There is a rise in demand for automated solutions that help with the 

management, navigation, and search of these huge datasets as the amount of data 

available grows. Developments in machine learning and more specifically deep 

learning, have led to breakthroughs in detection and object recognition [1]. 

Automatically describing the contents of an image, in particular, is gaining immense 

popularity.  

For humans, just a glance is well enough to describe an image [2]. The process that 

goes into it can be broken down into 1) Visual Space Perception. 2) Conversion of 

visual information into language space.  

3)  Generation of a description of the scene in a human-understandable form. In other 

words, this involves the translation of information from the visual domain to the textual 

domain. People, in general, are well versed in both these domains [3]. For computers, 

understanding about images is very trivial. This huge gap between human 

understanding of images and low-level features extracted by computers is a big 

challenge to tackle in the automatic generation of image captions [4,5]. 

Recently, Image captioning has seen a neural network-based renaissance. The 

objective of image captioning is to describe objects, actions, and other details present 

in an image in natural language. Most of the research in the captioning domain has 

stressed on single-sentence captions, but the amount of information with this kind of 

captions is very limited. A single sentence can only describe the image with minimal 

details. Utilizing neural networks to create brief picture captions, studies have moved 

to lengthier, multi-sentence image captions with 5 to 6 lines, each approximately 

having a length of 10-12 words. An elongated, paragraph explanation can be really 

useful in operations such as image retrieval, video transcription, and many operations  

in need of  systems for automatically reasoning about pictures.  

There are multiple methods available for image paragraph generation, they are: - 
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Long-Term Recurrent Convolutional Network: the input can either be an image or a 

sequence of images obtained from a video frame. The input is provided to a CNN 

which forms a vector representation of the image after recognizing activities in the 

image. This vector representation is then given to a LSTM model where a word is 

generated and a caption is obtained [4].   

Visual Paragraph Generation: gives a coherent and paragraph describing the 

image. Attention detection is used to detect semantic regions in an image. Sentence 

generation is then done one by one and a paragraph is generated [14].  

Recurrent Neural Network (RNN): It is a customised neural network designed 

to analyse data sequences with time stamp indexes ranging from 1 to t. RNNs are better 

suited to tasks involving progressive inputs, like speech and linguistic. With NLP, in 

order to predict a word, one needs to have idea about the word preceding this word [6].    

Gated Recurrent Unit (GRU): Cho et al. presented a novel breakthrough termed  

Gated Recurrent Unit. It has gating units, similar to LSTM units, which alter the flow 

of information movement inside unit without requiring a discrete memory cell. The 

update and reset gates are calculated by GRU to govern the flow of information via 

each hidden unit. The update gate is calculated by means of the present input and the 

prior time step's concealed state. This gate specifies how much of each new and old 

memory segment must be included into the final memory. The reset gate is computed 

in the same way, but with a changed set of weights. It regulates the interaction seen 

between old memory and the new memory's incoming input data. 

1.1 Machine Learning (ML) 

A branch of computer science that enables computers to do things without being 

expressly programmed to do so.  It gives computers a capability that makes them more 

similar to humans: ability to learn. The data is fed to a generic algorithm which then 

shapes logic on the basis of information specified.  

ML as a field branched from Artificial Intelligence (AI). The objective of AI was to 

develop highly capable and intelligent machines. However, it was unable to be 

programmed for complex and constantly evolving challenges. The approach then moved 

towards making machines learn from themselves.  

ML is the most extensively utilised method for predicting or categorising data in order 

to help humans make crucial decisions. In order to learn from prior experiences and 

analyse historical data, ML algorithms are made to develop understanding from 
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examples. Building models alone isn't enough. In order for the model to deliver reliable 

results, it must be appropriately optimised and tuned. The hyperparameters are fine-

tuned using optimization techniques to produce the best possible result. As it trains 

over and over, it can recognise patterns for making accurate conclusions. When a new 

input is provided to ML model, it uses previously learnt patterns on new data to 

produce forthcoming forecasts. Models may be optimised using a variety of 

standardised ways, depending on the ultimate precision. As a consequence, the ML 

model learns from fresh data and improves its performance. 

 

 

Fig 1.1 ML vs Conventional Programming. 

1.1.1 Supervised Learning 

Most widely used ML technique is supervised learning. It is the process of generating 

a mechanism from sample input-output pairs that translates an input to an output. It 

creates a function using annotated data for training, usually consists of a collection of 

training instances. Every sample in supervised learning is made up of an input object 

(usually a vector) and a target output (also called the supervisory signal). A supervised 

learning algorithm examines the training data and generates an extrapolated equation 

which can be applied to fresh cases. Training a kid with provided data is akin to 

supervised learning. We may send these example-label pairs to something like a 

training algorithm one by one if the data is in the form of instances with labels, causing 

the system to predict whether or not the response is accurate. The algorithm will 

Calculation O/p 

I/p 

Script 

ML 
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ultimately adapt to guess the true extent of the sample-to-label association. Once 

completely trained, the supervised learning algorithm will be able to analyze a fresh, 

never-before-seen sample and predict an appropriate label for it. 

Supervised learning is used in the majority of practical machine learning. When you 

have an input variable (x) and an output variable (Y), supervised learning occurs when 

you use an algorithm to acquire the mapping function from the input to the output. 

The aim is to assess the mapping function to the extent in which the output variables 

(Y) can be predicted for incoming input data (x). Because the process of learning is 

overseen by a teacher, the process of an algorithm learning from the training dataset is 

referred to as supervised learning. Task-oriented supervised learning is a common 

description. This is laser-focused on a single project, providing the system with more 

and more examples until it is able to complete that task properly. 

1. Regression: 

A target prediction value is calculated using independent factors. It's largely used in 

forecasting and figuring out how variables are related. Continuous values can be 

estimated or predicted using regression. 

2. Classification: 

The technique of labeling the outcome is referred to as "classification.". It's a 

classification problem if the data is discrete or categorical.. 

1.1.2 Unsupervised Learning 

Unsupervised learning is a sort of ML in which the model is not supervised by 

anyone. Model discovers information byitself. This normally operates with unlabeled 

data, searching for formerly overlooked trends in such a dataset with no pre-existing 

labels and no human oversight. In contrast to supervised learning, which often depends 

on user data, unsupervised learning, also known as self-organization, allows for the 

modelling of probability densities across inputs. Without utilising known or labelled 

outcomes as a reference, unsupervised machine learning approaches discover patterns 

from a dataset. It is the process of teaching a computer to operate on unmarked or 

unclassified data without supervision by using unlabeled or unclassified data. The 

machine's goal is to classify unordered data based on similarities, trends, and 

discrepancies without any prior data training. There is no teacher present, unlike 

supervised learning, which implies that computer will not be instructed. Machine, 

therefore, can extract very few hidden structures in unlabelled data. For example, if we 

give the machine a few photographs of bus and car to categorise, the computer will 



5 

 

 

 

categorise them based on their similarities, patterns, and differences because it has no 

prior knowledge of the attributes of buses and cars. Unsupervised learning algorithms, 

as opposed to supervised learning algorithms, allow you to complete more complex 

computing jobs. But at the other hand, unsupervised learning might be more 

unpredictable than other natural learning approaches. For unsupervised learning issues, 

there are two types of algorithms.: 

•  Clustering: A clustering problem is one in which you wish to uncover the 

data's intrinsic groupings, such as classifying clients based on their purchasing habits. 

• Association: An association rule learning problem is one in which you wish 

to find rules that describe huge chunks of your data, such as persons who buy X also 

buy Y. 

1.1.3 Reinforcement Learning 

Reinforcement Learning (RL) is a machine learning technique that allows an agent to 

learn by trial and error in an interactive environment using feedback from its own 

actions and experiences. Machines primarily learn from previous experiences and 

strive to provide the best feasible answer to a problem. It is the process of teaching 

machines to make a series of judgments. Though both supervised and reinforcement 

learning involve mapping between input and output, reinforcement learning uses 

rewards and punishments as signals for positive and negative behaviour, unlike 

supervised learning, which provides the agent with a right set of behaviours for 

executing a task. The most effective technique to hint a machine's creativity is to use 

reinforcement learning. 

1.2 Natural Language Processing 

Natural language processing (NLP) refers to a computer program's ability to 

comprehend spoken human language. NLP is an artificial intelligence component (AI). 

Because computers usually require people to "talk" to them in a highly structured, 

precise and unambiguous programming language or by a limited set of well enunciated 

voice instructions, developing NLP applications is difficult. Human speech, on the 

other hand, isn't always precise; it's frequently ambiguous, and its grammatical 

structure is influenced by a variety of factors, including slang, regional dialects, and 

social context. 
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1.3 Motivation of the Work 

We must first comprehend the significance of this issue in real-world circumstances. 

Consider a few scenarios in which a solution to this challenge could be extremely 

beneficial. 

• Self-driving automobiles – Automatic driving is one of the most difficult 

problems, and captioning the area around the car can help the self-driving 

system. 

• Aid to the blind — We can develop a product for the blind that will lead 

them on the roads without the need for anybody else's assistance. This can 

be accomplished by turning the scene to text and then the text to voice. Both 

are now well-known Deep Learning applications. 

• CCTV cameras are ubiquitous today, but if we can generate useful captions 

in addition to watching the world, we can trigger alarms as soon as criminal 

conduct is detected. 

• This is likely to help minimize crime and/or accidents. Automatic 

captioning can help make Google Image Search as excellent as Google 

Search by converting every image into a caption first, and then searching 

based on the caption. 

 

 

1.4 Problem Statement 

The project's main goal is to use deep learning and natural language processing 

techniques to generate textual descriptions in the form of 4-5 sentences for each input 

image. 

 

1.4.1 Organization 

This thesis studies three variants of Encoder-Decoder (explained in Section 2.1) neural 

network architectures for producing paragraph-length picture descriptions. In Chapter 

2, we'll go through the fundamentals of picture captioning. In Chapter 3, we'll look at 

how expanding the fundamental picture captioning model by adding another level of 

hierarchy might result in longer image descriptions. In Chapter 4, we'll talk about the 

experiments Further, Chapter 5 talks about the conclusions and future scope. 



