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ABSTRACT 

 

Verification is considered a critical stage of any chip development cycle. This step 

ensures that the design meets the system requirements and specifications. At this stage, 

test cases are developed, and the invention's functionality is checked. But it is supposed 

that Verification takes almost 60% of the total chip development chip cycle. It makes it 

a critical stage in any chip flow since any bug found post routing is a bit tough to remove, 

and also, post-fabrication, it is challenging to correct the design. 

The project focus on improving the efficiency of verification cycle. It can be achieved 

by introducing a Debug Checker in the Testbench itself, which reduces verification time 

many folds. 

The project targets segregating the potential bug region once any mismatch or error is 

found in Testbench. 
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CHAPTER 1  

INTRODUCTION 

 

1.1  LITERATURE SURVEY 

The ever-increasing design complexity of Integrated Circuits (ICs) resulted in challenging 

aspects of functional/logic Verification, in terms of verification platform complexity, achieving 

verification goals like code/functional coverage and unbounded verification time/efforts for 

any given digital design.[1]  

The scale and complexity of integrated circuit designs are ever-expanding, making the 

verification process increasingly difficult and progressively time-consuming. [2] 

 

Debug Checker is a project which aims to reduce the load and time consumed in verification 

step. Traditional simulation-based bus protocol monitors can check whether bus signals obey 

bus protocol, but they often lack efficient debugging mechanisms. [11]. It could be understood 

as a function which is called whenever MISMATCH is observed. The debug controller gives 

visibility to the internal state of the GPU. The debug controller interacts with most GPU 

building blocks, gathers internal state information, and presents it to the outside world.  

 

It provides visibility to internal microarchitecture. It has the ability to trace states through the 

AMBA Trace Bus. In modern-day blocks, mostly communication protocols (from AMBA) 

families are used, such as advanced peripheral bus (APB), advanced high-performance bus 

(AHB) and advanced extensible inter-face (AXI) to make synchronised communication.[7] It 

basically provides the ability to detect a certain pattern matches in the internal state. It also 

shares the ability to trace out all debug signals from all the blocks. Debug is performed for two 

GPU blocks synchronously without any additional latency. It gives the freedom to trace down 

the pipeline flow events passing through the GPU Blocks. The debug bus data is used for 

multiple debug operations such a s debug, trace, counting etc. The debug bus data path is 

segmented in to four regions. The debug data bus is designed to match the pre-defined pattern. 

The debug bus data provides general-purpose input and output ports. It saturates the Debug 

Bus on Backpressure from ATB. The basics functionality also provides the ability to be trace 

out all debug signals of only one selected block in the queue. The skill to debug two GPU 

blocks synchronously without additional latency for that particular configuration. It has many 
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other functionalities like debugging when context switching is happening—managing the trace 

data generation. So, debugging on its own is a task. A task that needs so much functionality 

and works to be taken care of. It is significant for verification flow and needs to be done to 

result in the least possible potential bug. 

 

Debug controller or DBGC is a block specially provided in GPU for having a database of bugs 

or fatal errors observed at the post-silicon stage of the chip. If this needs to be explained in the 

manner, Verification is itself an essential part of any chip flow. Still, in case we got an error or 

bug at post-silicon, it could lead to a significant loss to person-hours and capital invested in 

that project. Hardware Design verification detects design errors affecting functional and extra–

operating. [3] 

 

So, to keep that project's credibility intact, it is imperative to have a parallel code. The code 

that runs along with the RTL contains the list of all the sequences and potential failures. In the 

case of a particular scenario, if a bug is found even in the post-silicon stage. It can be debugged. 

 

So, Debug Controller has a very critical role in the chip flow. Now, the question is if Debug 

Controller itself is free from bugs? The database we are considering GOLDEN must be free 

from all bugs and fatal errors. So this results in the need for Debugging of Debug Controller 

itself. So, specific sequences run on that block with different functionalities for debugging. 

Every sequence has its own defined set of intentions, and they are run accordingly. The failing 

sequence results in the failing of that particular functionality that needs to debug. 

