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ABSTRACT

With its high risk and high return, the stock market is drawing more and more
people’s attention these days. A stock exchange market portrays savings and in-
vestments that are beneficial to the national economy’s effectiveness. Future equity
returns can be predicted using publicly accessible information from the current and
historical stock markets.

Stock market trend prediction has also piqued the interest of statisticians and
computer scientists, owing to the fact that it poses complex modelling challenges.
There are methods or algorithms that can be used to forecast stock valuation with
a high degree of accuracy. Because of the noise and uncertainties involved, observ-
ing and forecasting movements in the stock market price is difficult. A wvariety of
factors, such as a country’s economic shift, commodity value, investor emotions,
weather, political events, and so on, can affect the market value in a single day.
Artificial intelligence and increased computing power have ushered in a new era in
which programmable methods of predicting market prices have proven to be more
accurate. A good forecast of a stock’s future price would yield a sizable profit. In
this study, RNN and LSTM are combined to forecast the stock market’s movement.
We have proposed a deep learning- based model to make prediction more reliable
and simpler. The project focuses on the use of Long Short Term Memory algorithm
(LSTM), which is an advanced form of Recurrent Neural Network. We checked the
accuracy of our model using stacked LSTM and forecasted the future close prices
of stock data through a backtesting method by using multi-layer LSTM networks.
After performing the experiment, we were able to forecast the forthcoming 10 days
closing price of the given stock.
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Chapter

Introduction

The act of attempting to forecast the future value of a company’s stock or another
financial instrument traded on an exchange is known as stock market prediction.
A good forecast of a stock’s future price could result in a large profit. A suitable
stock predictions will result in huge profits for both the seller and the broker. It
is often pointed out that prediction is chaotic rather than random, which is true
and means it can be expected by closely examining the stock’s past performance.
For forecasting the future, there have traditionally been two major methods pro-
posed. For predicting the future price of a stock, the technical analysis approach
uses historical stock prices such as closing and opening prices, volume exchanged,
adjacent close values, and so on. The second type of research is qualitative, which
is based on external factors such as company profile, market environment, polit-
ical, and economic factors. For forecasting stock prices, sophisticated intelligent
techniques based on either technological or fundamental research are now used.
Machine learning is a good way to describe these types of processes. It forecasts a
market value that is similar to the tangible value, improving accuracy. Because of
its effective and precise measurements, the application of machine learning to the
field of stock prediction has piqued the interest of many researchers. The dataset
used in machine learning is crucial. Since even minor changes in the data can result
in massive changes in the outcome, the dataset should be as precise as possible.
On a dataset obtained from Yahoo Finance, machine learning algorithms using a
recurrent neural network (RNN) based long short term memory (LSTM) model,
which is a deep learning approach, are used in this project. Our project focuses on
the use of a deep learning-based model, which is a machine learning approach to
analysis, since the historical data set collected is difficult to analyse without the use
of data mining techniques. We used Yahoo Finance’s Nifty 50 monthly data for the
last ten years (2011-2020). In this study, we combined RNN and LSTM to test and
predict the movement of stock data, and proposed an RNN-based stacked-LSTM
model based on multi-layer LSTM networks.
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1.1 Deep Learning

Deep learning (also known as deep structured learning) is a form of machine learn-
ing system that uses artificial neural networks to learn representations. There are
three types of learning: supervised, semi-supervised, and unsupervised. In deep
learning, the term ”deep” refers to the use of several layers in the network. A linear
perceptron cannot be a universal classifier, but a network with a nonpolynomial
activation function and one hidden layer of unbounded width can, according to
early research. Deep learning is a more recent variant that involves an unbounded
number of layers of bounded size, allowing for functional application and optimiza-
tion while maintaining theoretical universality under mild conditions.For the sake
of performance, trainability, and understandability, deep learning layers are also
allowed to be heterogeneous and deviate widely from biologically informed connec-
tionist models, hence the ”structured” portion.

Why deep learning
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Fig.1 Performance of Deep Learning

Now we will discuss the types of deep learning neural networks learnt so far:-

1.1.1 Feedforward Neural Network

This is the most fundamental form of neural network, in which flow control starts
at the input layer and moves to the output layer. These networks only have a
single layer or a single hidden layer. There is no backpropagation technique in this
network because data only travels in one direction. The input layer of this network
receives the sum of the weights present in the input. These networks are used in
the computer vision-based facial recognition algorithm.
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Figure 1.1: Structure of Feedforward Neural Network

1.1.2 Radial Basis function Neural Networks

This type of neural network usually has more than one layer, preferably two. In
these networks, the relative distance between any two points and the middle is
measured and passed on to the next layer. In order to prevent blackouts, radial
base networks are commonly used in power restoration systems to restore power in
the shortest time possible.

1.1.3 Multi-layer Perceptron

This form of network consists of more than three layers and is used to classify non-
linear data. Every node in these networks is fully linked. Speech recognition and
other machine learning technologies rely heavily on these networks.

1.1.4 Convolution Neural Network (CNN)

CNN is one of the multilayer perceptron’s variants. It may have more than one
convolution layer, and since it does, the network is very large and has less pa-
rameters. It is very good at recognising and recognising various picture patterns.
Multilayer perceptrons are regularised variants of CNNs. Multilayer perceptrons
are usually completely connected networks, meaning that each neuron in one layer
is linked to all neurons in the next layer. These networks’ ”absolute access” makes
them vulnerable to data overfitting. Regularization, or avoiding overfitting, can be
accomplished in a variety of ways, including penalising parameters during prepara-
tion (such as weight loss) or trimming connectivity (skipped connections, dropout,
etc.) CNNs take a different approach to regularisation: they take advantage of the
hierarchical pattern in data and use smaller and simpler patterns embossed in their
filters to assemble patterns of increasing complexity.
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Figure 1.2: Structure of CNN

1.1.5 Modular Neural Network

A modular neural network is made up of a collection of separate neural networks
that are moderated by a third party. Each independent neural network acts as a
module, operating on its own set of inputs to complete a subtask of the task the
network is attempting to complete. The intermediary takes each module’s output
and processes it to generate the network’s overall output. The intermediary only
accepts the outputs of the modules; it does not respond to or signal the modules in
any other way. Furthermore, the modules do not communicate with one another.
This network is made up of several small neural networks, rather than being a single
network. The sub-networks combine to form a larger neural network, which works
independently to accomplish a shared goal. These networks are extremely useful
for breaking down a large-small problem into smaller chunks and then solving it.

1.1.6 Sequence to Sequence Models

In most cases, this network is made up of two RNN networks. The network is based
on encoding and decoding, which means it has an encoder that processes the input
and a decoder that processes the output. This type of network is commonly used
for text processing where the length of the inputted text differs from the length of
the outputted text.

1.1.7 Recurrent Neural Network

A RNN is a form of neural network in which a neuron’s output is fed back as an in-
put to the same node. These methods aid in the network’s performance prediction.
This type of network is useful for maintaining a limited state of memory, which is
essential for chatbot growth. Chatbot production and text-to-speech technologies
both use this type of network.A recurrent neural network (RNN) is a type of ar-
tificial neural network that uses deep learning to construct a guided graph along
a temporal sequence of connections between nodes. This enables it to behave in
a temporally complex manner. RNNs, which are derived from feedforward neural
networks, can process variable length sequences of inputs by using their internal
state (memory). As a result, tasks like unsegmented, linked handwriting recogni-
tion or speech recognition can be performed with them.
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Figure 1.3: Structure of RNN

1.2 Understanding Recurrent Neural Network

Recurrent neural networks (RNNs) are a form of artificial neural network that can
model sequence data. It has nodes that are linked in a graph that is powered by a
time sequence. All RNNs have feedback loops in their recurrent layer. This helps
them to remember information for a long time. Standard RNNs, on the other hand,
can be difficult to train to solve problems involving long-term temporal dependen-
cies. This is because the gradient of the loss function decays exponentially over
time. It has the ability to remember, making them more like how humans process
information and providing an effective way to solve a variety of scientific problems.