7 

 

 

 

Sections 2.3.3 and 3.2.1 show how to construct the fundamental building pieces needed 

to produce picture descriptions that are either concise captions or large paragraphs. 

When discussing the process of creating short, single-sentence captions, we will use 

the term "image captioning," and when discussing the task of creating lengthier, multi-

sentence captions, we will use the term "paragraph captioning." Furthermore, models 

with a single level of the RNN [42, pp. 367–415] hierarchy will be referred to as "flat," 

whereas models with several levels of RNN hierarchy will be referred to as 

"hierarchical." It's difficult to judge machine-generated captions.With longer captions, 

the problem becomes even worse. Several measures for assessing the quality of 

generated captions have been presented. Human evaluation can also be employed to 

evaluate caption quality. For automatic caption evaluation, we will use the popular 

BLEU [20], Meteor [32], and CIDEr [14] metrics in our experiments. In Section 4.2, 

we'll look at a variety of human evaluation standards. 

The PyTorch neural network programming framework was used in our experiments, 

which were run in Python 3.5. We'll explore into paragraph captioning using a 

hierarchical RNN with two recurrent network layers in Sections 4.4.2 and 4.4.3, where 

the first RNN provides phrase context and the second utilizes the context to learn 

individual tokens, which can be words or punctuation marks. Figure 1.1 depicts the 

relationship between the various models studied in Chapter 4 experiments. To produce 

paragraph captions, we train three alternative models: flat, hierarchical, and 

hierarchical-coherent hierarchies. The flat model is a simple image captioning model 

with only one RNN layer decoder. In the hierarchical model, the flat decoder receives 

an extra RNN level. Finally, the hierarchical-coherent model creates a "coherence" link 

between the two layers of the RNN hierarchy. To pre-train our models, we employ 

either the MS-COCO Captions [10] or the Visual Genome Regions [31] datasets. 
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CHAPTER 2  

                                    Image Captioning 

Image Captioning can be described as automated production of brief natural language 

narration of the contents of image [39]. For this objective, neural networks have 

recently gained popularity [5, 6, 31]. Our picture captioning model generated a few 

captions, as seen in Figure 2.1. 

The basic model for image captioning is explained in this chapter. This thesis calls it 

the flat-model in order to distinguish it from hierarchical models that will be discussed 

later. This is how the current chapter is structured: The fundamentals of the ED based 

framework and the speech model brought to use to perform image captioning are 

explained in Section 2.1, the input characteristics are described in Section 2.2, and the 

decoder component is described in Section 2.3. In Section 2.4 entire pipeline for image 

captioning is defined. Section 2.5, which concludes the chapter, looks at several newly 

presented enhancements to the baseline captioning paradigm. 

 

2.1 Encoder-Decoder Model 

The Encoder-Decoder architecture is the central piece of neural image captioning 

models [40]. The architectural approach is inspired by machine translation's neural 

sequence-to-sequence models [41].  

                                                          O                P               Q              R         <EOS> 

 

 

 

 

      

     L                M            N             <EOS>         O                P                Q         R  

 

Fig 2.1: A straightforward chain model is shown. "LMN" is the input sequence, 

while "OPQR" is the output sequence [63]. 

 

Captioning can be conceived of as the translation of an image into text. The application 

of methods from text-to-text translation is enabled by the analogy with machine 

translation. Figure 2.1 depicts a model which accepts "LMN" sequence as input and 

memorizes to predict "OPQR" sequence on the basis of input sequence. 
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Usually, two different subnetworks are used to implement chain models. One such 

model is shown in Figure 2.2, which consists of two independent RNNs, one of which 

encodes the input while the other one predicts the output on the basis of input .  

The encoder(E), as its output gives context k after processing the input which 

can either be a sentence in base language or an image  

the decoder(D), on the other hand, is a different network that creates the 

intended output and takes context k as its input. 

 

The advantage of a neural ED architecture is that it is made up of distinct components 

that can be trained end-to-end by making use of backpropagation. As shown in Figure 

2.2, at each sampling instant, the information can be made accessible to the decoder or 

supplied to decoder only on first timestep. The image theme, at each time sample is 

given to the top-level RNN. 

 

 

 

 

 

 c 

 

 

Encoder                                                                                                Decoder 

Figure 2.2: Encoder-Decoder design. 

 

The ED architecture was used to generate image captions by Vinyals et al. [6]. The 

model suggested served as benchmark for neural ED image captioning.[42] uses a 

CNN+RNN setup where CNN generates a vector representation by encoding image 

picture into a vector representation and RNN, aided by the language model converts 

vector representation into a description that humans can understand. 

 

2.1.1 Speech Model for Image Captioning 

Vocabulary can be defined as a B-sized ordered and pre-defined set of viable tokens 

that model can use to generate text. Each vocabulary token vj is saved in the associated 

index position j. Token can either be a punctuation character or a unit word. For the 

task of image captioning, use of “word” can use either a punctuation letter or an 

individual word. In its most basic form, a language model establishes allocation of 

probability for each and every token 𝑣𝑗  in the dictionary in this way: 

 

 

 

  

L                M                <EOS> 

 O             P                    <EOS> 
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∑ 𝑝(𝑣𝑗) = 1

𝐵

𝑗=1

 

 

(2.1) 

Speech models are helpful to construct token patterns after we have option of 

conditioning the probability distribution of  next token vt.  on the flow of prior tokens 

v1, . . . ,vt-1. Chain rule can be used to estimate joint probability for a N- sized token 

sequence: 

 

           pt(vt|vt-1,…,v1) = pt-1(vt-1|vt-2,…,v1) pt-2(vt-2|vt-3,…,v1)…p1(v1),                  (2.2) 

 

                                     p(vt, … . v1) = ∏ 𝑝𝑡(𝑣𝑡|𝑣𝑡−1, … , v1)𝑁
𝑡=1                            (2.3) 

 

While training, model is expected to allocate a greater probability to sequence of words 

that have greater probability of showing up in human descriptions, such as: 

When training language models, the goal is for the model to                  

 P(four boys playing cricket) > p(boys four playing cricket). 

A conditional language model almost resembles a regular language model, the only 

difference being that in case of a conditional model, each and every token of the pattern 

has same conditioning circumstances is defined in the same way as a regular language 

model, with the exception that all tokens in the sequence have the same conditioning 

circumstance k: 

     

                                 p(vt, … . v1|k) = ∏ 𝑝𝑡(𝑣𝑡|k, 𝑣𝑡−1, … , 𝑣1)𝑁
𝑡=1                                  (2.4) 

 

Let (v1, . . .vN) be a token sequence depicting a N-length caption, non-vocabulary terms 

denoted by a distinctive token  <UNK> . Every vocabulary token has a one-hot 

representation rt, which is B-sized vector all elements of which are set at value zero 

except for the one having each and every element places as zero leaving only that index 

position that corresponds with vocabulary token vt. As a result, caption is coded in the 

form of N one-hot vectors with pattern r=(r1, . . . ,rN) 

Image captioning aims to develop understanding about certain conditional language 

model such that the probability for next token is dependent on both , input image Q 

and tokens generated earlier within the sequence. 
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                  𝑝(𝒓|𝑸)  =  𝑝(𝒓𝑵, . . . , 𝒓𝟏|𝑸) = ∏ 𝑝𝑡(𝑟𝑡|Q, 𝑟𝑡−1, … , 𝑟1)𝑁
𝑡=1                          (2.5) 

 

In order to increase the trainable parameters ʘ for the models, the following function 

was proposed with ʘ* being the best value that can be attained by [6] 

                                 

                                       ʘ ∗ = arg 𝑚𝑎𝑥ʘ ∑ log 𝑝(𝑟|𝑄; ʘ)(𝑄,𝑟)                               (2.6) 

 

In logarithmic probability space, conditional language model is depicted by Equation 

2.7.  Q denotes the input image and true caption is r. The chain rule can be used to 

describe the conditional probability, in which the likelihood of the token rt being 

generated on location t in caption r, which contains N number of tokens relies upon 

input image and also on sequence of tokens that are in positions 1, ..., t1. As a result, 

for all tokens in the chain r, in order to represent joint probability, equation can be 

defined as: 

 

              ʘ ∗ = log 𝑝(𝑟|𝑄; ʘ) = ∑ log 𝑝(𝑟𝑡|𝑄, 𝑟𝑡−1, … . , 𝑟1; ʘ)𝑁
𝑡=1                                  (2.7) 

 

This model employs a method known as teacher forcing [42], that entails providing the 

model the with ground truth word rt at each training sampling time. Teacher forcing is 

not possible at the inference stage. Model therefore, is fed with its output tokens of its 

own st  at each sampling time instance 

                    

              log 𝑝(𝑟|𝑄; ʘ) =  ∑ log 𝑝(𝑟𝑡|𝑄, 𝑠𝑡−1, … . , 𝑠1; ʘ)𝑁
𝑡=1                                               (2.8) 

 

where 𝑠𝑡−1 , . . . , 𝑠1 are the best guesses model was able to make at each time step 

before t. 

2.2 Encoder: Image Features Extractor 

The image must be translated into an adequate representation before the language 

model can be conditioned on it. An image feature is such type of 

representation.  Feature extraction can be defined as the process involving selectively 

picking of certain object features from the image. is the technique of extracting picture 

features. Depending upon purpose, we wish to encode different properties of the image 
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into features. Low-level features represent the image's visual qualities such as colour, 

texture, local contrast/edges, and forms (lines, points, circles). It's possible that a neural 

network-based solution isn't even required to extract such properties. The high-level 

features, also known as semantic features [43] encode visual attributes in the form of 

objects and the relationship between different objects. 

