

i

BUS CONTROLLED AMBA 2.0 AHB2APB BRIDGE

FOR SOC APPLICATION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN AND EMBEDDED SYSTEMS

Submitted by:

PULKIT MITTAL

 2K20/VLS/14

Under the supervision of

DR. SONAM REWARI

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY 2022

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

ii

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I PULKIT MITTAL student of MTech (VLSI Design and Embedded Systems), hereby

declare that the project Dissertation titled “BUS CONTROLLED AMBA 2.0 AHB2APB

BRIDGE FOR SOC APPLICATION” which is submitted by me to the Department of

Electronics and Communication Engineering, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of the degree of Master of Technology,

is original and not copied from any source without proper citation. This work has not

previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

Place: Delhi PULKIT MITTAL

Date: May 16, 2022

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

iii

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “BUS CONTROLLED AMBA 2.0

AHB2APB BRIDGE FOR SOC APPLICATION” which is submitted by PULKIT

MITTAL, 2K20/VLS/14 of Electronics and Communication Department, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of

the degree of Master of Technology, is a record of the project work carried out by the

students under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi DR. SONAM REWARI

Date: May 16, 2022 SUPERVISOR

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

iv

ABSTRACT

The AMBA (Advanced Microcontroller Bus Architecture) is an open SOC (System-on-Chip) bus

protocol to strengthen the reusability of IP core, for high-performance buses to communicate with

low-power devices by communication through the connection of different functional blocks (or

IP), and using multiple controllers and peripherals, we can develop multiprocessor unit. This

Research paper explains the implementation of AHB to APB Bridge. The bridge provides a

communication interface between AMBA AHB v2.0 Masters and APB v2.0 slaves and

parameterized data bus for AHB master and APB slaves. It supports transfers even when AHB

transfer size and APB data bus width is not equal and AHB and APB interfaces work in separate

independent clock domains. It has inbuilt cross-domain synchronization with parameterized

number of synchronization stages. The design supports multi master and multi slave configuration.

To perform functional and timing simulation, we are using System Verilog on Xilinx VIVADO

Tool.

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

v

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to whom the project

is assigned, but it also demands the help and guardianship of people who helped in

completion of the project.

I would like to thank all those people who have helped me in this research and inspired me

during my study.

With profound sense of gratitude, I thank Dr. Sonam Rewari, my Research Supervisor, for

her encouragement, support, patience, and her guidance in this research work.

I owe my deepest thanks to my family, who always stood by me and guided me through

my career and have pulled me through against impossible odds at times. Words cannot

express the gratitude I owe them.

PULKIT MITTAL

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

vi

Table Of Content

Candidate’s Declaration .. ii

Certificate... iii

Abstract .. iv

Acknowledgement .. v

List Of Tables ... vii

List Of Figures ... viii

Chapter 1: INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Benefits Of AMBA: .. 3

1.3 Different Variety Of AMBA- ... 4

APB ... 4

ASB ... 4

AHB .. 5

AXI ... 5

ACE .. 6

ATB .. 6

Designs Based On AMBA .. 7

1.4 Goals ... 7

1.5 Thesis Organization .. 7

Chapter 2- LITERATURE SURVEY ... 8

Chapter 3: ARCHITECTURE AND DESIGN OF AMBA 2.0 .. 13

3.1 BLOCK DIAGRAM ... 14

3.2 Constraints And Assumptions Made During Implementation Of The Above Design 14

3.3 Features Of AHB2APB Bridge ... 17

3.4. Implementation And Working Using Fsm ... 18

3.4.1 AHB Slave Interface .. 18

3.4.2. AHB To APB Translation Block .. 19

3.4.3 APB Master Interface .. 21

Chapter 4 SIMULATION RESULTS AND ANALYSIS .. 23

CHAPTER 5: CONCLUSION AND FUTURE SCOPE .. 30

APPENDIX A ... 31

APPENDIX B ... 34

APPENDIX C ... 36

APPENDIX D ... 41

REFERENCES ... 47

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

vii

List of Tables

Table 1.1. Abbreviations used in AMBA protocol 2

Table 3.1. List of Parameters 15

Table 3.2. I/O Pin configurations 16

Table 4.1. Slice logic reportNo table of figures entries found. 25

P

A

G

E

\

*

r

o

m

a

n

v

i

i

i

viii

List of Figures

Figure 1.1. Evolution of AMBA Standards 1

Figure 1.2. SOC System Block Diagram 3

Figure 3.1. AMBA based AHB to APB or ASB to APB bridge 13

Figure 3.2. AHB2APB Bridge Block Diagram 14

Figure 3.3. Pin Diagram 17

Figure 3.4. AHB State Machine 18

Figure 3.5. APB State Machine 21

Figure 4.1. Schematic of AHB2APB Bridge 23

Figure 4.2. RTL Schematic of ahb2apb_sync 23

Figure 4.3. RTL Schematic of ahb_slave_interface 24

Figure 4.4. RTL Schematic of apb_master_interface 24

Figure 4.5. Power consumption 26

Figure 4.6. Utilization Graph 26

Figure 4.7. Setup check 27

Figure 4.8. Hold check 27

Figure 4.9. Waveform depicting setup and hold check. 28

Figure 4.10. Burst write timing diagram 28

Figure 4.11. Burst read timing diagram 29

P

A

G

E

1

0

1

Chapter 1: INTRODUCTION

1.1 Overview

AMBA which abbreviates to Advanced Microcontroller Bus Architecture protocol was

basically introduced by ARM in the year 1996. It was mainly used to connect several blocks

of SOC or ASIC to build a complex circuitry. Using AMBA built of multiprocessor and

microprocessor designs with large number of peripherals and the controllers has become

possible. The major use of AMBA can be seen in complex SOC designs which includes the

SOC used in your mobile phone or laptop. The functioning of SOC depends not only on the

building blocks but also on the interconnection of these blocks and to make this functioning

possible AMBA protocol was introduced. The initial release i.e., the first version had two

buses namely the APB (Advanced Peripheral Bus) and the ASB (Advanced System Bus).

Figure 1.1. Evolution of AMBA Standards

An addition of AHB (AMBA High Performance Bus) was made in its second version in the

year 1999. This protocol works on a single clock edge and has a wide application on ARM

7 and ARM 9 designs and even today it is used on ARM Cortex-M based designs. AMBA

2 protocol made communication between high speed and low speed peripherals possible

and till date it is widely used. Later in the year 2003, 3rd Generation of the AMBA protocol

i.e., AMBA 3 was introduced. It included AXI (Advanced Extensible Interface). In year

P

A

G

E

1

0

2

2010 AMBA 4 was introduced which included AXI4 and then in year 2011 ACE (AXI

Coherency Extensions). And at last in the year 2013 AMBA included CHI (Coherent Hub

Interface) it was designed for scalability so that performance can be maintained as the

number of components and traffic grows. This includes forcing masters to respond to

coherent snoop transactions, implying that forward mobility for specified masters can be

more easily guaranteed in a busy system.

Table 1.1. Abbreviations used in AMBA protocol.

AMBA (Advanced Microcontroller Bus Architecture) is an open SOC (System-on-Chip)

bus protocol that allows high-performance buses to communicate with low-power devices

by connecting different functional blocks (or IP), allowing us to create multiprocessor units

with multiple controllers and peripherals. This research paper explains how the AHB to

APB Bridge was implemented. The bridge connects AMBA AHB v2.0 Masters and APB

v2.0 Slaves, as well as providing AHB masters and APB slaves with a parameterized data

bus. It facilitates transfers even when the AHB transfer size and APB data bus width are

not the same and the AHB and APB interfaces are in different clock domains. It offers built-

in cross-domain synchronization with a number of phases that may be customized. The

architecture allows for several master and slave configurations. We use System Verilog on

the Xilinx VIVADO Tool to do functional and timing simulation.

The major objectives of AMBA are to permit right-first-time development, to be

innovation-free, to energize a measured framework outline, and to effectively lower the

silicon foundation. AMBA forms can help with configuration reuse as well as changing

framework execution by allowing for swift transit and high transfer speeds.

P

A

G

E

1

0

3

Figure 1.2. SOC System Block Diagram

1.2 Benefits of AMBA:

● Compatibility- A standard connection point detail, as AMBA, permits similarity

between IP parts from various plan groups or merchants.

● Efficient IP reuse- If an IP is compatible to be reused, then it directly reduces the

SoC design cost and the time to market, it happens because AMBA protocol

provides such specifications interface standards.

● Support- AMBA is all around upheld. It is broadly carried out and upheld all

through the semiconductor business, including support from outsider IP items and

apparatuses. Bus interface principles like AMBA, are separated through the high-

speed performance that they empower.

● Bandwidth- Bandwidth is defined as the maximum speed at which the data can be

communicated through the interfaces so for synchronous digital system the

bandwidth is basically the product of the width of the data bus and the clock speed

● Latency- It is defined as the time elapsed between the initiation and completion of

the transaction. So, for a burst-based system latency is basically the time taken to

complete the first transaction and not the entire transfer. An interface is typically

P

A

G

E

1

0

4

regarded as efficient if it acquires the maximum bandwidth in addition with almost

zero latency

● Flexibility- AMBA offers the versatility to work with an extent of SoCs. IP reuse

requires an extra ordinary standard while supporting a wide collection of SoCs with

different power, execution, and district essentials. ARM offers an extent of

association point specifics that are updated for these different necessities.

