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ABSTRACT 

 

 

The project's goal is to design a field programmable gate array (FPGA) based fully 

connected neural network for handwritten digit recognition. The project involves training 

the network utilizing the modified national institute of standards and technology dataset 

(MNIST), as well as designing and simulating a fully linked deep neural network (DNN). 

Initially, small modules such as memory and activation functions were created 

independently to test the fundamental functionality of neurons. A multi-layer neural 

network was created to improve the neural network's overall accuracy by performing the 

identification of handwritten digits. The network inputs, weights, and outputs are all 

expressed in this paper using a fixed point representation format. On-chip memory is used 

to hard-code network weights. Moreover, pipeline registers are utilized to ensure that data 

flows without error between layers. Using a state machine to control pipeline register 

access and simultaneously process output from one layer to the next layer with valid 

output control. Finally, the neural network is assessed using the test bench and MNIST 

test dataset as inputs, with parameters such as accuracy and resource utilization 

calculated, which may vary depending on the configuration. The TensorFlow libraries are 

used for training the network. The whole hardware description of a neural network is 

written in Verilog. For simulation and implementation, Xilinx Vivado 2020.1 is used in 

this project. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background 

 

"Machine learning" [1] has been ubiquitous in several scientific domains and commercial 

applications in recent years and has produced excellent results. "Deep learning" [1] is a 

branch of machine learning that primarily studies deep neural networks, which are 

statistical frameworks. Deep learning has accelerated the advancement of machine 

learning and artificial intelligence. As a result of this, "deep learning has become a 

popular area in the study of research" [2]. "Deep learning includes a multi-layer neural 

network model to extract high-level features, which are a collection of low-level 

abstractions" [3], to resolve complex machine learning difficulties. The common 

networks that are widely used as deep learning neural frameworks are Deep Neural 

Networks (DNNs) and Convolution Neural Networks (CNNs). They have been shown to 

have outstanding capabilities when it comes to solving complicated machine learning 

problems like image and gesture recognition, speech analysis, etc. 

  

An "artificial neural network (ANN)" [4] is a data processing system that attempts to 

effectively replicate both the structure and function of the human brain. All of the 

operations in ANN models, including data collection and processing, overall network 

architecture, number of hidden layers, correlation between different parameters, and 

weight-bias calculations, are decided using learning and training methods. Artificial 

neural networks, complex "patterns recognition" [5], understanding and "stock 
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performance forecast" [6], tracking and management, and voice and image recognition 

are only a few of the most recent advancements in AI research. [7]. 

 

The study of artificial neural networks and related machine learning techniques with more 

than one hidden layer is known as "deep learning" [8]. The term "deep" in deep learning 

referred to the number of hidden layers in a neural network architecture. A neural network 

that uses a deep learning algorithm is referred to as a deep neural network. It captures and 

converts features using a stack comprising several hidden layers of non-linear processing 

elements [9]. The information from the preceding layer is being used as an input for each 

subsequent layer. Deep neural networks have sparked a lot of interest and adoption over 

the last few years across a wide variety of industries as well as applications. Whenever 

"general-purpose processors are not feasible because of performance, semiconductor 

expense, or power usage restrictions" [10], the need of customized hardware architecture 

for deep learning models becomes required under certain practical recognition 

applications. 

Although deep learning models have been successfully incorporated into software on 

general-purpose personal computers, hardware implementations of deep learning models 

on semiconductor materials face a number of challenges, together with incorporating the 

activation function, maintaining the network's weights, and choosing the appropriate data 

representation model for calculations.  

The selection of appropriate hardware depending on that purpose is the first and most 

important stage in developing the ANN model. Artificial neural network frameworks can 

handle vast amounts of data while simultaneously solving complex problems. Both the 

scale and complexity of the model deployed for ANN applications, even with the resource 

needs, are enormous. The system also necessitates parallel or simultaneous data analysis. 

The most often used hardware for this purpose are described in, including CPUs, GPUs, 

Servers, Clusters, FPGAs, and ASICs, among others. 

CPU: It has a low computing efficiency and is incapable of meeting real-time application 

needs. As a result; it was unsuitable for parallel processing.  
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GPU: It does parallel processing, but it consumes a lot of power. The GPU is a multi-core 

processor that is used for the ANN architecture's processing and training. It was designed 

for neural network training and validation since it can perform multi-million operations 

per second. GPUs require a lot of power, are large, and are not suitable for low-power 

embedded systems. Only single and double-precision floating-point data formats are 

supported by the GPU. Other data types, such as 8/16 bit fixed point or 1-2 bit binary 

data, are not supported. Hence, GPU was also not suitable for on-field implementation. 

ASICs: ASICs are low-power devices that can be used to implement artificial neural 

networks. However, their main drawback is that they are customized for a single 

application and are not reusable across architectures. Because ASICs have a long 

development cycle, they aren't really a good choice for implementing ANN architecture. 

FPGA (Field programmable gate array): FPGAs are notable for their reconfigurable 

design. They provide you with the option of reprogramming the network design several 

times. They are low power, enable parallel computation, have flexibility in design, and 

the development life cycle for FPGA is short, as illustrated in the study. After an 

investigation of various hardware for ANN model implementation, FPGAs were found 

to be useful for implementing ANN models in hardware. Following that, we'll go over 

the most typical ANN architectures for image applications. 

 

1.2 Objectives of thesis: 

 

The thesis major goal is broken into two parts:  

 

1. Design part: The main focus of this section of the thesis is on developing neural 

network models and then implementing them on FPGA. The design part follows step1 to 

step 5 as shown in fig. The criterion for choosing proper neural network architecture is 

entirely dependent on its flexibility and the application that will be implemented using it. 