So, this project is about reducing the man-hours in debugging and making it more and more 

time efficient and powerful. 

 

So, the logger or the checker aims to compare the data from the Perf Read Event block, which 

is coming from the Cluster Block and The HLM Data, which is the golden response. It checks 

the data from both blocks. It generates a MISMATCH whenever different output or data is 

found. Now, the checker is also designed in a way that it helps in debugging. The debugging 

process includes, whenever there is a MISMATCH for that particular output, the checker or 

logger segregates the data. In that way, the potential bug is found.  

 

So, the project will be about explaining the GPU Block. The pipeline, the stages, and sub-

blocks. Then, the Verification, the need and requirement because of entering into sub deep 
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micron technology. In the past few decades, there has been a significant improvement in 

electronics. The size of transistors reduces results in reducing the size of the product and 

introducing new technology in VLSI.  

 

1.2 THESIS ORGANISATION 

This thesis is divided into seven chapters. A Debug Controller is defined in Chapter 1 as an 

introduction. The functionality and complete literature review are included in Chapter 1. 

Chapter 2 focuses on Basic of Graphics. Basic introduction, the need of parallelism and why 

GPU comes in the scene. The later part of this chapter describes its organisation as well. 

Chapter 3 explains the significance of verification. Verification is a very crucial part of any 

chip development flow. It presents the complete flow, including, problems, complexity, 

strategies, environment, tests, tools, benefits scope etc. Chapter 4 explains the need for 

debugging. As already mentioned, verification takes the maximum time of chip development, 

Debug is a part of verification which consumes maximum human hours. Most of the time 

verification is consumed in debugging. So, it presents the need for debugging and how 

debugging is done. Chapter 5 shows the Debug Checker. This chapter gives an overview of the 

working of the checker and the pseudo-code. Chapter 6 shows the outputs and explains the 

completes the whole flow. The conclusion and primary application where this checker is used 

are presented in Chapter 7.   
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CHAPTER 2 

GRAPHICS OUTLINE 

2.1 GRAPHICS INTRODUCTION 

Computer Graphics – The Spectrum of such applications is vast. Challenging to list all 

applications as everything we see around us involving computers contains some computer 

graphics applications. 

It is seen that at the present stage, the integrated discipline "Computer graphics" can absorb the 

theoretical material of the discipline "Descriptive Geometry" and the functional area of the 

domain "Engineering Graphics".[5] 

 

 

Fig. 2.1 Gimples of a 3D Graphics Model 

Apart from desktop/Laptop applications, we traditionally refer to them as computers. Computer 

Graphics is used in mobile phones, information kiosks at popular spots such as airports, ATMs, 

large displays at open-air music concerts, air traffic control panels, the latest movies to hit the 

halls, etc.Computer graphics have become synonymous with the computer for a non-specialist 

in this digital age. 

 

Fig. 2.2 Dilution of 3D Model – Different stages shown 
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What is expected in all these applications? 

• Instances of images displayed on the computer screen (note that the text characters 

are also images). 

• Images are constructed with objects, which are geometric shapes (characters and 

icons) with colours assigned to them. 

 

 

Fig. 2.3 Graphics Pipeline 

• Instances of images displayed on the computer screen (note that the text characters 

are also images). 

• Images are constructed with objects, which are geometric shapes (characters and 

icons) with colours assigned to them. 

• When we create/edit/view a document, we deal with letters, numbers, punctuations, 

and symbols. 

• Each object is rendered on the screen with a different style and size. 

• In the case of drawing (e.g., using MS Paint or MS Word), we deal with basic shapes 

such as circles, rectangles, curves, etc. 

• In the case of animation videos or computer games, we deal with virtual characters 

– The characters may or may not be human-like. 

• The images or parts can be manipulated (interacted with) by a user – User input 

devices such as a mouse, keyboard, joystick, etc. 

• We know computers understand only binary language – the language of 0s and 1s. 

Letters, numbers, symbols, or characters are not strings of 0s and 1s. 

