

IMAGE PARAGRAPH GENERATION

USING DEEP LEARNING

MAJOR PROJECT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

SIGNAL PROCESSING AND DIGITAL DESIGN

Submitted by:

Avanish Tiwari

2K20/SPD/03

Under the supervision of

Prof. Dinesh Kumar

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

i

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I Avanish Tiwari, student of M.Tech (Signal Processing and Digital Design), hereby

declare that the project Dissertation titled “Image Paragraph Generation Using

Deep Learning” which is submitted by me to the Department of Electronics and

Communication Engineering, Delhi Technological University, Delhi in partial

fulfillment of the requirement for the award of the degree of Master of Technology, is

original and not copied from any source without proper citation. This work has not

previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

Place: Delhi Avanish Tiwari

Date:

ii

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Report titled “Image Paragraph Generation Using

Deep Learning” which is submitted by Avanish Tiwari, 2K20/SPD/03 of Electronics

and Communication Department, Delhi Technological University, Delhi in partial

fulfillment of the requirement for the award of the degree of Master of Technology, is

a record of the project work carried out by the student under my supervision. To the

best of my knowledge this work has not been submitted in part or full for any Degree

or Diploma to this University or elsewhere.

Place: Delhi Prof. Dinesh Kumar

Date: SUPERVISOR

iii

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to whom the

project is assigned, but it also demands the help and guardianship of people who helped

in completion of the project. I would like to thank all those people who have helped

me in this research and inspired me during my study.

With profound sense of gratitude, I thank Prof. Dinesh Kumar, my Research

Supervisor, for his encouragement, support, patience and his guidance in this thesis

work. His kind comments and guidance let me complete this study in an improved

manner.

I take immense delight in extending my acknowledgement to my family and friends

who have been supporting me morally to keep going with this study and inspired me

to come up with the expected results throughout this research work.

 Avanish Tiwari

iv

ABSTRACT

Recently, a neural network based approach to automatic generation of image descriptions has

become popular. Originally introduced as neural image captioning, it refers to a family of

models where several neural network components are connected end-to-end to infer the most

likely caption given an input image. Neural image captioning models usually comprise a

Convolutional Neural Network (CNN) based image encoder and a Recurrent Neural Network

(RNN) language model for generating image captions based on the output of the CNN.

Generating long image captions – commonly referred to as paragraph captions – is more

challenging than producing shorter, sentence-length captions. When generating paragraph

captions, the model has more degrees of freedom, due to a larger total number of combinations

of possible sentences that can be produced. In this thesis, we describe a combination of two

approaches to improve paragraph captioning: using a hierarchical RNN model that adds a top-

level RNN to keep track of the sentence context, and using richer visual features obtained from

dense captioning networks. In addition to the standard MS-COCO Captions dataset used for

image captioning, we also utilize the Stanford-Paragraph dataset specifically designed for

paragraph captioning.

This thesis describes experiments performed on three variants of RNNs for generating

paragraph captions. The flat model uses a non-hierarchical RNN, the hierarchical model

implements a two level, hierarchical RNN, and the hierarchical-coherent model improves the

hierarchical model by optimizing the coherence between sentences.

v

CONTENTS

Candidate’s Declaration …………………………………………………. ...i i

Certificate ………………………………………………………………….. ii ii

Acknowledgement …………………………………………………………. iii iii

Abstract ……………………………………………………………………. iv iv-vi

Contents ……………………………………………………………………. v- vi vii-viii

List of Figures ………………………………………………………………vii ix-x

List of Tables ………………………………………………………………. viii xi

List of Symbols, abbreviations …………………………………………… ix xii-xiii

CHAPTER 1 INTRODUCTION ………………………………………….1-7

1.1 Machine Learning …………………………………………………….2-5

1.1.1 Supervised Learning ………………………………………………3-4

1.1.2 Unsupervised Learning ……………………………………………4-5

 1.1.3 Reinforcement Learning …………………………………………..5

1.2 Natural Language Processing …………………………………………....5

1.3 Motivation of the work …………………………………………………. 6

1.4 Problem Statement ……………………………………………………… 6-7

1.4.1 Organization ………………………………………………………... 6-7

1-5

2-4

3

3-4

3-4

4

4

4-5

5

CHAPTER 2 Image Captioning ………………………………………….. 8-22

2.1 Encoder-Decoder Model …………………………………………………8-11

2.1.1 Speech Model for Image Captioning ………………………………9-11

2.2 Encoder: Image Features Extractor …………………………………….. 11-17

2.2.1 Extracting Features for ResNet Model …………………………... 14-17

2.3 Decoder: Generating Captions …………………………………………17-21

 2.3.1 Common Depiction for Words and Picture ……………………….17- 19

2.3.2 Recurrent Neural Language Models ……………………………..19-20

 2.3.3 Decoder Implementation …………………………………………21

 2.4 Proposed Extensions to Image Captioning Model …………………… 21-22;

CHAPTER 3 Paragraph Image Captioning …………………………… 23-36

 3.1 Encoder: Dense Captioning Network ………………………………… 24-27

 3.1.1 DenseCap Features Extraction …………………………………… 26-27

 3.2 Decoder: Hierarchical RNN …………………………………………..27-303

6-17

vi

 3.2.1 Hierarchical Decoder Implementation ……………………………28-30

 3.3 Paragraph Captioning Pipeline ……………………………………….30-31

 3.4 Hierarchical-Coherent Project ………………………………………..31-35

 3.4.1 Hierarchical-Coherent Decoder Implementation ………………...34-35

 3.5 Extensions to Paragraph Generation …………………………………27-28

 CHAPTER 4 Experimental Analysis……………………………………37-48

4.1 Datasets ……………………………………………………………… 37

 4.2 Evaluations parameters………………………………………………. 38-42

 4.2.1 BLEU ………………………………………………………. … 38-39

 4.2.2 METEOR …………………………………………………… …39-41

 4.2.3 CIDEr ……………………………………………………………42

 4.3 Results ……………………………………………………………… 42-47

 4.3.1 Image Captioning Experiments ……………………………… 42-43

 4.3.2 Flat Architecture Results ……………………………………. 43-44

 4.3.3 Hierarchical Architecture Results …………………………........44-45

4.3.4 Hierarchical-Coherent Architecture Result……………………..45-46

4.3.5 Comparison with State of the Art…………………………… 46-47

 4.4 Discussion ………………………………………………………….47-48

 4.4.1 Flat Versus Heirarchical Models ……………………………….48

 4.4.2 Possible Enhancements …………………………………….. ….48

29-36

29-32

29-30

30-32

32

32-35

32-33

33

CHAPTER 5 Conclusion And Future Work …………………………….49 37

REFERENCES ……………………………………………………………50-53 38-

vii

List Of Figures
Figure No. Description Page No.

1.1 ML vs Conventional Programming 3

2.1 A straightforward chain model is shown “LMN” is the

input sequence while ”OPQR” is the output sequence[63]

8

2.2 Encoder- Decoder design 9

2.3 ResNet architecture residual block[2] 13

2..4 VGG19 (left), ResNet-34(right), and a 34- layer network

without shortcut interconnections.[2]

15

2.5 Cropping five 224 x 224 sections from a 256X256 photo

and overturning horizontally each chopped section

creates a ten-crop image

16

2.6 Interactions are projected in lower dimensions [53] 17

2.7 Common vector representation of pictures and sentences.

[62].

18

2.8 Basic block diagram for RNN units [61]. 19

2.9 Flat decoder 21

3.1 Architecture of DenseCap [25]. 25

3.2 A DenseCap network's output as an example [25]. 26

3.3 Using element-wise maximum, DenseCap features were

retrieved from picture regions.

27

3.4 Hierarchical decoder. 29

3.5 The encoder-decoder design for graph captioning was

adopted after [30]

30

3.6 Adapted from [3], with names of parameters names

altered for uniformity

32

3.7 Coupling unit combining the global topic vector, current

topic vector and the coherence vector Ci-1 originating

from the previous sentence [3].

33

3.8 The coupling unit sends subjects to WordRNN [9] 34

4.1 Meteor matches example [33].

39

viii

List of Tables

Table No Description Page No

 2.1 Outcomes of the MS COCO captioning challenge employing ResNet-152

ten-crop and random crop properties.

16

 3.1 Evaluation metrics scores for different baseline models. 23

 4.1 Evaluation Parameter values of Meteor for Sentences in English [16]. 41

 4.2 Comparison Results for different models for paragraph captioning. 43

 4.3 Comparison Results for hierarchical models. 44

 4.4 Comparison of Diverse coherent and Hierarchical-Coherent models. 45

 4.5 Comparison Results for different Paragraph Generation Models 46

ix

List of Symbols and Abbreviations

ML : Machine Learning

CNN: Convolutional Neural Networks

RNN: Recurrent Neural Networks

LSTM: Long Short Term Memory

1

CHAPTER 1

INTRODUCTION

The amount of data that is available in digital form has grown exponentially in recent

years. Image Digitization and metadata associated with it are also a constituent of it.

Large volumes of digital photographs are available readily thanks to the growing

popularity of internet platforms such as social media sites, online news sites, and

digital libraries. There is a rise in demand for automated solutions that help with the

management, navigation, and search of these huge datasets as the amount of data

available grows. Developments in machine learning and more specifically deep

learning, have led to breakthroughs in detection and object recognition [1].

Automatically describing the contents of an image, in particular, is gaining immense

popularity.

For humans, just a glance is well enough to describe an image [2]. The process that

goes into it can be broken down into 1) Visual Space Perception. 2) Conversion of

visual information into language space.

3) Generation of a description of the scene in a human-understandable form. In other

words, this involves the translation of information from the visual domain to the textual

domain. People, in general, are well versed in both these domains [3]. For computers,

understanding about images is very trivial. This huge gap between human

understanding of images and low-level features extracted by computers is a big

challenge to tackle in the automatic generation of image captions [4,5].

Recently, Image captioning has seen a neural network-based renaissance. The

objective of image captioning is to describe objects, actions, and other details present

in an image in natural language. Most of the research in the captioning domain has

stressed on single-sentence captions, but the amount of information with this kind of

captions is very limited. A single sentence can only describe the image with minimal

details. Utilizing neural networks to create brief picture captions, studies have moved

to lengthier, multi-sentence image captions with 5 to 6 lines, each approximately

having a length of 10-12 words. An elongated, paragraph explanation can be really

useful in operations such as image retrieval, video transcription, and many operations

in need of systems for automatically reasoning about pictures.

There are multiple methods available for image paragraph generation, they are: -

2

Long-Term Recurrent Convolutional Network: the input can either be an image or a

sequence of images obtained from a video frame. The input is provided to a CNN

which forms a vector representation of the image after recognizing activities in the

image. This vector representation is then given to a LSTM model where a word is

generated and a caption is obtained [4].

Visual Paragraph Generation: gives a coherent and paragraph describing the

image. Attention detection is used to detect semantic regions in an image. Sentence

generation is then done one by one and a paragraph is generated [14].

Recurrent Neural Network (RNN): It is a customised neural network designed

to analyse data sequences with time stamp indexes ranging from 1 to t. RNNs are better

suited to tasks involving progressive inputs, like speech and linguistic. With NLP, in

order to predict a word, one needs to have idea about the word preceding this word [6].

