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ABSTRACT 

 
 

Spatial Clustering is a subclass of Unsupervised Machine Learning algorithms that utilizes a specified 

criterion to group a set of geographically dispersed data points together. A Spatial hotspot is a confined 

region/space inside a geographical area which has a higher concentration of activity points than outside 

the hotspot region within the study area. With technological breakthroughs in spatial data collection and 

increased computation capabilities, several research publications presented novel methods for Spatial 

Hotspot detection. The relationship between Spatial Hotspots and time (temporal effect) has also been 

investigated by various researchers, expanding the horizon of the spatial hotspot to spatiotemporal 

hotspot. Spatiotemporal hotspots are a valuable tool for determining the highly vulnerable regions (e.g., 

high-risk crime territories, high accident-prone areas, severe disease-outbreak areas, areas more exposed 

to natural calamities and many more). The idea of Spatiotemporal hotspot detection gained considerable 

interest among researchers because of its practical utility in public health, public safety, traffic volume 

analysis, crime zone analysis, and other essential applications. Our research aims to organize the 

existing comprehensive literature into a well-organized hierarchical framework to comprehend better the 

various methodologies widely adopted around the world.  

 

We propose a framework that suitably categorizes the research effort of various scholars into several 

appropriate categories based on their differences in primary algorithmic approaches. Furthermore, we 

also present an extensive analysis of the widely utilized evaluation measures adopted in this research 

domain. Effective clustering algorithms are required in societal applications such as road safety to 

uncover useful patterns linked with the data. Many applications employ Spatial Scan Statistics to 

identify spatial clusters, however it needs users to first determine the shape of the cluster, which is 

ambiguous in the context of road safety and could result in unfavorable outcomes. We outlined a method 

for discovering statistically significant shape-invariant spatial clusters in order to identify high-risk road 

accident zones.  

 

The proposed approach incorporates the OPTICS and HDBSCAN clustering algorithms, as well as 

Cluster density and the Log Likelihood Ratio methods for evaluating the significance of spatial clusters. 

OPTICS and HDBSCAN are optimal for finding clusters of arbitrary shape and only require a single 

input parameter, making hyper parameter tuning relatively easier. We incorporated the statistical 

significance of clusters to eliminate spurious patterns. To illustrate the obtained results, the proposed 

approach is applied to the UK Road-Accidents data. We also presented a comprehensive analysis of the 

seasonal and temporal variations of the significant spatial hotspots discovered. Besides, we highlighted 

the methodology of prioritizing the identified hotspot zones based on the severity of the accidents for 

situations in which authorities are restricted with limited budget. We further suggest potential solutions 

for the probable causes of accidents in the hotspot area to guide relevant authorities to take timely and 

effective action. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Overview 
 

Spatial Clustering and Hotspot Detection is a special class of technique which can 

group a set of spatially distributed data points together based on pre-defined criteria in 

order to create a spatial cluster. Over the years, many Spatial Clustering techniques 

have been rendered to find insights about the behavior of data-points in various 

applications to provide relevant results. But, the problem arises when these clustering 

methods are applied on those application domains which have low-tolerance to false 

positives. 

 

For instance, if one identified clusters of crime locations over a region and supposedly 

one of the identified clusters falsely claimed some area to be a crime hotspot, then it 

can seriously affect the status of the residents living in that area or tourists visiting that 

area. Thus, the identified clusters do not prove to be significant for the application, 

which is undesirable. This example clearly demonstrates that significance detection of 

spatial clusters is crucial for real-world applications in wide domains like crime, 

environment, accidents, political applications, natural calamities etc. 

 

We introduce the concept of “Significant Spatial Hotspot Detection and Analysis of 

High-Risk Road Accident Zones using OPTICS and HDBSCAN Clustering” as a 

model capable to eliminate the mentioned problem with widely adopted traditional 

approaches. Significant Spatial hotspot detection takes statistical significance of 

clusters or hotspots into consideration to make the clusters resistant to spurious or false 

patterns or false positives. Many real-life applications in the domain of public health, 

transportation, forestry, environmental science, public safety etc. require significant 

clustering to deal with real datasets and provide authenticated results. 

 

We have taken a serious actual world application of reducing road accidents in the 

world by analyzing the significant hotspots of road accidents so that areas with 

frequent road accidents are identified and infrastructure development, road planning 

and traffic management could be properly channeled and prioritized to such areas to 

prevent precious lives lost of both humans and animals as well as damage to vehicles 

and government property caused due to accidents. 
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1.2 Problem Statement I 
 

Spatial clustering has been widely employed for use in massive datasets where the 

clusters are formed based on their closeness of the spatial data points or the similarity 

between these spatial data points. Many applications employ Spatial Scan Statistics as 

the most powerful technique to identify spatial hotspots of various geometric shapes 

(circular, elliptical, ring, linear, grid) but it requires the researcher to know the hotspot 

shape beforehand as an input which is ambiguous for many real-world problem 

statements and data-sets. It also takes a lot of computation time to be practically used 

for societal applications. Societal applications are observed to have arbitrary shaped 

spatial cluster. Thus, the traditionally used “Spatial Scan Statistics” is favorable to 

limited applications. Also, Significance detection of spatial clusters is crucial for real- 

world applications in order to remove spurious or chance patterns or false positives. 

This makes the spatial cluster analysis much more effective and yields out interesting 

and true insights about the behavior of data points as a whole. 

Based on the problem statement 1 following questions is identified: 

 

1. What are recently employed techniques of spatial hotspot detection used for 

real world applications? 

 

2. Which technique is more suited to be employed in certain particular application 

domain? 

 

3. What evaluation metrics are to be utilized for the particular application domain? 

 

4. How to detect arbitrary shaped hotspots which is the core of hotspot detection in 

real world applications? 

 

5. Is it possible not to give predefined shape as an input to the model which 

generates spatial hotspots? 

 

6. How to test significance of the generated hotspots to ensure true insights only 

and not adulterated by chance or spurious patterns? 
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1.3 Problem Statement II 
 

Everyday thousands of road accidents happen globally which always is not fault 

of driver alone but finds primary cause to be poor road connections, poor road 

infrastructure, bad management of road traffic, unsatisfactory road planning or 

any constant other external factor contributing to increased chances of accidents 

being caused at certain places. Such accidents lead to lives being destroyed with 

lives lost of both humans and animals. Also, it contributes to damage to vehicles 

and government infrastructure which adds to financial loss for both public and 

government. It is peculiar to observe that certain places experience more 

accidents than others which are gravely alarming for public safety and road 

safety. 

 

So, the problem statement is to develop a model to eliminate road Accidents 

caused due to poor infrastructure, ineffective implementation of road safety 

guidelines and inefficient road traffic management for building safer smart cities. 

 

Based on the problem statement 2, the following questions arise: 

 

1. Can there be a model which points the hotspot locations of these prone to 

road accidents areas where accidents are not just because of human error but 

due to poor infrastructure, ineffective implementation of road safety 

guidelines and inefficient road traffic management? 

 

2. Can such a model be developed which constructs safer roads harnessed with 

technology that brings out Smart outcomes for Smart City Building and 

Planning? 

 

The Application domain of Spatial Clustering is sensitive in nature and 

demonstrates the real-world scenarios wherein the probability of obtaining 

misleading results is high. An erroneously identified spatial hotspot can have 

adverse effects. For example, suppose one of the clusters mistakenly labeled a 

specific area as a hotspot for accidents. As a result, critical resources such as 

needed traffic force may be wasted instead of being invested in the right region. 

Furthermore, if the actual hot spot areas are identified, the relevant authorities can 

more effectively plan and utilize their resources to benefit society.  

This demonstrates that merely identifying spatial clusters is insufficient; it is also 
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necessary to determine the significance of the spatial cluster. Several Research 

studies suggested the use of a preset geometric shape for hotspot identification 

based upon past observations. For example, circularly shaped clusters are quite 

popular in case of Disease surveillance and Ring-shaped hotspots are prevalent in 

identification of high-risk zones of criminal activities. But, it is important to note 

that all spatial clusters cannot have a predefined geometric shape. Many real-world 

applications exist wherein the spatial clusters have an arbitrary shape. Spatial Scan 

Statistics by M.Kulldorff [16] is one of the most effective methods to determine 

spatial clusters of a predefined geometric shape (circular, linear, ring etc.) along 

with their statistical significance to yield accurate results. Major drawback of 

Spatial Scan Statistics is that it requires a predefined shape for cluster 

identification. Thus, Spatial Scan statistics becomes unfit for finding significant 

spatial clusters of arbitrary shape. Furthermore, selection of appropriate clustering 

algorithms can help in determining clusters of arbitrary shape and provide 

authentic results. Spatial Hotpot identification has largely relied on clustering 

based techniques. 

 

 

1.4 Project Objectives 
 

The emergence of social media, medical imaging, remote sensing, 

telecommunications, crowd sourcing, and other technologies has substantially 

facilitated collecting data at several locations (spatial domain) over a given time 

period (temporal domain). Spatiotemporal data mining is an emerging field of 

research. Spatiotemporal objects deal with both space and time attributes which 

are updated continually as time and location changes. A spatiotemporal database 

comprises a collection of such dynamic spatiotemporal objects. Several 

researchers studied spatiotemporal databases and designed applications in public 

health and disease outbreaks, crime and public safety, environmental science, 

natural disaster management, road safety and transportation, traffic management, 

and other crucial areas.  

 

 

G. Atluri et al. [1] presented a comprehensive survey on the details of 

spatiotemporal data and outlined the problems and methods concerned with 

Spatiotemporal Data Mining (STDM). Hamdi et al. [2] conducted a detailed 

research survey on spatiotemporal data mining and discussed the challenges and 



5  

tasks associated with the field. They classified clustering and hotspot detection as 

task-related challenges in STDM. The authors of [2] mentioned that 

spatiotemporal clustering is different from classification and involves the 

grouping of spatiotemporal objects to form clusters of similar spatiotemporal 

characteristics. S.Shekhar et al. [3] examined several crucial aspects of 

spatiotemporal data mining primarily concerned with the field of criminal 

activity analysis. The authors characterized the three essential attributes 

associated with spatiotemporal data as follows: non-Spatial attributes (e.g., 

population, crimes reported in the city, the unemployment rate in the city, city 

name, etc.), spatial attributes (e.g., latitude, longitude, etc.) and temporal 

attributes (e.g., timestamp of an event, duration of an event, etc.). Spatial data 

takes different forms: point, line, polygon, regular/irregular map fields, or graph 

network. The authors also stated the subtle difference between the concepts of 

spatiotemporal clustering and spatiotemporal hotspot detection.  

 

Spatiotemporal clustering is a general term used for grouping a large number of 

spatiotemporal data items on the basis of similarity in their space-time 

characteristics. On the other hand, the process of spatiotemporal hotspot 

identification is also described as the phenomenon of identifying regions or 

clusters in a spatiotemporal domain where the number of activity points are 

unexpectedly but significantly higher within the time intervals. The major 

challenge associated with the obtained hotspots is eliminating the false positives 

so that the results are of practical importance and aligned with the underlying 

ground truth. Recent research works suggested various evaluation measures for 

better hotspot prediction in accordance with space-time characteristics. 

 

Clustering techniques have been widely used in different scientific and social 

sectors, such as market research, pattern identification, fraudulent and criminal 

activity detection, network traffic analysis, and so on, to uncover patterns or 

trends of certain actions or events. Spatial Clustering is a subset of clustering 

algorithms that uses a predefined criterion to group a set of spatially scattered 

data points into a cluster. The essential concept of spatial clustering is that the 

spatial data points within a cluster are more similar to one another than the data 

points outside the cluster bounds. The equality or dependency between data 

points can all be used as clustering criteria, however it primarily depends on the 

application domain. The data points in the spatial domain may represent a 

particular event such as crime, disease, accident, taxi pickup areas etc. Basically, 



6  

spatial clusters describe the behavior of data points in relation to one another 

which help in quantifying the variation in geographic patterns. Many spatial 

clustering approaches have been proposed and used in the past to extract useful 

information from unstructured data in a variety of applications. It is largely 

utilized in Disease surveillance, spatial epidemiology, Population genetics, Crime 

analysis and various other fields. A Spatial Hotspot can also be perceived as a 

Significant Cluster. A Significant Cluster is a unique cluster in which the 

frequency of events within the cluster exceeds that outside its bounds. In order to 

determine Significant Clusters, candidate clusters are formed and significance 

testing is performed on these clusters. We proposed a hybrid approach that 

combines Spatial Clustering with Significance Testing. The paper employed two 

types of clustering techniques, namely density-based clustering and hierarchical 

clustering.  