By this, we face two central questions: 

• How can we represent such objects in a language understood by computers so that the 

computer can process those? 
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• How can we map from the computer's language to something we perceive (with 

physical properties such as shape, size, and colour)? 

 

Fig. 2.4 Arrangement in Shader for 3D Modelling 

FUNDAMENTAL QUESTIONS – How can we create, represent, synthesise, and render 

imagery on the computer display? 

This is the fundamental question that has been studied in the field of computer graphics. 

We can frame FOUR basic questions based on the fundamental questions. 

• Imagery has been constructed from its constituent parts – How do represent those parts? 

• How to synthesise the constituent parts to form complete realistic imagery? 

• How to allow the user to manipulate the imaginary constituents on–screen? 

• How to create the impression of motion? (For animation) 

Graphics seeks answers to these questions. 

 

Fig. 2.5 Configuration 3D Models – The smallest element is the triangle (Shown on the left 

side of the figure) 

The triangle is considered the smallest element of Graphics Flow 
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NOTE – 

We are using the term computer screen in an inclusive sense (includes small displays such as 

smartphones, tablets, etc., as well as large displays such as display walls and everything in 

between)  

These variations indicate corresponding variations in the underlying computing platforms. 

 

 

Fig. 2.6 CPU V/S GPU (Difference in number of cores) 

Computer graphics seek efficient solutions to the four basic questions: 

• Ways that make or try to optimise resource usage for a given platform. 

• E.g., - displaying something on a mobile phone requires techniques different from 

saying on a desktop – due to differences in CPU speed, memory capacity, and power 

consumption issues in the two platforms. 

In summary, "computer graphics is the process of rendering static images or animation 

(sequence of image) on computer screens efficiently”.  

 

2.2 NEED FOR PARALLELISM 

• The pipeline is a vital programming pattern, while GPU, designed chiefly for data-level 

parallel executions, lacks an efficient mechanism to support pipeline programming and 

implementations.[12] 

• Graphics operations – Highly parallel 

• Ex – Consider modelling transformation stage - We apply transformation (e.g., rotation) 

to vertices 

• Transformation = multiplication of transformation matrix with vertex vector - Same 

vectors – matrix multiplication is done for all vertices we want to transform.Instead of 

serial multiplication of one matrix-vector pair at a time, a significant gain in the 
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performance if we perform on all vectors simultaneously - Important in real-time 

rendering – millions of vertices are processed per second. 

 

2.3 WHY GPUs 

• CPUs cannot take advantage of this inherent parallelism in graphics operations – they 

are not designed to do that. 

• Nowadays, almost all graphics systems come with a separate graphics card 

containing its own processing unit and memory elements – known as a graphics 

processing unit or GPU. 

• MULTICORE - GPU is a multicore system that contains many cores or unit processing 

elements. 

• Each core has a stream processor – that works on data streams 

• SM - Cores capable of performing simple integer and floating-point arithmetic 

operations only. 

• Multiple cores are grouped to form streaming multiprocessors (SM) 

• SIMD Idea - Consider the geometric transformation of vertices –  

• Instruction (Multiplication) same; data (vertex vectors) varies. 

• An instance of single instruction multiple data (SIMD)  

 

2.4 GPU ORGANISATION – HOW DOES IT WORK 

• Each SM is designed to perform SIMD operations. 

• Most real-time graphics systems assume scenes made of triangles. 

▪ A surface such as quadrilaterals or curved surfaces is converted to meshes. 

• Through APIs supported I graphics library (OpenGL/ Direct3D), triangles are 

transmitted to GPU one vertex at a time. 

▪ GPU assembles vertex into the triangle  

• Vertices are expressed with homogenous coordinates. 

• Objects they define are represented in local/ modelling coordinates. 

• GPU performs modelling transformation on vertices. 

• Transformation (single/ composite) achieved with a single matrix (transformation) – 

vector (point) multiplication. 

• Multicore GPU performs multiple such operations simultaneously – multiple vertices 

simultaneously transformed. 
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• Output – stream of the triangle. 

