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ABSTRACT 

 

 
An electroencephalogram (EEG) is an electrical signal that captures brain impulses by 

arranging electrodes in a specific pattern. The process of collecting EEG can be either 

invasive or non-invasive. Non-invasive EEG recordings are obtained from the 

electrodes attached to the scalp area, whereas invasive EEG recordings are obtained 

from the electrodes implanted into the brain, which needs surgery.  

As a result, EEG data provide information into the participant's cognitive 

conditions. EEG, on the other hand, is susceptible to electrical noise and is best 

used in controlled lab circumstances rather than in real-world scenarios. Non-

invasive EEG devices are becoming popular among researchers, and they are most 

widely used brain signal methods. The non-invasive nature of EEG-based techniques 

makes it more viable for the following reasons: EEG is a fast and safe way of checking 

brain activity, EEG approaches are non-invasive, EEG detects brain activity at a 

resolution of milliseconds with high precision. EEG has a less error probability, 

convenient to use and less setup cost with minimal danger.  

The advancements in technology have bought lots of changes in human life. All the 

changes have reduced the efforts of humans in doing any work. The advancements 

reduce the mental attention level of human beings which can be dangerous in attention-

seeking applications. In this work, a brain-computer interface (BCI) system is 

suggested for mental attention detection using EEG. To detect mental states a signal 

processing and machine learning-based algorithm is proposed. Flexible Analytic 

Wavelet Transform (FAWT) explores for feature extraction from EEG and different 

machine learning algorithms are tested with extracted features to detect mental states. 
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Initially, multiple FAWT based features are extracted out of which the log energy 

entropy provides the best classification performance with an optimizable k-nearest 

neighbor classifier. The classification performance of the proposed work has better 

results as compared to other similar approaches. 

Alcohol consumption alters the functionality of nervous system by disturbing the 

neuron process, which leads to the behavioral changes in a human life. An automatic 

identification of alcoholics can address these issues. EEG is a widely used tool for 

monitoring the brain activities. In this study, singular spectrum analysis (SSA) and 

machine learning-based algorithm is proposed for the automatic detection of normal 

and alcohol EEG signals. Kruskal Wallis test is performed as a part of a statistical 

study and the features which satisfy p<0.05 are considered in the classification. 

Initially, multiple SSA-based features are extracted out of which the inter-quartile 

range and wavelength provide the best classification performance with an optimizable 

support vector machine classifier. The achieved classification accuracy is 94.2%. 

EEG finds various applications in the identification and diagnosis of neurological 

diseases and brain computer interface. BCI is a system works on the instructions given 

by the human brain and helps the disabled to communicate with surroundings. 

Alcoholism is one of the leading causes of disease and can be identified and diagnosed 

by using the EEG signals which can avoid road accidents. 

To explore the complexity of the EEG signals the signal processing in machine 

learning tools are employed. Various non-stationary tools are employed for the 

decomposition of EEG signals and multiple features are extracted. The extracted 

features are further tested with various machine learning algorithms for the 

classification of EEG signal.  
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CHAPTER 1 

INTRODUCTION 

1.1 Human Brain 

Human brains are the most complicated organs on the planet. It is in charge of a 

variety of physical tasks. It has a 10 billion nerve cells and neurons brain network. 

Human sensations, hunger, thirst, physical movements, and sleep are all handled 

by it. It is in charge of nearly all of a human's essential actions for existence. It 

sends and receives signals to communicate with the environment of the body part. 

The brainstem, spinal cord, and big brain are all part of the central nervous system, 

as shown in Fig. 1.1. The brainstem connects the spinal cord with the big brain. 

Based on its anatomy and functions, it is separated into three components. 

 

Fig. 1.1. Various regions of Human Brain [1]. 

 

1.2 Brain Structure 

Based on anatomy, the brain is divided into three regions: the rear brain, the 

midbrain, and the forebrain. The cerebellum and fourth ventricle, as well as the 

spinal cord, are located above the myelencephalon in the back brain. In the second 

segment of the mesencephalon, which exits in the midbrain, are the tectum, 

tegmentum, and cerebral aqueduct. In the third segment, the diencephalon and 

telencephalon leave the forebrain [1]. 
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Based on its functions, the brain is divided into three parts. The forebrain, also 

known as the cerebrum or large brain, is the first component and is in charge of 

higher-level mental tasks including calculation. The second part of the brainstem 

is in charge of visual functions. The third section, the cerebellum, is in control of 

physical movements. 

1.3 Electroencephalography (EEG) 

Human brain is a collection of several number of neurons, which shows high resolution 

of spatio-temporal dynamics. For recording the data, there are many techniques such 

as MRI, EEG, MEG, FMRI, PET, NIRS, EROS. Among these EEG is the most 

prominent technique that is used due to the measure of control activity with the 

temporal resolution with which less than millisecond is provided using each signal. 

This signal is also used for extracting the features in the brain signal. 

The first EEG signal is being recorded by Hans Bazar in 1929 in past there are some 

limitations that are subjected to visual only. The visible review is extremely subjective 

and hardly permits any applied math analysis. These ways are terribly dull and Time 

consumption is also high.  

So basically, EEG data will be of nonlinear, non-gaussian, non-correlated or a random 

signal. using EEG signal some kind of injuries or brain diseases can be detected which 

are related to neurology, and sleep disorder like Narcolepsy, tumor, depression and 

many other issues which relate with stress. Signal Processing can differentiate a normal 

and abnormal person using their brain activity. 

The electrical impulses are generated by the neurons for communication between other 

neurons. The electrodes are used for collecting EEG data. They are placed on the scalp 

of measuring the amplitude of the impulses which are generated by neurons. EEG 

signal frequency ranges from one Hertz to hundred Hertz, among them hundred Hertz 

is used very rarely. The range of amplitude varies between 10 microvolts to 100 

microvolts. 

Any evoked reaction that is imbedded at intervals on going background activities has 

a poor signal-to-noise ratio in the collected signal. This eliminates a variety of activities 

from the data collection process, such as eye blinking, muscle activity, and other 

background activities. As a result, these signals are captured in low-noise 

environments and using complex machinery that are free of interference and a variety 

of disturbances. 
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Other than poor spatial resolution EEG are good in temporal resolution which is less 

than one milli-second. this signal has very low frequency in terms of Hertz. Their 

classification is done based on the frequency groups that are classified as Delta, theta, 

alpha, beta and gamma based on their emotion’s amplitude is being varied. 

The EEG is a signal that represents brain activity. The signal waves include crucial 

information about the brain's condition. It is a non-invasive technology for brain 

imaging that records electrical potentials on the scalp's surface as a result of the 

electrical activity of large groups of neurons in the brain [2]. Non-invasive means 

that the body is not invaded or sliced open, as it would be during surgical 

examinations or therapeutic surgery. Non-invasive approach is the polar opposite 

of intrusive procedure. 

 

Fig. 1.2. An EEG recording headset [3]. 

1.4 Types of Signals 

EEG signals are complex signals that are described in terms of rhythmic and 

transient signals, as seen in Fig. 1.3. Different frequency bands are used to divide 

the rhythmic action. When EEG signals are captured in different states, such as 

doing a task or relaxing, different persons of different ages may have varying 

magnitude and frequency ranges. 
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Fig. 1.3. A representation of EEG Signals [4]. 