 

The nature of geographical data points differs significantly from that of ordinary 

data points; hence it is essential to use appropriate algorithms to generate spatial 

clusters. We proposed an approach combining the capabilities of two efficient 

methods to obtain Significant Spatial Hotspots. The Clustering algorithms are 

employed to obtain candidate spatial clusters. Clusters that are resistant to false 

patterns are generated by spatial clustering with statistical significance of 

detected arbitrarily shaped clusters. We proposed a way for combining the 

benefits of both methods in order to overcome their respective constraints. The 

proposed algorithm used a comparison approach to choose two effective Spatial 

Clustering algorithms, OPTICS and HDBSCAN, from the Density based 

clustering algorithms and Hierarchical Clustering techniques categories, 

respectively. By detecting significant arbitrary shaped spatial hotspots of UK 

road-accidents, we demonstrated the results achieved by the proposed approach. 

We further proposed a comprehensive analysis of the seasonal and temporal 

variations of the identified significant hotspot zones. 

 

A severity-based analysis of the significant spatial hotspots is also conduced to 

assist the relevant authorities in identifying the places that demand considerable 

attention and prioritizing all other hotspot zones as well. This efficiently assists 

the relevant authorities in developing a practical strategy that should be 

implemented in a timely manner in order to provide a better and safer road 

environment for the general public. 
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1.5 Role of Machine Learning  
 

Spatiotemporal data mining is the process of extracting meaningful patterns, 

trends, or other relevant information from the data collected in both spatial and 

temporal dimensions. Spatiotemporal data mining applications are widely used in 

a variety of sectors, including criminology, medicine, transportation, public safety, 

and many more. Spatial Clustering is an important subcategory of Spatial Data 

Mining. Spatial Clustering is the aggregation of similar event occurrences 

occurring in space over a period of time. Spatial Hotspot detection is a special 

subset of Spatial Clustering.  

 

Road safety has been a significant matter of concern worldwide for many years. 

With increasing number of vehicles on the road, the probability of accident 

occurrence also increases. Hence, it becomes essential to devise ways to promote 

road safety by improving upon external contributing factors such as road surface 

conditions, road signs, traffic management etc., in order to reduce the likelihood of 

road traffic accidents as much feasible. However, it is critical to identify accident-

prone areas not only based on the number of accidents that have occurred in the 

past, but also by considering other aspects of an accident event such as road 

surface conditions, lightning conditions, weather conditions, time of the event, 

traffic police availability, accident severity, and a variety of other important 

factors. As a result, the spatial characteristics of the region as well as the temporal 

fluctuations of the event occurrence are the most important factors in determining 

the magnitude of a road accident at a specific site. Moreover, it becomes vital to 

identify the appropriate geographical locations having unexpectedly higher 

occurrence of road accident events over defined period of time such that the 

valuable resources are directed towards the right direction.  

 

Many researchers have demonstrated interest towards spatiotemporal hotspot 

detection of traffic accidents from different parts of the world. Several researchers 

conducted various types of analyses and presented many revolutionary and 

interesting insights in various domains of technology, with the primary objective 

of road safety being acknowledged by everyone. Traditionally used statistics-

based methods for spatial hotspot detection were merged and further employed 

with newer forms of Machine Learning or Deep Learning based models to develop 

an infused strategy that leveraged the benefits of both the techniques. Machine 

Learning-based models provide an added benefit in a variety of traffic accident 
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analysis tasks, such as classifying the severity of accidents based on feature 

engineering or extracting patterns from data to anticipate or forecast future 

accident zones. Furthermore, Deep Learning based models, such as Convolution 

Neural Networks, give increased accuracy and the ability to handle greater size 

inputs, as well as perform better in terms of the road network environment. The 

paper provides a comprehensive survey of recently introduced methods for traffic 

accident analysis, such as Spatiotemporal road traffic accident hotspot detection, 

Principal Feature selection from traffic accident datasets that include spatial, 

temporal, and other influential factors, and also predicting the risk or severity of 

accidents after training the model using past data to predict future high-risk or 

low-risk road accident zones. 

 

 
 

 

Fig.1 Diagrammatic Representation of Spatiotemporal Traffic Accident Analysis
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CHAPTER 2: RELATED WORK 

 

2.1 Overview of Literature Survey 

This section examines a variety of methods for Spatiotemporal Hotspot detection that 

have been proposed all across the world. By categorizing the existing widely adopted 

approaches and recently proposed hotspot detection methods, we established a 

hierarchical framework to explore these methodologies. We classified the hotspot 

detection methods upon analyzing the two significant features of Spatiotemporal data 

analysis, i.e., Strategic computation techniques (or algorithms) and Application Areas. 

Based on the existing literature, we divided the methods for detecting Spatiotemporal 

Hotspots into the following eight categories demonstrated in Fig.2 below.  

 

 
Fig.2 Hierarchical framework for classification of ST hotspot detection methods 

 
The prime objective of this systematic study is to organize the relevant research literature 

for Spatiotemporal hotspot detection and effective evaluation measures in order to assist 

the research community in gaining a better understanding of the state-of-the-art methods 

for determining Spatiotemporal hotspots. We attempted to summarize the Spatiotemporal 

hotspot detection algorithms. We define the application domain of research studies and 

suitably categorize them into the developed hierarchical framework after carefully 

selecting research works in the subject of Spatiotemporal hotspot identification. 
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Table I. Hotspot detection techniques with different application domains 

Application 

Domain 
Shape Category Approach Reference 

Disease 

outbreak 
Circular 

Space-Time scan 

Statistics based 
SaTScan 

[19] 

[7] 

[20] 

 Circular 
Space-Time scan 

Statistics based 

Retrospective Space-time 

analysis 
[9] 

 Circular 
Space-Time scan 

Statistics based 

Prospective Space-time 

analysis 
[10] 

 Circular Clustering based 
Extended Fuzzy C-Means 

Clustering 
[21] 

 Elliptical  
Space-time scan 

Statistics based 

Spatial Scan Statistic with 

elliptical scanning window 

[16] 

[22] 

[23] 

 Ring  Clustering based 
Grid-Based clustering with 

pruning 
[14] 

 Cylindrical  
Space-time scan 

Statistics based 

Prospective Space-time 

analysis 

[11] 

[12] 

 Irregular  
Space-time scan 

Statistics based 

Flexible Space-time Scan 

statistic 

[24] 

[5] 

 Irregular 
Space-time scan 

Statistics based 
GridScan [17] 

 Irregular Clustering based Polygon Propagation [18] 

 Irregular Clustering based 

AMOEBA clustering 

algorithm using modified 

Getis-Ord statistic 

[19] 

 Irregular 
Eigen Space 

based 
EigenSpot Algorithm [25] 
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 Irregular 
Eigen Space 

based 

SST-Hotspot algorithm 

involving eigen vector 

matching 

[26] 

 Irregular 
Nature-Inspired 

Algorithms based 

PSO optimized scanning 

window in Space-time scan 

statistics 

[27] 

 
Point Density 

based Cluster 

Space-time scan 

Statistics based 

Retrospective spatial analysis 

using General G statistics 

 

 

[8] 

Crime 

Hotspots 
Elliptical  

Space-time scan 

Statistics based 

Spatial & temporal analysis 

of Crime (STAC) 
[28] 

 Elliptical  Clustering based RNHH Clustering [29] 

 Cylindrical  
Space-time scan 

Statistics based 
SaTScan [30] 

 Irregular  
Space-time scan 

statistics based 
SaTScan [6] 

 Irregular   Clustering based 
Spatiotemporal Kernel 

Density Estimation (STKDE) 
[31] 

 Irregular Clustering based 
Net KDE &Getis-Ord 

statistic 
[32] 

 Irregular Clustering based 

Modified Moving Window 

methods for network 

detection 

(EdgeScan&NDScan) 

[33] 

 Irregular  

Machine 

Learning & Deep 

Learning based 

Gated localized diffusion 

network (GLDNet) 
[34] 

 

Irregular 

(Dynamically 

changing) 

Machine 

Learning & Deep 

Learning based 

Spatiotemporal Deep RNN [35] 

 Irregular 
Fuzzy Logic 

based 
Novel Genetic Fuzzy system [36] 

 Irregular 
Nature-Inspired 

Algorithms based 

Multiobjective Evolutionary 

Algorithm 
[37] 
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 Irregular  

Machine 

Learning & Deep 

Learning based 

Deep Inception Residual 

Networks 
[38] 

Political 

Violence & 

Terrorism  

Cylindrical 
Space-time scan 

Statistics based 

Space-time Scan statistic 

with cylindrical window 
[39] 

Road-Traffic 

Management 

& Accident 

Prevention  

Irregular 
Probabilistic 

Model based 
Kernel Density estimation [40] 

 Irregular 
Probabilistic 

Model based 

Full-Bayesian approach with 

B-ST-I model 
[41] 

 Irregular  Clustering based 
Weighted Fuzzy-C Means 

Clustering 
[42] 

 Irregular  Clustering based 
Nearest neighborhood-related 

Quality clustering 
[43] 

 Irregular  Clustering based ST-HDBSCAN [44] 

 Irregular  Clustering based 

Network-based 

Spatiotemporal field 

clustering 

[45] 

 
Point Density 

based cluster  

Fuzzy Logic 

based 

Weighted Overlay method 

and Fuzzy Overlay method 
[46] 

Public 

Sentiment 

Detection  

Irregular 

Machine 

Learning & Deep 

Learning based 

Emerging Hotspot Analysis 

tool 
[47] 

Environmental 

Science & 

Disaster 

Management  

Elliptical Clustering based 
Extended Gustafson–Kessel 

(EGK) clustering algorithm 
[48] 

Drug activity  Circular 
Space-time scan 

Statistics based 

Retrospective Space-time 

analysis 
[13] 
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2.2 Hierarchical framework for classification of Spatio-Temporal 

Hotspot detection methods 
 

A. Space-Time Scan Statistics based Techniques: 

 

The Spatial Scan Statistic, introduced by M.Kulldorff et al. [4], is one of the most popular 

methods for detecting statistically significant hotspots of a predefined shape. It essentially 

conducts an exhaustive search for spatial activity points throughout the study area and 

discovers regions where the intensity of activity points/locations is higher than a specific 

threshold. However, they assumed that the spatial activity points are independent of one 

another, but it is not always the case in real-world scenarios. Moreover, this method 

turned out to be highly computationally expensive. Over the years, M.Kulldorff et al. [5] 

further investigated Spatial Scan Statistics and considered it viable to include the 

importance of temporal aspect as well, which help in determining highly vulnerable 

regions corresponding to a specific application.  

 

In real-world situations, clusters can be irregularly shaped too. Hence, the authors of [5] 

presented a novel approach for detecting major areas of disease outbreaks through an 

advanced Space-time Scan statistics approach which incorporates flexibly shaped cluster 

detection. They modified the standard scanning method used in Space-time Scan 

Statistics into an advanced scan statistic measure that expands cylindrical scanning 

window by incorporating particular connected regions whose central point’s lie within 

the candidate concentric circle of largest size. The authors mentioned that a limitation of 

this method is that it is incompatible with emerging hotspots (e.g., hotspots detected 

when disease grows or shrinks in time). The Space-time Scan statistics approach can be 

broadly classified into two groups namely, Retrospective Space-time Scan statistics and 

Prospective Space-time Scan statistics. Y. Kim and M. O’Kelly [6] outlined the 

differences in these two categories as follows. 

 

1) Retrospective Space-time Scan statistics: This type of approach emphasizes on 

historical records of spatiotemporal data points to predict the spatiotemporal hotspots 

prevalent in the past. Consequently, the dataset utilized in retrospective analysis remains 

unchanged throughout time. This analysis approach proved out to be useful in multiple 

disciplines. In 2017, H. Rao, X. Shi, and X. Zhang, [7] performed a retrospective analysis 

of M.Kulldorff’s Space-time scan statistics approach to find locations of spatiotemporal 

hotspots having higher incidents of Tuberculosis compared to adjoining study area. In 

2020, D. Adham et al. [8] presented a study to demonstrate the retrospective spatial 
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analysis using the General G statistics to put forth most vulnerable regions suffering from 

pediculosis. In 2021, A. Guemes et al. [9] employed a retrospective methodology to 

identify spatial hotspots which are significant historical clusters of COVID-like 

symptoms by incorporating Space-time scan statistics using a scanning window which is 

circular. 

 

2) Prospective Space-time Scan statistics: This strategy focuses on leveraging dynamic 

spatiotemporal data to detect the candidate hotspot zones in order to assist concerned 

authorities in effectively making important management decisions. This approach can be 

highly useful for planning out activities and businesses in various application areas. This 

method also aids in the detection of active clusters/hotspots that change over time. In 

2014, J. Mosha et al. [10] presented a comparative study of different prospective 

approaches to detect spatial clusters of malaria disease and results showed that 

prospective Space-time Scan statistics outperformed other statistical techniques. Many 

researchers invested into prospective space-time hotspots to discover emerging spatial 

clusters to serve as a guidance tool to develop efficient management strategies. C. Chen 

et al. [11] applied prospective Space-time Scan statistics for identification of active 

hotspots of dengue fever.  