Gated Recurrent Unit (GRU): Cho et al. presented a novel breakthrough termed

Gated Recurrent Unit. It has gating units, similar to LSTM units, which alter the flow

of information movement inside unit without requiring a discrete memory cell. The

update and reset gates are calculated by GRU to govern the flow of information via

each hidden unit. The update gate is calculated by means of the present input and the

prior time step's concealed state. This gate specifies how much of each new and old

memory segment must be included into the final memory. The reset gate is computed

in the same way, but with a changed set of weights. It regulates the interaction seen

between old memory and the new memory's incoming input data.

1.1 Machine Learning (ML)

A branch of computer science that enables computers to do things without being

expressly programmed to do so. It gives computers a capability that makes them more

similar to humans: ability to learn. The data is fed to a generic algorithm which then

shapes logic on the basis of information specified.

ML as a field branched from Artificial Intelligence (AI). The objective of AI was to

develop highly capable and intelligent machines. However, it was unable to be

programmed for complex and constantly evolving challenges. The approach then moved

towards making machines learn from themselves.

ML is the most extensively utilised method for predicting or categorising data in order

to help humans make crucial decisions. In order to learn from prior experiences and

analyse historical data, ML algorithms are made to develop understanding from

3

examples. Building models alone isn't enough. In order for the model to deliver reliable

results, it must be appropriately optimised and tuned. The hyperparameters are fine-

tuned using optimization techniques to produce the best possible result. As it trains

over and over, it can recognise patterns for making accurate conclusions. When a new

input is provided to ML model, it uses previously learnt patterns on new data to

produce forthcoming forecasts. Models may be optimised using a variety of

standardised ways, depending on the ultimate precision. As a consequence, the ML

model learns from fresh data and improves its performance.

Fig 1.1 ML vs Conventional Programming.

1.1.1 Supervised Learning

Most widely used ML technique is supervised learning. It is the process of generating

a mechanism from sample input-output pairs that translates an input to an output. It

creates a function using annotated data for training, usually consists of a collection of

training instances. Every sample in supervised learning is made up of an input object

(usually a vector) and a target output (also called the supervisory signal). A supervised

learning algorithm examines the training data and generates an extrapolated equation

which can be applied to fresh cases. Training a kid with provided data is akin to

supervised learning. We may send these example-label pairs to something like a

training algorithm one by one if the data is in the form of instances with labels, causing

the system to predict whether or not the response is accurate. The algorithm will

Calculation O/p

I/p

Script

ML

Calculation
I/p

Desirable

Result

Script

Conventional

4

ultimately adapt to guess the true extent of the sample-to-label association. Once

completely trained, the supervised learning algorithm will be able to analyze a fresh,

never-before-seen sample and predict an appropriate label for it.

Supervised learning is used in the majority of practical machine learning. When you

have an input variable (x) and an output variable (Y), supervised learning occurs when

you use an algorithm to acquire the mapping function from the input to the output.

The aim is to assess the mapping function to the extent in which the output variables

(Y) can be predicted for incoming input data (x). Because the process of learning is

overseen by a teacher, the process of an algorithm learning from the training dataset is

referred to as supervised learning. Task-oriented supervised learning is a common

description. This is laser-focused on a single project, providing the system with more

and more examples until it is able to complete that task properly.

1. Regression:

A target prediction value is calculated using independent factors. It's largely used in

forecasting and figuring out how variables are related. Continuous values can be

estimated or predicted using regression.

2. Classification:

The technique of labeling the outcome is referred to as "classification.". It's a

classification problem if the data is discrete or categorical..

1.1.2 Unsupervised Learning

Unsupervised learning is a sort of ML in which the model is not supervised by

anyone. Model discovers information byitself. This normally operates with unlabeled

data, searching for formerly overlooked trends in such a dataset with no pre-existing

labels and no human oversight. In contrast to supervised learning, which often depends

on user data, unsupervised learning, also known as self-organization, allows for the

modelling of probability densities across inputs. Without utilising known or labelled

outcomes as a reference, unsupervised machine learning approaches discover patterns

from a dataset. It is the process of teaching a computer to operate on unmarked or

unclassified data without supervision by using unlabeled or unclassified data. The

machine's goal is to classify unordered data based on similarities, trends, and

discrepancies without any prior data training. There is no teacher present, unlike

supervised learning, which implies that computer will not be instructed. Machine,

therefore, can extract very few hidden structures in unlabelled data. For example, if we

give the machine a few photographs of bus and car to categorise, the computer will

5

categorise them based on their similarities, patterns, and differences because it has no

prior knowledge of the attributes of buses and cars. Unsupervised learning algorithms,

as opposed to supervised learning algorithms, allow you to complete more complex

computing jobs. But at the other hand, unsupervised learning might be more

unpredictable than other natural learning approaches. For unsupervised learning issues,

there are two types of algorithms.:

• Clustering: A clustering problem is one in which you wish to uncover the

data's intrinsic groupings, such as classifying clients based on their purchasing habits.

• Association: An association rule learning problem is one in which you wish

to find rules that describe huge chunks of your data, such as persons who buy X also

buy Y.

1.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique that allows an agent to

learn by trial and error in an interactive environment using feedback from its own

actions and experiences. Machines primarily learn from previous experiences and

strive to provide the best feasible answer to a problem. It is the process of teaching

machines to make a series of judgments. Though both supervised and reinforcement

learning involve mapping between input and output, reinforcement learning uses

rewards and punishments as signals for positive and negative behaviour, unlike

supervised learning, which provides the agent with a right set of behaviours for

executing a task. The most effective technique to hint a machine's creativity is to use

reinforcement learning.

1.2 Natural Language Processing

Natural language processing (NLP) refers to a computer program's ability to

comprehend spoken human language. NLP is an artificial intelligence component (AI).

Because computers usually require people to "talk" to them in a highly structured,

precise and unambiguous programming language or by a limited set of well enunciated

voice instructions, developing NLP applications is difficult. Human speech, on the

other hand, isn't always precise; it's frequently ambiguous, and its grammatical

structure is influenced by a variety of factors, including slang, regional dialects, and

social context.

6

1.3 Motivation of the Work

We must first comprehend the significance of this issue in real-world circumstances.

Consider a few scenarios in which a solution to this challenge could be extremely

beneficial.

• Self-driving automobiles – Automatic driving is one of the most difficult

problems, and captioning the area around the car can help the self-driving

system.

• Aid to the blind — We can develop a product for the blind that will lead

them on the roads without the need for anybody else's assistance. This can

be accomplished by turning the scene to text and then the text to voice. Both

are now well-known Deep Learning applications.

• CCTV cameras are ubiquitous today, but if we can generate useful captions

in addition to watching the world, we can trigger alarms as soon as criminal

conduct is detected.

• This is likely to help minimize crime and/or accidents. Automatic

captioning can help make Google Image Search as excellent as Google

Search by converting every image into a caption first, and then searching

based on the caption.

1.4 Problem Statement

The project's main goal is to use deep learning and natural language processing

techniques to generate textual descriptions in the form of 4-5 sentences for each input

image.

1.4.1 Organization

This thesis studies three variants of Encoder-Decoder (explained in Section 2.1) neural

network architectures for producing paragraph-length picture descriptions. In Chapter

2, we'll go through the fundamentals of picture captioning. In Chapter 3, we'll look at

how expanding the fundamental picture captioning model by adding another level of

hierarchy might result in longer image descriptions. In Chapter 4, we'll talk about the

experiments Further, Chapter 5 talks about the conclusions and future scope.

7

Sections 2.3.3 and 3.2.1 show how to construct the fundamental building pieces needed

to produce picture descriptions that are either concise captions or large paragraphs.

When discussing the process of creating short, single-sentence captions, we will use

the term "image captioning," and when discussing the task of creating lengthier, multi-

sentence captions, we will use the term "paragraph captioning." Furthermore, models

with a single level of the RNN [42, pp. 367–415] hierarchy will be referred to as "flat,"

whereas models with several levels of RNN hierarchy will be referred to as

"hierarchical." It's difficult to judge machine-generated captions.With longer captions,

the problem becomes even worse. Several measures for assessing the quality of

generated captions have been presented. Human evaluation can also be employed to

evaluate caption quality. For automatic caption evaluation, we will use the popular

BLEU [20], Meteor [32], and CIDEr [14] metrics in our experiments. In Section 4.2,

we'll look at a variety of human evaluation standards.

The PyTorch neural network programming framework was used in our experiments,

which were run in Python 3.5. We'll explore into paragraph captioning using a

hierarchical RNN with two recurrent network layers in Sections 4.4.2 and 4.4.3, where

the first RNN provides phrase context and the second utilizes the context to learn

individual tokens, which can be words or punctuation marks. Figure 1.1 depicts the

relationship between the various models studied in Chapter 4 experiments. To produce

paragraph captions, we train three alternative models: flat, hierarchical, and

hierarchical-coherent hierarchies. The flat model is a simple image captioning model

with only one RNN layer decoder. In the hierarchical model, the flat decoder receives

an extra RNN level. Finally, the hierarchical-coherent model creates a "coherence" link

between the two layers of the RNN hierarchy. To pre-train our models, we employ

either the MS-COCO Captions [10] or the Visual Genome Regions [31] datasets.

8

CHAPTER 2

 Image Captioning

Image Captioning can be described as automated production of brief natural language

narration of the contents of image [39]. For this objective, neural networks have

recently gained popularity [5, 6, 31]. Our picture captioning model generated a few

captions, as seen in Figure 2.1.

The basic model for image captioning is explained in this chapter. This thesis calls it

the flat-model in order to distinguish it from hierarchical models that will be discussed

later. This is how the current chapter is structured: The fundamentals of the ED based

framework and the speech model brought to use to perform image captioning are

explained in Section 2.1, the input characteristics are described in Section 2.2, and the

decoder component is described in Section 2.3. In Section 2.4 entire pipeline for image

captioning is defined. Section 2.5, which concludes the chapter, looks at several newly

presented enhancements to the baseline captioning paradigm.

2.1 Encoder-Decoder Model

The Encoder-Decoder architecture is the central piece of neural image captioning

models [40]. The architectural approach is inspired by machine translation's neural

sequence-to-sequence models [41].

 O P Q R <EOS>

 L M N <EOS> O P Q R

Fig 2.1: A straightforward chain model is shown. "LMN" is the input sequence,

while "OPQR" is the output sequence [63].

Captioning can be conceived of as the translation of an image into text. The application

of methods from text-to-text translation is enabled by the analogy with machine

translation. Figure 2.1 depicts a model which accepts "LMN" sequence as input and

memorizes to predict "OPQR" sequence on the basis of input sequence.

9

Usually, two different subnetworks are used to implement chain models. One such

model is shown in Figure 2.2, which consists of two independent RNNs, one of which

encodes the input while the other one predicts the output on the basis of input .

The encoder(E), as its output gives context k after processing the input which

can either be a sentence in base language or an image

the decoder(D), on the other hand, is a different network that creates the

intended output and takes context k as its input.

The advantage of a neural ED architecture is that it is made up of distinct components

that can be trained end-to-end by making use of backpropagation. As shown in Figure

2.2, at each sampling instant, the information can be made accessible to the decoder or

supplied to decoder only on first timestep. The image theme, at each time sample is

given to the top-level RNN.

 c

Encoder Decoder

Figure 2.2: Encoder-Decoder design.

The ED architecture was used to generate image captions by Vinyals et al. [6]. The

model suggested served as benchmark for neural ED image captioning.[42] uses a

CNN+RNN setup where CNN generates a vector representation by encoding image

picture into a vector representation and RNN, aided by the language model converts

vector representation into a description that humans can understand.