We divided the job into two domains after deciding on the architecture. The first domain 

will concentrate on model training and the generation of required data for evaluation. The 



13 
 
  

second domain will concentrate on developing layered neural network models from the 

bottom to top approach. 

2. Evaluation part: Throughout this section, the model developed will be assessed with 

varying design elements. The two main areas of concern here are design accuracy in 

forecasting the correct image and resource utilization. We examine the effects of 

changing various design elements on neural network accuracy and FPGA resource 

consumption. 

 

 

Fig 1.1: Outline of project 

 

1.3 Outline: 

 

The following are the chapters that make up this thesis: 

 

 Chapter 1, Introduction: In this objective of the thesis is introduced. Why FPGAs are the 

better choice for ANN implementation is explained. Also, the complete outline of the 

project in the flow diagram is provided. 
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Chapter 2, About Neural networks: To understand neural networks, basic information has 

been provided. This chapter covered the fundamental model of an artificial neuron, the 

basic unit for any neural network, and how a neural network works effectively for finding 

patterns in images. At last, some of their applications were discussed. 

  

Chapter 3, Training and data generation: The essential part of the thesis, data generation, 

and processing, took place in this chapter. This will help in the simulation and validation 

of the design in FPGAs at a later stage of work. 

 

Chapter 4, Hardware Implementation: In this chapter, first there is a brief introduction to 

FPGAs given then the design of neurons in FPGAs is discussed. Then layered architecture 

of the neural network is given. In the end verification of neural network has been 

discussed with the help of a training dataset. 

 

Chapter 5, Results and Discussion: All the results are based on behavioral simulation and 

verification discussed here.   

  

 Chapter 6, Conclusions and Future Work: This chapter summarizes the conclusions of 

the thesis and addresses possible future research in the field. 
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Chapter 2 

 

ABOUT NEURAL NETWORKS 

 

 

2.1 Artificial Neuron 

 

In 1943, neuroscientist Warren S. McCulloch and logician Walter Pitts developed the 

very first theoretical design of an artificial neuron. In their study report, they define a 

neuron as a single cell that receives, analyses, and produces information from a network 

of cells. In a neural network, the neuron, often called a node or a unit, is the basic 

computational unit. 

  

 

Fig 2.1: An Artificial neuron 
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It generates a signal by taking input from other neurons in the network or from an external 

source. Each input is assigned a weight (w), which is decided by its comparative 

relevance to other components. Synaptic strengths (w) are being learned to adjust both 

direction and the strength of an excitatory (positive weight) or inhibitory (negative 

weight) neuron's action on another. For the most basic model, every bit of information 

gets carried via neurons towards the summation junction, where it is summed. The neuron 

can fire and send a signal up to its axon if the total amount surpasses a particular threshold. 

In the mathematical computation, we assume that the exact durations within the peaks are 

irrelevant and that only the frequency of the firing communicates information. We use an 

activation function (e.g., a sigmoid function) to simulate the neuron's firing rate, which 

depicts the frequency of spikes along the axon. 

 

 

2.2 Components of Artificial neuron 

 

Inputs: Inputs are the data that we need to determine the output value. They could be 

considered features or attributes in a dataset. 

 

Weights: Weights are real-world figures linked to every feature which demonstrates how 

significant a certain feature is in predicting the final value.  

 

Bias: This is a neural net parameter that, in addition to the linear combination of both 

neuron's input data and weight, will be used to change its result. As a result, a bias value 

enables you to shift the activation function to left or right that might be useful for learning. 

 

Summation Junction: The summation junction's role is to combine the products of 

inputs and their weights and finally evaluate their sum using the bias value. 

 

Activation function: It's being used to make the system quite non-linear, allowing the 

neural network to perform complicated patterns on given information. A neural net is 
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little more than a linear model with no activation function. As a response, designers 

incorporate a non-linear transformation to the neuron's inputs, and we bring nonlinearity 

into the network via an activation function. 

 

  

2.3 Neural network 

 

A neural network, often known as an "artificial" neural network (ANN), is a 

computational model that is inspired by the way biological neural networks process 

information in the human brain. An artificial neural network (ANN) is a data processing 

system that seeks to mimic the design and function of the human brain. A neuron is the 

brain's basic computational unit. The human nervous system contains roughly 86 billion 

neurons that are coupled by approximately 1014-1015 synapses. 

Every neuron in a neural network is a processing element that generates an output by 

applying a function to its input (s). The architecture of a neural net is determined by the 

number of networks of interconnected groups of neurons that perform similar tasks, 

which is described by the layers of the network. In nature, a layer might be input, hidden, 

or output. A neural network may contain multiple hidden layers. The depth of the network 

is determined by the number of layers. All neural networks have a classifier layer that 

generates the network's final output (s).The number of outputs in such a layer is equal to 

the number of classes the network must anticipate.  
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Fig 2.2: Fully connected neural network 

 

2.4 Components of Artificial Neural Network 

 

1. The Perceptron: A perceptron is a type of artificial neuron. A perceptron is the 

simplest neural network imaginable, a computational representation of a single neuron, 

and was invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory. A 

perceptron consists of one or more inputs, a processor, and a single output. The perceptron 

works on a "feed-forward" concept, which means that inputs are sent into the neuron, 

analyzed, and an output is produced. 

 

2. Input layer: This layer does not do any computations instead, it just passes 

information to the next layer (hidden layer most of the time). A layer is a collection of 

neurons (perceptron). 
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3. Hidden layer: Hidden layers perform intermediary processing or computations before 

transferring the weights (signals or information) from the input layer to the next layer 

(another hidden layer or to the output layer). The number of hidden layers in any neural 

network is completely dependent upon its application as well as its design. It is feasible 

to build a neural network without a hidden layer. 