 

With the unforeseen pandemic of COVID-19 infecting the entire globe towards the end 

of 2019, various research investigations to determine the growing spatiotemporal hotspot 

zones of COVID-19 were proposed. The applicability of Space-time Scan statistics for 

finding COVID-19 hotspot areas is obvious, as it has been widely used for disease 

outbreak detection in the past. A. Hohl et al. [12] utilized the SatScan tool and used daily 

COVID-19 data to predict emerging and active hotspot for COVID-19 Surveillance. 

Space-time Scan statistics mainly deal with two types of spatiotemporal hotspots, i.e., 

Persistent and Emerging. Persistent hotspots can be defined as the regions where the 

concentration of activity points grows rapidly with a constant rate. Emerging hotspots can 

be defined as the regions where the event occurrence abruptly or suddenly increases, 

resulting in a significant outbreak. This technique considers time as a third dimension 

besides the two primary spatial attributes (latitude and longitude) to identify 

spatiotemporal hotspots.  

 

Space-time Scan statistics perform well when the data is present in the form of a time 

series or fixed points/events. For instance, [13] used Space-time scan statistics for drug 

activity monitoring in order to identify the regions of intense drug usage over a defined 

time interval. SaTScan is a free tool for analyzing spatiotemporal data using Space-time 

Scan statistics. This method is accepted by various research studies mainly concerning 

public health and disease outbreak pattern detection. Table 1 describes various 
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applications which have adopted Space-time scan statistics.  

B. Shape specific hotspot detection techniques: 

 

Spatial scan statistics makes restrictive assumptions about predefined shapes of hotspots. 

Several researchers investigated into Spatial scan statistics and expanded it to construct 

space-time clusters of various shapes. Determining appropriate shape of hotspot prior to 

implementation is crucial. The initial circular shaped hotspots were studied in detail and 

their limitations in practical scenarios led to the development of hotspots of different 

shapes. Hotspots of diverse shapes correspond to different application requirements and 

deliver applicable results. It was observed that statistically significant hotspots with 

predefined shapes can be classified into two categories as follows.  

 

1) Simply connected shapes: A Simply connected shape is defined as a two-dimensional 

region without any holes in it. Spatial Scan statistics or SaTScan is mainly utilized for the 

detection of statistically significant hotspots having shapes which are simply connected 

such as rectangles, circles, etc. [14].  

 

2) Non-Simply connected shapes: A Non-Simply connected shape is defined as a two-

dimensional region with holes in it. S.Shekhar et al. [14] demonstrated a novel approach 

for ring shaped hotspot detection. The methods for hotspot detection with restrictive 

shapes cannot detect emerging spatiotemporal hotspots which are capable of adjusting 

their region with change in activity points over time. IBM Research Division [15] 

proposed a novel approach that generates space-time clusters of square-pyramid shape 

which accommodate such changes. This approach works better than the original 

cylindered structure in detecting the growth or shrinkage of disease outbreak with time.  

 

With an increase in computational power over time, research studies also shifted focus to 

detect irregular shaped hotspots as well that depicts real-world situations. Spatial Scan 

Statistics generally do not perform well to detect irregularly shaped space-time clusters. 

However, M.Kulldorff et al. [16] extended their work on spatial scan statistic in 2006 to 

identify hotspots of no fix geometric shape with changing scanning window through an 

elliptical scan statistic. In 2012, W.Dong et al. [17] presented a completely different 

technique, termed GridScan, based upon a local greedy search algorithm for 

identification of irregularly shaped spatial clusters from spatial point data. In 2019, S. 

Katragadda et al. [18] presented another approach for detecting irregularly shaped spatial 

hotspots on a spatial-point dataset based on polygon propagation. Table 1 demonstrates 

certain shape-specific hotspots along with their application domain. 
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C. Clustering based techniques: 

 

Clustering is applied in a large variety of applications in Data Mining. Spatiotemporal 

clustering mainly groups activity points or regions or events based on spatiotemporal 

characteristics. Spatiotemporal hotspots are also perceived as a special type of 

Spatiotemporal clusters with an unexpectedly higher intensity of points within the hotspot 

region. Spatiotemporal clustering provides numerous methods to detect regions with 

similar characteristics.  

 

Many researchers developed feasible methods to detect spatiotemporal clusters with 

improved computational complexity and modified their approach to find spatiotemporal 

hotspots. Clustering based approaches mainly focus on generating spatial clusters which 

serve as the candidate areas for a hotspot. Among the many candidate areas detected, 

spatial hotspots are identified through evaluation of statistically significant spatial 

clusters. Spatiotemporal clusters can be determined in a similar manner using the 

timestamp as the third dimension of data. Clustering can be performed on the grounds of 

several different measures as described below.  

 

1) Density-based clustering: Density-based clustering methods determine hotspot regions 

from candidate cluster through a specified a density threshold which is used to separate 

relevant data from noise. The well-known DBSCAN algorithm clusters geographical and 

spatiotemporal data by evaluating density of data points. A well-known clustering 

technique namely, Risk Adjusted Nearest Neighbor Hierarchical Clustering (RNHH) 

consolidates the advantages of both Hierarchical clustering approach and Kernel Density 

estimation (KDE) techniques [29]. This method has been proven to be effective in the 

analysis of criminal incidents. However, DBSCAN, OPTICS, ST-DBSCAN, and other 

variations of many such algorithms are applicable to spatial point data.  

 

With location services growing tremendously, large amount of data is trajectory 

dependent. It was observed that these methods perform well with trajectory data or 

moving data. Q. Yu et al. [43] recently proposed a density-clustering based method for 

identification of urban hotspot based upon taxi-trajectory data. Spatiotemporal Kernel 

density estimation techniques are also one of the popular methods for hotspot detection.  

 

In 2018, Y. Hu et al. [31] proposed a multi-featured framework for determining 

statistically significant crime hotspots in the spatiotemporal domain using the modified 
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kernel density estimation technique and evaluated the obtained results using the 

Predictive Accuracy Index curve and demonstrated their findings over the prevalent 

robberies in Baton Rouge, Louisiana. S. Khalid et al. [32] presented a hybrid model by 

combining the Spatial Analysis along Networks Tools. 

 

2) Distance-based clustering: Clustering can also be performed using distance as 

threshold to establish boundaries for hotspot regions. J. Baker et al. [33] proposed novel 

scanning window methods, EdgeScan and Network Density Scan (NDScan), which 

utilize the eucledian distance measure to locate hotspots in spatial domain.  

 

D. Eigen Space based techniques: 

 

Several applications have been tested using Spatial Scan statistics and clustering 

algorithms, and the results have been promising. It is important to highlight, however, 

that these solutions rely on limiting assumptions that appear to be impracticable in some 

real-world scenarios. H.Fanaee-T et al. [25] suggested a unique computationally efficient 

method in the realm of spatiotemporal hotspot detection, which revealed some intriguing 

insights. The authors showed that a comprehensive search across the entire study region 

cannot produce reliable findings in a timely manner, but it is critical to monitor changes 

in correlation patterns across space and time dimensions. As a result, the Eigen space 

method for spatiotemporal hotspot discovery overcomes many of the shortcomings of 

Spatial Scan statistics. This method provides a shape-independent way for accurately 

detecting irregularly formed clusters.  

 

The authors also compared Space-time scan statistics with the EigenSpot algorithm on a 

real dataset to discover the most brain cancer-affected locations in New York. In 2014, 

eigen vector [26] based hotspot detection method was proposed to detect hotspots using 

tensor decomposition and matching of the elements of eigen vector representation of 

spatiotemporal data. The results were demonstrated on the same brain cancer dataset and 

compared with ST-Scan results which showed more accurate results in lesser time 

complexity.  

 

E. Machine Learning & Deep Learning based techniques: 

 

The increasing popularity of machine learning in the field of computer science prompted 

researchers to explore and discover methods that might be applied to spatiotemporal data. 

U.M. Butt et al. [49] provided a comprehensive analysis of contemporary spatiotemporal 
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hotspot detection approaches for detecting criminal behavior for which they identified a 

wide range of machine-learning and deep-learning-based methodologies. Random Forest 

classifier, Random Forest Regressor, Cluster Confidence Rate Boosting (CCRBoost), 

LDA-KNN, ARIMA, and Regression approaches (Ridge Regression, Lasso Regression, 

Support vector Regression) were reported by the authors as reliable machine learning 

models. It is noteworthy that these methods necessitate the conversion of spatiotemporal 

data points or events into a certain format according to the algorithm. Generally, Deep 

learning frameworks utilize a grid-based representation of spatiotemporal data.  

 

These models can effectively cope with crime predictions and hotspot identification, 

according to the authors. Machine learning Models such as Spatio-temporal NN based on 

LSTM, Spatio-temporal-ResNet, and Spatiotemporal CNN consider both space and time 

dimensions for feeding the input data. The usage of geo-tagged photographs in 

conjunction with a neural network approach [47] to identify sentiment hotspot zones 

resulted in a completely new and unique application concerning spatial emotion 

detection. Researchers attempted to discover hotspot zones for mobile data points in 

addition to point data consisting of fixed locations in a specific time span. The focus of 

researchers has switched to predictive hotspot mapping of sparse spatiotemporal data 

over time. The first attempt to construct a graph-based deep learning model to predict 

spatiotemporal hotspots using network structure was given by Y.Zhang[34].  

 

Y. Zhang [34] suggested an innovative deep learning approach to determine Crime 

Hotspots in South Chicago. The authors emphasized that most real-world spatiotemporal 

events reflect network structure rather of a grid-like structure. For example, when shown 

as a graphical network, urban taxi pickup points, urban crime, and road traffic accidents 

better convey the changes in space and time dimensions. The authors of the research 

created a gated localized diffusion network (GLDNet), a graph-based DL framework for 

generating hotspot mapping of spatio-temporal events in the network space. In GLDNet, 

a gated network models the timeline of historical events using the time dimension of the 

dataset, and a localized diffusion network captures the corresponding propagation of 

spatial events in terms of network distance and topology, in order to overcome spatial 

heterogeneity.  

 

F. Probabilistic model based techniques: 

 

In recent years, probabilistic estimate methods based on Bayesian models have gained 

popularity. Hotspot detection can also be classified as determining a probability estimate 

of occurrences that are more likely to occur inside than outside. For identification of 
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spatiotemporal regions with increased likelihood of events, researchers presented both 

Empirical Bayesian and Full Bayesian approaches. These methods not only focus on 

identifying hotspot areas based on a historical record of spatiotemporal event occurrences 

over a specific period of time, but also on evaluating the core causes of changes in 

differential patterns and forecasting the likely future hotspot areas. These methods have 

been used to identify crash hotspots in the context of road safety.  

 

Using the Bayesian Spatiotemporal Interaction model employing the full Bayesian 

technique, N. Dong et al. [41] proposed a unique strategy for improving road safety by 

identifying traffic crash hotspot spots in a designated zone. The authors stated with 

evidence that their proposed approach demonstrated better performance in terms of 

model fit than traditional full Bayesian techniques. While dealing with spatiotemporal 

hotspot identification, they essentially addressed two major challenges i.e., the evolution 

of detection hotspots in time and likelihood of future hotspot areas based on the current 

tendency to become hotspots.  

 

G. Fuzzy logic based techniques: 

 

The computer-based Boolean logic was upgraded to develop many-valued fuzzy logic 

models in order to include human-brain-like skills into intelligent systems. However, 

there isn’t much study literature in the fuzzy logic domain concerned with spatiotemporal 

hotspot detection, but several studies have experimented out recently to detect road 

accident hotspots. The traffic department has long been concerned about road safety. 

Researchers aimed to develop accurate strategies for identifying locations most affected 

by traffic accidents in order to assist policymakers in taking appropriate changes in 

specific crash zones. A. Alomari et al. [46] proposed a hotspot prediction model for 

accident-prone zones employing GIS spatial analysis and evaluation tools, as well as 

fuzzy modelling, in 2019. The authors explained that they used overlay analysis to keep 

data distribution uniform and suitable fuzzy models to find high-risk areas in the research 

area. The Weighted Overlay approach was used in conjunction with the Fuzzy 

membership’s prediction in order to prioritize the prediction probability values.  

 

According to the authors, utilizing proper Fuzzy membership for each feature, their 

method was successful in detecting high-risk sites. In 2021, Y. Farjami and K. Abdi [36], 

presented a hybrid model of genetic algorithms and fuzzy logic to develop a fuzzy 

knowledge base. They demonstrated their approach on the crime dataset from Tehran, 

Iran for detecting high-risk hotspot zones over space and time. The authors suggested a 

threefold system involving the division of problem space using fuzzy parameters, 
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selection of principal features, and developing the fuzzy knowledge base. The system was 

evaluated and turned out to be an effective tool, thereby, justifying its purpose.  

