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ABSTRACT 

 

The demand for blockchain innovation and the significance of its application has inspired 

ever-progressing exploration in various scientific and practical areas. Even though it is still in 

the initial testing stage, the blockchain is being viewed as a progressive solution to address 

present-day technology concerns, such as decentralization, identity, trust, ownership of data, 

and information-driven choices. Blockchain technology plays a vital role in various 

applications such as supply chain, Internet of Things, multimedia, healthcare sector, and 

cloud computing. Nowadays, blockchain is one of the advanced technologies to ensure 

sensitive or confidential data security. Thus, blockchain technology tremendously benefits the 

cloud storage system due to its several features, namely decentralization, confidentiality, 

security, privacy, etc. However, the conventional cloud storage model suffers from various 

security threats and privacy issues such as centralized data storage, which compromises 

server security, and the need for trusted third parties, affecting user privacy. Also, the data 

contained in many data centers are not completely distributed in today's distributed cloud 

computing. As a result, data security, integrity, and availability are adversely affected. 

Therefore, this research work integrates blockchain technology with a cloud storage system 

to provide reliable and secure cloud storage services for enterprises or individual users. This 

research work presented the five significant contributions in the blockchain-based cloud 

storage domain.  

First, we have conducted a literature review of blockchain technology for cloud storage 

systems to highlight the challenges of the existing work and identify the various applications 

areas of the blockchain-based cloud system.  

Second, we proposed a novel blockchain-based decentralized architecture for the cloud 

storage system to deal with identified challenges and provide an effective solution to cloud 

users. The proposed architecture implements the Ciphertext Policy Attribute-based 

Encryption (CP-ABE) algorithm to ensure confidentiality, integrity, and availability features. 

It provides a complete distributed environment for storing key-related information, user 

access policy, and integrity checking details in the blockchain structure. The proposed 

architecture is developed using the Java programming language. The various experiments are 
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conducted using tools such as CloudSim and Jmeter to evaluate the performance and analyze 

the efficiency of the proposed architecture.  

Third, the proposed blockchain network also deployed the Honeybee optimization algorithm 

on a cloud storage system to optimize the resources and minimize the transaction response 

and execution time.  

Fourth, the proposed work is further enhanced to include attribute authority entities and 

ensure fine-grained access control with the user revocation process without any trusted 

authority. Various experiments analyze the performance and compare the proposed 

architecture with various existing works. 

Lastly, the proposed blockchain-based cloud architecture is deployed in different domains 

such as healthcare and intrusion detection systems to analyze its performance. The proposed 

architecture is implemented using the Ethereum platform and InterPlanetary File System 

(IPFS) storage system to manage the data in the healthcare domain. Further, the blockchain 

architecture is developed for intrusion detection systems to identify the intruder node in the 

voting system using an adaptive behavior model.    

The experimental results, analysis, and performance evaluation demonstrate that the proposed 

work provides a feasible and reliable cloud environment. Furthermore, the comparative 

analysis shows that the proposed scheme is better than the existing techniques. Thus, this 

research work successfully provides an effective, optimal, and secure cloud storage system 

using blockchain technology. 
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CHAPTER 1 

INTRODUCTION 

 

 

This chapter begins with background details of the cloud storage system, 

highlights the associated challenges, and introduces blockchain technology. It also 

discusses the concept and requirement of the blockchain-based cloud storage 

system, research motivation, problem statement, and contributions. The chapter 

concludes with the documentation of the organization of the thesis. 

 

1.1 Background 

This section covers details of the cloud storage system, identifies the associated challenges, 

explains the blockchain technology concept, and presents the need to integrate the blockchain 

technology with the cloud storage system. 

1.1.1 Cloud Storage System and Associated Challenges 

Nowadays, data are the main asset. Many electronic devices such as mobile phones, 

computers, cameras, and laptops generate a massive amount of data each day which needs 

more storage space and resources. According to the Forbes report [1], around 2.6 quintillion 

bytes of data was generated every day and out of which 90 percent of data was generated in 

just the last two years. Therefore, the cloud storage system is required to manage such a 

massive increase in the data and fulfil the storage requirements. The cloud storage system has 

distributed data centers or servers that utilize virtualization technology to work together and 

provide storage resources. Recently, the cloud storage system has attained massive attention 

from business organizations and individual users because it is convenient to use. Many users 

and organizations outsource their data on the cloud storage system to alleviate the burden of 

storage and maintenance in the local storage [2]. The cloud storage system provides on-

demand and flexible storage services to an individual or business using a third party over the 
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internet. The service providers are responsible for maintaining cloud servers and providing 

services to the users to store and process their data over the internet. 

The cloud storage system allows users to access the data anywhere and anytime, thereby 

supporting an on-demand and pay-per-use model. The user can rent and pay the storage and 

computation services based on the requirement with the help of the cloud storage model. The 

cloud provides many benefits and functionality to cloud users, such as low-cost storage, 

flexibility, automatic update, disaster tolerance, etc., [3-5]. However, it is important to protect 

user privacy [6] and ensure data protection [7] as data may leak while users store their data in 

the cloud. Also, users lose control over the data after outsourcing to the cloud, and cloud data 

may not be safe and vulnerable to various attacks [8-11]. The current cloud storage 

architectures have other flaws, such as centralized data storage, which compromises server 

security, and the need for trusted third parties affects user privacy.  

Furthermore, the existing distributed cloud storage system stores the data in multiple data 

centers or servers in a distributed manner, but they are not completely distributed. Several 

data centers store the data at high density. Thus, a large amount of data will be exposed if one 

of the servers or data centers is compromised [12]. Public media worldwide have repeatedly 

documented unauthorized access concerns related to cloud storage, such as user’s private 

files being leaked on iCloud [13]. Unfortunately, there are no viable solutions for the security 

of cloud systems yet.  

Some of the challenges of the existing cloud storage system are identified as follows:  

1. Security: The current cloud storage system provides services that are centrally managed 

and processed by the centralized authority. However, this configuration suffers from a single 

point of failure issues, which affects the availability security feature that provides on-demand 

access to cloud users.   

2. Privacy: The cloud storage architecture provides convenient services to the users, but it 

also creates serious data privacy issues, given the large volume of user data that is collected, 

stored, and managed on the cloud networks. Thus, cloud users trust the cloud service 

providers to manage their data, even when they have limited knowledge of where their data is 

transmitted and who is accessing it [14]. Similarly, the distributed cloud storage architectures 

do not completely distribute the data among cloud servers, thus creating privacy issues if one 

of the servers is compromised, user data may be leaked. 
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3. Integrity: Integrity risks may arise due to storing and maintaining user data on the cloud. 

Outsourced data is at risk of being updated or deleted by third parties without user 

authorization. Adversaries can also tamper with cloud data resources for financial or political 

gain, jeopardizing data integrity. Due to these factors, many solutions based on public 

verification schemes using a third-party auditor have been proposed [15].  Still, they may 

raise several issues, such as irresponsible verification that results in skewed data integrity due 

to malicious auditors. Therefore, there is a requirement to develop new solutions to resolve 

the data integrity challenges necessary for the cloud storage system. 

4. Data Breach: The data breach may be a human error, security vulnerability, or intended 

error in which protected data is leaked to the public by malicious users. Depending upon the 

sensitivity of the leaked data, it creates huge damage to the users. The data breach issue arises 

due to the lack of proper encryption techniques used by the cloud. It results in the theft of 

users’ sensitive information. Therefore, the utilization of security measures like cryptographic 

algorithms could resolve the data breach issues.  

5. Loss of Data Control: Cloud users hand over their sensitive or confidential data to the 

third party, considering that the data centers are secured and establish a trust relationship with 

the cloud service providers. But, the location of the user data is not shared with the cloud 

users. Thus, the user has no control over the data that is where it is stored or processed on the 

cloud platform. Better transparency between the cloud users and service providers should be 

required to store or process the data.   

1.1.2 Blockchain Technology 

Blockchain is mainly considered the core technology of Bitcoin cryptocurrency, developed 

by an unknown person Nakamoto in 2008 [16]. In essence, blockchain technology is a peer-

to-peer network that serves as a public trusted and shared ledger. This innovative technology 

has recently emerged as a popular technique for academicians and researchers as it has the 

potential to develop blockchain-based applications beyond Bitcoin cryptocurrency. The key 

focus of blockchain technology is decentralization which indicates that the blockchain is 

shared throughout the network nodes. Each network node has the authority to check the 

operation of other nodes in the network to generate, verify, and validate the new transactions 

of the blockchain network. The blockchain decentralization architecture provides reliable and 

secure operations with tamper resistance and no single point of failure features. Generally, 

the blockchain is classified into two categories, public and private blockchain networks. The 
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public blockchain is accessible to everyone, which means anyone can join and generate 

transactions and participate in the consensus mechanism (e.g., Bitcoin network). However, 

the private blockchain is a permissioned network in which all participants have to take 

permission from the authority to participate or create transactions in the blockchain network. 

The general overview of blockchain working is presented in Fig. 1.1. 

 

Figure 1.1: Working Principle of the Blockchain  

The blockchain network core components include transaction, block, ledger, consensus, and 

smart contracts. In a blockchain network, a transaction stores the user's information in a block 

to form a ledger, and each block is linked to the immediately previous block using hash 

values. In this manner, all blocks are connected to form a chain. Each block can be traced 

back to the preceding block, and no alteration is allowed in the block data [17].  The 

blockchain ledger is a decentralized database that is shared and distributed to the blockchain 

network participants. Moreover, the consensus algorithm ensures the security of the 

blockchain network by allowing multiple untrustworthy nodes to agree on a single data block. 

Finally, smart contracts are programs deployed on the blockchain network to establish the 

contractual rules among the network participants [18]. As a result, blockchain technology 

provides high-security features for its application scenario, such as a cloud storage system. 

The most significant aspect of blockchain technology is decentralization. It indicates that the 

central authority does not manage blockchain transactions. This remarkable property has 

several intriguing advantages, including reducing the chance of a single point of failure 
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Network 
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problem due to a breakdown of centralized authority, minimizing operations expenses, and 

increasing reliability. Also, blockchain allows transaction data to remain unchangeable or 

immutable over time. The new block's hash is always generated from the previous block hash 

value that makes the chain of blocks unchangeable. Once the block is validated and added to 

the blockchain network, it is impossible to edit, change or erase its data. Another key aspect 

is transparency, which means that all transaction data of the blockchain network is visible to 

all network participants. For public verifiability, the blockchain distributes the same copy of 

the transaction records in the form of a ledger across the blockchain network to allow full 

access, verification, and transaction tracking activities to all users with equal rights.   

1.1.3 Blockchain-Based Cloud Storage System 

With the increasing volume of data and the security issues involved in the cloud storage 

system, a new model for a storage system using blockchain technology is required to 

overcome these security issues. The combination of blockchain and cloud storage systems 

leads to a novel paradigm called a Blockchain-based Cloud Storage System. The convergence 

of these advancements provides great benefits to both domains, such as ensuring efficiency, 

decentralization, transparency, security, and providing better cloud services. Blockchain 

technology provides a fully decentralized storage architecture without involving any 

centralized authority. Blockchain enables the new cloud storage functions that are resistant to 

any data modifications and provides many potential benefits to cloud storage systems, as 

explained below: 

1. Decentralization: Blockchain-based decentralized structure provides a promising solution 

to solve the single point of failure issue by eliminating the need for trusted third parties. 

Furthermore, the blockchain peer-to-peer architecture provides equal validation rights to the 

network participants to validate and verify the data correctness and ensure immutability 

features. 

2. Security: Blockchain technology improves the security of the cloud storage system 

through the inherent properties of the blockchain network, such as confidentiality and 

availability. The blockchain network records all transactions that are cryptographically 

secured and stored in the form of hash values. Furthermore, blockchain transactions are 

signed by the network participants so that the user interaction with the cloud storage system 

remains confidential. The blockchain network also supports the off-chain storage solution to 

support the availability feature [19]. 
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3. Privacy: Blockchain provides high-level protection to the cloud storage system with 

immutability, integrity, and transparency features. The blockchain network stores the 

information in a linked chain in which each block connects to the previous block. Thus, it is 

impossible to modify or alter the blockchain content as blockchain is preserved and 

controlled by the secure and immutable consensus mechanism.     

4. System Complexity: The integration of blockchain with a cloud storage system 

significantly reduces the implementation complexity. The blockchain algorithms can be 

executed using the cloud infrastructure to reduce the cost required for blockchain resources. 

The combination of blockchain and cloud brings various solutions to deploy blockchain-

based cloud storage systems at a large scale with low cost and simple implementations. 

5. Feasibility: Many large organizations currently deploy blockchain as a service project to 

measure the feasibility of integrating blockchain with cloud systems. Many companies such 

as Amazon, IBM, Microsoft, and Oracle have launched the blockchain as a service platform 

on cloud computing [20]. Also, the integration of blockchain and cloud provides great 

benefits in various domains such as the Internet of Things, healthcare, banking, supply chain, 

and multimedia.    

1.2 Motivation 

Data storage over the cloud is a recent practice, and they offer free and large storage 

capability. Even though the cloud provides us with many advantages, security is the primary 

concern for the users, as highly confidential data will also be stored in the cloud. The 

integrity of data remains an essential requirement in a sharing-based cloud storage system. 

Moreover, the access control in the existing cloud model requires one or more completely 

trusted attribute or central authorities to maintain the access policy. If the central authority is 

broken down, the entire system is disturbed. Also, the user revocation where proxy servers 

and re-signature generation is required remains a major task. Therefore, achieving security 

and privacy features for encrypted data poses a significant challenge. As a result, 

decentralized systems are critical in integrity checking, access control, and user revocation to 

eliminate trusted center authority's possible threat. Therefore, to improve the performance of 

existing applications, there is a need to integrate cloud storage and blockchain technology to 

propose a blockchain-based distributed cloud storage architecture that can provide secure and 

reliable cloud storage services for end-users. 
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1.3 Problem Statement 

Lots of efforts are going into enhancing the security of the cloud storage system. The main 

objective of this thesis is to develop blockchain-based decentralized cloud storage 

architecture to provide a privacy-preserving environment with all security features.  

Following are the problems addressed in this thesis:  

1. Conventional cloud storage systems store data on central servers and involve trusted third 

parties that compromise cloud data security. Due to the rapid cloud storage system 

requirement, architecture needs to deal with various security issues.  

2. The cloud storage system involves third-party auditors to verify the integrity of the stored 

cloud data. But this raises many issues, such as irresponsible verification that leads to 

manipulating the data integrity results or invalidating verification due to malicious auditors.  

3. The cloud users have no control over where or how their data is stored on the cloud 

platform. The cloud storage system involves a third party to process the user's sensitive or 

confidential data, thus breaching data privacy.   

4. The traditional encryption, access control, and integrity methods store information in one 

or more completely trusted authorities or centralized systems, which affects the system's 

security. 

5. The centralized network infrastructure involves higher power consumption and 

communication latency which hinders the large-scale developments of the cloud storage 

systems in practical scenarios. Therefore, an optimization algorithm should be required to 

optimize resource utilization and minimize data processing time to increase network 

performance.  

1.4 Contribution of the Thesis 

The main objective of the thesis is to develop a blockchain-based secure architecture to store 

data on the cloud with authentication, integrity check, access control, and revocation process 

to deal with the disadvantages and challenges mentioned above. The proposed architecture 

deploys various cryptographic algorithms to provide a key generation mechanism, achieve 

confidentiality, perform a data access control mechanism, and ensure cloud data integrity. 

The architecture also utilizes a Honeybee optimization algorithm to optimize the resource 
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utilization on the cloud storage system and minimize transaction processing time in terms of 

execution and response time. By using blockchain technology, we achieve decentralization 

with security without the need for a trusted central authority. 

The thesis contributions are as follows: 

1. The literature review is conducted to explore and highlight the techniques of blockchain 

technology utilized to secure cloud storage systems. It also identifies the various application 

areas of integrating blockchain with the cloud storage system. 

2. The distributed blockchain-based cloud storage system is proposed to provide security 

features without involving any trusted authority. The proposed architecture provides a 

complete distributed approach to generate key-related information without involving any 

centralized authority using the blockchain structure.  

3. The proposed work implements the CP-ABE algorithm to ensure confidentiality, integrity, 

and availability features. It provides confidentiality by utilizing the encryption technique to 

encode the user data. The integrity feature is achieved using the blockchain-based Merkle 

root concept.  

4. The blockchain-based cloud storage architecture implements the Honeybee optimization 

algorithm on a cloud storage system to optimize the resources and minimize the transaction 

response and execution time. 

5. The proposed scheme is further enhanced to include the fine-grained access control with 

the immediate user revocation process at the system level rather than periodically.  

6. The performance and security analysis based on experimental results are evaluated by 

deploying the proposed architecture in various domains such as healthcare, intrusion 

detection system, multimedia, etc., to show the system's capability. 

1.5 Thesis Organization 

The organization of the thesis is presented in this section which comprises seven chapters as 

listed below: 
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Chapter 1: Introduction 

This chapter introduces the research work with the problem statement. We also present a 

brief outline of the thesis in this chapter. 

Chapter 2: Related Work 

This chapter presents a research methodology by defining and explaining the research 

problem in detail with the help of formulated research questions. We have also presented a 

brief description of existing blockchain and cloud storage work. This chapter is concluded by 

identifying research gaps based on existing studies. 

The following paper has been published from this work: 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Blockchain Technology for 

Cloud Storage: A Systematic Literature Review," ACM Computing Surveys, vol. 53, 

no. 4, 2020. (SCI, IF: 10.2) 

Chapter 3: Preliminaries 

This chapter explains the essential components of the proposed blockchain-based cloud 

storage architecture. We have presented the technical details related to the proposed 

blockchain structure, such as block header, block hash, nonce, transaction, mining, 

consensus, etc. This chapter also describes cryptographic algorithms and smart contracts used 

in the proposed work. 

The following paper has been published/communicated from this work: 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “A Review of Smart 

Contract-based Platforms, Applications, and Challenges,” Cluster Computing, 

Springer, vol. 2021. (SCIE, IF: 1.8) 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “A Comparative Analysis of 

Consensus Algorithms for Decentralized Storage Systems,” IT Professional, IEEE. 

(Communicated) 
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Chapter 4: Proposed Blockchain-based Cloud Storage Architecture 

This chapter covers a detailed description of the proposed distributed blockchain-based cloud 

storage architecture. It presents the complete discussion of security features achieved by the 

proposed work. 

The following paper has been published from this work:  

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Blockchain-based Integrity 

Protection System for Cloud Storage," In Proceedings of the 4th Technology 

Innovation Management and Engineering Science International Conference (TIMES-

iCON), Bangkok, Thailand, 11th-13th December, 2019, pp. 1-5. 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Blockchain-based 

Decentralized Architecture for Cloud Storage System,” Journal of Information 

Security and Applications, vol. 62, pp. 2214-2126, 2021. (SCIE, IF: 3.8)  

Chapter 5: Access Control and Revocation Process in Cloud Storage using Blockchain 

This chapter presents the access control and revocation process achieved in the proposed 

architecture. It gives the details of formulating an access policy for the user using an attribute 

list and provides the concept of re-encryption for the user revocation process. 

The following paper has been published from this work: 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Blockchain-based Cloud 

Storage System with CP-ABE based Access Control and Revocation Process,” 

Journal of Supercomputing, Springer, 2021. (SCI, IF: 2.4) 

Chapter 6: Applications of Proposed Work 

This chapter evaluates the performance of the proposed architecture by deploying it in 

healthcare and intrusion detection systems.  

The following paper has been published from this work 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “A Review of Blockchain-

based Applications and Challenges,” Wireless Personal Communications: An 

International Journal, Springer, 2021. (SCIE, IF: 1.6) 



11 
 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Blockchain-based Secure 

Healthcare Application," In: edited book entitled Blockchain in Digital Healthcare, 

Taylor & Francis Group, pp. 35-54, 2021.  

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “A Preventive Intrusion 

Detection Architecture using Adaptive Blockchain Method," In Proceedings of the 

International Conference for Big Data, Machine Learning and Applications 

(BigDML 2019), NIT Silchar, Assam, 16th-19th December, 2019, pp. 25-35. 

• Pratima Sharma, Rajni Jindal, and Malaya Dutta Borah, “Healthify: A Blockchain-

based Distributed Application for Healthcare," In: edited book entitled Application of 

Blockchain Technology in Healthcare, Springer Book Series "Studies in Big Data”, 

pp. 171-198, 2021.   

Chapter 7: Conclusion 

The final chapter presents the conclusion and future scope of the research work. This chapter 

deliberates upon the importance of the proposed blockchain architecture for providing 

privacy-preserving and security to cloud storage systems. 

List of Publications: This section lists published/accepted/communicated papers relating to 

this research work in International/National Journals/Conferences of repute.  

References: This section is the list of references cited in this research work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This chapter presents a literature review on traditional cloud storage techniques that 

significantly improve security features and covers research work based on 

integrating blockchain and cloud storage systems. It formulates research questions, 

identifies research gaps, and provides future directions based on the study. 

 

2.1 Introduction 

This literature review aims to comprehensively study existing and on-going research work, 

explore the research gaps, and propose a solution. As shown in Fig. 2.1, the literature review 

follows the four steps. First, it plans the review process and identifies the categories for the 

review. Next, the research questions are formulated to review existing blockchain and cloud 

storage techniques. Then, the category-wise review report is presented, and research gaps are 

identified based on the study. Finally, the review is concluded with future directions. 

 

Figure 2.1: Overall Flow of the Literature Review 

Planning the 
review

Conduting the 
review

Reporting the 
review

Concluding 
the review
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2.2 Planning the Review 

This phase plans the strategies to be used in the process of a literature review. In the current 

research, the literature review principle methodology is utilized to discover the published 

papers in cloud storage and blockchain technology. Thus, we organized the review process 

into two categories: 

• The first category covers work related to cloud computing towards increasing the 

security of cloud data. 

• The second category discusses and summarizes the various approaches used for 

securing cloud data by utilizing blockchain technology. 

2.3 Conducting the Review 

Defining the research questions is an important step of this review process. The main 

objective of this research work is to present an outline of the current research on cloud 

storage and blockchain-based cloud storage techniques. Therefore, we explained six research 

questions.  

• RQ1: What are the different prevention methods cloud storage providers utilize 

to anticipate the threats during information sharing? 

To identify the present security methods used in the cloud computing environment. 

• RQ2: What are the different strategies used for preventing the illegal use of data 

stored on the cloud? 

To identify the different techniques used to prevent the stored information in the cloud. 

• RQ3: What are the main security difficulties to be faced in the future based on 

cloud storage technology? 

To discuss future cloud computing security techniques.  

• RQ4: What are the current research topics of blockchain technology?  

To study and understand blockchain technology, we collected critical research papers from 

logical databases and mapped the current research area to understand the blockchain-related 

topics and concepts.  
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• RQ5: What are the current research topics of blockchain technology for cloud 

storage?  

To study and understand the existing techniques of blockchain technology and cloud storage 

system. This benefits the researchers to explore topics related to blockchain technology for 

cloud storage. 

• RQ6: What are the different methods utilized to secure the cloud data using 

blockchain technology?  

To study and understand the methods used to perform the various security operations on the 

cloud data using blockchain technology. This helps academicians identify the security-related 

research topics in blockchain-based cloud storage systems. 

2.4 Reporting the Review 

In this section, we have described the review of two approaches listed in Section 2.2, and 

finally, we have identified the research gaps based on this study. 

2.4.1 Traditional Cloud Storage Techniques 

This section presents research work related to traditional cloud computing techniques utilized 

to improve the security features. 

Ferretti et al. [21] proposed an asymmetric cryptographic scheme with encrypted Bloom 

filters to allow users to recognize unauthorized modifications in the outsourced data. Also, an 

analytical model was employed to minimize the network overhead and storage depending on 

the workload and the database structure. In terms of improved network cost and storage, the 

effectiveness and performance of the scheme were evaluated. However, the completeness and 

freshness of data are not guaranteed due to the depreciation of storage. 

Li et al. [22] proposed revocable identity-based encryption at the server-side. This scheme 

offloads most of the key generation-related operations during key issuing and key update 

processes to a Key Update Cloud Service Provider (KU-CSP), leaving only a constant 

number of simple operations for Public Key Generator (PKG) and users to perform locally. In 

this technique, a hybrid key is issued for each user, in which AND gate is involved to connect 

the subcomponents, namely the identity component and time component. The unrevoked 

users periodically request the key update for the time component to the newly introduced 

entity, namely KU-CSP. This scheme achieves efficiency for both computations at PKG and 
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private key size at the user. Still, it did not resolve the security issue because this scheme is 

dependent on the trusted third party, i.e., KU-CSP.  