• In the world coordinate system - The viewer is located at the origin ad view direction 

aligned with the axis. 

• Next – GPU computes vertex colour asked on light defied for the screen. 

▪ Recall colour ca e computed y vector dot product and a series of add ad multiply 

operations. 

▪ GPU performs simultaneously for multiple vertices. 

• Next stage – each coloured 3D vertex is projected onto the view plane. 

▪ GPU does this using matrix-vector multiplication. 

▪ Output – stream of the triangles screen/device coordinates ready to be converted 

to pixels. 

• Each device's space triangle overlaps some pixels on the screen. 

• In the rasterization stage, these pixels are determined. 

• GPU designers over the years incorporated many rasterization algorithms. 

▪ All exploit one crucial observation: each pixel can be treated independently 

from the other pixels. 

• This leads to the possibility of handling all pixels in parallel. 

▪ Thus, given the device space triangle, we can simultaneously determine the 

pixel colour for all pixels. 

• During the pixel processing stage, two more activities take place. 

▪ Surface texturing 

▪ Hidden surface removal 

• The most straightforward surface texturing method – texture images draped over 

geometry to give an illusion of detail. 

▪ Pixel colour replaced by texture colour 

• GPUs store textures in high-speed memory. 

▪ Each pixel calculation must access it. 

▪ Access very regular (nearly pixels tend to access nearby texture image 

locations) – specialised memory caches to reduce access time.  
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CHAPTER 3 

VERIFICATION FOR A GRAPHICS CHIP 

 

3.1 WHAT IS VERIFICATION? 

The technique is used to analyse the functional correctness of the design under test (DUT). It 

is crucial to understand the verification need for the design and implementation requirement. 

To verify that the result of the provided sequence or task is as expected. Chip level verification 

of processor-based IC designs predominantly uses directed test cases implemented in high-

level programming languages. [4] 

The proposed chip-level verification methodology aims at developing an enhanced IC 

verification environment.[4] 

 

Fig. 3.1 Chip Development Flow 

3.2 VERIFICATION PROBLEMS 

• Is the specification right – The specification means the requirement of the design. The 

expectation or the intention of the sequence? 

• Does the design (DUT) team acknowledge the spec correctly? 

• Are the blocks accomplished fine? 

• Are the interfaces between the different blocks have been implemented fine? 
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• Did we able to get the desired functionality? 

• ………….. 

 

Fig. 3.2 Maximum time of a Chip Design and Development is taken in Verification. 

3.3 VERIFICATION COMPLEXITY 

For a single flip–flop: 

• Number of states = 2 

• Number of test patterns required = 4 

For a Z80 microprocessor (~5K gates) 

• Has 208 registers bits and 13 primary inputs 

• Possible state transitions = 2 bits + inputs = 2221 

• At 1M, IPS would take 1053 years to simulate all transitions 

For a chip with 20M  

• GIVE IT A THOUGHT??? (It is a manner of thought that with the increasing no. of 

chip elements / flops, the need for verifying the functionality of transistors is 

unimaginable) 

 

3.4 WHEN IS VERIFICATION COMPLETE? 

Some answers from real designers: 

• When money and time is a constraining.  

• When there is a need to deliver the product and the deadline is near.  
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• When verification of every line of the VHDL code. 

• When sufficient testing has been done, we are unable to discover any new bug. 

• Finally, we are left with no new thing …... No idea!! 

• Even for the design team, it becomes too complex and they are unable to complete full 

coverage. 

• When the potential vectors exceed significantly according to the time available for test. 

3.5 VERIFICATION STRATEGIES 

• Top-down verification approach – Simply means from the highest hierarchy to the 

lower one, from system to individual components. 

• Bottom-up verification approach – Simply means from lowest hierarchy to higher one, 

which means individual components to the system. 

• Platform-based verification approach – Verifying the already developed IPs for a 

readily available platform. 

• System interface–based verification approach – Model each block at the interface level. 

It is generally used for final integration verification. 