 

H. Nature Inspired Algorithms: 

 

In recent years, nature has inspired optimization and computationally intelligent 

algorithms, leading to the development of swarm intelligence and nature-inspired 

computing algorithms. The numerous hotspot detection approaches discussed in this 

study can be improved further to produce better findings and offer better predictability of 

spatiotemporal hotspots, directing the respective fields to better judgments. Moreover, M. 

Kulldorff’s spatial scan statistics, which primarily used a scanning window of a preset 

form (circular, elliptical, cylindrical, etc.) and its various modifications, have been widely 

used in criminology and epidemiology.  

 

In 2012, H. Izakian and W. Pedrycz [27] developed a flexible shape to be used as a 

modified scanning window in the Spatial Scan statistics algorithm for detecting 

arbitrarily shaped disease spatial and spatiotemporal clusters using the Particle Swarm 

Optimization approach. The authors adopted this approach to address the NP-complete 

problem of finding all possible irregular shaped clusters in a brute force manner. They 

showed the results over the Prostate and Liver datasets and the results proved to be highly 

stable in nature. 

 

2.3 Analysis of the Framework for Spatiotemporal Hotspot 

Detection 

 

The general execution stages for detecting spatiotemporal hotspots are shown in Fig. 3. 

The first step is to acquire spatiotemporal data. The second task is to determine what kind 

of hotspots are required, i.e., if crime events for a given region are recorded for a 

particular time period, then spatiotemporal crime hotspots predicted will assist us in 

determining which specific sub regions of the study area have a high risk of crime 

occurring and at what point in time. The third phase entails adopting the most appropriate 

technique for efficiently identifying significant spatiotemporal hotspots. The fourth task 

entails determining the accuracy of the obtained results using applicable evaluation 

criteria. Inferences can be drawn from the patterns discovered as a result of the data in the 

fifth step. 
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Fig.3 Flowchart for Analysis of Spatiotemporal Hotspot Detection and Evaluation 

 

 

Table I shows the numerous strategies for spatiotemporal hotspot detection have been 

presented for a wide range of applications. While researchers have used several factors to 

judge the accuracy of spatiotemporal hotspots, there is still a gap between the underlying 

ground truth and the acquired results. Table II presents a comprehensive survey of the 

popular evaluation metrics widely utilized by various research studies. Table III 

emphasizes on the detailed analysis of evaluation measures adopted by various research 

studies and their significance in distinct categories of ST hotspot detection methods. 
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Table II. Evaluation measures adopted by related Research Studies 

Category Application 
Evaluation 

metric 

Decision 

criteria 
References 

Space-time Scan 

Statistics based  

Malaria Infection 

Hotspot Detection 

Area under ROC 

(AUC) 

Higher the AUC in 

a defined radius, 

better the outcome 

[10](Year-2014) 

 
Breast cancer 

Hotspot Detection 

Comparison with 

benchmark 

synthetic dataset 

Higher the 

similarity with 

obtained results, 

better the outcome 

[50](Year-2006) 

Clustering based  

Spatiotemporal 

Urban Hotspot 

Detection 

Density-based 

clustering 

validation index 

Higher the value 

of DBCV, better 

the outcome 

[44](Year-2021) 

 

Spatiotemporal 

Urban Hotspot 

detection using 

Network based 

clustering 

Precision value 

upon comparison 

with NSF and 

KDE methods 

Higher the 

precision, better 

the outcome 

[45](Year-2019) 

 

Spatiotemporal 

Crime Hotspot 

Detection 

Predictive 

Accuracy Index 

Curve 

Higher the PAI 

value, better the 

outcome 

[31](Year-2018) 

Machine 

Learning & Deep 

Learning based  

Spatiotemporal 

Traffic Hotspot 

Detection 

Case study based 

evaluation with 

Median Absolute 

Percentage Error 

Lower the 

MDAPE, better 

the outcome 

[51](Year-2020) 

 

Spatiotemporal 

Crime Hotspot 

Detection using 

Spatiotemporal 

Neural Networks 

Accuracy, 

Precision, Recall, 

F-1 Score 

Higher the test 

metric result, 

better the outcome 

[35](Year-2017) 

Probabilistic 

model based  

High-risk 

Accident Hotspots 

Mean Absolute 

Percentage error 

Lower the test 

statistic, better the 

outcome 

[41](Year-2016) 

Eigenspace based 
Disease outbreak 

Hotspot Detection 

Comparison with 

ST-SCAN results 

Higher the 

similarity with ST-

SCAN results, 

better the outcome 

[25](Year-2014) 

Fuzzy Logic 

based 

Traffic accident 

Hotspot Detection 

Weighted Overlay 

method and Fuzzy 

Overlay method 

Better the 

parameter tuning, 

better the outcome 

[46](Year-2019) 
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2.4 Analysis of Evaluation measures for Hotspot Identification 
 

Using the approaches described above, a valid assessment metric is required to analyze 

the performance of the detected hotspot. In the retrospective approach to Spatiotemporal 

hotspot detection, data from the past is collected and analyzed, allowing the results to be 

compared to existing underlying ground truth or validated using case studies. In the case 

of a prospective approach to spatiotemporal hotspot detection, however, it is critical to 

analyze the performance of the found hotspots, which can then aid policymakers from the 

relevant authorities in applying preventive measures or executing a better future 

management plan. Our research focuses on identifying evaluation measures that can be 

used to locate Spatiotemporal hotspots.  

 

Table II lists the evaluation measures and decision criteria used in different application 

fields. Effective evaluation of Spatiotemporal hotspots is a difficult task that necessitates 

proper tuning of the model parameters. Diverse evaluation measures appear to function 

well for multiple areas of applications and methodologies, according to research 

investigations. Here, we specified the particular domain of concerned application along 

with the evaluation measures adopted by researchers. We briefly summarized the most 

common application kinds in each area, as well as the most often used assessment 

measure for each.  

 

Table III. Significance of Evaluation Metrics adopted by related Research Studies 

Evaluation 

metric 
Formula Significance 

Area under ROC 

(AUC) 

 

 

AUC is a reliable evaluation metric 

especially for Space-time scan 

statistics-based hotspot detection 

methods and clustering-based 

hotspot detection methods. 

Eigenspace based hotspot detection 

methods cannot be evaluated 

appropriately using the AUC 

metric. 

Comparison with 

benchmark 

synthetic dataset 

Use Similarity or Dissimilarity measures for 

comparison 

For evaluation purpose, a synthetic 

dataset is constructed to create 

randomly distributed events using 

Poisson model and relative risk is 

calculated. All categories of ST 

hotspot detection methods can use 

this method for evaluation. 
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Predictive 

Accuracy Index 

Curve  

Reliable evaluation metric to 

compare accuracy values among 

varying hotspot areas. Useful for 

trend analysis across different 

regions of the study area 

Case study based 

evaluation 

Comparison of predicted results with actual 

results obtained from case studies 

From past records containing actual 

results and detect mean or median 

absolute percentage error to 

determine the correctness of results 

obtained using any category of ST 

hotspot detection methods 

Accuracy 
 

Using either case study based 

evaluation or any valid record, this 

metric can evaluate accuracy of 

predicted hotspots 

Precision 

 

Using either case study based 

evaluation or any record of actual 

results this metric can be used to 

evaluate the precision of predicted 

hotspots 

Recall 

 

Using either case study based 

evaluation or any record of actual 

results this metric can be used to 

detect the most significant hotspots 

identified among all candidate 

hotspots 

F-1 Score 

 

According to the type of ST hotspot 

detection method, F-1 score is a 

normalized metric that takes both 

precision and recall effects into 

account 

Sensitivity 
 

For determining the power of 

obtained results after hotspot 

detection, sensitivity serves as a 

popular metric in all methods of 

hotspot detection especially in case 

of Space-time scan statistics based 

methods 

Mean Absolute 

Percentage Error  

Used in comparative evaluation of 

actual and predicted results in any 

category of ST hotspot detection 

methods 
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We also evaluated and analyzed an average value of different evaluation measures. Fig. 4 

shows visual analysis of ST hotspot detection methods with Area under ROC. Using the 

AUC metric as the evaluation criteria of Space-time scan statistics based methods, the 

score of 0.62 ,0.90 and 0.65 was obtained by [10], [52] and [53] respectively. Based on 

the analysis from several other research works falling under the category of Space-time 

scan statistics based hotspot detection methods, we can conclude that the AUC value lies 

approximately in the range of 0.6 to 0.9. For the Machine learning based methods [54] 

which are used to identify the spatiotemporal hotspots from crime dataset, it has an 

average AUC score of 0.80. Similarly, clustering based methods [55] have an AUC score 

of 0.75. It is important to note that the authors of [25] mentioned that AUC may seem 

appropriate for the evaluation of eigen space based methods but p-value is a better choice 

for such evaluation.  

 

 

Fig. 4 Analysis of Spatiotemporal Hotspot detection methods with Area under ROC 

 

 

In case of Case study based evaluation, either mean absolute percentage error or median 

absolute percentage error is calculated for calculating the relative risk between the actual 

and predicted hotspots. For finding the similarity between actual and predicted hotspots, 

several similarity or dissimilarity measures such as cosine similarity can also be used 

after converting the data into required format. In 2008, a new evaluation metric namely 

Predictive Accuracy Index Curve (PAI) was introduced which became popular in 

Machine learning based [56] and Clustering based approaches [31], [57], [58] for 
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Spatiotemporal hotspot detection. Fig. 8 demonstrates the results for PAI in detecting 

spatial hotspots. Fig. 5 demonstrates the average precision value obtained from different 

methods of ST hotspot detection. Machine learning based methods [35] obtained a 

precision value of 0.80. Space-time scan statistics based methods used for detecting 

traffic crash hotspots [55] nearly have a precision score of 0.75. As mentioned by the 

authors of [45], the precision value of clustering based methods varies for different 

clustering techniques.  

 

 

Fig. 5 Analysis of Spatiotemporal Hotspot detection methods with Precision 

 

The authors mentioned that using the Network based Spatiotemporal Field Clustering 

approach (NSF), the precision value is higher when compared to the precision value 

obtained by the Kernel Density estimation method (KDE). Fig. 6 demonstrates the usage 

of Recall [35], [55] as an evaluation metric and Fig.7 describes the combined effect of 

both precision and recall metrics using the F1-Score evaluation criterion [59], [35], [55]. 

This evaluation measure has helped in accurately detecting several spatiotemporal 

hotspots in different application areas within a score range of 0.65 to 0.85. Hotspots are 

high-risk zones in a study area in varying application fields. In case of disease outbreak 

or similar applications, sensitivity analysis [5], [11] is crucial to better analyze the utility 

of predicted spatiotemporal hotspots. 
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Fig. 6 Analysis of Spatiotemporal Hotspot detection methods with Recall 

 

 

 
Fig. 7 Analysis of Spatiotemporal Hotspot detection methods with F1-Score 
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Fig. 8 Analysis of Spatiotemporal Hotspot detection methods with PAI 

 

 

2.5 Analysis of Machine Learning Approaches in Spatiotemporal 

Hotspot detection 
 

Our research provides a complete overview of recently suggested Machine Learning 

algorithms for detecting Spatiotemporal hotspots in road traffic accidents. The survey 

examines the various algorithms for Spatiotemporal hotspot detection that are based on 

Machine Learning, Deep Learning and Neural Networks technology. However, 

understanding the significance of such Artificial Intelligence sub domains for the 

function of Spatiotemporal Hotspot detection becomes vital. Traditionally, statistics-

based methods were used to locate hotspots of any event or activity (crime, disease 

transmission, epidemic, road accident, etc.). Spatial Scan Statistics has been widely used 

in the fields of criminology and epidemiology over the years. It has shown to be effective 

and has developed a standard mechanism for Spatial Hotspot Detection. However, 

statistics-based hotspot detection algorithms have limitations due to assumptions made, 

such as having a predetermined input shape parameter and ignoring all other significant 

dimensions of spatial data apart from the intensity of event recurrence. Consequently, the 

focus of researchers shifted towards the developing technology such as Machine 

Learning. D. Santos et al. [60] proposed a review and investigation of numerous Machine 

Learning models used in the prediction of hotspot areas for road traffic accidents. Data 
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Table IV. Analysis of Machine Learning models adopted in traffic accident prediction 

Approach used Significance in Traffic accident analysis Reference 

Supervised Machine Learning 

techniques (Decision Trees, 

Random Forests, Logistic 

Regression) 

Used for principal feature selection for traffic 

accident analysis 
[60] 

Unsupervised Machine Learning 

techniques (DBSCAN and 

Hierarchical Clustering) 

Used for forecasting future road accident sites 

based on selected features 
[60] 

Convolutional Neural Network 

(CNN) 

Traffic Abnormality or Outlier Detection that 

occurred due to spatial and temporal variations & 

Prediction of Traffic accidents based on Traffic 

flow 

[62] 

[69] 

Deep Belief Networks (DBN) 

and Long Short-term Memory 

model (LSTM) 

Pattern Identification and Recognition of tweet 

data on road traffic accidents 
[62] 

Convolutional Long Short-term 

Memory Model 

( ConvLSTM ) 

Spatiotemporal Traffic accident location 

forecasting considering other important 

influential factors of the event as well 

[62] 

Hetero-ConvLSTM 

Modified ConvLSTM algorithm 

with added advantage of handling 

different spatial and temporal 

variability 

 

[63] 

Recurrent Neural Networks 

( RNN )  

Prediction of accident severity and other factors 

important for forecasting hotspot locations 
[65] 

Spatiotemporal Convolutional 

Long Short-Term Memory 

model  

( SCLSTM )  

Spatiotemporal traffic accident prediction and 

hotspot mapping 
[67] 

Kernel Density Estimation 

(KDE)  

Detection of Spatial Hotspots using a combined 

approach involving Statistics based as well as 

Machine Learning based techniques 

[71] 

Spatiotemporal Network Kernel 

Density estimation  

( STNKDE )  

Spatiotemporal identification of hotspots 

considering the time dynamics of the identified 

hotspot locations and the Spatial representation of 

hotspots in network space rather than linear space 

[72] 

 

pre-processing, clustering, application of Machine Learning models and prediction of 

hotspots are the four stages involved in hotspot identification, according to the 
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researchers. The authors of [60] followed a two-way approach, with the first method 

attempting to analyze the severity of accidents given a set of other influential factors such 

as weather and road conditions at the time of incident, and the second method attempting 

to forecast future accident hotspot locations using the Random Forests Model. The 

research revealed that crucial external elements such as road signs and adequate road 

construction have an impact on a substantial portion of the population.  

