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ABSTRACT 
 

 

 

Optical Character Recognition [1] development has been gaining popularity in recent years, for 

Devanagari script along with other Indic Scripts. The script serves as a base for over 100 

languages around the world including few popularly used scripts: - Hindi, Marathi, Sanskrit etc. 

Development of robust OCR systems for Devanagari script will allow us to preserve old 

manuscripts by converting the physical files to digital formats. This will make the process of 

storage, retrieval and transfer very convenient. 

 

This project proposes the use of Convolutional Neural Networks as feature extractor for extraction 

of features from handwritten Devanagari characters. For classification, classifiers employed are 

SVM (Linear, Polynomial and RBF), KNN, RF, DT and MLP. Use of CNN model for feature 

extraction eliminates the need of handcrafted features by traditional pattern recognition methods. 

The experiments with these seven techniques have been done on the DHCD dataset proposed in 

year 2015. Use of CNN proved to be very effective for Devanagari characters recognition as all 

the models achieved recognition accuracy of over 93% and total training time including feature 

extraction and classification did not exceed a total of 12.16 minutes. 
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CHAPTER 1 

INTRODUCTION 
 
 
 
OCR (Optical Character Recognition) [1] is the technique of optically scanning the documents 

and images and then converting the text into machine editable format. The documents and 

images scanned may either contain printed text or handwritten text. After the conversion to 

digital form, the text can be stored for longer durations without degradation. The storage, 

retrieval and transfer of the data from the documents/images/manuscripts becomes very 

convenient as opposed to physically maintaining the files and records.  

 

1.1  Handwriting Recognition  
Handwriting recognition is one of the important applications of OCR systems. Handwriting 

recognition [2] is a major cross domain research area in the field of Image Processing, Pattern 

Recognition, Computer Vision, Machine Learning and now Deep Learning [3].  

 

1.2  Classification of Handwriting Recognition Methods  
Handwriting recognition problem can be broadly classified as offline and online [4] [5]. 

Offline handwriting recognition [4] is performed after the writing is completed by converting 

the handwritten document into digitally editable form. Example of offline character 

recognition is OCR system. Whereas Online character Recognition [5] is done on special 

devices where input is taken in real time using touchscreen or stylus like in a tablet. Our focus 

will be on Offline handwriting recognition techniques in this project. 

The offline recognition systems can be used to extract and read any old documents, 

manuscripts, writings and documents, reading postal zip codes, bank cheque amounts, 

signature verification.  

Further the techniques can be based on whether they use segmentation [6] to separate 

characters before classification or are segmentation free. We have studied in this project OCR 

systems based on segmentation approach. i.e., single characters are identified after segmenting 

lines into words and then words into characters.  The results are then combined to identify 

1 
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complete word. Such schemes are called as Handwritten Character Recognition (HCR). In 

case of segmentation free approach, the words are recognised as whole also known as 

Handwritten Word Recognition (HWR). Figure 1 shows the different types of Handwriting 

Recognition Methods.  

 

 

Fig. 1.1. Classification of Handwriting Recognition Methods 

 

1.3  Applications of Handwriting Recognition   
Some of the most widely popular domains where robust handwriting systems find applications 

include:- 

 

i. Healthcare and medical aid: recognition of handwriting on patient forms & on 

prescription forms. Automatic processing of prescription forms and conversion to 

digital format will enable us to store the patient’s health record and history and can be 

used in future diagnosis as well.  

ii. Insurance firms: to process the documents and provide timely claims & enhance the user 

experience. Automating the complete documentation process of insurance purchase and 

claims will make the whole process a lot smoother and more convenient. 

iii. In banks and finance sector: to verify signature [7] which speeds up the process and is an 

effective way of identifying forgery as opposed to manual verification/check. Systems 
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can be developed to identify signature, cheque number, amount written in words and 

digits and complete process of reading and processing cheques can be automated. 

iv. Manuscript Preservation: Easier and efficient storage and retrieval of old manuscripts [8] 

written Devanagari or related languages. This will allow preservation of cultural 

heritage in the form of ancient literature. 

 
 
1.4  Challenges in Handwriting Recognition  
 
There are several major challenges [9] [10] while recognising handwritten characters from 

documents or images starting from image acquisition up to classification. These include the 

degradation of old images due to noise or low quality of images to be scanned, huge variation 

in writing styles, difficulty in recognition of cursive handwritten characters, text not written 

in perfect straight lines leading to skew/slant/rotation/translation and non-availability of 

standard labelled datasets, to name a few. 

 

1.5 Organization of the Report 
 
The report consists of the following sections. Chapter 2 describes about Devanagari 

Handwriting Recognition – the script, challenges, publicly available datasets and general 

system framework.  Chapter 3 contains the literature review of state-of-the-art machine 

learning and deep learning techniques implemented by researchers for recognition of 

Devanagari handwritten characters recognition. Then chapter 4 discusses about the Proposed 

Recognition System and related theories in detail. The complete Experimental Setup is 

explained in chapter 5 and the results of the experiments are presented in chapter 6. Chapter 

7 gives the conclusion drawn from the experiments.  Chapter 8, the last section, points out 

future directions for enhancing research in this domain.  Finally, the references are listed.  
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CHAPTER 2 

DEVANAGARI HANDWRITING RECOGNITION 
 

 

 

2.1 Devanagari Script 
Devanagari script [11], also called as ‘nagari’, means the language from city of divinity; 

‘deva’ meaning heavenly or divine and ‘nagari’ meaning city or abode. It is based on the 

family of Brahma scripts. It is fourth most widely used script around the world and forms the 

base for around 120 languages either in base form or derived form. The scripts that make use 

of Devanagari script either alone or along with other scripts are Sanskrit, Marathi, Hindi, Pali, 

Nepali, Prakrit, Sindhi to name a few. In India, it is used for languages like Hindi, Marathi 

and Sanskrit. The script consists of 47 primary characters - 33 consonants, 14 vowels and 10 

numeral characters. Like the other Indian languages, it is also phonetic in nature i.e., the shape 

of each character represents unique sound. The script is written from left to right and is cursive 

in nature. There is no notion of upper case or lower-case characters. All characters / words 

have a horizontal line running at the top known as ‘shirorekha’. The script has similar 

structured characters differing only in dots, horizontal line, loops etc. 