 

 

Fig. 3.3 Verification Strategies 

3.6 VERIFICATION ENVIRONMENT 

• Verification environment – Commonly referred to as testbench (environment) 

• Definition of a testbench – When we are talking about Verification environment, is 

simply contains a set of components (such as bus functional models (BFMs), bus 
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monitors, memory modules) and the interconnect of such features with the design under 

– Verification (DUV) 

 

Fig. 3.4 Verification Environment  

3.7 TESTBENCH DESIGN AND VERIFICATION TESTS 

• Auto or semi-auto stimulus generator is preferred  

▪ Automatic reaction checking is extremely proposed. 

▪ There is also the need of the following design techniques: 

• Testbench in VHDL – Testbench is preferably required in VHDL 

• Testbenches in programming language interface (PLI) 

• Waveform  

• Specification 

• Random testing 

▪ It is the way or a methodology in which engineers are provided with seniors 

which they do not anticipate. 

▪ Functional testing – User-provided functional patterns and sequences to verify. 

▪ Corners case testing is done. 

▪ Real code testing – Avoid misunderstanding the specification. 

• Regression testing 

▪ It highly needs to ensure that fixing a bug will not introduce another bug(s) 

▪ The regression test system should be self-automated 

▪ Add new directed tests. 

 

3.8 VERIFICATION PLAN AND BENEFITS 

Verifications have high benefits, which can be listed as follows: 
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• Verification plan is a part of the design reports 

• Test policy/ test plan for both blocks level and top-level modules is performed. 

• Testbench components. 

• Necessary to have a set of verification tools and flows. 

• Simulation environment, including block diagram and test flow. 

• Key features needed to be verified in both chip-level – Block and module.  

• The regression test environment and procedure is be done correctly to justify 

the output 

• Clear criteria to determine whether the Verification is successfully completed. 

 

 

Fig. 3.5 Stages in which Verification Flow 

3.9 TOOLS FOR VERIFICATION  

• Dynamic Simulation 

▪ RTL and GLS 

▪ Event-driven, cycle – based, Transaction – based 

▪ Coverage driven Verification 

▪ SV, C, UVM …… The UVM can realise such testbench architectures with 

coverage has driven verification environments useful for constrained random 

testing. [2] 
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▪ VCS, per spec…. 

• Formal Verification 

▪ Property verification  

▪ Logic Equivalence check 

• Power-aware verification 

▪ UPF 

 

Fig. 3.6 Dynamic Simulation 

 

3.10 POWER-AWARE VERIFICATION 

• UPF 

• RTL and GLS  

• Dynamic simulations crossing low power 

• Power estimation 

3.11 VERIFICATION SCOPE 

• 75% Chip development cycle dominated by Verification 

• Number of IP's and complexity are increasing day – by – day as we are heading towards 

the sub deep micron technology, and it is highly needed to justify this process 

• A lot of scope for the invasion to find the design issues and methodologies  

• We can acquire knowledge from architecture to silicon debugging.  
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CHAPTER 4 

IMPORTANCE OF DEBUG 

4.1 NEED FOR DEBUG 

Debugging hardware is very difficult, especially if it is not your hardware design or set-up 

problems during production.[14] The debug controller is the component in the graphics 

core to support the post-silicon and software debug requirements. Detecting and isolating 

bugs that arise only at high processor counts is a challenging task. Over several years, we 

have implemented a particular debugging method, called "relative debugging," that 

supports debugging applications as they evolve or are ported to larger machines.[15] 

The debug controller gives visibility to the internal state of the GPU. The debug controller 

interacts with most GPU building blocks, gathers internal state information, and presents 

it to the outside world.  

It provides visibility to internal microarchitecture. It can trace states through the AMBA 

Trace Bus. It provides it with the ability to detect a specific pattern that matches the internal 

condition. It also shares the ability to trace out all debug signals from all the blocks. Debug 

is performed for two GPU blocks synchronously without any additional latency. It gives 

the freedom to trace down the pipeline flow events passing through the GPU Blocks. The 

debug bus data is used for multiple debug operations such as debug, trace, counting etc. 