 

Five types of waves may be distinguished based on frequency ranges. From low 

to high frequency, they are alpha (α), theta (θ), beta (β), delta (δ), and gamma (γ) 

accordingly. 

A specific wave is mostly available in specific lobe of cerebral cortex however this 

is not always true.  

 

1.4.1 Delta Waves (δ) 

The frequency range of delta waves is 0–4 Hz. Deep sleep, coma, as well as being 

conscious, are all mental condition connected with these frequency range. It is 

usually regarded a clinical phenomenon in the waking state. The greater the 

magnitude, the more severe the problem being evaluated. These rages of waves 

are less as you get older, but they're still present in healthy people when they're 

awake. 

 

Fig. 1.4. Delta Wave [4]. 

 

1.4.2 Theta Waves (θ) 

Theta waves have a frequency between 4 and 8 Hz. Boosting ideas, creative 

ideology, and sleepy materials are all mental attentions connected with these 

waves. These waves appear in the head's central, temporal, and parietal regions. 

These waves are common in healthy persons when they are sleeping deeply. 
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Fig. 1.5. Theta Wave [4]. 

 

1.4.3 Alpha Waves (α) 

Alpha waves have a frequency between 8 and 13 Hz. Relaxed and peaceful mental 

states are related with these waves. These frequency range appear on the back of 

the skull and in the occipital region of the brain. In comparison to other waves, 

these have a large amplitude. While the person is awake and clam, this can be 

noticed. These waves might sometimes disrupt the -rhythm. These ranges are 

typically seen in people who are calm and relaxed while awake. 

 

 

Fig. 1.6. Alpha Wave [4]. 

 

1.4.4 Beta Waves (β) 

Beta waves have a frequency between 13 and 30 Hz. Highly concentrated and 

attentive mental states, such as intense thinking and concentration, are connected 

with these waves. In comparison to other waves, beta waves have a wide frequency 

range. These waves appear on the front side of the skull and in the brain's core 

center. 

 

Fig. 1.7. Beta Waves [4]. 
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1.4.5 Gamma Waves (γ) 

Gamma waves have a frequency of less than 30 Hz. Parallelly work and multi-

tasking are mental states related with this. Because of their small magnitudes, these 

waves are difficult to discern. These waves can be found in every area of the brain. 

Fig. 1.8. Gamma Waves [4]. 

 

1.5 Acquirement of EEG Signals 

Sculp is used to collect EEG signals. Electrodes attached to the head are used to 

measure the signals. The basic premise of EEG is to calculate the voltage 

difference between two or more electrodes. Either the mastoids or the ear lobes 

have one or more electrodes connected to them. Reference electrodes are what 

they're called. These electrodes aid in the detection of the skull's background 

electric field. The placement of reference electrodes is critical. They should not be 

placed near the brain or in any other area of the body because signals may be 

altered by muscle or heart electrical activity [5]. 

 

Fig. 1.9. An EEG signal acquisition headset with electrodes [3]. 
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Various EEG devices are available, each with a different number of electrodes and 

filters. These devices assist in the acquisition of analogue EEG signals, which are 

subsequently converted to digital data with a sampling frequency. Filters aid in the 

removal of artefacts. By deleting signals like Electromyography (EMG) and 

Electrocardiography (ECG), unwanted frequencies are disregarded using low pass 

and high pass filters [6]. During data processing, the data resolution is also crucial. 

As a result, while recording EEG data, sample frequency, sampling rate, and the 

number of electrodes is all critical considerations. 

 

Fig. 1.10. The EEG recording system building blocks [7]. 

 

Various electrodes are used to access EEG signal using various methods. Some of 

the electrodes used for recording EEG data are: 

• Reusable Electrodes. 

• Disposable Electrodes. 

• Electrodes Caps. 

• Saline-Based Electrodes. 

• Needle Electrodes. 

 

1.6 Artifacts 

The Artifacts are undesirable signals caused by noise in electronic circuits, for 

example. These are not caused by brain activity, but rather by signal measurement 

issues that make analysis challenging. 

Artifacts come in a variety of shapes and sizes. One of the primary abnormalities 

is due to the system's impedance, and another is a sampling frequency artefact 

induced by the ground loop, which is 50 Hz and 60 Hz. The significance of 

artefacts and their removal can be better understood by looking at Fig. 1.11: 
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Fig. 1.11. Removing Artifacts from EEG Signals [7]. 

 

(A)  A raw EEG data with artifacts. 

(B) The averaged imaging artifact. 

(C) The outcome of eliminating the averaged image artefact from the EEG in 

A, then down sampling and displaying Pulse artefact. 

(D) The averaged pulse artifact from trace C (not to scale). 

(E) Result of subtracting the averaged pulse artifact in D from the EEG in C. 

(F) The EEG from the same subject, recorded outside the scanner, i.e., free of 

imaging and pulse artifact. The character of this EEG appears to match 

closely the artifact corrected trace in E. 

However, some of the artifacts are useful. Biological signals such as EMG and 

EKG can help to predict different mental states. Such as, EMG artifact which is 

due to eye blinking can provide information about sleep or awake states. 

10-20 System of Electrodes Placement 

One of the commonly used methods of electrode placement is the 10-20 System 

for recording EEG signals which is standardized by the American 

Electroencephalographic Society. Using this system, a total of 21 electrodes are 

placed on the scalp as shown in A of Fig. 1The location ion of placement for 

electrodes is as: 
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Nasion: Electrodes placed at the level of eyes and top of nose are Reference Points, 

Nasion. Inion: Electrodes placed on the middle back side backside of head and 

base of skull are inion. 

The above points are used to calculate the dimensions of the skull. The locations 

of electrodes are selected by dividing parameters into 10% and 20% increments. 

As shown in B of Fig. 1.9 [8], three electrodes are inserted in the midst of adjacent 

spots. The 10-20 system is based on the relationship between the placement of an 

electrode and the cerebral cortex. The following electrode letters are used to decide 

the placements: 

 

Fig. 1.12. 10-20 System of Electrodes Placement [8] Seen from (A) Left and (B) 

Above the Head. Here A stands for ear lobe, C stands for central lobe, F stands for 

frontal lobe, Fp stands for frontal polar, O stands for occipital lobe, Pg stands for 

nasopharyngeal and T stands for temporal lobe. 
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Fig. 1.13. Location and Nomenclature of the Intermediate 10% Electrodes [8]. 

 

There are several additional ways for recording EEG signals than the 10-20 

system. For recording electric potentials on the scalp, the Queen Square technique 

of electrode placement was proposed as a standard [8]. Bipolar or unipolar 

electrodes can be used to provide EEG measurements. In bipolar, the difference in 

potential between two electrodes is measured, but in unipolar, the average of all 

electrodes is compared to the potential of each electrode [8]. 