  
(a) (b) 
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Fig. 2.1. (a) Vowels and Consonants of Devanagari Script. (b) Consonants and their half forms in Devanagari 

script. [12]  

 

2.2 Challenges in Devanagari Script Recognition 
The Devanagari script [11] has various characters which have similar structures and differ 

only in minor details like dots, horizontal line, loops etc. This makes the classification of 

Devanagari characters very challenging. And on top of that different individuals may write 

the same characters differently due to cursive nature of the script. Table 1. shows few similar 

characters in Devanagari. Non-Availability of benchmark datasets of Devanagari script is yet 

another major issue. At present we have very limited number of Devanagari datasets as 

compared to English or other non-Indic scripts. There is a requirement of large and inclusive 

Datasets like we have for English. The number of datasets available are very less and are small 

in size for both isolated characters and words, when compared with those available for 

English.  

 

Table 2.1: Similar Devanagari handwritten characters 

 

2.3  Publicly Available Datasets - Devanagari Handwritten Character 

Database 
Some of the popular Devanagari Handwritten characters datasets have been mentioned in table 
2. 
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Dataset Name Year 
Proposed 

Size  Types of characters Number of 
Classes 

Reference 

- 2020 5800 Consonants, Vowels and 
Numerals 

58 [13] 

DHCD  2015 92000 Consonants and Numerals 46 [14] 

CPAR -2012 2012 113400 Characters and Numerals 60 [15] 

CVPR ISI  2009 22,556 Numerals 10 - 

 
Table 2.2: Devanagari handwritten characters datasets 

 

2.4  Devanagari HCR Framework   
Figure 3 shows the general framework of a Devanagari Handwriting Recognition System. 

 
Fig. 2.2. Offline DHRS Framework. 

 

Offline DHRS systems consist of four stages: 

i. Image Acquisition: the handwritten characters to be recognised have to be acquired 

through scanners or cameras from images or documents .  
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ii. Pre-processing: It is done for the scanned image to make it  suitable for further processing.  

The process includes steps like binarization, normalization, slant removal as well as 

noise removal . 

iii. Segmentation: The scanned image/document is segmented into lines, words, and 

individual characters before applying to the model for training or testing in case of 

Handwritten Character Recognition.   

iv. Character Recognition: this steps involves 2 stages. First stage is the feature extraction 

stage followed by Classification of characters into their correct classes based on the 

combination of features extracted for each character.    
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CHAPTER 3 

LITERATURE REVIEW 
 
 
 
3.1. Review of Machine Learning Algorithms based Recognition Systems 

Handwriting Recognition Systems were developed using traditional methods like Fuzzy logic-

based classification, Support Vector Machines (SVM), K-Nearest Neighbour (KNN), Hidden 

Markov Models (HMM) and other classifiers. The conventional methods required feature 

selection and Feature extraction stages to be done manually. The features could be structural, 

geometrical or global like closed loops, horizontal & vertical lines, inflection points, aspect 

ratio etc. of each character. In any recognition scheme, feature extraction is a critical step. 

Selection of appropriate features and their efficient extraction affects the recognition rate 

vastly. The features are applied as inputs to a classifier like SVM or HMM to recognise the 

text. The recognition accuracy and performance of these methods varies, and the systems are 

not robust as it is not possible to select best features always. Feature selection and extraction 

depends largely on the type of characters and dataset applied.  

In [24], the authors made use of discrete cosine transform for extraction of features and Neural 

network-based classification for recognition of Devanagari characters. The NN used for 

experiments was Artificial NN with different number of hidden layers, starting from 10 up to 

80 layers. The highest recognition accuracy obtained was 94.89% for 55 hidden layer 

architecture.  

In [25], the authors classified 1000 Hindi characters by calculating the histogram of 

projections based on mean values, pixel values & vertical zero crossing of characters. Then 

the characters were classified with artificial neural network having 2 hidden layers. The 

classification accuracy obtained was 98.25%.  

In [26], the authors have recognised Devanagari script characters by finding the gradient and 

curvature of characters and then classifying them using combination of two classifiers namely 

Modifier Quadratic Discriminant Function (MQDF) and Support Vector Machine (SVM). The 

recognition accuracy obtained was 95.13%.  
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In [27], the authors employed GLAC (Gradient Local Autocorrelation) feature extraction 

method and SVM classifier for recognition of Devanagari handwritten characters. Accuracies 

reported for ISIDCHAR and V2DMDCHAR datasets are 93.2% and 95.2% respectively.  

In [28], the authors classified Devanagari handwritten characters by combining wavelet-based 

feature extraction method and Back Propagation NN classifier. The highest accuracy achieved 

was 70%.  

In [29], the authors developed a recognition system for Devanagari script by evaluating 

various structural and geometrical features and performing classification using MLP 

classifier. Maximum classification accuracy achieved was 82.7%.  

In [30], the authors developed a novel system for recognition of Devanagari script by 

evaluating structural features and performing classification using FFBPN, CFBPN and EBPN 

classifiers. Accuracy rates obtained were 97.20%, 97.46% and 98.10% respectively.  

In [31], the authors classified handwritten Devanagari words’ database having 10000 samples. 

The dataset was divided into 7000 characters for training and 3000 characters for testing. 

Features were extracted using strokes method and classifier used was Hidden Markov Model 

(HMM). Accuracy observed was 87.71% on the training dataset and 82.89% on the testing 

dataset.  

In [32], authors proposed the use of curvelet transform for the extraction of textual features 

and classifiers used were SVM and KNN. KNN model produced best results with a maximum 

accuracy of 93.21%.  

In [33], a hybrid feature extraction method has been employed by the authors, by combining 

skeleton and contour-based features. The feature maps were classified by SVM classifier. In 

[34], the authors used combination of directional and gradient structural curvature features for 

classification using SVM classifier. 

Paper  Dataset Feature 
Extraction 
Method 

Classifier  Recognition 
Accuracy 

Size of 
Testing 
dataset 

Type of 
characters 
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[24] 2760 Devanagari online 
characters 

DCT  NN 94.89% 

[25] 1000 Hindi words Histogram of 
projections 

ANN 90% 

[26] 36,172 
(28,937 
training set 
size and 7,235 
testing set 
size) 

Devanagari 
consonants and 
vowels 

Gradient and 
curvature of 
characters 

Combination 
of MQDF 
and SVM 

95.13% 

[27] 36,172 Devanagari 
handwritten 
characters (49 
classes)  

GLAC SVM 93.21% 

20,305 Devanagari 
handwritten 
characters (50 
classes) 

GLAC SVM 95.21% 

[28] 2000 Devanagari  Wavelet 
based 
features 

BPNN 70% 

[29] 5375 
(alphabets) 
and 3000 
(numerals) 

Handwritten 
Devanagari 
alphabets and 
digits 

Structural 
and 
geometrical 
features 

MLP  82.7% 

[30] 40,000 (60% 
training, 20% 
testing and 
20% 
validation) 

Devanagari 
(offline) 

Structural 
features 

FFBPN, 
CFBPN & 
EBPN 
networks. 