2.1.1 Speech Model for Image Captioning

Vocabulary can be defined as a B-sized ordered and pre-defined set of viable tokens

that model can use to generate text. Each vocabulary token vj is saved in the associated

index position j. Token can either be a punctuation character or a unit word. For the

task of image captioning, use of “word” can use either a punctuation letter or an

individual word. In its most basic form, a language model establishes allocation of

probability for each and every token 𝑣𝑗 in the dictionary in this way:

L M <EOS>

 O P <EOS>

10

∑ 𝑝(𝑣𝑗) = 1

𝐵

𝑗=1

(2.1)

Speech models are helpful to construct token patterns after we have option of

conditioning the probability distribution of next token vt. on the flow of prior tokens

v1, . . . ,vt-1. Chain rule can be used to estimate joint probability for a N- sized token

sequence:

 pt(vt|vt-1,…,v1) = pt-1(vt-1|vt-2,…,v1) pt-2(vt-2|vt-3,…,v1)…p1(v1), (2.2)

 p(vt, … . v1) = ∏ 𝑝𝑡(𝑣𝑡|𝑣𝑡−1, … , v1)𝑁
𝑡=1 (2.3)

While training, model is expected to allocate a greater probability to sequence of words

that have greater probability of showing up in human descriptions, such as:

When training language models, the goal is for the model to

 P(four boys playing cricket) > p(boys four playing cricket).

A conditional language model almost resembles a regular language model, the only

difference being that in case of a conditional model, each and every token of the pattern

has same conditioning circumstances is defined in the same way as a regular language

model, with the exception that all tokens in the sequence have the same conditioning

circumstance k:

 p(vt, … . v1|k) = ∏ 𝑝𝑡(𝑣𝑡|k, 𝑣𝑡−1, … , 𝑣1)𝑁
𝑡=1 (2.4)

Let (v1, . . .vN) be a token sequence depicting a N-length caption, non-vocabulary terms

denoted by a distinctive token <UNK> . Every vocabulary token has a one-hot

representation rt, which is B-sized vector all elements of which are set at value zero

except for the one having each and every element places as zero leaving only that index

position that corresponds with vocabulary token vt. As a result, caption is coded in the

form of N one-hot vectors with pattern r=(r1, . . . ,rN)

Image captioning aims to develop understanding about certain conditional language

model such that the probability for next token is dependent on both , input image Q

and tokens generated earlier within the sequence.

11

 𝑝(𝒓|𝑸) = 𝑝(𝒓𝑵, . . . , 𝒓𝟏|𝑸) = ∏ 𝑝𝑡(𝑟𝑡|Q, 𝑟𝑡−1, … , 𝑟1)𝑁
𝑡=1 (2.5)

In order to increase the trainable parameters ʘ for the models, the following function

was proposed with ʘ* being the best value that can be attained by [6]

 ʘ ∗ = arg 𝑚𝑎𝑥ʘ ∑ log 𝑝(𝑟|𝑄; ʘ)(𝑄,𝑟) (2.6)

In logarithmic probability space, conditional language model is depicted by Equation

2.7. Q denotes the input image and true caption is r. The chain rule can be used to

describe the conditional probability, in which the likelihood of the token rt being

generated on location t in caption r, which contains N number of tokens relies upon

input image and also on sequence of tokens that are in positions 1, ..., t1. As a result,

for all tokens in the chain r, in order to represent joint probability, equation can be

defined as:

 ʘ ∗ = log 𝑝(𝑟|𝑄; ʘ) = ∑ log 𝑝(𝑟𝑡|𝑄, 𝑟𝑡−1, … . , 𝑟1; ʘ)𝑁
𝑡=1 (2.7)

This model employs a method known as teacher forcing [42], that entails providing the

model the with ground truth word rt at each training sampling time. Teacher forcing is

not possible at the inference stage. Model therefore, is fed with its output tokens of its

own st at each sampling time instance

 log 𝑝(𝑟|𝑄; ʘ) = ∑ log 𝑝(𝑟𝑡|𝑄, 𝑠𝑡−1, … . , 𝑠1; ʘ)𝑁
𝑡=1 (2.8)

where 𝑠𝑡−1 , . . . , 𝑠1 are the best guesses model was able to make at each time step

before t.

2.2 Encoder: Image Features Extractor

The image must be translated into an adequate representation before the language

model can be conditioned on it. An image feature is such type of

representation. Feature extraction can be defined as the process involving selectively

picking of certain object features from the image. is the technique of extracting picture

features. Depending upon purpose, we wish to encode different properties of the image

12

into features. Low-level features represent the image's visual qualities such as colour,

texture, local contrast/edges, and forms (lines, points, circles). It's possible that a neural

network-based solution isn't even required to extract such properties. The high-level

features, also known as semantic features [43] encode visual attributes in the form of

objects and the relationship between different objects.

CNN that have previously been trained previously on any image classification task

have emerged as a feasible approach to extract semantic features. These extracted

features can then be used for captioning task. These kinds of networks commonly are

pre-trained on the ImageNet [44] image classification challenge, in which the trained

model must select one class that is most probable out of 1000 choices available for

each input image. Transfer learning [45] is a process that allows neural networks

trained for a particular task to be used for some other activity. Transfer learnings opens

up the possibility of utilizing ImageNet trained CNNs for supplying input

characteristics to models trained for tasks little complex than simple classification.

Initial layers of networks learn general, basic features which can be used for a variety

of tasks. The latter layers however lose generality and become task specific.[46]. When

transfer learning is used, the output obtained from a layer sufficiently deep is chosen

for subsequent usage. ResNet [2], GoogLeNet (also known as Inception network) [49],

VGG16 and VGG19 [48], and AlexNet [47], are only a few of the image classification

networks that have lately developed.

 ResNet has lately acquired interest as a model for extracting visual features for the

task of captioning [26, 50]. The ResNet architecture overcomes disappearing gradients

and explosive gradients [51, 18].

With increase in network layers, gradients may vanish. If each gradient's absolute value

is a value that nears about to 0, the result of backpropagation will for the initial network

layers result in a gradient approaching zero. Gradients of this type are said to be fading

since they no longer effect learning. In the best-case situation, tiny gradients indicate

that network will converge after a long time. The worst would be the condition if

learning stalls before it converges.

The initial objective of ResNet design is to solve the vanishing gradient drawback. The

ResNet model is made up of several residual blocks, one of which is depicted in Figure

2.3.

13

 Fig. 2.3: ResNet architecture residual block [2].

Each residual block is made up of a sub-network together with a "shortcut link" that

serves as an identity function ensuring a connection of the present layer with the one

before it. Two in-between layers learn a mapping F(x) as shown in figure, and the

alternative link attaches x to the intermediate layer output. This helps the network in

learning at the minimum the identity function between higher and lower levels by

ensuring that gradients flow to lower layers while avoiding in-between layers.

In a scenario where the value of gradient is very large in comparison to 1.0, spreading

gradients over several layers leads to initial layers with explosive gradients

approaching infinity, preventing updating of weights. The residual blocks, according

to the ResNet architecture's developers, aids in minimizing the effects of exploding

gradients [2].

In all, there are several ResNet variations available, having similarity with one another

differing only in number of layers. In this work, tests have been performed with

ResNet-152 architecture because of recent work in picture captioning [50].

The whole network diagram for a 34 layer miniature version of ResNet is shown in

Figure 2.5. This smaller network's architecture is based on the same concepts as the

152-layer version we're employing. The ResNet network is exhibited next to a 34-layer

convolutional net and a VGG19 network with no alternative links so as to compare.

By deleting the last classification layer, which lists the possibility for the image in

question to be a part of one out of the 1000 classes available, it becomes possible to

get hold of the image features from ResNet-152 that are required for image captioning.

Endmost layer generates an average-pooled vector with 𝐷𝑅𝑒𝑠𝑁𝑒𝑡 = 2048 dimensions. It

serves as the basis for our picture feature vector. The recovered feature vector post

operation of matrix multiplication get transferred to the input dimension of the

decoder. More information on the methodology implemented to use ResNet-152

network for picture feature extraction is provided in the following section.

14

2.2.1 Extracting Features for ResNet Model

Each image is preprocessed before ResNet-152 features are extracted. We start by

resizing every image and making it into 256 x 256 pixels size . For each 3-dimensional

image pixel x RGB channels are then adjusted using the per-channel standard

deviations σ* and averages μ*

The normalisation settings about for μ* and σ* are calculated from ImageNet [44] data

and are published in the PyTorch documentation. This step is necessary since the

ResNet-152 network was pre-trained on pictures that were all flattened in the same

way.

Once the normalised pixel values for the 256 x 256 image taken as input have been

collected, a total of five 224 x 224 dimensions image portions are cropped, and four

out of all these images are aligned at ends of the original image. Moreover, every crop

is overturned horizontally, yielding ten cropped photos in total. For executing this

procedure in one step, there is one built-in function provided by PyTorch by the name

of ten-crop.

Following the creation of the ten-crop images, each one is run with the help of a pre-

trained ResNet-152 model. For each of the input crops, we maintain the output of the

second last layer of the pre-trained model, which has a size of FRes = 2048. There are

numerous options for combining ten-crop image outputs into a single image. We try

out two different strategies: computing the 10 produced vectors' element-wise mean

(advanced pooling) and obtaining the element-wise maximum (maximum pooling).

Before training, the pooled output features are pre-computed and saved onto disc to

ensure that they can be recovered if need arises and avoiding time-consuming

calculation.

15

Fig. 2.4: VGG19 (left), ResNet-34 (right), and a 34-layer network without shortcut

interconnections (centre) [2].

16

Fig. 2.5: Cropping five 224 x 224 sections from a 256X256 photo and overturning

horizontally each chopped section creates a ten-crop image:

 xnormalized =
𝑥−𝝁∗

σ∗
 (2.9)

Table 2.1: Outcomes of the MS COCO captioning challenge employing ResNet-152

ten-crop and random crop properties.

Evaluation Metrics Single Random Crop Ten Crop

CIDEr 85.18 87.17

METEOR 23.93 24.26

The pooled features also have FRes dimension as the features produced by single input

image in absence of ten-crop yet deliver higher experimental results on the image

captioning job. Table 2.1 depicts exactly the same. The model beats standard dataset

enhancement technique involving randomly cropping every image at every repetition

when employing ten-crop features, as judged by CIDEr [14] and Meteor [32] scores 6

(see Section 4.2). Each run over the data is sped up by the pre-calculated ten-crop

characteristics, allowing you additional scope for testing. Meanwhile, random

17

cropping, necessitates running entire ResNet-152 CNN for every picture, greatly

slowing the learning.

2.3 Decoder: Generating Captions

Decoder's picture attributes are transferred onto a G-dimensional vector that contains

important information about the input images and can be regarded as a badly

condensed representation of the image data. [46]. The decoder's goal is to learn how to

rely on this representation of a picture and offer a description that perfectly

represents the actual image's characteristics.

2.3.1 Common Depiction for Words and Pictures

Learning a common representation [37] of images and sentences, as well as the usage

of a recurrent network-based language model [52], make it possible to condition the

language model on the E-dimensional image context vector c. The shared

representation allows for the same latent space to be used to encode image attributes

and individual words in the caption. Recurrent network-based language models, on the

other hand, enable us to simulate the probability distributions of specific word

sequences given an input image.

Fig. 2.6: Interactions are projected in lower dimensions [53].