Feng et al. [23] suggested a privacy-preserving auditing protocol to audit the security of the 

data stored in cloud computing. This scheme enables an external auditor to audit users' cloud 

data without learning the content of the data. The proposed approach efficiently supports 

dynamic update operations, but it is always assumed that the third-party auditor was fully 

trusted; this assumption is unrealistic. 

Yu et al. [24] developed two privacy-preserving deduplication protocols to eliminate 

redundant data by considering only one file copy, thus reducing storage and bandwidth 

requirements. The first protocol, namely the ZEro-knowledge dedUplication reSponse 

framework (ZEUS), guarantees weaker privacy properties with efficient communication cost. 

This is the first solution that addresses two side privacy with limited extra communication 

based on a weak assumption on user behavior. Another protocol, ZEUS+, ensures stronger 

privacy features with increased communication costs. However the proposed protocols 

increase the system's overall complexity due to the involvement of lots of computations. 

Yan et al. [25] developed a protection scheme to enhance the security of signature 

information for user data. The realization of dynamic integrity and lattice and Bloom filter 

methods were utilized where the document and the signature were sent to the Cloud Service 

Provider (CSP) and Third-Party Auditor (TPA). This scheme was efficient, cost-effective and 

ultimately improved the utilization of cloud space, but it did not resolve the issues of cloud 

data security. 

Xu et al. [26] proposed an integrity verification algorithm, which presents the generic storage 

model for different control methods. Verification tags and proofs generating methods were 

dependent on the index pointers. Furthermore, a random data sampling method was employed 

to perform random diffusion extraction in the version group, which improved the verification 

efficiency. The experimental analysis indicated that the proposed scheme was effective. 

Though the universality and efficiency of data were improved, it required more processing 

time to generate verification tags and proofs. 

Jin et al. [27] highlighted a technique that was the integration of both cryptographic storage 

design and proof of storage technique. This model was designed with flexible block 

structures and integrated key regression, broadcast encryption, Merkle hash tree, and proof of 
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storage. A quick freshness check was involved in protecting the retrieved data from potential 

replay attacks. An evaluation through a prototype illustrated that the cost and throughput 

were improved with minimal degradation of security. 

Saxena et al. [28] introduced a novel and efficient data integrity verification technique. This 

technique was built with a variant of the Paillier Homomorphic Cryptography (PHC) system 

and Homomorphic tag together with combinatorial batch codes. Homomorphic encryption on 

data blocks had been performed in the PHC system. Each data block was assigned with a 

special verifiable value by Homomorphic tags. Combinatorial batch codes were derived from 

storing the integral data into various distributed servers of the cloud. Experimental results 

have proven that the proposed method provides a better privacy preserved auditing service. 

However, this was not applicable for large data sizes due to its higher auditing frequency. 

Mao et al. [29] proposed a publicly verifiable scheme based on a position-aware Merkle tree 

to support the dynamic environment and protect the data integrity. The nodes of the new 

Merkle tree were defined by a 3-tuple adaptation. The users can directly compute the root 

value and verify the consistency of the challenge-response blocks. Several verification 

challenges were overcome by this method, but the involvement of the challenge-based 

method increases the verification time. 

Zhang et al. [30] proposed a novel public verification scheme using indistinguishability 

obfuscation. This scheme significantly reduced the computation overhead, and the batch 

verification overhead was independent of the number of verification tasks. This scenario is 

useful in the places where frequent data integrity verifications need to be executed, and the 

number of verification tasks is numerous. Moreover, this scheme has better communication 

and computation efficiency. The multiparty computation is not secured due to the variant of 

computing resources. 

Jiang et al. [31] presented an effective public integrity auditing scheme with secure group 

user revocation. They had designed a concrete scheme based on vector commitment and 

verifier-local group signature revocation. This system supported public checking and 

effective user revocation. Additionally, this public checking behavior has the properties like 

efficiency and confidentiality. The proposed scheme depends on the third-party auditor for 

the auditing process. Therefore, it suffers from a single point of failure issues.  
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Zhang et al. [32] deployed the cloud storage auditing model to enable an efficient user 

revocation process. The proposed user revocation scheme is independent of the number of 

file blocks processed by the revoked user. It updates the private keys of the non-revoked 

group users instead of the revoked users. The work utilizes the identity-based encryption 

algorithm to eliminate the certificate management overhead of traditional public key 

infrastructure schemes. This scheme requires more processing time to update keys of non-

revoked users.  

Li et al. [33] suggested an extended access control scheme that encrypts multiple files on the 

same access level using a proposed file hierarchy CP-ABE technique. The scheme is 

specifically designed for big companies and institutions with hierarchical data and saves the 

storage space and computation cost required storing them on cloud servers. It deploys the 

trusted authority center to maintain the key and access policy-related details, which affects 

the system's security. If authority is compromised, the malicious user gets all decryption keys 

and decrypts the stored information. 

2.4.2 Blockchain Techniques for Cloud Storage 

This section details out the blockchain-based methods used for protecting cloud data.  

Wilkinson [34] states a need for a model for cloud storage that is not dependent on the trust 

factor between the client and the host. All confidential and private data of the client, 

including the date, filename, or other metadata, needs to be encrypted before facilitating any 

transfer from the client's computer to the cloud. Legal or political attack vectors cannot be 

used as a centralized point of attack. Any payments in terms of incentives for the consumer or 

the resource provider is largely automated and affected with pseudonymous cryptocurrency.  

Sukhodoskiy et al. [35] presented a multi-system prototype to maintain access control for 

datasets stored in the untrusted cloud environment. The designed system utilized a CP-ABE 

scheme to provide an access control mechanism and maintain immutable records on a 

blockchain-based decentralized ledger. It only transfers the hash code of ciphertext through 

the blockchain ledger. The proposed prototype was implemented using the smart contract 

functionality of the Ethereum platform. 

Qiu et al. [36] developed a novel cloud-based integrated development environment using 

blockchain smart contracts. The proposed scheme was developed for cross-blockchain 

systems such as Ethereum, Libra, Nervos, Utrain, Cocos, etc., using smart contract 
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functionality to avoid setting up and building processes. It provides an efficient cloud-based 

development environment for different blockchain systems. The proposed integrated 

environment provides a web interface to the blockchain developers, which interacts with the 

blockchain. 

Li et al. [37] suggested a data-sharing model that allows users to share the encoded data using 

blockchain-based architecture. The proposed blockchain-based decentralized storage 

architecture encrypts the data using the owner's public key and stores it on the blockchain 

network with key-related details. It uses the proxy-based re-encryption method to secure the 

data sharing process in the untrusted environment. Due to the usage of proxy servers, the 

designed system is free from collusion attacks and maintains Meta key data in blockchain 

structure.   

Li et al. [38] proposed a fair Searchable Symmetric Encryption (SSE) scheme using 

blockchain technology. The proposed scheme encrypted and stored documents on the cloud 

server. It ensures the fairness guarantee for the cloud server and the user. If one party does 

not perform the task honestly, it will cost its deposit. Similarly, the malicious server suffers 

from service charge loss. Moreover, the proposed scheme does not allow users to verify the 

searching results, thus increasing the search efficiency.  

Zhang et al. [39] suggested a secure and fair payment method for outsourcing services in the 

cloud computing environment using blockchain technology called BCpay. The architecture 

and specifications of BCpay were designed without relying on any third parties. The designed 

architecture follows all or nothing checking proof protocol means either the service provider 

gets the service fees for the outsourcing service or pays the penalty for the illegal activity. 

Thus, it provides protection against eavesdropping and malleability attacks. 

Lee [40] introduced a digital identity management system using blockchain technology called 

ID as a Service (IDaaS). The Blockchain-based ID as a Service (BIDaaS) is designed to 

provide identity and authentication services from the provider to its partners. The BIDaaS 

provider performs the write operation using the user's public key and digital signature on the 

private blockchain network. In contrast, the partner has access to the blockchain network with 

only read permission. The provider maintains the blockchain network and provides service as 

per the user request by authenticating the user ID. 



19 
 

Yang et al. [41] constructed a novel blockchain-based publicly verifiable data deletion 

scheme. If the cloud server does not delete the data honestly, this scheme enables the data 

owner to detect the cloud server's malevolent operation. The blockchain solves the public 

verification problem in the secure data deletion scheme.  

PengCheng et al. [42] developed a blockchain-based integrity protection system for cloud 

storage. The proposed architecture deploys the challenge-response-based integrity 

verification process that includes the three phases. The first setup phase pre-processes the file 

information and generates the tag information. Next, the challenge phase generates the 

challenge data to check the stored data integrity. Finally, the check proof phase creates the 

corresponding response per the generated challenge and sends it to the verifier. The 

architecture also achieves the security features using multiparty calculations.  

Bacis et al. [43] designed a decentralized cloud storage system to secure resources and 

address availability. The system enables resource owners to store resources in the 

decentralized cloud storage system and provides share and delete services. It uses the All or 

Nothing strategy to control resource slicing and allocation to the network nodes with 

availability and security features. 

Zhang et al. [44] deployed the blockchain-based system against procrastinating auditors to 

verify cloud storage integrity. The proposed work implements the certificate-less method to 

publicly verify the integrity using blockchain technology. It allows the key auditor to store 

each verification result in a transaction on the blockchain network.  

Wang et al. [45] constructed a distributed cloud storage architecture using blockchain 

technology with an access control mechanism. The architecture utilizes the Ethereum 

blockchain network with a CP-ABE scheme without trusted authority. Furthermore, it sets the 

valid access period with the user data so that only during valid access periods, the user is 

allowed to decrypt the ciphertext, thus maintaining the access control feature. 

Awadallah et al. [46] developed blockchain-based integrated cloud architecture for 

maintaining security features. The proposed scheme implements a homomorphic encryption 

scheme on integrated blockchain-based cloud architecture to ensure integrity security 

features. It uses the Byzantine Fault Tolerance algorithm to construct a blockchain network of 

cloud service providers to handle user requirements. Each cloud service provider calculated 
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the master hash value of their database to store it on the Ethereum blockchain network. The 

user compares the master values to detect tampering and check the cloud data integrity. 

Ali et al. [47] designed a secure log management system for cloud computing using 

blockchain technology. The constructed architecture ensures the security of audit logs to 

increase user trust in the cloud computing environment. It provides the immutability feature 

using the distributed ledger and utilizes Elasticsearch to save JSON files that are semantically 

rich and machine-understandable. The system is deployed in a heterogeneous environment 

and monitors the activities of administrators and users troubleshoot to figure out the security 

issues in the information system. 

2.4.3 Identification of Research Gaps 

• Most studies have used the centralized approach for storing the data on the cloud, 

and the need for trusted third-party harms the privacy of user's data. Thus, to 

improve the security of the users’ data and remove centralized authority, the 

blockchain technology, a distributed database system is required.  

• The current distributed cloud storage systems store the data in several data centers 

that are not fully distributed and involve the semi-trusted authorities/auditors to 

manage the cloud services. Since the designed systems are semi-distributed, it 

affects the trust of the cloud user and compromises the security of the stored data. 

Therefore, distributed ledger technology improves accuracy, which is difficult to 

tamper, forge and trace. The blockchain records all the information of the 

transactions, and once the data enter the blockchain, almost nobody can change it. 

• Few studies focused on the user revocation process. The integration of blockchain 

and cloud storage systems helps to enhance the user revocation process without 

involving any proxy servers.  

• The smart contract is a blockchain-based technology that helps us define the rules 

and regulations and improves security. However, only a few studies utilized the 

concept of smart contracts to provide security features to the cloud user without 

using any trusted third parties, semi-trusted auditors, and verifiers.  

• Most studies focused on key management schemes, data deletion schemes, 

searchable schemes, and cloud storage payment schemes using blockchain 
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technology. Very few studies focused on the security of user's data, distributed 

key management process, access policy, integrity problem, user revocation 

process, and various other security services.  

• There are several performance evaluation parameters used in cloud storage 

techniques to analyze network performance. Most studies used the transmission 

delay, file security, and computation cost as the evaluation parameters. We work 

on computation cost, latency, throughput, processing time, optimizing storage 

space, improving accuracy and security of the storage space. 

2.5 Concluding the Review 

From the literature review, it has been established that there are problems in terms of 

security, privacy, integrity, access, and user revocation process in the existing cloud storage 

systems. Hence, there is a scope for developing efficient, secure, and complete distributed 

blockchain-based architecture for the cloud storage system to enhance cloud services' 

performance, efficiency, and reliability.  
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CHAPTER 3 

PRELIMINARIES 

 

 

This chapter explains the essential components of the proposed blockchain-based 

cloud storage architecture. It covers the technical details related to the proposed 

blockchain structure such as block, block hash, nonce, transaction, consensus, 

mining etc. The chapter also describes cryptographic algorithms and smart contract 

functionality utilized in the proposed architecture. 

 

3.1 Blockchain Technology 

The developments in cryptography and distributed computing have introduced an advanced 

technology called blockchain. Blockchain is a distributed ledger that replicates and exchanges 

data through peer-to-peer networks. Blockchain was initially introduced by an unknown 

person, Satoshi Nakamoto, who created Bitcoin to trade digital currencies directly without 

third parties [16]. Nakamoto developed the paradigm of a network of nodes working to 

maintain a decentralized and secure database. The blockchain is the core technology behind 

cryptocurrencies- a shared public database or a continuously updated registry of all 

transactions. Blockchain can be regarded as a technical breakthrough and financial 

advancement [48, 49]. It provides a solution to any problem using a trustworthy ledger in a 

decentralized setting where it is impossible to trust actors, humans, and computers 

completely.  

Furthermore, the blockchain follows a series of procedures and cryptographic mechanisms 

applied to a shared network to secure data storage within a distributed database composed of 

authenticated blocks encapsulating the data. It stores the data as an ordered list of blocks. By 

referencing the previous block's hash, each block distinguishes by the hash sequence and ties 
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to the preceding block. The only anomaly is the first block (called "Genesis block"), which 

does not have the previous block's hash value, known as the ancestor block. The data is 

passed to the miners, who verify it by solving mathematical puzzles and attaining consensus. 

The three key principles ensuring the system's functionality are 1) blocks and hashing, 2) 

mining, and 3) consensus [50]. The architecture of the blockchain is illustrated in Fig. 3.1.  

 

Figure 3.1: Blockchain Architecture 

Fig. 3.2 depicts the blockchain structure in which each block contains the previous block's 

hash, and Nonce denotes the solution to the proof of work puzzle. The timestamp represents 

the block generation time, and the Merkle root authenticates all the transactions. 

 

Figure 3.2: Structure of the Blockchain 

𝐵𝑙𝑜𝑐𝑘ℎ𝑎𝑠ℎ = (𝑃𝑟𝑒ℎ𝑎𝑠ℎ |𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝| 𝑛𝑜𝑛𝑐𝑒) 

Key Characteristics of Blockchain  

• Distributed: The distributed environment uses the standard protocol, which ensures 

that every node receives each transaction and uses predefined rules for grouping the 
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transactions into blocks after processing. The blockchain is designed for distributing 

and synchronizing data across multiple networks.  

• Decentralization: It is the core strength of blockchain because each node holds a 

record of all transaction data, so there is no need for a central authority. This prevents 

the single point of failure vulnerability. In the blockchain network, there is no single 

authority and no service fees, and the consensus algorithms are used to maintain the 

data consistency.  

• Consensus: Consensus algorithms maintain data consistency within the blockchain 

and keep incorrect or false transactions away from the blockchain network [51]. All 

nodes must agree by executing the standard consensus algorithms to ensure the 

integrity of transaction data. Moreover, there must be an assertion between every 

member before one can execute the transaction; the transaction should only be valid 

[52]. This procedure is called a consensus.  

• Anonymity: In the blockchain, every user can interact with a created address. The 

system will not disclose the user’s actual details; however, the members can view the 

encoded transaction details.  

• Traceable: The blockchain is time-stamped and digitally signed, which implies that 

the association can follow back to an explicit time for every transaction and further 

distinguish the relating party on the blockchain [53]. Consequently, each block is 

permanently connected to the past block [54]. 

3.2 Types of Blockchain 

Blockchain technology is the future step in a peer-to-peer economy. A distributed network 

combines distributed data storage, cryptographic algorithms, and decentralized consensus 

mechanisms [55]. Blockchain technology is categorized into three types of structures, as 

explained below: 

1. Public Blockchain: A public blockchain enables anyone to join the network. This means 

anyone can write, read and review without the permission of blockchain. Furthermore, 

anybody can survey the transaction at a given time since the blockchain is open and 

straightforward to the client. Moreover, this type of blockchain is decentralized in nature as 

nobody is in control of public blockchain due to the consensus components. 

The public blockchain gives approval for the transactions in the system for anyone can copy 

or download the code. Therefore, anybody can send the transaction worldwide by blockchain 
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technology, and they can validate and verify the transaction. Some examples of blockchain 

are Litecoin, Bitcoin, and Ethereum. 

2. Private Blockchain: In a private blockchain, transactional control such as creating, 

viewing (read), and validating transactions (write) is handled by their operators. It is a closed 

network that offers only specific pre-chosen entities to create a new transaction on the 

blockchain. As this is an evolving technology, it may encounter unexpected consequences in 

the context of security and privacy [56]. 

3. Consortium Blockchain: The third type of blockchain is considered as a hybrid or the 

consortium of federated blockchain. It is a kind of private blockchain. This blockchain is 

worked under the control of a group of organizations. On account of consortium blockchain, 

not every person has equal privileges of approval of transactions. However, just a couple of 

individuals are given certain benefits over approving the transactions. 

3.3 Consensus Mechanism  

There are many consensus algorithms utilized in the blockchain network. The consensus 

algorithm ensures the blockchain network participant agree on a common decision to create 

and add a new block in the blockchain network without any centralized authority. Major 

consensus mechanisms in the existing blockchain systems are as follows: 

3.3.1 Proof of Work (PoW) 

Proof of Work is used to create the new blocks and confirm the transaction in the blockchain 

system. In PoW, miners compete against each other to complete the transactions on the 

system and get remunerated as shown in Fig. 3.3. The users send computerized tokens to each 

other in a network. Further, the complete transactions of the block are gathered and controlled 

by the decentralized ledger. The PoW is mainly used for confirming the transactions and 

organize the blocks on blockchain technology. They use the special nodes known as miners 

and the process is also known as mining. The miners utilize tons of resources such as 

hardware, integrated circuits, and electricity to solve the block puzzle and once it is solved 

the block is added in the blockchain network.  
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Figure 3.3: PoW Consensus Mechanism 

3.3.2 Proof of Stack (PoS) 

The primary energy-saving alternative of PoW is the Proof of Stack algorithm. PoS algorithm 

governs the rules in the blockchain network and the creation of its native coin; that is, PoS 

has the same objective as a PoW algorithm in the sense that it achieves the consensus 

mechanism. However, unlike PoW, there are no miners involved in the process. Instead, 

participants in the network who want to prove the validity of network transactions and create 

blocks in a PoS network have to hold a certain stake in the network, for instance, by placing a 

certain amount of the network’s currency in a wallet connected to its blockchain. This is 

known as “placing a stake” or “staking”. A block creator in a PoS system is limited to 

creating blocks proportionate to his or her stake in the network. Thus, PoS networks are 

based on deterministic algorithms, meaning that validators of blocks are elected depending on 

the nature of the stake.  

3.3.3 Proof-of-Authority (PoA) 

The blocks and transactions are approved by affirmed accounts in the PoA consensus 

mechanism known as validators. The validators run software to complete the validation 

process and put transactions in blocks. It is an automatic process that needs not be 

continuously monitored by the validators. The PoA-based framework uses the incentive 

method to give the rights to participants to act as validators. It assigns the reputation to the 

identity of the validator to perform the validation process. The PoA algorithm is considered 

more robust than the PoS algorithms as in PoS, stakes between two parties may be even, and 

it does not consider total holdings [59]. This means that incentives can be unbalanced. On the 

other hand, PoA only allows non-consecutive block approval from anyone validator, meaning 

that the risk of serious damage is centralized to the authority node.    
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3.4 Cryptographic Algorithms 

This section presents cryptographic algorithms utilized in the proposed blockchain-based 

cloud storage architecture. 

3.4.1 Hashing  

The hashing is the main core part of the blockchain network. The hashing algorithm 

calculates the transaction hash value to generate the fixed-length output. The primary 

blockchain application, Bitcoin cryptocurrency, utilizes an SHA-256 hashing algorithm to 

store, manage, and create transactions and blockchain structure. The unique hashing features 

such as collision-resistant unique always generate the different hash values for different 

inputs [57]. It always generates the fixed size output even for the different input values, and it 

is impossible to retain the original value from the generated hashes.  

3.4.2 Merkle Tree  

The Merkle tree utilizes cryptographic hash functions to create the binary tree structure by 

combining the leaf nodes to form intermediate nodes and the root node, as shown in Fig. 3.4. 

The blockchain transaction data is divided into multiple chunks stored at the bottom of the 

tree structure as leaf nodes, and then intermediate nodes are created by combining the hash 

values of the child nodes. Finally, the Merkle root combines its two child nodes and forms the 

tree's top root node. Merkle root helps validate the data stored in leaf nodes as hash values 

and considers all transactions signatures that are part of the block in the blockchain network. 

The Merkle structure requires less storage space and easy computing. 

 

Figure 3.4: Structure of the Merkle Tree 
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3.4.3 CP-ABE Algorithm 

Encryption technology can be considered a security guarantee for confidentiality and data 

access control. However, achieving access control and integrity for encrypted data poses a 

significant challenge. Bethencourt was the first to implement CP-ABE in 2007. A ciphertext 

is linked to an access structure in CP-ABE mode, and a user's secret key is linked to attributes 

[60]. The user can decrypt the given ciphertext if and only if his attribute set complies with 

the data owner's access policy. According to the attribute, the data user obtains the 

corresponding key from the attribute authority core. According to the access policy, the data 

owner will monitor who has access to the data. The CP-ABE scheme needs one or more 

completely trusted attribute authorities or central authorities. Due to the presence of 

centralized authority, it suffers from a single point of failure issue. Therefore, the 

decentralized systems are utilized to remove the need for trusted authorities, ensure security 

features, and prevent a single point of failure. Although some people have researched 

blockchain-based security schemes recently, most suggest a mechanism or concept for such 

systems. There is no straightforward approach for realizing the convergence of blockchain 

technology's decentralization concept with security methods. This is an environment where 

there is still a lot of work to be done. As a result, blockchain-based decentralized cloud 

storage system with security methods research is valuable and essential.  

3.5 Smart Contract 

The smart contract idea was developed a long time ago, but it was introduced recently. The 

idea of a smart contract was articulated about twenty years ago by a cryptographer scholar, 

Nick Szabo [61, 62]. The fundamental principle is to insert contractual concepts into 

computer components such as liens, trusts, etc. He proposed four fundamental principles of 

contract design: evaluation, validation, privacy, and enforceability. Based on Szabo's concept, 

contracting parties should evaluate their success, check whether the contract was performed 

or violated. Also, the smart contract protects all parties' privacy and distributes the details as 

much as is required, and eventually, it would execute automatically. 

Nevertheless, the necessary architecture and specifications were not available at that time. 

The concept remained only an abstract term; today, smart contract deployment has become 

realistic by advancing blockchain technology. Smart contracts are a package of codes that 

encode and replicate real-world contractual agreements in the computer domain. A basic 
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principle for contracts is to create a legal agreement between two or more parties that each 

party is required to meet its contractual obligations. The important consideration is that the 

contract will be governed by a legit entity (organization). Smart contracts are eliminating the 

trusted third parties; that is, the mediators between contract members. They manage the 

mediators by using automatic execution of programs in a blockchain network, which is 

decentralized and evaluated by the network nodes. The smart contract also allows 

transactions between untrusted parties (i) mediator commission fees, (ii) trusted-party 

dependency, and (iii) the counterparties' need for mutual interaction. 

Smart contracts comprise a contract space, a balance, and code. It can be generated and 

granted access to any node in a network simply by publishing a transaction to the blockchain. 

When included in the blockchain, the smart contract code is fixed and cannot be changed. A 

network of miners who are accountable for managing the blockchain runs smart contracts. 

Miners agree on the smart contract's implementation result and upgrade the blockchain 

accordingly. Once implemented, each contract is assigned a 160-bit address and is executed 

using this address if a transaction is generated. The smart contract uses various platforms for 

the development of applications. Ethereum is the largest and most important platform for 

developing decentralized applications, ranging from predicting markets and identity systems 

to other economic applications. Bitcoin is also a blockchain software that offered a modern, 

improved exchange of money, emerging markets, and new independent decentralized 

organizations [63]. While Bitcoin's primary purpose is to transfer capital, its blockchain's 

immutability and openness have facilitated the creation of protocols that implement smart 

contracts. Many smart contracts store the blockchain data via the Bitcoin scripting language 

[64]. Apart from Bitcoin and Ethereum, there are continually evolving numbers of alternative 

systems derived from or are separate from the initial Bitcoin network and provide 

enhancements and innovative solutions for different impediments encountered in the former. 
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CHAPTER 4 

BLOCKCHAIN-BASED DECENTRALIZED 

CLOUD STORAGE SYSTEM 

 

 

It has been observed from chapter 2 that the traditional cloud storage systems suffer 

from various security and privacy issues such as single point of failure, loss of data 

control, data breach problems, integrity, and access control issues. This chapter 

proposes decentralized cloud storage systems using blockchain technology to ensure 

security features without involving trusted third parties.  