The repeating module in a standard RNN contains a single layer.

Figure 1.4: Single Layered RNN as it contains a single tanh layer. which makes it
difficult to store long time memory.
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1.2.1 Long-term Dependencies

Long-term dependence is a problem in RNN that arises when the network has to
make a prediction that requires context. The need to understand the context can
be done in a standard RNN, but this is based on how far back the memory wants
to save the context information. It is possible for the RNN to predict a meaning
in a simple sentence where the RNN must look back a sequence of terms. It is
much more complicated in a situation where the algorithm is needed to remember
a paragraph. In principle, if the parameters are set correctly by hand, this can still
be done with an RNN. Fortunately, scientists do not need to change the parameters
of a traditional RNN for their time data and can instead use an LSTM.

1.2.2 Stacked Long Short Term Memory (LSTM)

LSTM is a form of RNN that can take into account long-term dependability. In
1997, two physicists, Schmidhuber and Hochreiter, developed the LSTM. LSTMs
are distinguished from other RNN methods by their ability to recall details. For
a longer period of time to prevent long-term dependencies LSTMs have a chain
structure and, like other RNNs, use gates and layers of neural networks on the
inside. The LSTM’s structure is built in the form of a cell state that runs through
the entire device; the value is modified by gates that enable or disallow data to
be applied to the cell state. There are also components known as gated cells that
store information from previous LSTM outputs or layer outputs; this is where the
memory element of LSTMs comes into play in 1997.

Stacked LSTM architecture is basically an LSTM Model comprised of multiple
LSTM layers. Long short term memorie (LSTM) networks are a advance form of
RNN. A memory cell’ is used in LSTM modules that can store data for long periods
of time. As information is stored in the memory, it is output, and it is forgotten,it
is regulated by a collection of gates. New gates, such as input and forget gates,
are implemented in LSTMSs to solve the problem of loss function gradient, allowing
for better gradient control and protection of ”long term dependencies.” Increase
the number of repeated layers in the LSTM, which we call a stacked LSTM, to
solve the RNN’s long term dependence. The figure 1.5 describe the composition
of LSTM nodes. While LSTMs have a chain-like structure, the repeating module
is different. There are four neural network layers instead of one, each interacting
in a specific way. The storage of passed data streams is the responsibility of any
LSTM node, which is made up of a series of cells. Each cell’s upper line serves as
a transport line, carrying information from the past to the present. A tanh layer
is then used to build a vector of new candidate values that could be applied to the
state.Cell independence aids the model’s dispose filter, which adds values from one
cell to the next. Finally, the sigmoidal neural network layer containing the gates
moves the cell to an optimum value by disposing or allowing data to pass through.
The ability to memorise data sequences distinguishes the LSTM from other RNNs.
Every LSTM node must have a collection of cells responsible for storing passed
data streams; the upper line in each cell connects the models as a transport line,
passing data from the past to the present; and the cells’ independence aids the
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The repeating module in an LSTM contains four interacting layers.

Figure 1.5: Structure of Stacked LSTM

model’s disposal. Add values from one cell to another cell using a filter. Finally,
the gates are powered by the sigmoidal neural network layer that makes up the
gates, by discarding or allowing data to move through to an optimal value A binary
value (0 or 1) is assigned to each sigmoid sheet. 0 means “allow nothing to pass
through” and 1 means “allow anything to pass through.” The aim is to control the
state of each cell, and the gates are regulated in the following manner: - The Forget
Gate generates a number between 0 and 1, with 1 denoting ”fully hold this” and 0
denoting ”completely miss this.” - Memory Gate selects the new data to be stored
in the cell. A sigmoid layer called the ”input door layer” selects which values to be
modified first. A tanh layer is then used to build a vector of new candidate values
that could be applied to the state. - The Output Gate determines what each cell’s
output will be. The output value will be determined by the state of the cells, with
the most recent and filtered data applied.

1.3 Machine Learning Approach

In predictive analytics, machine learning takes a different approach to a query.
Predictive analytics and machine learning are expected to converge at some point
in the future. It’s about how thirsty people and thirsty people both come to the
same glass of water. Machine learning can afford to be more versatile in its solution
to a problem because it is more adaptive, younger, and has more degrees of freedom.
Predictive analytics has a longer history and is more procedural in its application.
There are three categories of machine learning approaches: supervised learning
techniques, unsupervised learning techniques, and reinforcement approaches.

1.3.1 Supervised Learning

Supervised learning is a form of machine learning in which machines are trained
using well-labeled training data and then predict the performance based on that
data. The marked data indicates that some of the input data has already been
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tagged with the appropriate output. In supervised learning, the training data given
to the machines acts as a supervisor, instructing the machines on how to correctly
predict the performance. It uses the same principle as when a student studies
under the guidance of an instructor. Supervised learning can be used in the real
world for things like prediction, risk assessment, image recognition, fraud detection,
spam filtering, and so on. Models are trained using a labelled dataset in supervised
learning, where the model learns about each type of data. The model is evaluated
on test data (a subset of the training set) after the training phase is completed, and
it then predicts the performance. There are numerous ways to execute supervised
learning in Python, such as scikit-learn, which incorporates scipy libraries. Other
libraries, such as Tensorflow and Keras, are also included. Examples of machine
learning classifiers include Naive Bayes, Support vector machine, KNN, RNN and
others.

1.3.2 Unsupervised Learning

Unsupervised learning is a machine learning methodology that does not use a train-
ing dataset to supervise models. Models, on the other hand, use the data to uncover
secret trends and observations. It is comparable to the learning that occurs in the
human brain when learning new information.Since, unlike supervised learning, we
have the input data but no corresponding output data, unsupervised learning can-
not be directly applied to a regression or classification issue. Unsupervised learning
aims to uncover a dataset’s underlying structure, group data based on similarities,
and display the dataset in a compressed format. Unsupervised learning is divided
into two categories: clustering and association.

1.3.3 Reinforcement Learning

The training of machine learning models to make a series of decisions is known as
reinforcement learning. In an unpredictable, potentially complex world, the agent
learns to achieve an objective. An artificial intelligence faces a game-like scenario
in reinforcement learning. To find a solution to the problem, the machine uses trial
and error. Artificial intelligence is given either incentives or punishments for the
actions it takes in order to get it to do what the programmer wants. Its aim is
to increase the overall reward as much as possible. Reinforcement learning differs
from supervised learning in that it does not require the presentation of labelled
input /output pairs or the explicit correction of sub-optimal behaviour. Instead,
seeking a balance between discovery (of uncharted territory) and exploitation is the
priority (of current knowledge).
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1.4 Data Mining

Companies use data mining to turn raw data into usable information. Businesses
can learn more about their customers by using software to search for trends in large
batches of data. This allows them to create more successful marketing campaigns,
boost revenue, and cut costs. Effective data collection, warehousing, and computer
processing are all needed for data mining.