1.3 Different variety of AMBA-
APB

Advanced Peripheral Bus is used in AMBA-based designs to reduce the complexity of

interface and power consumption. APB is used to connect peripherals with low transfer

speeds. Framework execution can be improved with APB. The two main elements of this

transportation are the APB Bridge and the APB Slave. The vehicle specialist is APB

Bridge. Only for single transit, the APB in AMBA-based outlines will have a master.

Address hooking, creating a strobe flag PENABLE and a select flag SSELx, putting

information on APB for compose exchange, and making APB information available for

perused exchange are the main features of APB Bridge. APB Bridge identifies a number

of planning factors.

Information and yield parameters are the names of these parameters. The APB slave's

interface is touted to be extremely customizable. The APB slave work is controlled by the

APB timing parameters. SCLK, SRESETn, SADDR [31:0], SSELx, SENABLE,

SWRITE, SRDATA, and SWDATA are the essential flags that govern APB's work.

APB3 v1.0 is an APB subset. SREADY and SLVERR, as well as other APB indications,

are used in these two extra signals. The most current upgraded adaption of APB is APB4

v2.0. These signals are used to write and read data.

ASB

Advanced System Bus can be used as part of the numerous inserted micro controllers as

an elite pipelined transport. It helps to connect several CPUs, external memory ports, and

on-chip memories. ASB provides fundamental features such as burst exchange, varied

transport master assistance, and superior pipelined activity.

ASB master, ASB slave, ASB Judge, and ASB decoder are all guideline portions of ASB.

P

A

G

E

1

0

5

Through address and control information, the ASB master initiates the read exercises.

Various modes of transportation are available in ASB, but only one will be used. ASB

Judge will assist the pro in gaining admission to ASB. The normal ASB slave limit is to

reply to scrutinised requests and generate tasks.

The ASB decoder is used to untangle the convey and choose the best possible slaves. The

three types of exchanges that can happen through ASB are non-sequential, sequential, and

address-only. DSELx, BWRITE, BWAIT, BTRAN [1:0], BPROT [1:0], BSIZE [1:0],

BnRES, BLOK, BLAST, BERROR, BD [31:0], BCLK, BA[31:0], AREQx, and AGNTx

are the characteristic signals used in this transport.

AHB

Advanced High-Performance Bus is widely employed as an elite mode of transport that

may improve data transmission activity. Split exchanges, enhanced information transit

setup, burst exchange, single clock edge activity, and so on may all be accomplished with

AHB. AHB is supported by ARM7, ARM Cortex-M, and ARM9 processors. AHB

master, AHB slave, AHB decoder, and AHB authority are all part of the AHB framework

setup.

AHB uses address and control to read and compose tasks. Only one master at a time can

make effective use of the conveyance. The slave of AHB reacts to the master of AHB.

Slave reacts to the read or compose operation with the help of the address. The slave to

the master recognises the status of the information exchange. The status indicates if the

information exchange was a success, failure, or halt. AHB arbiter and decoder have the

same capabilities as ASB.

RWDATA, RSELx, RRDATA, RREADY, RRESP[1:0], RSPLITx [15:0],

RMASTLOCK, RMASTER [3:0], RGRANTx, RLOCKx, and BUSREQx are all AHB

signals. AHB-Lite v1.0 has a high-speed exchange motion. In addition to the fundamental

AHB signals, this modification employs a variety of banners for improved action.

AXI

ARM introduced Advanced Extensible Interface v1.0, a burst-based convention, in the

third period of AMBA. It provides superior task performance, high recurrence, and speed.

P

A

G

E

1

0

6

There is a distinct address and stage of information. It is used to exchange data between

byte strobes. With address issue, burst exchanges are possible. The distinctive

classifications of signs introduced in AXI are compose information carrier signals,

compose address carrier signals, compose reaction carrier signals, read address carrier

signals, read information carrier flags, and low power interface signals. There are five

unique channels accessible for reading and writing. AXI's other main features include

request exchange fulfilment and the increase of enlistment phases. AXI4 – Lite is a more

advanced version of AXI. It alters the signs of the essential AXI. This subset utilizes a

settled information transport width and backings compose strobes. AXI-Stream v1.0 is the

most recent adaptation of AXI.

ACE

AXI Coherency Extensions is an AXI upgrade that includes third-level reserves, on-chip

RAM, peripherals, and external memory. The AXI read and compose channels can be

created for a 64-bit or 128-piece interface here. In terms of the CPU clock, it supports 1:1

clock proportions. It can also operate multiple CPU clocks. On ARM Cortex-A processors

such as the Cortex-A7 and Cortex-A15, Pro is used. Interconnect, ACE masters, ACE –

Lite masters, and ACE Lite/AXI slaves are the various portions of master. The framework

level coherency is given structure by experts. The genuine flags of ACE are read data

channel signals, read address carrier signals, snoop carrier signals, write address carrier

signals, and response signals.

ACE is a subset of Pro Lite. Ace components that don't have equipment intelligible

reserves use Pro Lite. They can show whether the issued exchanges may be held in

distinct bosses' equipment coherent stores or whether they can assist in obstructing

exchanges. It includes additional flags on the read and compose address channels. Snoop

channels, snoop indicators, and response signals are not included in Pro Lite.

ATB

The Advanced Trace Bus promotes information sharing inside the Core Sight

troubleshooting framework. It supports bite-sized bundles and the control signals for

displaying the number of bytes significant in each cycle. The indications used by this

transport for activity include ATCLK, ATCLKEN, ATRESETn, ATVALID, ATREADY,

P

A

G

E

1

0

7

ATID [6:0], ATBYTES [m: 0], ATDATA [n: 0], AFVALID, and AFREADY.

Designs based on AMBA

AMBA is used by SDRAM and Flash memory controllers (DMC-34x), Network

Interconnect (NIC-301), store controllers (L2C-310), and DMA controllers (DMA-230),

among others. AMBA is also used by non-ARM plans.

1.4 Goals

1. It will configure less potential interfaces.

2. It will overhaul the reusability of periphery and IPs and simplify plan

3. It will redesign the embedded limited scope regulator things with central taking care

of unit on SOC.

1.5 Thesis Organization

The following is the format of the thesis report:

The establishment of this idea is summarized in Chapter 1. It includes a brief overview of

the Advanced Microcontroller Bus Architecture (AMBA), advanced peripheral bus

(APB), advanced system bus (ASB), and advanced high-performance bus (AHB).

Encourage it has discussed the AMBA assurance objectives.

The Advanced Microcontroller Bus Architecture (AMBA) advanced peripheral bus

(APB) configurations that have existed up to this point are discussed in Chapter 2. It also

highlights the shortcomings of the present structures.

The APB is reviewed in Chapter 3, which serves as the foundation for the suggested

storyline. It covers the APB connecting segments and flags' places of interest.

The experimental setup and simulation results are presented in Chapter 4.

Chapter 5 summarizes the findings of our research and suggests possible directions for

additional investigation.

P

A

G

E

1

0

8

Chapter 2- LITERATURE SURVEY

ARM introduces AMBA in the year 1999, which is an open-source interface tradition

usually characterized as a Bus Protocol. The broad survey is done on Bleeding edge

Microcontroller Transport Building and outline of AMBA interface module.

 The creator introduced an AMBA 2.0 that recognizes three methods of transportation:

ASB, APB, AHB. It researches all methods of transportation's trying frameworks. The

connection point module is a piece of programming that permits you to as far as its

limited state machine, AMBA AHB may obviously be used as an ordinary joining module

since it can peruse and compose information. As it speaks with the fringe contraptions, the

association module AMBA APB is melodic, showing a low rehash.

Kiran Rawat proposed a multifaceted connection point between AMBA ASB as well as

APB is the objective of the mix. Verilog HDL with limited state machine functioning

planned in Model Sim Variant 10.3 and Xilinx-ISE frame suite were utilized to plan the

usage overview and power reports. The utilization of APB Extension requires the work of

an official and a decoder. In the AMBA ASB and the APB module, the expert connects

with APB protocol. The appointed authority starts speaking with the vehicle subsequent to

deciding on the expert's status. The decoder chooses a vehicle slave utilizing the particular

location lines, and the slave replies to the vehicle ace with an assertion. As the layout

intricacy of the designs rises, the power utilization of SoC structures turns out to be

progressively fundamental. The power reports separate the different power parts that add

to drive use.

Kiran Rawat et al. presented AMBA APB, a variation of AMBA that gives the most

reduced power utilization and bandwidth. For this, a Verilog HDL APB Extension with

Reset Controller arrangement was utilized. BnRES and Power-on Reset (PO Reset)

conditions are introduced by the reset regulator so Meta stable attributes might be spread

and errors can be maintained at an essential separation. Power report exhibits that the

different power sections contribute to the power use by APB associate plan. As the result,

augmentation under PO Reset conditions, On-chip amount to control use is 9.52%, Chain

of order control use is 29.12% and dynamic stock control usage is 28.89% not however

much Scaffold under no PO Reset conditions. Accordingly, when Scaffold is planned

under Power-on Reset conditions, it might take full advantage of force. This is finished

P

A

G

E

1

0

9

utilizing the Verilog vernacular, which is utilized to make limited state machine models

and test seats. Model Sim Rendition 10.3 is utilized to show and repeat the APB

Extension and Reset Controller. For mix and power announcing, the Xilinx-ISE frame

suite, variant 13.4, is utilized.