CNN that have previously been trained previously on any image classification task 

have emerged as a feasible approach to extract semantic features. These extracted 

features can then be used for captioning task. These kinds of networks commonly are 

pre-trained on the ImageNet [44] image classification challenge, in which the trained 

model must select one class that is most probable out of 1000 choices available for 

each input image. Transfer learning [45] is a process that allows neural networks 

trained for a particular task to be used for some other activity. Transfer learnings opens 

up the possibility of utilizing ImageNet trained CNNs for supplying input 

characteristics to models trained for tasks little complex than simple classification. 

Initial layers of networks learn general, basic features which can be used for a variety 

of tasks. The latter layers however lose generality and become task specific.[46]. When 

transfer learning is used, the output obtained from a layer sufficiently deep is chosen 

for subsequent usage. ResNet [2], GoogLeNet (also known as Inception network) [49], 

VGG16 and VGG19 [48], and AlexNet [47], are only a few of the image classification 

networks that have lately developed. 

 ResNet has lately acquired interest as a model for extracting visual features for the 

task of captioning [26, 50]. The ResNet architecture overcomes disappearing gradients 

and explosive gradients [51, 18]. 

With increase in network layers, gradients may vanish. If each gradient's absolute value 

is a value that nears about to 0, the result of backpropagation will for the initial network 

layers result in a gradient approaching zero. Gradients of this type are said to be fading 

since they no longer effect learning. In the best-case situation, tiny gradients indicate 

that network will converge after a long time. The worst would be the condition if 

learning stalls before it converges. 

The initial objective of ResNet design is to solve the vanishing gradient drawback. The 

ResNet model is made up of several residual blocks, one of which is depicted in Figure 

2.3. 
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   Fig. 2.3: ResNet architecture residual block [2]. 

Each residual block is made up of a sub-network together with a "shortcut link" that 

serves as an identity function ensuring a connection of the present layer with the one 

before it. Two in-between layers learn a mapping F(x) as shown in figure, and the 

alternative link attaches x to the intermediate layer output. This helps the network in 

learning at the minimum the identity function between higher and lower levels by 

ensuring that gradients flow to lower layers while avoiding in-between layers. 

In a scenario where the value of gradient is very large in comparison to 1.0, spreading 

gradients over several layers leads to initial layers with explosive gradients 

approaching infinity, preventing updating of weights. The residual blocks, according 

to the ResNet architecture's developers, aids in minimizing the effects of exploding 

gradients [2]. 

In all, there are several ResNet variations available, having similarity with one another 

differing only in number of layers. In this work, tests have been performed with 

ResNet-152 architecture because of recent work in picture captioning [50]. 

The whole network diagram for a 34 layer miniature version of ResNet is shown in 

Figure 2.5. This smaller network's architecture is based on the same concepts as the 

152-layer version we're employing. The ResNet network is exhibited next to a 34-layer 

convolutional net and a VGG19 network with no alternative links so as to compare. 

By deleting the last classification layer, which lists the possibility for the image in 

question to be a part of one out of the 1000 classes available, it becomes possible to 

get hold of the image features from ResNet-152 that are required for image captioning. 

Endmost layer generates an average-pooled vector with 𝐷𝑅𝑒𝑠𝑁𝑒𝑡 = 2048 dimensions. It 

serves as the basis for our picture feature vector. The recovered feature vector post 

operation of matrix multiplication get transferred to the input dimension of the 

decoder. More information on the methodology implemented to use ResNet-152 

network for picture feature extraction is provided in the following section. 
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2.2.1 Extracting Features for ResNet Model  

Each image is preprocessed before ResNet-152 features are extracted. We start by 

resizing every image and making it into 256 x 256 pixels size . For each 3-dimensional 

image pixel x RGB channels are then adjusted using the per-channel standard 

deviations  σ* and averages  μ* 

The normalisation settings about for μ* and σ* are calculated from ImageNet [44] data 

and are published in the PyTorch documentation. This step is necessary since the 

ResNet-152 network was pre-trained on pictures that were all flattened in the same 

way. 

Once the normalised pixel values for the 256 x 256 image taken as input have been 

collected, a total of five 224 x 224 dimensions image portions are cropped, and four 

out of all these images are aligned at ends of the original image. Moreover, every crop 

is overturned horizontally, yielding ten cropped photos in total. For executing this 

procedure in one step, there is one built-in function provided by PyTorch by the name 

of ten-crop. 

Following the creation of the ten-crop images, each one is run with the help of  a pre-

trained ResNet-152 model. For each of the input crops, we maintain the output of the 

second last layer of the pre-trained model, which has a size of FRes = 2048. There are 

numerous options for combining ten-crop image outputs into a single image. We try 

out two different strategies: computing the 10 produced vectors' element-wise mean 

(advanced pooling) and obtaining the element-wise maximum (maximum pooling). 

Before training, the pooled output features are pre-computed and saved onto disc to 

ensure that they can be recovered if need arises and avoiding time-consuming 

calculation.  

 



15 

 

 

 

 

Fig. 2.4: VGG19 (left), ResNet-34 (right), and a 34-layer network without shortcut 

interconnections (centre) [2]. 
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Fig. 2.5: Cropping five 224 x 224 sections from a 256X256 photo and overturning 

horizontally each chopped section creates a ten-crop image: 

  

                       xnormalized =
𝑥−𝝁∗

σ∗
                                                               (2.9) 

 

Table 2.1: Outcomes of the MS COCO captioning challenge employing ResNet-152 

ten-crop and random crop properties.  

Evaluation Metrics Single Random Crop Ten Crop 

CIDEr  85.18 87.17 

METEOR 23.93 24.26 

         

The pooled features also have FRes dimension as the features produced by single input 

image in absence of ten-crop yet deliver higher experimental results on the image 

captioning job. Table 2.1 depicts exactly the same. The model beats standard dataset 

enhancement technique involving randomly cropping every image at every repetition 

when employing ten-crop features, as judged by CIDEr [14] and Meteor [32] scores 6 

(see Section 4.2). Each run over the data is sped up by the pre-calculated ten-crop 

characteristics, allowing you additional scope for testing. Meanwhile, random 
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cropping, necessitates running entire ResNet-152 CNN for every picture, greatly 

slowing the learning. 

 

 

2.3 Decoder: Generating Captions 

Decoder's picture attributes are transferred onto a G-dimensional vector that contains 

important information about the input images and can be regarded as a badly 

condensed representation of the image data. [46]. The decoder's goal is to learn how to 

rely on this representation of a picture and offer a description that perfectly 

represents the actual image's characteristics. 

2.3.1 Common Depiction for Words and Pictures 

Learning a common representation [37] of images and sentences, as well as the usage 

of a recurrent network-based language model [52], make it possible to condition the 

language model on the E-dimensional image context vector c. The shared 

representation allows for the same latent space to be used to encode image attributes 

and individual words in the caption. Recurrent network-based language models, on the 

other hand, enable us to simulate the probability distributions of specific word 

sequences given an input image. 

 

Fig. 2.6: Interactions are projected in lower dimensions [53]. 

[54] suggested utilising a distributed, continuous representation to encode each word 

in a vocabulary rather than the usual "bag-of-words" method, in which each word is 

stored as a discrete 0 or 1 indication at a specific place in a one-hot vector of size V. 

In bag-of-words, each word in a caption would be a lengthy and sparse vector 

comprising primarily zeros, given a vocabulary of size V = 10000 words. On the other 
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hand, if this sparse representation could be translated into continuous space, neural 

network models might be trained using these changed inputs. 

Such a representation is provided by word embeddings. Every word in vocabulary is 

mapped to an P-dimensional, continuous embedding, where P<< V is the encoder 

output size and E is the size of the embedding. Instead of mapping each word to a 

discrete index, we now have a continuous "neighbourhood" of words in an E-

dimensional embedding space, where similar words are frequently neighbours. This is 

due to the way embeddings are built; for example, if two words appear in similar 

contexts in the training data, they are more likely to occupy neighbouring embedding 

space places [55]. When projected to lower dimensions, relations between related 

concepts are frequently represented as vectors in embedding space [53], as shown in 

Figure 2.7. Many such relations can theoretically be contained at once inside each 

individual embedding due to the embedding's still large dimensionality [53, 37]. 

We still lack a shared representation between words and visuals at this time. The 

concept of compositional semantics [56], which states that each embedding vector can 

represent either a word or a full phrase, underpins shared representation between 

individual words and images. Compositional distributed representations of whole 

sentences can be combined with image features to create a multi-modal [37] 

representation space in which the compositional image caption representation maps to 

the same vector space as image features.  

 

Fig. 2.7: Common vector representation of pictures and sentences. [62]. 

 

The capability to obtain a common depiction [5] for multi-modal input is at the heart 

of both picture captioning in this chapter and hierarchical paragraph captioning in 

Chapter 3, where RNNs at various levels receive diverse modalities as input. Figure 

2.8 illustrates image feature vectors and text vectors linked to a common embedding 

space, illustrating two different input modalities. When training captioning models, it 
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is feasible to employ pre-trained word embeddings, and numerous reusable 

embeddings exist, such as Word2Vec [57], Glove [58], and, more recently, ELMO [7] 

and Bert [8]. However, it is also possible to train the embeddings with the rest of the 

model, as we did in the experiments described in this thesis. 

2.3.2 Recurrent Neural Language Models 

The recurrent neural language model [52] is an important component in image 

captioning. The inputs to the model are context vector and all previously given words 

and it is expected to predict the word that is most likely to occur next. Recurrent neural 

networks are a versatile as well as strong family of algorithms for producing both 

discrete and continuous weighted patterns [59]. The RNN utilises a predefined 

identifier as an input and then builds the very next identifier it generates on the 

prior outputs when it comes to creating text. In order to generalise to previously 

unknown inputs and create unique, semantically accurate sequences, the RNN has to 

understand to fill in the missing in between training sample it observes. 