 

4. Weighted connections: The network is made up of connections, each of which 

transfers the output of one neuron to the input of the next. Weights are the true values 

associated with each feature, and they indicate how important that feature is in predicting 

the final value.  

 

5. Learning Rule: A learning method or process is a procedure that modifies all variables 

around a neural net over a certain input in order to produce a desired output. A learning 

process is like an arithmetic computation, which can be implemented using mathematical 

logic. By implementing such a procedure throughout the neural net, it will improve 

performance in terms of accuracy. It is a common characteristic of most learning methods 

to adjust the weights and bias values. 

 

 

 

2.5 Types of neural network 

 

The ANN network structure should be simple and straightforward. Recurrent and non-

recurrent structures are the two most common forms of arrangement. The auto-associative 

or feedback network is also known as the recurrent structure, while the associative or 

feed-forward network is known as the non-recurrent structure. In a feed-forward network, 

the signal travels in only one direction, but in a feedback network, the signal travels in 

both directions by inserting loops into the net. 
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1. Feed Forward Neural Network 

 

A feed forward neural network [11] is an artificial neural network with connections that 

do not form a cycle between the units. The information in this network only flows in one 

direction: forward, from the input nodes to the output nodes, going through any hidden 

nodes (if any). In the network, there are no cycles or loops.  

 

1.1 Single-layer perceptron  

 

This is the simplest feed-forward neural network, as it has no hidden layers and only one 

layer of output nodes. The input layer is excluded from the count of layers since no 

computations are performed there; instead, the inputs are sent straight to the outputs via 

a series of weights. 

 

1.2 Multi-layer perceptron  

 

Multiple layers of processing units are interconnected in a feed-forward manner in this 

type of network. Each neuron in one layer is connected to the neurons in the next layer 

via directed connections. The units of these networks use a sigmoid function as an 

activation function in many applications. In contrast, MLPs are more beneficial for a 

variety of reasons, one of which is their ability to learn non-linear representations (most 

of the time, the data presented to us is not linearly separable). They are sometimes called 

fully connected neural networks. 
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1.3 Convolution neural network 

 

Convolutional neural networks, like conventional neural net models, contain neurons 

with learnable weights and biases. They're multilayer perceptrons with minimal 

preprocessing requirements. The convolution layer, which takes up the majority of the 

network's time and is only effective when nonlinearity and pooling layers are included 

[12], is the most important in a CNN. CNNs use two types of layers to extract information 

from input features: convolutional and pooling layers. Among the various applications 

are image and video recognition, reinforcement learning, and natural language 

processing. Each neuron within those layers gets associated with a unique area of the 

image to which it applies convolution or pooling. The network is not fully connected due 

to this division into regions. Sparsely connected networks are another name for them. The 

training of CNNs necessitates a vast amount of data. 

 

 

2. Recurrent neural networks  

 

A directed cycle is formed by the connections between units in a recurrent neural network 

(RNN). As a result, the system's dynamic aspects could be displayed. They are utilized 

to comprehend material that is temporal or sequential. Recurrent neural networks 

typically involve memory as a component. Unlike feed-forward neural nets, RNNs utilize 

their internal memory to analyze arbitrary sets of data. RNNs utilize different sets of data 

in a sequence to develop improved predictions. These are normally recommended when 

the output is dependent on a number of inputs. They accomplish this through receiving 

input and affecting output by looping the activations of previous or subsequent nodes in 

the sequence. As a result, jobs like unsegmented, connected handwriting identification, 

speech recognition, and other general sequence processors can benefit from them. 
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Fig 2.3: Recurrent neural network 

 

 

 

2.6 APPLICATIONS  

 

 

Pattern Recognition: In terms of functionality, ANN provides a framework for pattern 

recognition that demands huge networks of nonlinear and simple components known as 

neural nets. In many problems, ANNs are becoming more interesting, efficient, effective, 

and successful in pattern recognition [5]. Facial recognition, optical character 

recognition, and other similar technologies are examples. 

 

Time Series Prediction: Predictions can be made using neural networks. For example, 

in stock market forecasting, every day the activities of the stock market are often 

exceedingly complicated. 
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The number of factors determines if a share will either climb or decline. With so many 

uncertainties in the market, neural nets would gather as well as analyze enormous 

quantities of data efficiently. We may, therefore, use them to forecast stock prices. Is the 

stock price going to rise or fall tomorrow? Will the stock price increase or decrease 

tomorrow? Or weather: is it going to rain or will it be sunny? or predictions about weather. 

Signal Processing: Signal processing is required by cochlear implantation and hearing 

aids help in filtering away unwanted frequencies while magnifying the actual relevant 

frequencies. Neural networks are sometimes developed to interpret and filter audio 

signals. 

 

Control: The latest developments in self-driving car research have just caught our 

attention. When it comes to physical car driving judgments, AI (deep learning models) 

has been successfully used. 

 

Soft Sensors: A sensor is a device that analyses large amounts of data. A thermometer is 

a sort of sensor that measures air temperature; similarly, there are many sensors available 

that detect changes in the environment. We may also monitor pressure, humidity, air 

quality, density, and other parameters in addition to temperature. Information from a large 

number of discrete sensors can be analyzed and evaluated using neural net models. 