97.20%, 
97.46% and 
98.10% 
respectively 

[31] 10000 (7000 
training set 
and 3000 
testing set) 

Devanagari 
(offline)  

Stroke 
method 

HMM 82.89% 

[32] 28,500 Devanagari  
(offline) words 

Curvelet 
Transform 

SVM and 
KNN 

85.61% 
(SVM) and 
93.21% 
(KNN) 

[33] 39,700 
(training set 
size -22,500 
and testing set 
size- 17,200) 

Devanagari  
(offline)  

Combination 
of skeleton 
and contour-
based 
features 

SVM 79.01% 

[34] 39,700 
(training set 
size -22,500 

Devanagari  
(offline) 

Combination 
of DDD and 
GSC 
features 

SVM 88.75% 
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and testing set 
size- 17,200)  

 

Table 3.1: Recognition Results of State of the art Machine Learning based Devanaagri Recognition 

Systems 

 

3.2. Review of State-of-the-Art Deep Learning based Recognition Systems  
 
With the emergence of deep learning [3] methods, major increments in accuracy rate have 

been observed in handwriting recognition. The models can extract the features automatically 

from the dataset so the need of feature selection by hand engineering has been eliminated 

completely. Thus, the feature extraction and character classification stage are combined into 

a single stage- character as recognition stage.  

Deep learning models are being used since early 2000’s for applications ranging from object 

detection, pattern recognition, computer vision and image processing. Various researchers 

have also shown that using deep learning models we can get excellent results in handwriting 

recognition. The Neural Network models mimic the learning pattern of human brain. 

Convolutional Neural Network [35] is one of the popular NNs. It consists of 3 types of layers- 

first is convolution layer that has filter banks, and it convolves with input images to generate 

features maps. Next is Pooling layer which performs average or max pooling to reduce size 

of feature maps. These 2 stages combined are for feature Extraction. Fully Connected layer 

activates every neuron from last layer and performs the task of classification. Due to its 

properties like weight sharing, multiple layers and pooling, CNN can detect features 

automatically. But the model requires large datasets for training and considerable amount of 

time. Many researchers have explored the options and state of the art methods like pre-trained 

architectures, transfer learning, use of additional classifier, regularization methods, other 

techniques to avoid problem of overfitting/under-fitting, use of different optimizers and so on. 

We have discussed those experiments and results in the following paragraphs.  

In [36], the author has made use of transfer learning scheme using AlexNet [37] which is 

trained over a database of 16870 images consisting of 22 more frequently used consonants. 

Dataset has been divided as 56%- training, 24%- validation & 20%-testing for evaluation of 

performance. A 3D filter has been added to the first stage of Network to convert grayscale 
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images of size 220*220 to coloured images of size 227*227. The results demonstrated that 

Transfer Learning is a faster way of achieving training with fewer training samples. In 3 

epochs only, the training accuracy went above 90%. The highest validation accuracy and test 

accuracy attained are 94.49 % and 95.46% respectively.  

In [38], the authors have proposed a new dataset named -DHCD (Devanagari Handwritten 

Character Dataset) consisting of 46 different characters of Devanagari script. The author has 

focused on the use of dropout and dataset increment methods to improve the test accuracy. 

The evaluation has been done on both shallow and deep models - Model1 and Model2 

respectively. After training for 50 epochs, the accuracy remained nearly constant. The results 

show that Deep architecture’s training accuracy improves with extended dataset (98.47%) and 

almost no improvement with dropout. On the contrary, the shallow architecture depicts 

increase in training accuracy with dropout and only a slight change with extension of dataset 

(98.26%). 

In [39], the authors have proposed a new dataset named as UCI Devanagari dataset and has 

made it publicly available. DHCRS (Devanagari Handwritten Character Recognition System) 

has been proposed specifically for Devanagari characters. The scheme comprises of 2 stages- 

In first stage, pre-trained VGG16 [39][40] architecture has been implemented followed by 

next stage of newly created Fully Connected layer. The first stage network is wide with a 

greater number of parameters as opposed to the compact network of 2nd stage. The fine tuning 

of model in 2nd stage increases the overall efficiency of the model. Techniques like Runtime 

data augmentation and Regularization techniques like – ‘dropout’ and ‘batch normalization’ 

are also incorporated to avoid over-fitting. The results were also impressive with 96.55% 

recognition accuracy with training loss 0.12 on the UCI dataset. Thus, the model proposed 

provides considerably   good results with fewer number of training parameters and a small 

dataset. 

In [41], Layer wise trained Deep convolutional neural network has been used to train 6 

network architectures (NA). The 6 Network architectures used to evaluate performance are 

namely NA1 to NA6. The optimizers used are SGD, Adagrad, Adam, AdaDelta, AdaMax, 

and RMSProp. The Layer-wise trained Deep Convolutional NN have showed highest 

recognition accuracy & faster convergence rate on all the 6 architectures when compared with 

other state of the art DCNN methods. Highest recognition accuracy has been observed for 

NA-6 architecture after layer wise training and using RMSProp optimizer. Thus, the paper 
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[14] summarized the effects of choosing various optimizers and architectures in an extensive 

manner.  

In [42], DevNet-Handwritten Devanagari Character Recognition has been developed 

specifically for enhancing performance and the recognition accuracy of Devanagari 

handwritten characters and numerals. The model has been based on CNN architecture since it 

is very powerful and capable of extracting relevant features. To prove the efficacy of the 

proposed model it has been implemented on four different databases varying in size and 

collected from different sources. The proposed method proved to be highly accurate on all 

databases used and the accuracy came out to be greater than 97% in all cases (Refer Table 1).  

In [43], use of Residual Network (ResNet) has been made to classify the Devanagari 

characters of DHCD dataset. The ResNet is able to overcome the problem of degradation 

observed in deep CNN owing to presence of large number of layers. The ResNet uses short 

connections which reduces number of layers while still providing good results. The two that 

were employed are ResNet 34 and ResNet 50, where 34 and 50 denote the number of layers 

in the network. The highest recognition accuracy achieved was 99.35% for ResNet50 and 

98.73% for ResNet30. ResNet therefore can be used in case of deep learning approaches to 

avoid the problem of vanishing gradients and thus degradation of performance due to deep 

architecture.  

In [44], the authors have proposed the model DeepNetDevanagari for recognition of 

Devanagari characters. The model is based on CNN architecture. The model has been trained 

on a small database created for testing the efficacy of proposed method. The database has 

handwritten characters of Devanagari in base form. Even with a small dataset, the model was 

able to recognize the characters with 93.73% accuracy. 