Kiran Rawat et al. proposed the focal test for building a game plan to outline as well as to

facilitated and mix RTL code to plan importance and streamlined in control utilization.

The's maker will probably make the AMBA APB expansion a reality by fittingly figuring

out framework assets. For this, a replication and synthetization of the reach point of

association, not entirely set in stone to achieve the least power use and data move limit

possible between AMBA fast ASB and low speed APB transports. Right when a

capability is made between the passage timings of clock flags, clock incline appears.

Limit clock inclination can be overseen either a swell counter or a three-piece up or down

counter method. The article uses Verilog HDL to complete an APB Scaffold with a clock

incline decline methodology.

Jasmine Chhikara et al. proposed the unit which includes more modest valuable squares

called subsystems or module. These modules ought to be in a condition of amicability

with one another and give resources for the construction to work fittingly. The issue arises

when one subsystem takes on comparative guidelines as others. Each module uses another

piece rate or baud rate for data exchange, which might be non-synchronous or composed.

The maker moreover advises the most effective way to give information by starting to one

show and thereafter progressing forward to the accompanying. It takes advantage of I2C's

adaptable shows, making it ideal for use with the APB AMBA show. The proposed

planning is a framework between the I2C Master and the APB ointment, allowing

information to move from an I2C-enabled module to an APB-engaged module. The data

is moved in a state of congruity with the area clock, from successive (I2C) to look like

(APB) to consecutive (I2C). This makes a bidirectional association point between I2C-

enabled and APB-engaged modules.

Ashutosh Gupta gave an on-chip depiction foundation for better implanted

microcontrollers. This figure depicts the genuine execution of the AMBA advanced

structure transport (ASB) and undeniable level periphery transport (APB) affiliation

modules. To stay aware of the clock inclination to a base, a three-piece extend counter

was utilized. For showing up and reenactment, Model Sim Form 10.3 is utilized, and test

P

A

G

E

1

0

10

seats are made thus. For the blend and experience, the RTL Compiler is used, while the

Xilinx-ISE plan suite is used to discard the affiliation and use rundown. A refined

execution framework is used for the genuine course of action.

Kanishka Lahiri and Anand Raghunathan et al. proposed the confounded System on-chips

(SoCs), the design level on-chip correspondence setup is extending as a monster

wellspring of force use. The board and redoing are the vital segments of SoC control

which requires the attributes of the cutoff use. While persuading, they essentially address

a constrained piece of correspondence setup control use. A cutting edge correspondence

planning, incorporates very few parts, for example, transport interfaces, center

individuals, stages, decoders, and multiplexers, in spite of the general vehicle lines as well

as quantifiably supporting the perspective that on-chip correspondence is a fundamental

focus for framework level power streamlining, their work shows (I) meaning of totally

considering correspondence planning, and (ii) the entryways for control decline that exist

through mindful correspondence planning plan

Ge Zhiwei et al. inspected a sharp picture on-chip and CMOS sensor, which is applied to

the APB transport. The suggested plan shows hiding picture organizing difficulties and

highlights the separations between the proposed structure and the normal picture, which

considers pipeline a piece of cutting edge still cameras. This work joins two great vehicles

white adjust techniques to change the three self-regulating hiding channels, thinking about

the stuff use and power requirements. The suggested development, which is associated

with FPGA, can truly restore the picture thought of brutal data.

L. Benini, A. Macii et al. proposed the encoding and deciphering counts that will impart

the way to deal with imagining that will confine the common number of changes on

enthusiastically stacked for the most part transport lines at no cost in correspondence

throughput (i.e., single word is sent at each cycle). Given data on word-level measures,

the seeing part methodology grows low-change improvement codes and stuff execution of

encoders and decoders without relying upon organizer's sense. A right circumstance that

is sensible to low-width transports, what's more finished up frameworks that scale well

with transport width. Also, show a versatile construction that commonly changes

encoding to diminish advance enhancement for transports whose word-level evaluations

are not known from the before.

J. Y. Chen et al. proposed a strategy that competently reduces the exchanged capacitance

P

A

G

E

1

0

11

of the vehicle. The power ate up by the vehicle can, in this way, diminished. The vital of

the vehicle division is to apportion transport into several vehicle sections withdrew by

pass semiconductors. Especially transmission contraptions are organized to adjoin

transport pieces, thusly, most information Correspondence can be accomplished by

exchanging a little part of the vehicle fragments. As necessary, control use and delay are

both decreased. Exploratory outcomes got by emulating a yield show and a power show

that the proposed divided transport structure reduces transport control by around 60%-

70% and overhauls central vehicle delay by around 10%-30%.

Late movements in SoC advancement have enabled the blend of various devices on a

singular chip, making room for extra limited contraptions. The various gadgets from

various vendors, each filling a particular job, are completely combined on a lone chip.

These parts can be associated using transport-based shows to enable strong

correspondence. The AHB show is the most comprehensively utilized particular

technique. The AHB show grants devices to give at fast speeds. Because of their

unwieldiness, processors are consistently growing quicker, but memory are ending up

being all the more sluggish. This transforms into an issue since the data recuperation

speed doesn't match the dealing with speed. Likewise, a fast memory controller is

fundamental, one that can match the CPU speed to the memory speed to ensure strong

correspondence. It’s trying to associate SDRAM with AHB since SDRAM's dormancy

isn't confined to one cycle, obliging AHB to sit inert all through that period. In this way,

transport resources are being used inefficiently.

K. Shaikh and accomplices made a SDRAM-express memory unit. Right when an inquiry

is made worried actually consumed data, for example, the controller inside memory is

glanced through first preceding getting it to the memory. Since the AHB transport

designing obliges extended execution, extended clock repeat structure modules, this

controller was expected to work with the AHB (AMBA) transport plan. It's the

construction block for extended execution systems.

The coming AMBA transport hardware IP presented by Acasandrei et al. is a

modularized, entirely versatile, diminished power, and development free focus written in

the HDL language. The Viola-Jones methodology, which is maybe the most frequently

used face ID technique, is accelerated by the IP place. The gear gas pedal IP is used in an

embedded face acknowledgment structure considering the LEON3 Sparc V8 CPU. The

P

A

G

E

1

0

12

makers portray their strategies, challenges, and execution revelations for programming,

gear, and structure level arrangement.

Present day SoCs integrate multi-focus bundles and refined peripherals, for which the

continuous AHB show, which supports low-complexity shared transports, can't compare

the suppositions of the current world high speed SoCs, due to different show obstacles,

including the way that the AHB has recently a solitary uncommon trade, no full-duplex

mode, and simply a solitary channel-shared transport that is facilitated to the agent AXI

transport. By recognizing how the five-redirects in the vehicle work independently, as

well as the handshaking thought, a more reasonable assessment with the significant level

AXI transport is drawn.

The AMBA AXI4 transport, which is the most unimaginable concerning throughput,

lethargy, and world class execution/repeat, is used with single or various channels, and the

affiliation block epitomizes the power, decoder, and multiplexers. The official screens the

need to get to/release the vehicle to one of various managers who start trades all the while

using an intercession technique. The decoder disentangles the master's area and control

and passes the trade on to one of 16 slaves for major and burst read/form exercises.

The arrangement complexity of SOC is extending bit by bit as the result it extended

customer demands. Accordingly, there is for the most part a productivity opening, and the

reasonable show is picked for each application. To additionally foster organization

execution, QoS, and reduce wiring blockage, a migration from AXI4 to AXI4-Lite is

required, which allows the processor or supervisors to get to the registers (pretty much

nothing and more modest than regular peripherals). We pick AXI4-Lite. Using the

recently referenced references and keeping an eye out for the situation, assuming the

Master expert regularly holds onto any longing to get to information that may be in little

registers for which it uses fundamental registers like store to impart, a reasonable and

authentic vehicle point of interaction ought to be chosen to resolve the issue. This

actuated the headway of the Verilog HDL work "Plan and place of connection of AXI4-

P

A

G

E

1

0

13

Chapter 3: ARCHITECTURE AND DESIGN OF AMBA 2.0

In embedded systems, the designer faces a lot of issues, to integrate different designs and

meet certain requirements, such as low power consumption, pipelining of data, operating

low bandwidth peripherals, high performance devices, etc. on a single system of chips. To

solve this problem and meet all the design requirements of such a system with one more

CPU or single processor an AHB to APB bridge is implemented.

Figure 3.1. AMBA based AHB to APB or ASB to APB bridge

The AHB to APB bridge functions as an AHB slave, connecting the high-speed AHB and

the low-power APB. The AHB's read and write transfers are transformed to the APB's

equivalents. The connection of high performance, high speed and high bandwidth

peripherals such as on-chip RAM, DMA etc. with their counterparts such UART, timer,

keypad is established with the help of AHB2APB bridge

This section outlines the hardware architecture design of the IP. The AHB-APB Bridge is

a parameterized IP that acts as an interface between the AHB and APB bus protocol.

Multiple APB peripherals may be accessed through the AHB-APB bridge.

P

A

G

E

1

0

14

3.1 BLOCK DIAGRAM

The AHB Bridge will comprise of the following components:

● AHB Slave Interface

● AHB to APB Translation block

● APB Master interface

● AHB and APB Synchronization blocks

Figure 3.2. AHB2APB Bridge Block Diagram

3.2 Constraints and assumptions made during implementation of the above

design

ASSUMPTIONS

● AHB Master input signals are compliant with the AMBA AHB v2.0 protocol.

● APB Slave input signals are in accordance with the AMBA APB v2.0 protocol.