The debug bus data path is segmented into four regions. The debug data bus is designed 

to match the pre-defined pattern. The debug bus data provides general-purpose input and 

output ports. 

 

 

Fig. 4.1 Debug takes a maximum of Verification timespan 
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The debug bus controller receives the register configuration from the host through the 

interface. The register configuration from the host is decoded and sent to all the GPU 

blocks. They have different blocks for configuring additional functionality. They have 

other modules defined in separate blocks and finally they are connected to the bus or 

interface. 

The GPU blocks decode the configuration and send the debug data through the data path. 

The event control module controls the event sent by the block through the debug data bus. 

The data is then fed to the data processing unit, where the data is used for analysis. The 

data processing unit also generates the trace data for transportation.  

The GPU blocks define what architecture and microarchitecture signals are added in the 

debug bus. The debug bus controller provides an interface with the debug bus 

configuration. The blocks team verifies a mapping table connectivity.  

 

4.2 HOW DEBUG IS PERFORMED 

The process of debugging passes through a set of failing sequences. The need is to find the 

bug and debug it according to the specification of the design. Every sequence has its pre-

defined intention. The aim is to understand the purpose which is provided by the 

specification and need to know the cause of that particular failure. Now, the case can be 

two. Since Verification is considered one of the relatively early stages of chip 

development, debugging is a bit easier and crucial. Since we are debugging at the 

Verification stage, the cause of failure could be two: 

• Design failure 

• Testbench failure 

Indeed, it is essential to understand whether it's a design failure or testbench failure. 

Once we conclude the type of failure, the debugging path is designed in that particular 

case. 

If it's a test bench failure, the whole path of the signal is traced backed to define the actual 

cause of error. They could be done in multiple ways as: 

• Analysing the testbench 

• We are using any EDA tools to generate the waveform and debugging through 

waveforms and signals. 

• Checking the sequence speciation or functionality 

• If the provided specification is feasible for that case or not. 
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And if it's a design failure. Then the test case is sent back to the design team by stating it's 

the fault on their end. The design team decides whether the error that occurred at that place 

is a fault of design (DUT) or the fault is happening because of the specification Mismatch. 

Specification mismatch means that the functionality we are trying to obtain in that scenario 

is not feasible. We should change the functionality and design the DUT again with the new 

spec.  

So, the aim of the verification stage is to remove all the potential bugs at this stage. And if 

it is not covered, this bug will be carried forward to a later stage. Even at that stage, a pre-

check is performed, and if the bug is found at that stage the later team will return that bug 

to Verification team and hence the debugging process is again stated. 
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CHAPTER 5 

DEBUG CHECKER 

5.1 CHECKER – EXPLANATION 

The functionality of the logger is defined in a certain way that: - The output flow is from two 

different paths. The following block diagram will help in getting the actual flow of Testbench. 

 

Fig. 5.1 DBGC Interface 

 

So, the logger or the checker aims to compare the data from the Perf Read Event block, which 

is coming from the Cluster Block and The HLM Data, which is the golden response.  

It checks the data from both blocks. It generates a MISMATCH whenever different output or 

data is found.  

Now, the checker is also designed in a way that it helps in debugging. 

The debugging process includes, whenever there is a MISMATCH for that particular output, 

the checker or logger segregates the data. In that way, the potential bug is found. These 

debugging enhancements offer increased traceability and observability within assertion 

checkers and improved metrics relating to the coverage of assertion checkers.[13] 

The glimpses of output are shown below. That helps in understanding the issue clearly. 
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Fig. 5.2 Data coming from HLM (At the start of HLM) 

The HLM data is the golden data by which the test bench cases are compared. So, they are 

considered to be the reference point for the verification test cases. 

 

Fig. 5.3 Data coming from HLM (At the mid of HLM) 
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As seen in the above fig., the checker generates a MISMATCH whenever it is accounting for 

a difference. Now, if the debugging has to be done independently, it is difficult to figure out 

the potential bug.  