 

1.7 Problem Background and  Motivation: 

EEG signals have various applications in the identification of sleep apnea, 

Alcoholism, Brain-computer interface (BCI) [9, 54, 39]. This work presents the 

classification of alcoholism and BCI. The study of human-computer interaction is 

known as a BCI. BCI aspires to create a design that achieves a good fit between 

the user, the machine, and the needed services in order to reach a particular level 

of quality and optimality in the services. BCI is now one of the most active research 

fields in the field of computer science. Modern forms of human-driven and human-

centric contact with digital media have opened up new avenues for modernizing 

various aspects of human existence, such as learning and working. Because 

emotions are so important in people's daily lives, BCI applications have enhanced 

the importance of emotion identification. BCI is the source of communication for 
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the disabled people. The successful classification of various motor imagery (MI) 

tasks finds various application towards disabled people in driving applications, 

medical applications.  

The alcoholism is the other problem focused. The early identification of 

alcoholism can prevent accidents  and several hazards. Drinking leads to the third 

position in diseases. Alcoholism-related genetic diseases include weaker and less 

organized theta rhythms. Drinking is the third major cause of disease as per the world 

health organization. Furthermore, alcoholism increases as per disability-adjusted life-

years (DALY) which estimates that 5.1% of global diseases are related with alcohol 

consumption. Furthermore, the rising incidence of malignancies linked with alcohol 

adds to the seriousness of the situation.  

1.8 Objectives: 

1.  Need of non-stationary methods for  EEG signals analysis and 

classification. 

2. Need of non-stationary methods for the classification of MI tasks in BCI 

applications. 

3. Need of feature extraction methods for the classification of normal and 

alcoholics EEG signals.  
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CHAPTER 2 

Classification of Mental Attention States EEG Using 

Analytic Wavelet Transform and Optimizable k-nearest 

Neighbors 

 

2.1 Introduction 

The BCI is a system that works on human brain instructions. Various motor 

imagery (MI) task applications are controlled by the instructions. MI is the process 

of imagining a certain task in the brain. MI-based BCI discovers ways for impaired 

persons to engage with their surroundings [10]. BCI allows individuals to respond 

more quickly to changes in their environment and does not require the involvement 

of peripheral nerves or muscles. BCI is a non-muscular method of communicating 

a person’s actions to external devices like computers, assistive tools, speech 

synthesizers, and brain prostheses. The reliability of the BCI system depends on 

the successful classification of MI tasks. MI classification using 

electroencephalogram (EEG) gives a better result due to the following reasons: 

EEG is a fast and safe way of checking brain activity, EEG approaches are non-

invasive [11, 12], EEG detects brain activity at a resolution of milliseconds with 

high precision [13]. 

2.1.1 Literature Survey 

Several studies are conducted to classify MI tasks. The Analytic features are 

investigated for EEG data categorization under the various MI tasks [13]. A decision 

tree (DT) based classification algorithm is employed for classifying computer cursor 

up, down, left, and right movements [14]. To classify the MI tasks a technique named 

Filter Bank-Tikhonov Regularization Common Spatial Pattern (CSP) Random Forest 

has been developed [15]. For extracting power features and MI task classification, a 

comparison of spectral signal representations such as power spectral density and 

wavelet techniques are performed [16]. A Meta-analytic review based on focusing on 

emotions as voluntary and stimulus-independent commands towards BCIs is explored 

[17].  
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An efficient feature selection technique based on an evolutionary algorithm is 

suggested to generate a subset of important features that enhances the classification 

accuracy [18]. Analyzing continuous EEG signals including specific cue-triggered 

mental states is used to investigate a framework for developing an asynchronous BCI 

[19]. For classifying MI tasks, a wavelet-based time-frequency analysis technique is 

developed [20]. For the categorization of right-left limb movement, the linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA), and K-nearest 

neighbor (KNN) algorithms are explored [21]. Wavelet packet analysis is used to 

investigate slow cortical potentials self-regulation. A multilayer perceptron is used to 

classify the EEG data [22].  

A CSP and chaotic particle swarm optimization-based technique is explored for MI 

EEG classification with twin support vector machine (SVM) [23]. The master slave 

features of asynchronous BCI are explored to classify MI tasks [24]. A graphical 

method is suggested to model the interaction between EEG electrode recordings during 

left and right hands MI activities [25]. The accuracy of MI tasks is improved using a 

novel approach called temporally constrained sparse group spatial pattern for the 

optimization of the filter banks and time window along with CSP [26]. For the 

minimum number of channel selections, research-based on time-frequency wavelet 

coherence is proposed to classify the MI tasks [27].  

A filtering method based on multivariate empirical mode decomposition is explored 

for MI tasks categorization [28]. A system based on EEG BCI that measures attention 

levels has been proposed. Three mental states are classified using KNN algorithms 

based on the self-assessment manikin model is proposed [29]. A single trail-based BCI 

system is suggested for monitoring the change in mental states [30]. The non-linear 

features and SVM are explored for the classification of mental states [31]. An SVM is 

used for the classification of attentive and non-attentive mental states of the students 

[32].  

A BCI based on the robotic simulator is proposed in which wavelet function is used as 

the feature extraction tool and classification is performed by Recurrent Neural 

Networks [33]. The use of monitoring drivers to concentrate attention and engage 

operators in multi-tasking situations is presented [34]. A short time Fourier transform 

(STFT) with SVM approach is presented for mental states classification [35]. A 

rational dilation wavelet transforms (RDWT) with bagged trees (BT) based approach 

is proposed for the classification of MI tasks [36]. An empirical mode decomposition 
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(EMD) with multi class least square SVM (MS-LS-SVM) is explored to classify 

emotion EEG signals [37]. 

This work suggested a Flexible analytic wavelet transform (FAWT) and an 

optimizable classifier-based algorithm to classify mental states. EEG data is 

decomposed by using FAWT and features are extracted corresponding to focused, 

unfocused, and drowsiness EEG signals. The obtained features are driven to different 

classifiers for the classification of the mental state. The remaining paper is structured 

in the following order: In Section 2, the methodology is split into four sections: dataset, 

feature extraction, decomposition method, and classification. The results and 

discussion are presented in Section 3 and the conclusion is presented in Section 4. 

2.2 Methodology 

The block diagram of the presented method is shown in Fig. 2.1. Initially, the EEG 

signal is given as the input to FAWT for decomposition. The extracted features are 

further tested with various classification tools for the classification. 

2.2.1 Dataset 

The dataset used in this work consists of twenty-five hours of EEG recordings 

collected from the 5 subjects under the low-intensity control activity. The activity 

entailed utilizing the Microsoft-Train-Simulator application to operate a computer-

simulated train. In each trial, participants were asked to use the above-mentioned 

computer simulation program to manage a train for 35-55 minutes. The dataset 

comprises of three different mental states they are focused on awareness, unfocused 

but awake, and drowsiness [35]. 

 

Fig. 2.1. The block diagram of the proposed model. 

 

2.2.2 Flexible analytic wavelet transform 

The flexible analytic wavelet transform (FAWT) is primarily used to investigate non-

stationary signals. FAWT are analytic wavelet transforms having a wide range of 

frequency and temporal coverage. For the decomposition of a signal, FAWT utilizes 

iterative filter banks which include two high pass (HP) channels and one low pass (LP) 

channel. Here e and f, g and h are the LP up and down, HP up and down sampling 
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parameters. FAWT employs a Hilbert transform with a pair of atoms to manage 

redundancy(R), quality factor (Q), and dilation factor (d). The ratio of the center 

frequency to the bandwidth is Q, which is responsible for the frequency resolution. d 

determines the wavelet's size. the ratio of the input sample to the output sample is R. 