 

According to the study, the majority of the accident hotspots discovered after clustering 

are located on rural or urban roads with no dividers This information extracted using the 

effective Machine Learning models can assist the responsible authorities in taking 

immediate action at the identified hotspot location. Furthermore, we can comprehend the 

significance of Machine Learning models for Spatial Hotspot detection over Statistics-

based methods because they can take advantage of external contributing factors and do 

not require the determination of a predefined input shape parameter, as well as produce 

better results. The researchers explored with Deep Learning Methods as well, due to the 

significant results gained using the Machine Learning approach. S. Wang et al. [62] 

presented the most recent survey of Deep Learning techniques in Spatiotemporal Data 

Mining. The authors covered all different kinds of Spatiotemporal data, their applications, 

the various Deep Learning task domains, and the popular Deep Learning models 

employed in the Traffic accident data, according to the survey’s authors, fits into the 

category of event spatiotemporal data.  

 

Event data is simply spatial information of a given event type that occurred at a specific 

moment of time in the past. They investigated a number of deep learning models that 

excel at handling event based data. The authors proposed the ConvLSTM Deep Learning 

model as the most extensively used method for predicting road traffic accidents. It 

formulates the traffic data’s spatial and temporal features before converting it to a 3D 

tensor data representation format.  

 

The ConvLSTM model uses this 3D tensor data to predict future probable spatiotemporal 

areas with a greater likelihood of traffic accident count. Z. Yuan et al. [63] proposed the 

Hetero-ConvLSTM model when the Spatiotemporal data on traffic accidents is 

heterogeneous in nature, i.e., the data also provides information of the spatial variations 

of the surrounding region where the accident occurred, i.e., rural or urban neighborhood, 

and this information is also used in the prediction of future traffic accident areas in given 

time. To learn the feature representations utilized for estimating the risk level of a traffic 

collision, a stack denoise Autoencoder model was also suggested by the authors of [63] in 

their survey.  
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Moving forward, we examined and focused on the Deep Learning based Traffic Accident 

Analysis to better comprehend the various factors involved in the road accident event and 

their impact over time, after going through the Machine Learning based techniques for 

Traffic accident prediction and the Survey on Deep Learning Models used in 

Spatiotemporal data mining for different application domains. The essential phases 

involved in road traffic accident analysis were addressed by A. Naseer et al. [65]. For the 

prediction of hotspot sites, a recurrent neural network (RNN) approach is used. Data 

Preprocessing and Data Transformation are critical for the Deep Learning model’s 

performance, according to the authors. They illustrated the major steps involved in 

identifying the key hotspot areas in the research area, starting with the input data format 

and ending with the deep learning model output.  

 

J. Bao et al. [67] suggested an innovative spatiotemporal technique based on Deep 

Learning technology to estimate accident risk zones within a city in 2019. The proposed 

method takes into account spatial and temporal variables, as well as information about the 

surrounding region, such as weather, road network data, and land information. The 

study’s authors presented a new Spatiotemporal Convolutional Long Short-Term 

Memory model (SCLSTM) for forecasting traffic accident hotspot sites in New York 

City. The authors compared the suggested approach to current state-of-the-art Machine 

Learning approaches and discovered that the new approach outscore the others in terms 

of accuracy prediction rate. Deep Learning methods like SCLSTM have the extra benefit 

of monitoring larger input sizes with better accuracy as data size grows and input sizes 

fluctuate in different time windows (hourly, daily, weekly, monthly).  

 

A Convolutional Neural Networks-based technique for traffic accident prediction was 

proposed by H. Zhao et al. [69]. The authors emphasized that these algorithms do not 

automatically extract features from traffic data, which is a significant improvement over 

typical Machine learning-based methods. As a result, they proposed using a CNN-based 

Deep learning approach to extract features from traffic accident data. This aids in the 

identification of crucial dimensions in the real-time prediction of the likelihood of a 

traffic accident. They also stressed the applicability of the proposed approach in terms of 

both real-time accuracy and the potential to deliver a safer driving experience by raising 

alarms when the probability of accident risk increases.  

 

C. Zhang et al. [74] provided a traffic accident risk analysis approach in a novel structural 

style for only urban traffic zones in China. They analyzed the traffic network as a graph 

representation, in which each road crossing is considered a node of the graph and the 
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sections of roads are assumed as the edges, and the edges are weighted in such a way that 

each section of road accounts for the total number of accidents that have occurred in that 

section of the road in the past. They thoroughly examined fuzzy-based strategies for 

accident prediction that have been discussed in the literature. B. Romano et al., [72], 

addressed a critical issue with the Spatial Hotspot detection approach. They investigated 

the significance of identifying the primary hotspot areas of traffic accidents in both the 

spatial and temporal domains. The authors of the research study [72] stated that typical 

hotspot detection techniques such as Spatial Scan Statistics do not take into account the 

constraint of road networks while detecting hotspots. However, it is obvious that road 

network limits are practical and cannot be neglected to the point where the scope of the 

hotspot detection system becomes irrelevant in real-world circumstances. As a result, the 

authors proposed a novel Spatiotemporal Network Kernel Density estimation approach 

that combines two important aspects of road accident hotspots, namely the time dynamics 

of the identified hotspot locations and the Spatial detection of hotspots in network space 

rather than linear space. In 2017, the proposed approach was tested on New York City 

data and outperformed other similar approaches.  

 

The vast majority of research on road traffic accident hotspots has proved the results 

produced from proposed methodologies in either a simulation-based or lab-controlled 

context. However, B. Ryder et al. [75] in 2017 revealed the outcomes of traffic accident 

analysis over actual traffic location analytics to identify traffic accident hotspots and 

create in-vehicle warnings for potential road risks in the way. They proposed establishing 

an in-vehicle warning system for risky scenarios in a real-world setting using cloud-based 

infrastructure and computer vision-based techniques such as object identification and 

recognition. D. Al-Dogom et al. [71] in 2019 presented a three-step strategy for detecting 

hotspot sites of road traffic accidents in the United Kingdom region . The method 

included spatial data collection and representation in GIS format, cluster identification 

using Getis Ord GI* statistics, and cluster density estimate using the Machine Learning-

based Kernel Density Estimation function. In addition, the XGBoost and Extra Trees 

Classifier techniques are utilized to generate hotspot maps by taking into account selected 

attributes which prove beneficial in classification of a cluster as a hotspot location. M. 

Zahid et al. [73] analyzed the importance of spatial and temporal attributes in determining 

the behavior of taxi drivers on the road. This research study presented with a unique way 

of analyzing hotspot maps in a manner where a hotspot is classified as the zonal region 

with increasing traffic violations due to the unperfected behavior of the drivers.  
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CHAPTER 3: METHODOLOGY 
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Fig. 9 Overview of Proposed Algorithm 

 

Fig. 9 depicts a high-level overview of the proposed approach. After preprocessing of 

data and selection of relevant features, the formation of candidate clusters is an important 

aspect of the proposed approach. Candidate clusters are collections of spatial points with 

the potential to become significant spatial hotspots. The research employs two effective 

Spatial Clustering algorithms, namely, OPTICS and HDBSCAN. Our research not only 

described how to locate candidate clusters, but also how to use a significance testing 

process to screen the candidate clusters and demonstrate significant hotspots. The 

proposed methodology is to find statistically significant spatial hotspots so that concerned 

authorities can make informed decisions. 
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Fig. 10 Correlation matrix for Feature Selection 

 

3.1 Description of Dataset and Data Preprocessing 

 

We demonstrated an implementation of the proposed algorithm using the “Road Safety 

Data from the Department of Transport, UK” dataset [61] for the year 2020. The UK 

government has offered public data on road accidents from past several years. The data 

set extensively describes road accidents by highlighting key aspects of the incident. 

Latitude and Longitude coordinates, which determine the actual accident location in the 

region, are the primary spatial parameters utilized to identify hotspots. The dataset’s 

temporal properties include the date and time of the accident. The dataset also includes 

significant non-spatiotemporal attributes such as accident severity, the concerned region’s 

Districts or Counties, the weather and road surface conditions, and the number of 

casualties. These features help in conducting a comprehensive analysis incorporating 

various aspects of the data. The analysis is being carried out for the Metropolitan Area of 

the United Kingdom.  

 

The Metropolitan Area includes the majority parts of the United Kingdom. The dataset 

comprises of a total of 20906 records of road accidents in the year 2020. Some of the 

important regions of the Metropolitan area include: 

 

 Greater London 

 North West 

 North East 

 South West 

 South East 

 West Midlands 

 East Midlands 

 East of England  

 

The results are analyzed in two different domains i.e., Seasonal and Temporal. After 

splitting off the Month field, Seasonal Analysis is performed using the Date component. 

The Time parameter from the dataset is used for Temporal Analysis. Spatial Clustering 

is a subclass of the unsupervised machine learning category. Hence, the paper selected 

correlation matrix for identification of relevant features for clustering. Aside from the 
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dataset’s spatial and temporal properties, the data cleaning process includes removing 

extraneous features.  

 

 

Fig. 11 Visual Representation of Preprocessed Dataset 

 

The correlation matrix shown in Fig.10 was utilized to select important dataset attributes. 

From the correlation matrix, it can be deduced that the selected attributes have low 

correlation values with each other. Hence, these features aid in producing better 

clustering results. A threefold approach has been employed for data preprocessing and 

cleaning. The first step entails eliminating all records with null value from the entire 

dataset. The second step entails selecting certain attributes (e.g., Date and Time) and 

formatting them to relevant data type. The final step is to identify significant features 

using the Correlation matrix. Fig. 11 demonstrates the data points of the preprocessed 

dataset where each activity point denotes the spatial location of a road accident in the 

United Kingdom for the year 2020. 

 

 3.2 Generation of Candidate Clusters 
 

Clustering techniques are grouped into various categories such as Partition-based 

Clustering, Hierarchical Clustering, and Density-based Clustering. The Partition-based 

Clustering approaches such as K-Means and K-Medoids implement an 

iterative approach to generate predefined number of clusters based on a particular 
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distance metric until the algorithm reaches a convergence state.  In general, the linearly 

defined distance functions are frequently used in partition-based clustering. Spatial data 

points, on the other hand, are quite different from the usual data points. Due to the 

irregularly shaped ellipsoidical surface of the earth, the Latitude and Longitude points 

possess non-linear characteristics. As a result, linear distance functions 

are no longer a viable option. Consequently, non-linear geodetic distance functions are 

required to overcome the abovementioned shortcomings. The Haversine formula 

determines the non-linear distance between two points on a spherical surface given their 

longitudes and latitudes. Furthermore, in the case of Spatial Hotspot detection, it is 

difficult to determine the number of clusters (K) in advance. Although experimentation 

with the K-Means and K-Medoids algorithms may yield adequate results, the 

fundamental implementation of these algorithms must be modified to account for spatial 

features. However, the convergence of these algorithms after modification cannot be 

guaranteed. Hence, we shifted our focus towards Density-based clustering and 

Hierarchical clustering techniques.  