[54] suggested utilising a distributed, continuous representation to encode each word

in a vocabulary rather than the usual "bag-of-words" method, in which each word is

stored as a discrete 0 or 1 indication at a specific place in a one-hot vector of size V.

In bag-of-words, each word in a caption would be a lengthy and sparse vector

comprising primarily zeros, given a vocabulary of size V = 10000 words. On the other

18

hand, if this sparse representation could be translated into continuous space, neural

network models might be trained using these changed inputs.

Such a representation is provided by word embeddings. Every word in vocabulary is

mapped to an P-dimensional, continuous embedding, where P<< V is the encoder

output size and E is the size of the embedding. Instead of mapping each word to a

discrete index, we now have a continuous "neighbourhood" of words in an E-

dimensional embedding space, where similar words are frequently neighbours. This is

due to the way embeddings are built; for example, if two words appear in similar

contexts in the training data, they are more likely to occupy neighbouring embedding

space places [55]. When projected to lower dimensions, relations between related

concepts are frequently represented as vectors in embedding space [53], as shown in

Figure 2.7. Many such relations can theoretically be contained at once inside each

individual embedding due to the embedding's still large dimensionality [53, 37].

We still lack a shared representation between words and visuals at this time. The

concept of compositional semantics [56], which states that each embedding vector can

represent either a word or a full phrase, underpins shared representation between

individual words and images. Compositional distributed representations of whole

sentences can be combined with image features to create a multi-modal [37]

representation space in which the compositional image caption representation maps to

the same vector space as image features.

Fig. 2.7: Common vector representation of pictures and sentences. [62].

The capability to obtain a common depiction [5] for multi-modal input is at the heart

of both picture captioning in this chapter and hierarchical paragraph captioning in

Chapter 3, where RNNs at various levels receive diverse modalities as input. Figure

2.8 illustrates image feature vectors and text vectors linked to a common embedding

space, illustrating two different input modalities. When training captioning models, it

19

is feasible to employ pre-trained word embeddings, and numerous reusable

embeddings exist, such as Word2Vec [57], Glove [58], and, more recently, ELMO [7]

and Bert [8]. However, it is also possible to train the embeddings with the rest of the

model, as we did in the experiments described in this thesis.

2.3.2 Recurrent Neural Language Models

The recurrent neural language model [52] is an important component in image

captioning. The inputs to the model are context vector and all previously given words

and it is expected to predict the word that is most likely to occur next. Recurrent neural

networks are a versatile as well as strong family of algorithms for producing both

discrete and continuous weighted patterns [59]. The RNN utilises a predefined

identifier as an input and then builds the very next identifier it generates on the

prior outputs when it comes to creating text. In order to generalise to previously

unknown inputs and create unique, semantically accurate sequences, the RNN has to

understand to fill in the missing in between training sample it observes.

RNNs, similar to CNN, can experience the problem of vanishing gradients wherein the

network does not remember inputs it received some time back in the past. To be

effective in producing prolonged sequences, RNN must be able to selectively

"remember" and "forget" relatively long history based on its present relevance. Long

Short-Term Memory (LSTM) [60] or Gated Recurrent Units (GRU) [40] are

commonly used to create modern RNNs. By adopting a sequence of gates, both types

of recurrent cells provide apparatuses aimed at selecting maintaining lengthier and

shorter contexts. Each gate is sigmoid σ (·) activated single layer neural network.

 (a) GRU Cell (b) LSTM Cell

20

Fig. 2.8: Basic block diagram for RNN units [61].

The current element, at each time step t, in the input sequence is denoted by zt, and the

name of the gate is subscripted by t representing the gate's result.

As illustrated in Figure 2.9, the total number of gates in GRU and LSTM cells differs,

so does the way they output and store their internal state .

There are two gates in a GRU unit: update and reset :

• Reset gate – specifies how much of the RNN cell et−1 previous hidden state vector

should be used for the new hidden state proposal vector ft

 𝑞𝑡 = σ(𝑣𝑘𝑝 𝑧𝑡 + 𝑣𝑘ℎ 𝑒𝑡−1) (2.10)

where vkp and vkh are learnable weight matrices, and et-1 is the hidden state output

from time step t-1. The following is how the planned novel concealed state is

computed:

 𝑓𝑡 = tanh(𝑣𝑧𝒙𝒕 + 𝑣𝑒(𝑞𝑡ʘ𝒆𝒕−𝟏)) (2.11)

where “ʘ” is element-wise multiplication.

• Update gate – z serves a twin purpose, acting as a complement to both z and 1-z.

Figure 2.9 shows a small "switch" next to gate z that works like a control, displaying

the mingling proportion amongst the existing concealed state et-1 and the planned new

concealed state ft.

An LSTM cell differs from a GRU in that it includes three gates: input, output, and

forget, as well as a separate cell state dt.

• input gate – i works in tandem with the forget gate f. They are, however,

implemented individually, unlike in GRU.

• Forget gate – f regulates the weighting for the previous value of cell state dt-1

and complements the input gate.

• Output gate – o is used for calculating the LSTM cell's final output:

21

2.3.3 Decoder Implementation

We use a single RNN component with two hidden layers to create a flat decoder, as

illustrated in Figure 2.10. GRU or LSTM recurrent cells are used in our investigations.

By treating each input paragraph as a separate sequence, the flat decoder may generate

single "sentence-length" captions as well as paragraph-length captions.

We wrap the ground truth caption with <START> and <END> tokens before we start

training. Then, in the constructed ground truth caption, we embed each input token kt

(encoded as a one-hot vector) to a vector zt of size P. The RNN's initial input, z0, is

provided as the encoder's visual embedding output. The rest of the model parameters

are trained alongside the word embeddings.

 Fig. 2.9: Flat decoder.

In training, we employ mini-batch gradient descent, which divides each pass over the

dataset into 128 (image, caption) pairs. PyTorch includes the PaddedSequence object,

which allows training RNNs with mini-batches containing varied length input

sequences, to support mini-batch training when each caption may be of various length.

Each mini-batch must be sorted in decreasing order depending on the caption length

in order to use the PaddedSequence class.

2.4 Proposed Extensions to Image Captioning Model

Model suggested in the previous section can be expanded. Discussed below are some

of the newly introduced building elements that have the potential to improve image

captioning performance:

• The attention mechanism [38, 31] attempts compensating for the problem that the

presence of just one context vector be not large enough for encompassing whole

22

information about the input image. For each step of output, decoder is allowed to

extract information out of important sections rather than relying on just one context

vector. [26, 50].

• RL [15, 62] enables neural network-based models that make use of neural networks

to master the method of optimizing for the process of training of discrete and non-

differentiable variables.

• GAN [63] models consist mainly 2 major components:

Generator network which trains with input data and tries to come up with a

output as close as possible to the real world output.

Discriminator network which leans continuously and tries to distinguish

generator produced data from real world data. Although GAN based methods have

been able to generate a diverse range of captions, they have not been able to stay

competitive when evaluated on scoring metrics.[27, 64].

• VaE is yet another procedure utilizing GANs. The VaE formulation attempts to

mimic the training data's probability distribution by learning a normal distribution of

latent data representation (characterized by variance and mean). It is an alternative

generative methodology used in image captioning [65, 66]. Models that use attention

learning [26] and the methods that make use of reinforcement learning [9] have

demonstrated most promising outcomes so far.

23

CHAPTER 3

Paragraph Image Captioning

Paragraph image captioning, as a field of research as well as the dataset that is used for

testing that goes with it, has only lately surfaced [4]. The generated image descriptions

in standard image captioning are brief. In the MS COCO Captions dataset [34]. The

typical paragraph caption is 67 words long and is divided across numerous sentences.

Table 3.1: Evaluation metrics scores for different baseline models.

Evaluation

Metrics

Image

Captioning [3]

Paragraph

Captioning [9]

Paragraph

captioning – human

baseline

[30]

METEOR 27.6 18.6 19.22

CIDEr 117.9 20.9 28.55

It, sometimes can become impossible to describe an image with intense detailing with

just a single sentence. Larger, multi-sentence descriptions are frequently required.

While longer captions might capture more detail in an image, they are also more

difficult to learn because the number of places where the machine can make a mistake

increases as the n length of caption increases. Furthermore, looking at the conventional

metrics is insufficient to compare image and paragraph captioning outcomes. The

baselines are different, as shown in Table 3.1, and the scores that has been obtained by

human performed stanza captions are much less over the best picture results by

captioning.

By comparing to image captioning, paragraph by captioning has gotten less attention.

However, the concepts that emerge from picture captioning by the work of research

are frequently applicable to paragraph captioning. Concluding that there is a significant

amount of "cross pollination" between them is important. The fundamental

prerequisites to extend a language by modelling mentioned in Section 2.1.1 from

generating basic each sentence captioning to paragraphs comprising several phrases

are discussed here.

The criteria for the two jobs are identical, but paragraph captioning adds the

requirement for modelling language in the sentence as well as word levels. This implies

24

that the input characteristics must include data that may be utilised to produce

sentences that describe various parts of the image.

The fundamental baseline architecture has been mentioned below. It was recently

developed to satisfy the needs of stanza size language modelling for briefing images.

The project includes a pre-trained encoder for a dense captioning task in which each

image is captioned with several per-region annotations. In addition to the regions-

based encoder, models the paragraphs on sentence and word levels individually using

two corresponding RNNs. Other working projects for paragraph captioning that have

recently been published [3, 4, 11] all use a hierarchical decoder and follow this

Encoder-Decoder design.

Only about 19, 000 picture caption pairings are currently available in the Stanford-

Paragraph dataset [4]. In relation to the MS-COCO Captions dataset [34], which offers

five types captions per image, the dataset only has one example paragraph per image.

When just using the Stanford-Paragraph dataset for training, the study of paragraph

captioning project may suffer from over fitting to the training data. Transfer learning,

as was discussed in Section 2.2, is one possible answer to this problem. Krause et al.

[4] suggest employing two transfer learning sources: a pre-matured image encoder and

pre-engaged weights for the RNN component that generates sentences. The encoder

and the language model in their study both were pre-nurtured using the Visual Genome

Regions dataset [25], which we discuss in Section 4.1.

The hierarchical decoder will be described in Section 3.2, and the end-to-end picture

of the model. The hierarchical-coherent model will be introduced, which extends the

hierarchical baseline by attempting to impose coherence between individual phrases

inside a paragraph. Section 3.5 of the chapter describes some further paragraph

captioning vigilance.

3.1 Encoder: Dense Captioning Network

Acquiring Visual features via a dense captioning network established by Johnson et al.

[1], also known as DenseCap, and input to the hierarchical language model can also be

used [4].

25

 Fig 3.1: Architecture of DenseCap [25].

The dense captioning network is a hybrid model that aggregates the works of region

suggestion as so of picture captioning. Visual Genome Regions [25] was the dataset

used to train the DenseCap network. Before getting into the specifics of how DenseCap

characteristics are retrieved, let's go over how these features are calculated. To generate

a series of B tuples, the neural network is trained. Each series comprises of a bounding

box and a caption defining the area of an image enclosed by the box, in the task of

dense captioning.

The fully obtained result Encoder-Decoder design mentioned in Section 2.1 is similarly

followed by the dense captioning network. Unlike image captioning, this is a "one-to-

many" interaction, with all images those are responsible for producing B image-region

based contexts. Then each context is utilised as an input to a different instance of the

image captioning task. The dense captioning network is designed from all the

components up to and including the main network. The context vectors are the area

codes depicted in Figure 3.1, and the decoder is the LSTM-based RNN.