The parameters are defined as follows [38]: 

 

 𝑅 = 
𝑔

ℎ(1 − 𝑑)
 (2.1) 

 
𝑄 =

2 − 𝛽

𝛽
 

(2.2) 

 𝑑 =
𝑒

𝑓
 (2.3) 

 

 𝛽 ≤ 1 (2.4) 

 
𝑅 >

𝛽

1 − 𝑑
 

(2.5) 

The frequency response of LP filter L(ω) can be defined by the following equation 

[39]: 

 

  L(ω) =

{
  
 

  
 √𝑒𝑓 ,                            𝑓𝑜𝑟          ǀωǀ <   ω𝒑

√𝑒𝑓  𝛳 (
ω− ω𝒑 

ωs− ω𝒑
) ,            𝑓𝑜𝑟             ω𝒑 ≤ ω ≤ ωs

√𝑒𝑓  𝛳 (
π−ω+ ω𝒑 

ωs− ω𝒑
) ,          𝑓𝑜𝑟            ωs ≤ ǀωǀ ≤  ω𝒑

0,                                  𝑓𝑜𝑟                 ǀωǀ ≥ ωs

 

 

(2.6) 

Frequencies of the LP filter's stop band and pass band are represented by ωs and  ω𝒑 , 

respectively. 

 
          ω𝒑 =

(1 − 𝛽)𝜋

𝑒
+
𝜀

𝑒
 

(2.7) 

 ωs =
𝜋

𝑓
 (2.8) 
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Likewise, the frequency response of HP filter H(ω) can be defined by the following 

equation [39]: 

 

 

L(ω) =

{
  
 

  
 √2𝑔ℎ  𝛳 (

π − ω −  ω0 

ω1 − ω0
) , 𝑓𝑜𝑟                   ω0 ≤ ω ≤ ω1

√2𝑔ℎ  ,                                  𝑓𝑜𝑟           ω1 ≤ ω ≤ ω2

√2𝑔ℎ 𝛳 (
ω −  ω𝟐 

ω3 − ω𝟐
) ,          𝑓𝑜𝑟            ω2 ≤ ω ≤  ω3

0,                                             𝑓𝑜𝑟     ω ∈ [(0 ,  ω0)U( ω3 , 2π)]

 

(2.9) 

 

whereas, 𝛳(𝜔) is transition band and is represented as 

 
𝛳(𝜔) = (

1 + cos(𝜔)

2
) (√2 − cos (𝜔))         𝑓𝑜𝑟       𝜔 ∈ [0 , π]  

(2.10) 

The parameters used for decomposing an EEG signal into sub-bands are e = 3, f = 4, 

g= 1, h = 2, and decomposition levels are 15. 

 

2.2.3 Feature Extraction 

This paper uses FAWT for extracting the features from EEG brain activity. The log of 

the total number of microscopic states corresponding to a given macro-state of 

thermodynamics is entropy. The feature has been extracted from 15 subbands and one 

approximation band. Log energy entropy (LEE) feature with conversion as shown 

below [40]: 

 

 E3(si) = log(si
2) (2.11) 

 E3(s) =∑log(si
2)

i

 
(2.12) 

 

With the conversion log(0) = 0  

Where E is the entropy and 𝑬𝟑(𝒔𝒊) is known as LEE. s is the signal and 𝒔𝒊 is the 

coefficient of s in orthonormal basis. 
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2.2.4 Classification Algorithms 

 

2.2.4.1 Decision tree (DT) 

Based on the retrieved information, the DT method generates a decision tree with 

branch and node as a classifier. To reduce the entropy of class labels in the partition, a 

single feature or many features are considered at each node of the tree [41]. 

 

2.2.4.2 Discriminant Analysis (DA) 

For data categorization and dimensionality reduction, DA is a widely used approach. 

When within-class frequencies are not equal and their performances are assessed on 

randomly generated test information, DA is a simple solution [41]. 

 

2.2.4.3 KNN 

The KNN method is a classification or regression technique extensively used in 

machine learning. The idea that physiologically identical samples would have 

comparable measured values across most of their metabolites is the foundation of 

KNN. A weighting function is required for varying the distance between the features 

and gives a better approximation [41]. 

 

2.2.4.4 SVM 

An SVM discovers a hyperplane that splits attentive and inattentive EEG signal 

information in its high-dimensional feature spaces. SVM selects the hyperplanes based 

on the accuracy acquired with the nearest training sample. SVM can classify both 

nonlinear and linear data. Following that, the SVM tries to build a model and utilizes 

it to categorize the data [41]. 

 

2.2.4.5      Ensemble classifiers 

The ensemble classifier is made up of a collection of conventional classification 

algorithms that are freely mixed to provide results that are superior or equal to the best 

classification algorithm in the ensemble. Theoretically, the ensemble classifier adapts 

its performance based on the data being studied, and it eventually achieves the 

performance of the best-performing individual classifier without knowing it [41]. 
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2.3 Results and Discussion 

For the detection of focused, unfocused, and drowsiness mental states, a technique 

based on FAWT is presented. The 7-channel recorded EEG signal is decomposed into 

16 subbands using the FAWT. Initially, 53 features are extracted for each class of EEG 

signal. The class and subband-wise feature set sizes for focused, unfocused, and 

drowsiness are 480×7, 480×7, and 1380×7 respectively. In this study, all the subband 

features are combined for obtaining the classification performance. All 53 features are 

tested with different machine learning algorithms and the features which are giving 

comparable better performance are listed in Table 1. From this table, it is observed that 

LEE is providing better performance as compared to other features. Further, LEE is 

examined for statistical analysis and different classifiers for obtaining the classification 

performance. 

The statistical analysis of LEE is done by using the Kruskal-Wallis (KW) test. KW test 

compares independent groups of data in a non-parametric manner. KW test compares 

the null hypothesis with all the populations having the same distribution functions 

against the alternative hypothesis such that at least two of the samples differ from one 

another. KW test results of LEE for different channels and subbands are presented in 

Table 2.2. In Table 2.2, the LEE feature has considerably obtained lower p-values for 

all subbands, which shows that the proposed feature has high discriminative power for 

MI tasks. 

Further, the classification of LEE is examined by the DT, DA, SVM, KNN, and 

ensemble classifiers. The classification performance of these classifiers is evaluated 

using a 10-fold cross-validation approach. The classification accuracy of weighted 

KNN and optimizable KNN is significantly greater. Table 2.3 shows the accuracy of 

all classifier versions for the feature LEE. 