 

Density-based Spatial Clustering of Applications with Noise (DBSCAN) is among the 

popular algorithms used for Spatial Clustering. However, it requires proper estimation of 

two important parameters, Eps (neighborhood radius around data point) and minpts (min. 

number of points within Eps). In case of large spatial dataset, it becomes challenging to 

determine appropriate values of these parameters to yield accurate results. 

 

Ordering Points to Identify the Clustering Structure (OPTICS)[66] is an extension of 

DBSCAN that overcame the shortcomings of DBSCAN. Unlike DBSCAN, OPTICS only 

requires minimum number of samples for clustering and works with a wider range of 

parameters automatically. Hence, the proposed algorithm adopted OPTICS for 

demonstrating the capability of density-based clustering algorithm. Besides, Hierarchical 

Density-based Spatial Clustering for Applications with Noise (HDBSCAN) [76] is a 

hierarchical clustering algorithm which is another extension of DBSCAN algorithm 

which also requires minimum cluster size as the only parameter.  

 

Both OPTICS and HDBSCAN algorithms are compatible with haversine distance metric. 

Hence, these algorithms are adopted for the expansion of candidate spatial clusters which 

is the first step of detection of significant spatial clusters. 
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ALGORITHM 1: HOTSPOT DETECTION WITH OPTIMAL SPATIAL CLUSTERING ALGORITHMS AND SIGNIFICANCE 

TESTING USING CLUSTER-DENSITY METHOD 

 Input: OPTICS Algorithm, HDBSCAN Algorithm, Latitude & Longitude of activity points in radians 

 Output: List of Significant Hotspots 

 Initialization:  

1 Specify the CLUSTERING_ALGO = OPTICS or HDBSCAN 

2 Algorithm convergence criteria: (No. of candidate clusters = No. of significant clusters) or 

 (Count and cluster_label of significant clusters is not changing with change in min_samples) or 

 (Input the threshold value of min_samples based on domain knowledge of dataset) 

3 min_samples = 6                                                            // Specifies min. activity points required to form a cluster 

 Procedure for Generating candidate clusters: 

4 while Algorithm convergence criteria is not met do 

5  min_samples_list.append(min_samples) 

6  for min_sample_val in min_samples_list do 

7   clusterer = CLUSTERING_ALGO (min_sample_val, metric = ‘haversine’).fit(Latitude,Longitude) 

8   Cluster_Labels = clusterer.labels_      

9   GENERATE_CANDIDATE_CLUSTERS(Cluster_Labels): 

10   for label in Cluster_Labels do 

11    if (label ≠ -1) then 

12     Get (Latitude, Longitude) for label  

13     Candidate_Cluster_List.append(Latitude, Longitude) 

14    end if 

15   end for 

16   Calculate cluster size of each candidate cluster 

17  end for 

18  min_samples = min_samples + 1  

  Procedure for Significance testing of Candidate clusters: 

19  Using uniform random distribution, generate a set of random (Latitude, Longitude) points having same 

count of activity points as that of original dataset in the same study area 

20  Repeat steps 6 to 17 for randomized dataset to obtain list of cluster size for randomized data points 

21  Max_Cluster_Size = max(cluster size obtained from Randomization) 

22  foriter in Monte_Carlo_Simulations do                                             // Monte_Carlo_Simulations = 100 

23   Repeat steps 19 to 21 to obtain max cluster size in each iteration and store it in 

max_random_cluster_size_list 

24  end for 

25  Sort(max_random_cluster_size_list) in descending order of values 

26  MONTE_CARLO_SIMULATION_TESTING:   // Significance testing with max Cluster Size  

27  Initialize p_value = 0 and alpha_value = 0.01 

28  for iter in range(len(Candidate_Cluster_List) do 

29   pos = position of Size(candidate_cluster[iter]) in sorted max_random_cluster_size_list 

30   p_value = pos / (Monte_Carlo_Simulations + 1) 

31   if (p_value <= alpha_value) then 

32    Significant_Cluster_List.append(Candidate_Cluster[iter]) 

33   end if  

34  end for 

35 end while 

36 return Significant_Cluster_List 
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ALGORITHM 2: HOTSPOT DETECTION WITH OPTIMAL SPATIAL CLUSTERING ALGORITHMS AND SIGNIFICANCE 

TESTING USING LLR METHOD 

 Input: OPTICS Algorithm, HDBSCAN Algorithm, Latitude & Longitude of activity points in radians 

 Output: List of Significant Hotspots 

 Initialization:  

1 Specify the CLUSTERING_ALGO = OPTICS or HDBSCAN 

2 A = Number of activity points in study area 

3 B = (||A|| . area(candidate_cluster)) / area(study_region) which is Expected frequency of activities in candidate 

cluster 

4 c = Observed frequency of activities in candidate cluster 

5 I() = 1 , if c < B and 0, otherwise 

6 Algorithm convergence criteria: (No. of candidate clusters = No. of significant clusters) or 

 (Count and cluster_label of significant clusters is not changing with change in min_samples) or 

 (Input the threshold value of min_samples based on domain knowledge of dataset) 

7 min_samples = 6                                                            // Specifies min. activity points required to form a cluster 

 Procedure for Generating candidate clusters: 

8 while Algorithm convergence criteria is not met do 

9  min_samples_list.append(min_samples) 

10  formin_sample_val in min_samples_list do 

11   clusterer = CLUSTERING_ALGO (min_sample_val, metric = ‘haversine’).fit(Latitude,Longitude) 

12   Cluster_Labels = clusterer.labels_     // A cluster label is assigned to each activity point (AP) to   

specify the generated candidate cluster to which AP belongs           

13   GENERATE_CANDIDATE_CLUSTERS(Cluster_Labels): 

14   for label in Cluster_Labels do 

15    if (label ≠ -1) then 

16     Get (Latitude, Longitude) for label  

17     Candidate_Cluster_List.append(Latitude, Longitude) 

18    end if 

19   end for 

20   Convert all (Latitude, Longitude) activity points into UTM coordinate system. 

21   Apply Convex Hull algorithm on the (Latitude, Longitude) activity points of a candidate cluster to 

obtain an arbitrary shaped polygon   

22   Calculate area of obtained polygon for all generated candidate clusters 

23   Area_list.append(area of obtained polygon) 

24   
Log LR of candidate cluster =  

25   Calculate value of log likelihood ratio test statistic for all candidate clusters with LLR formula 

above 

26   LLR_list.append(Log LR of candidate clusters) 

27  end for 

28  min_samples = min_samples + 1  

  Procedure for Significance testing of Candidate clusters: 

29  Using uniform random distribution, generate a set of random (Latitude, Longitude) points having same 

count of activity points as that of original dataset in the same study area 

30  Repeat steps 10 to 27 to obtain list of Log LR of candidate cluster  for randomized data points 

31  Max_Log_LR = max(Log_LR values obtained from Randomization) 

32  for iter in Monte_Carlo_Simulations do                                          //Monte_Carlo_Simulations = 100 
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33   Repeat steps 29 to 31 to obtain max Log LR in each iteration and store it in 

max_random_cluster_size_list 

34  end for 

35  Sort(max_random_Log_LR_list) in descending order of values 

36  MONTE_CARLO_SIMULATION_TESTING:   // Significance testing with max Log LR 

37  Initialize p_value = 0 and alpha_value = 0.01 

38  for iter in range(len(Candidate_Cluster_List) do 

39   pos = position of Log_LR(candidate_cluster[iter]) in sorted max_random_Log_LR_list 

40   p_value = pos / (Monte_Carlo_Simulations + 1) 

41   if (p_value <= alpha_value) then 

42    Significant_Cluster_List.append(Candidate_Cluster[iter]) 

43   end if  

44  end for 

45 end while 

46 return Significant_Cluster_List 

 

 

 

 

 

 

 

 

 

 

3.3 Significance Testing using Monte Carlo Hypothesis Testing  
 

Monte Carlo Hypothesis Testing is a statistical technique used to compute the risk factor 

involved in the predictions. According to Spatial Scan Statistics, Monte Carlo 

Hypothesis Testing is standard method for significance testing of hotspots. The 

proposed algorithm implemented modified Monte Carlo Hypothesis Testing with the 

following decision criteria:  

 

1) Cluster-Density Method: The amount of data points inside a candidate cluster is used 

in this method of significance testing. As stated in Algorithm 1 of the paper, the density 

of data points within a cluster is calculated. Following that, the density of the possible 

clusters in the immediate vicinity is determined. The more significant a candidate 

cluster region is, the denser it is. The density, on the other hand, is determined not only 

by the number of data points, but also by the cluster with the most data points among all 

the candidate clusters in each iteration. This test statistic is suitable for clusters of any 

shape.  
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2) Log Likelihood Ratio Method: This test statistic can be used in a number of different 

spatial domains. This type of significance testing is used in the Spatial Scan Statistic to 

assess the significance of clusters with a predefined shape. However, significance 

testing was carried out in this study utilising an improvised method. The process of 

calculating this test statistic was detailed in Algorithm 2 of the study. The greater the 

cluster’s loglikelihood ratio, the more significant it is. As a result, in each iteration, the 

maximum likelihood of the candidate clusters is computed. 

 

The above mentioned methods for significance testing of candidate clusters are chosen 

since they have been proven efficient for our application domain. The authors of [79] 

mentioned in detail about these test statistics. The Likelihood ratio test statistic is less 

biased towards smaller sized clusters but required area of the candidate cluster for 

significance testing. However, cluster size test statistic is independent of the area 

computations, demonstrate lesser time complexity as well as it doesn’t incorporate any 

favor towards smaller sized clusters. 

 

Hence, the efficiency of these two test statistics towards spatial clusters obtained from 

clustering algorithms such as OPTICS and HDBSCAN is noteworthy in regards to the 

combined strengths of the significance testing methods and the spatial clustering 

algorithms for candidate clusters detection. The proposed algorithm of this paper is 

depicted in Algorithm 1 and Algorithm 2 above. The output obtained from the proposed 

algorithm is the coordinate points in the form of latitudes and longitudes of the final 

significant hotspots. We also present a comprehensive analysis of the significant 

hotspots in the next section. 
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CHAPTER 4: RESULTS & ANALYSIS 

 
The suggested methodology attempts to solve the problem of discovering Significant 

Spatial Hotspots of Road Accidents in the United Kingdom. Our research focuses on not 

only identifying spatial hotspots, but also analyzing spatial hotspots of road accidents in 

relation to a variety of other external parameters. The primary objective of this study is 

to guide the government and concerned authorities to take appropriate actions in the 

required area in order to make policy changes and execute necessary adjustments. 

Authorities can use the collected data to provide resources to relevant regions for 

infrastructure, traffic-light systems, street lights, and road improvements, among other 

things. In order to retrieve deeper facts from the data, we conducted appropriate 

experiments and subjectively evaluated the results. For significance testing, the 

Proposed Algorithms 1 and 2 use the Cluster-Density approach and the Log Likelihood 

Ratio method, respectively. The results of using the OPTICS Spatial Clustering 

algorithm with both test statistic measures are shown in Table V. Table VI illustrates the 

results of using the HDBSCAN Spatial Clustering algorithm with both test statistic 

measures in a similar way. Variations in the minimum cluster size can also cause 

changes in the Significant Hotspots.  

 

Table V. Results obtained from Proposed Algorithm using OPTICS 

Min. Cluster Size 

method 

Candidate Cluster 

Count 

Significant hotspot 

Count using 

Cluster-Density 

Significant hotspot 

Count using LLR 

method 

6 1218   387 444 

7 999 322  345 

8 844   291 297 

9 725  248  272 

10 639  233  244 

11 566  192  236 

12 501  168  207 

13 440  157  196 

14 405  147  180 

15 367  128  147 

16 325  118  134 
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Table VI. Results obtained from Proposed Algorithm using HDBSCAN 

Min. Cluster Size 

method 

Candidate Cluster 

Count 

Significant hotspot 

Count using 

Cluster-Density 

Significant hotspot 

Count using LLR 

method 

6 1028 323 357 

7 824 278 284 

8 657 208 223 

9 546 172 195 

10 473 145 161 

11 415 133 156 

12 365 115 125 

13 325 102 118 

14 285 97 103 

15 256 76 89 

16 237 71 84 

 

In the Metropolitan areas, the minimum cluster size parameter is considered to be 6, 

which is twice the size of dimensions, because the dataset can be seen as three 

dimensional with primary features of Longitude, Latitude, and Time. The algorithm 

converges on a minimum cluster size of 16. Through any of the test statistics, it can be 

observed that as the cluster size grows, the number of hotspots decreases. 