● De-assertion of AHB Reset, hresetn_i is synchronized w.r.t to AHB clock.

● De-assertion of APB Reset, hresetn_i is synchronized w.r.t to APB clock.

CONSTRAINTS

● AHB Clock frequency should be greater than or equal to APB clock frequency.

● AHB HSIZE should be such that the transfer size does not exceed the AHB Data

bus width (AHB_DATAWIDTH).

● AHB Data bus width should be greater than or equal to APB data bus

(AHB_DATAWIDTH >= APB_DATAWIDTH)

● AHB and APB data bus should be integral multiples of byte (AHB_DATAWIDTH

mod 8 = 0 and APB_DATAWIDTH mod 8 = 0).

● The minimum number of synchronization stages (SYNC_STAGES) should be 2.

P

A

G

E

1

0

15

Taking these constraints and assumptions as the input collaterals for the implementation

of AHB2APB bridge has made the design more realistic and efficient so that it can be

used for high-speed data transfer without any distortion. The burst transfers, made

during the transaction between the high-speed APB and AHB has now become possible

for read and write operations.

Table 3.1. List of Parameters

The data width of AHB is 32 bits as well as the data width of APB is 32 bits. The number

of APB slaves supported through this bridge are 10 and it has 2 sync stages. The

hexadecimal values of Peripheral start address, and end address are listed in Table 3.1.

There are several pins in the design of the AHB2APB bridge.

The output pins include hready_o which has a width of 1 bit. It basically indicates the

completion of present transfer and can also be used to insert wait cycles between the

transaction, hresp_o has width of 1 bit and it gives the transfer response which provides

information on the status of the transfer, hrdata_o has a width of 32 bit and it reads the

data from the slave, psel_o is a pin which is used to select the slaves among the APB,

penable_o has a datawidth of 1 bit and it Indicates the second and subsequent cycles of

the APB transfer, paddr_o is a 32 bit Address bus which tells the address of the bits,

pwrite_o is single bit pin and it Indicates direction of transfer. When HIGH indicates

write access and when LOW indicates read access, pwdata_o has same with as the

APB_DATAWIDTH and is a APB Write data bus, pprot_o is a 3 bit data bit which is for

P

A

G

E

1

0

16

APB Protection, pstrb_o has a datawidth of APB_DATAWIDTH/8 and it Indicates the

active byte lane during a write transfer.

Table 3.2. I/O Pin configurations

The input pins include the hsel_i which has a datawidth of 1 bit and is a AHB Select

line , haddr_i is a 32 bit bus which is AHB Address bus, htrans_i has a datawidth of 2

and it Indicates the transfer type of the current transfer hsize_i has a datawidth of 3 bits

and it Indicates size of AHB transfer, hburst_i has a datawidth of 3 bits and it Indicates

the burst type, hwrite_i is of 1 single bit and it Indicates direction of transfer. When HIGH

indicates write access and when LOW indicates read access. hwdata_i has a width

P

A

G

E

1

0

17

equivalent to AHB_DATAWIDTH and is used to AHB Write Data Bus, hprot_i is of 4 bit

and is AHB Protection type pin, pready_i is used for extending the transfer pslverr_i

Indicates a transfer failure prdata_i has a width equivalent to APB_DATAWIDTH and

tells the Data from the APB slave, hclk 1 bit AHB Clock hrstn_i is a single bit AHB

Asynchronous active low reset, pclk is a single bit APB Clock source and prstn_i is a

single bit APB Asynchronous active low reset

3.3 Features of AHB2APB bridge

The bridge basically converts system bus transfers into APB transfers and performs

functions such as driving the data onto APB bus to perform read and write operations [4],

holding the address throughout the transfer, converting system bus transfers into local bus

transfers [5] between AHB and APB.

 Figure 3.3. Pin Diagram

P

A

G

E

1

0

18

3.4. Implementation and working using fsm

3.4.1 AHB Slave Interface

The AHB Slave Interface consists of a state machine to implement the functionalities of

the AHB slave. The state machines consist of 3 states:

• ST_AHB_IDLE

• ST_AHB_TRANSFER

• ST_AHB_ERROR

When reset is applied, the state machine will be in the ST_AHB_IDLE state. Figure. 4

represents the state transition that occurs when reset is de-asserted. [6]

Figure 3.4. AHB State Machine

ST_AHB_IDLE If HSEL is de-asserted or if HTRANS indicates IDLE or BUSY transfer,

then all the address and control registers will be reinitialized to their reset value. Once

HSEL is asserted and HTRANS indicates SEQ or NON- SEQ transfer, then state

transition will take place. If the address lies within the valid range, then the AHB address

and control signals will be latched, and the next state will be ST_AHB_TRANSFER. If

P

A

G

E

1

0

19

the address is invalid, then HRESP will be set to 1, indicating an error response and state

transition will occur to ST_AHB_ERROR.

ST_AHB_TRANSFER In this state, a start transfer signal (ahb_start_tr) will be toggled

and ‘HREADY’ will be driven LOW, to wait for the APB slave to respond. At the rising

edge of the ‘HWRITE’ signal, ‘HWDATA’, will be latched into a local register, for the

APB slave to read. Once the acknowledgement is received from the APB slave that the

transfer is complete, read data will be taken from the APBslave, if the transfer was a read

access, and depending on the slave error, state transition will take place. If the APB slave

has asserted the slave error, then ‘HREADY’ will be kept low (2 cycles are re- quired for

the AHB master to detect slave error), and ‘HRESP’ will indicate an error. State transition

will now occur to the ST_AHB_ERROR state. In case of no error, ‘HRESP’ will indicate

an OK transfer and ‘HREADY’ will be driven HIGH to indicate the end of transfer. In

this case, state will transit to the ST_AHB_IDLE state.

ST_AHB_ERROR In this state, ‘HREADY’ will be asserted, HRESP will continue to

indicate error

 response and state transition will occur to the ST_AHB_IDLE state in the next clock

cycle.

3.4.2. AHB to APB Translation block

This will consist of the following blocks:

● Address translation

● Generation of PSEL

● PSTRB and PWDATA generation

● Synchronization between AHB and APB domain

Address Translation: In AHB, the address is aligned to the transfer size,

i.e., if it is an 8-bit transfer, the address will increment by 1 and if it is a 64-bit transfer

then the address will be incremented by 8. But in the case of APB, the address will be

aligned to the data bus width, i.e if the data bus is of 32 bits, then LSB 2 bits of PADDR

P

A

G

E

1

0

20

will be 0. (Address will increment by 4 for subsequent transfers). The number of LSBs in

PADDR to be kept 0 is determined by taking the log of the number of bytes in the data

bus.

Example: For 64-bit data bus, number of bytes = 64/8 = 8 Number of LSB 0s = log8 = 3

Generation of PSEL: The APB slave to which access is requested, is indicated by bits

[15:12] of HADDR. These bits will represent the slave ID of the APB slave. PSEL of the

slave will be set to 1 while that of other slaves will be de-asserted.

PSTRB and PWDATA Generation: To derive PWDATA, it is first required to know

which part of HWDATA is valid. For example, if the AHB data bus is of 64 bits, and

HSIZE indicates a 16-bit transfer, then it is necessary to know which 16 bits should be

considered from the 64-bit data bus. This information can be taken from HADDR. The

HADDR bits will represent the byte of the AHB data bus from which the transfer should

start and HSIZE will determine how many bytes from the starting byte should be

transferred. So the number of HADDR bits to be considered depends on the number of

bytes in the AHB data bus (AHB_DATAWIDTH/8). By taking the log of this number, we

get the number of bits required to represent the byte in the AHB data bus. Hence for a 64-

bit data bus, the last 3 bits will determine the starting byte in HWDATA. The number

of bytes to be transferred will depend on HSIZE. Based on this, a strobe(pstrb_full)

indicating all active bytes will be generated marking the starting byte as 1 and it will keep

marking the subsequent bytes as active till the number of active bytes equals the transfer

size (represented by HSIZE). HWDATA will be shifted till we get the desired starting

byte. But shifting will happen only in increments of the APB data bus width, i.e., in a 64-

bit data bus, if HADDR [2:0] is 3’b110, it indicates that 6th byte is the first valid byte in

HWDATA. If APB data bus is of 32 bits, then it can be shifted only 32 bits at a time (i.e.

4 bytes a time). So HWDATA will be right shifted by 32. Similarly, PSTRB will be

generated by shifting the ‘pstrb_full’ signal till the first valid byte is reached. For a 32-bit

data bus, the ‘pstrb_full’ will be shifted only 4 times a time (Number of bytes in the APB

data bus) to ensure that it does not cross the APB data bus boundary. If HSIZE indicates

16-bit transfer, then PSTRB will be set as 4’1100.

Synchronization between AHB and APB domain: When AHB has data to send, it

P

A

G

E

1

0

21

toggles the ‘ahb_start_tr’ signal. This signal is passed through a shift register which is

clocked by the APB clock. The size of the shift register depends on the synchronization

depth required. MSB 2 bits of the synchronizer are provided as inputs to a EXOR gate to

produce the synchronized output, ’start_tr_sync’. Similarly, APB toggles the

acknowledgement signal, ‘apb_ack’ when the transfer is complete. This signal is then

synchronized in the AHB domain, in the same way as the ‘ahb_start_tr’ signal. [7]

3.4.3 APB Master Interface

APB Master Interface is implemented through a state machine which has the following

three states:

• ST_APB_IDLE

• ST_APB_SETUP

• ST_APB_TRANSFER

When reset is applied, the state machine will be in the ST_APB_IDLE state. Figure 5

represents the state transition that occurs when reset is de-asserted.