The key benefit of utilizing optimizable KNN is that the probability of making an error 

in a judgment is minimized. There's a potential that noise will damage the samples, but 

this can be mitigated by utilizing the optimizable KNN, which takes multiple neighbors 

into account. KNN has a greater chance of producing a better approximation because 

it considers the likelihood of many synchronous erroneous data points. 
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S.No Name of the feature Accuracy Classifier 

1 Mean Absolute Deviation [43] 87.2% Weighted KNN 

2 Mean Absolute Value [42] 91.3% Optimizable KNN 

3 Average Amplitude Change [42] 90.5% Optimizable KNN 

4 Wavelength [42] 89.4% Optimizable KNN 

5 Negative Entropy [42] 89.2% Optimizable KNN 

6 LEE [40] 93.25% Optimizable KNN 

7 Log Detector [42] 93.0% Optimizable KNN 

8 Modified mean absolute value 

type 1 [42] 

86.7% Optimizable KNN 

Table 2.1: The accuracies achieved for various features. 

The minimum classification error (MCE) plot of optimizable KNN for the LEE feature 

is shown in Fig. 2.3. It can be observed that MCE is decreased with the increase in the 

iterations. MCE plot shows the estimated and observed MCE with a circle-shaped 

point indicating the best-point hyper-parameters (HP) and a square-shaped point 

indicating minimum error HP. The receiver operating characteristics curve (ROC) of 

optimizable KNN using LEE is shown in Fig. 2.4. ROC is the technique used to check 

the quality of the feature. The area under the curve (AUC) calculates the quality of the 

classifier over the threshold values [1,0]. The quality of the feature can be used to 

determine true positive (TP) and false positive (FP). TP is the ratio of the number of 

outcomes with predicted and actual class i to the number of outcomes with predicted 

class i. FP is the ratio of the number of outcomes that are falsely represented as positive 

to the outcomes of true negative events. The AUC of optimizable KNN with LEE 

feature is 0.98, which is closer to the ideal value. 
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 SB1 SB2 SB3 SB4 

Channel 1 3.76 × 10−13 2.11 × 10−09  5.75 × 10−12 5.05 × 10−29 

Channel 2 4.66 × 10−13 1.10 × 10−41 1.49 × 10−34 1.57 × 10−14 

Channel 3 9.99 × 10−35 6.07 × 10−28 7.42 × 10−11 1.38 × 10−07 

Channel 4 1.40 × 10−26 4.30 × 10−13 1.20 × 10−03 3.06 × 10−24 

Channel 5 4.83 × 10−35 8.83 × 10−26 2.41 × 10−10 7.06 × 10−26 

Channel 6 1.32 × 10−09 1.79 × 10−17 2.70 × 10−15 8.57 × 10−55 

Channel 7 8.39 × 10−18 2.59 × 10−21 8.23 × 10−19 6.19 × 10−29 

 SB5 SB6 SB7 SB8 

Channel 1 1.87 × 10−41 2.91 × 10−91 9.86 × 10−82 4.07 × 10−40 

Channel 2 6.00 × 10−04 1.40 × 10−05 6.94 × 10−31 1.24 × 10−17 

Channel 3 5.60 × 10−05 1.79 × 10−37 3.72 × 10−47 1.95 × 10−21 

Channel 4 7.91 × 10−40 8.98 × 10−95 4.51 × 10−88 5.22 × 10−43 

Channel 5 2.10 × 10−33 4.45 × 10−88 1.83 × 10−97  6.18 × 10−45 

Channel 6 8.38 × 10−78 2.45 × 10−110 1.51 × 10−133 4.69 × 10−75 

Channel 7 3.34 × 10−49 8.09 × 10−104 1.53 × 10−146 1.33 × 10−99 

 SB9 SB10 SB11 SB12 

Channel 1 4.76 × 10−11 4.56 × 10−12 1.39 × 10−13 1.56 × 10−20 

Channel 2 3.64 × 10−28 2.22 × 10−32 3.10 × 10−41 2.93 × 10−51 

Channel 3 1.81 × 10−66 3.58 × 10−96 1.38 × 10−119 3.84 × 10−110 

Channel 4 2.97 × 10−89 1.62 × 10−156 1.97 × 10−184 1.59 × 10−176 

Channel 5 1.52 × 10−68 4.01 × 10−111 1.18 × 10−127 1.15 × 10−122 

Channel 6 1.73 × 10−22 7.18 × 10−15 1.98 × 10−10 1.75 × 10−18 

Channel 7 3.00 × 10−30 3.30 × 10−17 3.56 × 10−08 5.21 × 10−05 

 SB13 SB14 SB15 SB16 

Channel 1 3.40 × 10−10 8.77 × 10−07 9.57 × 10−06 1.73 × 10−05 

Channel 2 5.65 × 10−51 3.11 × 10−27 7.59 × 10−29 1.55 × 10−24 

Channel 3 4.69 × 10−108 2.79 × 10−86 1.96 × 10−72 4.53 × 10−09 

Channel 4 2.98 × 10−150 5.94 × 10−110 1.03 × 10−69 1.16 × 10−15 

Channel 5 2.00 × 10−94 9.17 × 10−77 9.74 × 10−56 2.71 × 10−02 

Channel 6 1.03 × 10−07 2.43 × 10−05 2.77 × 10−08 1.57 × 10−02 

Channel 7 4.00 × 10−04 3.04 × 10−02  5.90 × 10−03 3.18 × 10−02 

Table 2.2: The KW test values of the feature LEE. 
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Classifiers Classifier variants Accuracy  

 Fine tree 74.2 

 Medium tree 68.8 

DT Coarse tree 65.2 

 Optimizable tree 75.7 

 Linear discriminant 76.6 

DA Quadratic discriminant 85.1 

 Optimizable discriminant 85.1 

 Linear SVM 75.4 

 Quadratic SVM 89.1 

 Cubic SVM 91.0 

SVM Fine Gaussian SVM 61.1 

 Medium Gaussian SVM 88.2 

 Coarse SVM 68.5 

 Optimizable SVM 90.3 

 Fine KNN 91.9 

 Medium KNN 91.2 

 Coarse KNN 71.7 

k-NN Cosine KNN 89.8 

 Cubic KNN 90.0 

 Weighted KNN 92.2 

 Optimizable KNN 93.0 

                                                    Boosted trees 77.5 

 Bagged trees 85.8 

 Subspace discriminant 75.6 

Ensemble classifiers Subspace KNN 89.3 

 RUSBoosted trees 72.9 

 Optimizable ensemble 88.0 

Table 2.3: The accuracies of various classifiers using the feature LEE.  
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Fig. 2.2. The confusion matrix of optimizable KNN using LEE feature. 

 

Fig. 2.3. The MCE plot of optimizable KNN using LEE feature. 
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Fig. 2.4. The ROC of optimizable KNN using LEE feature. 

 

The performance measures for the proposed feature are presented in Table 2.4. Table 

2.4 explains that the suggested method's misclassification rate of 6.75% is much lower, 

indicating that both classes of EEG signals are correctly classified. The sensitivity 

(SEN) of 91.38% and specificity (SPE) of 96.24% are quite close to the optimum 

values of sensitivity and specificity. Precision and recall are defined by the F1-score 

composite. The F1 score for the suggested technique is 0.9142, which is closer to its 

maximum value. The classification performance was evaluated using Matthew's 

correlation coefficient (MCC). The MCC value achieved by the proposed method is 

87.70%, which is closer to the ideal value. 

The confusion matrix of optimizable KNN using the LEE feature is shown in Fig 2.2. 