1.4.1 How Data Mining Works

Exploring and analysing vast blocks of data to find relevant patterns and trends is
what data mining is all about. It can be used for a range of purposes, including
database marketing, credit risk management, fraud detection, spam email filtering,
and even determining user sentiment. There are five phases in the data mining
process. Organizations begin by gathering data and loading it into data warehouses.
The data is then stored and managed, either on-premises or in the cloud. Data is
accessed by business managers, management teams, and information technology
experts, who then decide how to arrange it.The data is then sorted by application
software based on the user’s responses, and the data is eventually presented in an
easy-to-share format, such as a graph or table, by the end-user.

1.5 Statistics

1.5.1 Mean Squared Error (MSE)

The sum of the squares of the errors—that is, the average squared difference between
the expected values and the real value—is calculated by the mean squared error
(MSE) of an estimator (of a method for estimating an unobserved quantity) in
statistics. MSE is a risk function that represents the squared error loss’s expected
value. Another way for calculating the accuracy and error in predictive models is
to use MSE.

n

MSE = rl—r; (1:- _ }",-]2

Y;: is the ith predicted value and Y; is the it" actual /observed value.

Figure 1.6: Formula of MSE

1.5.2 Mean Absolute Error (MAE)

The mean absolute error (MAE) is a statistic that measures the difference in errors
between paired observations describing the same phenomenon. Comparisons of
expected versus observed, subsequent time versus initial time, and one measurement
technique versus another measurement technique are examples of Y versus X.
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1.6 Predictive Analytics

Predictive analytics is a statistical methodology that uses statistics (both historical
and current) to forecast, or ‘predict,” future outcomes. It includes a number of
statistical techniques (including machine learning, predictive modelling, and data
mining). These results may include, for example, consumer behaviours or market
shifts. Through analysing the past, predictive analytics will help us understand
potential future events. Machine learning, on the other hand, is a branch of com-
puter science that gives computers the ability to learn without being specifically
programmed, according to Arthur Samuel’s 1959 description. Machine learning is
a branch of pattern recognition that investigates the idea that algorithms can learn
from and predict data. These algorithms can also transcend software instructions
to make highly accurate, data-driven decisions as they become more ”intelligent.”

1.6.1 How does Predictive Analytics work?

Predictive modelling is at the heart of predictive analytics. It’s more of a strategy
than a process. Since predictive models generally have a machine learning algo-
rithm, predictive analytics and machine learning go hand in hand. These models
can be trained to react to new data or values over time, producing the results that
the company requires. Machine learning and predictive modelling are closely re-
lated fields. Predictive models are divided into two categories. There are two types
of models: classification models, which predict class membership, and regression
models, which predict a numerical value. Algorithms are then used to build these
models. Data mining and statistical analysis are carried out by the algorithms,
which identify trends and patterns in the data. Built-in algorithms in predictive
analytics software solutions can be used to build predictive models. The algorithms
are referred to as ”classifiers” because they determine one of many categories data
belongs to.

1.7 Applications of Predictive Analytics

Predictive analytics and machine learning will help organisations that have a lot
of data but are having trouble turning it into valuable insights. No matter how
much data an organisation has, if it can’t use it to improve internal and external
processes and achieve goals, it’s a waste of time. The most popular applications of
predictive analytics are security, marketing, operations, risk, and fraud detection.
Here are a few examples of how machine learning and predictive analytics are used
in various industries:
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1.7.1 Banking and Financial Services

Predictive analytics and machine learning are used together in the banking and fi-
nancial services industry to detect and mitigate fraud, quantify market risk, identify
opportunities, and much more.

1.7.2 Security

With cybersecurity at the top of every company’s agenda in 2017, it’s no wonder
that predictive analytics and machine learning are important components of protec-
tion. Predictive analytics is commonly used by security organisations to optimise
services and efficiency, as well as to detect anomalies, fraud, better understand
customer behaviour, and strengthen data security.

1.7.3 Retalil

Predictive analytics and machine learning are being used by retailers to better un-
derstand customer behaviour: who buys what and where? With the right predictive
models and data sets, these questions can be easily answered, allowing retailers to
prepare ahead and stock products based on seasonality and customer preferences,
dramatically improving ROL.

1.7.4 Financial Market

Based on current data, prediction analysis techniques can forecast future possibili-
ties. The estimation of the stock market is a difficult problem in prediction research.
The stock prices fluctuate at a very consistent pace, which adds to the data set’s
complexity.



Chapter

Literature Review

In this chapter, we will go over various literature surveys by various authors. Many
researchers have made significant contributions in this field. Researchers in predic-
tion analysis has conducted several studies on stock prices prediction using various
methodologies. Here, we will go over some studies that will help us learn more
about sentiment analysis and how it relates to the core subject of our dissertation.

Kunal Pahwa et.al. [1] proposed the use of regression and supervised learning
techniques for stock prediction. They took 14 years GOOGL historical data from
WIKI and used linear regression classifier(a supervised learning method). They
trained the classifier to learn the pattern, find accuracy and predicted the adj.
close price.

V.Kranthi Sai Reddy [2] proposed a machine learning technique called support
vector machine (SVM)-based train stock data and forecasted stock prices. The
prediction of close prices is based on IBM Inc.’s historical data. They proposed
the method for predicting the regular trend of stocks since SVM does not have the
problem of overfitting

Adil Moghar and Mhamed Hamiche [3] proposed an RNN and LSTM model
to forecast future stock market prices. They used yahoo finance to extract regular
open price data for GOOGL and NKE on the New York Stock Exchange (NYSE).
They trained the model with 80% of the data and then tested it with 20% of the
data. Later, they demonstrated how much the epochs enhanced their model by
demonstrating accuracy on 12;25;50;100 epochs, respectively on both stocks sepa-
rately.

Kai Chn, Yi Zhou,et.al. [4] proposed an LSTM approach for predicting stock
returns and conducted a case study of the Chinese stock market. Their model was
fitted using 900000 training sequences and evaluated using the remaining 311361

13
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sequences. They later demonstrated that the accuracy of the LSTM model had
improved.

Hossein Abbasimehra,Mostafa Shabani et.al. [5] proposed a demand forecasting
approach based on a multi-layer LSTM network. The method uses the grid search
method to consider different combinations of LSTM hyperparameters in order to
choose the best forecasting model for a given time series. They then used demand
data from a furniture manufacturer to equate their model to existing time-series
forecasting techniques such as Autoregressive Moving Average (ARMA) and Au-
toregressive Integrated Moving Average (ARIMA).

Adrian Costea [6] discussed how to evaluate the financial performance of Roma-
nian non-banking financial institutions (NFIs) by using fuzzy logic techniques such
as Fuzzy C-Means Clustering and Artificial Neural Network (ANN) techniques. The
researcher used an ANN technique and genetic algorithms to find a function that
converts the input performance space into a new performance class variable

Mehar Vijh, Deeksha chandola et.al. [7] propsed the Artificial Neural Network
(ANN) and Random Forest (RF) techniques to forecast the next day’s closing price
for five firms. They collected data of Nike, Goldman Sachs, Johnson Johnson,
Pfizer, and JP Morgan Chase Co. over a 10-year period. They demonstrated how
ANN outperforms RF in terms of prediction accuracy by using the metrics RMSE
and MAPE and displaying their low values.