The proposed architecture implements the CP-ABE algorithm to ensure 

confidentiality, integrity, and availability features. In addition, it provides a complete 

distributed environment for storing key-related information, outsourcing-related 

details, and integrity checking information in the blockchain structure. The 

experimental results, analysis, and performance evaluation show that our proposed 

architecture provides a feasible and reliable cloud environment. 

 

4.1 Introduction 

Data are presented in a variety of forms whenever it is needed as a valuable resource. 

Massive amounts of data on storage devices create maintenance issues [65]. Therefore, many 

users prefer to outsource their data to the cloud to alleviate the heavy burden of storage. A 

cloud is an excellent infrastructure that provides us with many benefits and functionality. 

Nevertheless, data security issues arise in the cloud storage system [66, 67]. Data may leak 

while users store their data in the cloud; it's critical to protect privacy [68] and provide data 

protection [69]. With the rapid advancement of cloud computing and big data technologies, 

an increasing number of companies and individuals opt to store their data in the cloud. The 
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majority of data stored in the cloud is susceptible, such as personal medical records, 

multimedia documents, and company internal data [70-72].  

Blockchain is a decentralized database defined as a linked chain of blocks and is difficult to 

tamper with, forge, or trace. The blockchain stores all transaction information, and almost no 

one can alter the data once it has been entered. As a result, blockchain technology is simpler 

and more stable than other security technologies. Blockchain technology in cloud storage 

architecture provides a more secure environment to the users. Instead of concentrating 

resources in a single data center or server, a blockchain network distributes them among 

nodes. Blockchain-based cloud storage eliminates the need for users to rely on a central 

authority to maintain their data, thus helping to eliminate the risks of large-scale data 

breaches. The blockchain splits the users' files into multiple shards called blocks. Each block 

is encrypted, giving each block of data a unique hash and then distributing that data across 

multiple computers or nodes on the network. This arrangement provides greater privacy 

compared to a centralized cloud storage system.  

Furthermore, many researchers have already developed various blockchain-based cloud 

systems [73-76]. For example, in [73], the authors developed a distributed cloud storage 

system that divides and stores data shards in a peer-to-peer blockchain network. However, the 

designed scheme lacks the integrity checking process. Wang et al. [74] use Ethereum's smart 

contract functionality to provide a decentralized access control system. It modifies the 

traditional encryption algorithm to include attribute details of users and generates access 

rules. The architecture is based on a semi-honest cloud storage system, thus affecting cloud 

data security. In [75], the authors develop a distributed auditing approach for cloud storage 

and eliminate third-party auditors. It is analyzed that the designed scheme only considers the 

auditing and integrity security features however lacks the access control mechanism. Li et al. 

[76] present an optimization method that uses deduplication schemes to allocate files on 

multiple servers and maintain details in the blockchain storage system. They use smart 

contract functions to ensure a secure optimization method without any trusted third party. The 

suggested scheme only considers the mechanism to reduce the redundant data without 

considering the integrity and access control methods. Similarly, most of the research papers 

focus on cloud storage-specific features like access control [77-79], integrity checking [80, 

81], encryption schemes [82], and searching processes [83]. Unlike the above work, we 

proposed a complete blockchain-based cloud storage framework with multiple features like 
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access control, integrity checking, optimization features, and network performance 

evaluation. 

To deal with the disadvantages and challenges mentioned above, we designed Java-based 

blockchain architecture for the cloud storage system to provide a secure environment. The 

proposed architecture implements CP-ABE to provide a key generation mechanism using 

bilinear mapping-based cryptography and perform data access control mechanisms. Data 

owners manage the key related and user access policy details in a distributed manner by 

utilizing the blockchain structure and providing a more robust environment.  The blockchain 

network keeps Meta details of user data and tracks all access and validation records. The 

architecture also deploys a Honeybee optimization algorithm to optimize the resource 

utilization on the cloud storage system and minimize transaction processing time. By using 

blockchain technology, we achieve decentralization with security without a trusted central 

authority. It provides four primary services to ensure security features in a cloud storage 

system:  

1. A registration process is designed to register data owners and users using a key generation 

technique to provide an authentication feature. 

2. The data owners save the user data Meta details in the blockchain structure and set access 

rules to maintain authorization.  

3. Data owners maintain data integrity using the Merkle root concept. 

4. The cloud storage system stores the original data and uses the optimization algorithm to 

reduce the transaction processing time. 

4.2 Proposed Work 

In this section, the entire proposed work has been discussed in detail. 

4.2.1 System Model 

Fig. 4.1 shows the decentralized permissioned blockchain architecture for a cloud storage 

system with security features. The proposed system model consists of four core entities: 

• Blockchain: Blockchain maintains the transparent, tamper-proof structure to store the 

Meta details of the data and users. Every function call saves the related information in 
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the blockchain structure. Therefore, the data transfer between the users of the 

proposed architecture is non-tamper and transparent. 

• Data Owner: Data owner's task is to generate system parameters and keys for the 

users according to their attributes/identity. The data owner is also responsible for 

outsourcing encrypted files, managing access policies, checking integrity, and 

maintaining Meta information in the blockchain structure.  

• User: Users can access the data when their attributes satisfy the ciphertext's access 

policies. The user can use the decryption algorithm to decrypt the file using the secret 

key and obtain the plaintext. 

• Cloud Storage: Cloud storage is responsible for storing encrypted files uploaded by 

the data owners. Data files are first divided into multiple shards of the same size and 

distributed on multiple servers. The proposed architecture uses the Honeybee 

optimization algorithm [84] to effectively manage the resources during the data 

transaction process and minimize the processing time.  

 

Table 4.1: Notation and Descriptions  

Notations Description 

𝐺𝑃 Global parameters (𝑝, 𝔾, 𝑔, 𝑒, 𝔾𝑇,𝐻) 

𝑃𝐾 Public key of the data owner 

𝑀𝐾 Master key of the data owner 

𝑈𝑠𝑒𝑟𝑖𝑑 Public key of the user 

𝑆𝐾𝐴 Secret key used for encryption and decryption process 

𝑀𝑒𝑟𝑘𝑙𝑒 𝑟𝑜𝑜𝑡 SHA256 generated file Merkle root 

𝐶𝑇 Encrypted file 

𝐹 File of the user 

{𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛} User’s attribute list 

𝐷𝑂 Data owner 

𝐹𝑖𝑑 SHA256 generated file hash 

𝑇𝑟𝑎𝑛𝑠𝐼𝐷 Blockchain network generated transaction-ID 

𝑆 Number of servers 

{𝐵1,  𝐵2 … … 𝐵𝑛} Number of blocks in each server 
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The proposed architecture workflow, as shown in Fig. 4.1, is as follows:  

1. Data owners send key generation requests to generate global parameters and public 

and master keys to register the proposed architecture.  

2. The blockchain network executes the key generation function and generates a public 

key and master key for the data owner. 

3. The user sends a registration request to the data owner with an attribute list like user 

ID, department, email id, contact number, address, DOB, etc.  

4. The data owner saves user details in the proposed architecture and generates access 

policies corresponding to its attribute list using the CP-ABE algorithm. The public 

key corresponds to the user ID shared in the attribute list. The data owner generates a 

secret key using the bilinear pairing-based CP-ABE algorithm.  

5. The data owner generates the user keys and maps each other using generated keys, 

and this information is saved in the proposed architecture. 

6. The data owner is responsible for sharing a secret key with the user using the Diffie-

Hellman algorithm. This shared secret key is utilized to encrypt and decrypt the data 

using the AES algorithm. 

7. The data owner uploads the data to the cloud storage using the proposed architecture 

functionality. The data owner generates the file's Meta details like file hash, Merkle 

root, mapping details of file and owner/user, and storing them in the blockchain 

structure. 

8. The data owner uses the generated secret key to encrypt and store the data in cloud 

storage. 

9. The cloud storage servers store the data and optimize the resource to minimize the 

execution time and overhead while storing it. The cloud storage follows the 

optimization approach to balance the servers' data load and reduce the transactional 

process time. 

10. The user sends the access request to the corresponding data owner along with the file 

ID. 

11. The data owner fetches the user and file mapped information and corresponding 

access policy from the blockchain network.  

12. After checking the access details, access may be granted or denied to the user. 



35 
 

13. After the access verification phase, the encrypted data fetch from the cloud storage 

and sent to the requested user. 

14. The user uses the secret key to decrypt the received encrypted data and access the 

plaintext. 

15. The user also checks the integrity of the received data by sending the request to the 

data owner. 

16. The data owner fetches the user and files details from the blockchain, performs the 

integrity verification process using the Merkle root method, and returns the result to 

the user. 

 

Figure 4.1: System Model of the Proposed Work 

The architecture is composed of the following algorithms to achieve the basic functionalities: 

𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒆𝒕𝒖𝒑(𝑮𝑷 ): The proposed architecture uses a CP-ABE algorithm. The blockchain 

network selects a bilinear group 𝔾 of prime order 𝑝 and generator 𝑔 and two random 

numbers 𝑎, 𝑏 ∈  ℤ𝑝.  The data owner executes the global setup algorithm and takes the global 

parameter 𝐺𝑃 as input and output public key 𝑃𝐾, and master key 𝑀𝐾. Let 𝑝 be a prime 

number and  𝔾, 𝔾𝑇 be multiplicative cyclic groups of order 𝑝. A map e: 𝔾 × 𝔾 → 𝔾𝑇 

satisfying the following properties is called a bilinear map or bilinear pairing. 

• 𝑒(𝑢𝑎 , 𝑣𝑏 ) = 𝑒(𝑢, 𝑣)𝑎𝑏, ∀ 𝑢, 𝑣 𝜖 𝔾, 𝑎, 𝑏 ∈ ℤ𝑝 

• If 𝑔 is a generator of 𝔾, then 𝑒(𝑔, 𝑔) is a generator of 𝔾𝑇 

• 𝑒(𝑢, 𝑣) is efficiently computable for all 𝑢, 𝑣 ∈  𝔾 

• Let 𝐻: {0, 1}∗ → 𝔾 be a hash function that maps attribute to the random element of 𝔾. 
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𝑲𝒆𝒚 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏( 𝒑, 𝔾, 𝒈, 𝒆, 𝔾𝑻, 𝑯): The data owner generates the public and master key to 

register the proposed system using a key generation algorithm. Also, users send registration 

requests to data owners with the attribute set containing details like user ID, email ID, 

department, contact details, etc. The user attribute list is represented as {𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛}. 

The data owner takes global parameters 𝐺𝑃(𝑝, 𝔾, 𝑔, 𝑒, 𝔾𝑇, 𝐻) and master key 𝑀𝐾 as input, 

assigns attribute policy to the user, and generates a secret key 𝑆𝐾 and public key 𝑈𝑠𝑒𝑟𝑖𝑑 =

{𝐴1𝜖𝐴𝑛}. The owner executes Algorithm 4.1 of the proposed architecture to complete the key 

generation process. The mathematical notation of the key generation process is given below: 

1. Global parameters 𝐺𝑃(𝑝, 𝔾, 𝑔, 𝑒, 𝔾𝑇, 𝐻) 

2. Each user attribute list is represented as: 𝐴𝑖 = {𝐴1, 𝐴2, 𝐴3, … … . , 𝐴𝑛} = {1,2,3, … … , 𝑛} 

3. Then parameter list is denoted as:          𝑝𝑎𝑟𝑎𝑚𝑠 = [𝑝, 𝑔, 𝑒, 𝑔2, ℎ, 𝑌 =

𝑒(𝑔, 𝑔2)𝛼 , 𝑇1, 𝑇2, 𝑇3, . . . , 𝑇𝑛] 𝑤ℎ𝑒𝑟𝑒 𝛼
𝑅
← ℤ𝑝, 𝑔2, ℎ, 𝑇𝑖

𝑅
←  𝔾 

4. Data owner public key is represented as: 𝑃𝐾 = {𝔾, 𝑔, 𝑔𝑎 , 𝑔𝑏, 𝑒(𝑔, 𝑔)𝑏, 𝐻}  

𝑤ℎ𝑒𝑟𝑒 (𝑎, 𝑏)  ∈ ℤ𝑝 

5. Data owners’ master keys are represented as: 𝑀𝐾𝑖 = {𝛼1, 𝛼2, . . . , 𝛼𝑛} 

6. The secret key of each user having 𝐴 attributes can be generated as: 

𝑆𝐾𝐴 = [𝐴, 𝑑1 = 𝑔𝑟 , 𝑑2 = 𝑔2
𝛼ℎ𝑟 , 𝑑𝑖 = 𝑇𝑖

𝑟 , ∀𝑖 ∈ 𝐴], 𝑤ℎ𝑒𝑟𝑒 𝑟
𝑅
← ℤ𝑝 

𝑬𝒏𝒄𝒓𝒚𝒑𝒕(𝑮𝑷, 𝑭, 𝑺𝑲𝑨): The owner uses the CP-ABE encryption algorithm to encrypt the 

data. The encryption algorithm takes global parameters 𝐺𝑃, file 𝐹, and secret key 𝑆𝐾𝐴 as 

input and generates ciphertext 𝐶𝑇. Before the owner uploads the file on the cloud, the file is 

divided into multiple shards, and 𝑀𝑒𝑟𝑘𝑙𝑒 𝑟𝑜𝑜𝑡 is calculated using the 𝑆𝐻𝐴256 algorithm and 

maintaining this Meta information in the blockchain network. The user details, application 

binary interface owner public key, are represented in the form of the JSON object, and the 

following steps are involved for uploading the file 𝐹.  

1. The owner uses the Diffie-Hellman algorithm to exchange common key 𝑆𝐾 by using user 

public key and identifier. Then, a common key is utilized to perform a systematic encryption 

technique using an AES algorithm. This information is stored on the blockchain by executing 

Algorithm 4.2.  
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2. The owner divides the file into multiple shards to calculate the 𝑀𝑒𝑟𝑘𝑙𝑒 𝑟𝑜𝑜𝑡 by following 

the details given in Algorithm 4.2. The calculated 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡 stores on the blockchain 

network.  

3. The owner then uses the encryption algorithm to encrypt the file 𝐹 with the common secret 

key using AES symmetric encryption algorithm. The user ID 𝑈𝑠𝑒𝑟𝑖𝑑 (public key) is stored 

with the encoding output and 𝐹𝑖𝑑 on the cloud server {𝑈𝑠𝑒𝑟𝑖𝑑,𝐹𝑖𝑑, 𝐶𝑇}. The encryption 

process follows the Equation 4.1. 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑎𝑟𝑎𝑚𝑠[𝑝, 𝑔, 𝑒, 𝑔2, ℎ, 𝑌 = 𝑒(𝑔, 𝑔2)𝛼, 𝑇1, 𝑇2, . . , 𝑇𝑛], 𝑊 = 𝑖1 ∧ 𝑖2 ∧. . .∧ 𝑖𝑘, 𝐹 ∈  𝔾𝑇)  

𝐶𝑇 = [𝑊, 𝐶1, 𝐶2, 𝐶3], 𝑤ℎ𝑒𝑟𝑒 𝐶1 = 𝐹 . 𝑌𝑠, 𝐶2 = 𝑔𝑠 , 𝐶3 = (ℎ ∏ 𝑇𝑖𝑗
𝑘
𝑗=1 )

𝑠
, 𝑠

𝑅
← ℤ𝑝       (4.1) 

𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑮𝑷, 𝑪𝑻, 𝑺𝑲𝑨): The decryption algorithm requires the global parameters 𝐺𝑃, 

encrypted text 𝐶𝑇, and common shared key 𝑆𝐾𝐴. The owner first obtains the 𝑈𝑠𝑒𝑟𝑖𝑑  and 𝐹𝑖𝑑 

from the blockchain structure and checks to see if the requested file exists in the blockchain 

network. If the requested file does not exist, then the decryption process is discarded. 

Otherwise, the owner allows a user to follow the decryption process and obtain the plaintext 

using the generated common key, global parameters, and ciphertext. If the attribute set 

satisfies the access policy condition, then decryption results in plaintext; otherwise, it will 

fail. The decryption process of the CP-ABE along with correctness proof is as follows: 

1. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑆𝐾𝐴 = [𝐴, 𝑑1, 𝑑2, 𝑑𝑖 , ∀𝑖 𝜖 𝐴], 𝐶𝑇 = [𝑊, 𝐶1, 𝐶2, 𝐶3]) 

• If {𝑖1, 𝑖2, . . . . , 𝑖𝑘}  ⊄ 𝐴, 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑓𝑎𝑖𝑙𝑠 

• If {𝑖1, 𝑖2, . . . . , 𝑖𝑘}  ⊂ 𝐴, 𝑡ℎ𝑒𝑛𝑑 = 𝑑2 ∏ 𝑑𝑖𝑗
𝑘
𝑗=1 𝑎𝑛𝑑 

𝐹 =
𝐶1. 𝑒(𝑑1, 𝐶3)

𝑒(𝑑, 𝐶2)
 

2. 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠(𝑆𝐾𝐴, 𝐶𝑇) 

• 𝑆𝐾𝐴 = [𝐴, 𝑑1 = 𝑔𝑟 , 𝑑2 = 𝑔2
𝛼ℎ𝑟 , 𝑑𝑖 = 𝑇𝑖

𝑟 , ∀𝑖𝜖𝐴] 

• 𝐶𝑇 = [𝑊, 𝐶1 = 𝐹. 𝑌𝑠, 𝐶2 = 𝑔𝑠, 𝐶3 = (ℎ ∏ 𝑇𝑖𝑗
𝑘
𝑗=1 )

𝑠
],  

𝑤ℎ𝑒𝑟𝑒 𝑌 = 𝑒(𝑔, 𝑔2)𝛼𝑎𝑛𝑑 𝑑 = 𝑑2 ∏ 𝑑𝑖𝑗

𝑘

𝑗=1
 

𝐶1. 𝑒(𝑑1, 𝐶3)

𝑒(𝑑, 𝐶2)
         =

𝐹. 𝑒(𝑔, 𝑔2)𝛼𝑠  . 𝑒(𝑔𝑟 , (ℎ ∏ 𝑇𝑖𝑗
𝑘
𝑗=1 )

𝑠
)

𝑒(𝑔2
𝛼ℎ𝑟 ∏ 𝑇𝑖𝑗

𝑟𝑘
𝑗=1 , 𝑔𝑠)
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=
𝐹. 𝑒(𝑔, 𝑔2)𝛼𝑠 . 𝑒(𝑔𝑟 , (ℎ ∏ 𝑇𝑖𝑗

𝑘
𝑗=1 )

𝑠
)

𝑒(𝑔2
𝛼, 𝑔𝑠) .  𝑒(ℎ ∏ 𝑇𝑖𝑗 , 𝑔𝑘

𝑗=1 )
𝑟𝑠  

                   = 𝐹 

4.2.2 Smart Contract Function 

This section describes the logic and algorithms of the proposed architecture. In the proposed 

blockchain network, operations are designed in the Java programming language. Various 

smart contract functions are created and executed in this architecture to provide different 

functionalities. The function defined the multiple variables and structures when they are 

created:  

1. The data owner is the controller of the proposed architecture, and its public key is treated 

as the owner's address. All network addresses that execute different functions are considered 

as a sender. 

2. The proposed blockchain structure maintains Meta details of users and data. The data 

owner utilizes this information to maintain the access control and integrity validation process. 

The data owner takes the user and file details to sustain the Metadata in the blockchain 

structure using a hashing algorithm. 

3. The proposed architecture facilitates the two main structures: storing the actual file in the 

cloud servers and storing user and file Meta information in the blockchain network to provide 

an effective and reliable environment. 

The following functions are designed in the proposed blockchain-based architecture: 

User Registration Function: Each data owner executes the key generation algorithm to 

generate public and master keys. The system utilizes the CP-ABE algorithm by using the 

bilinear mapping technique. After generating the master key, the data owner uses the same 

algorithm to generate the secret key for the users. The generated secret key is shared with the 

user using the Diffie-Hellman algorithm based on the 𝑈𝑠𝑒𝑟𝑖𝑑 (public key) shared in the 

attribute list. We design the registration flow of data owner and user as shown in Fig. 4.2. 

i. Data owner sends a registration request to the blockchain network. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡  
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ii. Blockchain sets up the global parameters and shares with the data owner in response. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂: 𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝,  𝔾,  𝑔,  𝑒,  𝔾𝑇, 𝐻) 

iii. Data owner generates public and master keys by using shared global parameters and the 

registration process is completed. 

𝐷𝑂: 𝑃𝐾𝑖 = {𝔾,  𝑔,  𝑔𝑎 ,  𝑔𝑏,  𝑒(𝑔,  𝑔)𝑏,  𝐻};  𝑀𝐾𝑖 = {𝑎,  𝑏 ∈ ℤ𝑝} 

iv. User sends a registration request to the data owner with attributes details. 

𝑈𝑠𝑒𝑟 → 𝐷𝑂: 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡( 𝐴1,  𝐴2, . , 𝐴𝑛) 

v. Data owner stores user details in the blockchain system and executes key generation 

algorithm with master key and attributes as parameters. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ← 𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑀𝐾𝑖 ,  𝐴𝑗) 

vi. Data owner generates a public key and common secret key by using the key generation 

algorithm. 

𝐷𝑂: 𝑆𝐾𝑗 = {𝑝,  𝔾,  𝑔,  𝑒,  𝔾𝑇,  𝑀𝐾𝑖,  𝐴𝑗};  𝑈𝑠𝑒𝑟𝑖𝑑 = {𝐴1 ∈ 𝐴𝑗} 

vii. Data owner exchanges the generated common secret key with the user using Diffie-

Hellman key exchange protocol. 

𝐷𝑂 → 𝑈𝑠𝑒𝑟: 𝐾𝑒𝑦 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝑆𝐾𝑗, 𝑃𝐾𝑗) 

 

Figure 4.2: Registration Flow of Data Owner and User 
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Algorithm 4.1: Key Generation  

𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺𝑃) 

Input: Data Owner Set 𝐷𝑂 = {𝐷𝑂1, 𝐷𝑂2, 𝐷𝑂3, . . . . , 𝐷𝑂𝑖};   1 ≤ 𝑖 ≤ 𝑛 

      User Set 𝑢 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑗} 𝑤ℎ𝑒𝑟𝑒 𝐷𝑂𝑖 𝜖 {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑗}  

𝑢𝑗 ←  𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑖𝑠𝑡(𝐴1, 𝐴2, . . . , 𝐴𝑗) 

Output: Master Key 𝑀𝐾 and Secret Key 𝑆𝐾 

1. 𝑓𝑜𝑟(𝑖 = 1; 𝑖 ≤ 𝑛, 𝑖 + +) 

2.        Generate Master Keys for Data Owner, 𝐷𝑂𝑖: 𝑀𝐾𝑖 ← 𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺𝑃)  

3. 𝑒𝑛𝑑 𝑓𝑜𝑟 

4. 𝑓𝑜𝑟 (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +)  

5.        𝑓𝑜𝑟 (𝑗 = 1; 𝑗 ≤ 𝑛; 𝑗 + +)   

6.                Generate Secret Keys 𝑆𝐾𝑖𝑗 for User 𝑢𝑖𝑗 ← 𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐺𝑃, 𝑀𝐾𝑖 , 𝐴𝑗) 

7.        𝑒𝑛𝑑 𝑓𝑜𝑟 

8. 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

In Algorithm 4.1, line 2 generates a master key for the data owner using a key generation 

process. In contrast, line 6 generates the secret keys for the users belonging to different data 

owner groups, e.g., 𝐷𝑂1 = {𝑢11, 𝑢12, . . . , ), 𝐷𝑂2 = {𝑢21, 𝑢22, . . . } etc. The time complexity of 

the algorithm is 𝑂(𝑛2). 