The predicted class is represented by the rows of the confusion matrix, while the target 

class is represented by the columns. Perfectly classified elements are represented in 

diagonal elements, and the remaining elements are incorrectly classified. 
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Performance measure (Ideal value) Classification 

performance 

AC (100%) 93.25% 

Error (0%) 6.75% 

Sen (100%) 91.38% 

Spe (100%) 96.24% 

Precision (100%) 91.48% 

F1 (1) 0.9142 

MCC (100%) 87.70% 

Kappa (1) 0.8481 

Table 2.4: The suggested classification model’s performance metrices. 

 

The utility of the suggested strategy is now demonstrated by a comparison of various 

studies conducted for the MI tasks classification is presented in Table 2.5. The 

techniques are contrasted in terms of the classifier, and accuracy that have been 

provided. Li et al used the FIR filtering approach with KNN to classify five mental 

states [29]. The fast Fourier transform (FFT) with an SVM-based approach is used by 

Myrden et al, Liu et al and Wang et al with the accuracy of 71.6%, 76.82%, and 84.6% 

respectively. The mental states predicted by Myrden et al, Liu et al and Wang et al are 

3 states, 2 states, 2 states [30, 32, 34]. Similarly, Ke et al used wavelet transform with 

SVM have achieved an accuracy of 76.19% with 3 mental states predicted [31]. 

Cigdem et al have used the same dataset used in this work with STFT with the SVM 

approach and achieved an accuracy of 91.72% [35]. Smith et al using the same dataset 

have achieved an accuracy of 91.77% with RDWT and BT [36]. Sachin et al used 

EMD with the MS-LS-SVM approach and achieved an accuracy of 90.63% [37]. The 

performance metrics SEN, SPE, Accuracy, and MCC obtained by the suggested 

technique are 91.20%, 96.21%, 93.16%, and 87.51%, respectively. 
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Authors Dataset 

used 

Proposed 

method 

Classification 

algorithm 

Mental 

states 

predicted 

Classification 

performance 

(Accuracy 

achieved) 

Li et al 

[29] 

EEG FIR 

filtering 

KNN 5 states 

(happy, 

surprise, 

fear, 

disgust, and 

neutral) 

57.0% 

Myrden 

and Chau 

et al [30] 

EEG FFT SVM 3 states 

(fatigue, 

frustration, 

attention) 

71.6% 

Ke et al 

[31] 

EEG WT SVM 3 states 

(attention, 

no 

attention, 

reset) 

76.19% 

Liu et al 

[32] 

EEG FFT SVM 2 states 

(attentive 

and in-

attentive) 

76.82% 

Djamal et 

al [33] 

EEG Wavelet 

Filtering 

SVM 3 states 

(happy, 

relax, sad) 

77.0% 

Wang et al 

[34] 

EEG FFT SVM 2 states 

(driving 

and math 

task) 

84.6% 

Sachin et 

al [37] 

EEG EMD MS-LS-SVM 4 states 

(happy, 

90.63% 
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fear, sad 

and relax) 

Çiğdem et 

al [35] 

EEG STFT SVM 3 states 

(focused, 

unfocused 

and 

drowsing) 

91.72% 

Smith et al 

[36] 

EEG RDWT BT 3 states 

(focused, 

unfocused 

and 

drowsing) 

91.77% 

Proposed 

method 

EEG FAWT KNN 3 states 

(focused, 

unfocused 

and 

drowsiness) 

93.25% 

Table 2.5: The suggested method's performance summary in comparison to existing 

mental states identification. 

 

2.4 Summary 

In this study, the FAWT technique-based features are introduced for the classification 

of focused, unfocused, drowsiness mental states EEG signals. The LEE feature is 

explored for analyzing FAWT-provided sub-bands. The KW test ensures the statistical 

significance of LEE. The LEE is computed from all sub-bands are tested on several 

machine learning techniques. The optimizable KNN provides the best classification as 

follows: accuracy is 93.25%, sensitivity is 91.38%, specificity is 96.24%, precision is 

91.48%, the F1-score is 91.42%, and kappa value is 0.8481. The results are compared 

with the existing works and the proposed work is obtained best classification 

performance. The proposed approach can be explored in the clinical based applications 

for detecting different neurological disorders and classification of other bio-medical 

signals. 
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CHAPTER 3 

Normal and Alcohol EEG Signals Classification Using 

Singular Spectrum Analysis 

 

3.1 Introduction 

Consumption of alcohol has far reached socio-cultural and economic consequences for 

the drinkers. An increase in traffic accidents, machine-related mishaps, and violence 

are some results of drinking. Regular intake of alcohol damages the organs and DNA 

of human beings. Drinking leads to the third position in diseases. Alcoholism-related 

genetic diseases include weaker and less organized theta rhythms [44]. Drinking is the 

third major cause of disease as per the world health organization [45]. Furthermore, 

alcoholism increases as per disability-adjusted life-years (DALY) which estimates that 

5.1% of global diseases are related to alcohol consumption [46]. Furthermore, the 

rising incidence of malignancies linked to alcohol adds to the seriousness of the 

situation [47]. These negative consequences highlight the importance of enhanced 

researches aiming at price efficient and early alcohol misuse monitoring and diagnosis 

[48]. The non-invasive nature of electroencephalogram (EEG)-based techniques 

makes it more viable for real-time diagnosis of alcoholics [49]. 

3.2 Literature Survey 

Several studies are conducted for the identification of alcohol EEG data. A variational 

mode and empirical mode decompositions (EMD) with least Square Support Vector 

Machine (LS-SVM), and K-Nearest Neighbor (KNN) algorithms are employed for the 

identification of alcohol EEG signals [50]. A wavelet filter bank-based approach is 

suggested for the identification of the alcohol EEG signals [51]. Kolmogorov-Smirnov 

test-based features are explored with Adaboost k-means algorithms for identifying 

alcohol EEG signals [52]. The EMD based feature extraction with ensemble subspace 

KNN based classification is explored to identify alcohol EEG signals [53]. A test to 

check the ability of parametric spectrum and coherence estimators and phase 

synchrony processor, which identifies the variations in the scalp while eyes remained 

open in both alcohol and normal EEG data is explored [54]. A fast Fourier transform 

and autoregression modeling are explored for the identification of alcohol EEG signals 

with discriminant analysis (DA) [55]. A tunable-Q wavelet transform (TQWT) with 

ensemble classifiers are explored for the identification of apnea events [56]. For the 
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automatic identification of alcoholics, the nonlinear features of computer-aided 

diagnostics are examined with SVM [57]. Higher-order spectrum cumulants and other 

non-linear features are extracted to assess alcohol-related alterations in EEG data, 

various machine learning algorithms are employed to classify alcohol EEG data [58]. 