RNNs, similar to CNN, can experience the problem of vanishing gradients wherein the 

network does not remember inputs it received some time back in the past. To be 

effective in producing prolonged sequences, RNN must be able to selectively 

"remember" and "forget" relatively long history based on its present relevance. Long 

Short-Term Memory (LSTM) [60] or Gated Recurrent Units (GRU) [40] are 

commonly used to create modern RNNs. By adopting a sequence of gates, both types 

of recurrent cells provide apparatuses aimed at selecting maintaining lengthier and 

shorter contexts. Each gate is sigmoid σ (·) activated single layer neural network. 

 

  

                           (a) GRU Cell                                                      (b) LSTM Cell 
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Fig. 2.8: Basic block diagram for RNN units [61]. 

 

The current element, at each time step t, in the input sequence is denoted by zt, and the 

name of the gate is subscripted by t representing the gate's result. 

As illustrated in Figure 2.9, the total number of gates in GRU and LSTM cells differs, 

so does the way they output and store their internal state .  

There are two gates in a GRU unit: update and reset : 

• Reset gate – specifies how much of the RNN cell et−1 previous hidden state vector 

should be used for the new hidden state proposal vector ft   

 

  𝑞𝑡 =  σ(𝑣𝑘𝑝 𝑧𝑡  +  𝑣𝑘ℎ  𝑒𝑡−1)                                                                   (2.10) 

 

where vkp and vkh are learnable weight matrices, and et-1   is the hidden state output 

from time step t-1. The following is how the planned novel concealed state is 

computed: 

     

                         𝑓𝑡 =  tanh(𝑣𝑧𝒙𝒕  + 𝑣𝑒(𝑞𝑡ʘ𝒆𝒕−𝟏))                                                             (2.11) 

 

where “ʘ” is element-wise multiplication. 

•  Update gate – z serves a twin purpose, acting as a complement to both z and 1-z. 

Figure 2.9 shows a small "switch" next to gate z that works like a control, displaying 

the mingling proportion amongst the existing concealed state et-1  and the planned new 

concealed state ft. 

 

An LSTM cell differs from a GRU in that it includes three gates: input, output, and 

forget, as well as a separate cell state dt. 

 

• input gate – i works in tandem with the forget gate f. They are, however, 

implemented individually, unlike in GRU. 

 

• Forget gate – f regulates the weighting for the previous value of cell state dt-1 

and complements the input gate. 

 

• Output gate – o is used for calculating the LSTM cell's final output: 
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2.3.3 Decoder Implementation 

We use a single RNN component with two hidden layers to create a flat decoder, as 

illustrated in Figure 2.10. GRU or LSTM recurrent cells are used in our investigations. 

By treating each input paragraph as a separate sequence, the flat decoder may generate 

single "sentence-length" captions as well as paragraph-length captions. 

We wrap the ground truth caption with <START> and <END> tokens before we start 

training. Then, in the constructed ground truth caption, we embed each input token kt 

(encoded as a one-hot vector) to a vector zt of size P. The RNN's initial input, z0, is 

provided as the encoder's visual embedding output. The rest of the model parameters 

are trained alongside the word embeddings. 

 

 

           Fig. 2.9: Flat decoder. 

In training, we employ mini-batch gradient descent, which divides each pass over the 

dataset into 128 (image, caption) pairs. PyTorch includes the PaddedSequence object, 

which allows training RNNs with mini-batches containing varied length input 

sequences, to support mini-batch training when each caption may be of various length. 

Each mini-batch must be sorted in decreasing order depending on the caption length 

in order to use the PaddedSequence class. 

2.4 Proposed Extensions to Image Captioning Model 

Model suggested in the previous section can be expanded. Discussed below are some 

of the newly introduced building elements that have the potential to improve image 

captioning performance: 

• The attention mechanism [38, 31] attempts compensating for the problem that the 

presence of just one context vector be not large enough for encompassing whole 
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information about the input image. For each step of output, decoder is allowed to 

extract information out of important sections rather than relying on just one context 

vector. [26, 50]. 

• RL [15, 62] enables neural network-based models that make use of neural networks 

to master the method of optimizing for the process of training of discrete and non-

differentiable variables.  

• GAN [63] models consist mainly 2 major components:  

Generator network which trains with input data and tries to come up with a 

output as close as possible to the real world output. 

Discriminator network which leans continuously and tries to distinguish 

generator produced data from real world data. Although GAN based methods have 

been able to generate a diverse range of captions, they have not been able to stay 

competitive when evaluated on scoring metrics.[27, 64]. 

• VaE is yet another procedure utilizing GANs. The VaE formulation attempts to 

mimic the training data's probability distribution by learning a normal distribution of 

latent data representation (characterized by variance and mean). It is an alternative 

generative methodology used in image captioning [65, 66]. Models that use attention 

learning [26] and the methods that make use of reinforcement learning [9] have 

demonstrated most promising outcomes so far. 
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CHAPTER 3 

Paragraph Image Captioning 

  

Paragraph image captioning, as a field of research as well as the dataset that is used for 

testing that goes with it, has only lately surfaced [4]. The generated image descriptions 

in standard image captioning are brief. In the MS COCO Captions dataset [34]. The 

typical paragraph caption is 67 words long and is divided across numerous sentences. 

Table 3.1: Evaluation metrics scores for different baseline models. 

Evaluation 

Metrics 

Image 

Captioning [3] 

Paragraph 

Captioning [9] 

Paragraph 

captioning – human 

baseline 

[30] 

METEOR 27.6 18.6 19.22 

CIDEr 117.9 20.9 28.55 

 

It, sometimes can become impossible to describe an image with intense detailing with 

just a single sentence. Larger, multi-sentence descriptions are frequently required. 

While longer captions might capture more detail in an image, they are also more 

difficult to learn because the number of places where the machine can make a mistake 

increases as the n length of caption increases. Furthermore, looking at the conventional 

metrics is insufficient to compare image and paragraph captioning outcomes. The 

baselines are different, as shown in Table 3.1, and the scores that has been obtained by 

human performed stanza captions are much less over the best picture results by 

captioning. 

By comparing to image captioning, paragraph by captioning has gotten less attention. 

However, the concepts that emerge from picture captioning by the work of research 

are frequently applicable to paragraph captioning. Concluding that there is a significant 

amount of "cross pollination" between them is important. The fundamental 

prerequisites to extend a language by modelling mentioned in Section 2.1.1 from 

generating basic each sentence captioning to paragraphs comprising several phrases 

are discussed here.  

The criteria for the two jobs are identical, but paragraph captioning adds the 

requirement for modelling language in the sentence as well as word levels. This implies 
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that the input characteristics must include data that may be utilised to produce 

sentences that describe various parts of the image. 

The fundamental baseline architecture has been mentioned below. It was recently 

developed to satisfy the needs of stanza size language modelling for briefing images. 

The project includes a pre-trained encoder for a dense captioning task in which each 

image is captioned with several per-region annotations. In addition to the regions-

based encoder, models the paragraphs on sentence and word levels individually using 

two corresponding RNNs. Other working projects for paragraph captioning that have 

recently been published [3, 4, 11] all use a hierarchical decoder and follow this 

Encoder-Decoder design. 

Only about 19, 000 picture caption pairings are currently available in the Stanford-

Paragraph dataset [4]. In relation to the MS-COCO Captions dataset [34], which offers 

five types captions per image, the dataset only has one example paragraph per image. 

When just using the Stanford-Paragraph dataset for training, the study of paragraph 

captioning project may suffer from over fitting to the training data. Transfer learning, 

as was discussed in Section 2.2, is one possible answer to this problem. Krause et al. 

[4] suggest employing two transfer learning sources: a pre-matured image encoder and 

pre-engaged weights for the RNN component that generates sentences. The encoder 

and the language model in their study both were pre-nurtured using the Visual Genome 

Regions dataset [25], which we discuss in Section 4.1. 

The hierarchical decoder will be described in Section 3.2, and the end-to-end picture 

of the model. The hierarchical-coherent model will be introduced, which extends the 

hierarchical baseline by attempting to impose coherence between individual phrases 

inside a paragraph. Section 3.5 of the chapter describes some further paragraph 

captioning vigilance. 

3.1 Encoder: Dense Captioning Network 

Acquiring Visual features via a dense captioning network established by Johnson et al. 

[1], also known as DenseCap, and input to the hierarchical language model can also be 

used [4]. 
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   Fig 3.1: Architecture of DenseCap [25]. 

The dense captioning network is a hybrid model that aggregates the works of region 

suggestion as so of picture captioning. Visual Genome Regions [25] was the dataset 

used to train the DenseCap network. Before getting into the specifics of how DenseCap 

characteristics are retrieved, let's go over how these features are calculated. To generate 

a series of B tuples, the neural network is trained. Each series comprises of a bounding 

box and a caption defining the area of an image enclosed by the box, in the task of 

dense captioning. 

The fully obtained result Encoder-Decoder design mentioned in Section 2.1 is similarly 

followed by the dense captioning network. Unlike image captioning, this is a "one-to-

many" interaction, with all images those are responsible for producing B image-region 

based contexts. Then each context is utilised as an input to a different instance of the 

image captioning task. The dense captioning network is designed from all the 

components up to and including the main network. The context vectors are the area 

codes depicted in Figure 3.1, and the decoder is the LSTM-based RNN. 

As shown in Figure 3.2 a collective work of bounding boxes corresponding to different 

portions of the stimulus image and natural language descriptions of each and every 

such region. The loss function is made up of five criteria: L1 fail on area placements 

in the localization layer, binary logistic fail on anticipated (0, 1) confidences for 

regions in the recognition network. The cross-entropy on the language model output is 

used. 

Dense-Cap can be declared to instantly build larger image details by aggregating the 

released region descriptions, though it is not technological for a paragraph captioning 
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model. This method may result statements that are coherent when used as separate 

captions for image sections, although they can also lose their coherence when 

combined to form a paragraph. As a result, DenseCap cannot be trusted to generate 

convincing paragraphs. 

 

 

  Fig 3.2. A DenseCap network's output as an example [25]. 