In [45], Devanagari numeral characters of database ISI Devanagari characters are recognized. 

The authors have used CNN architecture for feature extraction and SVM as classifier. The 

model produced excellent results with up to 99.41 % accuracy.  

In [46], 7 pre-trained architectures have been used - AlexNet, DenseNet(DenseNet-121, 

DenseNet-201), VGG(VGG-11, VGG 16, VGG 19) and Inception-V3. Usage of pre-trained 

models eliminates the requirement for training the model from scratch. The work focused on 

examination of different pre-trained models for the DHCD dataset. The effects of choosing 

pre-trained models on training time and accuracy have been analysed after performing 

experiments. The number of epochs were kept low, and the focus was on reducing the number 
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of epochs as well as average time per epoch for training and recognition. The Inception 

[46][47] model gave the accuracy of 99% in single epoch only while the AlexNet model 

required in 3 epochs to attain best accuracy. The DenseNet [46][48] took the greatest number 

of epochs to reach accuracy of 89% and 90%. 

Pape
r 

Dataset Recognition 
Technique 

Recognitio
n 
Accuracy Name Size of 

dataset 
Training 
Data size 

Testing 
Data 
size 

Number 
of 
Classes 

Types of 
Character
s  

[36] -  16870 9447 3374 22 Consonant
s 

Transfer 
Learning 
using 
AlexNet 

95.46% 

[38] DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

Deep CNN - 
with focus on 
dropout and 
dataset 
increment 

98.47% 
and 
98.26% 

[39] UCI 
Devana
gari 
Dataset 

5800 4640 1160 58 Consonant
s, vowels 
and 
numerals 

DCHRS- 2 
Stage VGG 
Architecture 
-Fine Tuning 
with Deep 
CNN 

96.55% 
with 0.12 
training 
loss 

[41] ISIDC
HAR  

36172 - - 49 Consonant
s and 
vowels  

Deep CNN -
trained Layer 
Wise 

97.30% 

V2DM
DCHA
R 

20305 - - 50 Consonant
s and 
vowels  

Deep CNN -
trained Layer 
Wise 

98% 

[42] UCI 
DCD 

920000 78200 13800 46 Consonant
s and 
numerals 

DevNet: 
Modified 
CNN for 
Devanagari 

99.54% 

CVPR 
ISI  

22000 18784 3772 10 Numerals DevNet: 
Modified 
CNN for 
Devanagari 

99.63% 
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CMAT
Edb 
3.2.1  

3000 2000 10000 10 Numerals DevNet: 
Modified 
CNN for 
Devanagari 

98.70% 

Kaggle
  Deva
nagari 
charact
er 
dataset 

12992 10350 2642 58 Consonant
s, vowels 
and 
numerals 

DevNet: 
Modified 
CNN for 
Devanagari 

97.29% 

[43] DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

Residual 
Network(Res
Net) 

99.35% 

[44] - 5484 4113 1371 33 consonants
, vowels in 
base form  

CNN 93.73% 

[45] ISI 
Kolkat
a 
Devana
gari 
Dataset 

22556 - - 10 Numerals CNN (feature 
extractor) 
+SVM 
(classifier) 

99.41% 

[46] DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

AlexNet with 
Deep CNN 

95% 

DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

DenseNet 
with Deep 
CNN 

90% 

DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

VGG with 
Deep CNN 

97% 

DHCD 920000 78200 13800 46 Consonant
s and 
numerals 

Inception 
with Deep 
CNN 

99% 

 
Table 3.2: Recognition Results of State of the art Deep Learning based Devanaagri Recognition 

Systems 
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CHAPTER 4 

PROPOSED DEVANAGARI HANDWRITTEN CHARACTER 
RECOGNITION (DHCR) SYSTEM 

 
 
 
4.1.  Objective 
Development of a robust handwritten character recognition system requires the selection of 

best feature extraction algorithm. Since there are numerous feature extraction methods 

available, it becomes difficult to choose the suitable algorithm. The aim of proposed method is 

to save the hassle and struggle of selection & extraction of relevant features from handwritten 

characters and make the process completely automatic. While doing so, the classification 

accuracy must also increase. The training time and prediction time must also be a reduced 

value.  

Thus, the motivation behind proposed method is to  

(i) Minimise the requirement for image pre-processing. 

(ii) Eliminate the need of hand engineered feature selection and extraction. 

(iii) Improve accuracy over other recognition systems available. 

(iv) Reduction in training and prediction time. 

4.2.  Proposed Recognition System Framework 
The proposed system architecture is described below. Various steps and related theories are 

explained in upcoming sections. Figure 4 shows the framework of the proposed recognition 

system. 

 

Loading the dataset:  
 

The dataset consists of isolated characters of each character class in separate folders. The raw 

pixel information is available in a csv file. Each character is of size 32*32 i.e., having 1024-

pixel values. The character labels have also been mentioned for all characters. Input features 

(1024) are read into one array and character labels in another array. 

 

Image Pre-processing:  
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The pixels contain information of the gray scaled images. The images are converted to binary. 

Normalisation is performed for all features by dividing them by 255(highest pixel value in 

black and white image). Thus, we get features normalised to a scale of 1. The features and 

character label arrays are split into training and testing set. 

 

Feature Extraction using CNN:  
 

CNN automatically extracts relevant features from the data fed. Convolution layers are used 

to create feature maps from training samples and pooling layers are used for reducing the size 

of feature maps generated. Instead of connecting the last fully connected dense layer for 

classification, the features are obtained in an array and fed to different classifiers as input. The 

model is trained for 3 epochs to learn the features from the training samples. Figure 2 shows 

the CNN model architecture used for the purpose of feature extraction.  

 

Classification:  
 

Features extracted from last layer of CNN model are fed to various classifiers and test samples 

are applied for prediction. Classifiers are fed with two arrays, X - input features obtained from 

last/Dense layer of CNN and y-class labels for training and then tested on test samples. Total 

number of character classes are 46. Default parameter values have been used for each classifier 

for simplicity. Classifiers employed are Support Vector Machine(SVM), K- Nearest 

Neighbours(KNN), Decision Tree(DT), Random Forest(RF) and Multi-layer 

perceptron(MLP). 