Data Outsourcing Function: The data owners execute this function to store the user data on 

the cloud storage and maintain Meta details on the blockchain structure. Each data owner is 

responsible for calculating the 𝑀𝑒𝑟𝑘𝑙𝑒 𝑟𝑜𝑜𝑡 by dividing the file into multiple shards, and this 

information is stored on the blockchain. This function uses a 𝑆𝐻𝐴256 hashing algorithm to 

generate a hash and root hash. The overall flow of the data outsourcing process is presented 

in Fig. 4.3, and the explanation is given below: 

i. Data owner requests blockchain to outsource data on cloud storage. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑈𝑝𝑙𝑜𝑎𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡() 

ii. In response, blockchain requests Metadata details to be stored on network. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑚𝑒𝑡𝑎𝑑𝑒𝑡𝑎𝑖𝑙𝑠() 
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iii. Data owner generates data Meta information using a 𝑆𝐻𝐴256 hashing algorithm. First, 

data is divided into multiple shards, and hashing algorithm is used to generate a hash of 

each shard and calculate the  𝑀𝑒𝑟𝑘𝑙𝑒 𝑟𝑜𝑜𝑡. Data owner also stores mapping details of user 

𝑈𝑠𝑒𝑟𝑖𝑑 and data 𝐹𝑖𝑑 in the blockchain structure and cloud.      𝐷𝑂: 𝐹𝑖𝑗 =

{𝑓1,  𝑓2, .  . ,  𝑓𝑛}; 𝐹𝑖𝑑 ← 𝑆𝐻𝐴256(𝐹𝑖𝑗); 

𝐻𝑎𝑠ℎ𝑖 ← 𝑆𝐻𝐴256{𝑓1, 𝑓2,  .  . , 𝑓𝑛};  𝑀𝑒𝑟𝑘𝑙𝑒𝑟 𝑜𝑜𝑡(𝐻𝑎𝑠ℎ𝑖) 

iv. Data owner sends generated Meta details to blockchain for storage. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛:  𝑆𝑡𝑜𝑟𝑒 (𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡,  𝐹𝑖𝑑) 

v. After storing Meta details, the data owner generates ciphertext using a shared secret key-

based AES encryption algorithm. 

𝐷𝑂: 𝐶𝑇 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐹, 𝑆𝐾𝐴) 

vi. Data owner sends generated ciphertext with user and file mapped information to 

blockchain network for cloud storage. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑂𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑎𝑡𝑎(𝐹𝑖𝑑,  𝑈𝑠𝑒𝑟𝑖𝑑 ,  𝐶𝑇) 

vii. Blockchain sends the data to the cloud for storage. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐶𝑙𝑜𝑢𝑑: 𝑂𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝑑𝑎𝑡𝑎(𝐹𝑖𝑑,  𝑈𝑠𝑒𝑟𝑖𝑑, 𝐶𝑇) 

viii. Cloud stores and optimizes the resource using Honeybee optimization algorithm to 

minimize execution and response time as explain in Algorithm 4.5. 

𝐶𝑙𝑜𝑢𝑑: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑆) 

ix. On successful storage of data cloud return a true value to the blockchain system. 

𝐶𝑙𝑜𝑢𝑑 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑇𝑟𝑢𝑒 

x. Blockchain network returns transaction ID to the data owner. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑇𝑟𝑎𝑛𝑠𝐼𝐷 

Algorithm 4.2 represents the steps of the data outsourcing process. Line 2-4 depicts the Meta 

details generation steps where lines 7 and 8 denote the encryption and outsourcing process. 

Line 9 represents calling the optimization process used by the cloud storage to minimize the 

transaction process time. The time complexity of the Algorithm 4.2 is 𝑂(𝑛). 
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Figure 4.3: Data Outsource Workflow 

Algorithm 4.2: Data Outsourcing  

𝑈𝑝𝑙𝑜𝑎𝑑𝑟𝑒𝑞𝑢𝑒𝑠𝑡( ) 

Input: Data Owner Set 𝐷𝑂 = {𝐷𝑂1, 𝐷𝑂2, 𝐷𝑂3, . . . . , 𝐷𝑂𝑖};   1 ≤ 𝑖 ≤ 𝑛,  

            File Set 𝐹 = {𝐹11, 𝐹12, 𝐹13, . . . , 𝐹𝑖𝑗} 𝑤ℎ𝑒𝑟𝑒 𝑖 𝜖 𝐷𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑗 𝜖 𝑈𝑠𝑒𝑟 𝑚𝑒𝑚𝑏𝑒𝑟 

Output: Hash File, Merkle Root 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡, Ciphertext 𝐶𝑇 

1.  𝑓𝑜𝑟 𝐸𝑎𝑐ℎ 𝐹𝑖𝑙𝑒 𝑖𝑛 𝐹 𝑑𝑜 

2.        𝐷𝑂𝑖 Divide File into Multiple shards, 𝐹𝑖 = {𝑓1, 𝑓2, . . . . , 𝑓𝑛} 

3.         Calculate File Hash, 𝐻𝑎𝑠ℎ𝐹𝑖𝑙𝑒𝑖 ← 𝑆𝐻𝐴256(𝐹𝑖) 

4.         Generate and Store Merkle Root, 𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡(𝐻𝑎𝑠ℎ𝐹𝑖𝑙𝑒𝑖) 

 5. 𝑒𝑛𝑑 𝑓𝑜𝑟 

6. 𝑓𝑜𝑟 𝐸𝑎𝑐ℎ 𝐹𝑖𝑙𝑒 𝑖𝑛 𝐹 𝑑𝑜 

7.       Encrypt File Data 𝐹, 𝐶𝑇 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐹, 𝑆𝐾𝐴) 

8.       Outsource Data, 𝑂𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑎𝑡𝑎(𝐶𝑇) 

9.       Optimize Resources, 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠( ) 

10. 𝑒𝑛𝑑 𝑓𝑜𝑟 
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Access Control Function: This function allows the data owner to check the access control 

policy before decrypting the requested data. Users are permitted to access the data stored on 

the cloud, and the data owner first checks whether users can access the data according to the 

access policy stored on the blockchain. If the users have rights means user shared attributes 

are a subset of the stored attribute list, then the requested file is converted to plaintext 

following the decryption process; otherwise, it will discard the request. The access control 

overall flow is represented in Fig. 4.4. 

i. User sends an access request to the data owner. 

𝑈𝑠𝑒𝑟 → 𝐷𝑂: 𝐴𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡( 𝐹𝑖𝑑, 𝑈𝑠𝑒𝑟𝑖𝑑) 

ii. Data owner retrieves user access policy from the blockchain network. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑒𝑡𝑎𝑖𝑙𝑠(𝑈𝑠𝑒𝑟𝑖𝑑) 

iii. Blockchain sends requested details to the data owner. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 ← 𝐷𝑂: 𝑢𝑗(𝑖1,  𝑖2,  𝑖3, .  .  . , 𝑖𝑘};  𝐴𝑗 

iv.  Data owner checks if requested user attributes are a subset of the stored list, means it 

satisfies the access policy and access is allowed. 

𝐷𝑂: 𝑖𝑓 {𝑖1,  𝑖2, .  .  . ,  𝑖𝑘} ⊂ 𝐴𝑗 

v. After access policy verification, the data owner requests ciphertext to the blockchain 

system. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝐴𝑐𝑐𝑒𝑠𝑠(𝐹𝑖𝑑, 𝑈𝑠𝑒𝑟𝑖𝑑) 

vi. Blockchain sends ciphertext fetch request to cloud storage. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐶𝑙𝑜𝑢𝑑: 𝐹𝑒𝑡𝑐ℎ(𝐹𝑖𝑑,𝑈𝑠𝑒𝑟𝑖𝑑) 

vii. In response, cloud storage returns the requested ciphertext to the user. 

𝐶𝑙𝑜𝑢𝑑 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂 → 𝑈𝑠𝑒𝑟: 𝑅𝑒𝑡𝑢𝑟𝑛 (𝐶𝑇) 

viii. User utilizes a secret key to decrypt the received ciphertext using an AES algorithm.  

𝑈𝑠𝑒𝑟: 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐶𝑇, 𝑆𝐾𝐴) 

 

Algorithm 4.3 represents the access control process. Line 2-3 represents the access policy 

checking process by the data owner. Line 4 denotes the decryption of the retrieved ciphertext. 

Algorithm 4.3 requires a constant time complexity for executing the simple statements. 
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Figure 4.4: Access Control Workflow 

Algorithm 4.3: Access Control 

𝐴𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝐹𝑖𝑑 , 𝑈𝑠𝑒𝑟𝑖𝑑) 

Input: Data Owner Set, 𝐷𝑂 = {𝐷𝑂1, 𝐷𝑂2, 𝐷𝑂3, . . . . , 𝐷𝑂𝑖};   1 ≤ 𝑖 ≤ 𝑛,  

            User Set,  𝑢 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑗} 𝑤ℎ𝑒𝑟𝑒 𝐷𝑂𝑖 𝜖 {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑗}, 

            Attribute List, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑙𝑖𝑠𝑡(𝐴1, 𝐴2, . . . , 𝐴𝑛), Ciphertext 𝐶𝑇, File ID 𝐹𝑖𝑑 

Output: File, 𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒  

1. User Send Access Request, 𝑢𝑖 ← 𝐴𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝐹𝑖𝑑,𝑈𝑠𝑒𝑟𝑖𝑑) 

2. 𝐷𝑂 Retrieve 𝑢𝑖 Attribute Details 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝑒𝑡𝑖𝑎𝑙𝑠{𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑘} 𝜖 𝑈𝑠𝑒𝑟𝑖𝑑 

3. 𝑖𝑓 {𝑖1, 𝑖2, . . . . , 𝑖𝑘}  ⊄ 𝐴, 𝐴𝑐𝑐𝑒𝑠𝑠 𝑓𝑎𝑖𝑙𝑠 

4. 𝑖𝑓 {𝑖1, 𝑖2, . . . , 𝑖𝑘} ⊂ 𝐴 𝑡ℎ𝑒𝑛 𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐶𝑇, 𝑆𝐾𝐴) 

5. 𝑢𝑖 ← 𝑎𝑐𝑐𝑒𝑠𝑠(𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒) 

 

Integrity Checking Function: This function ensures the integrity of stored cloud data. Users 

can request the integrity check for the file from the data owner. Data owner accesses the 

stored user and file details from the blockchain and follows the verification process. The data 
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owner retrieves the stored Merkle root of the requested file, recalculates the Merkle root of 

the file, and performs the match. If the results are matched, then the integrity is verified; 

otherwise, it returns false. The following steps are involved in the integrity verification 

process, as shown in Fig. 4.5. 

i. User sends integrity checking request to the data owner. 

𝑈𝑠𝑒𝑟 → 𝐷𝑂: 𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦𝑟𝑒𝑞𝑢𝑒𝑠𝑡  (𝐹𝑖𝑑) 

ii. Data owner retrieves requested file details from the blockchain structure like Merkle 

root. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛: 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝑒𝑡𝑎𝑖𝑙𝑠(𝐹𝑖𝑑) 

iii. Blockchain returns requested information. 

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂: 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡(𝐹𝑖𝑑) 

iv. For the verification process, the data owner, requests the ciphertext from the blockchain, 

which requests from the cloud storage. 

𝐷𝑂 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐶𝑙𝑜𝑢𝑑: 𝐴𝑐𝑐𝑒𝑠𝑠(𝐹𝑖𝑑) 

v. In response, the cloud returns the requested ciphertext. 

𝐶𝑙𝑜𝑢𝑑 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐷𝑂: 𝑅𝑒𝑡𝑢𝑟𝑛(𝐶𝑇) 

vi. Data owner performs the decryption process using a secret key and recalculates the 

Merkle root of the fetched data. 

𝐷𝑂: 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐶𝑇, 𝑆𝐾𝐴) 

vii. Data owner matches the generated Merkle root with stored Merkle root; if both match, 

return true to the user; otherwise return false.  

𝐷𝑂: 𝑀𝑎𝑡𝑐ℎ (𝑀𝑒𝑟𝑘𝑒𝑙𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 ,  𝑀𝑒𝑟𝑘𝑒𝑙𝑟𝑜𝑜𝑡) 

Algorithm 4.4 presents the functionality of the integrity verification process. Line 2 denotes 

the retrieval of stored Merkle root corresponding to file ID. Line 3 and 4 represent the 

decryption of retrieved ciphertext and recalculation of Merkle root. Line 6 performs the 

matching process of both stored and generated Merkle roots; if both are matched, then 

integrity is verified; otherwise, not. Algorithm 4.4 requires constant amount of time 

complexity for executing the simple statements. 
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Figure 4.5: Integrity Checking Process 

Algorithm 4.4: Integrity Checking 

𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝐹𝑖𝑑) 

Input: Data Owner, 𝐷𝑂 = {𝐷𝑂1, 𝐷𝑂2, 𝐷𝑂3, . . . . , 𝐷𝑂𝑖};   1 ≤ 𝑖 ≤ 𝑛, 

            User Set, 𝑢 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑗} 𝑤ℎ𝑒𝑟𝑒 𝐷𝑂𝑖 𝜖 {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑗}, 

            Merkle Root, 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡 

Output: 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 

1. User Request Integrity Checking, 𝑢𝑖 ← 𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝐹𝑖𝑑) 

2. 𝐷𝑂 Retrieve Merkle Root, 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡(𝐹𝑖𝑑) 

3. 𝐷𝑂 Decrypt Ciphertext, 𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐺𝑃, 𝐶𝑇, 𝑆𝐾𝐴) 

4. 𝐷𝑂 Recalculate Merkle Root, 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 ← 𝑀𝑒𝑟𝑘𝑙𝑒𝑟𝑜𝑜𝑡(𝐹𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒) 

5. 𝑀𝑎𝑡𝑐ℎ𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑉𝑒𝑟𝑖𝑓𝑦 (𝑀𝑒𝑟𝑘𝑒𝑙𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 , 𝑀𝑒𝑟𝑘𝑒𝑙𝑟𝑜𝑜𝑡) 

6. 𝑖𝑓(𝑀𝑎𝑡𝑐ℎ𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒) 𝑡ℎ𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑  

7. 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒 

 

Optimization Function--This function deals with the cloud servers' optimization process to 

effectively utilize the resources and minimize the response time. Multiple users or multiple 
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authorities have access to the cloud data in various forms such as data uploading, data 

downloading, data request, returned results, and so forth. Here, a Honeybee optimization 

model is deployed to optimize the transactional data process and efficiently reduce time. This 

algorithm aims to leverage the memory allocation of each server (virtual machine). 

Therefore, a fair bandwidth is allocated for each server, which helps to prevent task 

overloading.  

Algorithm 4.5: Optimization 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑆) 

Input: Number of Servers 𝑆  

Output: Resources Optimized 

1. Initialize Server Number, 𝑆𝑒𝑟𝑣𝑒𝑟𝑛𝑢𝑚𝑏𝑒𝑟 ←  𝑆 

2. Split Servers into Multiple Blocks (Virtual Machines),  𝑆 = {𝐵1,  𝐵2 … … 𝐵𝑛} 

3. Initialize Best Block Size, 𝐵𝑒𝑠𝑡 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 ←  𝐵𝑏𝑒𝑠𝑡.𝑏𝑙𝑜𝑐𝑘  

4. Initialize Average Block Size,  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 ←  𝐵𝑎𝑣𝑔.𝑏𝑙𝑜𝑐𝑘  

5. Initialize 𝑁𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑓𝑜𝑟𝑎𝑔𝑒𝑟𝑏𝑒𝑒𝑠 to Select from 𝐵𝑎𝑣𝑔.𝑏𝑙𝑜𝑐𝑘  as 𝐵𝑁𝐺𝐹𝐴  

6. Declare 𝑆𝑒𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠𝑒𝑟𝑣𝑒𝑟𝑠 as 𝑁𝑠𝑒𝑟𝑣𝑒𝑟 

7. Set 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟  as 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

8. Set 𝐸𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒 as 𝑒𝑟𝑟 

9. Estimate 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒  (𝑆) 

10. Rearrange, 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒 (𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒(𝑆)) 

11. 𝑊ℎ𝑖𝑙𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 ≤   𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

12.              Perform 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑠𝑒𝑎𝑟𝑐ℎ(𝐺𝑟𝑜𝑢𝑝𝑓𝑜𝑟𝑎𝑔𝑒𝑟𝑏𝑒𝑒𝑠 , 𝑁𝑜𝑛𝐺𝑟𝑜𝑢𝑝𝑓𝑜𝑟𝑎𝑔𝑒𝑟𝑏𝑒𝑒𝑠) 

13.              Select 𝐵𝑒𝑠𝑡𝑓𝑜𝑟𝑎𝑔𝑒𝑟𝑏𝑒𝑒𝑠  as 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒 as 𝐵𝑎 

14.               Re-estimate 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒  for each 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑎𝑡𝑎𝑏𝑙𝑜𝑐𝑘  

15.               Sort Results of 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑎𝑡𝑎𝑏𝑙𝑜𝑐𝑘  

16.               Reallocate Remaining 𝑓𝑜𝑟𝑎𝑔𝑒𝑟 𝑏𝑒𝑒𝑠 to other Locations 

17.               Evaluate 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒  for each 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝑎𝑡𝑎𝑏𝑙𝑜𝑐𝑘  

18.               Arrange 𝑏𝑒𝑒𝑠 from 𝑙𝑜𝑐𝑎𝑙 and 𝑔𝑙𝑜𝑏𝑎𝑙 search 

19. Process Continue until 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 
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Initially, Algorithm 4.5 selects a cloud environment with 𝑆 servers, and each server is divided 

into 𝑛 blocks (virtual machines). Thus, the time complexity of the algorithm is 𝑂(𝑛). The 

designed algorithm identifies the blocks/virtual machines in the overloaded server and finds 

the less overloaded blocks, evenly distributing the load and minimizing the response time. 

The task can be taken as a bee, and it is looking for a less loaded block (food source) when it 

finds the suitable block assignment of the task to block occurs. The next task also tries to 

assign the same block, which continues until the capacity on the block reaches the threshold 

value. Once the threshold value is obtained, the process finds the less resource utilized block, 

and the task is redirected to that block.  

The algorithm starts by randomly sending the S scout bees to selecting sites (less or highly 

overloaded). The fitness value is evaluated for each site and sorted from highest to lowest. 

The local search finds the best location or sites that are m fitting locations. The m best sites 

are categorized into two groups; Groupforagerbees and NonGroupforagerbees. The number of 

forager bees is set as BGFA, and the number of not forager bees as BNGFA. The local search 

process starts with recruiting the forager bees in the best sites neighborhood. The global 

search process is a random search process in the non-best sites. Finally, the overall locations 

are sorted according to their fitness value, and the process continues until the global optimum 

is found [84]. 

4.3 Example Scenario 

Consider an organization, a university (ABC University), that wants to manage the 

organization's data on the cloud in a distributed manner without involving any third party. 

First, it would create a blockchain network to provide a registration process to its employees. 

ABC university heads of departments like CSE, ME, EE, ECE, CE, etc., act as data owners 

represented as {𝐷𝑂1, 𝐷𝑂2, 𝐷𝑂3, . . . , 𝐷𝑂𝑛} in the proposed blockchain network. Faculty 

working in the department represent as users {𝑢1, 𝑢2, 𝑢3, . . . ,  𝑢𝑛} who belong to a particular 

department and work under the head or data owner. Therefore, the proposed architecture 

allows data owners to register in the network and then be responsible for registering their 

department faculty/users using the proposed system's key generation 

algorithm 𝐾𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(). Heads/data owners maintain the faculty and department file 

details. Heads and employee details are saved in the blockchain network. Head also maintains 

the access policy for their employees or users and provides access according to attribute 

details 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝑒𝑡𝑖𝑎𝑙𝑠{𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑘} 𝜖 𝑈𝑠𝑒𝑟𝑖𝑑. The access control 𝐴𝑐𝑐𝑒𝑠𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡() and 
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integrity checking 𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦𝑟𝑒𝑞𝑢𝑒𝑠𝑡 () algorithms provide the privacy-preserving 

environment and ensure that users can access the concerned department data via respective 

data owners. Therefore, there are many departmental heads or data owners in the proposed 

architecture, and each department contains multiple users.  

4.4 Security Analysis 

This section analyzes the security features of the proposed architecture to address the security 

threats. The proposed architecture deploys associated mitigation functionality to ensure 

security and privacy features to the cloud users. The following security solutions are provided 

by the proposed architecture to tackle the security threats:  

Authentication: Users of the proposed architecture follow the registration process to obtain 

the public keys. Public keys are treated as the users' addresses for the users' authentication to 

execute the proposed architecture's basic functionality. The blockchain network verifies users 

before allowing access to the services.  

Privacy Protection: The proposed architecture ensures the confidentiality of the data stored 

by the data owner. It ensures that the unauthorized user will not access the data owner's data. 

Also, it utilizes encryption techniques to transmit the data among the data owner, user, 

blockchain, and cloud—the data owner stores the encrypted user and data information in the 

blockchain network. Therefore, unauthorized users are not allowed to access the data stored 

on the network. The blockchain structure ensures all operations to be non-destructive and 

non-repudiation. The access policy and user details are securely stored in the blockchain 

network, ensuring data confidentiality and privacy.  

Key Security: The proposed architecture deploys the traditional CP-ABE algorithm in the 

blockchain network. It registers multiple data owners to generate user keys instead of a single 

authority or key management authority, thereby reducing the burden and providing a reliable 

environment. The respected data owner generates the data user key. Considering the risks 

involved while sharing the keys through the transmission medium, both the data owner and 

the user use the key exchange protocol Diffie-Hellman algorithm to share the key. Therefore, 

the proposed architecture guarantees the security of the keys.  

Access Control: The proposed architecture implements a fine-grained access control method 

and removes a single authority, ensuring a more dispersed access mechanism. It utilizes an 

attribute-based access control scheme to authorize user access. The users provide attribute 
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details during the registration process to the data owner. The data owner stores the attribute 

list to the blockchain network and describes the attribute policy using the subset operator. If 

the shared user's attributes are a subset of the stored attribute list, access is allowed to the 

requested user. After access is allowed, users follow the decryption process to obtain the 

plaintext using a secret key.   

Integrity Protection: The user can request the integrity validation of the data from the data 

owner. The proposed architecture utilizes the Merkle root concept to check the integrity of 

the data. The data owner maintains the Meta details of the data during the blockchain 

network's uploading process. Therefore, the data owner obtains the stored Merkle root, 

recalculates the Merkle root of the requested data, and performs the verification. If both hash 

matches, then the data's integrity is maintained; otherwise, it returns false to the user. 

4.5 Result Analysis 

This section presents the details of the proposed architecture experimental setup, evaluates 

storage and system performance, and compares the proposed work with the existing 

techniques. 

4.5.1 Experimental Setup 

We implemented the proposed architecture in the Java programming language. The 

experiments are conducted on the Window 10 operating system, with Intel® Core ™ i7CPU, 

2.5GHz, and 8GB RAM. We used Netbeans 7.0 IDE to implement the proposed architecture 

with JDK 1.7. The external auxiliary Java Pairing-based Cryptography is used to implement 

bilinear pairing-based cryptography in the proposed architecture. For simulating the cloud 

storage environment, the CloudSim-3.0.3 framework is used. CloudSim provides the cloud 

computing component system and behavioral modeling. Simulation of cloud environment 

offers useful insights to explore such dynamic, distributed, and scalable environments. The 

jar folder cloudsim-3.0.3.jar is used for integrating a java-based blockchain network with the 

simulated cloud environment. There are many more mature blockchain networks available, 

like Ethereum and Hyperledger. However, these blockchain networks are not directly 

deployed in the proposed architecture because the block header is more complicated than the 

traditional blockchain network. In contrast, we define a minimized block header while 

maintaining the Meta details. Thus, we have designed and implemented our minimal block 
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structure to combine multi-server cloud storage to ensure an easy, secure and reliable 

environment. 

4.5.2 Storage Performance 

CloudSim is used to simulate and model a cloud computing environment. The computing 

resources and virtual nodes are simulated to evaluate the performance of the optimization 

algorithm. Initially, we created a CloudSim environment with 20 data centers, 50 virtual 

machines, and 100-1000 transactions (tasks). Fig. 4.6 presents an average response time of 

the algorithm while executing each transaction ranges from 2000 to 20000 bytes by varying 

the number of transactions. The average response time of tasks expresses the amount of time 

between submitting a request and the first response produced by a transaction in seconds. It is 

observed that the average response time starts at about 6 s in all situations. Still, this value 

increases slightly to reach 18 s when the task's executable instruction length equals 2000 

bytes. However, it is highly increased to reach 100 s when the executable instruction length is 

equal to 20000 bytes. This is due to an increase in the number of tasks and how the 

instruction length affects the system load. Then, the response time is also increased. 