As shown in Figure 3.2 a collective work of bounding boxes corresponding to different

portions of the stimulus image and natural language descriptions of each and every

such region. The loss function is made up of five criteria: L1 fail on area placements

in the localization layer, binary logistic fail on anticipated (0, 1) confidences for

regions in the recognition network. The cross-entropy on the language model output is

used.

Dense-Cap can be declared to instantly build larger image details by aggregating the

released region descriptions, though it is not technological for a paragraph captioning

26

model. This method may result statements that are coherent when used as separate

captions for image sections, although they can also lose their coherence when

combined to form a paragraph. As a result, DenseCap cannot be trusted to generate

convincing paragraphs.

 Fig 3.2. A DenseCap network's output as an example [25].

3.1.1 DenseCap Features Extraction

The method for extracting DenseCap features depicted in Figure 3.3 resembles to the

ten-crop feature extraction discussed in Section 2.2.1. Unlike the ten-crop features,

which are produced from the identical area for all input photos, DenseCap features are

converted to region content. The model was trained on a total of 77, 398 images, with

an average of 50 region captions per image. As reported in [3, 4], we save B = 50

region characteristics for each input picture, then do additional pooling by selecting

the element-wise greatest over all B extracted features, based on the final per-image

feature-vector of size DenseCap. In addition to maximum pooling, we tested with

average-pooled picture features, which were calculated by taking an element-wise

mean of B region vectors.

The DenseCap-dimensional characteristic vector is translated into an E-dimensional

context vector, which is passed to the hierarchical decoder discussed in the next

section.

27

 Fig 3.3. Using element-wise maximum, DenseCap features were retrieved from

picture regions.

3.2 Decoder: Hierarchical RNN

Captions for paragraphs can be thought of as a collection of single words and

sentences. Using a hierarchical language model, Li et al. [30] and Lin et al. [35]

propose modelling word-level and paragraph dependencies independently. As a

consequence, one RNN models phrases at the term or "token" level, while another

model paragraphs at the level of the sentence.

The work [17] advocated using hierarchical models on sequential inputs to help model

longer-term connections between structural components that are sequential

themselves. In part of text input, these units range from longer-term to shorter-term

contexts and include chapters, paragraphs, phrases, and words. RNNs' ability to

selectively represent longer and shorter-term contexts has increased since the advent

of LSTM. As a result, one can wonder whether explicit hierarchy at the network design

level benefits a modern RNN-based language model. In Chapter 4, we shall attempt to

answer this question.

Yu et al. [36] were the first to mention the use of a hierarchical word embedding in the

highly associated task of video captioning. In their model, they adopt a two-level

hierarchy, with term and sentence-level RNNs created with GRUs. The phrase context

is set to zero during training, and the picture characteristics are used to start the word-

level RNN. The syllable embedding of all words in the first sentence is passed to the

sentence-level RNN, which constructs a new context for the following verse after

reading the first sentence. As previously said [4] has converted the de-facto paragraph

captioning baseline, thus we will go over their formulation in further depth. The

28

hierarchical RNN employed for sentence captioning is defined as having two layers of

hierarchy, each represented by a separate RNN:

• SentenceRNN – For each sentence, this is an upper RNN that produces a

topic vector Ti. At each time step, Sentence RNN takes the same image characteristics

given by the encoder as input and returns a different subject vector for the following

sentence.

• WordRNN – A final output-level RNN that uses the topic vector Ti as its

initial input to produce individual words in each phrase. This component is identical

to the decoder used in the flat model in our tests.

The source picture I is said to be "grounded" [37] for each subtitle in the flat model. In

the methodological structure, the grounding is similarly hierarchical. Phrase topics Ti

provide a medium level of grounding, with each subject vector performing the same

function as the background vector c in Section 2.4, with the exception that each

paragraph in a paragraph now has its own generative model.

The "Regions-Hierarchical" model's decoder learning method utilizes that we are

provided a paragraph containing sentences, each of which includes Ni words, with I

becoming the sentence index. To initialise the decoder, WordRNN weights from a

language model pre-trained on the massive Visual Genome Regions description

dataset [25] are employed. Then, for M time-steps, Sentence RNN is run with the same

input at each time-step. SentenceRNN generates a H = 512 hidden vector, which is

then fed to two sub-networks: a halting detector and a topic generator.

3.2.1 Hierarchical Decoder Implementation

Figure 2.10 presented a sub-unit of the hierarchical decoder in Figure 3.4. The

hierarchical decoder limits the highest number of permitted sentences per paragraph to

MMAX = 6 to ensure that the inferential process can be completed. Each original

sentence in the paragraph is generated using the same WordRNN, with the same

weights. During learning, each paragraph is degraded into sentences. Input to the

decoder is the same kind of mapping from picture features to embedding size E that

was utilised in the flat model.

29

Fig 3.4: Hierarchical decoder.

Image features are not directly employed to construct an image caption in the

hierarchical model. Instead, the Sentence RNN is executed for MMAX time-steps first.

Each timestep's Sentence RNN outputs are used for two purposes:

1. The halting classifier, which is built as a couple of logistic units,

determines the probability that the current phrase is the paragraph's last

one. We build this unit by providing a pair of values, rather than the

commonly utilised technique of using an artificial neural layer with a

single value for binary classification.

The reason for this implementation is that we noticed during the trials

that utilising a two-unit neural network produces somewhat better

outcomes in standard metrics than using a single output. It's possible

that a network with two-unit output develops a somewhat superior

stopping classifier representation. At the same hand, it's probable that

this will make the model more prone to overfitting and slow

convergence.

2. To generate E-dimensional topic vectors Ti, the Sentence RNN outputs

are input into a two-layer fully connected network. Between the layers,

we apply ReLU non-linearity [22, 45]. Each of the Ti topic vectors is

sent to the WordRNN, which creates each sentence.

30

PyTorch's underlying hierarchical paradigm is quite simple to implement. The 130-

piece small size that we used to learn the flat model is employed again. When

overfitting, the most difficult part is ensuring that the Packed Sequence object, which

contains all sentences at location I in the mini-batch, is appropriately sorted. For each

mini-batch, the sentence data must be arranged in M max ways. We must keep a

separate sorting indicator for each phrase in the paragraph, sorting and unsorting them

as needed, to guarantee that the sorting order is correct for each phrase at each Sentence

RNN time-step. A large portion of the task was spent to ensuring that the functions

listed above work as expected.

3.3 Paragraph Captioning Pipeline

When the DenseCap-based coder is integrated with the hierarchical decoder network,

the entire "Regions-Hierarchical" structure is presented in Figure 3.5. The output of

the dense messaging encoder is compiled into a single vector, which is then utilised as

a backdrop for the hierarchical RNN that generates the sentences.

Fig 3.5. The encoder-decoder design for graph captioning was adopted after [30]

Let's define each training input as a pair (I,SP), where I is an image and SP is the

image's paragraph caption. M sentences are in paragraph SP. Ni words appear in

sentence i. Also, in the ith sentence, make Sij the jth word. Two probability

distributions are taught to the model:

• pi – the likelihood of the current sentence being the last sentence in the paragraph

over STOP, CONTINUE, so that

pi(STOP) + pi(CONTINUE) = 1 (3.1)

• pij – a chance of a given word appearing in place j of the ith sentence based

on the full vocabulary.

31

The loss proposed by Krause et al. [4] and used by others [3, 11] is divided into two

halves, one for each decoder hierarchy level. The algorithm L has two terms: a

weighted phrase loss sent and a weighted word loss lword, where lsent is the optimal

solution for the Sentence RNN and word is the target value for the Word RNN:

ℒ(𝐼, 𝑆𝑃) = λSent ∑ 𝑙𝑠𝑒𝑛𝑡(𝑝𝑖, 𝕝[𝑖 = 𝑀]) + λWord ∑ ∑ 𝑙𝑤𝑜𝑟𝑑(𝑝𝑖𝑗, 𝑆𝑖𝑗)
𝑁𝑖
𝑗=1

𝑀
𝑖=1 𝑀

𝑖=1 (3.2)

3.4 Hierarchical-Coherent Project

The Stanford-Paragraph dataset's modest amount of training data might not even

comprise many of the language structures necessary for the produced paragraph-

caption to seem like it might have been written by a person. The hierarchical paradigm

may also have trouble creating paragraphs that move effortlessly from one sentence to

the next [3, 11]. The captions have a few features that make it look natural such as how

varied they are – do they all maintain similar pattern or are they seeming to be

unrestricted, how spontaneous they are – how much likely it is for a human to come

up with comparable description. The following section goes through a possible

solution to improve the seeming eminence of captions in greater depth and the

subsequent segment would go over a few additional options briefly.

For each paragraph, the hierarchical approach represents numerous levels of structure.

The baseline model, on the other hand, does not explicitly relate the preceding and

subsequent sentences. SentenceRNN's topic vector from the baseline conceptual

framework is immediately employed to create the next sentence. Because they are

created before the WordRNN is performed, these subject vectors do not rely on the

WordRNN's output.

The hierarchical-coherent implementation is built upon [3], which builds on the

previous "Regions-Hierarchical" model to make paragraph titles more human-like. A

high-level summary of the model is shown in Figure 3.6. Similar to Krause et al. [4,]

SentenceRNN is used in their model to construct sentence topic vectors Ti for each

phrase in the paragraph.

32

Fig 3.6. Adapted from [3], with names of parameters names altered for uniformity.

However, unlike previous work, after all of the phrase subjects have been formed, they

are further analyzed to give the sentences coherence. It's important to note that the

released "Diverse-Coherent" model has an optional parameter estimation autoencoder

element that aims to create diversity to paragraph descriptions, but this capability was

not included in our hierarchical-coherent model.

We'll now examine at whether Chatterjee and Schwing's [3] technique generates

sentence coherence. After the subject vectors have been created, the balanced total of

them is saved in a global topic vector G:

 𝐺 = ∑ 𝛼𝑖𝑇𝑖
𝑀
𝑖=1 (3.3)

 𝛼𝑖 =
 ||𝑇𝑖|| 2

∑ 𝑗 ||𝑇𝑗|| 2
 (3.4)

To assist in preserving sentence coherence, the coherence vector Ci1 is computed. The

concealed state of the WordRNN is obtained after the final word of the current phrase

has been produced in order to compute the integrity vector. The authors supply this

hidden state representation using a two-layer totally connected net known as a

coherence network. Ci1 is the result of this network. As the baseline coherence vector,

C0 is set to zero.

G is the worldwide topic vector, Ti is the topic vector, and Ci-1 is the coherence vector.

Using these three vectors, a binding unit may be used to calculate the final topic vector

33

T_i^'. The index i-1 of the coherence vector relates to the previous sentence, but the

index I of the subject vector and the index I of the final topic vector correspond to the

sentence about to be created.

 𝑇𝑖
𝐶 =

𝛼𝑇𝑖+𝛽𝐶𝑖−1

𝛼+𝛽
 (3.5)

In this approach, the squared norm of the difference between the fused topic-vector

and each of its inputs is minimized:

 𝑇𝑖
𝐶 = arg (𝑚𝑖𝑛 𝛼) (3.6)

The constants and are assigned to different values depending on whatever dataset the

project is trained on. On the Stanford-Paragraph dataset, the values for training are 𝛼

= 1.0 and 𝛽 = 1.5.

Fig 3.7: Coupling unit combining the global topic vector, current topic vector and the

coherence vector Ci-1 originating from the previous sentence [3].