The classification of alcohol EEG is explored by wavelet packet decomposition with 

KNN is presented [59]. The automatic identification of alcohol EEG signals is done 

by using a time-frequency image-based technique is suggested [60]. The diagnosis of 

alcoholics is explored by the TQWT with SVM [61]. The correlation analysis is 

adopted for the statistical analysis and KNN is explored to identify alcohol EEG data 

[62]. EMD with extreme machine learning and SVM algorithms are explored for the 

analysis of alcohol EEG signals using EEG rhythms is proposed [63]. The 

identification of alcohol EEG data is explored by using wavelet transform with 

Extreme learning machine (ELM) [64]. The power spectral density (PSD) is explored 

to identify the changes in alcohol EEG signals is presented [65]. Principle component 

analysis and singular value decomposition-based extracted features are employed to 

classify the alcohol EEG data with KNN is explored [66]. PSD of the haar mother 

wavelet-based features is explored to classify the alcohol EEG data with SVM [67]. 

The automated identification of alcohol EEG signals is explored using a dual-tree 

complex WT and SVM classifier [68].    

This work suggested singular spectrum analysis (SSA) and an optimizable classifier-

based algorithm to classify the alcohol EEG data. SSA-based features were extracted 

and further driven to multiple classifiers for the classification.  

 

3.3 Methodology 

3.3.1 Dataset 

The validation of the suggested methodology is done by using the dataset which 

contains EEG data of alcoholic and normal person respectively. The dataset can be 

provided online [69]. The signals are acquired using 64 electrodes which has a 

sampling frequency of 256 Hz. A total 120 EEG signals are used with 2048 sample 

lengths are considered in this work to distinguish normal and alcohol people. Fig. 3.1 

shows the block diagram of the proposed work.  
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Fig. 3.1. Block diagram of proposed methodology. 

3.3.2 Singular Spectrum Analysis 

The SSA is a non-parametric technique that is frequently accessed to analyze 

meteorological and geophysical data series [70]. SSA is made up of two steps: 

embedding and reconstruction. During the embedding process, the EEG data vector S 

is mapped with a multivariate data matrix with arranging the K number of delayed 

vectors with a size D, which in-turn yields to a trajectory matrix (TM) T of size A×B  

is given as [70].      

 

 

TA×B = [

𝑡(1) 𝑡(2) . . . . . . 𝑡(𝐾)

𝑡(2) 𝑡(3) … … 𝑡(𝐾 + 1)
: : … … :

𝑡(𝐷) 𝑡(𝐷 + 1) … … 𝑡(𝑁)

] 

(3.1) 

Here K=N-D+1 and D stands for window length and can be defined for D > 
𝒇𝒔

𝒇
, where 

fs stands for sampling frequency and frequency of the signal is represented by f. The 

TM is further decomposed into M number of TM, T1, T2, T3, ..., TM, in the last stage 

of SSA. 

 

3.3.3 Feature Extraction and Classification 

This work uses IQR and wavelength (WAVELEN) as features. The difference of third 

quartile to the first quartile is IQR [71]. IQR can be calculated by obtaining the center 

point of both the upper and lower half of the data. Wavelength is defined as the EEG 

waveform's cumulative length across a time segment [72].  

In this work SVM is explored to solve two class classification problem. The goal of 

the SVM algorithm is to find the Optimal Separating hyperplane, which separates the 

samples while also maximizing the distance between the two classes [73]. 
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3.4 Results and discussion 

For the identification of alcohol and normal EEG data, a technique based on SSA is 

presented. The data comprises 53 features with two classes (i.e., normal and alcohol). 

Each class has 16 subbands (SB) with a feature set of 1×120 for both alcohol and 

normal respectively. The Kruskal-Wallis (KW) test compares three or more 

independent groups of data in a non-parametric manner. The KW test is used to 

perform a discriminative analysis of derived features. The features having smaller 

probabilistic (p<0.05) values are considered for the classification because of the high 

discriminative power for EEG signals. KW test results are shown in Table 3.1. The 

KW test plots of IQR are shown in Fig. 3.2.1 to Fig. 3.2.16. The KW plots of 

WAVELEN are shown from Fig. 3.3.1 to Fig. 3.3.16. The SBs 2, 4, 5, 6, 7, 8, 9, 10, 

11, 12, 16 has lower p value as shown in Table 3.1 are considered for the classification. 

A 10-folds cross-validation method is used at the classifier stage. The features are 

tested with all the variants of the SVM algorithm. Table 3.2 presents the achieved 

accuracy of the proposed features using the SVM classifier. Optimizable SVM gives a 

better accuracy of 94.2% when compared to all other variants of SVM. 

 

 

 

Fig. 3.2.1. IQR SB1 KW test plot. 
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Fig. 3.2.3. IQR SB2 KW test plot. 

 

 

Fig. 3.2.3. IQR SB3 KW test plot. 
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Fig. 3.2.4. IQR SB4 KW test plot. 

 

 

 

 

Fig. 3.2.5. IQR SB5 KW test plot. 
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Fig. 3.2.6. IQR SB6 KW test plot. 

 

 

Fig. 3.2.7. IQR SB7 KW test plot. 
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Fig. 3.2.8. IQR SB8 KW test plot. 

 

 

Fig. 3.2.9. IQR SB9 KW test plot. 
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Fig. 3.2.10. IQR SB10 KW test plot. 

 

 

Fig. 3.2.11. IQR SB11 KW test plot. 
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Fig. 3.2.12. IQR SB12 KW test plot. 

 

 

Fig. 3.2.13. IQR SB13 KW test plot. 
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Fig. 3.2.14. IQR SB14 KW test plot. 

 

 

Fig. 3.2.15. IQR SB15 KW test plot. 
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Fig. 3.2.16. IQR SB16 KW test plot. 

 

 

 

Fig. 3.3.1. WAVELEN SB1 KW test plot. 

 



39 

 

 

 

 

Fig. 3.3.2. WAVELEN SB2 KW test plot. 

 

 

Fig. 3.3.3. WAVELEN SB3 KW test plot. 
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Fig. 3.3.4. WAVELEN SB4 KW test plot. 

 

 

Fig. 3.3.5. WAVELEN SB5 KW test plot. 
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Fig. 3.3.6. WAVELEN SB6 KW test plot. 

 

 

Fig. 3.3.7. WAVELEN SB7 KW test plot. 
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Fig. 3.3.8. WAVELEN SB8 KW test plot. 

 

 

Fig. 3.3.9. WAVELEN SB9 KW test plot. 
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Fig. 3.3.10. WAVELEN SB10 KW test plot. 

 

 

Fig. 3.3.11. WAVELEN SB11 KW test plot. 
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Fig. 3.3.12. WAVELEN SB12 KW test plot. 

 

 

Fig. 3.3.13. WAVELEN SB13 KW test plot. 
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Fig. 3.3.14. WAVELEN SB14 KW test plot. 

 

 

Fig. 3.3.15. WAVELEN SB15 KW test plot. 
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Fig. 3.3.16. WAVELEN SB16 KW test plot. 
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Subbands IQR WAVELEN 

SB1 0.0293 0.5936 

SB2 2.88×10-8 7.85×10-12 

SB3 0.1033 0.0065 

SB4 2.20×10-3 2.51×10-10 

SB5 0.0635 0.0008 

SB6 2.20×10-3 4.31×10-10 

SB7 0.0046 3.34×10-6 

SB8 2.90×10-3 2.42×10-7 

SB9 9.37×10-6 4.48×10-12 

SB10 1.12×10-5 8.74×10-10 

SB11 8.66×10-5 7×10-10 

SB12 1.53×10-2 1.90×10-5 

SB13 6.87×10-2 3.20×10-3 

SB14 9.23×10-1 3.80×10-1 

SB15 1.64×10-1 1.22×10-1 

SB16 2×10-4 2.31×10-2 

Table 3.1: For different SB’s, the KW test p values of IQR and WAVELEN features. 