 

Fig. 12 depicts a demonstration of the results from Table V using the Cluster density 

method, as well as a scatter plot of the Latitude and Longitude points of the Significant 

Hotspots. As the algorithm approaches the convergence criteria, the adjacency of clusters 

improves, yielding improved results. In a similar manner, Fig. 9 depicts a visual 

representation of the Table VI results using the Cluster density method along with the 

Latitude and Longitude points. Both the OPTICS and HDBSCAN algorithms perform 

similarly in terms of the number of significant hotspots. Fig. 8 and Fig. 10 demonstrate 

the results using the Log Likelihood ratio method from Table V and Table VI 

respectively. The clustering patterns of both these algorithms, however, differ, and as a 

result, the positions of cluster points vary. Although the majority of the activity points 

found in most significant hotspots are intersections of cluster points generated using both 

OPTICS and HDBSCAN in accordance with the Proposed Algorithm. 

 

The authorities in charge might prioritize work on particular hotspot zones based on the 

season and the time of year. We analyzed the Significant Spatial Hotspots in two 

subcategories: Seasonally and Temporally. We divided the Seasons in a year into four 
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categories: Winter (December, January, and February), spring (March, April, May), 

summer (June, July, August) and autumn (September, October, November) for 

conducting seasonal analysis. The experiments are also conducted for different times of 

the day i.e., Morning (6:00 AM - 11:00 AM), Afternoon (11:00AM - 16:00PM), Evening 

(16:00PM - 21:00PM) and Night (21:00PM - 6:00AM). The Spatiotemporal effect of the 

identified hotspots is measured and analyzed across different dimensions. 

 

 

Fig. 12 Scatter plot of Significant Spatial Hotspots using OPTICS with Cluster Density 

method for varying values of min cluster size 
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Fig. 13 Scatter plot of Significant Spatial Hotspots using OPTICS with Log Likelihood 

Ratio method for varying values of min cluster size 
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Fig. 14 Scatter plot of Significant Spatial Hotspots using HDBSCAN with Cluster Density 

method for varying values of min cluster size 
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Fig.15 Scatter plot of Significant Spatial Hotspots using HDBSCAN with Log Likelihood 

Ratio method for varying values of min cluster size 



48  

 

Fig. 16 Percentage of Road Accidents in different Seasons 

 

 

4.1 Seasonal Analysis of Significant Spatial Hotspots 

The road and traffic conditions are influenced by environmental factors. Seasonal 

changes have a significant impact on meteorological conditions, which has an indirect 

impact on the road network. The paper presents a comprehensive analysis of the seasonal 

impact on Road accidents in the UK. Figure 16 depicts the percentage of road accidents 

in metropolitan areas during various seasons. In the year 2020, Autumn experienced the 

highest number of accidents, while Summer and Winter experienced a comparable 

amount of traffic crashes. The interesting observations made are described as follows:  

 

1) Count of Significant Hotspots per season: The number of Significant Hotspots 

observed during each season in a year using each Algorithm (OPTICS using Cluster-

Density Significance Testing, OPTICS using Log Likelihood Ratio Significance Testing, 

HDBSCAN using Cluster-Density Significance Testing, and HDBSCAN using Log 

Likelihood Ratio Significance Testing) is depicted in Fig. 17. According to the bar plot, 

Autumn is the season having the highest number of detected significant hotspot zones for 

road accidents, which might be caused by heavy rain, foggy weather, or autumn foliage. 

As a result of this observation, we discovered that deer crashes are widespread in the UK 

during the autumn. However, Spring season witnessed the least number of significant 

hotspot zones. 
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Fig.17 Season wise count of Significant Spatial Hotspots 

 

2) Identification of the High-Risk Accident Zones by Ranking of Significant Hotspots: 

Using the proposed algorithm, several Significant Hotspot locations in the United 

Kingdom have been discovered as shown in Fig. 17. However, it is crucial to determine 

the high-priority zones that require immediate attention by the concerned authorities. The 

paper identifies such high-risk zones and the results are illustrated in Fig. 20, Fig. 21, Fig. 

22, and Fig. 23. Fig. 20(a) shows that the OPTICS with Cluster-Density Significance 

Testing approach identified Wembley as the most high-risk accident zone in the winter, 

whereas Fig. 21(b) shows that HDBSCAN with Cluster-Density Significance Testing 

determined Wembley as the most high-risk zone in the spring.  

 

During the summer and autumn seasons, however, Wembley can be considered as a 

region with a lower than usual probability of accidents. Similarly, as shown in Fig. 20(c) 

and Fig. 21(d), Croydon is the region with the highest risk of traffic accidents during the 

Summer and Autumn seasons. The results of our proposed methodology are consistent 

with the findings of the UK’s National Accident Helpline, which likewise claimed 

Croydon to be an exceedingly accident-prone location. Fig. 21(a), Fig. 21(c) and Fig. 

23(b) depicts the City of London to be a high-risk zone through most part of the year.  
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Following the identification of these high-risk accident zones, the responsible authorities 

must take immediate action to recognize the situation and difficulties in road 

transportation, as well as deliver appropriate resources in accordance with demand of the 

situation. Better road and highway infrastructure, or prompt cleaning of snow from roads 

in winters, improved traffic signal management, and proper speed limit management are 

all potential solutions to challenges faced during seasonal fluctuations. 

 

3) Identification of Significant Hotspots on the basis of the type of accident severity: In 

the previous section, we determined the highest risk accident zones from the large set of 

hotspot regions generated by the proposed algorithm. These findings assist the relevant 

authorities in conducting effective road planning in the affected areas. Mostly, the budget 

of the authorities and the resources of the traffic police department are limited, hence it 

becomes critical to delve deeper into high risk accident zones and identify those regions 

that can make the best use of resource deficiency and should be prioritized based on the 

severity of the accident.  

 

Table  VII demonstrates the Seasonal Severity-wise analysis of the Significant Road 

accident hotspots obtained from all different variations of the proposed algorithm. The 

severity of an accident is split into two categories: fatal and serious. Accidents having at 

least one casualty are classified as fatal accidents. Serious accident severity refers to 

collisions that resulted in major injuries and car damage but no fatalities. Central London 

was identified as the most significant road accident hotspot for fatal accidents during the 

Winter Season, while Paddington was identified as the most significant road accident 

hotspot for serious accidents. Croydon can be designated as the high-risk hotspot for fatal 

accidents throughout the summer months as well as the Autumn Season. Also, Clapham 

was the most significant road accident hotspot for serious accidents in Autumn.  

 

Seasonal analysis of road accident hotspots presented in our research work can serve as a 

guiding tool for the government and concerned agencies in improving road safety 

conditions that may be impacted by natural seasonal variations. The comprehensive 

analysis of unpredictable weather conditions is critical for organizing public awareness 

campaigns for road safety. This contributes to the larger goal of constructing sustainable 

cities that offer safer roads for the people. 
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Fig. 18 Percentage of Road Accidents in different time slots of a day 

 

 

4.2 Temporal Analysis of Significant Spatial Hotspots 

The road traffic network is highly influenced by the timestamp of a day. People rush to 

work in the morning, and as a result, the roads are busy or congested. People also try to 

compensate for the hours wasted stuck in traffic by breaking the speed limit. Moreover, 

people rush back home in the evenings, causing the situation to worsen. The night time 

introduces additional challenges for road drivers because of limited illumination and 

reduced vision. The paper presents a comprehensive analysis of the temporal effects on 

Road accidents in the UK. Figure 18 depicts the percentage of road accidents in 

metropolitan areas during various time slots of a day. In the year 2020, the evening had 

the largest rate of accidents, while the morning and afternoon had 19.3% and 29.1% of 

road accidents, respectively. Interestingly, a total of 15.6% road accidents were recorded 

during night. Hence, it is evident that the typical tendency of the maximum number of 

crashes occurring at night does not adhere in this situation. The global COVID-19 

pandemic prevalent in the year 2020 imposed nighttime curfews in the United Kingdom 

can help exemplify this pattern. The interesting observations revealed upon analysis are 

described as follows: 

 

1) Count of Significant Hotspots in different time slots of a day: The number of 

Significant Hotspots observed during four distinct time periods of a day using each 

Algorithm (OPTICS using Cluster-Density Significance Testing, OPTICS using Log  
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Fig. 19 Time wise count of Significant Spatial Hotspots 

 

Likelihood Ratio Significance Testing, HDBSCAN using Cluster-Density Significance 

Testing, and HDBSCAN using Log Likelihood Ratio Significance Testing) is depicted in 

Fig. 19. Among all four variations of the proposed algorithm, the evening time from 

16:00 PM to 21:00 PM accounted for the largest count of Significant road accident 

hotspots in the Metropolitan region, according to the bar plot. The afternoon hours 

encountered the next highest significant hotspot areas. During the morning and night, a 

similar number of Significant hotspot regions were discovered. 

 

2) Identification of the High-Risk Accident Zones by Ranking of Significant Hotspots: 

Using the proposed algorithm, several Significant Hotspot locations in the United 

Kingdom have been identified during varying time slots of a day as shown in Fig. 19. 

Relevant resources, tools, and other required entities must be provided to appropriate 

high-risk zones at different times of the day. The paper identified such high-risk zones 

and the results are illustrated in Fig. 24, Fig. 25, Fig. 26, and Fig. 27. Fig. 24(a) shows 

that the OPTICS with Cluster-Density Significance Testing approach as well as Fig. 

27(a) shows that HDBSCAN with Log Likelihood Ratio Significance Testing method 

identified Croydon as the most high-risk accident zone in the morning time from 6:00 

AM to 11:00 AM. According to Fig. 25(c), Croydon has also been identified as a major 

road accident hotspot region during the rush hours in the evening time from 16:00 PM to 
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21:00 PM. Croydon has emerged as a prominent accident hotspot zone during rush hours, 

demanding the execution of important measures to address the dense traffic volume 

scenario and deadlocks caused due to traffic congestion. Preplanned divergence of 

congested roads by traffic police, construction of new routes via road and highway 

networks from one accident cluster to another, and the installation of traffic light 

monitoring systems and speed limit monitoring systems are all possible countermeasures. 

In the afternoon hours i.e., 11:00 AM to 16:00 PM, Fig. 24(b) and Fig. 26(b) have 

identified the Stamford Hill whereas Fig. 25(b) and Fig. 27(b) have identified Lancester 

West as the relevant road accident hotspot region. Typically, when the roads are busiest, 

the probability of an accident increases. Clapham road junction remains busy mostly 

during evenings and hence, the identification of busiest roads in these high-risk zones can 

aid the public in safer travel. 

 

3) Identification of Significant Hotspots on the basis of the type of accident severity: The 

above section discussed the prevalence of high-risk road accident zones in the UK. The 

important of Severity analysis has already been discussed during the seasonal analysis. 

Table VIII demonstrates the Temporal Severity-wise analysis of the Significant Road 

accident hotspots obtained from all different variations of the proposed algorithm. 

Croydon and Harlington were identified as the most significant road accident hotspot 

zones for fatal and serious accidents respectively during the morning hours. During the 

afternoon time, all the four variations of the proposed algorithm discovered Tottenham as 

the hotspot zone for accidents of serious type. In the evening hours, Clapham and 

Walthamstow were detected as the accident prone regions for serious and fatal accidents 

respectively. Based on the data collected for road accidents for the year 2020, four 

different hotspot zones for the night time are identified to be Enfield Town, Broad Green, 

St. James’s and St. Luke’s. 