Chapter

Problem Definition

We gathered a 10 years monthly historical data of Nifty 50 from 2011 to 2020. We
took 10 years Nifty 50 monthly data (2011-2020) from Yahoo finance. For test-
ing and predicting the movement of the stock data, we combined RNN and LSTM
and proposed an RNN-based stacked-LSTM model based on multi-layer LSTM net-
works in this analysis. The LSTM algorithm, which is a more advanced variant of
RNN, looks for the best hyperparameters for LSTM networks. After checking the
accuracy of our stacked LSTM model by showing low values of Mean Squared Error
(MSE) Mean Absolute Error (MAE) we forecasted the future 10 days closing price
of our data via a backtesting method. Since we tested our LSTM model on the cur-
rent dataset and predicted the future value, the forecast as a result of our proposed
algorithm may help people decide whether to invest in a particular company while
taking into account the chaos and volatility of the stock.

3.1 Motivation

The stock market is one of the earliest methods for a regular citizen to exchange
stocks, make investments, and profit from businesses that sell a piece of them-
selves on this site. As a result, techniques for forecasting stock prices beforehand
by analysing the trend over the some previous years have been established which
may prove to be extremely useful for making stock price movements in order to
maximize profit and reduce losses. In the past, two key methods for forecasting
an organization’s stock price were suggested. Fundamental and Technical analysis
are the two main components of stock market analysis:- The method of assessing
a company’s future profitability based on its current business environment and fi-
nancial performance is known as fundamental analysis. Technical analysis, on the
other hand, involves analysing statistical data and reading charts to assess stock
market trends. The emphasis of this paper is technical analysis. We all know that,
stock market is a vital trading medium that has an effect on everyone on a personal
and national level. The basic theory is straightforward: businesses would list their
stock as commodities in minimal quantities known as stocks. They do it to help the
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organisation to raise money. The IPO, or initial public offering, is when a company
sells its shares at a set price. This is the price at which a company sells its stock
to raise money. The stock then becomes the owner’s property, and he can sell it to
anyone at any time on a stock exchange like the BSE or Bombay Stock Exchange.
Traders and sellers are continuing to sell these shares for a profit at their own dime.
However, the company only retains when the IPO proceeds. The endless jumping
of shares from one party to the next in order to make more money causes the price
of a specific share to increase with each successful sale. The exchange’s share price
falls if the company issues more stock at a lower IPO price, and buyers and sellers
lose money. In a nutshell, this occurrence is the cause of people’s distrust of in-
vesting in capital markets, as well as the rise and fall in stock prices. Stock market
trend prediction has also piqued the interest of statisticians and computer scientists,
owing to the fact that it poses complex modelling challenges. There are methods
or algorithms that can be used to forecast stock valuation with a high degree of
accuracy. However, one question remains: what are the chances that an individual
buying shares from a specific company would turn out to be a profitable venture or
a complete failure? It could be fine to invest in a specific stock if an educated guess
is made on a larger scale, taking into account the organization’s current production,
sales, and demand. However, expecting this to function in dynamic situations when
ignoring such nuanced business concepts and variables is unrealistic.

3.2 Objective

The main objective of this thesis is to do prediction analysis of 10 years stock market
data and on the basis of accuracy of model we forecast the next 10 days future close
price value. Since our target value in the prediction is close price.

As a result, in order to achieve this aim, we will develop a model to forecast the
market price of the data we have chosen. And this model will help in forecasting
the further value by using backtesting method.

3.3 Stock Market Dataset

We collected our data from Yahoo Finance. Since 2017, Verizon Media has owned
Yahoo Finance as a media property. It is part of the Yahoo! network. In addition
to financial news, information, and analysis, it provides stock quotes, press releases,
financial reports, and original material. It also has several personal finance manage-
ment software available online. It publishes original articles from its team of staff
journalists in addition to partnering material from other websites. On the ranking
of the largest news and media websites, SimilarWeb ranks it 15th.



Chapter

Methodology and
Implementation

In this thesis, A model was implemented using the RNN-based Keras system and
trained using data about the index’s price to measure the accuracy of the stacked
LSTM model proposed for predicting the Nifty 50 close price. This chapter also
explains how the LSTM model’s different hyperparameters were selected. For test-
ing and predicting the movement of the stock data, we combined RNN and LSTM
and proposed an RNN-based stacked-LSTM model based on multi-layer LSTM net-
works in this analysis. The LSTM algorithm, which is a more advanced variant of
RNN, looks for the best hyperparameters for LSTM networks. After checking the
accuracy of our stacked LSTM model by showing low values of Mean Squared Error
(MSE) Mean Absolute Error (MAE) we forecasted the future 10 days closing price
of our data via a backtesting method. We used ADAM to train and refine our
model. Since we tested our LSTM model on the current dataset and predicted the
future value, the forecast as a result of our proposed algorithm may help people de-
cide whether to invest in a particular company while taking into account the chaos
and volatility of the stock. We trained with 80% of the data and tested with 20%
of the data.

4.0.1 Proposed Architecture (Overview)

[(windows ]

Yahoo Finance [ | [Normaiisation e
Data
v .

Data Split +

l[ - ‘
A

Figure 4.1: Architeture of the proposed model
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4.1 Tools

4.1.1 Python

In this project, Python will be used. Python is a programming language for ad-
vanced users. It’s a flexible and strong programming language. Since an interpreter
is used, there is no need to compile the code in Python, making testing and debug-
ging far faster. Python has a range of open-source libraries. It’s a really common
programming language. As a consequence, it can be used in web creation, soft-
ware development, and system programming, among other things. It can run on R,
Raspberry Pi, and Windows, among other platforms. Python’s syntax is close to
that of English, allowing programmers to write fewer lines of code than for other
programming languages.

4.1.2 Anaconda and Jupyter Notebook

Anaconda is nothing more than a series of well-known Python packages. Conda, a
packet manager, is also included (similar to pip). This Python library is well-known
in the data science community. Numpy, scipy, jupyter, nltk, scikit-learn, and other
common packages include numpy, scipy, jupyter, nltk, scikit-learn, and others. A
variety of Python libraries are included in Anaconda. The anaconda mini is a lighter
weight version of the anaconda. Anaconda also replaces their own kit, known as
conda. It’s a lot more efficient than PIP. Jupyter is a web-based interpreter for
Python and R that allows you to communicate with them. Anaconda is a collection
of Jupyter notebook libraries. Jupyter can be thought of as a digital notebook
where you can run commands, draw maps, and take notes. The data scientist used
this as a starting point. If you’re learning Python and R, this is a fantastic resource.
Shell is much inferior to jupyter.

Jupyter is an excellent tool for analytical work because it allows you to display
your code in "modules,” add common formatting options between modules, and
integrate formatted output from modules into other modules’ code. Jupyter means
that other people’s work can be replicated. As a consequence, if anyone returns
after a few months, looking at the code, he or she can quickly understand what
was attempted. And can figure out which code is in control of which conclusion or
visualisation.

4.2 Nifty 50

The NIFTY 50 is an Indian stock market index that represents a weighted average
of 50 of India’s largest companies that are listed on the National Stock Exchange.
It is one of India’s two main stock indices, with the BSE SENSEX being the other.
The Nifty 50 is owned and managed by NSE Indices (previously known as India
Index Services Products Limited), a wholly owned subsidiary of the NSE Strategic
Investment Corporation Limited. Until 2013, NSE Indices and Standard Poor’s had
a co-branding equity indices marketing and licencing agreement. On April 22, 1996,
the Nifty 50 index, one of Nifty’s many stock indexes, was unveiled. The NIFTY
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50 index has evolved to become India’s largest single financial commodity, with an
ecosystem that includes exchange-traded funds (onshore and offshore), exchange-
traded options at NSE, and futures and options abroad at the SGX. The NIFTY
50 is the world’s most commonly traded deal. WFE, IOMA, and FIA polls have all
supported NSE’s leadership position. The NIFTY 50 index is a free float market
capitalization-weighted index. At first, the index was generated using a full market
capitalization method. On June 26, 2009, the computation was changed to a free-
float process. The NIFTY 50 index has a base date of 3 November 1995, which is
the end of the first year of activity of the National Stock Exchange Equity Market
Segment. With a base capital of 2.06 trillion dollars, the index’s base value is 1000.