The fused vector is then transmitted to the gating unit, which is constructed as a single

GRU cell with the universal topic vector G determining the cell's initial internal state.

The cell's result is the end topic vector T i' after a data set, which is then used as the

initial feed to the WordRNN, which creates the following sentence. This process is

seen in Figure 3.8.

Connecting the final created word of the previous phrase to the first intake of the

following sentence enhanced relative coherence between the produced sentences,

according to the model's authors. In a similar vein to vector G, Li et al. [30] investigate

monitoring a global, paragraph-level environment. They do, however, use a third level

of RNN hierarchy to simulate paragraph level context. In the coupling unit, the GRU

34

cell is used in a similar fashion to this previous work, however it is now made in a

more compact manner.

The gating unit knows to manage how much of the worldwide background G to "let

through" for constructing the next phrase instead of relying on the transitory context

vector T i^C , which is more local to the present sentence. The GRU cell in the gating

unit does not simulate a recurrence since it is only run for a single time-step.

 Fig. 3.8: The coupling unit sends subjects to WordRNN [9]

3.4.1 Hierarchical-Coherent Decoder

The structure is employed by changing the fundamental hierarchical model. The only

changes to our hierarchical structure are that more components must be arranged at

each phrase time-step g to match PyTorch's Packed Sequence based RNN input set-up

specified in Sections 3.2.1 and 2.3.3. The dimensions of the input embeddings given

at each WordRNN instance are represented by P-dimensional vectors Ji, H, Ai-1, Ĵ𝑖
𝐴

and 𝐾𝑖
′.

For attaining coherence vector Ai-1, we utilise wordRNN's second last concealed output

at sentence i-1. The solution obtained differs from what was observable in sample

scripts by original developers. They utilize internal layer of WordRNN from the

previous instance after the phrase is done creating and the <END> symbol has been

created. This work conducted the same approach in tests, but the outcomes were

constantly poorer on traditional measurements.

Activation function utilised by the original authors [3] is the Scaled exponential Linear

Unit (SeLU) [29], that is analogous to the regularly used ReLU. Since SeLU could not

35

give good results ReLU irregularity was used both for coherence vector generation and

topic generation.

3.5 Extensions to Paragraph Captioning

There have been many refinements to the model base model proposed by [3]. Some of

these modifications include:

The "Regions-Hierarchical" model proposed by Krause et albaseline [4] has been

refined several times. Besides to the previously noted inclusion of coherence vectors

and accompanying paragraph coupling, these advancements include:

• Attention mechanisms on Linguistic and perceptual aspects [11],

• GAN based architecture making use of an objective function which relies on

adversarial networks.objective function utilising a GAN architecture [27, 11],

• In addition to the current methodology that makes use of RNN at sentence

level as well as word level, a paragraph RNN can be introduced[11].

• ED architecture based on VaE. [3].

Attention in hierarchical linguistic models was introduced by [30]. The usage of

attention in the picture tagging[31] and human language interpretation domains[38]

inspired their attention technique. To tackle the closely related problem of paragraph

length video captioning, [36] proposes employing emphasis on image elements

gathered inside a video frame. It also deploys progressive attention while creating

captions for static pictures, which is less significant when creating subtitles for video

frames.

[11] offer to include different enhancements for paragraph generation. A comparable

model was created by [4]. The model feeds off of DenseCap features, while the

execution focuses on image feature vector along with words in dense subtitles created

by the very same DenseCap system that produced the image features. They also have

a duplicating [28] function that allows them to take words from the visited region

descriptions and paste them into their own documents. In their GAN-based solution to

paragraph captioning, [27] suggest hierarchical grader.

[11] includes an adversarial training mechanism. For training on paragraphs without

graphics, semi-supervised components are paired with acquiring single-sentence labels

on the MS-COCO Captions database.

 [3] illustrate how using a VaE-based framework, in which a section of source space

of subtitles model is tested at run-time, basically creating a few more order of

36

unpredictability within outcomes of the model, can enhance the diversity of generated

captions as a substitute to using an adversarial objective.

37

CHAPTER 4

Experimental Analysis

External, pre-computed image characteristics pre trained on classification of images

and on Dense-Captioning were used in our models. A RNN, pre–trained on image

captioning provided network weights for our task of paragraph captioning. Description

of datasets used is provided in Section 4.1.

The datasets utilized are described in Section 4.1. Section 4.2 discusses the sought-

after automated assessment metrics used to evaluate outcomes and provides high -level

evaluation criteria that humans might make use of. Section 4.3 goes into the specifics

of the training. Finally, Section 4.4 gives experimental results followed by final

thoughts and discussions in Section 4.5.

4.1 Datasets

The experiments were done with 3 different datasets. Before we start model trainings,

we split each and every dataset into a training set, which comprises of photos that will

be made use to train them, and a set of validation, that is in general a collection used

to see how well they generalize to previously unknown data.

MSCOCO [10]: An image captioning dataset that comprises of images as well as

captions analogous to each image. There are in total 82, 783 images available for

training and 40, 504 images for validation. We use the MS COCO Captions c5 subset,

which gives on an average, 5 single sentence captions corresponding to each image.

There are 108, 077 photos in the Visual Genome Regions (VG Regions) [25] dataset.

Every image in VG Regions has an average of 50 per-region annotations, each of which

contains a brief region description as well as the coordinates for a bounding box

encircling the described region. Each geographical description is on average 5 words

long.this dataset contains 77,398 and 5000 training and validation images. The

Stanford-Paragraph dataset [4] is a subset of 19, 551 VG Regions images annotated

with multi-sentence descriptions, with each sentence averaging 11.91 words in length.

This dataset is used to train our final model because it is currently the best accessible

paragraph captioning dataset. We used the identical train/val split as the dataset's

authors, with 14, 579 images trained and 2,490 images validated.

38

4.2 Evaluation Parameters

4.2.1 BLEU

The BLEU-1,2,3,4 (bilingual evaluation understudy) [20] evaluation parameter is

dependent upon accuracy in n-gram. N- gram is basically the word combination being

matched at that iteration. For a caption written like "A dog is running on grass," for

example, we might write:

1-grams (or unigrams): “A”, “dog”, “is”, “running”, “on”, “grass”

2-grams (or bigrams): “A dog”, “dog is”, “is running”, “running on”, “on grass”

4-grams: “A dog is running”, “is running on grass”

It's worth noting that there's a related concept known as a "character n-gram," in which

n denotes the count of characters rather than words. Current work is interested only in

n-gram word.

We'll show how to use BLEU-1 with unigrams in the examples below, but the same

approach may be used with all sorts of n-grams independent of their size . For the case

where Count(a) denotes word count (or unigrams) in available image description, each

repetition of a particular word increases the count. Every caption created gets a

precision score(unigram) in the following way:

 𝑃
𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠=

∑ 𝐶𝑜𝑢𝑛𝑡(𝑎)𝑎∈𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠

𝐿

 (4.1)

When we come across any particular word which was present in actual image

description, the counter for Tp is incremented. Simple precision has the drawback that

Tp counts may surpass the count in actual image description. Lets try to understand it

with an example:

Ground truth: A dog is running on grass.

Caption 1 : A A A A A A A A .

Caption 2 : There is a dog running on grass.

The unigram precision score for Caption 2 is 5/6, but it is 6/6 for Caption 1, despite

the fact that the second one is significantly relevant to the actual description.

By adopting modified precision, BLEU hopes to address this issue. For a single

caption, 𝑃1
∗, the adjusted score of precision for unigrams, is derived just by trimming

39

the appearance of any word in the caption generated to the actual number in the

available image description

 𝑃1
∗ =

∑ 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝 𝑎 ∈𝐶𝑎𝑝𝑡𝑖𝑜𝑛𝑠 (𝑎)

𝐿
 (4.2)

The values of all 4 scores come in range (0,1) which are then multiplied with 100 to

bring values in (0,100) range.When it comes to reporting our findings, we take the

same approach.

4.2.2 METEOR

When utilizing BLEU as an automated evaluation metric for image captioning, there

are a few issues to consider. For starters, it ignores recall, as specified in Section 4.2.2.

When used for image captioning, recall, when implemented for image captioning

counts number of words from available image description appear in the description

generated by the model. It, also ignores synonyms, and when working with bigger n-

grams, such as while computing BLEU-4, penalizes descriptions having changed, yet

right, order of words than the available image description. Meteor [32, 16] aims to

solve the issues of matching synonyms and paraphrased sentences by combining

precision and recall.

 Fig 4.1 Meteor matches example [33].

The sentence generated is compared with expected sentence using matchers mi :

• Exact, m1 – trying to find exact word matches, similar to unigram.

• Stem, m2 – trying to find words that have a common stem.

• Synonym, m3 – trying to compare each word with synonyms of it available

in [19]

• Paraphrase, m4 – trying to compare that particular set of words with a pre-

defined phrase table. Figure 4.1 gives a demonstration of how matching is

done within sentences. Black colored lines correspond represent “exact”

40

match, green colored lines indicate “stem” matches, and red colored lines

are a representation of matching phrase

It considers words present in a particular language that occur more than a specified

number of times to be function words. "about", "A,", "about," "the," "had," and

"could" are examples of function words. Content words are those that are less common,

such as "computer," "dog," "purple," "play," and so on. The function words in

hypothesis and reference sets are abbreviated as hf and rf ,, respectively, and the

content words are abbreviated as hc and rc.

Each matcher mi has a weight wi linked with it (see Table 4.3 for parameter values).

The value of the parameter 𝝳 determines the relative weighing of content and function

words. The weighted precision Pw and weighted recall Rw are calculated using the

matchers and their accompanying weights:

 𝑃𝑤 =
∑ 𝑤𝑖 .

4
𝑖=1 (𝛿.𝑚𝑖(ℎ𝑐) +(1−𝛿).𝑚𝑖(ℎ𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|ℎ𝑓|
 (4.3)

 𝑅𝑤 =
∑ 𝑤𝑖 .

4
𝑖=1 (𝛿.𝑚𝑖(𝑟𝑐) +(1−𝛿).𝑚𝑖(𝑟𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|𝑟𝑓|
 (4.4)

The numbers of content and function words in the hypothesis and reference captions

are represented by |hc|, |hf |, |rc|, and |rf |.

The weighted precision and recall are then multiplied by the parameterized harmonic

mean 𝐹𝑚𝑒𝑎𝑛:

 𝐹𝑚𝑒𝑎𝑛 =
𝑃𝑤 . 𝑅𝑤

𝛼.𝑃𝑤+(1−∝).𝑅𝑤
 (4.5)

The parameter 𝝰 (see Table 4.3) is commonly chosen so that recall is prioritized over

precision [14]. In order to reward longer consecutive matches, Meteor introduces

"chunks," which are defined as sequences of matches that are in the same order in both

the hypothesis and the reference. For example, in Figure 4.1, "srilanka" and "prime

minister" both represent a chunk made up of two matches. Because the word order

between the reference and the hypothesis gets more comparable as the chunk length

grows, the Meteor score improves; nevertheless, as the chunk length increases, the

hypothesis becomes more "fragmented."

41

The fragmentation penalty (P) is determined as follows: If m is the total number of

word matches (averaging the hypothesis and reference to account for paraphrase), and

k is the total number of chunks

 P = ϒ. (
𝑘

𝑚
)

𝛽

 (4.6)

The fragmentation penalty is then applied to the harmonic mean of the weighted

precision and recall to arrive at the final Meteor score:

 Score = (1 − P) · 𝐹
𝑚𝑒𝑎𝑛

 (4.7)

Table 4.3 shows the default values for the English version of Meteor, which have been

tweaked to improve the connection between human judgement and Meteor-scores [16].