 

Figure 4.6: Average Response Time 

Fig. 4.7 presents an average execution time of the proposed work while executing each 

transaction ranges from 2000 to 20000 bytes at different transactions. The average execution 

time of transactions denotes the amount of time between the start and the transaction's finish 

time in seconds. It is observed that the average execution time starts at about 8 s in all 

situations. This value increases to 15 s when the task's executable instruction length equals 

2000 bytes. However, it is highly increased to reach 95 s when the executable instruction 

length equals 20000 bytes.  
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Figure 4.7: Average Execution Time 

The proposed system's resource usage is calculated based on the use of computational 

resources. The computing workload is directly proportional to resource consumption, which 

rises as the number of transactions rises. Equation 4.2 is used to measure the average resource 

consumption. As shown in Fig. 4.8, the proposed scheme maximizes resource efficiency by 

making resources as busy as possible compared to the proposed architecture without 

optimization implementation. Resource usage is lower when there are fewer transactions; but, 

as the number of transactions grows, resource utilization rises. This implies that for the larger 

task sets, the resource would be fully used. Fig. 4.8 shows that the minimum device 

utilization ranges from 74% to 80% for small task sets but reaches 100% when the 

computational task demands increase in the proposed solution. In contrast, the proposed 

architecture device utilization ranges from 70% to 84%, without optimization algorithm 

deployment. Thus, the proposed architecture efficiency is increased in terms of resource 

utilization rate with the implementation of optimization algorithm as compared to without 

optimization. 

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ∑
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑏𝑦 𝑎 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

 𝑎𝑐𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒

𝑛
𝑖=1                (4.2) 

Where 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  denotes the total number of computing resources engaged in 

processing task sets, and 𝑛 is the combined utilization of all computational resources 

expended on processing tasks workload. 



53 
 

 

Figure 4.8: Average Resource Utilization 

4.5.3 System Performance 

This section analyses the proposed architecture based on computation time, throughput (total 

packets received/time frame), and delay parameters. By utilizing JMeter, we conducted the 

evaluation process to measure the performance parameters of the proposed architecture. The 

number of transactions is in the range of 100-1000 who execute the proposed architecture's 

different operations. The proposed architecture supports three types of transactions, i.e., data, 

access, and validation transactions. The data transactions include the functions required to 

upload the data on cloud storage. The access transactions include the operations necessary to 

access the uploaded data from the cloud storage. The validation transaction consists of the 

integrity checking function of the proposed architecture. During the experiment, we executed 

a series of transactions and evaluated the system performance. A maximum of 1000 

transactions are executed on the proposed application, and, in the end, the throughput 

computation time and delay parameters are assessed. In JMeter, the Data/time (KB/sec) units 

indicate the throughput. The proposed application throughput refers to the amount of data 

transferred from one location to another in a unit amount of time. The evaluation is monitored 

with a breakpoint after 100 transactions, and the total throughput of the proposed network is 

calculated for different transactions, as shown in Fig. 4.9.  
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Figure 4.9: Throughput of the Proposed Work 

The computation time is the average time taken to execute the series of transactions. As 

shown in Fig. 4.10, the computation time increases with the number of transactions. The user 

initiates a thousand transactions in the proposed application to analyze the average 

computation time interval of a hundred transactions. The average computation is calculated 

separately for each type of transaction, as shown in Fig. 4.10. Delay denotes the time required 

by the system to send the transaction request to the other nodes. The average delay represents 

the delay required to execute the 1000 transactions in the proposed architecture. We have 

evaluated the proposed application average delay by using the Jmeter tool and measuring it in 

a second. As shown in Fig. 4.11, the proposed application recorded the highest delay in 

validation transactions, i.e., 4.5 seconds.   

 

Figure 4.10: Computation Time of the Proposed Work 
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Figure 4.11: Delay of the Proposed Work 

4.5.4 Comparative Analysis 

This section compares the proposed architecture with state-of-the-art techniques such as 

block secure [73], secure access control [74], and deduplication with blockchain [76]. The 

different aspects of the proposed architecture are evaluated and compared with the existing 

work. The network performance of the proposed architecture is analyzed by comparing it 

with the block secure [73]. The proposed architecture access control algorithm efficiency is 

evaluated and compared with the existing work [74]. Also, the proposed architecture storage 

performance is measured and compared with the work deduplication with blockchain [76]. 

For comparative analysis, we have selected three different literature pieces to measure the 

various aspects of the proposed architecture by using different measuring parameters. First, 

the proposed architecture is compared with the literature [73] based on transmission time, 

considering two different architectures with or without optimization algorithm 

implementation. Next, the proposed architecture performance is analyzed by varying the 

number of user attributes to evaluate the run time of the transactions and compared with the 

secure access control [74]. Last, the performance of the proposed architecture is measured 

based on encoding and decoding time and compared with blockchain-based deduplication 

architecture [76]. This comparison shows the significance of the proposed architecture from 

existing architectures.  
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Figure 4.12: Transmission Time Comparison between Proposed Work without 

Optimization and Block Secure 

The block secure architecture utilizes the two architectures for storing the user data on the 

cloud. One is blockchain architecture with multiple data centers, and another is multiple data 

centers with genetic optimization [73]. As shown in Fig. 4.12 and 4.13, the proposed 

architecture compares with both block secure architectures using transmission time as the 

parameter. The transmission time is defined as the amount of time required for storing and 

accessing the files on the cloud. The proposed architecture without optimization 

implementation utilizes the same amount of transmission time required by the block secure 

with blockchain solution without optimization by varying the number of users as depicted in 

Fig. 4.12. Thus, the proposed architecture maintains the effectiveness of the existing work. 

As shown in Fig. 4.13, the proposed architecture with optimization implementation compares 

with block secure architecture with genetic implementation. The proposed architecture 

requires less transmission time for storing and accessing the files from the cloud database 

than block secure [73]. The block secure architecture requires more time on calculations in 

genetic algorithm, whereas proposed architecture does not require much analysis. Thus, the 

proposed architecture performance is better than the block secure architectures in terms of 

transmission time.  

The proposed architecture performance is compared to the secure cloud storage with access 

control literature using run time as the measuring parameter. The proposed architecture 

performance is analyzed by measuring the run time of access transactions with varying the 

number of attributes of the users. As shown in Fig. 4.14, the proposed architecture access 
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transactions execution requires less time than the secure access control [74]. The execution 

time of both architectures increases as the number of attributes increases. The formulation of 

simple access policies in the proposed architecture decreases the run time compared to the 

literature. 

 

Figure 4.13: Transmission Time Comparison between Proposed Work with 

Optimization and Block Secure  

 

Figure 4.14: Run-Time Comparison of Proposed Architecture with the Secure Access 

Control 

The proposed architecture's encoding and decoding time are compared with the literature 

[76]. As shown in Fig. 4.15 and 4.16, the proposed architecture requires similar encryption 

and decryption time compared to blockchain-based deduplication architecture. The decoding 

time for both architectures is less than the encoding time. As depicted in the figures, the 
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proposed architecture and literature take the same time for both processes. Therefore, the 

performance evaluation and comparative analysis show that the proposed architecture 

maintains the effectiveness of the existing work and provides a better and secure solution. 

 

Figure 4.15: Encoding Time Comparison between Proposed Work and Deduplication 

with Blockchain  

 

Figure 4.16: Decoding Time Comparison between Proposed Work and Deduplication 

with Blockchain  

4.6 Conclusion 

This chapter represents distributed and privacy-preserving blockchain-based cloud storage 

architecture with access control and integrity checking features. The proposed architecture 

deploys a CP-ABE approach in blockchain structure to provide key generation processes 
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using bilinear pairing. The implemented key generation process uses distributed system to 

prevent complete reliance on a single authority and deliver a more secure environment. It also 

provides an access control mechanism that ensures cloud data are only accessible by the 

authenticated user with data owner nodes' help. The proposed blockchain structure maintains 

the integrity of the cloud data using the Merkle root concept. Furthermore, it uses Honeybee 

optimization techniques at the cloud storage system to optimize resource utilization and 

minimize transaction processing time. For future work, we plan to include the user revocation 

process in the existing architecture to provide reliable, safe, and dynamic removal of the user 

at any time and manage key management and access control approach accordingly. 
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CHAPTER 5  

ACCESS CONTROL AND USER REVOCATION 

PROCESS IN CLOUD STORAGE USING 

BLOCKCHAIN 

 

 

This chapter introduces the enhanced access control and user revocation features in 

the proposed blockchain-based cloud storage architecture. The proposed architecture 

registers data owners and attribute authorities using a key generation algorithm. The 

data owners and attribute authorities store the public information in the blockchain 

structure, set access policies, and generate the user’s secret key to resolve key 

escrow problems. The deployed architecture attains the fine-grained access control 

with the user revocation process. The performance evaluation demonstrates that the 

proposed scheme provides a more efficient cloud environment. 

 

5.1 Introduction 

With the tremendous growth of Information Technology, a massive amount of information is 

generated every year, and it is difficult to handle this information locally. Therefore, the 

cloud storage system is considered the most suitable and economical way to resolve this issue 

[85]. However, the storage of confidential information on the cloud servers creates trust 

issues. Thus, promising cryptographic solutions are required to protect user privacy, achieve 

access control, perform user revocation, and encode the data before uploading to the cloud. 

Traditionally used cryptographic solutions cannot provide flexible information sharing 

processes and fine-grained access control; therefore, a new encryption technique, Attribute-

based Encryption (ABE), was developed by Sahai and Waters [86]. The ABE algorithm 

utilizes the attribute set to specify access policy and allow decryption of the data according to 



61 
 

the set policy. Since then, many variations of ABE have been proposed by researchers to 

specify access policy to the ciphertext or decryption key [87-89]. Nevertheless, the traditional 

ABE algorithms lack efficiency, require more computational cost, and increase linearly with 

the complexity of access policy. The access control mechanism in the existing cloud system 

requires one or more completely trusted attributes or central authorities to maintain the access 

policy. If the central authority is compromised, the whole structure is affected. Also, the user 

revocation where re signature generation is required remains a major task. Blockchain is a 

relatively advanced computer technology development where members can immediately 

capture and share transactions with other members [90]. Several research studies have used 

the blockchain to achieve attribute-based access control and revocation process in the cloud 

storage system. For example, in [91], the authors present a blockchain-based data sharing 

scheme using smart contract and ABE to achieve user revocation process. The proposed 

architecture provides privilege management using attribute-level revocation during the data 

sharing process. It involves trusted authority for the key management process and encrypts or 

decrypt data; thus, the user data's security is at risk. In case of failure of key management 

center, users cannot access their information, and the entire structure will get affected.  

Furthermore, Ning et al. [92] develop a cryptcloud framework to secure cloud storage 

systems. The designed architecture uses the CP-ABE algorithm to support the white box 

traceability, provide auditability, and revocation process. It lacks the utilization of blockchain 

technology to provide a more reliable environment. Similarly, in [93], the authors design a 

multi-authority-based CP-ABE approach to ensure the revocation process in the Named Data 

Network (NDN). The suggested method deploys the proxy-based access control technique 

with forward and backward security. The involvement of proxy servers increases the 

response time. Also, Fan et al. [94] implement the access control mechanism using proxy 

servers for smart cities. It also uses the CP-ABE scheme to achieve the security features and 

user revocation process. The proposed scheme requires more processing overhead due to the 

usage of proxy servers. Wang et al. [95] design a secure cloud storage system using 

blockchain technology. The designed framework develops using the Ethereum platform to set 

a valid access period for cloud users and achieves an access control mechanism. It uses the 

smart contract functionality to store ciphertext in the blockchain network. Similarly, Saini et 

al. [96] propose a smart contract-based access control framework using blockchain 

technology for the healthcare system. The designed system uses the Elliptic Curve 

Cryptography to encrypt the healthcare data before storing it on the cloud. These works suffer 
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from many disadvantages, such as the involvement of a semi-trusted party which affects the 

overall security of the architectures.  

To deal with the disadvantages and challenges mentioned above, we designed Java-based 

blockchain architecture with access control and user revocation process for the cloud storage 

to ensure data security. The proposed architecture implements CP-ABE to provide a key 

generation mechanism using bilinear mapping-based cryptography and perform data access 

control mechanisms. Data owners and attribute authorities manage the key related and user 

access policy details in a distributed manner by utilizing the blockchain structure and 

providing a more robust environment. The designed architecture stores publicly accessible 

information in the blockchain network while also controlling stored cloud data.  

5.2 Proposed Work 

In this section, the entire proposed scheme has been explained in detail. 

5.2.1 System Model 

Fig. 5.1 shows the decentralized secure architecture for blockchain-based cloud storage. The 

proposed system model consists of five core entities: 

• Blockchain: Blockchain maintains the non-tamper and transparent data transfer 

between the users of the proposed architecture. The blockchain network ensures 

access control and revocation functionality using various smart contract functions 

such as key generation, encryption, re-encryption, decryption, and key update 

functions. 

• Attribute Authority: Attribute authority produces the user keys using the CP-ABE 

algorithm. Attribute authority has the right to generate, distribute, and modify user 

attribute keys. Attribute authority also manages user’s access rights based on their 

attributes. Attribute authority employs a re-encryption process to attain fine-grained 

access control to apply the attribute level's user revocation method.  

• Data Owner: The data owner outsources the data on cloud storage to effectively 

manage data distribution. The data owner also defines the attribute-based access 

policies and uses these policies to encrypt the user files.  

• User: Users can access the data when their attributes satisfy the ciphertext's access 

policies. The user can use the decryption algorithm to decrypt the file using the secret 
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key and obtain the plaintext. If the data owner removes any user, the user cannot 

access that group data. 

• Cloud Storage: Cloud storage stores encrypted files uploaded by the data owners. It 

manages the access of stored data and gives relevant services. 

 

Figure 5.1: System Model of the Proposed Architecture 

The proposed architecture workflow, as shown in Fig. 5.1 explanation, is as follows:  

1. Attribute authorities and data owners send key generation requests to generate global 

parameters and public and master keys to register in the proposed architecture.  

2. The blockchain network executes the key generation function and generates a public 

key and master key for the data owner and attribute authority. 

3. The user sends a registration request to the blockchain network, which sends the user 

details to the data owner and attribute authority with attribute list like user ID, 

department, email ID, contact number, address, DOB, etc.  

4. Using the CP-ABE algorithm, the data owner and attribute authority save user details 

and generate an access policy corresponding to the user's attribute list. The generated 

keys of the data owner and attribute authority are shared with the user. The user 

executes the key generation algorithm to generate a secret key using data owner and 

attribute authority generated keys.  

5. The data owner encrypts the plaintext using the access structure to generate the 

ciphertext. The generated ciphertext shares with the attribute authority for the re-
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encryption process to provide user revocation and generates header information so 

that revoked users cannot access the encrypted ciphertext. 

6. After the re-encryption process, the ciphertext with header information is outsourced 

to the cloud server. 

7. The user sends an access request to the data owner. In response, the data owner 

fetches the requested details from the cloud server and shares them with the user.  

8. Then, the user uses the decryption process to decrypt the plaintext. If the user is 

authenticated, he can decrypt the data as the ciphertext associated with the header 

information that only allows active users to access it. 

9. The user may send the request to attribute authority to add, remove or modify the 

attributes.  

10. The attribute authority executes the key update function to regenerate the keys for the 

modified user list and updates the group access policy.  

The proposed architecture consists of the following smart contract algorithms: 

𝑆𝑒𝑡𝑢𝑝(, 𝔾, 𝑔, 𝑒, 𝔾𝑇,𝐻, 𝐻1) → 𝐺𝑃: This algorithm computes the public parameter 𝐺𝑃 in the 

setup phase.  

𝐷𝑂𝑘𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝐺𝑃) → (𝑃𝐾𝑑𝑜 , 𝑀𝐾𝑑𝑜): This algorithm generates public key 𝑃𝐾𝑑𝑜 and 

master key 𝑀𝐾𝑑𝑜 for data owners. 

𝐴𝐴𝑘𝑒𝑦𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝐺𝑃) → (𝑃𝐾𝑎𝑎 , 𝑀𝐾𝑎𝑎): This algorithm generates public key 𝑃𝐾𝑎𝑎 and 

master key 𝑀𝐾𝑎𝑎 for attribute authorities. 

𝐷𝑂𝑘𝑒𝑦𝑐𝑜𝑚𝑝(𝑀𝐾𝑑𝑜 , 𝑈𝑡) 𝑎𝑛𝑑 𝐴𝐴𝑘𝑒𝑦𝑐𝑜𝑚𝑝(𝑀𝐾𝑎𝑎 , 𝑈𝑡 , 𝑆𝑖 , 𝑆) → 𝑆𝐾𝑑𝑜,𝑈𝑡
 𝑎𝑛𝑑 𝑆𝐾𝑎𝑎,𝑈𝑡

: These 

two algorithms are executed by the user 𝑈𝑡. First, data owners take master key 𝑀𝐾𝑑𝑜 and 

user ID 𝑈𝑡 as input and output unique private key 𝑆𝐾𝑑𝑜,𝑈𝑡
 for the user. Then, attribute 

authorities take a master key 𝑀𝐾𝑎𝑎, user ID 𝑈𝑡,  confidential data 𝑇𝑖 and attributes set 𝑇 

described as input and outputs 𝑆𝐾𝑎𝑎, 𝑈𝑡
 user key. Finally, the user gets the final secret key 

𝑆𝐾𝑈𝑡
 by combining these two key generation algorithms.  

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐹, 𝑃𝐾𝑑𝑜 , 𝑃𝐾𝑎𝑎 , 𝐴𝑡) → 𝐶𝑇: This algorithm takes file 𝐹, public keys 𝑃𝐾𝑑𝑜, 𝑃𝐾𝑎𝑎, 

and access structure 𝐴𝑡 , as inputs and outputs ciphertext 𝐶𝑇.  

𝑅𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐶𝑇, 𝐴𝐺 , 𝑃𝐾𝑎𝑎
∗ ) → 𝐶𝑇′: This algorithm takes the CP-ABE generated 

ciphertext  𝐶𝑇, attribute group details 𝐴𝐺, attribute group public key 𝑃𝐾𝑎𝑎 
∗ and outputs 
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ciphertext 𝐶𝑇′. The only active user who satisfies the updated policy can access the updated 

ciphertext.    

𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝐾) → 𝐹: This algorithm is executed by the active users to decrypt the 

ciphertext and obtains plaintext 𝐹.  

All the notations and their descriptions used in the proposed scheme are given in Table 5.1. 

Table 5.1: Notation Table 

Notations Description 

𝐺𝑃 Global parameters 

𝑃𝐾𝑑𝑜 Public key of the data owner 

𝑀𝐾𝑑𝑜 Master key of the data owner 

𝑃𝐾𝑎𝑎 Public key of the attribute authority 

𝑃𝐾𝑎𝑎
∗  Public key of the attribute group 

𝑀𝐾𝑎𝑎 Master key of the attribute authority 

𝑆𝐾𝑑𝑜,𝑈𝑡
 Data owner secret key for the user 

𝑆𝐾𝑎𝑎,𝑈𝑡
 Attribute authority secret key for the user 

𝑈𝑡 User ID 

𝑆𝐾𝑈𝑡
 Secret key of the user 

𝑆𝐾𝑎𝑎,𝑈𝑡

∗  User secret key for attribute group 

𝐶𝑇 Ciphertext 

𝐶𝑇′ Re-encrypted ciphertext 

𝐻𝑒𝑎𝑑𝑒𝑟 Ciphertext header information for the user access 

𝐾 Security parameter denotes group size 

𝐹 File 

𝑇 Attribute set 

𝑈𝑡 User ID 

𝐴𝑡 Access structure 

𝐴𝐺 Attribute group 

𝐷𝑂 Data owner 

𝐴𝐴 Attribute authority 
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5.2.2 Smart Contract Functions 

The proposed architecture deploys the various smart contract functions using a CP-ABE 

algorithm to provide various services to the user such as key generation process, data 

outsource service, access control, and revocation process using re-encryption process. The 

proposed architecture involves data owner and attribute authority entities to provide the 

essential services to the user using bilinear mapping. The blockchain network selects a 

bilinear group 𝔾 of prime order 𝑝 and generator 𝑔 and two random numbers 𝑎, 𝑏 ∈  ℤ𝑝 .  Let 

𝑝 be a prime number and  𝔾, 𝔾𝑇 be multiplicative cyclic groups of order 𝑝. A security 

parameter 𝐾 denotes the group’s size. We also use Lagrange coefficients Δ𝑖,ℒ  for any 𝑖 ∈  ℤ𝑝
∗  

and a set, ℒ, of elements in ℤ𝑝
∗ : define Δ𝑖,ℒ(𝑥) = ∏

𝑥−𝑗

𝑖−𝑗𝑗∈ℒ𝑗≠𝑗 . The hash functions are also 

designed 𝐻: {0, 1}∗ → 𝔾 to link each attribute with random group element in 𝔾 and 𝐻1: 𝔾𝑇 →

ℤ𝑝
∗ , to model random group element. A map e: 𝔾 × 𝔾 → 𝔾𝑇 satisfying the following 

properties is called a bilinear map or bilinear pairing. 

• 𝑒 (𝑢𝑎 , 𝑣𝑏 ) = 𝑒(𝑢, 𝑣)𝑎𝑏, ∀ 𝑢, 𝑣 𝜖 𝔾, 𝑎, 𝑏 ∈ ℤ𝑝  

• If 𝑔 is a generator of 𝔾, then 𝑒(𝑔, 𝑔) is a generator of 𝔾𝑇 

• 𝑒(𝑢, 𝑣) is efficiently computable for all 𝑢, 𝑣 ∈  𝔾 

• Let 𝐻: {0, 1}∗ → 𝔾 be a hash function that maps attribute to the random element of 𝔾. 

Key Generation Function: This phase generates global parameters 𝐺𝑃 at the initial stage. It 

uses a bilinear group 𝔾 of prime order 𝑝 and generator 𝑔 based on security parameters. The 

two hash functions 𝐻: {0, 1}∗ → 𝔾 and 𝐻1: 𝔾𝑇 → ℤ𝑝
∗  are also selected from the hash 

functions, universal family.  

Algorithm 5.1 is executed by the data owners. Line 1 selects 𝒶 random number from the 

finite field over prime p, ℤ𝑝
∗  and use a generator to generate public and master key for the 

data owner. It outputs two keys pubic key 𝑃𝐾𝑑𝑜 and master key 𝑀𝐾𝑑𝑜 . Both keys are saved 

in the blockchain network using the SHA256 hashing algorithm. Algorithm 5.1 requires 

constant amount of time complexity for executing the simple statements. 
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Algorithm 5.1: Key Generation for Data Owner 

𝐷𝑂𝑘𝑒𝑦𝑔𝑒𝑛(𝐺𝑃 ) 

Input: Global Parameter 𝐺𝑃, Random Exponent 𝒶  

Output: Public Key 𝑃𝐾𝑑𝑜 and Master Key 𝑀𝐾𝑑𝑜 

1. Begin 

2. Let 𝒶 ∈  ℤ𝑝
∗         //selects a random number 

3. 𝔟 ← 𝑔𝒶                // g is a generator 

4. 𝑃𝐾𝑑𝑜 ← 𝔟 

5. 𝑀𝐾𝑑𝑜 ← 𝒶 

6. End  

 

Algorithm 5.2 is executed by the attribute authorities. Line 2 selects the random number 𝛽 

from ℤ𝑃
∗ . Similarly, Line 3 selects the random number 𝒸 from ℤ𝑃

∗ . After the random number 

selection, the public key is calculated by applying a mapping function using the selected 

random number 𝛽. The master key is generated using the generator function using 𝛽, and the 

attribute group public key is created using 𝒸. It generates public keys 𝑃𝐾𝑎𝑎 , and 𝑃𝐾𝑎𝑎
∗ , and 

master key 𝑀𝐾𝑎𝑎. Algorithm 5.2 requires a constant time complexity. 

Algorithm 5.2: Key Generation for Attribute Authority 

𝐴𝐴𝑘𝑒𝑦𝑔𝑒𝑛(𝐺𝑃 ) 

Input: Global Parameter 𝐺𝑃, Random Exponent 𝛽  

Output: Public Keys 𝑃𝐾𝑎𝑎, 𝑃𝐾𝑎𝑎
∗  and Master Key 𝑀𝐾𝑎𝑎 

1. Begin 

2. Let 𝛽 ∈  ℤ𝑝
∗          //selects a random number 

3. Let 𝒸 ∈  ℤ𝑝
∗           //selects a random number 

4. 𝑃𝐾𝑎𝑎 ← 𝑒(𝑔, 𝑔)𝛽 

5. 𝑀𝐾𝑎𝑎 ← 𝑔𝛽 

6. 𝑃𝐾𝑎𝑎
∗ ← 𝑔𝒸 

7. End 
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User Key Generation Function: The attribute authority and the data owner participate in the 

user key generation process. First, the attribute authority and data owner verify the user ID 

and check if it already exists. After verifying the user ID, the attribute authority and data 

owner follow the user key generation process using the secure two Party Computation 

function (2PC) that allows the two parties to jointly compute the function using their inputs 

without sharing their inputs with the other party [97]. Thus, the proposed architecture utilizes 

the 2PC protocol to securely generate the user secret key parameters. Then, the user uses the 

generated parameters to create the secret key. The attribute authority and data owner execute 

the key generation algorithm to generate one public key and two secret keys, 𝑃𝐾𝑑𝑜,𝑈𝑡
, 

𝑆𝐾𝑎𝑎,𝑈𝑡
, and 𝑆𝐾𝑎𝑎,𝑈𝑡

∗ . The user utilizes these keys to generate his own key 𝑆𝐾𝑈𝑡
using 

Equation 5.1. The user uses the generated key to decrypt the ciphertext.  