4.2.1 Trading Strategy

A trading strategy can be built using a variety of tools, including technical indica-
tors and fundamental indicators. There are two types of fundamental indicators:
bottoms up and tops down. The basic company metrics are the bottom-up parame-
ters, and the top down parameters are how fundamental parameters are interpreted,
such as the amount of money the corporation earns and the amount of debt it owes.
The top-down perspective is concerned with how the economy as a whole is chang-
ing; for example, if the BNP per capita in Sweden increases, we can expect that
people in Sweden have more disposable income and that businesses selling con-
sumer goods would increase profits. Our trading strategy is based on a technical
approach that may or may not yield the best returns, as backtesting has shown that
a hybrid strategy combining fundamental and technological methods yields the best
outcomes. Our aim, however, is not to achieve the best trading outcomes, but to
learn more about the technology that underpins them. We use indicators like the
close price and historical price to find buy and sell signals in the trends, which is
why our approach is strictly technical.

4.3 Data Description

The project is based on 10 years monthly historical data of Nifty 50 from 2011 to
2020 which was downloaded from Yahoo Finance.

Following are the terms that are important:-

Open Price- The price of a business day’s first purchase.

Close Price- After the trading hours of the exchange where it trades, the last price
paid for a share of that stock.

High- For a given time period, it is the highest price.

Low- The cheapest price for a given period of time.

Adj. Close- After any market decisions have been taken into account, the adjusted
closing price adjusts a stock’s closing price to reflect its worth.

Volume- In the sense of a single share of stock that is traded on a stock exchange,
the number of shares exchanged in a security.

Before fitting our model, we begin by analysis by calculating descriptive of the data.
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Adj Close Close

Figure 4.2: Histogram of all the columns of dataframe showing the frequency of

values

Open High Low Close Adij Close Volume

count 120.000000 120.000000 120.000000 120.000000 120.000000  1.200000e+02
mean  8318.447901 9605.974602 8007.274183  8369.182907  8369.182907 4.643092e+06
std 2208343767 2373.322006 2258.921885 2343851499 2343.851499 4.227346e+06
min 4675799305 5099.250000 4531.149902 4624299805 4624.299505 0.000000e+00
25% 5964.800049 6134.824951 5699.025146 5923.925171 5923.925171 2.718475e+06
50%  8300.875000 8619.274003 7935474853  8304.975097  8304.975097 3.673600e+06
75% 10450.662602 10900.550050 10088324052 10502.312257 10502.312257 5.044475e+06
max  13062.200200 14024.849610 12962799810 13931.750000 13981.750000 2.130300e+07

@

Figure 4.3: Table summarizing the results of descriptive analysis of Nifty 50 Data
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Figure 4.4: Close Price of Dataframe

The project’s main aim is to forecast potential data near prices using our proposed
model, so our target value is close price. The last price at which the stock exchanged
during a normal trading day is the closing price. The standard benchmark by which
investors calculate a stock’s success over time is its closing price. Cash dividends,
stock dividends, and stock splits would not be reflected in the closing price.
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4.4 Data Preprocessing

Data discretization, data transformation, and data cleansing are all part of the pre-
processing level. Data cleansing and data integration are two of the most important
aspects of data management. To analyse, The dataset is split into two sections:
training and test after it has been transformed into a clean dataset. We search
for non-applicable possibilities by cleaning our files, and then we switch to feature
scaling, for which we imported min-max scalar from scikit-learn, a python machine
learning library. Min-Max is a technique for transforming features by scaling each
one to a specific range between 0 and 1. So, before we can do anything with data,
we must first perform data preprocessing, also known as data cleaning.

e We search for non-applicable possibilities by cleaning our files, and then we
move on to feature scaling, for which we imported min-max scalar from scikit-
learn, a python machine learning library.

e Min-Max is a technique for transforming features by scaling each one to a
specific range between 0 and 1.

e Creating a data structure consisting of 10 time steps and one output. We
used data from day 1 to day 10 to make predictions on the 11th day, and data
from day 2 to day 11 to make predictions on the 12th day.

4.4.1 Splitting dataset into train and test split

We have split our dataset in 80:20 ratio in which we have trained 80% data and
tested our model prediction on 20% data of the dataset.A huge amount of training
data leads to a more powerful and reliable classifier, which improves overall preci-
sion. Testing is often a very simple procedure. Ascertain that your evaluation data
that is at least 20% larger than or equal to our training data. Testing is a measure
of the classifier’s accuracy, and it’s been found that testing is inversely proportional
to a classifier’s score on occasion.

4.5 Feature Extraction

The dimensionality reduction method divides and reduces a wide set of raw data into
smaller groups, and feature extraction is a step in that process. As a consequence,
retrieval will be more straightforward. The most significant characteristic of these
big data sets is the huge number of variables. A large amount of computational
power is needed to process these variables. As a consequence, by selecting and
merging variables into functions, feature extraction helps in the extraction of the
best feature from large data sets, effectively reducing the amount of data. These
features are easy to use while also detailing the data collection process correctly
and uniquely.
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4.5.1 Building RNN

For building our RNN, we have imported the Keras library and packages. We im-
ported sequential, dense, LSTM, and dropout libraries from Keras, which is a tensor
flow API for creating and draining deep learning models at a high level. The dense
layer in the input simply represents a The dense layer was used to perform matrix
vector multiplication, and the matrix vector multiplication matrix vector multipli-
cation matrix vector multiplication matrix vector multiplication matrix reshape our
output’s proportions The term ”sequential” refers to a layer, a stack that allows
you to construct a sequential model from scratch. It can be used to move a list
through it.

4.5.2 Initialising RNN

To use a Recurrent Neural Network (RNN) for time series modelling, the network
must be properly initialised, that is, the hidden neuron outputs must be set correctly
at the start. An RNN is usually started with zero state values or at steady state.
Such initializations mean the system to be modelled is in steady state in the sense
of dynamic system recognition, i.e., capturing transient behaviour of the system
is difficult if the network states are not properly initialised. If the network initial
states cannot be calculated from the training data, a method for inferring them
is needed, both during the training and validation phases. Now, the first step in
creating a deep learning model is to read the data and then allocate it to the model.

4.5.3 Building Stacked LSTM

Three LSTM layers follow a sequential input layer in this LSTM: a dense layer with
activation, a dense output layer with linear activation, and a dense output layer
with linear activation. Dropouts are used to strengthen neurons, allowing them
to function better. Without depending on a single neuron, you can predict the
pattern.

4.5.4 Layers
4.5.4.1 Hidden Layer

When building the LSTM model, we must consider the number of hidden layers
the model would include, the number of LSTM cells that should be included in
each layer, and the dropout. There is no right or wrong way to choose the number
of hidden layers or the number of cells inside each layer; we’ve seen models with 4
layers and 1000 cells and 3 layers and 2 cells that were both successful. The number
of cells and layers depends on the application for which the LSTM model would
be used; however, the layers are usually 1 to 5, and the cells in each layer should
contain the same number of cells for finding an optimal structure.
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4.5.4.2 Dense Layer

A dense layer is a densely connected NN layer (Keras), in which each cell in the
next layer is connected by a dense layer. We’ve seen effective models that use dense
layers by first creating a model of hidden layers, then adding several dense layers.