 

Performance Evaluation: 
 

For performance analysis, metrics used are classification accuracy and prediction time, for all 

classifier models. Since the dataset is balanced, classification accuracy is a reliable parameter 

and there is no need for evaluating precision, recall or F1-score values.  
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Fig. 4.1.  Framework of the Proposed Recognition System 

 
4.3. CNN Model  
Convolutional Neural Networks [49] are popularly used for image classification, computer 

vision and object detection tasks. The Network is inspired by the learning model of neurons 

of human brain and requires very less pre-processing of input images. They consist of five 

different types of layers:  

i. Convolution layers: - which perform the operation of convolution of input images with 

filter or kernel and generates feature maps. The filters slide over the input image for 

performing the mathematical operation of convolution, by finding dot product of filter 

value with image pixel value. The feature maps give information about text in images 

like it may detect lines, corners, edges etc. The feature maps are large due to multiple 

convolutions with the entire image.  

ii. Pooling Layer: - down samples the size of feature maps. It reduces the dimensions of 

features by performing pooling or aggregation operation. The most commonly and 

widely used pooling methods are average pooling and max pooling. Average pooling 

takes average pixel value from a section of input image and rest pixel values are 

discarded. Similarly, in max pooling operation, maximum value from nearby pixel 
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values is retained. This is done to reduce computational costs. The convolution layers 

and pooling layers are together called as Feature Extractors.  

iii. Dropout layer: - If all learned features are connected to the FC layer, the model may 

learn all necessary and unnecessary features resulting in overfitting on the training 

dataset. To avoid any such issue, we can add one or multiple dropout layers which 

randomly drops/ removes specified percentage of neurons. This also results in reduced 

size of network model. A dropout layer can be inserted after convolution layer or 

pooling layer. 

iv. Flatten layer: - this layer flattens the feature maps obtained from convolution and 

pooling layers and converts them into a 1-dimensional feature map. This flattened 1D 

vector is fed to fully connected layer/s for classification. 

v. Fully Connected layer: - consist of weights and biases and units/neurons which are used 

to establish connections between two layers. These are the layers responsible for 

performing the classification of dataset images into respective classes. They take the 

feature maps from previous layers as inputs and based on the combination of features 

learned, this layer can classify the samples correctly. There may be multiple fully 

connected layers in the network. 

 

Layer type Functions Parameters Input  Output 
Convolution 
Layers 

§ Convolution of 
filters with 
images to 
generate 
feature maps. 

§ Filters are made 
of kernels 
having 1 bias 
per filter. 

§ Activate all 
values in 
feature map 

§ No. of Kernels. 
§ Size of kernels 

(width and 
height) 

§ Activation 
function  

§ Stride size 
§ Padding value 
§ Value & type of 

Regularization  

3D array, 
prior 
feature 
maps. 
 

3D array, 
1- 2D 
feature 
map for 
every 
filter. 

Pooling 
Layers 

§ Dimensionality 
Reduction. 

§ Extract average 
or max. pixel 
value from a 
region. 

§ Sliding window 
approach.  

§ Stride size 
§ Window size 

3D array, 
prior 
feature 
maps. 
 

3D array, 1 
2D map 
per filter, 
reduced 
spatial 
dimensions 
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Fully 
connected 
layers 

§ Summation of 
information 
from all feature 
maps. 

§ Classification 
into classes. 

§ No. of nodes 
§ Activation 

function : if 
aggregating info, 
use ReLU, for 
final 
classification use 
SoftMax 

Flattened 
3D cube, 
previous set 
of feature 
maps. 

3D cube, 
one 2D 
map per 
filter 

 

Table 4.1: Types of layers in a CNN model. 

 

Besides these layers, activation function plays an important role. An activation function adds 

non-linearity to the model. Commonly used activation functions are ReLU, sigmoid, tanh and 

sigmoid. We have used ReLU activation function in all convolution layers and in the output 

layer the ‘SoftMax’ activation function is used for the multi-class classification task. The 

‘SoftMax’ activation used gives a probability for each class and the model will makes 

prediction based on the class with highest probability. The model learning happens because 

of loss function and optimizer. The loss function tells the model its task. e.g., to reduce the 

mean absolute error between predicted class label and the actual class label. The loss function 

employed is Cross-Entropy. The optimizer tells the network on how to achieve that aim. Most 

popular optimizers are Adam, AdaGrad and RMSProp that do an excellent job of updating 

weights in an adaptive manner and thus improving accuracy of model. The optimizer 

employed is ‘Adam’ optimizer. 

 
ReLU Activation function:- 

The Rectified Linear Unit is one of the most commonly used activation functions. It can be 

represented mathematically as: f(x) = max (0,x) .i.e., it reduces the negative values to zero and 

returns the original value for positive numbers. Though in formulation the function is very 

simple, yet it generates excellent results when used in deep models for introducing non-

linearities. It helps the models to account for interactive effects and non-linear effects well. 
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Fig. 4.2. Graphical Representation of the ReLU function 
 

SoftMax Activation function:- 

SoftMax activation is used in the output layer of a multi-class classification model. It 

normalizes the outputs of each class by converting their weighted sum values to probability 

values. The probabilities of all the classes add up to value one. The classification is then done 

by the classifier based on class probabilities. The input is classified into the class having 

maximum probability. 

 

Adam Optimizer: - 

Adam optimizer is an improvement over stochastic gradient descent (SGD) algorithm, used 

or updating the network weights in an iterative manner. It is widely used in training of deep 

learning models. It combines the best features of AdaGrad and RMSProp optimization 

algorithms. Besides it is simple to implement, has very less memory requirements and works 

well with (non-stationery) noisy or large data problems.  

 

Loss function: Categorical Cross-Entropy: - 

Categorical cross entropy loss function is used in a multi-class classification task, where the 

output can be classified into one of the multiple class labels available. The model uses cross 

entropy function and assigns a high probability to the correctly classified class label and a 

low probability to other classes. 

 

   x

 f(x)
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We have built a CNN model and trained it to learn best features from the images and for the 

purpose of classification, various classifiers have been used instead of the fully connected 

layer in CNN. 

 
4.4.  Brief Explanation of the Classifiers Used 
 

1. Support Vector Machine (SVM): - 

Support Vector Machine [50] is a supervised machine learning method used for classification 

and regression tasks. SVM is a popular and widely used classifier for image classification 

tasks. It distinguishes the sample points by identifying a hyperplane that separates the classes. 

The sample points that are nearest to the hyperplane are called “support vectors”. The 

classifier aims to maximise the margin (difference between support vectors) on either side of 

hyperplane. The classifier takes 2 inputs: an array of shape (number_of_samples, 

number_of_features) and another array containing class labels, either as numerical or string 

format, of shape (number_of_samples). A kernel function has to be specified which can be 

linear, polynomial, radial basis function or any other custom function. 