3.1.1 DenseCap Features Extraction 

The method for extracting DenseCap features depicted in Figure 3.3 resembles to the 

ten-crop feature extraction discussed in Section 2.2.1. Unlike the ten-crop features, 

which are produced from the identical area for all input photos, DenseCap features are 

converted to region content. The model was trained on a total of 77, 398 images, with 

an average of 50 region captions per image. As reported in [3, 4], we save B = 50 

region characteristics for each input picture, then do additional pooling by selecting 

the element-wise greatest over all B extracted features, based on the final per-image 

feature-vector of size DenseCap. In addition to maximum pooling, we tested with 

average-pooled picture features, which were calculated by taking an element-wise 

mean of B region vectors. 

The DenseCap-dimensional characteristic vector is translated into an E-dimensional 

context vector, which is passed to the hierarchical decoder discussed in the next 

section. 
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     Fig 3.3. Using element-wise maximum, DenseCap features were retrieved from 

picture regions. 

 

3.2 Decoder: Hierarchical RNN 

Captions for paragraphs can be thought of as a collection of single words and 

sentences. Using a hierarchical language model, Li et al. [30] and Lin et al. [35] 

propose modelling word-level and paragraph dependencies independently. As a 

consequence, one RNN models phrases at the term or "token" level, while another 

model paragraphs at the level of the sentence. 

The work [17] advocated using hierarchical models on sequential inputs to help model 

longer-term connections between structural components that are sequential 

themselves. In part of text input, these units range from longer-term to shorter-term 

contexts and include chapters, paragraphs, phrases, and words. RNNs' ability to 

selectively represent longer and shorter-term contexts has increased since the advent 

of LSTM. As a result, one can wonder whether explicit hierarchy at the network design 

level benefits a modern RNN-based language model. In Chapter 4, we shall attempt to 

answer this question. 

Yu et al. [36] were the first to mention the use of a hierarchical word embedding in the 

highly associated task of video captioning. In their model, they adopt a two-level 

hierarchy, with term and sentence-level RNNs created with GRUs. The phrase context 

is set to zero during training, and the picture characteristics are used to start the word-

level RNN. The syllable embedding of all words in the first sentence is passed to the 

sentence-level RNN, which constructs a new context for the following verse after 

reading the first sentence. As previously said [4] has converted the de-facto paragraph 

captioning baseline, thus we will go over their formulation in further depth. The 
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hierarchical RNN employed for sentence captioning is defined as having two layers of 

hierarchy, each represented by a separate RNN: 

• SentenceRNN – For each sentence, this is an upper RNN that produces a 

topic vector Ti. At each time step, Sentence RNN takes the same image characteristics 

given by the encoder as input and returns a different subject vector for the following 

sentence. 

• WordRNN – A final output-level RNN that uses the topic vector Ti as its 

initial input to produce individual words in each phrase. This component is identical 

to the decoder used in the flat model in our tests. 

The source picture I is said to be "grounded" [37] for each subtitle in the flat model. In 

the methodological structure, the grounding is similarly hierarchical. Phrase topics Ti 

provide a medium level of grounding, with each subject vector performing the same 

function as the background vector c in Section 2.4, with the exception that each 

paragraph in a paragraph now has its own generative model. 

The "Regions-Hierarchical" model's decoder learning method utilizes that we are 

provided a paragraph containing sentences, each of which includes Ni words, with I 

becoming the sentence index. To initialise the decoder, WordRNN weights from a 

language model pre-trained on the massive Visual Genome Regions description 

dataset [25] are employed. Then, for M time-steps, Sentence RNN is run with the same 

input at each time-step. SentenceRNN generates a H = 512 hidden vector, which is 

then fed to two sub-networks: a halting detector and a topic generator. 

3.2.1 Hierarchical Decoder Implementation 

Figure 2.10 presented a sub-unit of the hierarchical decoder in Figure 3.4. The 

hierarchical decoder limits the highest number of permitted sentences per paragraph to 

MMAX = 6 to ensure that the inferential process can be completed. Each original 

sentence in the paragraph is generated using the same WordRNN, with the same 

weights. During learning, each paragraph is degraded into sentences. Input to the 

decoder is the same kind of mapping from picture features to embedding size E that 

was utilised in the flat model. 



29 

 

 

 

 

Fig 3.4: Hierarchical decoder. 

Image features are not directly employed to construct an image caption in the 

hierarchical model. Instead, the Sentence RNN is executed for MMAX time-steps first. 

Each timestep's Sentence RNN outputs are used for two purposes: 

1. The halting classifier, which is built as a couple of logistic units, 

determines the probability that the current phrase is the paragraph's last 

one. We build this unit by providing a pair of values, rather than the 

commonly utilised technique of using an artificial neural layer with a 

single value for binary classification. 

The reason for this implementation is that we noticed during the trials 

that utilising a two-unit neural network produces somewhat better 

outcomes in standard metrics than using a single output. It's possible 

that a network with two-unit output develops a somewhat superior 

stopping classifier representation. At the same hand, it's probable that 

this will make the model more prone to overfitting and slow 

convergence.  

2. To generate E-dimensional topic vectors Ti, the Sentence RNN outputs 

are input into a two-layer fully connected network. Between the layers, 

we apply ReLU non-linearity [22, 45]. Each of the Ti topic vectors is 

sent to the WordRNN, which creates each sentence.  
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PyTorch's underlying hierarchical paradigm is quite simple to implement. The 130-

piece small size that we used to learn the flat model is employed again. When 

overfitting, the most difficult part is ensuring that the Packed Sequence object, which 

contains all sentences at location I in the mini-batch, is appropriately sorted. For each 

mini-batch, the sentence data must be arranged in M max ways. We must keep a 

separate sorting indicator for each phrase in the paragraph, sorting and unsorting them 

as needed, to guarantee that the sorting order is correct for each phrase at each Sentence 

RNN time-step. A large portion of the task was spent to ensuring that the functions 

listed above work as expected. 

3.3 Paragraph Captioning Pipeline 

When the DenseCap-based coder is integrated with the hierarchical decoder network, 

the entire "Regions-Hierarchical" structure is presented in Figure 3.5. The output of 

the dense messaging encoder is compiled into a single vector, which is then utilised as 

a backdrop for the hierarchical RNN that generates the sentences. 

 

Fig 3.5. The encoder-decoder design for graph captioning was adopted after [30] 

 

Let's define each training input as a pair (I,SP ),  where I is an image and SP is the 

image's paragraph caption. M sentences are in paragraph SP. Ni words appear in 

sentence i. Also, in the ith sentence, make Sij the jth word. Two probability 

distributions are taught to the model: 

• pi – the likelihood of the current sentence being the last sentence in the paragraph 

over STOP, CONTINUE, so that 

 

pi(STOP) + pi(CONTINUE) = 1                                                   (3.1) 

 

• pij – a chance of a given word appearing in place j of the ith sentence based 

on the full vocabulary. 
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The loss proposed by Krause et al. [4] and used by others [3, 11] is divided into two 

halves, one for each decoder hierarchy level. The algorithm L has two terms: a 

weighted phrase loss sent and a weighted word loss lword, where lsent is the optimal 

solution for the Sentence RNN and word is the target value for the Word RNN: 

 

ℒ(𝐼, 𝑆𝑃) =  λSent ∑ 𝑙𝑠𝑒𝑛𝑡(𝑝𝑖, 𝕝[𝑖 = 𝑀]) +  λWord ∑ ∑ 𝑙𝑤𝑜𝑟𝑑(𝑝𝑖𝑗, 𝑆𝑖𝑗)
𝑁𝑖
𝑗=1

𝑀
𝑖=1  𝑀

𝑖=1       (3.2)             

 

3.4 Hierarchical-Coherent Project 

The Stanford-Paragraph dataset's modest amount of training data might not even 

comprise many of the language structures necessary for the produced paragraph-

caption to seem like it might have been written by a person. The hierarchical paradigm 

may also have trouble creating paragraphs that move effortlessly from one sentence to 

the next [3, 11]. The captions have a few features that make it look natural such as how 

varied they are – do they all maintain similar pattern or are they seeming to be 

unrestricted, how spontaneous they are – how much likely it is for a human to come 

up with comparable description. The following section goes through a possible 

solution to improve the seeming eminence of captions in greater depth and the 

subsequent segment would go over a few additional options briefly. 

For each paragraph, the hierarchical approach represents numerous levels of structure. 

The baseline model, on the other hand, does not explicitly relate the preceding and 

subsequent sentences. SentenceRNN's topic vector from the baseline conceptual 

framework is immediately employed to create the next sentence. Because they are 

created before the WordRNN is performed, these subject vectors do not rely on the 

WordRNN's output. 

The hierarchical-coherent implementation is built upon [3], which builds on the 

previous "Regions-Hierarchical" model to make paragraph titles more human-like. A 

high-level summary of the model is shown in Figure 3.6. Similar to Krause et al. [4,] 

SentenceRNN is used in their model to construct sentence topic vectors Ti for each 

phrase in the paragraph. 
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Fig 3.6. Adapted from [3], with names of parameters names altered for uniformity. 

 

However, unlike previous work, after all of the phrase subjects have been formed, they 

are further analyzed to give the sentences coherence. It's important to note that the 

released "Diverse-Coherent" model has an optional parameter estimation autoencoder 

element that aims to create diversity to paragraph descriptions, but this capability was 

not included in our hierarchical-coherent model. 

We'll now examine at whether Chatterjee and Schwing's [3] technique generates 

sentence coherence. After the subject vectors have been created, the balanced total of 

them is saved in a global topic vector G:  

    

                                                 𝐺 = ∑ 𝛼𝑖𝑇𝑖         
𝑀
𝑖=1                                                                        (3.3) 

  

                                                     𝛼𝑖 =
 ||𝑇𝑖|| 2

∑  𝑗 ||𝑇𝑗|| 2
                                                                               (3.4) 

 

To assist in preserving sentence coherence, the coherence vector Ci1 is computed. The 

concealed state of the WordRNN is obtained after the final word of the current phrase 

has been produced in order to compute the integrity vector. The authors supply this 

hidden state representation using a two-layer totally connected net known as a 

coherence network. Ci1 is the result of this network. As the baseline coherence vector, 

C0 is set to zero. 