Overall, Meteor has been demonstrated to have a better correlation with human

judgement than BLEU [16].

To demonstrate, we use only the exact matches, m1, to Calculate the Meteor score for

the preceding section's sample sentences. A period character (".") is likewise regarded

as a function word in this context. The reference and hypothesis captions are given to

us, with content terms marked and the remaining words classified as function words:

Hypothesis: There is a cat on the mat.

Reference: the cat is on the mat.

Table 4.1: Evaluation Parameter values of Meteor for Sentences in English [16].

𝝰 β ϒ 𝝳 𝑤1 𝑤2 𝑤3 𝑤4

0.85 0.20 0.60 0.75 1.00 0.60 0.80 0.60

.

The weighted precision and recall are then calculated using Eqs. 4.6 and 4.7. We only

calculate the exact matches, m1:, to make our example basic.

 𝑃𝑤 =
𝑤1(𝛿.𝑚1(ℎ𝑐)+(1−𝛿).𝑚1(ℎ𝑓))

𝛿.|ℎ𝑐|+(1−𝛿).|ℎ𝑓|
 (4.8)

 𝑅𝑤 =
𝑤1(𝛿.𝑚1(𝑟𝑐)+(1−𝛿).𝑚1(𝑟𝑓))

𝛿.|𝑟𝑐|+(1−𝛿).|𝑟𝑓|
 (4.9)

42

4.2.3 CIDEr

Another popular automated assessment measure is CIDEr (Consensus-based Image

Description Evaluation) [14]. CIDEr was built exclusively for analysing picture

captions, unlike BLEU and Meteor, which were created to assess machine translation

outputs. It works with datasets such as MS COCO Captions [34], which provide a large

number of ground truth picture descriptions for each image. We will not utilise the

feature for analysing multiple captions per picture in our paragraph captioning

experiment since the Stanford-Paragraph [4] validation dataset only gives one

reference description per image. CIDEr can refer to either a standard CIDEr score or a

modified version known as CIDEr-D, which makes changes to the CIDEr score to

prevent people from "gaming" the system by changing the captions to get

unrealistically high scores.

4.3 Results

The outcomes on experimentation performed on three models introduced in Chapters

2 and 3: flat, hierarchical, and hierarchical-coherent are as follows. All three models

rely on a WordRNN that has been pre-trained on VG Regions datasets or MS COCO

Captions or. The results provided by the authors of each baseline are shown for the

published baselines.

4.3.1 Image Captioning Experiments

A number of flat captioning algorithms are trained making use of MS COCO dataset.

Another essential objective for this initial trial was to uncover great approaches for

input feature pre-computationthat have been obtained from the pre-trained DenseCap

and ResNet-152 models. Alternative combinations of input features was also

attempted, as well as average and maximum pooling.

On the image captioning assignment, we discovered that our best-performing models

utilised average pooled DenseCap features.[4] state that their DenseCap characteristics

were pooled to the maximum, which is interesting. Average pooling, by "averaging

over" the minor details, appears to be superior at annotating common data regarding

image. Maximum pooling, on the other hand, may aid the model in capturing more

particular details. It is not necessary that all of these image specific details are of any

use for single sentence captioning.

43

All the best performing models for picture captioning employed a concatenation of

ResNet-152 and DenseCap image characteristics. All subsequent trials used the

vocabulary and concatenated picture attributes from the dataset that was brought to use

for pre-training of WordRNN.

4.3.2 Flat Architecture Results

Existing pre-trained models for image captioning were tuned up with Stanford-

Paragraph Dataset so as to evaluate the performance of flat captioning models when

tasked with a rather complex task, generating a paragraph description.

We improved several of the pre-trained image captioning models stated in Section

4.4.1 by training them on the Stanford-Paragraph dataset to examine how well the flat

model performs when confronted with the more difficult job of paragraph synthesis.

Each paragraph was merged into a single caption before being sent to the model. The

character "." at the end of each line is treated as a token in this caption. The period

character (".") at the end of each word was considered as another token inside the

caption. The resulting caption might be up to 80 words long. For flat paragraph

captioning, all models used an LSTM-based RNN implementation.

Our flat models were pre-trained using the MS COCO Captions or VG Regions

datasets. MS COCO utilises 9, 957 words, whereas VG Regions uses 19,804 words,

based on the vocabulary of the dataset it was pre-trained on.

Table 4.2: Comparison Results for different models for paragraph captioning

Model Used BLEU-

3

BLEU-

4

CIDEr Meteor BLEU-2 BLEU-1

Image- Flat [26,30] 12.20 7.71 11.06 12.82 19.95 34.04

Flat, MS COCO, avg-

pooled DenseCap,

E=256

12.73 7.57 18.64 14.73 21.52 36.84

Flat, MS COCO,

E=1024

12.98 7.66 20.17 14.95 21.97 37.59

Flat, VG Regions,

E=256

13.03 7.77 19.00 14.82 21.85 37.29

Flat, VG Regions,

E=1024

12.77 7.40 17.84 14.98 21.87 37.74

44

Table 4.5 displays the results of our top-scoring flat models for producing paragraph

captions, as well as the current non-hierarchical state-of-the-art, "Image-Flat" [5]. In

addition to CIDEr (C) and Meteor (M) ratings, we show BLEU 1-4 (B1-4) findings.

The model with the highest CIDEr score (in bold) was trained for 77 epochs. We chose

to highlight (in bold) the highest results on a per-metric basis since there was no one

flat model that beat all others on every criteria.

Following an examination of captions produced by multiple models, it became obvious

that the model with the highest CIDEr score produced the best captions. When faced

with the decision of which measure to use after evaluating the output of various

models, we chose models with the highest or very high CIDEr scores for further study.

4.3.3 Hierarchical Architecture Results

It's time to introduce the SentenceRNN and WordRNN divisions of labour, as

described in Section 3.2, after seeing the flat model's performance results. [4] is

remarkably similar to our hierarchical approach. However, because we didn't have

access to the source code for the original model, there are likely to be inconsistencies

in implementation.

Table 4.3: Comparison Results for hierarchical models

Model Name BLEU-3 BLEU-1 METEOR BLEU-

4

BLEU-

2

CIDEr

Regions-

Hierarchical [30]

14.23 41.9 15.95 8.69 24.11 13.52

Hierarchical, VG

Regions, E=256

12.33 38.38 15.18 7.02 21.63 15.87

Hierarchical, VG

Regions, E=1024

12.62 39.65 15.15 7.14 22.33 17.01

Hierarchical, VG

Regions, GRU,

E=256

12.46 39.69 15.15 7.02 22.14 17.49

Hierarchical, MS-

COCO, E=256

12.33 40.09 15.09 6.79 22.19 16.99

Hierarchical, MS-

COCO, avg-

pooled, E=256

12.38 BLEU-1 15.11 6.91 22.19 17.79

45

Hierarchical, VG

Regions+ MS

COCO, E=1024

12.21 41.9 14.88 21.82 17.85

The difference was not substantial when compared to some of the other models, when

WordRNN was pre-trained on a single dataset. We also noticed that utilising the

"Reduce on Plateau" scheduler with validation loss and continuously using early-

stopping + fine-tuning with manually tweaked learning rates was not as effective as

using a single static LR for the whole training.

4.3.4 Hierarchical-Coherent Architecture Results

This model, which we described in Section 3.4, is the most complex of the models we

tested, and tries to replicate results obtained by[3].The approach brings about

continuity in sentences that make up the paragraph.. Increased fluency can also be

regarded as a result of this improvement. Next section discusses about the performance

of our hierarchical-coherent model performed on standard metrics, and we'll see the

captions generated by the model in Section 4.4.6.

When training our model, we only employed 1024-wide embeddings because prior

attempts on hierarchical captioning models suggested that broader embeddings offered

somewhat better results. Furthermore, using ResNet-152, every model we evaluated

includes maximum-pooled DenseCap input features. We utilised the same DenseCap

feature arrangement as the "Diverse-Coherent" baseline to make our results

comparable. Table 4.7 shows the baseline and results for the three best hierarchical

coherent models we trained.

Table 4.4: Comparison of Diverse coherent and Hierarchical-Coherent models.

Model BLEU

-1

BLEU-

4

METEOR BLEU

-3

CIDE

r

BLEU-

2

Diverse- Coherent [9] 42.12 9.05 17.81 14.74 19.95 25.18

Hierarchical Coherent,

static-lr, GRU

17.46 22.73 12.71 40.52 7.04 15.29

Hierarchical Coherent,

Cylical-lr,

19.23 22.96 12.89 40.80 7.12 15.45

Our results demonstrated an improvement over the conventional hierarchical model

when utilising the hierarchical-coherent design, although the scores fell short of the

46

established baseline [3]. Based on what we learned from the authors' incomplete source

code, mentioned in Section 3.4.1, there are likely some variations between our and the

baseline implementation. Furthermore, the publicly available source code only covers

a portion of the training process, leaving the exact details up to interpretation.

While we used LSTM RNNs in the majority of our tests, the GRU-based models we

trained produced equivalent results. Both types of RNNs used to get equivalent scores

had similar convergence durations, showing that LSTM and GRU-based language

models operate similarly in hierarchical contexts. When comparing the output of many

models that scored similarly, the LSTM-based models tended to give somewhat more

accurate captions.

4.3.5 Comparison with State of the Art

Table 4.8 draws a comparative analysis of published baseline methods with the results

obtained in this work.

Table 4.5: Comparison Results for different Paragraph Generation Models

Model Name METEOR BLEU-

2

BLEU-4 BLEU-1 CIDEr BLEU-

3

Image- Flat [5,4] 12.82 19.95 7.71 34.04 11.06 12.2

RTT- GAN [11] 18.39 25.35 9.21 42.06 20.36 14.92

Diverse-

Coherent [3]

17.81 25.18 9.05 42.12 19.95 14.74

Regions-

Hierarchial [4]

15.95 24.11 8.69 41.9 13.52 14.23

Diverse-

Coherent (with

VaE) [3]

18.62 25.52 9.43 42.38 20.93 15.15

Human [4] 19.22 25.68 9.66 42.88 28.55 15.55

Flat (ours) 14.94 21.96 7.60 37.58 20.16 12.94

Hierarchical

(ours)

15.05 22.09 6.82 39.57 17.69 12.30

Hierarchical –

coherent (ours)

15.47 22.99 7.14 40.83 19.21 12.93

47

The remaining baselines are all hierarchical, with an E = 1024 embedding size and

input given by max-pooled Dense-Cap features. The hierarchical coherent architecture

used in this work bases upon "Diversified-Coherent" model without VaE; in their next

model, the same authors are able to enhance diversity performance of the generated

captions using VaE.

We identified the top performing model for each of the three model types we compared

on the basis of values obtained on Meteor and CIDEr metrics and by drawing up

comparison between captions generated by them for a specific image. The flat

captioning model that has been used here can be described as follows: pre-training

performed on MS-COCO dataset. It has DenseCap features that are max pooled and

embedding size is given by E=1024.

The hierarchical model, on the other hand, involves pre-training with a WordRNN on

VG Regions dataset.

The hierarchical coherent model underwent training with a cyclical learning rate,

unlike our other models.