Different Kernel types used in the project are: - 

I. Linear Kernel: - {x, x’} 

II. Polynomial (Poly): - {γ (x, x’) + r) ^ d, where γ- gamma, d is degree, r- coefficient. 

III. Radial Basis Function (RBF): (−γǁx−x′ǁ2), where γ is gamma (> 0). 

The classifier has following advantages: - powerful in high dimensional spaces, effective in 

cases where number of dimensions are more than the number of examples, is memory 

effective as it only focuses on a subset of training points i.e., the support vectors and is 

versatile i.e., different kernel functions can be used.  

The disadvantages of the classifier are overfitting may occur in cases where number of 

features are greater than the number of sample points, selection of kernels is difficult, and 

calculation of scores & probabilities is done using expensive k-fold cross-validation. 
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Fig. 4.3. Graphical Representation of the SVM Classifier [55] 
 

2. K- Nearest Neighbours (KNN): - 

KNN [51] is a supervised learning method. The idea behind this algorithm is that similar 

things occur in proximity. Closeness between points is measured using distance between the 

points ex.  by using Euclidean distance. It finds distance between the query and all data points 

and selects a specified number of samples (k) closest data points from query. The query is 

classified to the class label that is the most repeating in the chosen k points group. The 

advantages of using KNN are: - easy and simple to implement, no need of tuning parameters, 

can be employed for classification as well as regression tasks. The disadvantage of algorithm 

lies in the slow classification time for large number of samples/classes. KNN algorithm is a 

popular choice in recommender systems, as they work on principle of close data points.  

z

x

y
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Fig. 4.4. Graphical Representation of the working of KNN Classifier [56] 

 

3. Decision Tree (DT): -  

Decision Tree [52] is a powerful classification and prediction tool that learns using an 

inductive approach. It has a tree structure like that of a flowchart. In a decision tree, there are 

several nodes, that present a decision condition, starting from parent node at the top to the 

terminal node as the final class label. At each node, the data is classified based on a test on 

the attribute and each branch represents the result of the test/decision. A DT is built by 

recursively splitting the data samples into subsets based on the attribute tests at each node. 

The splitting is stopped when we have the final predicted classes at the final nodes. An optimal 

DT is one that is able to represent all data points with least number of node levels. Pruning 

methods are used to drop nodes that are not critical for classification, hence reducing size of 

DT. Use of DT has following advantages: - they can handle both categorical and numerical 

values, no prior domain knowledge requirement, can be visualised, results can be interpreted 

and analysed to understand critical decision rules. DT have following limitations: - may lead 

to overfitting on data by creating complex tree, problem of variance i.e change in tree with 

even slight changes in data points, no guarantee of optimal tree by use of greedy algorithms 

and it results in a biased tree if some classes in the dataset dominate. 

 
 

 

x - axis

  y-axis



 
25 

 
 

Fig. 4.5. Structure of a Decision Tree [57] 
 

4. Random Forest (RF): - 

Random Forest [53] is a supervised learning algorithm that combines decision tree classifier 

with the bagging method. A forest is a set of decision trees, that collectively vote for the 

correct label. The model builds multiple trees by randomly a subset of features for each tree. 

Thus, multiple trees of reduced depth are built, and overfitting is reduced. The results from 

subtrees are averaged to reach to final class label. The classifier also makes it possible to 

measure the importance of features on a scale of 0-1. Important features are those having 

higher importance value. The classifier doesn’t require much hyper-parameter tuning, is 

simple and easy to build, reduces chances of overfitting and mostly results in good accuracy 

for both classification as well as regression tasks. The training of model doesn’t need much 

time, but prediction takes some time. In case of large number of trees, model gives higher 

accuracy, but the computations become slow. 
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Fig. 4.6. Structure of Random Forest Classifier [58] 
 

5. Multi-Layer Perceptron (MLP): - 

Multi-layer perceptron [54] is a deep, artificial neural network (ANN). It has 3 types of layers- 

1 input layer, multiple hidden layers and one output layer. The input layers relate to output 

layers as directed graph. The classifier trains by method of back-propagation. It can be used 

as a classifier or a regressor. The model minimises cross entropy loss function for 

classification. For multi-class classification, SoftMax activation function is used. The 

advantages of using MLP are: - it can understand nonlinear models & can learn models in real 

time. The limitations include requirement of tuning of hyper parameters such as the no. of 

hidden units, no. of layers and no. of iterations, difference in validation accuracy with different 

random weight initialisations due to non-convex loss function of hidden layers. The model is 

also sensitive to feature scaling. 
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Fig. 4.7. Multi-Layer Perceptron Classifier [59] 

 

4.5.Performance Evaluation Criteria 

 
For recognition of handwritten characters, the most widely used evaluation parameters are 

accuracy and time required for training the model. Since the dataset is balanced, accuracy 

proves to be an effective evaluation metric. 

 

1. Classification Accuracy: It is the ratio of correct predictions made to the total number 

of test samples. High accuracy percentage is the desired outcome.  

 
2. Prediction Time: The time required by the classifier to segregate the test samples into 

different classes, after they have been fed with input features to be classified. Lowest 

prediction time for correctly identifying the classes is the desired outcome. 

 

 

 
 
 
  



 
28 

      

  CHAPTER 5 

         EXPERIMENTAL SETUP 
 
The proposed work was implemented in Anaconda Jupyter Notebooks, and Python 3 was used 

as the programming language. The complete experimental setup is described below stepwise:  

 

5.1. Installation of libraries: 
Following libraries have been used in the project: - 

 

Data Pre-processing libraries: - Pandas, NumPy 

 

Pandas: Pandas [60] stands for “Python Data Analysis Library”. It creates a python object 

called dataframe that provides an easier way to read and represent data, from a csv or tsv file, 

in the form of rows and columns. The library is used for converting a list, dictionary or NumPy 

array to a Pandas data frame. It can be used to open a file, usually a CSV file. Storing the data 

in a tabular form allows easier manipulation. We can also get statistics on the dataframe like 

mean, correlation, median, count, max, min, std. which helps in understanding the data in a 

better way. The library can be used for selection of data, filtering, sorting & grouping of data, 

cleaning of data, combining or joining of data frames. Pandas functions used in the project 

include pandas.read_csv (“File_path”) -  for reading the csv file of dataset, pandas.groubpy() 

– for grouping the values by “character” count. 

 

NumPy: NumPy [61], stands for “Numerical Python”, and is a array processing package. The 

library is used for performing mathematical & logical operations on multidimensional arrays. 

The arrays can be arranged, reshaped or flattened. We can also create arrays having all zeroes, 

or a specific number. Elements of array can be operated on using unary, binary or universal 

functions pre-built in the NumPy library. Various  sorting methods are also available.  

NumPy functions used in the project include numpy.array(), shape, reshape(). 