 

Error Detection: Neural networks may be trained to generate an output whenever 

anything goes terribly wrong since they are designed to be efficient in the field of 

detecting and making predictions. Consider a long-running neural network that has been 

monitoring one's everyday actions. After learning the patterns of behavior, it may be able 

to alert you when something is wrong.  
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Medical Diagnosis: Biomedical analysis, drug development, diagnostic systems, image 

analysis, and other areas of medicine have all seen success with artificial neural networks. 

Artificial neural networks play an essential role in image analysis as well, where they are 

used in conjunction with digital image processing for recognition and classification. 

CNNs are being utilized throughout the health sector with ultrasound, CT scans, MRI, 

and X-ray detection. Using artificial neural networks, it is feasible to monitor a range of 

benchmarks related to health, including oxygen consumption, pulse rate, and sugar levels, 

as well as predict the patient's response to treatment..  
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Chapter 3 

 

TRAINING AND DATA GENERATION 

 

 

The main agenda for this section is to find out about training of neural networks and 

gathering data for later stages. According to how they learn, neural networks can be 

divided into three categories:  

Supervised learning: The purpose of supervised learning is to find functionality for a 

training set comprising a given set of input and output pairings that accurately reflects its 

actual function. In this situation, the output response from every input is already known 

with high accuracy, and the labeled instances in the training data set are used to monitor 

the training process.  

Semi-supervised learning: Semi-supervised neural networks have a high number of 

unlabeled samples and few labeled examples. Using both types of examples, semi-

supervised NNs find their optimum classification strategy for given data.  

Unsupervised learning: Unsupervised neural networks, apart from the above two, learn 

correlations from data received without acquiring regular feedback; they're commonly 

employed in classification applications. 

 

3.1 MNIST Dataset 

 

In 1998, the United States Census Bureau created the MNIST (mixed national institute 

of standards and technology database) [13]. The MNIST dataset contains a number of 
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70000 samples, 60000 of which are for training and the rest are for testing. The database 

is made up of two origins. NIST’s special dataset 1 gathered from high school pupils and 

stored in NIST’s special dataset 3 information obtained from census bureau personnel. 

The training and test sets were chosen to avoid having the same person work on both. 

And over 250 writers' samples are included in the training set.  

 

 

Fig 3.1: MNIST data samples 

 

3.2 Loss function 

 

In supervised learning, training neural networks comprises modifying the network weight 

and bias parameters and minimizing the overall prediction error. Whenever the design 

with acquired data gets close to an accurate response, the loss function is the amount of 

utility lost. In other words, the loss function evaluates whether the whole anticipated 

model is correctly specified in terms of fitting the data. 
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3.3 Back propagation algorithm 

 

The error "back-propagation algorithm" [14] is the most frequently used approach for 

training ANNs. After arbitrarily allocating the network weights, the back propagation 

algorithm determines the necessary corrections [14]. The artificial neural net layers are 

connected by two feed-forward and two back-propagation routes. In the feed-forward 

path, this same neural net first receives input values from either a particular training data 

set, a group of data sets, or all training data sets. Those same input data are combined first 

by initialization weighting factor, after that addition of all weighted input are computed 

as well as sent across each predefined activation function until they reach the output layer. 

The weights and bias values remain constant throughout the feed-forward process. 

Once the outputs have arrived just at the final (output) layer, the "loss function" [14] gets 

determined by subtracting the output layer response from the predicted output value. In 

the back-propagation path, the loss function value gets propagated through the neural 

network multiple levels and adjusts the weights as well as bias parameters.  

 

3.4 Gradient descent 

 

The “gradient descent algorithm” [15], a first-order approximation algorithm that updates 

the weights of a given model, is among the most commonly used neural net optimization 

techniques. This technique will generate the loss function derivative for each neuron in 

each layer about each weight and bias value. The learning rate and gradient values are 

used to adjust the model's weighted vector and biases. The feed-forward and back-

propagation paths are then done several times (epochs) until the model has been trained 

as per the training algorithm's constraints. "Stochastic gradient descent, or SGD, is a 

gradient descent-based optimization technique that is more time-efficient." [15] 
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3.5 Training 

 

Before training the neural network, first need to design a framework neural network using 

TensorFlow. TensorFlow is an open-source platform help in implementing deep learning 

and machine learning applications. As it is written in python programming language so it 

is considered simple to understand. To build this neural network framework, we use 

Google Colab, a cloud-based Jupyter notebook that is free to use. To use this any kind of 

setup is not required which is the great thing about it.  

 

Steps to create fully connected neural network: 

 

1. Loading the data and preprocessing:  

In this step the first thing is to import libraries and models necessary to build models. 

Then load the MNIST dataset using TensorFlow keras library. At the end it is important 

to divide the imported data set into training and validation sets. And then we do 

normalization on both train as well as the test set. 

 

 

 

2. Definition of neural network: 
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In this step construction of the neural network model takes place. Here the first nature of 

neural network takes place i.e., sequential or functional. Then layer formation takes place 

in which layer properties like numbers of neurons, sparsely or dense, activation function.  

 

 

3. Compile the model: 

This step of compiling the model is final point in creation of neural network model. After 

this, the model is ready for training. In this we specify matrices, optimizer and loss 

function which are important features for model to produce its final output. 

 

 

4. Training the model: 

The above model was trained with the training data set. First, a training set is added to 

the design, and then another parameter called epoch is introduced to improve the accuracy 

of the proposed design. An epoch is a basic criterion that specifies how many times the 

learning technique is run on the entire training data set.  
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5. Evaluating: 

And finally the evaluation phase where to check the model is the best match for the given 

problem or data set. 

 

 

 

  

3.6 Generating data 

This is the most crucial step after neural network construction and training in TensorFlow. 