G is the worldwide topic vector, Ti is the topic vector, and Ci-1 is the coherence vector. 

Using these three vectors, a binding unit may be used to calculate the final topic vector 
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T_i^'. The index i-1 of the coherence vector relates to the previous sentence, but the 

index I of the subject vector and the index I of the final topic vector correspond to the 

sentence about to be created. 

 

                                                       𝑇𝑖
𝐶 =

𝛼𝑇𝑖+𝛽𝐶𝑖−1

𝛼+𝛽
                                                                     (3.5) 

 

In this approach, the squared norm of the difference between the fused topic-vector 

and each of its inputs is minimized:  

 

                                                       𝑇𝑖
𝐶 = arg (𝑚𝑖𝑛 𝛼)                                                                 (3.6) 

    

The constants and are assigned to different values depending on whatever dataset the 

project is trained on. On the Stanford-Paragraph dataset, the values for training are 𝛼 

= 1.0 and 𝛽 = 1.5.  

 

Fig 3.7: Coupling unit combining the global topic vector, current topic vector and the 

coherence vector Ci-1  originating from the previous sentence [3]. 

 

The fused vector is then transmitted to the gating unit, which is constructed as a single 

GRU cell with the universal topic vector G determining the cell's initial internal state. 

The cell's result is the end topic vector T i' after a data set, which is then used as the 

initial feed to the WordRNN, which creates the following sentence. This process is 

seen in Figure 3.8. 

Connecting the final created word of the previous phrase to the first intake of the 

following sentence enhanced relative coherence between the produced sentences, 

according to the model's authors. In a similar vein to vector G, Li et al. [30] investigate 

monitoring a global, paragraph-level environment. They do, however, use a third level 

of RNN hierarchy to simulate paragraph level context. In the coupling unit, the GRU 
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cell is used in a similar fashion to this previous work, however it is now made in a 

more compact manner. 

The gating unit knows to manage how much of the worldwide background G to "let 

through" for constructing the next phrase instead of relying on the transitory context 

vector T i^C , which is more local to the present sentence. The GRU cell in the gating 

unit does not simulate a recurrence since it is only run for a single time-step. 

 

 

    Fig. 3.8: The coupling unit sends subjects to WordRNN [9] 

 

 

3.4.1 Hierarchical-Coherent Decoder  

The structure is employed by changing the fundamental hierarchical model. The only 

changes to our hierarchical structure are that more components must be arranged at 

each phrase time-step g to match PyTorch's Packed Sequence based RNN input set-up 

specified in Sections 3.2.1 and 2.3.3. The dimensions of the input embeddings given 

at each WordRNN instance are represented by P-dimensional vectors Ji, H, Ai-1,  Ĵ𝑖
𝐴 

and 𝐾𝑖
′. 

For attaining coherence vector Ai-1, we utilise wordRNN's second last concealed output 

at sentence i-1. The solution obtained differs from what was observable in sample 

scripts by original developers. They utilize internal layer of WordRNN from the 

previous instance after the phrase is done creating and the <END> symbol has been 

created. This work conducted the same approach in tests, but the outcomes were 

constantly poorer on traditional measurements. 

Activation function utilised by the original authors [3] is the Scaled exponential Linear 

Unit (SeLU) [29], that is analogous to the regularly used ReLU. Since SeLU could not 
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give good results ReLU irregularity was used both for coherence vector generation and 

topic generation. 

3.5 Extensions to Paragraph Captioning 

There have been many refinements to the model base model proposed by [3]. Some of 

these modifications include: 

The "Regions-Hierarchical" model proposed by Krause et albaseline [4] has been 

refined several times. Besides to the previously noted inclusion of coherence vectors 

and accompanying paragraph coupling, these advancements include: 

• Attention mechanisms on Linguistic and perceptual aspects [11], 

• GAN based architecture making use of an objective function which relies on 

adversarial networks.objective function utilising a GAN architecture [27, 11],  

• In addition to the current methodology that makes use of RNN at sentence 

level as well as word level,  a paragraph RNN can be introduced[11].  

• ED architecture based on VaE. [3]. 

Attention in hierarchical linguistic models was introduced by [30]. The usage of 

attention in the picture tagging[31] and human language interpretation domains[38]  

inspired their attention technique. To tackle the closely related problem of paragraph 

length video captioning, [36] proposes employing emphasis on image elements 

gathered inside a video frame. It also deploys progressive attention while creating 

captions for static pictures, which is less significant when creating subtitles for video 

frames. 

[11] offer to include different enhancements for paragraph generation. A comparable 

model was created by [4]. The model feeds off of DenseCap features, while the 

execution focuses on image feature vector along with words in dense subtitles created 

by the very same DenseCap system that produced the image features. They also have 

a duplicating [28] function that allows them to take words from the visited region 

descriptions and paste them into their own documents. In their GAN-based solution to 

paragraph captioning, [27] suggest hierarchical grader. 

[11] includes an adversarial training mechanism. For training on paragraphs without 

graphics, semi-supervised components are paired with acquiring single-sentence labels 

on the MS-COCO Captions database.  

 [3] illustrate how using a VaE-based framework, in which a section of source space 

of subtitles model is tested at run-time, basically creating a few more order of 
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unpredictability within outcomes of the model, can enhance the diversity of generated 

captions as a substitute to using an adversarial objective. 
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CHAPTER 4 

Experimental Analysis 

 

External, pre-computed image characteristics pre trained on classification of images 

and on Dense-Captioning were used in our models. A RNN, pre–trained on image 

captioning provided network weights for our task of paragraph captioning. Description 

of datasets used is provided in Section 4.1.  

The datasets utilized are described in Section 4.1. Section 4.2 discusses the sought-

after automated assessment metrics used to evaluate outcomes and provides high -level 

evaluation criteria that humans might make use of. Section 4.3 goes into the specifics 

of the training. Finally, Section 4.4 gives experimental results followed by final 

thoughts and discussions in Section 4.5. 

4.1 Datasets 

The experiments were done with 3 different datasets. Before we start model trainings, 

we split each and every dataset into a training set, which comprises of photos that will 

be made use to train them, and a set of validation, that is in general a collection used 

to see how well they generalize to previously unknown data. 

MSCOCO [10]: An image captioning dataset that comprises of images as well as 

captions analogous to each image. There are in total 82, 783 images available for 

training and 40, 504 images for validation. We use the MS COCO Captions c5 subset, 

which gives on an average, 5 single sentence captions corresponding to each image. 

There are 108, 077 photos in the Visual Genome Regions (VG Regions) [25] dataset. 

Every image in VG Regions has an average of 50 per-region annotations, each of which 

contains a brief region description as well as the coordinates for a bounding box 

encircling the described region. Each geographical description is on average 5 words 

long.this dataset contains 77,398 and 5000 training and validation  images. The 

Stanford-Paragraph dataset [4] is a subset of 19, 551 VG Regions images annotated 

with multi-sentence descriptions, with each sentence averaging 11.91 words in length. 

This dataset is used to train our final model because it is currently the best accessible 

paragraph captioning dataset. We used the identical train/val split as the dataset's 

authors, with 14, 579 images trained and 2,490 images validated. 
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4.2 Evaluation Parameters 

4.2.1 BLEU 

The BLEU-1,2,3,4 (bilingual evaluation understudy) [20] evaluation parameter  is 

dependent upon accuracy in n-gram. N- gram is basically the word combination being 

matched at that iteration. For a caption written like "A dog is running on grass," for 

example, we might write: 

1-grams (or unigrams): “A”, “dog”, “is”, “running”, “on”, “grass” 

2-grams (or bigrams): “A dog”, “dog is”, “is running”, “running on”, “on grass” 

4-grams: “A dog is running”, “is running on grass” 

It's worth noting that there's a related concept known as a "character n-gram," in which 

n denotes the count of characters rather than words. Current work is interested only in 

n-gram word. 

We'll show how to use BLEU-1 with unigrams in the examples below, but the same 

approach may be used with all sorts of n-grams independent of their size . For the case 

where Count(a) denotes word count (or unigrams) in available image description, each 

repetition of a particular word increases the count. Every caption created gets a 

precision score(unigram) in the following way: 

 

                                              𝑃
𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠=

∑ 𝐶𝑜𝑢𝑛𝑡(𝑎)𝑎∈𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠

𝐿

                                                       (4.1) 

 

When we come across any particular word which was present in actual image 

description, the counter for Tp is incremented. Simple precision has the drawback that 

Tp counts may surpass the count in actual image description. Lets try to understand it 

with an example: 

Ground truth: A dog is running on grass. 

Caption 1 : A A A A A A A A . 

Caption 2 : There is a dog running on grass. 

 

The unigram precision score for Caption 2 is 5/6, but it is 6/6 for Caption 1, despite 

the fact that the second one is significantly relevant to the actual description. 

By adopting modified precision, BLEU hopes to address this issue. For a single 

caption, 𝑃1
∗, the adjusted score of precision for unigrams, is derived just by trimming 
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the appearance of any word in the caption generated to the actual number in the 

available image description 

 

                                            𝑃1
∗ =

∑ 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝 𝑎 ∈𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠 (𝑎)

𝐿
                                                             (4.2) 

 

The values of all 4 scores come in range (0,1) which are then multiplied with 100 to 

bring values in (0,100) range.When it comes to reporting our findings, we take the 

same approach. 

4.2.2 METEOR 

When utilizing BLEU as an automated evaluation metric for image captioning, there 

are a few issues to consider. For starters, it ignores recall, as specified in Section 4.2.2. 