As previously stated, we were unable to achieve equivalency with the baseline models

as entire code for either of the three models was unavailable. Also, the flat model used

surpassed the baseline model for flat captioning on all but one evaluation parameters

i.e., BLEU-4 and there too, its value lies very close to that of the baseline method. This

tells us that paragraph captioning with non- hierarchical has still room for

improvement.

4.4 Discussion

This thesis implements and compares performance of 3 model types for image

captioning: flat model, hierarchical model and hierarchical- coherent model. Prior to

training on Stanford- Paragraph Dataset, pre-training was also performed on two

datasets. The results suggest that except for the fact that models that have been pre-

trained on VG Regions scored well on BLEU-4, there was hardly any difference

between models trained on VG regions and MS COCO. This can be justified as

follows: Stanford-Paragraph dataset is basically an improvement over the VG regions

[30]. All models used here profited from utilizing pre-calculated features, and based

on our early trials, all models made use of pre-trained RNN weights.

48

4.4.1 Flat Versus Hierarchical Models

When it comes to automatic evaluation metrics scores, flat captioning model performs

better than the hierarchical models. Based on our findings, it is not impossible to

believe that if efforts are made to refine the flat captioning model, it will eventually

achieve performance comparable to best systems. The flat model's main advantage is

that it is built on a simpler architecture, making it easier to train and incorporate

additional enhancements.

Looking at generated captions, it was found that he images in the validation dataset

show a lot of variation; for some images, it is simpler to caption with paragraph length

captions when compared to others. Shorter captions were generated by the flat

approach, which frequently seemed to be an enhanced version of single sentence

caption. In terms of quality, it appears that flat captioning model represents shorter

descriptions and hierarchical-coherent model represents more extensive paragraph

captions. However, it appears that greater linguistic complexity does not automatically

imply greater value of fidelity, since almost all paragraphs contained some

inaccuracies.

4.4.2 Possible Enhancements

A machine generated caption can be good if humans are unable to distinguish it from

a human generated description So, depending on human evaluation criteria, how can

we increase the performance of our models? A few ideas for improving scores attained

by models are:

• Fidelity – Upgrading the process of input features extraction and incorporating a

learning algorithm in which captions are generated based on inputs given.

• Intelligibility – Taking a more robust linguistic model that is trained on larger and

diverse dataset;

• Adequacy – by making use of the caption scores obtained inside the loss function.

• Fluency – this has been worked upon in part by the coherence-based models. The

improvement on this would require work on a number of parameters mentioned above.

49

CHAPTER 5

Conclusion and Future Work

This work, for paragraph image captioning, explores three different types of models.

The most simple and basic is the flat model. It makes use of a CNN encoder and a

RNN decoder in its native form. Hierarchical model introduces a top-level RNN. This

helps in keeping a tab on the backdrop of the sentence. Hierarchical-coherent model

makes use of coherence vectors to ensure that the gradient moves from endmost word

of previous sentence to next sentence.

We used flat captioning, hierarchical captioning, and hierarchical-coherent captioning

models in our experiments. Features taken from ResNet-152 [2] as well as DenseCap

[1] features used in paragraph image captioning have been used as input. RNNs based

on LSTM or GRU were utilised in the models. LSTM based RNN was employed for

training most of the models. Performance comparisons revealed the existence of

minute differences between methods involving LSTM and the methods involving

GRU. Models were evaluated on CIDEr -D , Meteor and BLEU -1,2,3,4 . We did not

detect a significant difference between GRU-based models and LSTM based models.

While several of our models came close to meet the baseline methods [3, 4], this work

was not able to achieve scores as good as the scores mentioned by hierarchical models

it is based upon. On all the following metrics, we outperformed the published Imageflat

baseline model [5]. It has been demonstrated that it is relatively simple to obtain high

evaluation metrics scores for paragraph captioning with any flat-model by making

minor changes to image captioning model given by [6]. The performance of our flat

model is quite near to baseline hierarchical captioning model in terms of CIDEr – D

score.

Going ahead, approaches like attention learning and reinforcement leaning can be

integrated into flat models as well as with hierarchical models. One such

implementation can be the use of reinforcement leaning for improving Meteor and

CIDEr scores. This will greatly improve the generative ability of the model. Yet

another possible field of research would be to experiment with new models of dense

captioning and look for the possibility of generating features better suited for paragraph

captioning.

50

REFERENCES

1. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

2. J. Johnson, A. Karpathy, and L. Fei-Fei. DenseCap: Fully convolutional localization networks for dense captioning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4565–4574,

2016.

3. M. Chatterjee and A. G. Schwing. Diverse and coherent paragraph generation from images. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 729–744, 2018.

4. J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei. A hierarchical approach for generating descriptive image paragraphs.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3337–3345.

IEEE, 2017.

5. A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3128–3137, 2015.

6. O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3156–3164, 2015.

7. M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep contextualized word

representations. arXiv preprint arXiv:1802.05365, 2018.

8. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

9. S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image captioning. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, page 3, 2017

10. X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Microsoft COCO captions: Data

collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.

11. X. Liang, Z. Hu, H. Zhang, C. Gan, and E. P. Xing. Recurrent topic-transition GAN for visual paragraph generation.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 3362–3371, 2017.

12. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.

Automatic differentiation in PyTorch. In NIPS- W, 2017.

13. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.

Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P.

Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.

Zheng. TensorFlow: Largescale machine learning on heterogeneous systems, 2015. Software available from:

https://www.tensorflow.org/.

14. R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based image description evaluation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4566–4575, 2015.

15. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey of deep reinforcement learning.

arXiv preprint arXiv:1708.05866, 2017.

16. M. Denkowski and A. Lavie. Meteor universal: Language specific translation evaluation for any target language. In

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 376–380, 2014.

17. S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies. In Advances in Neural

Information Processing Systems (NIPS), pages 493–499, 1996.

18. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings

of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pages 249–256, 2010.

19. G. A. Miller. WordNet: a lexical database for English. Communications of the ACM, 38(11):39–41, 1995.

20. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic evaluation of machine translation.

In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pages 311–318.

Association for Computational Linguistics, 2002.

https://www.tensorflow.org/

51

21. D. M. Powers. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation.

2011.

22. J. White, T. O‘Connell, and F. O‘Mara. The ARPA MT evaluation methodologies: Evolution, lessons, and future

approaches. In Proceedings of the First Conference of the Association for Machine Translation in the Americas, pages

193–205, 1994.

23. National Research Council (US). Automatic Language Processing Advisory Committee. Language and machines:

Computers in translation and linguistics; a report, volume 1416. National Academies, 1966.

24. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO:

Common objects in context. In European Conference on Computer Vision (ECCV), pages 740–755. Springer, 2014.

25. R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al.

Visual Genome: Connecting language and vision using crowdsourced dense image annotations. International Journal

of Computer Vision (IJCV), 123(1):32–73, 2017.

26. P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up and top-down attention

for image captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 6077–6086, 2018.

27. B. Dai, S. Fidler, R. Urtasun, and D. Lin. Towards diverse and natural image descriptions via a conditional gan. arXiv

preprint arXiv:1703.06029, 2017.

28. J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism in sequence-tosequence learning. arXiv preprint

arXiv:1603.06393, 2016.

29. G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In Advances in Neural

Information Processing Systems (NIPS), pages 971–980, 2017.

30. Li, M.-T. Luong, and D. Jurafsky. A hierarchical neural autoencoder for paragraphs and documents. arXiv preprint

arXiv:1506.01057, 2015.

31. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In International Conference on Machine Learning (ICML), pages

2048– 2057, 2015.

32. S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation with improved correlation with human

judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, pages 65–72, 2005.

33. A. Lavie. Evaluating the output of machine translation systems, 2011. https://www.cs.cmu.edu/~alavie/Presentations/

MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf, accessed 2019-03-19.

34. X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Microsoft COCO captions: Data

collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.

35. R. Lin, S. Liu, M. Yang, M. Li, M. Zhou, and S. Li. Hierarchical recurrent neural network for document modeling. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 899–907, 2015.

36. H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video paragraph captioning using hierarchical recurrent neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4584–

4593, 2016.

37. R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded compositional semantics for finding and

describing images with sentences. Transactions of the Association for Computational Linguistics, 2:207–218, 2014.

38. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014.

39. O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned from the 2015 mscoco image

captioning challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 39(4):652–663,

2017.

40. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

41. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in Neural

Information Processing Systems (NIPS), pages 3104–3112, 2014.

42. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

52

43. A. Alzu’bi, A. Amira, and N. Ramzan. Semantic content-based image retrieval: A comprehensive study. Journal of

Visual Communication and Image Representation, 32:20–54, 2015.

44. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et

al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115(3):211–

252, 2015.

45. S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, 2010.

46. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In Advances

in Neural Information Processing Systems (NIPS), pages 3320–3328, 2014.

47. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

48. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

49. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–9, 2015.

50. J. Lu, C. Xiong, D. Parikh, and R. Socher. Knowing when to look: Adaptive attention via a visual sentinel for image

captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 375–

383, 2017.

51. Y. Bengio, P. Simard, P. Frasconi, et al. Learning long-term dependencies with gradient descent is difficult. IEEE

Transactions on Neural Networks, 5(2):157–166, 1994.

52. T. Mikolov, M. Karafiát, L. Burget, J. Cernock`y, and S. Khudanpur. Recurrent neural network based language model.

In Eleventh Annual Conference of the International Speech Communication Association, 2010.

53. T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In Proceedings

of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 746–751, 2013.

54. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of Machine

Learning Research, 3(Feb):1137–1155, 2003.

55. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and

their compositionality. In Advances in Neural Information Processing Systems (NIPS), pages 3111–3119, 2013.

56. J. Mitchell and M. Lapata. Composition in distributional models of semantics. Cognitive Science, 34(8):1388–1429,

2010.

57. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

58. J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

59. A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

60. S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

61. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555, 2014.

62. R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine

Learning, 8(3-4):229–256, 1992.

63. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS), pages 2672–2680, 2014.

64. R. Shetty, M. Rohrbach, L. A. Hendricks, M. Fritz, and B. Schiele. Speaking the same language: Matching machine

to human captions by adversarial training. In Proceedings of the IEEE International Conference on Computer Vision

(ICCV), 2017.

65. Y. Pu, W. Yuan, A. Stevens, C. Li, and L. Carin. A deep generative deconvolutional image model. In Proceedings of

the Nineteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pages 741–750, 2016.

L. Wang, A. Schwing, and S. Lazebnik. Diverse and accurate image description using a variational auto-encoder with

53

an additive gaussian encoding space. In Advances in Neural Information Processing Systems (NIPS), pages 5756–

5766, 2017.

66. D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

67. R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings with multimodal neural language

models,” arXiv preprint arXiv:1411.2539, 2014.

68. L. Fei-Fei, A. Iyer, C. Koch, and P. Perona, “What do we perceive in a glance of a real-world scene?” Journal of

vision, vol. 7, no. 1, pp. 10–10, 2007.

69. Y. Feng and M. Lapata, “Visual information in semantic representation,” in Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.

Association for Computational Linguistics, 2010, pp. 91–99.

70. J. Fan, Y. Gao, and H. Luo, “Hierarchical classification for automatic image annotation,” in Proceedings of the 30th

annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2007, pp.

111–118.

71. B. Z. Yao, X. Yang, L. Lin, M. W. Lee, and S.-C. Zhu, “I2t: Image parsing to text description,” Proceedings of the

IEEE, vol. 98, no. 8, pp. 1485–1508, 2010.