After training the weights and biases of every neuron in each layer has been updated so 

to extract those weights and biases, we write an additional python script. Using these 

weights and biases values in validation of neural network design in hardware. 
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3.7 Data Representation 

 

 

Before heading to implementation in FPGA, first there is a need to represent the data 

generated during the training phase so that it can be utilized in later stages of work. The 

weights and bias can be positive or negative real numbers i.e., have both integer part and 

fraction part. “Fixed-point and floating-point arithmetic are two main forms of arithmetic 

representation”. [16] In FPGA, a fixed-point number has a predefined set of numbers 

before and after the decimal point as in fig. The integer and fractional parts of the floating 

point do not have a set number of digits allotted for them. A fixed-point number is 

represented as an integer that has been multiplied by an implicit factor. When compared 

to floating-point arithmetic, fixed-point arithmetic is extensively employed in FPGA 

based algorithms since it runs faster and consumes fewer hardware components. 

However, one disadvantage of fixed-point arithmetic is that the user must estimate the 

data range and select the scaling factor based on the fractional part size, making the 

system more prone to errors.  In FPGAs, fixed-point seems to be the “most useful 

approach for increasing speed and reducing area” [16].  
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Fixed point format is easier to express and compute, but it may result in a little loss of 

overall accuracy. That’s the reason why fixed-point representation is employed in this 

work to represent the data obtained from training part. 

 

 

 

Fig 3.2: Fixed-point representation 
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Chapter 4 

 

NEURAL NETWORK IMPLEMENTATION 

 

 

4.1 FPGA Overview 

 

“FPGAs (Field Programmable Gate Arrays)” [17] are solid state devices that may be 

programmed electrically to build any digital circuit. An FPGA is made up of a series of 

programmable logic blocks connected by programmable interconnects. They differ from 

Application Specific Integrated Circuits (ASICs), which are custom built for a specific 

design because of their reconfigurability. FPGA designs are modeled using Hardware 

Description Languages (HDLs) such as Verilog and VHDL, just like ASICs. The HDL 

design is then built and implemented to create a configuration file, often known as a bit 

stream file. This bit stream file describes how different FPGA components should be 

linked together. The design is programmed to continue until the FPGA is powered down 

after this bit stream file is downloaded to the FPGA.  

FPGAs have been a common choice for engineers to prototype ASICs and SoCs designs 

to test various parts of design since they were first introduced. Their reconfigurability is 

the fundamental reason for this. If a flaw is discovered in the design, it may be fixed by 

simply altering the HDL code and downloading fresh bit streams into FPGAs. FPGAs 

can always keep up with future changes because they are re-configurable. Another 

significant benefit of FPGA is the reduced time required to fully construct a workable 

design. On FPGAs, a design can be made functional and evaluated for many scenarios 

without the lengthy fabrication process. Because ASIC designs are designed for a specific 

design, FPGAs have some disadvantages over ASICs, such as their reconfigurability, 
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which makes them slower in clock speed than ASICs to find the most efficient routing 

and connectivity for that design. In comparison to custom ASICs, FPGA designs consume 

more power. FPGAs are limited in their capabilities. FPGAs are preferred for low-speed 

designs and low-volume production in general. FPGAs also contain unique hardware 

built in, such as block RAMs, distributive memory digital clock management, high-speed 

I/O, soft-core embedded CPU, DSP blocks, and so on, that may be utilized to create nearly 

any form of design. 

 

4.2 Memory 

 

There are two types of memories in FPGAs: Block RAM and Distributive RAM/ROM 

[18]. Distributive RAM is synthesized by utilizing LUTs inside FPGAs, while block 

memory is generated by cascading or stacking a large number of registers. Both memories 

have distinct applications and are suitable for specific areas of interest. As a result, 

depending on the area of interest, we can implement memory using either block RAM or 

distributive RAM. Block RAM has some advantages to distributive RAM, such as the 

ability to hold a huge quantity of data and the ability to be faster than the latter. 

Furthermore, distributive RAM uses more LUTs than block RAM. Because this project 

involves a huge amount of data (weights and biases), it is preferable to use block RAM. 

By employing control signals to enable the memory, data can be read or written. Both 

memories write synchronously, but read asynchronously in Block memory and 

synchronously in Distributed RAM. As design, the synthesizing program chooses 

appropriate RAM depending on heuristics which thus result in the best for most designs, 

and found in the resource use report generated after implementation. 

The two conventional methods are used to initialise memory blocks:  

(1) Using Verilog/VHDL configuration files to provide directly the memory beginning 

values. 

(2) Using an additional file to provide the RAM beginning values.  
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So, in general, we employ an approach to provide memory with initial values that may be 

read from an additional file holding data values generated during training in the form of 

MIF. This file is used as an input file for memory initialization in the simulator. The MIF 

file has a text format and includes data for every memory element. Since in this work a 

pre-trained neural network designed on an FPGA, the memory initialization concept 

comes very handy. In this work since fully connected neural network design is taking 

place, we use Block RAM memory to represent weighted interconnection between 

neurons. Also, in this work we implement activation function (sigmoid) using Memory 

blocks. 

 

 

4.2.1 Weight and Bias memory: 

 

Each neuron will consist of a memory which holds the weights for every other neuron 

from the previous hidden layer and bias memory for biases. These weights and biases are 

being calculated during designing and training of neural network using TensorFlow in 

chapter 3.  We use memory initialization concept for specifying Memory initial content. 