The testbench contains multiple failures. And these failures in not just in 10s or 100s, but it 

could be 1000s or even more. 

The accounting is also that if the debug it done manually, it could also result in that if the debug 

is detected in bit 4, it could be counted as in bit 5, as a man error.  

This could make a testbench verification even worse, and even after spending more than a day 

in a single debug, we conclude nothing. So, testbench debugging can be very tedious work 

which requires a lot of attention and patience. The aim is to reduce manual labour. This could 

be achieved by designing a script. The purpose of script is to run in a testbench. Hence 

whenever a mismatch is accounted is segregates the data to reach as close as to the potential 

bug.  

The testbench can have multiple failures, such as an ERROR or a FATAL. The ERROR has 

less effect as if an ERROR is obtained, at least the compile is completed, but when a FATAL 

is obtained, the compile even stops at the point of FATAL. 

 

Fig. 5.4 Data obtained by analysing every packet and getting MISMATCH correspondingly 

[Packet 22] 
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Fig. 5.5 Data obtained by analysing every packet and getting MISMATCH correspondingly 

[Packet 110] 

 

 

Fig. 5.6 Data obtained by running the checker in that code and segregating the bits for 

MISMATCH terms [Packet 22] 
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Fig. 5.7 Data obtained by running the checker in that code and segregating the bits for 

MISMATCH terms [Packet 24] 

The explanation of these data MISMATCH will be found in next chapter. 
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5.2 PSEUDO CODE 

 

//Performance _checker Design 

module logger(input [127:0] perf_data); 

bit [1:0] unused_1 

bit [1:0] Packet_id; 

bit [27:0] Timestamp; 

bit [7:0] perf_counter_batch_id; 

bit [1:0] unused_2; 

bit [1:0] pipe_id; 

bit [3:0] umused_3; 

bit [5:0] Perf_Read_Address; 

bit unused; 

 bit [6:0] Cluster_Block_ID; 

bit [6:0] Data; 

string Packet_Sequence [bit[1:0]]; 

string Pipe_Sequence [bit[1:0]]; 

string Block_Sequence [bit[7:0]]; 

Pipe_Sequence = ’{ 

2’h00 : “A1”, 

2’h01 : “A2”, 

2’h10 : “A3”, 

2’h11 : “A4”, 

}; 

Packet_Sequence = ‘{  

2’h00 : “B1”, 

2’h01 : “B2”, 

2’h10 : “B3”, 

2’h11 : “B4”, 

}; 

Block_Sequence = ‘{ 
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8’hx00 : “Block_Sequence_1”, 

8’hx01 : “Block_Sequence_2”,  

8’hx02 : “Block_Sequence_3”, 

8’hx03 : “Block_Sequence_4”, 

8’hx04 : “Block_Sequence_5”, 

8’hx05 : “Block_Sequence_6”, 

8’hx06 : “Block_Sequence_7”, 

8’hx07 : “Block_Sequence_8”, 

8’hx08 : “Block_Sequence_9”, 

8’hx09 : “Block_Sequence_10”, 

8’hx0a : “Block_Sequence_11”, 

8’hx0b : “Block_Sequence_12”, 

8’hx0c : “Block_Sequence_13”, 

8’hx0d : “Block_Sequence_14”, 

…………. 

………………. 

……………………. 

………………... 

…………... 

 

8’hx4a : “Block_Sequence_74”, 

8’hx4b : “Block_Sequence_75”, 

8’hx4c : “Block_Sequence_76”, 

8’hx4d : “Block_Sequence_77”, 

8’hx4e : “Block_Sequence_78”, 
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8’hx4f : “Block_Sequence_79”, 

8’hx50 : “Block_Sequence_80”, 

8’hx51 : “Block_Sequence_81”, 

8’hx52 : “Block_Sequence_82”, 

8’hx53 : “Block_Sequence_83”, 

8’hx54 : “Block_Sequence_84”, 

8’h0x55 : “Block_Sequence_85”, 

 