Algorithm 5.3 generates the secret key for the user using the secret keys generated by the data 

owners and attribute authorities. First, the data owner and attribute authority authenticate the 

user details then uses the 2PC function to calculate the value of 𝑥 using the data owner’s 𝑁𝑡 

and 𝒶 parameters and attribute authority’s 𝑀𝑡 and 𝛽 parameters. Next, the data owner 

calculates the value of 𝑆 using the generator function and shares it with the attribute authority 

using the 2PC protocol. Similarly, the attribute authority utilizes the 𝑆 to calculate the 𝑃 

parameter.  

Based on calculated parameters, attribute authority generates the secret key 𝑆𝐾𝑎𝑎,𝑈𝑡
 and 

generates the group key 𝑆𝐾𝑎𝑎,𝑈𝑡

∗ using 𝑃𝐾𝑎𝑎
∗  key parameter 𝑐 by applying a hash function on 

user ID 𝑈𝑡. The data owner uses the attribute set 𝑇 to calculate the value of 𝐷 using a 

generator with a random number and generates the secret key 𝑆𝐾𝑑𝑜,𝑈𝑡
. 

The algorithms generate the secret key for the user by using data owner and attribute 

authority generated secret keys 𝑆𝐾𝑈𝑡
= {𝑆𝐾𝑎𝑎,𝑈𝑡

, 𝑆𝐾𝑑𝑜,𝑈𝑡
} by using Equation 5.1. 

𝑆𝐾𝑈𝑡
= (𝑔

(𝛽+𝑁𝑡)

𝒶 ,  (∀𝑖 ∈ 𝑇: 𝐷𝑖 = 𝑔𝑀𝑡 . 𝐻(𝑖)𝑟𝑖 , 𝐷𝑖 = 𝑔𝑟𝑖))                        (5.1)   

The user’s secret key is denoted by 𝑆𝐾𝑈𝑡
. The user uses the generated key to execute the 

decryption algorithms to decrypt the ciphertext and obtains the plaintext that the data owner 

outsources. Algorithm 5.3 requires a constant time complexity. 
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Algorithm 5.3: Key Generation for User 

𝐴𝐴𝑘𝑒𝑦𝑔𝑒𝑛( ) ↔ 𝐷𝑂𝑘𝑒𝑦𝑔𝑒𝑛( ) 

Input: User ID 𝑈𝑡 

Output: User Secret Key 𝑆𝐾𝑈𝑡
 

1. Begin 

2. 𝑖𝑓 𝐴𝐴 and 𝐷𝑂 authenticate 𝑈𝑠𝑒𝑟 𝑈𝑡 , 𝑡ℎ𝑒𝑛 

3.      𝐷𝑂 selects random exponent 𝑁𝑡  ∈𝑅  ℤ𝑝
∗         //unique and secret to the user 

4.      𝑥 ← (𝛽 + 𝑁𝑡)𝒶 ← 2𝑃𝐶(𝐷𝑂(𝑁𝑡, 𝒶), 𝐴𝐴(𝛽))  //general and secure 2PC function 

5.      𝐴𝐴 selects random exponent 𝑀𝑡  ∈𝑅  ℤ𝑝
∗  

6.      𝐷𝑂 ← 𝑆 = 𝑔
𝑥

𝑀𝑡 =  𝑔
(𝛽+𝑁𝑡)𝒶

𝑀𝑡           //DO computes and send to AA using 2PC 

7.      𝐴𝐴 ← 𝑃 = 𝑆
1

𝒶2 =  𝑔
(𝛽+𝑁𝑡)

𝒶𝑀𝑡            //AA computes and send to DO using 2PC 

8.      𝑆𝐾𝑎𝑎,𝑈𝑡
← 𝑃𝑀𝑡 ←  𝑔

(𝛽+𝑁𝑡)

𝒶             //attribute authority generates secret key 

9.      𝑆𝐾𝑑𝑜,𝑈𝑡
← (∀𝑖 ∈ 𝑇: 𝐷𝑖 = 𝑔𝑀𝑡 . 𝐻(𝑖)𝑟𝑖 , 𝐷𝑖 = 𝑔𝑟𝑖), 𝑟𝑖 ∈𝑅  ℤ𝑝

∗  //DO generates secret key 

10.    𝑆𝐾𝑎𝑎,𝑈𝑡

∗ ← 𝐻(𝑈𝑡)𝑐            //AA generates another secret key for attribute group key 

11. 𝑒𝑙𝑠𝑒  

12.     exit 

13. End 

 

Encryption Function: The proposed architecture implements the access policy by 

represented it in the form of tree structure 𝐴𝑡. The access tree non-leaf nodes are designed 

using the threshold gate. The proposed architecture uses AND, 𝑂𝑅, and 𝐾 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

gates. The access tree leaf nodes denote attributes for both negated and non-negated user 

details. The existing CP-ABE encryption algorithm allows using 𝑁𝑂𝑇 gates only at the tree 

structure leaf nodes. In contrast, the proposed architecture allows a user to provide non-

monotonic access control.  

As shown in Fig. 5.2, it illustrates an employee's access structure who needs to give access 

permission to other employees. The leaf nodes denote the non-negated attributes employee, 
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CSE, staff, big data, researcher, guest faculty, and one negated attribute student. The first 

attribute set is {employee, CSE, big data}. It represents the computer science branch 

employee having research area big data is an authorized access policy set. Whereas the 

second attribute set {student, postgraduate, graduate, researcher} represents unauthorized 

access policy set means graduate, postgraduate, and researcher students are not allowed to 

access employee's data.   

The data owner outsources the file on the cloud server. To store the file on the cloud server, 

the data owner needs the access information At (Fig. 5.2) with universal attributes 𝑈 and 

performs encryption to convert plaintext to ciphertext using attribute authority public key 

𝑃𝐾𝑎𝑎.  

      

 

Figure 5.2: Tree of the Access Structure 

Algorithm 5.4 selects a polynomial 𝑉𝑛 for each node of the access tree 𝐴𝑡 using a top-down 

approach. Then, the algorithm sets the degree 𝑑𝑛 for 𝑉𝑥  node that is one less than the 

threshold value of that node i.e., 𝑑𝑛 = 𝐾𝑛 − 1. For the root node 𝑅, the random value is 

selected from ℤ𝑝
∗  and set 𝑉𝑅 ← 𝓈. Next, for any other node of the tree, the algorithm sets 𝑉𝑥  

by assigning index values. In the end, the algorithm generates the ciphertext using L denotes 

leaf nodes of access tree 𝐴𝑡 , attribute authority public key 𝑒(𝑔, 𝑔)𝛽, data owner public key 𝔟, 

and polynomial function as represented in Line 11. The time complexity of the algorithm is 

𝑂(𝑛). 

AND 

OR 

AND 

3-Threshold 

NOT 

Employee CSE Post 
Graduate 

Graduate Researcher Student 

Big data 



71 
 

 

Algorithm 5.4: Encryption  

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐹, 𝑃𝐾𝑑𝑜 , 𝑃𝐾𝑎𝑎 , 𝐴𝑡) 

Input: File 𝐹, Public Key 𝑃𝐾𝑑𝑜, Public Key 𝑃𝐾𝑎𝑎 , and Access Structure 𝐴𝑡 

Output: Cipher Text 𝐶𝑇 

1. Begin 

2. 𝐹𝑜𝑟 each Node 𝑛 𝑖𝑛 𝐴𝑡 

3.        Select a polynomial 𝑉𝑛         //start from the root node 

4.        𝑑𝑛 ← 𝐾𝑛 − 1                           //𝐾𝑛 = 𝑉𝑥  node threshold value in 𝐴𝑡 

5.        𝑖𝑓 𝑥 = 𝑅𝑜𝑜𝑡𝑛𝑜𝑑𝑒  𝑅 

6.              Let 𝓈, 𝓈 ∈𝑅  ℤ𝑝
∗  

7.                𝑉𝑅 ← 𝓈  

8.      𝑉𝑥 ← 𝑉𝑝(𝑥)(𝑖𝑛𝑑𝑒𝑥(𝑥))          //set node 𝑥 index value to 𝑉𝑥  

9. 𝑒𝑛𝑑 𝑓𝑜𝑟 

10. Let 𝐿 ← 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒𝑠(𝐴𝑡) 

11. 𝐶𝑇 = (𝐴𝑡, 𝐶′ = 𝐹𝑒(𝑔, 𝑔)𝛽𝓈 , 𝐶1 = 𝔟𝓈 ∀ 𝑙 ∈ 𝐿: 𝐶𝑙 = 𝑔𝑉𝑦
(0)

, 𝐶𝑙 = 𝐻(𝛿𝑙)
𝑉𝑦

(0)

) 

12. End 

 

Re-Encryption Function: The re-encryption phase prevents the revoked user from accessing 

the plaintext. This function is executed by the attribute authority to re-encrypt the ciphertext 

by using attribute group 𝐴𝐺  before outsourcing to the cloud server—this algorithm control 

user access according to attributes. Algorithm 5.5 selects the random number 𝐾𝐺  from 𝑍𝑃
∗  for 

each group member 𝐺𝑙 present in attribute group 𝐴𝐺 and calculates the re-encrypted 

ciphertext 𝐶𝑇′ as represented in Line 4. Then, the algorithm calculates the header information 

using randomly selected numbers 𝑃∗ and 𝑅 from 𝑍𝑝
∗  and attribute group public key 𝑃𝐾𝑎𝑎

∗ . For 

each group, member belongs to 𝐴𝐺, the algorithm calculates the exponent function 𝑃. In the 

end, the header information is calculated as presented in Line 15. The authorized user, when 

requesting the cloud server, then responds with 𝐶𝑇′ and 𝐻𝑒𝑎𝑑𝑒𝑟. Using this information, the 

user can decrypt the data until the user is not on the revocation list. The algorithm’s time 

complexity is 𝑂(𝑛). 
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Algorithm 5.5: Re-Encryption  

𝑅𝑒𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐶𝑇, 𝐴𝐺 , 𝑃𝐾𝑎𝑎
∗ ) 

Input: Cipher Text 𝐶𝑇, Attribute Group 𝐴𝐺, and Attribute Group Public key 𝑃𝐾𝑎𝑎
∗  

Output: Cipher Text 𝐶𝑇′ and 𝐻𝑒𝑎𝑑𝑒𝑟 

1. Begin 

2. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐺𝑙   𝑖𝑛 𝐴𝐺 

3.        Let 𝐾𝐺 ,  𝐾𝐺 ∈  ℤ𝑝
∗  

4.         𝐶𝑇′ = (𝐴𝑡, 𝐶′ = 𝐹𝑒(𝑔, 𝑔)𝛽𝓈 , 𝐶1 = ℎ𝓈  ∀ 𝑙 ∈ 𝐿: 𝐶𝑙 = 𝑔𝑉𝑦
(0)

, 𝐶𝑙 = (𝐻(𝛿𝑙)
𝑉𝑦

(0)

)
𝐾𝐺

) 

5. 𝑒𝑛𝑑 𝑓𝑜𝑟 

6. Let 𝑃∗, 𝑅 ∈  ℤ𝑝
∗  

7. 𝑥𝑡 = 𝐻1 (𝑒(𝑄𝑡
𝑃∗

, 𝑃𝐾𝑎𝑎
∗ )) ∀ 𝑈𝑡  ∈ 𝐺 

8. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝐺𝑙   𝑖𝑛 𝐴𝐺 

9.        𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢𝑠𝑒𝑟 𝑈𝑖 , 𝑖 ≤ 𝑛       //n is the number of users in 𝐺𝑙 

10.                𝑖 = 𝑖 ∗ (𝑥 − 𝑥𝑖) 

11.                𝐾 = 𝐾 + 𝑎𝑖𝑥
𝑖 

12.                𝑃𝑖 ← 𝑔𝑎0                              // exponent function 

13.        𝑒𝑛𝑑 𝑓𝑜𝑟 

14.       𝑓(𝑥) = 𝐼 = 𝐾 𝑚𝑜𝑑 𝑝 

15.      𝐻𝑒𝑎𝑑𝑒𝑟𝑙 = {𝐾𝐺 . 𝑃0
𝑅, 𝑃1

𝑅 . . . . , 𝑃𝑚
𝑅} 

16.     𝐻𝑒𝑎𝑑𝑒𝑟 = 𝐻𝑒𝑎𝑑𝑒𝑟𝑙 

17. 𝑒𝑛𝑑 𝑓𝑜𝑟 

18. End 

 

Decryption Function: This function works in two stages, as explained below: 

1. Group Key Decryption Stage: The user requests the data owner for the data access. In 

response, the data owner sends a request to the cloud server and provides cipher text 

(𝐶𝑇′, 𝐻𝑒𝑎𝑑𝑒𝑟) to the user. Then user generates the key using the attributes 𝑇 associated with 

the user from the 𝐻𝑒𝑎𝑑𝑒𝑟. For example, a user 𝑈𝑡 having attributes 𝜆𝑗 means 𝑈𝑡 ∈ 𝐺𝑗, and the 

user can obtain the attribute key 𝐾𝑙 from 𝐻𝑒𝑎𝑑𝑒𝑟 as shown below. 

i. Calculates, 𝑥𝑡 = 𝐻1 (𝑒(𝑔𝑃, 𝑃𝐾𝑈𝑡

∗ )) 
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ii. Calculates 𝐾𝑙. 𝑃0
𝑅. ∏ (𝑃𝑖

𝑅)𝑥𝑡
𝑖𝑛

𝑖=1 = 𝐾𝑙 . 𝑔𝑅𝑓𝑗(𝑥𝑡) = 𝐾𝑙   where n is the number of users in the 

attribute group 𝐺𝑗 . 

Then user updates the secret key by using the generated attribute group 𝐾𝑙 using the Equation 

5.2. 

𝑆𝐾𝑈𝑡
= (𝑆𝐾𝑎𝑎,𝑈𝑡

, 𝑆𝐾𝑑𝑜,𝑈𝑡
) == (𝑔

(𝛽+𝑁𝑡)

𝒶 (∀𝑖 ∈ 𝑇: 𝐷𝑖 = 𝑔𝑀𝑡 . 𝐻(𝑖)𝑟𝑖 , 𝐷𝑖 = (𝑔𝑟𝑖)
1

𝐾𝑙)      (5.2) 

The generated key process is secured as no one can secret key 𝐾𝑙 other than the user 𝑈𝑡 . 

2. Data Decryption Stage: With the help of generated key user can decrypt the ciphertext 

𝐶𝑇′. The decryption process uses a recursive procedure using node 𝑥 with its children. The 

decryption function is defined as 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝑥) where x denotes the leaf node 

of access tree 𝐴𝑡 as given below.  

i. Function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝑥) 

𝑖𝑓 𝜆𝑥 ∈ 𝑇 𝑎𝑛𝑑 𝑈𝑡 ∈ 𝐺𝑥 , 𝑡ℎ𝑒𝑛 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝑥) =

𝑒(𝐷𝑥 , 𝐶𝑥)

𝑒(𝐷𝑥
′ , 𝐶𝑥

′ )
=

𝑒(𝑔𝑁𝑡 . 𝐻(𝑥)𝑟𝑥 , 𝑔𝑉𝑥
(0)

)

𝑒((𝑔𝑟𝑗)
1

𝐾𝑙 , (𝐻(𝑥)𝑉𝑥
(0)

)
𝐾𝑦

)

= 𝑒(𝑔, 𝑔)𝑟𝑡𝑉𝑥
(0)

                                                                              

𝐼𝑓 𝑈𝑡 ∉ 𝐺𝑥  𝑜𝑟 𝜆𝑥 ∉ 𝑇, then the function returns null as shown in below equation. 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝑥) =  𝑒(𝑔, 𝑔)𝑟𝑡𝑉𝑥

(0)

= 𝑁𝑈𝐿𝐿                                                                       

ii. Function 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝑈𝑡
, 𝑥), x is not a leaf node in the access tree 𝐴𝑡 

The function recursively call all child nodes of 𝑥. 

𝑄𝑧 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒(𝐶𝑇′, 𝑆𝐾𝕔) {𝕔 ∈ 𝐶ℎ𝑖𝑙𝑑𝑛𝑜𝑑𝑒𝑠(𝑥)} 

𝕃𝑥  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒𝑠 𝑠𝑒𝑡 𝑜𝑓 𝕔 

𝑄𝑧 = 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 𝑖𝑓 𝕃𝑥 ∉ ∅ 

𝑄𝑧 = 𝑁𝑈𝐿𝐿 𝑖𝑓 𝕃𝑥 ∈ ∅  
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𝑄𝑥 = ∏ 𝑄𝕔

∆𝑖.𝑝𝑥(0)

𝕔∈𝕃𝑥

 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝕔 𝑛𝑜𝑑𝑒 𝑖𝑛𝑑𝑒𝑥 𝑎𝑛𝑑 𝑝𝑥  𝑖𝑠 {𝑖𝑛𝑑𝑒𝑥(𝕔) ∉ 𝕃𝑥} 

𝑒(𝑔, 𝑔)𝑁𝑡𝑉𝑥
(0)

= 𝑃 

𝑃𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡 = 𝐶′ ∗
𝑃

𝑆𝐾𝑈𝑡

=
[𝐹 ∗ 𝐹𝑒(𝑔, 𝑔)𝒶𝑠∗

𝑒(𝑔, 𝑔)𝑁𝑡.𝑆]

𝑒 (ℎ𝑠, 𝑔
(𝛽+𝑁𝑡)

𝒶 )

= 𝐹                                                       

Key Update Function: If the user changes the attribute list by adding or removing attributes 

such as an address, email ID, contact number, department, etc., the access permissions for 

that user should be updated to preserve backward and forward secrecy. The attribute authority 

executes this smart contract function when the user request is received regarding updating a 

particular attribute group's attributes. After receiving the user request, the attribute authority 

first sends the updated attribute group list membership to the data owner to update the stored 

user-related information at the owner’s side. Then, it generates new keys for the updated 

group attributes, and the updating process is completed. The process does not affect the 

remaining non-related user's keys due to the changed group attributes. This phase works as 

follow: 

i. The attribute authority selects a random number 𝑠′ and an attribute key 𝐾𝑙 . Perform 

encryption of 𝐶𝑇 using 𝑃𝐾𝑎𝑎
∗  as shown in Equations 5.3 and 5.4. 

𝐶𝑇 = 𝐴, 𝐶 = 𝐹𝑒(𝑔. 𝑔)𝒷(𝑠′+𝑠), 𝐶 = ℎ𝑠′+𝑠, 𝐶𝑖 = 𝑔𝑉𝑖
(0)

+𝑠′
          (5.3) 

𝐶𝑖 = (𝐻(𝑖)𝑉𝑖
(0)

+𝑠′
)

𝐾𝑖

 ∀𝑙 ∈ 𝐿\ {𝑖}: 𝐶𝑙 = 𝑔𝑉𝑦
(0)

+𝑠′
, 𝐶𝑙 = (𝐻(𝑙)𝑉𝑙

(0)
+𝑠′

)
𝐾𝑙

         (5.4) 

ii. The attribute authority uses a new attribute group to create a polynomial function 𝑓(𝑥) for 

including or excluding users. Then, it creates a new header message by calculating a new 

𝐻𝑒𝑎𝑑𝑒𝑟𝑖 using 𝐾𝑖 as given in the Equation 5.5. 

𝐻𝑒𝑎𝑑𝑒𝑟 = (𝑔𝑃 , 𝐻𝑒𝑎𝑑𝑒𝑟𝑖 ∀𝑙 ∈ 𝐿\{𝑖}: 𝐻𝑒𝑎𝑑𝑒𝑟𝑙)             (5.5) 

Whenever a user requests the cloud data, the data owner replies with the header information 

and ciphertext. The user can only decode the ciphertext when the attribute group satisfies. 
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The above algorithms ensure access permission at various levels and also maintain access 

restrictions for different users.  

5.3 Security Analysis 

The proposed architecture defined the following security goals to describe the access and 

revocation process.  

Data Protection: The proposed architecture ensures data protection from unauthorized users 

as it allows only users to decrypt data if they have enough attributes. If the user is revoked 

from the group, he cannot access that group's plaintext. The proposed architecture achieved 

this using the immediate attribute revocation process. The ciphertext is re-encrypted using a 

group-based attribute access policy instead of the whole access policy. Another possibility of 

attack may be from the cloud server or attribute authorities. There may be chances that they 

may share the information for their profit. We deployed two key generation methods to make 

this process independent of a single authority to resolve this issue. If the user requests the 

registration process, then the data owner and attribute authority independently generate 

separate keys and send them to the user. Then the user generates the secret key using these 

keys. Hence, the proposed architecture guaranteed confidentiality and data protection. 

Collusion Tolerance: The proposed architecture avoids a collision attack that is the main 

security requirement in the ABE algorithm. If multiple users coordinate with each other, 

they may decrypt the ciphertext by linking the attributes. Therefore to avoid such type of 

attack, the attribute authority cannot coordinate with the revoked user. Also, the user uses 

the unique random value to generate the secret key. For the collusion attack, the attacker 

should recover the 𝑒(𝑔, 𝑔)𝒷𝑠 to decrypt the ciphertext. The attacker cannot perform the 

decryption process until he gets the random value of the user. 

Backward and Forward Security: Backward secrecy means if the new user joins the 

group, he cannot access the cloud server's data before. Forward secrecy deals with 

restricting access of revoked users for subsequent cloud data that will be outsourced in the 

future, except if the user satisfies the access policy to the other valid attributes. The 

proposed architecture achieves backward and forward security by using an immediate user 

revocation process instead of timely revocation. If the user discards or updates an attribute 

in a group, the re-encryption process deploys using a new secret key. Then, the generated 

key is shared with all the related group users.        
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5.4 Result Analysis 

This section presents the details of the proposed architecture experimental setup, performs 

performance evaluation, and comparative analysis. 

5.4.1 Experimental Setup 

The proposed architecture is designed using the Java programming language. The proposed 

architecture utilizes the org.cloudbus.cloudsim package to simulate the workload, load 

balancing, and policy-related implementation using different Java classes such as 

DatacenterBroker and CloudletScheduler Vmallocationpolicy, etc. The proposed architecture 

created the CloudSim environment of 15 data centers, 50 virtual machines, and 100-1000 

tasks (transactions) by implementing the different classes. The proposed architecture is 

designed so that it can be easily further extendable to include new functionality or deploys in 

real-world scenarios. The architecture was developed in three parts. The first part implements 

the graphical user interface to provide essential services to users. The second part deploys the 

main logic of the architecture using smart contract functions. Different smart contract 

functions are defined to achieve different services of the proposed work. Each participant of 

the blockchain network executes the smart contract function in the form of a transaction that 

follows blockchain procedure to append it as a block in the blockchain structure. Lastly, the 

back end of the architecture design uses the CloudSim tool to store ciphertext in the cloud 

storage. The real cloud environment exhibits varying demand-supply patterns and system size 

depending on the proposed work composition, configuration, and deployment requirement. 

Moreover, the users have heterogeneous and competing quality of services requirements.  

Thus, the proposed work uses the simulation to evaluate the performance and test the services 

of the architecture in a repeatable and controllable environment free of cost, identify the 

performance bottleneck and handle the complexities that arise. Furthermore, the proposed 

architecture design works independently, allowing the update in one part without affecting 

the main logic of the proposed work. Therefore, the proposed architecture can be easily 

extended to include the new functionality or utilize the real cloud platforms such as Amazon, 

Microsoft Azure, etc., by updating the connectivity classes. 
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5.4.2 System Performance 

This section analyses the performance of the proposed architecture and also compare it with 

the cryptcloud [92] scheme, NDN technique [93], and Proxy technique [94]. We consider the 

encryption, decryption, key generation, and re-encryption functions' performance time for the 

comparison process. The encryption time denotes the time required to convert the plaintext to 

ciphertext, whereas decryption time defines the time required to obtain the plaintext from the 

ciphertext. The re-encryption time involves the time needed to re-encrypt the ciphertext. 

Furthermore, the key generation time includes the time required to generate the keys for the 

user. As shown in Fig. 5.3, we have calculated the key generation time by varying user 

attributes in the system and compared it with the cryptcloud scheme [92]. We can depict from 

the analysis that the proposed work requires less time for the key generation process. The 

proposed scheme used a bilinear-based cryptography approach to generate the secret keys for 

the user. In contrast, cryptcloud used a semi-trusted key management center to create keys 

and ciphertext conversion that affected security features. The cryptcloud scheme is a semi-

distributed architecture; thus, the proposed scheme provides a better approach. 