After training of particular neural network in using TensorFlow libraries we get weights 

and biases corresponding to each neuron. We convert those weights and biases to binary 

values using fixed point data representation of certain data width. 
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Fig 4.1: Weight memory 

 

The size of weight memory in neurons at a particular layer is depending upon the number 

of neurons in the previous layer. Since it will be a fully connected layer every node in the 

same layer has the same number of inputs so they all have the same size of weight 

memory. 

Size of weight memory = Address width x Data width 

Address width =   (𝑛) , here n denotes the number of neurons in the preceding layers. 

Whereas, Address width is calculated for each layer using the number of neurons in the 

preceding layer and width of data is fixed. Throughout this project, 16-bit data width was 

used to represent weights and input data. Initially, the memory contents were added using 

MIF files. When neural network starts the computations and read signal (RD_en) signal 

activates the neuron starts fetching weights to corresponding inputs from previous layer. 

Bias memory is nothing but a simple register which initializes with bias for a particular 

neuron at a particular layer during training and learning in python. 
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4.2.2 Designing of Activation function: 

 

Selecting the suitable activation function as well as building logic for its approximation 

to enhance the overall processing accuracy of a single neuron is one of the essential issues 

to consider before working on developing a neural network. The two activation functions 

that are widely used are: 

 

1. Sigmoid 

Since non-linearity is required in the model to achieve the accuracy in making the 

predictions therefore sigmoid is one of the commonly employed activation functions as 

it has non-linear nature. This function ranges the values in between 0 and 1. 

Mathematically defined as: 

 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
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Fig 4.2: Sigmoid activation function 

 

The graph of the sigmoid function shown in the fig 4.2 above has a persistent S-shaped 

arc including a region that is always differentiated. The function's derivative is: 

𝑓′(𝑥) =  
𝑒−𝑥

(1 + 𝑒−𝑥)2
 

  

Or, 

 

𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 
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Fig 4.3: Sigmoid with its derivative  

 

2. ReLU 

 

The acronym for ReLU is rectified linear unit, non-linear function in nature employed in 

neural net models. Not only its implementation is simple but use of ReLU has upper edge 

of not activating all nodes simultaneously. When the result of the linear combination 

equals zero, this signifies how a neuron would be discontinued to process. It is 

mathematically defined as: 

 

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) 

 

Even though a small number of neurons get triggered at a time, ReLU is quite effective 

than other functions since not all neurons are triggered simultaneously. 
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Fig 4.4 ReLU activation function 

 

 

To approximate an activation function of any shape, activation function values are 

uniformly sampled and those values get stored in block memory (ROM) in FPGAs. The 

size of memory depends upon the total numbers of input samples and size of data width. 

The address field consists of input samples represented by fixed numbers of bits. The 

activation values of those input samples are  pre-calculated and converted into binary of 

certain width. Suppose if input samples are represented by 8 bits and data width is 16 bits, 

then size of ROM is 28x16. There are a total 256 locations mean for this many input 

samples activation function get approximated. The approximation of any kind of 

activation function depends majorly on the numbers of bits used to represent input 

samples. More number of bits means more number of samples that would accurately 

represent the activation function. In fig, sigmoid function in range of [-6, 6] implemented 

using 28x16 ROM shown. 
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Fig 4.5: Implementation of sigmoid using ROM 

 

4.3 Neuron Architecture 

 

After designing the activation function, now the main job is to use weight and bias 

memory blocks to implement the mathematical expression for neuron. The neuron is 

smallest computational unit in neural network. Every neuron gets data from either 

previous layer neurons or from the input data set, it performs a dot product between the 

input and its corresponding weighting factor, inserts required bias values, and 

incorporates a non-linear activation before sending the output to other neurons. 

Mathematically a neuron action can describe by, 
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Fig 4.6: Mathematical model of neuron 

 

The input applies to a neuron in a serial manner. In Module1 successive dot products take 

place between inputs and their corresponding weights. Then the whole dot products of 

input and weight along with the bias value are summed together using a summing 

junction. So to design Module1 we require weighted memory, bias register, MAC 

(Multiply and accumulate) unit and Summing point. 
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Fig 4.7: Module 1 architecture 

 

As inputs are coming in serial fashion, the MAC unit takes input and weight value one 

by one, with reference to the clock, performs multiplication, and adds to the accumulator 

content. Initially, the accumulator is assigned zero bits; this will help us do successive 

addition on inputs and weights until the last input. Once the last input and its 

corresponding weight are added, a control signal gets triggered, which controls over 

operands for addition. For control over the operands of an adder, we use a simple MUX. 

The adder has two operands; one is an accumulator which is fed back and the other is  
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from MUX. This MUX helps us to select between product terms and bias content. Until 

the last input, this control signal is active low.  

As soon as the last input arrives and is added with the accumulator, the signal becomes 

active high. So in the next cycle, bias content will be selected and added to the 

accumulator to achieve the operation of the neuron i.e. 

 

𝑣 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏 

 

 

We move on to Module2, which is another memory block used to approximate the 

activation function, after designing Module1. For a range of its input, the memory block 

was initialized with discrete values of the activation function output. The accumulator's 

output serves as an address field for the activation function ROM and generates the 

appropriate output. The Activation ROM will read only when the RD signal gets active 

high and this will happen when whole mathematical expression calculated by Module1. 
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Fig 4.8: Complete model of neuron 

 

4.4 Constructing neuron layers and pipelining register 

 

The above neuron architecture serves as a basic unit for building neural networks. 