}; 

 

Unused_1 = perf_data [127:126]; 

Packet_id = perf_data [125:124]; 

Timestamp = perf_data [123:96]; 

Perf_counter_batch_id = perf_data [95:88]; 

Unused_2 = perf_data [87:86]; 

Pipe_id = perf_data [85:84]; 

Unused_3 = perf_data [83:80]; 

Perf_Read_Address = perf_data [79:72]; 

Unused_4 = perf_data [71]; 

Cluster_Block_ID = perf_data [70:64]; 

Data = perf_data [63:0]; 

 

$display(“[Packet_id] = %s”, Packet_Sequence [Packet_id]); 
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$display("[Timestamp] = %0h", Timestamp); 

$display(“[perf_counter_batch_id] = %0h”, perf_counter_batch_id); 

$display(“[Pipe_id] = %s”, Pipe_sequence[Pipe_id]); 

$display(“[Perf_Read_Address] = %0h”, Perf_Read-Address); 

$display(“[Block_Sequence] = %s”, Block_Sequence[Cluster_Block_ID]); 

$display(“[Data] = %0h”, Data); 

 

endfunction 

endmodule 
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CHAPTER 6 

OUTPUTS 

 

Fig. 6.1 Showing data coming from the HLM module (Considered the golden data) 

 

Fig. 6.2 Showing data coming from the HLM module (Considered the golden data) 
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The above-shown figures are the output from HLM. HLM is data coming from High-level 

descriptive languages as a base of the production. So, hence HLM data is considered the data 

that needs to be used as reference data that is the GOLDEN DATA. It is complicated to find 

the bug and configure it. It is challenging to understand the point of error. 

 

Fig. 6.3 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 22] 

 

Fig. 6.4 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 110] 
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Now the mismatch is found in the sequence. They are the point of error and need to be debug. 

But still, it is difficult to get the bit which results in error. The bits signify the sub-block. Every 

bit has been mapped to a particular block of Debug Controller. So, every bit reflects the 

behaviour of the block. 

So, if any possible check is implemented in the code, which can segregate the bits as per the 

functionality of the block helps in the process of debugging and makes it more efficient. 
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The following outputs can very well explain the functionality of the checker. 

 

Fig. 6.5 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 22] and with segregations in the packet as well. 

 

 

Fig. 6.6 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 24] and with segregations in the packet as well. 
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Fig. 6.7 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 30] and with segregations in the packet as well. 

 

Fig. 6.8 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 32] and with segregations in the packet as well. 
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Fig. 6.9 shows data of testbench describing the positions of MISMATCH in the design 

[Packet110] and with segregations in the packet as well. 

 

Fig. 6.10 shows data of testbench describing the positions of MISMATCH in the design 

[Packet 134] and with segregations in the packet as well. 
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CHAPTER 7  

CONCLUSION 

Since Verification is considered one of the most critical and time-consuming processes of chip 

design and development cycle, moreover, considering debug it is again a very critical and 

important part of Verification so this concludes the fact that Debug is a crucial part of complete 

chip development cycle.  

Any manual error or man-made failure can have a significant repercussion on the complete 

flow.  

So, the project aims to increase the efficiency of debugging process. The debug is the process 

which consumes maximum time in the Verification. The logger or the checker aims to compare 

the data from the Perf Read Event block, which is coming from the Cluster Block and The 

HLM Data, which is the golden responses.  

It checks the data from both blocks. It generates a MISMATCH whenever different output or 

data is found.  

Now, the checker is also designed in a way that it helps in debugging. 

The debugging process includes, whenever there is a MISMATCH for that particular output 

the checker or logger segregates the data. In that way, the potential bug is found. 

This has helped in reducing debugging time in many folds. The debug checker has multiple 

applications. Verification is a muti state progress which leads to its application in numerous 

steps. The checker can be introduced in the main code to check the fault in the listed blocks, 

can be introduced in the individual blocks to check the fault in sub-blocks and can be 

implemented at SOC level to check which module has MISMATCH. 
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