ST_APB_IDLE Initially the APB state machine will be in the ST_APB_IDLE state.

When it receives a start transfer signal from the AHB, state transition will occur to the

ST_APB_SETUP state.

Figure 3.5. APB State Machine

P

A

G

E

1

0

22

ST_APB_SETUP In this state PSEL will be asserted depending on which slave is

selected. PENABLE will remain de-asserted. State transition will occur to the

ST_APB_TRANSFER state in the next clock cycle.

ST_APB_TRANSFER In this state, PENABLE will be asserted. It will remain in the

same state till PREADY or PSLVERR is asserted by the slave. If there is a slave error,

then it will abort the remaining transfers (if any) and go to the ST_APB_IDLE state. In

case of no error, then it will go back to the ST_APB_SETUP state, if there are further

transfers. Else, it will, go to the ST_APB_IDLE state. When the state transition occurs to

the ST_APB_IDLE state, an acknowledgement will be sent to the AHB Slave interface

P

A

G

E

1

0

23

Chapter 4 SIMULATION RESULTS AND ANALYSIS

The synthesis of AHB2APB Bridge is done using Xilinx Vivado and a simple schematic

of the synthesizable design is obtained as in Figure 4.1 which contains three blocks

namely ahb2apb_sync, apb_master_interface and ahb_slave_interface.

Figure 4.1. Schematic of AHB2APB Bridge

Figure 4.2. RTL Schematic of ahb2apb_sync

P

A

G

E

1

0

24

Figure 4.3. RTL Schematic of ahb_slave_interface

Figure 4.4. RTL Schematic of apb_master_interface

P

A

G

E

1

0

25

Site Type Used Fixed Available Util%

Slice LUTs* 346 0 303600 0.11

LUT as Logic 346 0 303600 0.11

LUT as Memory 0 0 130800 0.00

Slice Registers 219 0 607200 0.04

Register as Flip Flop 219 0 607200 0.04

Register as Latch 0 0 607200 0.00

F7 Muxes 34 0 151800 0.02

F8 Muxes 0 0 75900 0.00

Table 4.1. Slice logic report

The above table depicts the slice logic report which is obtained by implementing the

design on Virtex-7 pack. The entire design contains 533 cells, which contains 34 Muxes,

219 Flip flops.

P

A

G

E

1

0

26

Figure 4.5. Power consumption

Figure 4.6. Utilization Graph

Power estimation from Synthesized netlist. Activity derived from constraints files,

simulation files or vectorless analysis. The Total On-Chip Power is 5.562 W. Junction

Temperature is 32.8°C. Thermal Margin is 52.2°C (35.8 W). Effective 9JA being

1.4°C/W. Power supplied to off-chip devices is 0 W and the Confidence level is Low.

The on-chip static power dissipation is 0.297W, and the dynamic power dissipation is

5.265W. By analyzing the timing report, the setup time is 3.25ns, and hold time 0.202ns

P

A

G

E

1

0

27

Figure 4.7. Setup check

Figure 4.8. Hold check

P

A

G

E

1

0

28

Figure 4.9. Waveform depicting setup and hold check.

Setup time is defined as the time before the active edge of the clock for which the data

should be stable and Hold time is defined as the time after the active edge of the clock for

which the data should be kept stable. If the setup or the hold time in the circuit is violated

then it can result in the entire system being in a metastable state. The setup and the hold

check is done on each active clock edge be it positive edge or a negative edge depending

upon the requirement of the respective design.

Figure 4.10. Burst write timing diagram

P

A

G

E

1

0

29

Figure 4.11. Burst read timing diagram

P

A

G

E

1

0

30

CHAPTER 5: CONCLUSION AND FUTURE SCOPE

The previous timing diagrams demonstrate that our RTL design, which is based on the

AHBAPB bridge state schedule, is valid, as the Burst Read and Burst Write time diagrams

demonstrate. The Xilinx Vivado tool was used to construct all of my RTL designs, and

they were fully tested. The Advanced Trace Bus (ATB) and Advanced Expandable

Interfaces (AXI) are given as part of online debugging solutions and solutions for even

higher performance connections (ATB). The Sensical Hub Connector (CHI) standard, a

large transport layer with traffic mitigation capabilities, was created.

These techniques have established the actual standard for integrated bus processor

architecture since they are thoroughly defined and free to implement. Implementing the

AHB2APB Bridge for many masters and slaves is one of the long-term aims. The design

currently doesnot support a few features including Translation of HPROT to PPROT,

Split and Retry slave responses, and, HMASTLOCK implementation which can be

included in future designs. Verification methodologies can be further built using system

verilog which can be quite useful in future.

P

A

G

E

1

0

31

APPENDIX A

module ahb2apb_top

 #(parameter AHB_DATAWIDTH = 32,

 parameter APB_DATAWIDTH = 32,

 parameter NUM_OF_APB_SLAVES = 10,

 parameter PERIPHERAL_START_ADDR = 32'h0008_0000,

 parameter PERIPHERAL_END_ADDR = 32'h0008_CFFF,

 parameter SYNC_STAGES = 2

)

 (

 //Clock and reset signals

 //AHB Clock source

 input hclk,

 //APB Clock source

 input pclk,

 //Asynchronous active low reset with de-assertion synchronized to hclk

 input hrst_n,

 //Asynchronous active low reset with de-assertion synchronized to pclk

 input prst_n,

 //Input Signals from AHB Master

 //Select line from AHB Decoder

 input hsel_i,

 //Transfer type: 00 - Idle, 01- Busy, 10- Non-sequential, 11- Sequential

 input [1:0] htrans_i,

 //Write/read access 1- Write access; 0 - Read access

 input hwrite_i,

 //Indicates transfer size

 input [2:0] hsize_i,

 //Burst type; currently not used in the design

// input [2:0] hburst_i,

 //Protection type; currently not used in the design

// input [3:0] hprot_i,

 //Address bus

 input [31:0] haddr_i,

 //Write data bus

 input [AHB_DATAWIDTH-1:0] hwdata_i,

 //Signals from all APB Slaves to the APB decode

 //Ready signal

 input [NUM_OF_APB_SLAVES-1:0] pready_i,

 //Read data bus

 input [NUM_OF_APB_SLAVES-1:0] [APB_DATAWIDTH-1:0] prdata_i,

 //Slave error

 input [NUM_OF_APB_SLAVES-1:0] pslverr_i,

 //APB Slave signals translated to AHB for sending it to AHB Master

 //Ready signal

 output logic hready_o,

 //Response signal; 0- OKAY; 1-ERROR

 output logic hresp_o,

P

A

G

E

1

0

32

 //Read data bus

 output logic [AHB_DATAWIDTH-1:0] hrdata_o,

 //Signals translated from AHB Master sent to APB Slaves

 //Select signal

 output logic [NUM_OF_APB_SLAVES-1:0] psel_o,

 //Enable signal which is asserted from the second cycle of transfer to end of the transfer

 output logic penable_o,

 //Write/read access : 1-Write, 0-Read

 output logic pwrite_o,

 //Byte strobe signal to indicate active byte lane

 output logic [APB_DATAWIDTH/8-1:0] pstrb_o,

 //Protection type

// output logic [2:0] pprot_o,

 //Address bus

 output logic [31:0] paddr_o,

 //Write data bus

 output logic [APB_DATAWIDTH-1:0] pwdata_o);

 logic [31:0] haddr_latched;

 logic [2:0] hsize_latched;

 logic [31:0] hwdata_latched;

 logic hwrite_latched;

logic [AHB_DATAWIDTH-1:0] prdata_frm_apb;

 logic pslverr_frm_apb;

 logic apb_ack;

 logic apb_ack_sync;

 logic ahb_start_tr;

 logic ahb_start_tr_sync;

 ahb_slave_interface

 #(

 .AHB_DATAWIDTH (AHB_DATAWIDTH),

 .PERIPHERAL_START_ADDR (PERIPHERAL_START_ADDR),

 .PERIPHERAL_END_ADDR (PERIPHERAL_END_ADDR)

)

 U_AHB_SLAVE_INERFACE

 (

 .hclk (hclk),

 .hrst_n (hrst_n),

 .hsel_i (hsel_i),

 .htrans_i (htrans_i),

 .hwrite_i (hwrite_i),

 .hsize_i (hsize_i),

 .haddr_i (haddr_i),

 .hwdata_i (hwdata_i),

 .hrdata_o (hrdata_o),

 .hready_o (hready_o),

 .hresp_o (hresp_o),

 .haddr_latched_o (haddr_latched),

 .hsize_latched_o (hsize_latched),

 .hwdata_latched_o (hwdata_latched),

 .hwrite_latched_o (hwrite_latched),

P

A

G

E

1

0

33

 .prdata_i (prdata_frm_apb),

 .pslverr_i (pslverr_frm_apb),

 .apb_ack_i (apb_ack_sync),

 .ahb_start_tr_o (ahb_start_tr)

);

 ahb2apb_sync

 #(

 .SYNC_STAGES (SYNC_STAGES)

)

 U_AHB2APB_SYNC

 (

 .hclk (hclk),

 .hrst_n (hrst_n),

 .pclk (pclk),

 .prst_n (prst_n),

 .ahb_start_tr_i (ahb_start_tr),

 .ahb_start_tr_o (ahb_start_tr_sync),

 .apb_ack_i (apb_ack),

 .apb_ack_o (apb_ack_sync)