Calculate the number of neurons required in each layer before beginning layer 

construction. To build a neural network of size 120-30-20-10, for example, the first layer 

(input) has 120 neurons, followed by 30 neurons in the second layer (hidden), 20 neurons 

in the third layer (hidden), and 10 neurons in the fourth or last layer (output). Because the 

neural network is developed for an application that requires MNIST datasets, the default 

number of neurons in the input layer is always 784 and the output layer is always 10. The 

neural network configurations 784-200-10, 784-150-50-10, and so on are suitable for 

usage with the MNIST dataset.  
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The key concerns now revolve around how to ensure that communication across layers is 

reliable and error-free. Every neuron in this design receives inputs from prior layers at 

the same time, implying that each neuron is fully connected to every other neuron in 

previous layers. As a result, adding a shift register between layers to hold data from all 

the neurons in the preceding layer is the solution to this problem. The number of neurons 

in the previous layer and the data width determine the size of the shift register. The shift 

register in fig 4.9 will shift the data width amount of data to all neurons in the next layer 

with each clock pulse. So that each clock pulse gives the same input to all neurons in the 

next layer.  

Here, pipeline action is employed by shift registers to prevent bogus information from 

propagating forward and all the neurons at every layer process simultaneously. 

 

  

 

Fig 4.9: Introduction of Pipeline using Shift register 



47 
 
  

 

 

4.5 Verification of neural network with MNIST dataset 

 

The MNIST dataset has around 60,000 datasets for training purposes and 10,000 for 

testing or validation purposes. The data consists of images of handwritten digits (0–9) in 

size 28 x 28 pixels. This total of 784 pixels data acts as input to the input layer, i.e., 784 

neurons. These test data sets are already converted using fixed point in binary form with 

16 bits as the data width. Along with the data set, the expected value of the input is also 

inserted into the design for verification at the end of every computation. At the end, the 

output layer of neural network decision logic has been used. The decision logic decides 

which neuron output to send for comparison with the expected value. The output will be 

compared with the expected one, and based on this; we later compute the accuracy of the 

model. 

 

 

Fig 4.10: Complete design with Top module (test bench) 
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For verification of the neural network model, a separate top module (test bench) is written 

in Verilog. The above figure gives an overview of the verification of a model using test 

data sets as input. An AXI interface between the top module and the DUT (Neural 

network) has been used for passing the test data set one at a time to the DUT as shown in 

fig. An AXI interface helps in sending input datasets in serial fashion from the top module 

automatically. 

 

 

Fig 4.11:  AXI interface 
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Chapter 5 

 

RESULT AND DISCUSSION 

 

 

In this segment of work we observe the results after behavioral simulation and post 

synthesis implementation of the neural network design on a suitable FPGA board. The 

tool employed for RTL implementation of neural network is Xilinx Vivado 2020.1 and 

the FPGA board targeting this work is Artix-7(xc7a100t csg324).  

 

5.1 Simulation results: 

 

In this design process, the design of the fundamental unit of the neural network, i.e., the 

neuron was the first goal. Fig 4.1 represents the behavioral simulation of the test bench 

given on top of the neuron module written in Verilog using the Xilinx Vivado simulator. 

Weighted memory and bias registers are initialized with initial contents using the MIF 

file added to the test bench at the start of the simulation. During simulation, each clock 

pulse input is driven to the module, and the weighted input computation begins. Finally, 

it was added to the bias value and applied to the activation ROM to produce the desired 

result. This simulation was performed to check the functionality of the neuron unit's 

operation before designing layered architecture design.  
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Fig 5.1: Behavioral simulation of neuron architecture 

 

After adding layers and pipeline register in between the layers complete architecture of 

neural network design is simulated. Fig 4.2 represents the behavioral simulation of a fully 

connected neural network consisting of three hidden layers (784-30-30-10-10). 

 

 

Fig 5.2: Behavioral simulation of fully connected neural network 
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The complete design was tested using test data sets and check against the expected one to find 

the accuracy of design. Fig 4.2 as shown, showing the accuracy results after 100 image data set 

given to neural network (784-30-30-10-10). 

 

 

Fig 5.3:  Accuracy result of neural network with three hidden layers 

 

 

5.2 Evaluation of model: 

In this chapter, we evaluate the model on the basis of three design parameters which are: 

1. Number of hidden layers. 

2. Activation function type. 

3. Activation function representation. 

The performance parameters employed in this work are accuracy, resource utilization, 

and power consumption. Before going to the results evaluation part let's first define the 

accuracy term related to this work. 
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Accuracy: 

By Accuracy of neural network here means how many test images it can detect correctly 

out of total test images. The accuracy will depend upon several factors like how many 

processing elements are there, the numbers of hidden layers. 

 

                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
× 100   

 

To check the accuracy of the neural network, 100 test images were taken from the MNIST 

test dataset. This examination of neural networks with varied numbers of hidden layers 

but the same sigmoid activation function. 

 

 

a) Number of hidden Layers: 

 

The above table 1 describes that different number of hidden layers affects the accuracy 

of neural network design. It is clearly represented from above a the number of hidden 

layers increases the accuracy increases as more numbers of processing layers will  help 

in predicting test image accurately. However, as we move to a network with a large 

number of hidden layers, the network's performance in terms of the time it takes to 

process those 100 test images degrades. So, if the problem's criterion is accuracy, use a 

large number of hidden layers; otherwise, if performance is a primary consideration, use 

a limited number of hidden layers.  
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Table 5.1: Effect of number of hidden layers on accuracy and performance 

SNO. Neural Network Models (Number of hidden layers) Accuracy (%) Performance(time) 

1. 784 – 30 – 10 (1) 94 0.846ms 

2. 784 – 30 – 30 – 10 (2) 96 0.883ms 

3. 784 – 30 – 30 – 10 – 10 (3) 98 0.904ms 

 

In this evaluation, a neural network has been analyzed with different numbers of hidden 

layers but the same activation function sigmoid.  