 

Figure 5.3: Key Generation Time Comparison between Proposed Scheme and 

Cryptcloud 

Fig. 5.4 shows the encryption time comparison between the proposed architecture with 

cryptcloud [92], NDN [93], and proxy [94] schemes. In all approaches, the encryption time 

increases with the number of attributes. Therefore, we can analyze that the proposed system 

requires less time to perform the encryption process than the existing literature. The proposed 
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scheme uses a robust encryption process with a Pairing-based library and a 160-bit elliptic 

curve group using a supersingular curve in the 512-bit finite field. In contrast, the cryptcloud 

technique utilizes the symmetric session key to encrypt the plaintext, thus needing more time 

to share the same key for both encryption and decryption processes. The NDN and proxy 

schemes involve the proxy servers to perform the encryption and decryption, which increases 

the overall time for both processes. Similarly, Fig. 5.5 depicts that the proposed approach's 

decryption time is less than existing techniques because the decryption process involved in 

existing work requires more operations to achieve a user-based revocation process. 

 

Figure 5.4: Encryption Time Comparison between Proposed Scheme and Existing 

Techniques 

 

Figure 5.5: Decryption Time Comparison between Proposed Scheme and Existing 

Techniques  
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Fig. 5.6 presents the time required by the proposed work for the re-encryption process and 

compares it with the NDN technique [93] by varying the number of attributes. It is observed 

that the increment in the number of attributes also increases the re-encryption time in both 

approaches. Also, the proposed work performs better than the existing literature NDN. The 

NDN technique involves the proxy re-encryption approach that requires the agent module to 

respond according to the user's request. Therefore, it requires extra pre-processing before the 

re-encryption process. In contrast, the proposed work directly executes the re-encryption 

smart contract function for the user request and reduces the extra overhead. Therefore, the 

proposed architecture provides a reliable and better solution. 

 

Figure 5.6: Re-Encryption Time Comparison between Proposed Scheme and NDN 

Technique 

5.4.3 Comparative Analysis 

This section compares the proposed work with the existing techniques using various 

parameters.  

Table 5.2 compares related work with the proposed scheme based on parameters like 

authority type, access policy, key escrow, and revocation method. Compared to existing 

work, our proposed architecture used multiple authority systems to generate keys for the 

users. Furthermore, the architecture used a non-monotonic access policy. Negative attributes 

define access set attributes that make the access structure clearer compared to other methods. 

It also employed the re-keying method to implement an immediate attribute revocation 

approach rather than time-based attribute revocation. This provides a more secure 
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environment for cloud data in terms of forward and backward secrecy. The proposed scheme 

achieves fine-grained access control by using the re-encryption technique and using two 

authorities to compute keys for the user. Also, the used key generation process has solved the 

key escrow problem with two authorities' help. 

Table 5.2: Comparison of Related Work with Proposed Scheme 

Scheme Authority Expressiveness Key Escrow Revocation 

[99] Key NA Yes Time attribute revocation 

[100] Key Non-monotonic Yes Immediate attribute level 

[101] Single Monotonic Yes Time attribute revocation 

[102] Single Monotonic Yes Subset difference 

revocation 

[103] Multiple Monotonic Yes Immediate attribute level 

[104] Multiple NA Yes Time attribute revocation 

[105] Key Monotonic Yes Immediate attribute level 

Proposed 

Scheme 

Multiple Non-monotonic No Immediate attribute level 

 

Table 5.3 compares the proposed scheme efficiency with the related work. We perform a 

comparative analysis of computation cost for generating various keys. First, the 

communication cost for sending and receiving data between the data owner/authority and the 

cloud server is measured using ciphertext key size. Second, the user’s storage cost is 

measured from private key size. Last, the attribute authorities’ public key size of the system 

is measured for comparison. From the comparison, we can conclude that our scheme is the 

most efficient CP-ABE with direct revocation. The proposed scheme space and computation 

complexity do not depend on 𝑁𝑢; the total number of users in the system, which is supposed 

to be huge. Also, the proposed architecture private and public key sizes are smaller than the 

existing approaches. It requires less computational overhead without involving logarithmic 

operation. Thus, the proposed work provides a more reliable and efficient environment than 

the existing techniques. The following notations are used in Table 5.3:  

𝐸0 → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑖𝑛 𝔾;  𝐸1 → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑖𝑛 𝔾𝑇; 

 𝐸𝐴 → 𝐵𝑖𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑟𝑒𝑒 𝐴𝑡;  𝐴 → 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝐴𝑡; 
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𝑁𝑢 → 𝑈𝑠𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑔𝑟𝑜𝑢𝑝 𝐺;  𝑅 → 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑣𝑜𝑘𝑒𝑑 𝑢𝑠𝑒𝑟𝑠. 

Table 5.3: Efficiency Comparison of Related Work with Proposed Scheme 

Scheme Ciphertext Key Size Private Key Size Public Key Size Algorithm 

[99] (1 + 𝐴 + log 𝑅)𝐸0 + 𝐸1 ((𝐸𝐴 + 1) log 𝑁𝑢)𝐸0 (log 𝑅 + 𝐴)𝐸0 + 𝐸1 KP-ABE 

[100] 3𝐸0 + 𝐸1 ((𝑅 + 1). 𝐸𝐴). 𝐸0 (𝑅 + 𝐴 + 1)𝐸0 + 𝐸1 KP-ABE 

[105] (2 + 2𝐴)𝐸0 + 𝐸1 4𝐸𝐴𝐸0 (3 + 2𝐴 + 𝑅)𝐸0 KP-ABE 

[101] (2 + 𝐴)𝐸0 + 𝐸1 (1 + 𝐸𝐴)𝐸0 (log 𝑁𝑢 + 𝐸𝐴 + 3)𝐸0 KP-ABE 

[102] (16𝐴 + 64𝑅 − 27)𝐸0

+ 𝐸1 

(5 + 16𝐸𝐴

+ 16(log2 𝑁𝑢

+ log 𝑁𝑢)𝐸0) 

111𝐸0 + 𝐸1 KP-ABE 

[104] 4𝑁𝑢𝐸0 + 𝐸1 8𝑁𝑢𝐸0 32𝑁𝑢𝐸0 CP-ABE 

[103] (16√𝑁𝑢 + 3𝐴)𝐸0 + 𝐸1 (2 + 2𝐴 + √𝑁𝑢)𝐸0 (5 + 8√𝑁𝑢)𝐸0 + √𝑁𝑢

+ 𝐸1 

CP-ABE 

Proposed 

scheme 

(2𝐴 + 1)𝐸0 + 𝐸1 + 𝐸𝐴 (2𝐾 + 2)𝐸0 𝐸0 + 𝐸1 CP-ABE 

 

5.5 Conclusion 

The proposed architecture introduced a blockchain-based fine-grained access control method 

using the CP-ABE algorithm to provide a robust user revocation process in the cloud storage 

systems. The proposed methodology utilized the two-authority-based key generation scheme 

to resolve key escrow issues and make the system independent on a single authority. Thus, it 

is difficult for the attribute authority or cloud servers to misuse the outsourced data. 

Furthermore, the proposed scheme ensures the outsourced data's privacy and confidentiality 

by restricting the users from accessing the data without proper credentials. The proposed 

architecture deployed the immediate attribute level user revocation process rather than time-

based to provide scalable access restriction using the CP-ABE algorithm. The experimental 

results, performance evaluation, and comparative analysis indicate that the proposed 

architecture offers a more efficient and scalable cloud environment. For future work, we plan 

to deploy the proposed architecture in various domains such as healthcare, multimedia, 

intrusion detection system, etc., to analyze the performance.  
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CHAPTER 6 

 APPLICATIONS OF PROPOSED WORK 

 

 

This chapter highlights the application areas of the proposed blockchain-based cloud 

architecture. The proposed work is deployed in various domains such as healthcare, 

intrusion detection, etc., to evaluate its performance. The result analysis and 

performance evaluation depict that the proposed work provides a more reliable cloud 

storage environment in different domains. 

 

6.1 Introduction 

Blockchain is one of the most hyped advances nowadays and has gained considerable 

importance as an innovation widely deployed in various areas such as healthcare, supply 

chain, multimedia, artificial intelligence, etc., [106, 107]. After its commencement in 2008, 

blockchain has continued to develop as a disruptive advance that might alter the way we 

interface, make computerized expenses, follow up, and monitor transactions [108]. 

Blockchain could be cost-effective, removing the centralized authority's need to monitor and 

regulate transactions and interactions between different members. In the blockchain, every 

transfer is cryptographically marked and confirmed by other entities holding a copy of the 

entire record consisting of all the transactions. Furthermore, blockchain technology is an 

information technology that can be used in software, business, and trade sectors [109].  

The widespread deployment of blockchain demonstrates the aspects that change the business 

community's activities. A lot of new technologies and frameworks have been introduced with 

the existing keen interest in blockchain technology. Numerous articles were published to 

explore the advantages of blockchain for existing applications. Examples of these studies 

include the blockchain technology for business applications [110, 111], healthcare [112, 113], 

security [114, 115], sharding [116], cloud exchange [117], edge computing [118], and so on.  
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Certain studies dealt with blockchain obstacles, prospects, and plans for the future. We aim to 

provide a detailed overview of the proposed blockchain-based cloud architecture usage in 

various domains such as healthcare, intrusion detection systems, multimedia etc. In this 

chapter, we implemented the proposed work in healthcare and intrusion detection systems to 

evaluate the performance of the decentralized cloud storage architecture.  

6.2 Blockchain-based Healthcare System 

The healthcare system is an information-intensive medical environment where large amounts 

of data are routinely generated, obtained, and disseminated. Due to the sensitivity of data and 

restricting factors, such as protection and privacy, storing and distributing this vast volume of 

data is crucial, as well as significantly challenging [119]. Secure data management is 

essential for diagnosis in the healthcare sector and clinical settings. In healthcare, the 

protection of medical information has been innovated in the last decade through many 

platforms, software, and communication technologies. In [120], authors first translated the 

health records of paper into Electronic Health Records (EHRs). EHRs must be regularly 

distributed and exchanged by various healthcare centers, doctors, nurses, healthcare 

professionals, pharmacy manufacturers, and administration to provide a realistic way for a 

person's health background to give proper and prompt treatment. In the case of a conventional 

client-server data management healthcare system, each hospital/healthcare center maintains 

its database of medical records of a sick person; the delivery of EHRs becomes a slow and 

costly task. Moreover, cloud-based health information monitoring methods [121, 122] have 

been presented to solve the accessibility, data usage, and maintenance issues that exist in the 

client-server architecture. Patient medical information from various hospitals is saved in 

remote online storage, making it readily available to patients and healthcare professionals. 

However, the cloud environment faces data security and single point of failure issues.   

Therefore, many research articles have employed blockchain technology in existing systems 

to address the above challenges [123-125]. For example, in [126], the authors proposed a 

distributed blockchain-based healthcare system, MedRec, that interacts with existing 

physician data storage solutions and allows for scalability. However, the authors use patient 

information as a reward for miners, keeping the security of patient information at greater 

liability. The authors of [127] and [128] proposed a smart contract-based system for 

accessing health information using Ethereum platform. They ensure access control and 

preserve medical data privacy by employing advanced cryptographic techniques. Fan et al. 
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[129] recommend MedBlock, a blockchain-based health information delivery scheme that 

provides efficient accessibility and extraction of EHRs for an authenticated network. These 

works [126-129] do not permit patients to transfer data on their health problems and activities 

to the blockchain network, thus lacking a treatment process. 

On the other hand, in [130], the authors suggest a medical data network to exchange health 

information between health centers and patients through blockchain. This work permits 

hospitals and physicians to upload patient health records on the blockchain network, giving a 

complete overview of patients' records. The proposed scheme is specifically designed for 

patients, thus lacks the involvement of other healthcare professionals. Shen et al. [131] 

introduce a system to use blockchain and peer-to-peer networks such as MedChain to 

exchange medical data. This system produces healthcare data via medical inspection and 

collects patient data from IoT sensors and other mobile applications. The usage of two 

decentralized networks increases the complexity of the proposed scheme.  

Therefore, this research work resolves the challenges mentioned above and proposes a 

blockchain-based distributed application to protect large-scale healthcare data called 

Healthify. In the Healthify application, clients are allowed to publish healthcare information 

and access treatments from doctors. Healthify supports integrity checking and enhances the 

security of healthcare data. In this architecture, users can upload and publish health data 

periodically. There is a large amount of medical information with the exponential growth of 

the hospital's report. It is insufficient to document complete user information in the 

blockchain, as each node's resource requirements are incredibly high. Considering each 

blockchain node's limited storage capacity, an IPFS storage system supports sharing the 

document for high integrity and durability data storage [132]. There is no single repository in 

IPFS, and the information is circulated and collected in various IPFS nodes throughout the 

internet.   

6.2.1 Proposed Architecture 

This section presents the architecture of the proposed application to manage the healthcare 

data securely. The architecture contains the main components, such as a smart contract, IPFS 

storage, and Distributed Application (Dapp), as shown in Fig. 6.1. A blockchain-based smart 

contract is designed to check the authenticity of the users and maintain the integrity of the 

healthcare data. Smart contract execution triggers automatically whenever the user initiates a 

request to upload/access the healthcare data to check the user's authenticity. The healthcare 
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data is stored in the form of blocks in the peer-to-peer IPFS storage network. The application 

is implemented to guarantee that anybody, including the users themselves, cannot manipulate 

users' transactions. The application has three types of user transactions: data transactions, 

data access transactions, and validation transactions. Data transactions are used to upload 

healthcare data, data access transactions are used for accessing data, and validation 

transactions are handled to safeguard data integrity.  

 

Figure 6.1: Architecture of Blockchain-based Distributed Application for Healthcare 

Fig. 6.1 presents a layered architecture of the application. It describes all the application 

entities in different layers showing how the data flows through them and the functionalities of 

each layer.  

Data Collection Layer: The first layer is the data collection layer. It consists of different 

users and the user interface of Healthify through which the users interact with the application. 

Firstly, users register on the platform using a Dapp, and their details are stored on the 

Ethereum network using the smart contract. The user receives a unique address using which 

the user interacts on the Dapp. Through the application portal, users may collect their health 

data. The users may upload the data manually or set a time after which the data will upload. 

The user sends data on the Dapp, where it accumulates the healthcare data in files, and the 

user can also visualize the data and registered doctors list. 

Data Processing Layer: The second layer is the data processing layer. Healthify utilizes the 

Ethereum platform for implementation, and the blockchain user utilizes the platform's 
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functionalities. The users authorize by their public addresses and digital signatures, generated 

using their private keys, which ensure the authority. User access manages using the public-

private keys, and the users can access the data only according to their provided access and 

authority.  

Storage Layer: The last layer is the storage layer, consisting of smart contract and IPFS 

storage. The smart contract provides a primary application backend that governs all tasks and 

authorities of the user. A smart contract manages the authenticity of the users by checking if 

the legit user is using the application. The IPFS storage layer is where the individual health 

care data are stored, and the user has received a unique hash of the file. The data is encrypted 

using the AES algorithm before uploading it to the IPFS storage node.  

6.2.2 Smart Contract Functions  

The smart contract supports user registration, authentication, integrity checking functions, 

and it is published on the blockchain afterwards. The blockchain also publishes all tasks 

conducted using the smart contract. In a proposed architecture, the smart contract consists of 

the various functions, as shown in Fig. 6.2 for each entity. The functions are in such a way 

that Healthify users can execute and get access to storage services.  

 

Figure 6.2: Smart Contract Functions 

Algorithm 6.1 represents the function to register the user on the application. The conditional 

statements check if the user is already registered as a patient (or doctor) or not; if yes, then 

the function reverts with an error message written after the condition. If the task is completed, 
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it emits an event PatientAdded showing the address of the currently registered user. 

Similarly, the same function is designed for other users of the application. 

Algorithm 6.1: User Registration 

𝑨𝒅𝒅𝑷𝒂𝒕𝒊𝒆𝒏𝒕() 

Input: Registered user address 

Output: Successful registration of a user 

1. if (isDoc[msg.sender] == false)  

2.     Print "Address is Doctor"; 

3. end 

4. if (isPatient[msg.sender] == false)   

5.    Print "Address is already Patient"; 

6. end 

7. isPatient[msg.sender] == true;  

8. allPatients.push(msg.sender); 

9. emit PatientAdded(msg.sender);   

 

Algorithm 6.2 represents the file uploading function. This function is called when the user 

uploads the health data on the blockchain. This function stores the IPFS hash of the encrypted 

file on the smart contract. The conditional statements check if the function is called by a valid 

user only. 

Algorithm 6.2: Upload File  

𝑨𝒅𝒅𝑭𝒊𝒍𝒆(_𝒇𝒊𝒍𝒆𝑯𝒂𝒔𝒉) 

Input: File Hash 

Output: Successful uploading 

1. if (isPatient[msg.sender] == true)  

2.    Print "Address is not Patient"; 

3. end 

4. PatientData[msg.sender].push(_fileHash); 
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Algorithm 6.3 function is called when the user wants to share (or send) the data to any 

authorized user. It shows the sample function for registered patients. This function also 

deducts the doctor’s fee from the patient’s account and reverts if the user has an insufficient 

token balance. Similarly, the function is called by the doctor/diagnostic center to send a 

prescription/report to the patient. Once the prescription/report is sent, the user receives the fee 

stored in the contract. 

Algorithm 6.3: Share File 

𝑺𝒆𝒏𝒅𝑭𝒊𝒍𝒆(𝒂𝒅𝒅𝒓𝒆𝒔𝒔_𝒅𝒐𝒄, _𝒇𝒊𝒍𝒆𝑯𝒂𝒔𝒉, _𝒂𝒎𝒐𝒖𝒏𝒕) 

Input: Registered User Address, File hash, Token Amount 

Output: Successful Sharing of File 

1. if (isPatient[msg.sender] ==true)  

2.    Print "You are not Patient"; 

3. end 

4. if (isDoc[_doc] == true)  

5.    Print "Invalid Doctor"; 

6. end 

7. if (_amount == docFee[_doc])  

8.   Print "Insufficient fee"; 

9. end 

10. token.approveContract(addresss, msg.sender, _amount); 

11. token.transferFrom(msg.sender, address, _amount); 

12. docPatientList[_doc.push(msg.sender);  

13. docPatient[_doc][msg.sender]=true; 

14. docData[_doc][msg.sender].push(_fileHash); 

 

The users call the Algorithm 6.4 functions to check the integrity of the files stored on the 

IPFS storage. IPFS storage shared the unique hash for each saved record. This unique hash of 

the file is used to test the validity of the files. The smart contract uses the stored Metadata of 

the files to audit integrity. The file hash value was registered when the file was uploaded. The 

user sends an access request to the blockchain network and automatically executes the smart 

contract function. Then, after checking the user's status, a smart contract requests a file hash 

from the network. The smart contract selects the requested file to check the integrity by 
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recalculating the hash and compares the new hash with the previously-stored hash. If they are 

equal, the data integrity is safe; otherwise, not. In the end, the network returns the result to 

the user. 

Algorithm 6.4: Check Integrity  

𝑪𝒉𝒆𝒄𝒌𝑰𝒏𝒕𝒆𝒈𝒓𝒊𝒕𝒚(𝒇𝒊𝒍𝒆, 𝒖𝒔𝒆𝒓) 

Input: File Details 

Output: Checking of Integrity 

1. var reader = new FileReader(); 

2. var r = bcrypt.hash(reader.result, salt, function(err, hash){ 

3. if(err)  

4.    Print “err”; 

5. end 

6. else 

7.     this.setState({bcryptHash: hash}); 

8. end 

9. reader.readAsDataURL(f); 

10. varinst = this.props.state.contract; 

11.  inst.methods.isUnique(this.state.bcryptHash.toString()).call().then(function(res){ 

12.  if(res==true)  

13.       Print "Integrity completed"; 

14.       return true; 

15.  end 

16.  else 

17.       return false;} 

18.  end 

 

6.2.3 Conceptual Scenario  

This section presents a model that shows how the user interacts with the Healthify application 

and all processes functionalities. The application consists of four separate users. The model 

of interaction for each user is described below: 



90 
 

 

Figure 6.3(a): The Flow Diagram of Patient 

Patient: Patient satisfaction is an important aspect of the medical sector and the lifeline for 

any health-related enterprise or initiative. Personal well-being is a concern for most of us, and 

that is why the need for the hour is to find the most effective ways to improve health 

conditions. Therefore, this work introduces the Healthify application to provide instant 

medical services to users. Fig. 6.3(a) represents the stepwise overall flow of the patient in the 

application.  

Step 1: Initially, the patient registers with the application by providing personal information, 

including his name, age, sex, etc., and data is stored on a smart contract. The registration 

phase is compulsory until the user can use the functionalities of the software. The user then 

logs on using their specific address.  

Step 2: Upon logging into the application, the user has a few options on the portal. The user 

can upload the health data using the portal options. Before the data uploading process, data is 

encrypted using the AES algorithm to provide a more secure environment. After encryption, 

information is divided into multiple shards and stored in the distributed platform using the 

IPFS system. In response, the user receives a unique hash corresponding to the uploaded file, 

which is further utilized by the user to share the file with the doctors or to access the file. The 

data file for healthcare is created from the user's data over a given period. After this file is 

submitted to the application, the applicant will continue obtaining the diagnosis/prescription 

from the application's registered doctors.  
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Step 3: The user selects the doctor from the registered doctor list and sends the individual 

stored health data unique hash to the doctor.  When sending the request, the selected doctor's 

fees are deducted from the patient's account and saved on a smart contract. The smart 

contract automatically transfers the stored tokens into the doctor's account once the patient 

receives the prescription. 

 

Figure 6.3(b): The Flow Diagram of Doctor 

Doctor: The work of a doctor is essential to every medical care process, and we include the 

provision in our proposal to obtain input from doctors. The patient should be able to report to 

the selected doctor. But this feature must depend entirely on the customer's decision whether 

they follow the doctor's feedback. Interaction between the patients and the doctors was a 

significant obstacle due to physicians' hectic schedules and availability. Therefore, the 

proposed application allows interaction between the patients and the doctors to combat the 

issues mentioned above. Fig. 6.3(b) represents the stepwise overall flow of the registered 

doctor.  

Step 1: The doctor registers on the application using the same procedure and then uses his 

unique credentials to sign in to the application.   

Step 2: When the doctor is logged in, they should view a patient's data via a user interface, 

which allows them to pick the patients. After the patient's selection, the data should be 

available for review by the doctors. The doctor should add their suggestion or input after 

reviewing the patient's information. The data used for monitoring will not be editable by 
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either the patient or the physician. Doctors are allowed to view the files using the file hash 

shared by the patients.  

Step 3: Once the doctor uploads the prescriptions, the prescription is sent to the patients in 

the same manner, and the doctor receives their fee in the form of tokens, especially designed 

for the proposed application.  

 

Figure 6.3(c): The Flow Diagram of Diagnostic Centre 

Diagnostic Centre: One of the most tedious tasks for everyone is receiving medical records 

from test centers. Mobile applications make electronic monitoring of their health records 

simple for patients. Patients may check the reports directly from the centers, which can be 

exchanged immediately with the doctors. Thus, the proposed application allows diagnostic 

centers to register at the portal and provide quick services to the users more securely. Fig. 

6.3(c) represents the overall flow of the registered diagnostic center.  

Step 1: The diagnostic center starts with the registration process and obtains unique 

credentials.  

Step 2: After logging into the system, the diagnostic center may store the generated reports to 

the IPFS storage and obtain the file's unique hash.  

Step 3: The diagnostic center shares the stored report hash to the registered patients by 

checking the details stored on the smart contract. The diagnostic center also allows checking 

the integrity of the shared document and ensures security. 
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Figure 6.3(d): The Flow Diagram of Healthcare Analyser 

Healthcare Analyser: Healthcare experts include a wide range of specialists and 

practitioners who provide some form of healthcare service, including primary care 

practitioners such as nurses, doctors, surgeons, physical therapists, social workers, etc. Health 

analysts play a key and essential role in enhancing health care quality. Thus, the proposed 

application included the interface for healthcare analyzers to provide a medium for improving 

healthcare quality. Fig. 6.3(d) shows the stepwise overall flow of healthcare analyzers.  

Step 1: The healthcare analyser starts with the registration process and obtains unique 

credentials.   

Step 2: After the registration process, the healthcare analyser may utilize healthcare data to 

improve healthcare services, tools, medications, and diagnostic methods.   

6.2.4 Result Analysis 

This section evaluates the performance and validates the efficiency of the proposed 

application.  