 

 

SVM classifier 

variants 

Accuracy 

L- SVM 90.0% 

Q- SVM 89.2% 

Cu- SVM 90.0% 

F- Gaussian SVM 83.8% 

M- Gaussian SVM 93.8% 

C- Gaussian SVM 89.2% 

Optimizable SVM 94.2% 

Table 3.2: The accuracy of the proposed features using SVM classifier variants. 

Here F is Fine, M is Medium, C is Coarse, L is Linear, Q is Quadratic, Cu is Cubic. 
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The minimum error classification (MEC) plot reduces the classification error rate at 

the classification stage. Fig. 3.4 shows the MEC plot. The observed and estimated 

MEC is plotted in the graph. The square block indicates the efficient point hyper 

parameter and circle shows the minimum error hyper parameter. 

The receiver operating characteristics Curve (ROC) of the used features is shown in 

Fig. 3.6. The quality of the used features can be determined by the ROC using the 

threshold values which ranging [0, 1]. true positive (tp) rate with false positive (fp) rate 

is plotted in this graph. The area under the curve (AUC) achieved is 0.97 for 

optimizable SVM model. 

The confusion matrix (CM) is a representation of the classification problems predicted 

outcome. The CM of proposed features is shown in Fig. 3.5. The predicted class is 

represented by the rows of the CM, while the target class is represented by the columns. 

Perfectly classified elements are represented in diagonal elements, the remaining 

elements are incorrectly classified. By the use of CM other performance measures such 

as accuracy (AC), sensitivity (Sen), specificity (Spe), F1-score(F1), and Matthew's 

correlation coefficient (MCC) are also computed for the validation of proposed features. 

The performance metrics for the proposed feature are presented in Table 3.3. Table 3.3 

explains that the suggested method's misclassification rate of 5.83% is much lower, 

indicating that both classes of EEG signals are correctly classified. The Sen of 91.67% 

and Spe of 96.67% are almost near to the optimum values of Sen and Spe. Precision and 

recall are defined by the F1-score composite. The F1-score for the suggested technique 

is 0.94, which is closer to its maximum value. The classification performance was 

evaluated using MCC. The MCC value attained by the proposed method is 88.44%, 

which is closer to the ideal value. 
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Fig. 3.4. MEC plot of optimizable SVM of the used features. 

 

Fig. 3.5. Confusion Matrix of optimizable SVM of the used features. 

 



50 

 

 

 

 

Fig. 3.6. ROC plot of optimizable SVM of the used features. 

 

 

Performance measure (Ideal value) Classification 

performance 

AC (100%) 94.17 

Error (0%) 5.83 

Sen (100%) 91.67 

Spe (100%) 96.67 

Precision (100%) 96.49 

F1 (1) 0.94 

MCC (100%) 88.44 

Kappa (1) 0.88 

Table 3.3: The suggested classification model’s performance metrices. 

 

The utility of the suggested strategy is now demonstrated by a comparison of 

performance utilizing the same dataset methods as shown in Table 3.4. The techniques 

are explored in terms of the classifier, and accuracy that have been achieved. Faust et 

al has achieved a significant ROC value of 0.822 using 9 features and using fuzzy 
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suggeno classifier (FSC) managed to achieve an accuracy of 92.4% [50, 63]. Ehlers et 

al has used DA for the classification and achieved an accuracy of 88% [59]. Acharya 

et al has managed to achieve an accuracy of 76.19% using SVM [65]. This table shows 

that present approaches use a variety of characteristics for the classification of alcohol 

and normal EEG data, which raises the classification complexity of an online 

classification system. The performance metrics Sen, Spe, AC, and MCC obtained by the 

suggested technique are 91.67%, 96.67%, 94.17%, and 88.44%, respectively. Such 

high classification accuracy demonstrates the method's dependability and resilience in 

classifying alcohol and normal EEG signals. 

 

Author Features Classifier 

used 

Classification 

performance 

(Average accuracy) 

Faust et al 

[50] 

PSD extraction, 

peak amplitude 

and frequency 

ROC 0.822 (AUC) 

Ehlers et al 

[59] 

Correlation 

dimension 

DA 88% 

Acharya et 

al [65] 

ApproxE, SaE, 

LE, HS 

SVM with 

poly kernel 

76.19% 

Faust et al 

[63] 

HOS cumulants FSC 92.4% 

Proposed 

method 

IQR, Wavelength Optimizable 

SVM 

94.2% 

Table 4: The suggested method’s performance summary in comparison to existing 

techniques. Here SaE is sample-entropy, ApproxE is the approximate entropy, LE is 

Lyapunov-exponent, HS is higher-order spectra, FSC is fuzzy sugeno classifier. 

 

3.5 Summary 

 This work presents the classification of the normal and alcohol EEG signals 

with the use of SSA. The KW test is used to perform the statistical analysis. Based on 

the KW test results the features are selected. The features used here are IQR and 

WAVELEN. The features are tested on optimize SVM for the selected subbands. The 

obtained classification accuracy is 94.17%, sensitivity is 91.67%, specificity is 96.67% 
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and precision is 96.49%. The suggested SSA based feature can be investigated for 

motor imagery tasks EEG signals classification, sleep apnea detection etc.  
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CHAPTER 4 

Conclusion and Future Work 

 

In this study the classification of EEG signals is explored using a signal processing in 

machine learning methods. The non-stationary technique-based features are introduced 

for the classification of various mental states EEG signals. Various features are 

extracted from the EEG signal. Based on the KW test probabilistic values the features 

are selected and are explored for the classification using machine learning algorithms.  

For the MI task classification FAWT technique-based features are introduced for the 

classification of focused, unfocussed and drowsiness mental states EEG signals. The 

LEE feature is explored for analyzing FAWT provided sub-bands. The KW test 

ensures the statistical significance of LEE feature. The LEE is computed from all sub-

bands are tested on several machine learning techniques. The optimizable KNN 

provides the best classification as follows: accuracy is 93.25%, sensitivity is 91.38%, 

specificity is 96.24%, precision is 91.48%, the F1-score is 91.42%, and kappa value is 

0.8481. The obtained results have better approximation when compared with the 

existing studies.  

For the identification of alcoholic EEG signals, SSA based features are explored. The 

statistically significant feature subbands are selected and are fed to the machine 

learning algorithms. The features used here are IQR and WAVELEN. The features are 

tested on optimize SVM for the selected subbands. The obtained classification 

accuracy is 94.17%, sensitivity is 91.67%, specificity is 96.67% and precision is 

96.49%.  

The proposed work has the better results in comparison to the existing studies. The 

proposed approach can be explored in clinical based application for detecting different 

neurological disorders and classification of other bio-medical signals. The suggested 

SSA based feature can be investigated for motor imagery tasks EEG signals 

classification, sleep apnea detection etc. 
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