4.5.4.3 Number of Layers

We’ve agreed on four layers for our LSTM model: two hidden layers and two thick
layers. The first hidden layer’s output is connected to another hidden layer, which
is then connected to a dense layer, which is then connected to another dense layer.
To avoid the possibility of overfitting, dropouts are used after each hidden layer.

4.5.5 Optimal Hyperparameters

There are hyperparameters that must be properly setup and modified when con-
structing the LSTM model so that we can get an accurate prediction when backtest-
ing our model. This enables us to understand how we can conduct empirical tests
to identify the best hyperparameters that will increase accuracy while reducing the
possibility of overfitting the data, as opposed to not conducting empirical tests on
our model and data. When conducting the empirical test, we will construct our
LSTM model using default hyperparameters that best suit our case, as determined
by various papers that we find to be extremely useful. After that, we’ll go through
each hyperparameter one by one and try to find an optimal value for each one. The
best value for a hyperparameter is discovered by evaluating the LSTM model using
the test data and backtesting it.

4.5.5.1 Dropout

Dropout is a useful technique for reducing overfitting by selecting cells in a layer
at random based on the likelihood chosen and setting their output to 0. The
optimum amount of dropout was determined through an empirical test, which was
then extended to all of the hidden layers. We developed and trained our LSTM
model, then varied the dropout values so that the difference between consecutive
dropout values remained constant. Dropouts are used to strengthen the neurons,
enabling them to predict the pattern without relying on any one neuron.

4.5.5.2 Number Of Epochs

An epoch occurs when the entire training data set has been transferred through the
network; hence, one epoch corresponds to one iteration of the entire training data
set. When the training data is propagated through the network, we divide it into a
batch size, which we set to 64. The epoch will continue until all samples have been
propagated across the network, at which point one epoch will have been passed.
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4.5.6 Compiling the RNN

Now, we will compile our RNN to using ADAM optimizer and loss as mean squared
error which kept on decreasing when we fit our LSTM model with epochs=100,
batch size=64 and verbose=1. Here,the number of epochs means how many times
we go through the training set,batch size which is the hyperparameter defines the
number of samples to work through before updating the internal parameters and
verbose which helps to detect overfitting which happens when our model’s accuracy
keeps on improving.
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Parameter Overview:-

Layer (type) Output Shape Param #
;:tm (L;TI“.} i i (None, 188, 58) 18268 -
dropout (Dropout) (None, lee, 5@) -]

1stm_1 (LSTM) (None, 188, 5@) 26208
dropout_1 (Dropout) (None, 188, 5@) a

Istm 2 (LSTM) (None, 108, 58) 26209
dropout_2 (Dropout) {None, 18&, 5a@) 2]

Istm 3 (LSTM) (None, 108) 60400
dropout_3 (Dropout) {None, 188) [}

dense (Dense) {None, 1) 181

Total params: 111,381
Trainable params: 111,381
Non-trainable params: @

Figure 4.5: Table shows the summary of stacked LSTM model used.

We used 4 LSTM layers with input shape-100, hidden size-50, dropout rate-0.2 and
output layer-1. For training data, we used 100 epochs, batch size 64 (a gradient
descent hyperparameter that specifies how many training samples must be processed
before the model’s internal parameters are changed), and verbose-1 (which includes
both a progress bar and one line per epoch). The number of epochs is a gradient
descent hyperparameter that establishes how many complete passes through the
training dataset are made. The results of our research revealed that the number
of epochs as well as the length of the data have a significant impact on the testing
outcome after our RNN has been trained. We saw a steady decrease in validation
loss as well as the values of MSE and MAE after each epoch. The accuracy of our
LSTM model was then assessed using the mean squared error (MSE) and mean
absolute error (MAE) as metrics.

Table 4.1: Values of MSE & MAE

Epoch MSE MAE
Size

Epoch 1 0.1588 0.3429
Epoch 100 | 0.0057 0.0567

Table 4.1 shows the reduction of values of MSE & MAE from epoch 1 to epoch 100.
The total epoch size was 100. The value of these two metrics kept on decreasing
from running epoch 1 to epoch 100. Hence, it shows that the accuracy of our model
is improving.
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Figure 4.6: Decrease in the values of MSE MAE

Graph in the figure 4.6 clearly shows the decrease in the values of MSE and
MAE after training our LSTM model at each epoch. x-axis and y-axis in the graph
depicts the number of epoches and value of mse mae, respectively. The low values
shows the accuracy and improvement of our proposed model.

4.5.7 Optimisation

Optimization is the process of selecting the best element from a set of alternatives
based on some criteria. All quantitative disciplines, from computer science and
engineering to operations analysis and economics, have optimization problems, and
the development of solution methods has been of interest in mathematics for cen-
turies.Since it’s nearly not possible to build a flexible classifier in a one pass, we
should constantly optimise. Optimisation,in context of deep learning, is used to
train the neural networks.

Here, we used the optimizer Adam to create the LSTM model because it has a high
performance and quick convergence compared to other optimizers. Adam is a deep
learning deep learning model training algorithm that replaces stochastic gradient
descent. Adam incorporates the best features of the AdaGrad and RMSProp algo-
rithms to build an optimization algorithm for noisy problems with sparse gradients.
We have used ADAM(Adaptive Movement Estimation) optimiser with a learning
rate of 0.0005. Adam is a deep learning model training algorithm that uses stochas-
tic gradient descent instead of stochastic gradient descent. It combines the best fea-
tures of the AdaGrad and RMSProp algorithms to create an optimization algorithm
for problems with sparse gradients and noisy data.

4.5.8 Regularization

Another important aspect of training the model is to keep the weights from being
too high. As a result, there are overfits. Regularization is a set of techniques for
preventing overfitting in neural networks and, as a result, improving the accuracy of
a Deep Learning model when confronted with entirely new data from the problem
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domain.

We have chosen Tikhonov Regularization for this reason which regularised all the
parameters equally. Tikhonov regularisation is a basic technique for converting a
linear discrete ill-posed problem into a least squares problem.
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Result And Analysis

We will make a prediction based on past data to make a prediction of future history
data to see how reliable our LSTM model is. This will be accomplished by feeding
the LSTM model the most recent prediction, which will be the training set’s most
recent entry results. Our findings have led to some intriguing conclusions. Initially,
we wanted to see how accurate a stacked LSTM model was at predicting the stock
market. We used a variety of statistical methods to assess this precision, but most
importantly, we focused on the backtesting method, which is considered an industry
norm in the scientific community when it comes to developing predictive models.
When the model is done, we use it to produce the desired results. In our case, we’ll
make a graph of our findings based on our criteria and requirements that we’ve
already covered in this paper.We trained 80% data and tested on 20% data which
is clearly shown in the graph below.
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Figure 5.1: Test predict of Stock price of Nifty 50 from 2011-2020 using Stacked
LSTM.

In figure 5.1, graph shows the prediction of our model on available dataset. Blue
Line represents our actual given close price data. Orange Line represents our train

29
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data of close price. Green Line represents the predicted output of test data of close
price. We have divided our data in such a way that test data will be after some
specific date.The graph clearly shows that our stacked LSTM model has worked
well and has performed accurately on the available dataset. Every result’s most
important feature is its precision. Accuracy is a component that any machine
learning developers always strives to improve. Following the development of the
model, an endless amount of work is expended in order to improve the model’s
accuracy.Our graph exactly shows the accuracy of our model.