 

Model building libraries: - Sklearn, Keras, TensorFlow 
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Sklearn: Scikit-learn or sklearn library [62] is used of building machine learning models in 

Python. The library provides tools for performing machine learning and statistical modelling 

tasks like classification, clustering, regression & dimensionality reduction. Classifiers like K 

Neighbors Classifier, SVC, Random Forest Classifier, MLP Classifier, Decision Tree 

Classifier, XGB classifier have been imported from the sklearn library in the project. 

 

TensorFlow: TensorFlow [63] is a symbolic math library used for creating neural networks 

and deep learning models. The library is flexible and allows distributed computing. Though it 

is a very powerful library but difficult to use for creation of deep neural models.  

 

Keras: is one of the most popular and easy to use python library for building deep learning 

models. It has been built on top of deep learning libraries like TensorFlow, Theano, Caffe etc. 

The library has a very minimal structure which makes it a favourable choice for deep learning 

applications. It supports multiple platforms and runs on both CPU & GPU. From Keras [64] , 

following imports have been made in the project: Sequential from keras.models, layers like 

Dense, Conv2D, MaxPool2D, Flatten, Dropout from keras.layers and the function 

to_categorical from keras.utils.  

 

Visualization Libraries: - Matplotlib 

Matplotlib: is a visualization library used in Python for plot of arrays. It consists of several 

types of plots:- line_plot, bar_plot, scatter_plot, histogram etc. The plots allow one to 

recognise and analyse patterns and trends among the data. Matplotlib.pyplot [65] is used in 

Python that works like MATLAB and helps in creating figures, plots and graphs. In the project 

matplotlib.pyplot is used to display results in the form of bar plots.  

 

5.2.  Dataset Preparation: 
 

For Experimental Analysis, we have made use of the DHCD [38] dataset, proposed by 

Acharya et. al, in 2015. The dataset includes 46 handwritten Devanagari characters - 36 

alphabets and 10 numerals. Each character label has 2k image samples. i.e., a total of 92k 

samples. The dataset is divided into two parts: training set -to train and extract the features 

from CNN and testing set - fed to classifiers for testing the performance of classifier.  

 



 
30 

We have considered 3 cases of dataset splitting for our experiments. Case 1) 70:30, Case 2) 

75:25, Case 3) 80:20. 

Algorithm: 

1. The dataset is read into a Pandas data frame.  

2. The dataset is segregated such that the pixel values of each character are stored in 

variable X and the character class labels are stored in variable Y.  

3. Variable ‘n_classes’ stores the number of different character classes available in the 

dataset ( 

here 46). 

4. Normalization of Pixel values in X by dividing each pixel value by the highest pixel 

value (255).  

5. Split of dataset into training and testing data using ‘train_test_split’ function from 

sklearn library. Train: Test ratios used: - 1) 80:20 2) 75:25 3) 70:30. (For each split 

ratio separate experiments are conducted). 

6. Label Encoding of character classes in Y. The categorical values are transformed to 

numerical values for simplified processing. 

7. Input Image Size used is 32*32*1. 

 
Fig. 5.1. Devanagari Script characters from DHCD Dataset 

 

 Character class labels are described in the table below.  
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Label Number Character Type Character Class 
‘Character_01’ Characters – consonants and 

vowels 
Ka 

‘Character_02’ Kha  

‘Character_03’ Ga 

‘Character_04’ Gha  

‘Character_05’ Kna 

‘Character_06’ Cha  

‘Character_07’ Chha  

‘Character_08’ Ja 

‘Character_09’ Jha 

‘Character_10’ Yna 

‘Character_11’ Taamatar 

‘Character_12’ Thaa 

‘Character_13’ Daa 

‘Character_14’ Dhaa  

‘Character_15’ Adna 

‘Character_16’ Tabala  

‘Character_17’ Tha  

‘Character_18’ Da 

‘Character_19’ Dha  

‘Character_20’ Na  

‘Character_21’ Pa 

‘Character_22’ Pha 

‘Character_23’ Ba 

‘Character_24’ Bha 

‘Character_25’ Ma 

‘Character_26’ Yaw 

‘Character_27’ Ra 

‘Character_28’ La 

‘Character_29’ Waw  

‘Character_30’ Motosaw 

‘Character_31’ Petchiryakha 

‘Character_32’ Patalosaw 

‘Character_33’ Ha 

‘Character_34’ Chhya 

‘Character_35’ Tra 

‘Character_36’ Gya 

‘Character_37’ Digits – Zero to Nine Digit_0 
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‘Character_38’ Digit_1 

‘Character_39’ Digit_2 

‘Character_40’ Digit_3 

‘Character_41’ Digit_4 

‘Character_42’ Digit_5 

‘Character_43’ Digit_6 

‘Character_44’ Digit_7 

‘Character_45’ Digit_8 

‘Character_46’ Digit_9 

 

Table 5.1: Devanagari character class labels  

 

 

Fig. 5.2. Count Plot of character labels 
 

Transformation of categorical variables (characters) into numerical variables is done using 

label encoder. 

{'adna': 0, 'ba': 1, 'bha': 2, 'cha': 3, 'chha': 4, 'chhya': 5, 
'da': 6, 'daa': 7, 'dha': 8, 'dhaa': 9, 'ga': 10, 'gha': 11, 
'gya': 12, 'ha': 13, 'ja': 14, 'jha': 15, 'ka': 16, 'kha': 17, 
'kna': 18, 'la': 19, 'ma': 20, 'motosaw': 21, 'na': 22, 'pa': 
23, 'patalosaw': 24, 'petchiryakha': 25, 'pha': 26, 'ra': 27, 
'taamatar': 28, 'tabala': 29, 'tha': 30, 'thaa': 31, 'tra': 32, 
'waw': 33, 'yaw': 34, 'yna': 35} 

 

5.3. Creation of CNN Model: 
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CNN is built using Sequential Modelling in Keras i.e., each layer is added one by one using 

the add() function. This allows one to build a network in a simple manner.  

 
 

Fig. 5.3. CNN Model Architecture  
 

Explanation of the layers used for building the CNN model: -  

conv2d: Input Layer : A 2D convolutional layer is added having 32 filters and kernel size of 

3*3. Activation function used is ‘ReLU’. 

conv2d_1: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function 

used is ‘ReLU’ 

max_pooling2d: Maximum Pooling layer is added to subsample the size of feature maps from 

previous layers. Pool size is (2,2) and stride of 2 is used. 

conv2d_2: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function 

used is ‘ReLU’ 

conv2d_3: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function 

used is ‘ReLU’ 

max_pooling2d_1: Maximum Pooling layer is added to subsample the size of feature maps 

from previous layers. Pool size is (2,2) and stride of 2 is used. 
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dropout: A dropout layer is added to avoid the chances of overfitting. 20% of the units have 

been randomly dropped from connections. 

flatten_1: Flatten layer is added to convert the feature maps from previous layers of size 

(5*5*64) into a single dimensional vector of size(1600). 

dense:  The flattened layer is fed to the fully connected layer having 128 filters. 

dense_1: Another fully connected layer is added having 64 filters. 

dense_2: Last fully connected layer has number of filters equal to the number of character 

classes to be recognised (=46 here).  