);

 apb_master_interface

 #(

 .AHB_DATAWIDTH (AHB_DATAWIDTH),

 .APB_DATAWIDTH (APB_DATAWIDTH),

 .NUM_OF_APB_SLAVES (NUM_OF_APB_SLAVES)

)

 U_APB_MASTER_INTERFACE

 (

 .pclk (pclk),

 .prst_n (prst_n),

 .hwrite_i (hwrite_latched),

 .hsize_i (hsize_latched),

 .haddr_i (haddr_latched),

 .hwdata_i (hwdata_latched),

 .paddr_o (paddr_o),

 .penable_o (penable_o),

 .pwrite_o (pwrite_o),

 .pwdata_o (pwdata_o),

 .pstrb_o (pstrb_o),

 .psel_o (psel_o),

 .pready_i (pready_i),

 .prdata_i (prdata_i),

 .pslverr_i (pslverr_i),

 .prdata_latched_o (prdata_frm_apb),

 .pslverr_latched_o (pslverr_frm_apb),

 .ahb_start_tr_i (ahb_start_tr_sync),

 .apb_ack_o (apb_ack)

);

 endmodule

P

A

G

E

1

0

34

APPENDIX B

module ahb2apb_sync

 #(parameter SYNC_STAGES = 2

)

 (

 //AHB Clock source

 input hclk,

 //AHB Asynchronous Reset

 input hrst_n,

 //APB Clock source

 input pclk,

 //APB Asynchronous Reset

 input prst_n,

 //AHB Start of transfer

 input ahb_start_tr_i,

 //Synchronized AHB signal

 output ahb_start_tr_o,

 //APB Acknowledgment signal

 input apb_ack_i,

 //Synchronized APB signal

 output apb_ack_o

);

 //Signals for CDC

 //Signal used for synchronizing ahb_start_tr. Used in the generation of ahb_start_tr_sync

 logic [SYNC_STAGES :0] ahb_start_tr_r;

 //Signal used for synchronizing apb_ack. Used in the generation of apb_ack_sync

 logic [SYNC_STAGES :0] apb_ack_r;

 //Clock domain crossing between AHB and APB domains

 //Synchronizing APB signal to AHB domain

 always@(negedge(hrst_n),posedge(hclk))

 begin

 if (hrst_n == 1'b0)

 apb_ack_r <= 0;

 else

 apb_ack_r <= {apb_ack_r[SYNC_STAGES-1:0], apb_ack_i};

 end

 assign apb_ack_o = apb_ack_r[SYNC_STAGES] ^ apb_ack_r[SYNC_STAGES-1];

 //Synchronizing AHB signal to APB domain

 always@(negedge(prst_n), posedge(pclk))

 begin

P

A

G

E

1

0

35

 if (prst_n == 0)

 ahb_start_tr_r <= 0;

 else

 ahb_start_tr_r <= {ahb_start_tr_r[SYNC_STAGES-1:0], ahb_start_tr_i};

 end

 assign ahb_start_tr_o = ahb_start_tr_r[SYNC_STAGES] ^ ahb_start_tr_r[SYNC_STAGES-1];

endmodule

P

A

G

E

1

0

36

APPENDIX C

// Filename : ahb2apb.sv

// Author : Pulkit

// Date : 27-11-2021

// Version : System Verilog

// Description : AHB Slave Interface implemented through a FSM

module ahb_slave_interface

 #(parameter AHB_DATAWIDTH = 32,

 parameter PERIPHERAL_START_ADDR = 32'h0008_0000,

 parameter PERIPHERAL_END_ADDR = 32'h0008_CFFF

)

 (

 //Clock and reset signals

 //AHB Clock source

 input hclk,

 //Asynchronous active low reset with de-assertion synchronized to hclk

 input hrst_n,

 //Input Signals from AHB Master

 //Select line from AHB Decoder

 input hsel_i,

 //Transfer type: 00 - Idle, 01- Busy, 10- Non-sequential, 11- Sequential

 input [1:0] htrans_i,

 //Write/read access 1- Write access; 0 - Read access

 input hwrite_i,

 //Indicates transfer size

 input [2:0] hsize_i,

 //Burst type; currently not used in the design

// input [2:0] hburst_i,

 //Protection type; currently not used in the design

// input [3:0] hprot_i,

 //Address bus

 input [31:0] haddr_i,

 //Write data bus

 input [AHB_DATAWIDTH-1:0] hwdata_i,

 //APB Slave signals translated to AHB for sending it to AHB Master

 //Ready signal

 output logic hready_o,

 //Response signal; 0- OKAY; 1-ERROR

 output logic hresp_o,

 //Read data bus

 output logic [AHB_DATAWIDTH-1:0] hrdata_o,

 //Latched AHB signals

 output logic [2:0] hsize_latched_o,

P

A

G

E

1

0

37

 output logic [31:0] haddr_latched_o,

 output logic [AHB_DATAWIDTH-1:0] hwdata_latched_o,

 output logic hwrite_latched_o,

 //Signals from APB Slaves

 //APB data bus translated to AHB

 //Slave error

 input pslverr_i,

 input [AHB_DATAWIDTH-1:0] prdata_i,

 //APB acknowledgement

 input apb_ack_i,

 //Signal to indicate start of transfer from AHB to APB slave

 output logic ahb_start_tr_o

);

 //States used in AHB State Machine

 enum {ST_AHB_IDLE, ST_AHB_TRANSFER,ST_AHB_ERROR}

state_ahb;

 //htrans value for non-sequential transfer

 localparam HTRANS_NONSEQ = 2'b10 ;

 //htrans value for sequential transfer

 localparam HTRANS_SEQ = 2'b11 ;

 //AHB State machine

 always_ff@(negedge(hrst_n), posedge(hclk))

 begin

 if (hrst_n == 1'b0)

 begin

 haddr_latched_o <= '0;

 hsize_latched_o <= '0;

 hwrite_latched_o <= '0;

 hrdata_o <= '0;

 hwdata_latched_o <= '0;

 hresp_o <= '0;

 hready_o <= '1;

 ahb_start_tr_o <= '0;

 end

 else

 begin

 case (state_ahb)

 ST_AHB_IDLE :

 begin

 if ((hsel_i == 1'b1) && (htrans_i == 2'b10 || htrans_i == 2'b11))

 if ((haddr_i >= PERIPHERAL_START_ADDR) && (haddr_i <=

PERIPHERAL_END_ADDR))

 begin

 //Control signals and address signals are provided in the first cycle of transfer

 //So they are latched in the idle state itself

P

A

G

E

1

0

38

 haddr_latched_o <= haddr_i;

 hsize_latched_o <= hsize_i;

 hwrite_latched_o <= hwrite_i;

 //Inserting wait states by pulling hreadyout to 0 till end of transaction

 hready_o <= 1'b0;

 hresp_o <= 'b0;

 //Toggling the signal to indicate start of transfer

 ahb_start_tr_o <= ~ahb_start_tr_o;

 end

 else

 begin

 haddr_latched_o <= '0;

 hsize_latched_o <= '0;

 hwrite_latched_o <= '0;

 hready_o <= '0;

 //Indicating error since HADDR does not lie within valid range

 hresp_o <= 2'b01;

 end

 else

 begin

 haddr_latched_o <= '0;

 hsize_latched_o <= '0;

 hwrite_latched_o <= '0;

 hready_o <= 1'b1;

 hresp_o <= '0;

 end

 hrdata_o <= '0;

 end

 ST_AHB_TRANSFER :

 begin

 //Write data will be provided in the second cycle of transfer.

 //So it is latched in this state, instead of the idle state.

 hwdata_latched_o <= hwdata_i;

 //When acknowledgement is received from the APB state machine, that the transfer is

 //complete, AHB output signals will be sent

 if (apb_ack_i == 1'b1)

 begin

 hrdata_o <= prdata_i;

 //In case of no error, it is a single cycle response with

 //HREADY as 1 and HRESP as 0

 if (pslverr_i == 1'b0)

 begin

 hready_o <= 1'b1;

 hresp_o <= '0;

 end

 //In case of error, AHB will have 2 cycle response.

 //The first cycle will assert HRESP with HREADY as 0

 //In the next cycle (state will then be ST_AHB_ERROR state), both will be 1.

 else

P

A

G

E

1

0

39

 begin

 hready_o <= 1'b0;

 hresp_o <= 2'b01;

 end

 end

 else

 //Wait cycles will be inserted till acknowledgement is received from the APB slave

 hready_o <= 1'b0;

 end

 ST_AHB_ERROR :

 begin

 //Second cycle of error response wherin hready will be pulled high, to indicate end of

transfer

 hready_o <= 1'b1;

 hresp_o <= 2'b01;

 end

 default :

 begin

 haddr_latched_o <= '0;

 hsize_latched_o <= '0;

 hwrite_latched_o <= '0;

 hrdata_o <= '0;

 hwdata_latched_o <= '0;

 hresp_o <= '0;

 hready_o <= '1;

 ahb_start_tr_o <= '0;

 end

 endcase

 end

 end

 //AHB State transitions

 always@(negedge(hrst_n), posedge(hclk))

 begin

 if (hrst_n == 0)

 state_ahb <= ST_AHB_IDLE;

 else

 case(state_ahb)

 ST_AHB_IDLE :

 //State transition will occur if HSEL is asserted and HTRANS indicates SEQ or NON-SEQ

transfer,

 //Else it will remain in the same state

 if ((hsel_i == 1'b1) && (htrans_i == 2'b10 || htrans_i == 2'b11))

 //If valid address then, go to ST_AHB_TRANSFER; else go to ST_AHB_ERROR

 if ((haddr_i >= PERIPHERAL_START_ADDR) && (haddr_i <=

PERIPHERAL_END_ADDR))

 state_ahb <= ST_AHB_TRANSFER;

 else

 state_ahb <= ST_AHB_ERROR;

P

A

G

E

1

0

40

 else

 state_ahb <= ST_AHB_IDLE;

 ST_AHB_TRANSFER :

 //If acknowledgment is received then state transition will occur.