Now, we will predict next future 10 days output. We used backtesting data to run
our LSTM algorithm to forecast.We have seen our model is giving accurate results
we can now rely on the model for forecasting.We have taken past 10 days data as
an input from our dataset and forecasted the next future 10 days close price.
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Figure 5.2: The forecast of next 10 days.

In figure 5.2, graph shows the future prediction. Blue Line represents previous
10 days data. Orange Line represents next 10 days output.Here, x-axis depicts
the input values of past data and y-axis depicts the output values we want to be
foreseen.

Now, we combine the past graph with the future forecasted graph and we can see
that we are getting a smoothen graph.
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Figure 5.3: Combined graph with future 10 days output prediction.

In figure 5.3, graph shows that the stacked LSTM model has done an incredible

work of forecasting the performance for next 10 days. The implementation of this
model is the easiest of them all, and it took the least amount of time, saving us
time that could be spent on other important tasks.
From the above predictions till now we can see that how promising results our
proposed RNN based stacked LSTM model has given. Given time lags of uncertain
length, stacked LSTM is well-suited to identify, process, and forecast the stock data.
LSTM has an advantage over alternative models, secret Markov models, and other
sequence learning methods due to its relative insensitivity to gap length. RNN has
a structure that is very similar to that of a hidden Markov model.
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Conclusion

This project proposes an RNN-based stacked LSTM model for predicting future val-
ues for Nifty 50 stock data downloaded from Yahoo Finance over a 10-year period.
We checked our model’s precision on existing 80% data and tested it on 20%data,
then displayed the accuracy using MSE and MAE values. Since our target value
is near price and our model is delivering promising results, we have optimised it
using ADAM optimiser and forecasted the market data’s next 10 day future closing
price via backtesting process. The main aim here is to find the most skilled algo-
rithm for predicting potential values that is as accurate as possible. The results
of the experiments show that our model has generated some promising outcomes.
The results of the research revealed that our model can use the backtesting process
to monitor the evolution of nearby prices. This method has resulted in improved
prediction accuracy and positive outcomes. We demonstrated that our proposed
model performed well on available data, allowing us to forecast the next 10 days’
near price of our current dataset.To determine this accuracy, we used a deep learn-
ing approach, but most importantly, we concentrated on the backtesting process
for potential near price prediction. Other methods for improving the accuracy of
this model in the future, such as using bi-directional LSTM and optimising a hy-
perparameter to combat overfitting when backtesting the results, may improve the
model’s accuracy even further. Other machine learning models may also be ex-
amined to see what level of accuracy they achieve. There are many components
that we think other researchers can incorporate into their theoretical frameworks
for potential work in this area. The first step will be to optimise a hyperparameter
in order to avoid overfitting when backtesting the results. The second part of this
is to always make a forecast and compare it to real-time results. The third factor
is to construct a hybrid model in which we use sentiment analysis, for example, to
forecast the volatility of the index price because we found that the prediction error
was higher when the index price was volatile. We would have taken into account
more variables than just historical data on the index’s price.
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Appendix

Appendix

A.1 Python Code

In [2]: dimport pandas as pd
import matplotlib.pyplot as plt
import pandas as pd
import datetime
import math

In [3]: dataset = pd.read_csv('C:/Users/HP/Desktop/Dissertation/Nifty5@.csv’,index_col="Date",parse_dates=True)

dataset.head()

Open High Low Close Adj Close Volume
Date
2011-04-01  6177.450195 6181.049805 5416.640902 5505.809902 5505.399902 0
2011-04-02  5537.299805 5599.250000 5177.700195 5333.250000 5333.250000 0
2011-01-03  5382.000000 5872.000000 5348200195 5833750000 5833.750000 1}
2011-01-D4  5235.000000 5944.450195 5693250000 5749.500000 5749.500000 0
2011-04-05 5766.809902 5775.250000 5328700195 5473.100098 5473.100098 0
dataset.describe()

Open High Low Close Adj Close Volume
count 120.000000 120 000000 120 000000 120 000000 120 000000 1.200000e~+02
mean 8318 447901 3605 974602 8007 274183 8369 182907 8369 182907 4 643092e+06

std 2298 343767 2373.322006 2258 921885 2343 851499 2343 851499 4 227346e+06
min 4675 799305 5099 250000 4531.149902 4524 299305 4624 299305 0.000000e+00
25% 5954.200049 5134.824951 5699.025146 5923.925171 5923 925171 2.718475e+06
50% 28300.875000 28619.274903 T935.474253 8304.975097 S8204.975097 3.672600e+006
T5% 10450.662602 10900.550050 10092.324952 10502.312257 10502.312257 5.044475e+06
max 13082.200200 14024.849610 12982.799810 13981.750000 13931.750000 2.130300e+07

dataset.isna().any ()

Open False
High False
Lo False
Close False
Adj Close False
Vo lume False

dtype: bool
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dataset.shaps

. (AzZ2e, T

dataset=dataset.reset_index{)[ "Clos="1]

& S5SeS .. so99a2
a 5322 .252302
2 S82=2 . 752co0a
= S5749 . Soaaas
<1 EATZ . 122298

115 AAZIST . Saoaaas
o B I 11247 .. 549831
147 11542 . 42239
118 A29062 .. 958288
i B I = Azo021 .. 752302

Mamse: Close, Length: 128, ditwype: floatod

Ffrom sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler{featurse_range—{&, 137}
dataset=scaler .Fit_ transform{np.array{dataset) .reshape{-1,1)

primtl{dataset)

[[@.e9421371]
[2.87s576312]
[@.129024997 ]
[&.12824645 ]
[e.eoca7ass ]
[@-1@933535]
[2.29l165961 ]
[2.e4@25671]
[2.83488516 ]
[@.-87585253 ]
[@.-e2228156 ]
[e. 1
[@.2861l4a364]
[2.82812149= ]
[@-87173a2a ]
[e.-ess566881 ]
[e.e32e5462]
[2.286995496 ]
[2.864562222 ]

pdf’ .png” .jpg” .mps” .jpeg” .jbig2” .jb2” PDF” PNG” .JPG” .JPEG”
JBIG2” .JB2” .eps”

dmport numpy
# convert arr array of values into o dotaset matrixx
de¥ create_dataset(dataset. time_step=1):

dataxX, datay = [J]. [1
for i in range(len{dataset)-time_ step-1):
a = dataset[i:(i+time_step), @] #FERFLI=0, @,1,2,3----- a9 1ea

dataX.append{a)
dataY.append{dataset[i + time_step, €]
return numpy .array(dataxl}, numpy.array(datay)

# reshape into X=t,t+1,t+2,t+32 and Y=t+4

time_step = 18
X _train, w_train = create_dataset{(train_data, time_step)
X_test, wywtest = create_dataset{test_ data, time_ step)

print(X_train.shape)., print{y_ train.shape)
(85, 1@}
(85,2

{Mone., MNone)

print(X_ test.shape), print{ytest.shape)

(13, 1@
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# reshape input to be [samples, time steps, features] which is required for LSTM
X_train =X_train.reshape(X_train.shape[8],X_train.shape[1] , 1)
X_test = X_test.reshape(X_test.shape[8],X_test.shape[1] , 1)