 

Regardless of the type of application, temporal analysis is an integral aspect of 

identifying Significant Spatial Hotspots because it reveals hidden patterns and trends 

from the spatial data. The prominent feature of Temporal analysis is observing the 

dynamic nature of significant spatial hotspots. Through the introduction of time domain 

in the spatial data analysis for significant hotspot detection, one can observe how 

significant hotspots in the study area changing with time and also how a particular 

hotspot evolves with time. This adds a dynamic component to the proposed algorithm and 

we are able to get a wider view of the spatial data which helps us to derive relevant 

solutions for the application of road safety. 
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Fig. 20 Most Significant Hotspots using OPTICS with Cluster-Density method seasonally 

 

Fig. 21 Most Significant Hotspots using HDBSCAN with Cluster-Density method 

seasonally 

 

Fig. 22 Most Significant Hotspots using OPTICS with Log Likelihood Ratio method 

seasonally 

 

Fig. 23 Most Significant Hotspots using HDBSCAN with Log Likelihood Ratio method 

seasonally 
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Fig. 24 Most Significant Hotspots using OPTICS with Cluster-Density method temporally 

 

Fig. 25 Most Significant Hotspots using HDBSCAN with Cluster-Density method 

temporally 

 

Fig. 26 Most Significant Hotspots using OPTICS with Log Likelihood Ratio method 

temporally 

 

Fig. 27 Most Significant Hotspots using HDBSCAN with Log Likelihood Ratio method 

temporally 
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TABLE VII. Seasonal Severity-wise analysis 

 Winter Spring Summer Autumn 

 Fatal Serious Fatal Serious Fatal Serious Fatal Serious 

OPTICS with 

Cluster 

Density 
method 

Central London Ilford Woodgreen Westminster Croydon Westminster Norbiton Clapham 

HDBSCAN 

with Cluster 

Density 
method 

ST Luke’s Paddington Wembley Catford 
City of 

London 
Clapham Croydon Clapham 

OPTICS with 

LLR method 
Central London Paddington Streatham East London Croydon Clapham Croydon Clapham 

HDBSCAN 

with LLR 
method 

Central London Paddington 
City of 

London 
Catford Hackney Catford Croydon Clapham 

 

TABLE VIII. Temporal Severity-wise analysis 

 Morning  Afternoon Evening Night 

 Fatal Serious Fatal Serious Fatal Serious Fatal Serious 

OPTICS with 

Cluster 
Density 

method 

Croydon  Harlington Stamford Hill Tottenham Walthamstow Clapham 
Enfield 

Town 
St James’s 

HDBSCAN 

with Cluster 
Density 

method 

Croydon Harlington Stamford Hill Tottenham Walthamstow Clapham 
Enfield 

Town 
St James’s 

OPTICS with 

LLR method 
City of London Harlington 

Lancester 

West 
Tottenham Croydon Clapham 

Broad 

Green 
ST Luke’s 

HDBSCAN 

with LLR 
method 

Croydon Harlington 
Lancester 

West 
Tottenham Walthamstow Paddington 

Broad 

Green 
ST Luke’s 
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CHAPTER 5: COMPARATIVE ANALYSIS OF THE 

PROPOSED APPROACH 
 

 

TABLE IX. Comparison of the variants of the proposed method 

 Computation  Clustering pattern Precision 

OPTICS with 

Cluster-Density 

method 

Less input 

parameters required 

and O(1) for 

Significance testing 

Varies slightly with 

increase in min 

cluster size 

0.68-0.72 for min 

cluster size in [6,16] 

HDBSCAN with 

Cluster-Density 

method  

Faster computation 

and O(1) for 

Significance testing 

Less variation with 

increase in min 

cluster size 

0.73-0.75 for min 

cluster size in [6,16] 

OPTICS with LLR 

method  

Less input 

parameters required 

and O(n) for 

Significance testing 

where n is the total 

no. of data points 

Varies greatly with 

increase in min 

cluster size 

0.67-0.69 for min 

cluster size in [6,16] 

HDBSCAN with 

LLR method  

Faster computation 

and O(n) for 

Significance testing 

where n is the total 

no. of data points 

Less variation with 

increase in min 

cluster size 

0.69-0.71 for min 

cluster size in [6,16] 

 

 

Several research papers have incorporated road accidents data [61] provided by the 

government of United Kingdom. Table X shows the comparison of our proposed strategy 

to other approaches suggested in relevant research studies. Various researchers have 

identified substantial high-risk zones for road accidents in different parts of the world, 

with relevant results. The Identification of road accident clusters using Kulldorff’s Spatial 

Scan Statistic was presented by Junxian Song et al. [78] in 2018. This technique used 

significance testing and did not require a specified cluster count, thus all possible clusters 

could be found. It also included an investigation of other external factors. However, the 

discovered clusters were shape-dependent, which may not provide relevance in real-

world applications of road safety.  
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In 2021, Christopher Sinclair et al. [77] employed a partition-based clustering technique 

to detect high-risk accident zones. For the purpose of identifying spatial clusters, K-

Means clustering was applied to the UK road accident dataset. They created shape-

invariant clusters but had additional requirements of predetermined cluster count, 

multiple other input parameters and performed no significance testing. On the other hand, 

the authors conducted an exhaustive analysis by taking into account a variety of external 

elements such as the driver’s age, the vehicle’s age, the vehicle’s speed limit, and engine 

capacity, among others.  

 

To identify possible causes of accidents in India, Reeta Bhardwaj et al. [70] presented a 

hybrid clustering technique based on K-Mode partitioning and association rule mining. 

The density-based clustering approach [64] is also adopted for the purpose of finding 

road accident clusters. The approach yielded shape-invariant clusters and does not 

necessitate a predetermined cluster count. It does not, however, perform the significance 

testing of discovered clusters, which is an important criterion for determining statistical 

significance of clusters and prioritize accident hotspot regions for the concerned 

authorities.  

 

Determining the statistical importance of clusters is important in eliminating out 

candidate clusters that are false positives, i.e., clusters that appear to be significant 

hotspot zones but are actually less relevant than the others. Furthermore, it assigns a 

strong statistical confidence factor to the clusters discovered by machine learning 

approaches, solidifying the decision-making process for the appropriate authorities. Our 

proposed approach features shape-invariant clusters with no requirement of predefined 

cluster count. It eliminates the difficulties in hyperparameter tuning by only demanding a 

single input parameter to the proposed algorithm. Moreover, the proposed approach 

brings out the capabilities of cutting-edge clustering algorithms for utilization in 

applications of spatial data domain.  

 

We selected OPTICS and HDBSCAN unsupervised machine learning clustering 

algorithms which work quite effectively for spatial data and are also compatible with 

haversine distance metric. This produces more accurate clustering results on top of which 

robust significance testing is employed using two efficient test statistic measures, i.e., 

 

 Cluster-Density Method 

  Log Likelihood Ratio Method.  
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Table IX shows a comparison of the variants of the proposed four methods in terms of 

three crucial factors in determining the practical application of the proposed algorithms. 

The Computation factor is determining the time complexity of the proposed algorithms. 

The Clustering pattern defines the cluster variations with increase in min. cluster size. 

The Accuracy is calculated after comparing the predicted results for the year 2020 with 

the actual results. The range of values for accuracy was calculated for varying values of 

min. cluster size. Among the four methods, HDBSCAN with Cluster Density methods 

outperform from the other three methods in terms of all three factors.  

 

After obtaining significant spatial hotspots, we also presented a comprehensive analysis 

of the seasonal and temporal variations of the identified hotspot zones. In addition, a 

severity magnitude study of the seasonal and temporal hotspot zones is carried out to 

identify the depth of accident severity in the hotspot areas. Through the recommended 

solution strategy outlined in the following section, we also aim to effectively guide the 

relevant authorities in making critical decisions for road safety and public awareness. 

 

Table X. Comparison of proposed approach with related research studies 

Reference 

Shape-

invariant 

clusters 

No 

predefined 

cluster 

count 

Single input 

parameter 

Significance 

Testing 
Analysis 

Junxian 

Song et al. 

[78] 

     

Christopher 

Sinclair et al. 

[77] 

     

Reeta 

Bhardwaj et 

al. [70] 

     

Abdullah S. 

et al.[64] 
     

Our 

Proposed 

approach 

     
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CHAPTER 6: CONCLUSION & FUTURE SCOPE 
 

 

 
 

Fig. 28 Proposed Solution approach 

 

 

 

We critically examined and analyzed the existing research literature on spatiotemporal 

hotspot detection techniques in this systematic study of Spatiotemporal hotspot detection 

and evaluation measures, and developed a hierarchical framework for organizing and 

summarizing the widely used methods for spatiotemporal hotspot detection. We have 

summarized the most often used evaluation metrics for measuring the accuracy of 

Spatiotemporal hotspots. Our findings will aid future researchers in developing and 

improving more robust strategies for detecting Spatiotemporal Hotspots, as well as 

maximizing the use of existing techniques for detecting Spatiotemporal Hotspots. 

 

 

The proposed algorithm focuses on the combined strengths of Spatial Clustering 

algorithms with efficient significance testing methods. The hybrid combination of these 

two mechanisms yields better accuracy in terms of significant hotspot identification. The 

proposed algorithm described as Algorithm 1 and Algorithm 2 of this paper reduced the 

probability of detecting false positives to a reasonably lower extent which makes it 

suitable for real world datasets. For demonstration of the results obtained by the proposed 

algorithm, the paper presented a comprehensive analysis of the UK-Road accident 

hotspots. The paper also presented a comparative analysis of the OPTICS algorithm and 

HDBSCAN algorithm for Spatial Clustering as well as the significance testing of the 
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hotspots performed using two efficient test statistic measures i.e., Cluster Density method 

and Log Likelihood Ratio Method. The results are demonstrated in detail in the sections 

above. We further identified the likely causes of the problems after investigation and 

propose the following solutions:  

 

1) Weather conditions: It is natural for weather to have a significant impact on traffic 

accidents. On marshland, a high number of accidents occur, causing road damage. Aside 

from that, the weather effects in some parts of the United Kingdom are concerning. 

However, improving road fog illumination, repairing slick roads, and improving 

pedestrian pathways are all potential solutions. The authors of [68] performed a detailed 

investigation of the impact of weather on road accidents. 

 

2) Road Surface conditions: The road surface conditions of sites where incidents occurred 

were also reported by the UK road safety data. It was observed that dry roads had seen 

the majority of road accidents in the identified significant spatial hotspot zones. Aside 

from that, wet or damp roads, as well as snowy roads, have been known to cause traffic 

accidents in the detected hotspot areas. As a result, it is critical to execute quick road 

damage repair as well as fast snow removal from roads during the particular seasons and 

time of the day as determined from the Seasonal and Temporal analysis.  

 

3) Violation of Traffic rules: Over speeding, crossing red lights, and other traffic 

violations are common. Object detection and CCTV monitoring systems can be used to 

track whether or not passengers are wearing seat belts or helmets while driving. It can 

also help the traffic police to impose penalties on anyone who break traffic signals on the 

road. Utilizing the identified road accident hotspot zones, the concerned authorities can 

direct traffic police force or required personnel at these high-risk accident hotspot regions 

to ensure road safety is well maintained at varying times of the day.  

 

4) Driver’s Carelessness: Some reasons of road accidents are unfortunate, such as the 

driver’s irresponsibility. Public awareness campaigns can help raise knowledge about the 

issue of road safety by using safety hoardings or relevant posters in hotspot zones. 

Furthermore, as the seasons change, posters can be digitized and updated, particularly in 

places where substantial road accident hotspots have been identified.  

 

As previously stated, the dataset contained attributes that may be used to determine the 

most likely causal factors of road accidents. After identifying major spatial hotspots, we 

refined the dataset. The latitude and longitude points of significant spatial hotspots assist 

in defining the characteristics that can aid in determining the likely causes of road 

accidents. Fig. 29 shows that the most likely cause of an accident is the driver’s 

carelessness while driving. Policymakers must ensure that road safety initiatives and 
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information campaigns are organized to spread awareness of the crisis and its devastating 

impact on people’s lives. Furthermore, poor road surface conditions are the second  

 
Fig. 29 Piechart describing the likely causes of road accidents 

 

 

significant component in the causes of road accidents that must be addressed. Following 

seasonal changes, a thorough evaluation of accident-prone highways and adjacent routes 

is required. Proper road traffic signs and illumination also aid in the creation of a safer 

road environment. Weather is unpredictable, and while it is the least prevalent cause of 

road accidents in the United Kingdom, it is always preferable to avoid mistakes that may 

occur as a result of it. As a result, it’s critical to take the required actions to eliminate 

accident causes and ensure that everyone is safe on the roads. 

 

 

The proposed solution approach, depicted in Fig.28, summarized the complete modular 

approach used in this paper to avoid road accidents. Module 1 demonstrated how 

OPTICS and HDBSCAN Clustering techniques can be used to find candidate clusters. 

Module 2 then showed how to use the proposed algorithm to discover statistically 

significant Hotspot zones in the United Kingdom. Module 3 examined the identified 

major spatial hotspots in terms of season, time, and severity. Module 4 concluded the 

paper by offering viable options for the concerned authorities to focus their resources and 

attention on necessary and required hotspot regions in order to respond quickly and 

effectively so as to create a sustainable and safer road network for all people. 
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	F. Probabilistic model based techniques:
	In recent years, probabilistic estimate methods based on Bayesian models have gained popularity. Hotspot detection can also be classified as determining a probability estimate of occurrences that are more likely to occur inside than outside. For ident...
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	Fig. 4 Analysis of Spatiotemporal Hotspot detection methods with Area under ROC
	In case of Case study based evaluation, either mean absolute percentage error or median absolute percentage error is calculated for calculating the relative risk between the actual and predicted hotspots. For finding the similarity between actual and ...
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	We demonstrated an implementation of the proposed algorithm using the “Road Safety Data from the Department of Transport, UK” dataset [61] for the year 2020. The UK government has offered public data on road accidents from past several years. The data...
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	Fig. 11 Visual Representation of Preprocessed Dataset
	The correlation matrix shown in Fig.10 was utilized to select important dataset attributes. From the correlation matrix, it can be deduced that the selected attributes have low correlation values with each other. Hence, these features aid in producing...
	3.2 Generation of Candidate Clusters
	Clustering techniques are grouped into various categories such as Partition-based Clustering, Hierarchical Clustering, and Density-based Clustering. The Partition-based Clustering approaches such as K-Means and K-Medoids implement an iterative approac...
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