 //If error then state will be ST_AHB_ERROR, else it will go to the ST_AHB_IDLE state

 if (apb_ack_i == 1'b1)

 if (pslverr_i == 1'b1)

 state_ahb <= ST_AHB_ERROR;

 else

 state_ahb <= ST_AHB_IDLE;

 else

 state_ahb <= ST_AHB_TRANSFER;

 //It is a fixed one cycle state, wherein it transits to ST_AHB_IDLE in the next cycle without

any condiiton

 ST_AHB_ERROR :

 state_ahb <= ST_AHB_IDLE;

 default :

 state_ahb <= ST_AHB_IDLE;

 endcase

 end

endmodule

P

A

G

E

1

0

41

APPENDIX D

module apb_master_interface

 #(parameter AHB_DATAWIDTH = 32,

 parameter APB_DATAWIDTH = 32,

 parameter NUM_OF_APB_SLAVES = 10

)

 (

 //Clock and reset signals

 //APB Clock source

 input pclk,

 //Asynchronous active low reset with de-assertion synchronized to pclk

 input prst_n,

 //Input Signals from AHB Master

 //Write/read access 1- Write access; 0 - Read access

 input hwrite_i,

 //Indicates transfer size

 input [2:0] hsize_i,

 //Address bus

 input [31:0] haddr_i,

 //Write data bus

 input [AHB_DATAWIDTH-1:0] hwdata_i,

 //Signals from all APB Slaves to the APB decoder

 //Ready signal

 input [NUM_OF_APB_SLAVES-1:0] pready_i,

 //Slave error

 input [NUM_OF_APB_SLAVES-1:0] pslverr_i,

 //Read data bus

 input [NUM_OF_APB_SLAVES-1:0] [APB_DATAWIDTH-1:0] prdata_i,

 //Signals translated from AHB Master sent to APB Slaves

 //Select line to select the corresponding APB slave

 output logic [NUM_OF_APB_SLAVES-1:0] psel_o,

 //Enable signal which is asserted from the second cycle of transfer to end of the transfer

 output logic penable_o,

 //Write/read access : 1-Write, 0-Read

 output logic pwrite_o,

 //Byte strobe signal to indicate active byte lane

 output logic [APB_DATAWIDTH/8-1:0] pstrb_o,

 //Address bus

 output logic [31:0] paddr_o,

 //Write data bus

 output logic [APB_DATAWIDTH-1:0] pwdata_o,

 //Signals sent to AHB slave

 //Slave error indication

 output logic pslverr_latched_o,

 //Read data used by AHB interface

P

A

G

E

1

0

42

 output logic [AHB_DATAWIDTH-1:0] prdata_latched_o,

 //Start transfer signal from AHB interface

 input ahb_start_tr_i,

 //Acknowledgement signal used to indicate end of transfer to AHB

 output logic apb_ack_o

);

 //States used in APB State Machine

 enum {ST_APB_IDLE, ST_APB_SETUP,ST_APB_TRANSFER} state_apb;

 //Indicates which bits of HADDR should be considered for detecting the active byte lane

 localparam UPPER_INDEX = $clog2(AHB_DATAWIDTH/8);

 localparam LOWER_INDEX = ($clog2(APB_DATAWIDTH/8));

 //Used to pad zeros for PADDR, to make it aligned with the data bus; For 32-bit data bus, last 2

bits of PADDR

 //should be zero. Also used in deriving PSTRB

 localparam NO_OF_LSB_0 = ($clog2(APB_DATAWIDTH/8));

 localparam [NO_OF_LSB_0-1:0] LSB_ZERO = '0;

 //Used to find the offset by which HWDATA should be shifted

 logic [$clog2(AHB_DATAWIDTH)-1:0] byte_offset;

 logic [$clog2(AHB_DATAWIDTH)-1:0] upper_strobe_index;

 logic [$clog2(AHB_DATAWIDTH)-1:0] upper_data_index;

 //Used when transfer size is greater than APB_DATAWIDTH and requires multiple APB transfers

 //Indicates the MSB for data register

 integer pdata_msb_r;

 //Indicates the MSB for strobe register

 integer pstrb_msb_r;

 //Indicates all the active byte lanes

 logic [AHB_DATAWIDTH/8 -1 :0] pstrb_full;

 //Keeps a count of remaining APB transfers

 logic [AHB_DATAWIDTH/APB_DATAWIDTH-1:0] transfers_pending_r;

 //Used to address the APB slave to which AHB wishes to have access

 logic [$clog2(NUM_OF_APB_SLAVES)-1:0] slv_id;

 //Functions used in the design

 //Used to derive the number of APB tranfers for each AHB transfer

 function logic [AHB_DATAWIDTH/APB_DATAWIDTH-1:0] apb_pending_transfers;

 input [2:0] hsize;

 case (hsize)

 3'b000 : apb_pending_transfers = 7/APB_DATAWIDTH;

 3'b001 : apb_pending_transfers = 15/APB_DATAWIDTH;

 3'b010 : apb_pending_transfers = 31/APB_DATAWIDTH;

 3'b011 : apb_pending_transfers = 63/APB_DATAWIDTH;

 3'b100 : apb_pending_transfers = 127/APB_DATAWIDTH;

 3'b101 : apb_pending_transfers = 255/APB_DATAWIDTH;

P

A

G

E

1

0

43

 3'b110 : apb_pending_transfers = 511/APB_DATAWIDTH;

 3'b111 : apb_pending_transfers = 1023/APB_DATAWIDTH;

 default: apb_pending_transfers = 0;

 endcase

 endfunction

 //Determining the number of bytes to be transferred

 function logic [($clog2(AHB_DATAWIDTH/8)):0] hsize_in_bytes;

 input [2:0]hsize;

 case(hsize)

 3'b000 : hsize_in_bytes = 'd1;

 3'b001 : hsize_in_bytes = 'd2;

 3'b010 : hsize_in_bytes = 'd4;

 3'b011 : hsize_in_bytes = 'd8;

 3'b100 : hsize_in_bytes = 'd16;

 3'b101 : hsize_in_bytes = 'd32;

 3'b110 : hsize_in_bytes = 'd64;

 3'b111 : hsize_in_bytes = 'd128;

 default: hsize_in_bytes = 'd1;

 endcase

 endfunction

 //Used to generate the byte strobe which indicates which bytes in HWDATA are valid

 function logic [(AHB_DATAWIDTH/8)-1:0] full_byte_strobe;

 input [2:0] hsize;

 input [NO_OF_LSB_0-1:0] haddr;

 logic [($clog2(AHB_DATAWIDTH/8)):0] transfer_size;

 transfer_size = hsize_in_bytes(hsize);

 full_byte_strobe = '0;

 for (integer index = 0; index < transfer_size; index = index + 1)

 full_byte_strobe[haddr + index] = 1'b1;

 endfunction

 //Generation of byte strobe which indicates which bytes in the HWDATA should be sent

 always_comb

 begin

 byte_offset <= '0;

 byte_offset[UPPER_INDEX-1:0] <= haddr_i[UPPER_INDEX-1:0];

 byte_offset[LOWER_INDEX-1:0] <= '0;

 upper_strobe_index <= byte_offset + APB_DATAWIDTH/8 -1;

 upper_data_index <= {byte_offset,3'b0} + APB_DATAWIDTH-1;

 pstrb_full <= full_byte_strobe(hsize_i, haddr_i[NO_OF_LSB_0-1:0]);

 end

 //Decoding the slave address. Each slave has a address space of 4KB. In case of different address

 //allocation, change the bit indices of HADDR accordingly

 assign slv_id = haddr_i[15:12];

 //APB state machine

P

A

G

E

1

0

44

 always_ff@(negedge(prst_n), posedge(pclk))

 begin

 if (prst_n == 0)

 begin

 psel_o <= '0;

 penable_o <= 1'b0;

 pwrite_o <= 1'b0;

 pstrb_o <= '0;

 pslverr_latched_o <= 1'b0;

 transfers_pending_r <= 'b0;

 pdata_msb_r <= APB_DATAWIDTH-1;

 pstrb_msb_r <= APB_DATAWIDTH/8 -1;

 psel_o <= '0;

 apb_ack_o <= 1'b0;

 prdata_latched_o <= '0;

 paddr_o <= '0;

 pwdata_o <= '0;

 end

 else

 case (state_apb)