### Create the Stacked LSTM model

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM

from keras.layers import Dropout

model=Sequential()

model . add(LSTM (58, return_sequences=True,input_shape=(188,1)))
model . add(Dropout(@.2))

model.add(LSTM(5@, return_sequences=True))
model.add(Dropout(e.2))

model . add(LSTM (58, return_sequences=True) )

model . add(Dropout(@.2))

model.add(LSTM(units=188))

model . add(Dropout(@.2))

model . add(Dense(1} )

model.compile(loss="mean_squared error’',optimizer="adam’', metrics=['mse’', 'maes’'])

model . summary ()

Model: "sequential™

Layer (type) output Shape Param #
1stm (LSTHM) (Mone, 1@, 58} 18400
dropout (Dropout) (Mone, 1@e, 5@) )
lstm_1 (LSTM) (Mone, 1ee, 5@) 28200
dropout_1 {(Dropout) {Mone, 1lee, 5@} =]
1stm_2 (LSTM) (Mone, 1@, 5@) 20200
dropout_2 (Dropout) (Mone, 1@e, 5@) )
lstm_3 (LSTM) (Mone, 1ee) se40@
dropout_3 (Dropout) (None, 18@) )
dense (Dense) (Mone, 1) 181

Total params: 111,381
Trainable params: 111,381
Mon-trainable params: @

history=model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=188,batch_size=64,verbose=1)

# plot metrics

Admport matplotlib.pwyplot as plt

plt.plotct history.historwy[ "ms="1]3»
plt.plot(history.historw[ "ma=s"1]>»

plt.ploc (history . historyw][ mse"7].,label="ms="2>
plt.ploc(history . history [ "ma=s"].label=—"ma=" 2

Pplt.legenddd )

Plt.show()

o=s

=0

Zz5

Zzo

1s

1o

as

[ I

oo

model . input_ shape

CMHomne, 1&a. L)
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40

model. output_shape

(None, 1)
import tensorflow as tf

tf.__version__

f2.4.1°

### Lets Do the prediction and check performance metrics
train_predict=model.predict{X_train)
test_predict=model.predict(X test)

WARNING:tensorflow:Model was constructed with shape (Mone, 188, 1) for input KerasTensor(type_spec=TensorSpec(shape=(None, 186,
1), dtype=tf.float32, name="lstm input'), name="lstm_input’', description="created by layer 'lstm_input'™), but it was called on
an input with incompatible shape (None, 18, 1).

##Transformback to original form
train_predict=scaler.inverse_transform(train_predict)
test_predict=scaler.inverse_transform{test_predict)

### Plotting

# shift train predictions for plotting

look_back=18

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:, :] = np.nan
trainPredictPlot[look_back:len({train_predict)+look_back, :] = train_predict
# shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(train_predict)+(look_back*2)+1:len(dataset)-1, :] = test_predict
# plot baseline and predictions

plt.plot(scaler.inverse_transform{dataset))

plt.plot(trainPredictPlot)

plt.plot(testPredictPlot)
plt.plot(trainPredictPlot,label="trainPredictPlot")
plt.plot(testPredictPlot,label="testPredictPlot’)

plt.legend()

plt.show()

de=enJfitesit d=talk
=

= FAmput—test datalll1a: ] . .rmreshapeaef 1, — 1D
= FArmput.o shapae

LA, DA

Temp_ dnput=>1 s >x__ T mput ]k
Ttemp_ dnput—ftemp__dmputTt[a] - toliseg D

T ermps A mput

C
SS9 I1laaOSas=21SsSaSseall
L=spe = e ) = = R el
SoaeTFTae rsxsoo=Aasl 2
SETOl 99 SaR2a T S 2aaa .,
FTE2ZTSALaON AR S SaadEs .
TSS9 S5 7T SasS 2 =1 .,
FTESeoD LTS 2T2ATSoE .
ol FaeaSaac=sanso 1l o>
=1

PRS2SRRSO T2 =,

FOOODODOON
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# demonstrate prediction For next 18 days
From numpy Dmport areay

1st_ocutput—[1
n_steps—1&
i—a
while(i<—1e&) :

dfF(len(temp_dinput)>1a) :

#HprEint ¢ teme  Lrapont )
»_dnput=np.array(temp_input[1: ]

print{" {3} day input {317 . Format(i,>x anputld
x_d nput=>x__dnput.reshape(il.,. —1D)

x_ _dnput = 3x adnput.reshaped((l, n_steps. L3
B e e e T W T TR =

what = model.predict(>x__input. werbose—a)

print{" {3} day ouvutput {3 . .Formati.wybhatld
temp_ dnput.extend(yhat[@].-tolist{ 3
temp_input—temp__input[i1:]
it ¢ e Erpes £ )

1=t output.extend(yhat.tolist{lD

2 _dnput — 2x_ adnput.reshape({(l, nN_steps. 13D
what = model.predict(>x__input. werbose—a)
print{ywhac[a] >

temp_ dnput.extend({yhat[@] . tolist{} )
printf{len{temp amnputl)
1l=t_ocutput.extend(yvhat.tolist{>>

e B

11

2 day input [B.55051145 ©.52963146 ©.608676784 6.63919054 8.722761@1 @.767805
©.75880138 ©.89176541 1. ©8.64395594]

2 day output [[@.6894193]]

3 day input [©.52063146 ©.60676784 ©.68919954 ©.72276101 ©.707805 @.75000138
©.89176541 1. ©.64395084 ©.68941932]

3 day output [[8.71862893]]

4 day input [B8.6@676784 ©.68910654 9.72276181 ©.7673a5 ©8.75060138 8.89176541
1. @.64305904 6.68241933 8.71860892]

4 day output [[@.75185125]]

5 day input [©.68919954 ©.722761e1 @.7078@5 ©.75000138 ©.89176541
©.64395994 ©.68941933 ©.71869093 ©.75185125]

5 day output [[8.7721143]]

=

6 day input [©.72276181 8.707885 @.75600138 ©.89176541 1 ©.64395994
©.68941933 8.71869@%3 8.75185125 8.77211428]

6 day output [[@.7816567]]

7 day input [e.7@78e5 ©.75000138 ©.89176541 1. ©.64395994 ©.68941933

©.71860@93 8.751085125 £.77211428 ©.78165668]
7 day output [[8.7861241]]

8 day input [©.758@8138 8.89176541 1.
©.751@5125 @.77211428 8.78165668 ©.78612411]
8 day output [[e.79162514]]

9 day input [©.89176541 1. ©.64395924 ©.68941933 ©.71869893 @.75185125

8.77211428 B.78165658 £.78612411 ©.79162514]

9 day output [[8.79181117]]

18 day input [1. ©.64395994 8.68941933 ©.71869893 ©.75185125 8.77211428

©.78165668 ©.78612411 ©.79162514 ©.79181117]

1@ day output [[@.77582885]]

[[©.6439599394798279], [©.6894163201664124], [6.7186909317970276], [@.7518512471199836], [©.7721142768859863], [@.7816566824913
625], [0.7861241102218628], [@.7916251420974731], [©.7918111681938171], [©.7758288513250888]]

®

.64395904 8.68941933 8.71869@93

day_new=np.arange{1,11)
day_ pred=np.arange({ll,21)

import matplotlib.pyplot as plt

len({dataset)

12a

df3=dataset.tolist()
df3 _extend{lst_ output)

plt.plot{day_new.,scaler.inverse_transform{dataset[11&:]))
plt.plot(day_pred.,scaler.inverse_transform{lst output))

plt.xlabel{ "x-axis")
plt.wlabel({ "yv-axis")

plt.show()