When used for image captioning, recall, when implemented for image captioning 

counts number of words from available image description appear in the description 

generated by the model. It, also ignores synonyms, and when working with bigger n-

grams, such as while computing  BLEU-4,  penalizes descriptions having changed, yet 

right, order of words than the available image description. Meteor [32, 16] aims to 

solve the issues of matching synonyms and paraphrased sentences by combining 

precision and recall.                                                       

 

  Fig 4.1 Meteor matches  example [33]. 

 

The sentence generated is compared with expected sentence using matchers mi :  

•     Exact, m1 – trying to find exact word matches, similar to unigram. 

•  Stem, m2 – trying to find words that have a common stem. 

•  Synonym, m3 – trying to compare each word with synonyms of it available 

in [19] 

•  Paraphrase, m4 – trying to compare that particular set of words with a pre-

defined phrase table. Figure 4.1 gives a demonstration of how matching is 

done within sentences. Black colored lines correspond represent “exact” 
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match, green colored lines indicate “stem” matches, and red colored lines 

are a representation of matching phrase 

 

It considers words present in a particular language that occur more than a specified 

number of times to be function words. "about",  "A,", "about,"  "the," "had," and 

"could" are examples of function words. Content words are those that are less common, 

such as "computer," "dog," "purple," "play," and so on. The function words in 

hypothesis and reference sets are abbreviated as hf and rf ,, respectively, and the 

content words are abbreviated as hc and rc. 

Each matcher mi has a weight wi linked with it (see Table 4.3 for parameter values). 

The value of the parameter 𝝳 determines the relative weighing of content and function 

words. The weighted precision Pw and weighted recall Rw are calculated using the 

matchers and their accompanying weights: 

 

                                    𝑃𝑤 =
∑ 𝑤𝑖 .

4
𝑖=1  (𝛿.𝑚𝑖(ℎ𝑐) +(1−𝛿).𝑚𝑖(ℎ𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|ℎ𝑓|
                                             (4.3) 

                                   𝑅𝑤 =
∑ 𝑤𝑖 .

4
𝑖=1  (𝛿.𝑚𝑖(𝑟𝑐) +(1−𝛿).𝑚𝑖(𝑟𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|𝑟𝑓|
                                                     (4.4) 

 

The numbers of content and function words in the hypothesis and reference captions 

are represented by |hc|, |hf |, |rc|, and |rf |. 

The weighted precision and recall are then multiplied by the parameterized harmonic 

mean 𝐹𝑚𝑒𝑎𝑛: 

                                        𝐹𝑚𝑒𝑎𝑛 =
𝑃𝑤 .  𝑅𝑤

𝛼.𝑃𝑤+(1−∝).𝑅𝑤
                                                                           (4.5) 

 

The parameter 𝝰 (see Table 4.3) is commonly chosen so that recall is prioritized over 

precision [14]. In order to reward longer consecutive matches, Meteor introduces 

"chunks," which are defined as sequences of matches that are in the same order in both 

the hypothesis and the reference. For example, in Figure 4.1, "srilanka" and "prime 

minister" both represent a chunk made up of two matches. Because the word order 

between the reference and the hypothesis gets more comparable as the chunk length 

grows, the Meteor score improves; nevertheless, as the chunk length increases, the 

hypothesis becomes more "fragmented." 
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The fragmentation penalty (P) is determined as follows: If m is the total number of 

word matches (averaging the hypothesis and reference to account for paraphrase), and 

k is the total number of chunks 

 

                                              P =  ϒ. (
𝑘

𝑚
)

𝛽

                                                                                      (4.6) 

 

The fragmentation penalty is then applied to the harmonic mean of the weighted 

precision and recall to arrive at the final Meteor score: 

 
                                             

                 Score =  (1 −  P)  ·  𝐹
𝑚𝑒𝑎𝑛

                                                                              (4.7) 

 

Table 4.3 shows the default values for the English version of Meteor, which have been 

tweaked to improve the connection between human judgement and Meteor-scores [16]. 

Overall, Meteor has been demonstrated to have a better correlation with human 

judgement than BLEU [16]. 

To demonstrate, we use only the exact matches, m1, to Calculate the Meteor score for 

the preceding section's sample sentences. A period character (".") is likewise regarded 

as a function word in this context. The reference and hypothesis captions are given to 

us, with content terms marked and the remaining words classified as function words: 

Hypothesis: There is a cat on the mat. 

Reference: the cat is on the mat. 

 

Table 4.1:  Evaluation Parameter values of Meteor for Sentences in English [16]. 

𝝰 β ϒ 𝝳 𝑤1 𝑤2 𝑤3 𝑤4 

0.85 0.20 0.60 0.75 1.00 0.60 0.80 0.60 

. 

The weighted precision and recall are then calculated using Eqs. 4.6 and 4.7. We only 

calculate the exact matches, m1:, to make our example basic. 

 

                                                 𝑃𝑤 =
𝑤1(𝛿.𝑚1(ℎ𝑐)+(1−𝛿).𝑚1(ℎ𝑓))

𝛿.|ℎ𝑐|+(1−𝛿).|ℎ𝑓|
                                        (4.8) 

 

                     𝑅𝑤 =
𝑤1(𝛿.𝑚1(𝑟𝑐)+(1−𝛿).𝑚1(𝑟𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|𝑟𝑓|
                                        (4.9) 
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4.2.3 CIDEr 

Another popular automated assessment measure is CIDEr (Consensus-based Image 

Description Evaluation) [14]. CIDEr was built exclusively for analysing picture 

captions, unlike BLEU and Meteor, which were created to assess machine translation 

outputs. It works with datasets such as MS COCO Captions [34], which provide a large 

number of ground truth picture descriptions for each image. We will not utilise the 

feature for analysing multiple captions per picture in our paragraph captioning 

experiment since the Stanford-Paragraph [4] validation dataset only gives one 

reference description per image. CIDEr can refer to either a standard CIDEr score or a 

modified version known as CIDEr-D, which makes changes to the CIDEr score to 

prevent people from "gaming" the system by changing the captions to get 

unrealistically high scores.  

4.3 Results 

The outcomes on experimentation performed on three models introduced in Chapters 

2 and 3: flat, hierarchical, and hierarchical-coherent are as follows. All three models 

rely on a WordRNN that has been pre-trained on VG Regions datasets or MS COCO 

Captions or. The results provided by the authors of each baseline are shown for the 

published baselines. 

4.3.1 Image Captioning Experiments 

A number of flat captioning algorithms are trained making use of MS COCO dataset. 

Another essential objective for this initial trial was to uncover great approaches for 

input feature pre-computationthat have been obtained from the pre-trained DenseCap  

and ResNet-152 models. Alternative combinations of input features was also 

attempted, as well as average and maximum pooling. 

On the image captioning assignment, we discovered that our best-performing models 

utilised average pooled DenseCap features.[4] state that their DenseCap characteristics 

were pooled to the maximum, which is interesting. Average pooling, by "averaging 

over" the minor details, appears to be superior at annotating common data regarding 

image. Maximum pooling, on the other hand, may aid the model in capturing more 

particular details. It is not necessary that all of these image specific details are of any 

use for single sentence captioning. 
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All the best performing models for picture captioning employed a concatenation of 

ResNet-152 and DenseCap image characteristics. All subsequent trials used the 

vocabulary and concatenated picture attributes from the dataset that was brought to use 

for pre-training of WordRNN. 

4.3.2 Flat Architecture Results 

Existing pre-trained models for image captioning were tuned up with Stanford- 

Paragraph Dataset so as to evaluate the performance of flat captioning models when 

tasked with a rather complex task, generating a paragraph description. 

We improved several of the pre-trained image captioning models stated in Section 

4.4.1 by training them on the Stanford-Paragraph dataset to examine how well the flat 

model performs when confronted with the more difficult job of paragraph synthesis. 

Each paragraph was merged into a single caption before being sent to the model. The 

character "." at the end of each line is treated as a token in this caption. The period 

character (".") at the end of each word was considered as another token inside the 

caption. The resulting caption might be up to 80 words long. For flat paragraph 

captioning, all models used an LSTM-based RNN implementation. 

Our flat models were pre-trained using the MS COCO Captions or VG Regions 

datasets. MS COCO utilises 9, 957 words, whereas VG Regions uses 19,804 words, 

based on the vocabulary of the dataset it was pre-trained on. 

Table 4.2: Comparison Results for different models for paragraph captioning  

Model Used  BLEU-

3 

BLEU-

4 

CIDEr Meteor BLEU-2 BLEU-1  

Image- Flat [26,30] 12.20 7.71 11.06 12.82 19.95 34.04 

Flat, MS COCO, avg-

pooled DenseCap, 

E=256 

12.73 7.57 18.64 14.73 21.52 36.84 

Flat, MS COCO, 

E=1024 

12.98 7.66 20.17 14.95 21.97 37.59 

Flat, VG Regions, 

E=256 

13.03 7.77 19.00 14.82 21.85 37.29 

Flat, VG Regions, 

E=1024 

12.77 7.40 17.84 14.98 21.87 37.74 
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Table 4.5 displays the results of our top-scoring flat models for producing paragraph 

captions, as well as the current non-hierarchical state-of-the-art, "Image-Flat" [5]. In 

addition to CIDEr (C) and Meteor (M) ratings, we show BLEU 1-4 (B1-4) findings. 

The model with the highest CIDEr score (in bold) was trained for 77 epochs. We chose 

to highlight (in bold) the highest results on a per-metric basis since there was no one 

flat model that beat all others on every criteria. 

Following an examination of captions produced by multiple models, it became obvious 

that the model with the highest CIDEr score produced the best captions. When faced 

with the decision of which measure to use after evaluating the output of various 

models, we chose models with the highest or very high CIDEr scores for further study. 

4.3.3 Hierarchical Architecture Results 

It's time to introduce the SentenceRNN and WordRNN divisions of labour, as 

described in Section 3.2, after seeing the flat model's performance results. [4] is 

remarkably similar to our hierarchical approach. However, because we didn't have 

access to the source code for the original model, there are likely to be inconsistencies 

in implementation. 