6.2.4.1 Experimental Setup  

The proposed architecture implements a Dapp that supports a blockchain network with a 

decentralized file system (IPFS). The Ethereum framework has been used to develop smart 

contracts for healthcare blockchain. This is an open-source platform and presently one of the 

largest public blockchain networks with an active community and a large collection of public 

Dapp. The Dapp can detect discrepancies, unauthorized access to the data, and missing 
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objects. Ganache tool is used to setting up Healthify's blockchain network to deploy 

contracts, develop Dapp, and run tests. The proposed application experimental setup consists 

of a Dapp setup and a smart contract deployment. Thus, the implementation settings are 

described in two tables to explain each part. Table 6.1 describes the development 

environment of a Dapp. The user interface is designed using React native as it has excellent 

compatibility with the Ethereum client. NodeJS is used to connect with the backend, i.e., 

connection with Ethereum and IPFS. The deployment settings of smart contracts are 

described in Table 6.2. Smart contracts are developed in Solidity language, which is the 

primary smart contract language for Ethereum. These are designed by using online compiler 

remix.ethereum. The key elements of the smart contracts are functions, events, state 

variables, and modifiers and are written in the Solidity programming language. The remix 

test network is used to deploy smart contracts on the testnet, and Ethers are utilized to pay the 

transaction fee.  

Table 6.1: Development Environment for the Proposed Application 

Component Description 

RAM 4 GB 

Operating System Windows 10 

Server Apache Tomcat 

Frontend React Native 

Backend Node JS 

Host Infura 

Encryption AES 

Data Storage InterPlanetary File System 

 

Table 6.2: Development Environment for the Blockchain Smart Contract 

Component Description 

RAM 4 GB 

Operating System Windows 10 

Ethereum 2.0. 

IDE Remix Ethereum 

Programming Language Solidity 
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6.2.4.2 Performance Evaluation 

This section presents the actual results of the work to assess the performance of the proposed 

application. Several experimental tests were performed using various parameters. The 

processing time would include the time to send a transaction query to access the health 

document and the amount of time it takes to upload until the user receives an 

acknowledgment. We used the different sized health files for this test and noted the time for 

each file uploading process, as shown in Table 6.3. These are approximate times, and these 

solely depend on the number of peers and the internet connection speed at the moment. 

Table 6.3: Time Required for Uploading Different Sized Files 

File Size (x) Time (in seconds) 

x < 1 MB ~ 0.02 

1 MB < x < 10 MB ~ 0.1 - ~ 2 

10 MB < x < 100 MB ~ 2 - ~ 15 

100 MB < x ~ 15 < 

 

The proposed architecture is also evaluated for computation time required for data storage, 

access, and validation transactions. The computation time is the average time the proposed 

application takes to execute the series of transactions requested by the users. As shown in 

Fig. 6.4, the Healthify application calculated the computation time for a series of hundred 

transactions. Different users initiate a total of five hundred transactions to analyze the 

computation time of the proposed application for different types of transactions.  

There is a requirement to estimate costs associated with deploying smart contracts for 

healthcare to execute blockchain. In the Ethereum blockchain, all programmable calculations 

cost some fees to prevent network misuse and solve other computational issues. The fee is 

listed as Gas in the Ethereum blockchain to run all kinds of transactions. Gas refers to the 

payment or price value provided by the Ethereum blockchain platform for a successful 

transaction or execution of a contract, as shown in Table 6.4. The exact gas price is calculated 

by the network miners, who may decline to handle a transaction if the price of Gas does not 

reach its mark. Therefore, all functions, computations, message calls, smart contract 



96 
 

creation/deployment, and storage on Ethereum Virtual Machine (EVM) require Gas to 

execute all of these operations, as shown in Table 6.5. When a user has no legitimate balance 

account, they cannot carry out any form of operation and is thus deemed invalid. In EVM, 

Ethers (ETH) are used to buy Gas, and users running the transactions can set their account 

gas limit for the particular transaction.   

 

Figure 6.4: Computation Time Required for Completion of Transactions 

Table 6.4: Deployment Cost of Contracts 

Contract Cost (ETH) Cost (Dollar) 

Health Token 0.0408706 ETH $10.94 

Healthcare 0.0715839 ETH $19.16 

Total Cost 0.1124545 ETH $30.1 

 

Table 6.5: Gas Used in Calling/Sending Functions of Smart Contract 

Function Gas (ETH) Gas (Dollar) 

Register Patient 0.002535 ETH $0.68 

Register Doctor 0.003149 ETH $0.84 

Initial Transferring of Coins  0.001997 ETH $0.53 

Patient Adding File 0.003214 ETH $0.86 

Patient Sending File to Doctor 0.007091 ETH $1.9 

Doctor Sending File to Patient 0.006174 ETH $1.65 
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6.2.4.3 Comparison Analysis 

This section performs the proposed platform's comparative analysis with some of the latest 

related work. A comparison survey is conducted to illustrate the proposed system’s 

performance and flexibility, and the assessment findings as shown in Table 6.6. 

Table 6.6: Comparative Analysis of the Proposed Application with the Existing Studies 

Reference Tokens 

used 

Mining 

Required 

Smart 

Contract 

Blockchain 

Platform 

Integrity 

Checking 

File Storage Access 

Policy 

 

[126] No Yes No Permissioned Yes Database 

Gatekeeper 

Yes 

[127] No Yes Yes Permissioned Yes EHR DB Yes 

[128] No Yes Yes Consortium Yes Cloud 

Storage 

Yes 

[129] No No No Permissioned Yes Blockchain 

as storage 

Yes 

[130] Yes Yes Yes Customized 

Blockchain 

Yes Blockchain 

cloud 

Yes 

[131] No No No Permissioned Yes Healthcare 

database 

Yes 

Proposed 

Work 

Yes 

(Tokens) 

Yes Yes Permissioned Yes IPFS Yes 

 

The characteristics mentioned above play a crucial role in comparing the existing frameworks 

for this analysis. It also represents the overall blockchain platform's success and shows the 

importance of the proposed approach. As shown in Table 6.6, the proposed system offers a 

more appropriate environment for storing healthcare data as compared with existing works 

for the following reasons: 1) users may use the Dapp anywhere anytime by using 

smartphones, 2) utilized the decentralized storage (IPFS) for securely saving users files 

instead of static databases, 3) designed tokens for providing services to the users. It also 

prevents malicious activities, 4) designed smart contract to store user-related/token-related 

information during the communication between the users, 5) the health data of each 

individual can only be accessed by themselves. 
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6.2.5 Summary of Healthify 

This work introduced a Dapp for secure authentication and access control of broad-scale 

health data. We have implemented the application to guarantee that patients' medical data are 

secured to prevent diagnostic conflicts. We designed a smart contract for authentication, 

access control, file sharing, and token management to obtain secure and flexible healthcare 

data management. Furthermore, users can validate the integrity of documents to ensure 

security and privacy at any time. The results, performance evaluation, security analysis, and 

comparison study show that our plan fulfilled the safety and storage requirements. The 

proposed application could easily be extended by providing more services to users in the 

healthcare domain. 

6.3 Intrusion Detection System Using Blockchain Technology 

The virtual world was built as the global infrastructure when the technology system 

introduced both computer technology and network technology. Today's virtual world is 

nearly as powerful as the real economy, placed as the basis for the corporate system. 

However, when the information, mainly the business information, is exchanged online, a 

trustworthy authority is essential to ensure the credibility of the data and the actual value that 

can be grouped into the real world. This type of mode is the internet's company mode now. 

However, these so-called trusted parties may also be likely and able to do some evil and 

harmful things knowingly or unknowingly, such as tracking or selling customer data for 

company use.  

Blockchain is suggested as a prospective alternative to the above issue. Blockchain is a 

relatively advanced technology that allows multiple authoritative domains that do not trust 

each other to collaborate, cooperate, and coordinate decision-making. The advent of 

blockchain provides credible information management and exchange methods that can make 

internet transactions more real and free of third parties [133]. More and more blockchain-

based applications are used to deliver business and other services that majorly affect the 

online business system. Blockchain provides online data transfer with non-modifiable data 

records, making the transfer of data more reliable. Blockchain plays a more critical role in the 

future as online privacy and reliability become increasingly essential. Blockchain-based 

systems will be the basic infrastructure that can provide people with many services [134]. 

Chain management is applied when there is a need for a data transfer policy to maximize the 
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efficiency of resource sharing. When one node in the network starts the data transfer to 

another node in the system, the source node often includes other nodes in the transaction to 

form a route. The intermediate nodes are referred to as hop in any chain architecture. As 

shown in Fig. 6.5, the source node aims to transfer the data to the destination node. To 

maximize resource utilization, one node becomes a data vendor for multiple nodes. This 

increases the randomness in the network, and the network becomes vulnerable to intruders.   

 

Figure 6.5:  The Hop Behavior 

As shown in Fig. 6.5, if the intermediate node represented by “ip" receives a lot of data 

packets or data elements from source nodes s1, s2, s3 … sn and so on, the intruder may also 

attempt to transfer the data from ”ip" which will further affect the network environment. If 

described practically, every network has a Network Admin (NA). Still, the NA does not aim 

to identify the intruder, and it would go to find the node in its system, which is intruded as a 

user is using AVG antivirus. The antivirus cannot do anything to the virus generator, but it 

prevents its network from the effects of the virus. This work focuses on this logic and 

prepares a Layered Voting Rule System (LVRS), described in Section 6.3.1. 

6.3.1 Proposed Architecture 

The proposed architecture is named LVRS, which contains three layers, a positive layer, a 

negative layer, and a propagation layer, as shown in Fig. 6.6. The proposed work adopts a 

behavioral framework of blockchain technology to identify the intruder node in the network 

as discussed below:  
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Layer 1: The nodes are deployed in the network referred to as users. Blockchain technology 

is utilized for deploying the user nodes. The user shares the resources from one end to 

another in the proposed network. Each user node stored the information in the form of a 

ledger. Further, ledger information is utilized by the NA for identifying the intruder node.  

The voting rule is based on the users, and each user has an independent set of data. The user 

design creates a semi-autonomous blockchain mechanism as each user is partially affected by 

another user who votes for him or against him. The user's sustainability depends on the 

positive votes, which are again further controlled by the NA. 

The demanding user is referred to as the destination, and the original resource holder is 

designated as the source in the proposed work. Each data transfer will also involve 

intermediate nodes, referred to as hop in the proposed work. Each data transfer is counted as 

one vote from source to destination vice versa. The intermediate nodes are also benefited if 

the data is transferred successfully.  

Layer 2: Layer 2 is operated by the NA. The voting points are stored with the NA at the 

Cloud Layer. Positive Layer Repository (PLR) and Negative Layer Repository (NLR) are 

created from the source to the destination. Also, the power consumption in each simulative 

iteration of individual nodes and the total transfer is stored. 

Layer 3: The third layer propagates the power consumption in combination with the positive 

and negative sources. This layer decides whether the user is safe for resource sharing or not. 

LVRS further bifurcates the propagation layer identification mechanism in subsequent steps. 

The first step is for the propagation mechanism, and the second step uses gradient functions, 

followed by linear quad architecture for data propagation. LVRS analyses the user's behavior 

based on the propagation data, which is generated through the overall power consumption in 

transactions. A unique voting rule is presented, which helps analyze the network when it is 

scanned for intrusion. 

The workflow of the proposed architecture is described as follows: 

1. The users are deployed with random locations in the network. 

2. The users will share the data as a resource-sharing mechanism. 

3. The input data, i.e., the data user wants to transfer or share from one end to another, can be 

sent only once in one simulation. 
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4. One data transfer will be considered as one vote to the destination. 

5. Source and destinations are assumed to be immune from intrusion as the network considers 

the vote to affect the immunity positively. 

6. The NA has a veto power to reject the vote count of any node if NA feels like the node is 

compromised. 

7. NA uses the blockchain mechanism in three layers of processing and stores the information 

in the cloud. 

 

Figure 6.6: Proposed Layer Voting Rule Architecture 

It is assumed that every intruded node involved in the data transfer will consume more power, 

but every high energy-consuming node cannot be considered intruded. The overall proposed 

structure is demonstrated in Fig. 6.7(a), Fig. 6.7(b), and Fig. 6.7(c) as follows: 

 

                        Figure 6.7(a): Positive Vote               Figure 6.7(b): Penalty 

As shown in Fig. 6.7(a), when a source ‘s' transfer the data to ‘d' successfully, the NA counts 

it as a positive vote whereas, Fig. 6.7(b) shows that if the node is not able to transfer the data 
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to 'd' successfully, the node suffers a penalty. It is assumed that 65% of the total transmitted 

data is received at the destination end. The transaction is said to be a successful transaction. 

The NA stores the information of the source node and the hops in blocks to rate the node 

between 0.50 to 1.0. The rating is done based on the total amount of actual data transfer from 

one end to another. If the node is involved in any other transaction, the average weight of all 

the previous operations and the current transaction is considered. If the transaction is not 

successful, i.e., if the received amount is less than 65%, the source node gets a penalty 

between 0.1 to 0.49, the negative weight is updated. The hops in the network also get a 

penalty between 0.1 to 0.20. At the time of the network scan, if the node weights more than 

0.60, the node is free from the scan. A node with a negative rating of more than 0.20 is 

scanned twice at the scan time. The nodes are also referred to as users in the proposed model. 

 

Figure 6.7(c): Decision Making of LVRS 

Fig. 6.7(c) represents the decision-making architecture of LVRS, which involves Positive 

Layer Repo (PLR) and Negative Layer Repo (NLR), as discussed earlier. In addition to the 

PLR and NLR network, the admin also keeps a record of consumed power in the data 

transaction through each user in the network and uses it for decision making to find any 

intrusion in the network. The description of identification is as follows. The users are 

deployed randomly in the network with a random position. The ordinal measures of 

deployment are illustrated in Table 6.7. 

The proposed model considers a power consumption model when transferring the data from 

one end to another. When a user transfers the data from one end to another, it will consume 

an 𝑃𝑡 amount of power. Similarly, 𝑃𝑟 is the power consumption to receive the data element. 

NA keeps a record of the transfer and receiving of the data elements and the users involved in 
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the data transfer. 𝑃𝑡 and 𝑃𝑟 is heterogeneous, i.e., it is different for every node. A maximum of 

1000 simulations is monitored with a breakpoint after every 100 simulations; hence, the 

window size of identification is 100. The NA analyses the network after every 100 

simulations and can use his veto power at any instance. NA uses power consumption as the 

primary identifying attribute. 𝑃𝑟 and 𝑃𝑡 has two sub-attributes. The user will consume less 

power under normal conditions and more power under intruded conditions.  

Table 6.7: Deployment Parameters 

Parameters Values 

Total User Count 40-60 

Deployment Mode Random 

Data Type Bits 

Area of Deployment 1000×1000 m 

Selection Mode Random 

Total Number of Simulations 100-1000 

Deployment Tool Anaconda 

Deployment Framework Spyder 

Language Used Python 

 

Algorithm 6.5: Deployment of Node 

Input: Number of Users 

Output: Simulation of Network 

1. 𝑭𝒐𝒓𝒆𝒂𝒄𝒉 user in 𝒖𝒔𝒆𝒓𝒄𝒐𝒖𝒏𝒕 

2. 𝑼𝒔𝒆𝒓𝒙 = 𝑫𝒆𝒑𝒍𝒐𝒚𝒎𝒆𝒏𝒕𝑴𝒐𝒅𝒆. 𝑹𝒂𝒏𝒅𝒐𝒎() 

3. 𝑼𝒔𝒆𝒓𝒚 = 𝑫𝒆𝒑𝒍𝒐𝒚𝒎𝒆𝒏𝒕𝑴𝒐𝒅𝒆. 𝑹𝒂𝒏𝒅𝒐𝒎() 

4. Generate 𝑷𝒐𝒘𝒆𝒓𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑴𝒐𝒅𝒆𝒍
 

5. Destination = Generate a random destination 

6. Source = Look for the resources from the destination  

7. 𝑰𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆𝑯𝒐𝒑𝒔 = Generate Resource Carrier 

8. Initialize Network 

9. Start Simulation and Data Transfer 
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Algorithm 6.5 deploys the user with random x and y-axis in the network. Every user contains 

some resource that is sharable in the network. A power consumption model is also deployed, 

clarifying the total consumption of power when the user receives a data packet and the total 

consumed power when a node receives a data packet, as presented in Algorithm 6.6. The data 

is transferred through intermediate hops, which have any vacant slot to transfer the data. The 

data are documents that are available to the user. The resources are not editable; only the data 

owner has the authority to edit the document's data. The rest of the users have read-only 

permission.  

Algorithm 6.6: Identification of Power Consumption 

Input: Power Consumption Parameters 

Output: Total Consumed Power 

1. 𝑭𝒐𝒓𝒆𝒂𝒄𝒉 established connection between User1 to User 2 

2. 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑷𝒐𝒘𝒆𝒓 = ∑ 𝑷𝒕 + 𝑷𝒓
𝒏
𝒌=𝟎  

3. 𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏𝑰𝒏𝒑𝒖𝒕𝑨𝒓𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆
= 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑷𝒐𝒘𝒆𝒓                                  

4. Initialize Chain Mechanism with  𝑷𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒐𝒏𝑰𝒏𝒑𝒖𝒕𝑨𝒓𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆
 

5. Propagate Chain with Linear and Quad Propagation Model 

6. Linear Model follows: 𝒂𝒙 + 𝒃 = 𝟎                              

7. Quad Model follows: 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎   

8. 𝑪𝒉𝒂𝒊𝒏𝑾𝒆𝒊𝒈𝒉𝒕 = 𝑴𝒐𝒅𝒆𝒍𝑾𝒆𝒊𝒈𝒉𝒕 + 𝑰𝒏𝒑𝒖𝒕𝑨𝒓𝒄𝒉𝒊𝒕𝒆𝒄𝒕𝒖𝒓𝒆 

9. 𝑪𝒉𝒂𝒊𝒏𝑺𝒂𝒕𝒊𝒔𝒇𝒚𝒊𝒏𝒈𝑬𝒍𝒆𝒎𝒆𝒏𝒕
= 𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 + 𝒘𝒊𝒏𝒅𝒐𝒘𝒔𝒊𝒛𝒆  

10. 𝑨𝒗𝒆𝒓𝒂𝒈𝒆𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕 = ∑ 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑷𝒐𝒘𝒆𝒓
𝒘𝒊𝒏𝒅𝒐𝒘𝒔𝒊𝒛𝒆
𝒊             

6.3.2 Results  

The proposed architecture performance is evaluated using two parameters: throughput and 

power consumption. The throughput measures the performance in terms of total packets 

received by the proposed architecture per time frame. In contrast, the power consumption 

parameter calculates the total power consumed by the proposed scheme in each window. 

Every result is evaluated with the window defined in Section 6.3.1. Fig. 6.8 represents the 

throughput of the proposed model with a comparison of the model without blockchain. The 
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throughput of the proposed architecture is high as compared to the network model with no 

intrusion model. The proposed work has adopted the new intrusion model, which is adaptive, 

and hence, the chances of network intrusion are quite low. The throughput is tested for a 

maximum of 500 simulation iterations. The average throughput for proposed architecture is 

noticed to be 13000 whereas, for the generalized network architecture, it stands at 8700. A 

noticeable difference of (13000-8700)/1300= 33% is noticed. 

 

Figure 6.8: Throughput of the Proposed Architecture 

The proposed architecture is also evaluated for power consumption, as shown in Fig. 6.9. A 

total of 500 simulations are tested based on power consumption. A noticeable difference in 

power consumption is observed. The proposed architecture's power consumption is low 

compared to the network model with no intrusion model. 

 

Figure 6.9: Power Consumption of the Proposed Architecture 
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6.3.3 Summary of LVRS 

This work presented intrusion behavior analysis architecture through the adaptive blockchain. 

Power consumption is kept as the critical aspect of the intrusion analysis. The proposed 

architecture is named LVRS, which contains different layers for different purposes. A 

positive layer, a negative layer, and a propagation layer are presented in the proposed work, 

which utilizes power consumption. LVRS further bifurcates the identification mechanism in 

subsequent steps. The first step is for the propagation mechanism, and the second step uses 

gradient functions, followed by linear quad architecture for data propagation. LVRS analyses 

the user's behavior based on the propagation data, which is generated through the overall 

power consumption in transactions. A unique voting rule is presented in this work, which 

helps analyze the network when it is scanned for intrusion. A window size of 100 simulations 

is used to apply breakpoints and analyze the data through breakpoints. A total of 500 

simulations are tested based on Throughput and Power Consumption. A noticeable difference 

of more than 30% is observed in both throughput and power consumption. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

 

This chapter summarizes the work done in the thesis, presents contributions, and 

highlights the future directions.  

 

This research work proposed decentralized and secure blockchain-based cloud storage 

architecture with distributed key management, integrity checking, access control, and user 

revocation process to ensure privacy in cloud data. The proposed blockchain-based cloud 

system implements a CP-ABE algorithm with bilinear pairing to provide a privacy-preserving 

environment. The implemented algorithm utilizes the distributed approach using blockchain 

technology to maintain keys without involving any trusted authority. The performance of the 

proposed architecture has compared with the state-of-the-art techniques and has given 

significant results for different parameters such as computation time, throughput, latency, 

transmission time, encoding time, decoding time, key generation time, etc., for all techniques 

being compared. The experimental results, security analysis, and comparative analysis 

demonstrate the effectiveness and efficiency of the proposed system.  

7.1 Summary of Work Done in the Thesis 

This section summarizes the thesis to resolve the challenges and issues present in the 

centralized cloud storage system using blockchain technology. 

Firstly, to address the privacy and security challenges of the cloud storage system, this 

research work proposed novel blockchain architecture for the cloud storage system to achieve 

security features.  

Secondly, to eliminate the need for trusted third parties and single point of failure issues, the 

proposed blockchain-based decentralization architecture provides a promising solution using 
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a peer-to-peer network that provides equal validation rights to participants and ensures 

transparency.  

Thirdly, to improve the security of the cloud storage system, the proposed architecture 

deploys various cryptographic algorithms to provide a key generation mechanism, achieve 

confidentiality, perform data access control mechanisms, and ensure the integrity of the cloud 

data. The blockchain network records all transactions that are cryptographically secured and 

stored in the form of hash values. Furthermore, blockchain transactions are signed by the 

network participants so that the user interaction with the cloud storage system remains 

confidential. The blockchain structure manages the key related and user access policy details 

in a distributed manner and provides a more robust environment. The blockchain network 

keeps Meta details of user data and tracks all access and validation records.  

Lastly, to optimize the resources and minimize the execution time, the proposed architecture 

deploys a Honeybee optimization algorithm to optimize the resource utilization on the cloud 

storage system and minimize execution and response time.  

7.2 Contributions of the Research 

This research work describes the solution approach utilized to address the challenges of cloud 

storage systems. We have proposed the blockchain-based distributed architecture for the 

cloud storage system to provide the following four features for organizations or individual 

end-users:  

• Distributed key generation process using CP-ABE algorithm  

• Maintain the integrity of stored data using the Merkle root concept  

• Optimization of cloud storage system 

• Provide access control and revocation mechanism 

First, this work proposed decentralized blockchain-based cloud architecture. The proposed 

architecture implements the CP-ABE algorithm using smart contract functionality to provide 

a complete distributed approach to manage keys, access policies, and the hash of the cloud 

data. Blockchain technology stores all information in a decentralized manner such that no one 

alters the data once it has been stored in the form of a block in the blockchain structure. 
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Second, this research work ensures the integrity of stored cloud data using the Merkle root 

concept. The proposed architecture divides the files into multiple shards. The Meta details of 

bifurcated file parts in the form of hash are organized in a Merkle Tree structure to obtain 

Merkle root for the user data. The root of the Merkle tree is utilized for the integrity 

verification of the cloud data.  

Third, the proposed work implements the optimization algorithm on the cloud storage 

system to minimize the transaction response and execution time. The effective utilization of 

cloud resources reduces the storage and time requirement. Various users or authorities access 

the cloud storage system using different operations such as uploading data, validating data, 

returning the result, etc. These operations require time for execution and generating response 

depending on the application requirements. Therefore, reducing the time required to perform 

these operations optimize the cloud system. 

Last, the proposed architecture further enhanced to achieve the access control mechanism by 

implementing the access policy in a tree structure and attaining fine-grained access control at 

the system level. This research also uses the CP-ABE algorithm's re-encryption approach to 

update attribute group keys and deploy immediate user revocation processes. 

7.3 Future Work 

We plan to deploy the proposed architecture in the multimedia system for future work to 

provide reliable, safe, and dynamic management of multimedia data and provide key 

management, access control, and integrity checking features accordingly.  

For future work, the proposed architecture functionality will be further extended to provide 

safe deletion of cloud data with a blockchain-based payment system for utilizing the cloud 

services.  
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