 ST_APB_IDLE :

 begin

 //APB signals are put in the bus, when start transfer is indicated from the AHB

 if (ahb_start_tr_i == 1)

 begin

 pwdata_o <= hwdata_i[upper_data_index-:APB_DATAWIDTH];

 pwrite_o <= hwrite_i;

 paddr_o <= {haddr_i[31:NO_OF_LSB_0], LSB_ZERO};

 psel_o[slv_id] <= 1'b1;

 penable_o <= 1'b0;

 pslverr_latched_o <= 1'b0;

 if (hwrite_i == 1'b1)

 pstrb_o <= pstrb_full[upper_strobe_index-:APB_DATAWIDTH/8];

 else

 pstrb_o <= '0;

 transfers_pending_r <= apb_pending_transfers(hsize_i);

 pdata_msb_r <= upper_data_index + APB_DATAWIDTH;

 pstrb_msb_r <= upper_strobe_index + APB_DATAWIDTH/8;

 pslverr_latched_o <= 1'b0;

 prdata_latched_o <= '0;

 end

 else

 begin

 paddr_o <= '0;

 psel_o <= '0;

 penable_o <= 1'b0;

 pwrite_o <= 1'b0;

 pstrb_o <= '0;

 //To retain the data so that AHB has sufficient time to sample it

 pslverr_latched_o <= pslverr_latched_o;

P

A

G

E

1

0

45

 prdata_latched_o <= prdata_latched_o;

 end

 end

 //PENABLE is asserted in the second cycle of transfer

 ST_APB_SETUP :

 penable_o <= 1'b1;

 ST_APB_TRANSFER:

 begin

 //Once PREADY is asserted, the PRDATA is taken . If in case of PSLVERR, the transfer is

halted

 //i.e., if there are any pending transfers, they will be aborted. Acknowledgement is sent

indicating

 //end of transfer. In case of no error, the next transfer will be initiated until all the valid data

in

 //HWDATA is sent

 if (pready_i[slv_id] == 1)

 begin

 penable_o <= 0;

 prdata_latched_o <= {prdata_latched_o, prdata_i[slv_id]};

 pslverr_latched_o <= pslverr_i[slv_id];

 if (pslverr_i[slv_id] == 1 || transfers_pending_r == 0)

 begin

 apb_ack_o <= ~apb_ack_o;

 psel_o <= '0;

 end

 else

 begin

 paddr_o[31:LOWER_INDEX] <= paddr_o[31:LOWER_INDEX] + 1;

 pwdata_o <= hwdata_i[pdata_msb_r-:APB_DATAWIDTH];

 if (hwrite_i == 1'b1)

 pstrb_o <= pstrb_full[pstrb_msb_r-:APB_DATAWIDTH/8];

 pdata_msb_r <= pdata_msb_r + APB_DATAWIDTH;

 pstrb_msb_r <= pstrb_msb_r + APB_DATAWIDTH/8;

 penable_o <= 1'b0;

 end

 transfers_pending_r <= transfers_pending_r - 1;

 end

 end

 default :

 begin

 paddr_o <= '0;

 psel_o <= '0;

 penable_o <= 1'b0;

 pwrite_o <= 1'b0;

 pstrb_o <= '0;

 end

 endcase

 end

 //APB State Transition

 always@(negedge(prst_n), posedge(pclk))

P

A

G

E

1

0

46

 begin

 if (prst_n == 0)

 state_apb <= ST_APB_IDLE;

 else

 case(state_apb)

 ST_APB_IDLE :

 //APB transfer starts with the reception of start transfer signal from AHB slave

 if (ahb_start_tr_i == 1)

 state_apb <= ST_APB_SETUP;

 else

 state_apb <= ST_APB_IDLE;

 ST_APB_SETUP :

 state_apb <= ST_APB_TRANSFER;

 ST_APB_TRANSFER :

 //Stay in the same state until PREADY is received. If there is a slave error,

 //or if all transfers are completed, then move to idle state. If there are

 //pending transfers, go to the st_apb_enable state

 if (pready_i[slv_id] == 1)

 if(pslverr_i[slv_id] == 1 || transfers_pending_r == 0)

 state_apb <= ST_APB_IDLE;

 else

 state_apb <= ST_APB_SETUP;

 else

 state_apb <= ST_APB_TRANSFER;

 default :

 state_apb <= ST_APB_IDLE;

 endcase

 end

endmodule

P

A

G

E

1

0

47

REFERENCES

1. “AMBA Specification (Rev 2.0)”, available at http://www.arm.com.

2. Kiran Rawat et al. (2015). “RTL Implementation for AMBA ASB APB Protocol at System on

Chip Level” 2nd International Conference on Signal Processing and Integrated Networks

(SPIN,) pp. 927- 930.

3. Jasmine Chhikara et al. (2015). “Implementing Communication Bridge between 12C and APB”

IEEE International Conference on Computational Intelligence & Communication Technology,

pp. 235-238.

4. ARM. “AMBA Open Specifications” http://www.arm.com/products/system-

ip/amba/ambaopen specifications.php.

5. Raed M. Salih and Laszek T. Lilien (2015). “Protecting Users’ Privacy in Healthcare Cloud

Computing with APB-TTP” IEEE International Conference on Pervasive Computing and

Communication Workshops (Per Com Workshops), pp. 236-238.

6. L. Benini, A. Macii et al. (2000). “Architectures and Synthesis Algorithms for Power-efficient

Bus Interfaces,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 969–980.

7. “AdvancedMicrocontrollerBusArchitecture (AMBA)”http://en.wikepedia.org/wiki/

Advanced_MicrocontrollerBus_Architecture.

8. Roopa M. et al. (2013) “UART Controller as AMBA APB Slave” National Conference on

Challenges in Research & Technology in the Coming Decades, pp. 1-6.

9. Ashutosh Gupta et al. (2016). “Physical Design Implementation of 32-bit AMBA ASB APB

module with improved performance” International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), pp. 3121-3124.

10. Ge Zhiwei et al. (2009). “Design of On-chip Image Processing Based on APB Bus with CMOS

Image Sensor” IEEE 8th International Conference on ASIC, pp. 963-966.

11. Gandhani, P., & Patel, C. (2011). Moving fromAMBA AHB to AXI Bus in SoC Designs: A

Comparative Study. International Journal of Computer Science & Emerging Technologies

(IJCSET), 2(4), 476-479.

12. Yasemin M. Akay et al. (2009). “Hippocampal gamma Oscillations in Rats” IEEE Engineering

in Medicine and Biology Magazine, vol. 28, pp. 92-95.

http://www.arm.com/

P

A

G

E

1

0

48

13. Chenghai Ma et al. (2011) “Design and Implementation of APB Bridge based on AMBA 4.0”

International Conference on Consumer Electronics, Communications and Networks (CECNet),

pp. 193-196.

14. Sharma, Archana C., and C. Z. Ali. "Construct High-Speed SDRAM Memory Controller Using

Multiple FIFO’s for AHB Memory Slave Interface." International Journal of Emerging

Technology and Advanced Engineering3, no. 3 (2013): 907-916.

15. Kiran Rawat et al. (2015). “Implementation of AMBA APB Bridge with Efficient Deployment

of System Resources” International Conference on Computer, Communication and Control

(IC4), pp. 1- 4.

16. M. R. Stan and W. P. Burleson (1995). “Bus Invert Coding for Low Power I/O,” IEEE Trans.

VLSI Systems, vol. 3, pp. 49–58.

17. Acasandrei, Laurentiu, and Angel Barriga. "AMBA bus hardware accelerator IP for Viola-

Jones face detection."IET Computers & Digital Techniques 7, no. 5 (2013): 200-209.

18. Kanishka Lahiri and Anand Raghunanthan (2004). “Power Analysis of System-Level On-Chip

Communication Architectures” International Conference on Hardware/Software Codesign and

System Synthesis, pp. 236-241.

19. C.-T. Hsieh and M. Pedram (2002). “Architectural Power Optimization by Bus Splitting,”

IEEE Trans. Computer-Aided Design, vol. 21, pp. 408–414.

20. Kandiya, M. M. N., Harniya, M. M. K., & Govani, K. K. (2014). Implementation of Read/Write

operation for AMBA AXI4 Bus using VHDL. IJFTMR. I, IV, 1-3.

21. Kiran Rawat et al. (2014). “Design of AMBA APB Bridge with Reset Controller for Efficient

Power Consumption” 9th International Conference on Industrial and Information Systems

(ICIIS), pp.1-5.

22. Miss. Dhage Naiyna Kashinath and Prof. S.I. Nipanikar (2015). “AMBA Bus with Multiple

Masters Using VLSI” IJEDR, vol. 3, pp. 97-102.

23. J. Y. Chen et al. (1999). “Segmented Bus Design for Low Power,” IEEE Trans. VLSI Systems,

vol. 7, pp. 25–29.

P

A

G

E

1

0

49

24. 17 P. P. Sotiriadis and A. P. Chandrakasan (2002). “A Bus Energy Model for Deep Submicron

Technology,” IEEE Trans. VLSI Systems, vol. 10, pp. 341–350.

25. T. Lv et al. (2003). “A Dictionary-based En/decoding Scheme for Low-power Data buses,”

IEEE Trans. VLSI Systems, vol. 11, pp. 943–951.

26. Samir Palnitkar. (2003). Verilog HDL: A Guide to Digital Design and Synthesis, Second

Edition Publisher:Prentice Hall PTR. [28] Xilinx Datasheet: www.xilinx.com/zynq7000-Pkg-

Pinout [29] www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture [30]

www.store.digilentic.com

27. Kareemullah Shaik, Mohammad Mohiddin, Md. Zabirullah, “A Reduced Latency Architecture

for Obtaining High System Performance”, IJRTE, 2012.