Table 4.3: Comparison Results for hierarchical models  

Model Name  BLEU-3 BLEU-1 METEOR BLEU-

4 

BLEU-

2 

CIDEr 

Regions- 

Hierarchical [30] 

14.23 41.9 15.95 8.69 24.11 13.52 

Hierarchical, VG 

Regions, E=256 

12.33 38.38 15.18 7.02 21.63 15.87 

Hierarchical, VG 

Regions, E=1024 

12.62 39.65 15.15 7.14 22.33 17.01 

Hierarchical, VG 

Regions, GRU, 

E=256 

12.46 39.69 15.15 7.02 22.14 17.49 

Hierarchical, MS- 

COCO, E=256 

12.33 40.09 15.09 6.79 22.19 16.99 

Hierarchical, MS- 

COCO, avg- 

pooled, E=256 

12.38 BLEU-1 15.11 6.91 22.19 17.79 



45 

 

 

 

Hierarchical, VG 

Regions+ MS 

COCO, E=1024 

12.21 41.9  14.88 21.82 17.85 

The difference was not substantial when compared to some of the other models, when 

WordRNN was pre-trained on a single dataset. We also noticed that utilising the 

"Reduce on Plateau" scheduler with validation loss and continuously using early-

stopping + fine-tuning with manually tweaked learning rates was not as effective as 

using a single static LR for the whole training. 

4.3.4 Hierarchical-Coherent Architecture Results 

This model, which we described in Section 3.4, is the most complex of the models we 

tested, and tries to replicate results obtained by[3].The approach brings about 

continuity in sentences that make up the paragraph.. Increased fluency can also be 

regarded as a result of this improvement. Next section discusses about the performance 

of  our hierarchical-coherent model performed on standard metrics, and we'll see the 

captions generated by the model in Section 4.4.6. 

When training our model, we only employed 1024-wide embeddings because prior 

attempts on hierarchical captioning models suggested that broader embeddings offered 

somewhat better results. Furthermore, using ResNet-152, every model we evaluated 

includes maximum-pooled DenseCap input features. We utilised the same DenseCap 

feature arrangement as the "Diverse-Coherent" baseline to make our results 

comparable. Table 4.7 shows the baseline and results for the three best hierarchical 

coherent models we trained. 

Table 4.4: Comparison of Diverse coherent and Hierarchical-Coherent models. 

Model  BLEU

-1 

BLEU-

4 

METEOR  BLEU

-3 

CIDE

r 

BLEU-

2 

Diverse- Coherent [9] 42.12 9.05 17.81 14.74 19.95 25.18 

Hierarchical Coherent, 

static-lr, GRU 

17.46 22.73 12.71 40.52 7.04 15.29 

Hierarchical Coherent, 

Cylical-lr, 

19.23 22.96 12.89 40.80 7.12 15.45 

 

Our results demonstrated an improvement over the conventional hierarchical model 

when utilising the hierarchical-coherent design, although the scores fell short of the 
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established baseline [3]. Based on what we learned from the authors' incomplete source 

code, mentioned in Section 3.4.1, there are likely some variations between our and the 

baseline implementation. Furthermore, the publicly available source code only covers 

a portion of the training process, leaving the exact details up to interpretation. 

While we used LSTM RNNs in the majority of our tests, the GRU-based models we 

trained produced equivalent results. Both types of RNNs used to get equivalent scores 

had similar convergence durations, showing that LSTM and GRU-based language 

models operate similarly in hierarchical contexts. When comparing the output of many 

models that scored similarly, the LSTM-based models tended to give somewhat more 

accurate captions. 

4.3.5 Comparison with State of the Art 

Table 4.8 draws a comparative analysis of published baseline methods with the results 

obtained in this work. 

 

Table 4.5: Comparison Results for different Paragraph Generation Models 

Model Name  METEOR BLEU-

2 

BLEU-4 BLEU-1 CIDEr BLEU-

3 

Image- Flat [5,4] 12.82 19.95 7.71 34.04 11.06 12.2 

RTT- GAN [11] 18.39 25.35 9.21 42.06 20.36 14.92 

Diverse- 

Coherent [3] 

17.81 25.18 9.05 42.12 19.95 14.74 

Regions- 

Hierarchial [4] 

15.95 24.11 8.69 41.9 13.52 14.23 

Diverse- 

Coherent (with 

VaE ) [3] 

18.62 25.52 9.43 42.38 20.93 15.15 

Human [4] 19.22 25.68 9.66 42.88 28.55 15.55 

Flat (ours) 14.94 21.96 7.60 37.58 20.16 12.94 

Hierarchical 

(ours) 

15.05 22.09 6.82 39.57 17.69 12.30 

Hierarchical – 

coherent (ours) 

15.47 22.99 7.14 40.83 19.21 12.93 
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The remaining baselines are all hierarchical, with an E = 1024 embedding size and 

input given by max-pooled Dense-Cap features. The hierarchical coherent architecture 

used in this work bases upon "Diversified-Coherent" model without VaE; in their next 

model, the same authors are able to enhance diversity performance of the generated 

captions using VaE.  

We identified the top performing model for each of the three model types we compared  

on the basis of values obtained on Meteor and CIDEr metrics and by drawing up 

comparison between captions generated by them for a specific image. The flat 

captioning model that has been used here can be described as follows: pre-training 

performed on MS-COCO dataset. It has DenseCap features that are max pooled and 

embedding size is given by E=1024. 

The hierarchical model, on the other hand, involves pre-training with a WordRNN on 

VG Regions dataset. 

The hierarchical coherent model underwent training with a cyclical learning rate, 

unlike our other models. 

As previously stated, we were unable to achieve equivalency with the baseline models 

as entire code for either of the three models was unavailable. Also, the flat model used 

surpassed the baseline model for flat captioning on all but one evaluation parameters 

i.e., BLEU-4 and there too, its value lies very close to that of the baseline method. This 

tells us that paragraph captioning with non- hierarchical has still room for 

improvement. 

4.4 Discussion 

This thesis implements and compares performance of 3 model types for image 

captioning: flat model, hierarchical model and hierarchical- coherent model. Prior to 

training on Stanford- Paragraph Dataset, pre-training was also performed on two 

datasets. The results suggest that except for the fact that models that have been pre-

trained on VG Regions scored well on BLEU-4, there was hardly any difference 

between models trained on VG regions and MS COCO. This can be justified as 

follows: Stanford-Paragraph dataset is basically an improvement over the VG regions 

[30].  All models used here profited from utilizing pre-calculated features, and based 

on our early trials, all models made use of pre-trained RNN weights. 
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4.4.1 Flat Versus Hierarchical Models 

When it comes to automatic evaluation metrics scores, flat captioning model performs 

better than the hierarchical models.  Based on our findings, it is not impossible to 

believe that if efforts are made to refine the flat captioning model, it will eventually 

achieve performance comparable to best systems. The flat model's main advantage is 

that it is built on a simpler architecture, making it easier to train and incorporate 

additional enhancements. 

Looking at generated captions, it was found that he images in the validation dataset 

show a lot of variation; for some images, it is simpler to caption with paragraph length 

captions when compared to others. Shorter captions were generated by the flat 

approach, which frequently seemed to be an enhanced version of single sentence 

caption. In terms of quality, it appears that flat captioning model represents shorter 

descriptions and hierarchical-coherent model represents more extensive paragraph 

captions. However, it appears that greater linguistic complexity does not automatically 

imply greater value of fidelity, since almost all paragraphs contained some 

inaccuracies. 

4.4.2 Possible Enhancements 

A machine generated caption can be good if humans are unable to distinguish it from 

a human generated description So, depending on human evaluation criteria, how can 

we increase the performance of our models? A few ideas for improving scores attained 

by models are: 

• Fidelity – Upgrading the process of input features extraction and incorporating a 

learning algorithm in which captions are generated based on inputs given. 

• Intelligibility – Taking a more robust linguistic model that is trained on larger and 

diverse dataset;  

• Adequacy – by making use of the caption scores obtained inside the loss function.  

• Fluency –  this has been worked upon in part by the coherence-based models. The 

improvement on this would require work on a number of parameters mentioned above. 
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CHAPTER 5 

Conclusion and Future Work 

 

This work, for paragraph image captioning, explores three different types of models. 

The most simple and basic is the flat model. It makes use of a CNN encoder and a 

RNN decoder in its native form. Hierarchical model introduces a top-level RNN. This 

helps in keeping a tab on the backdrop of the sentence. Hierarchical-coherent model   

makes use of coherence vectors to ensure that the gradient moves from endmost word 

of previous sentence to next sentence.  

We used flat captioning, hierarchical captioning, and hierarchical-coherent captioning 

models in our experiments. Features taken from ResNet-152 [2] as well as DenseCap 

[1] features used in paragraph image captioning have been used as input. RNNs based 

on LSTM or GRU were utilised in the models. LSTM based RNN was employed for 

training most of the models. Performance comparisons revealed the existence of 

minute differences between methods involving LSTM and the methods involving 

GRU. Models were evaluated on CIDEr -D , Meteor  and BLEU -1,2,3,4 . We did not 

detect a significant difference between GRU-based models and LSTM based models.  

While several of our models came close to meet the baseline methods [3, 4], this work 

was not able to achieve scores as good as the scores mentioned by hierarchical models 

it is based upon. On all the following metrics, we outperformed the published Imageflat 

baseline model [5]. It has been demonstrated that it is relatively simple to obtain high 

evaluation metrics scores for paragraph captioning with any flat-model by making 

minor changes to image captioning model given by [6]. The performance of our flat 

model is quite near to  baseline hierarchical captioning model in terms of CIDEr – D 

score. 

Going ahead, approaches like attention learning and reinforcement leaning can be 

integrated into flat models as well as with hierarchical models. One such 

implementation can be the use of reinforcement leaning for improving Meteor and 

CIDEr scores. This will greatly improve the generative ability of the model. Yet 

another possible field of research would be to experiment with new models of dense 

captioning and look for the possibility of generating features better suited for paragraph 

captioning.  
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