 

Table 5.2: Effect of number of hidden layers on resource and power 

               

       Resources            

                   

No. 

of hidden layers               

LUT 

(Utilization 

%) 

FF 

(Utilization 

%) 

BRAM 

(Utilization 

%) 

DSP 

(Utilization 

%) 

IO 

(Utilization 

%) 

BUFG 

(Utilization 

%) 

Power 

(watts) 

1 3256 (5.14) 2935 (2.31) 25 (18.52) 80 (33.33) 105 (50) 1 (3.13) 124.04 

2 5409 (8.53) 4688 (3.77) 32.5 (24.07) 140 (58.33) 105 (50) 1 (3.13) 187.71 

3 6225 (9.87) 5293 (4.17) 35 (25.93) 160 (66.67) 105 (50) 1 (3.13) 188.22 

 

 

We can deduce from table 2 above that resource usage and power are directly related to 

the number of neurons used in neural networks.    

 

 

 

b). Type of activation function: 
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Two types of activation functions were employed to model the neural network in this 

study. Both the Sigmoid and ReLU activation functions are nonlinear. So, for this 

evaluation, we used a neural network with three hidden layers (784-30-30-10-10). 

 

Table 5.3: Effect of type of activation function on accuracy and resource utilization 

                             

      Resources            

                   

 

 

Activation 

   Function               

LUT 

(Utilization 

%) 

FF 

(Utilization 

%) 

BRAM 

(Utilization 

%) 

DSP 

(Utilization 

%) 

IO 

(Utilization 

%) 

BUFG 

(Utilization 

%) 

Accuracy 

(%) 

Sigmoid 6255 (9.87) 5293 (4.17) 35 (25.93) 160 (66.67) 105 (50) 1 (3.13) 98 

ReLU 8273(13.05) 6653(5.25) 15(11.11) 160(66.67) 105(50) 1(3.13) 91 

 

 

From above, it clearly states that for this neural network design, ReLU implementation 

consumes more resources than sigmoid. Logical utilization (LUTs and FFs) is more in 

ReLU than sigmoid because there is a need for extra logic in realizing ReLU. Since 

memory is involved in the realization of sigmoid apart from weight memory, a neural 

network with sigmoid consumes more block RAM (BRAM) compared to a neural 

network with ReLU. In terms of accuracy, sigmoid activation gives better accuracy for 

the same configuration as it is more nonlinearity than ReLU. 

 

c). Activation function representation: 

 

The table shows a binary representation of the activation function changing and its effect 

in this discussion. As we utilize more bits for representation, the model's accuracy 

increases but more hardware is consumed. As the number of bits in the function increases, 
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it covers a wider range of activation values, necessitating the use of more BRAM and 

LUTs for approximation. 

 

Table 5.4: Effect of activation function representation on accuracy and resource utilization 

                             

      Resources            

                   

 

 

Activation 

   Function               

LUT 

(Utilization 

%) 

FF 

(Utilization 

%) 

BRAM 

(Utilization 

%) 

DSP 

(Utilization 

%) 

IO 

(Utilization 

%) 

BUFG 

(Utilization 

%) 

Accuracy 

(%) 

6 bits 6240 (9.84) 5293 (4.17) 35 (25.93) 160 (66.67) 105 (50) 1 (3.13) 94.6 

12 bits 16227(25.59) 5879 (4.64) 98 (72.59) 160(66.67) 105(50) 1(3.13) 95.4 
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Chapter 6 

 

CONCLUSION AND FUTURE SCOPE 

 

6.1 Conclusion 

 

An FPGA-based fully connected neural network is designed in this thesis. Since FPGA 

has a reconfigurable and parallel architecture, it is a great platform for deep neural 

networks. The reconfigurability of FPGA allows neural network architectures to be 

scalable and flexible to change as they are used in this thesis. When examined closely, a 

neural network is nothing more than a large number of neurons arranged in layered 

architecture doing the same arithmetic computation. As each neuron does the same 

repeated action individually, the FPGA’s parallel computing architecture can be used to 

conduct independent operations concurrently. The fully connected neural network is 

designed to address problems related to the recognition of handwritten digits using 

MNIST datasets. The design is implemented on an Artix-7 FPGA board with varying 

design parameters like number of layers, activation functions etc. The FPGA-based 

design of neural networks utilizes pre-trained weights and biases. The design 

performance was carried out in terms of accuracy and FPGA resource utilization. The 

design attained a maximum accuracy of 98 % by altering its design parameters. This 

architecture can be employed when a machine learning problem has a minimal number 

of data sets, few calculations, and a straightforward design. 

 

 

6.2 Future Scope 
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Although the fully connected neural network model correctly predicts the images in this 

study, there are still many ways to improve the accuracy and efficiency of this design. 

There are three key areas where this design will need to improve in the future to maximize 

its performance. The first is neural network architecture, which is preferable to fully 

connected architecture since it is more difficult to construct but more computationally 

efficient, and so performs better when it comes to image recognition. 

The representation of data is the second area in which design should be concentrated. 

Fixed-point representation was used in this design because of its simplicity and low 

resource usage. If accuracy is more important than resource utilization, floating-point 

data representation is a great option. There are two major advantages to using floating-

point. One is that this type of representation includes a scaling factor that allows for a 

greater range of values to be represented. They're also more adaptable than fixed-point 

models.  

The third and most essential area needs to concentrate on using FPGAs to approximate 

activation functions. There are numerous efficient approaches that can be used in this 

design. There are a few good approximation approaches used in FPGA implementation, 

such as piecewise approximation and LUT-based approximation. 
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