 

5.3.1. Feature Extraction using CNN: 

A custom model is created using input model from CNN model. The outputs of this model are 

2nd last dense layer (dense_1) of CNN model built above. Therefore, the last fully connected 

layer having 46 units is removed and the outputs from the custom model are fed to classifiers 

instead. For feeding the feature maps to a classifier, a generic function is created. 

 
 

Fig. 5.4. CNN Model for feature extraction 
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5.4. Creation of a generic function for passing various classifiers  
 

A generic function is created that takes following inputs :- 

clfr – classifier  

x_train_data – pixel values of characters in the training dataset 

y_train_data – character_labels in the training dataset 

x_test_data – pixel values of characters in the testing dataset 

y_test_data - character labels in the testing dataset 

acc_str -  String to display accuracy of respective classifier 

 

Function methods: 

i. Function to train the model using clfr.fit method  

ii. Function to predict the character labels from the test dataset fed 

iii. Function to calculate the time taken by the classifier for prediction 

Values returned from the generic function : 

y_pred – predicted character labels 

acc -  accuracy score i.e., closeness of predicted class labels to the actual class label 

  

Generic function is called by various classifiers- SVM, KNN, MLP, DT, RF 

 

5.5. Comparitive Analysis of Models:  
 

The classification accuracy and prediction time for each model is noted. The classifiers are 

compared on the basis of these two metrics and the results have been compiled in the form of 

a table and bar plots for easier comprehension. The plots have been analysed in the results 

section.  
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

 

The models have been analysed on the basis of classification accuracy (performance) and 

training & prediction time (speed). Recognition results on the DHCD dataset have been 

presented in the form of tables and graphs for easier interpretation. 

 

Table 6.1. shows the classification accuracy obtained with various models. The top 3 models 

in terms of accuracy rate are Model 4 (CNN + SVM_RBF), Model1 (CNN + KNN) and Model 

7 (CNN+RF), in the decreasing order. Model 6 (CNN + DT) gives accuracy rate of approx. 

94% on the given dataset. 

 

Model Used Classification Accuracy Average 
Classification 

Accuracy Case 1: 
Dataset 
Split - 
70:30 

Case 2: 
Dataset 
Split - 
75:25 

Case 3: 
Dataset 
Split - 
80:20 

Model 1:  
CNN + KNN 

98.73% 98.91% 98.99%  98.876 % 

Model 2:  
CNN + SVM_Linear 

98.41% 98.40% 98.87%  98.56 % 

Model 3:  
CNN + SVM_Poly 

98.36% 98.63% 98.74%  98.576 % 

Model 4:  
CNN + SVM_RBF 

98.88% 99.01% 99.13%  99.006 % 

Model 5:  
CNN + MLP 

98.55% 98.69% 98.86%  98.7 % 
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Model 6:  
CNN + DT 

93.54% 93.85% 94.41%  93.93 % 

Model 7:  
CNN + RF 

98.57% 98.84% 98.7%  98.703 % 

 

Table 6.1: Classification Accuracy Results of the proposed method on the DHCD dataset  

 
Table 6.2. shows the training time taken by CNN model for the extraction of features from 

handwritten Devanagari characters. Average time taken is around 8 min for 3 cases of dataset 

split. 

 
Feature Extraction time taken by CNN  

(in seconds) 

Case 1: Dataset Split - 
70:30 

Case 2: Dataset Split - 
75:25 

Case 3: Dataset Split - 80:20 

497.36 sec  
 = 8.289 min  

467.68 sec 
= 7.794 min  

532.48 sec 
= 8.874 min 

 
Table 6.2: Training time results of the CNN Model for feature extraction   

 
Table 6.3. shows the classification time or prediction time required by various models to 

classify the Devanagari handwritten characters, by taking input as feature maps obtained from 

custom CNN model. The top 3 models in terms of prediction time are Model 6 (CNN + DT), 

Model 2 (CNN + SVM_Linear and Model 3 (CNN + SVM_Poly) in the decreasing order, 

respectively.  

Model Used Prediction Time (in seconds) Average 
Prediction 

Time Case 1: 
Dataset 
Split - 
70:30 

Case 2: 
Dataset 
Split - 
75:25 

Case 3: 
Dataset 
Split - 
80:20 

Model 1:  
CNN + KNN 

21.35 sec 30.84 sec 25.60 sec  25.93 sec 
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Model 2:  
CNN + SVM_Linear 

10.78 sec 10.80 sec 12.03 sec  11.203 sec 

Model 3:  
CNN + SVM_Poly 

20.82 sec 20.79 sec 22.20 sec  21.246 sec 

Model 4:  
CNN + SVM_RBF 

23.78 sec 23.21 sec 26.60 sec  24.53 sec 

Model 5:  
CNN + MLP 

22.84 sec  17.73 sec 30.03 sec  23.53 sec 

Model 6:  
CNN + DT 

2.95 sec  2.79 sec 3.43 sec  3.05 sec 

Model 7:  
CNN + RF 

20.21 sec 20.20 sec 23.88 sec  21.43 sec 

 

Table 6.3: Prediction time Results of the proposed method on the DHCD dataset  

 

Comparison of all models accuracy rates has been presented in figure 6.1. 

 
Fig. 6.1. Comparison of Classification Accuracy of all models used 
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Comparison of all prediction time required by all models has been presented in figure 6.2. 

 
Fig. 6.2. Comparison of Prediction time of all models used 
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CHAPTER 7  

CONCLUSION 

 
 

It has been observed that CNN is able to identify relevant features from images and thus results 

in computational cost saving as compared to traditional pattern recognition techniques for 

feature extraction. It also saves the hassle and struggle of analysing and identifying best 

features for the image dataset and then applying various techniques or combination of feature 

extraction techniques to get appropriate feature maps. Use of CNN as feature extractor 

reduced the training and prediction time significantly for all classifiers (in the range of few 

seconds), along with achieving accuracy rates as high as 99% (CNN + SVM_RBF). In terms 

of computational speed, combination of CNN and DT gives reasonably good accuracy 

(approx. 94%) within least time, requiring only 3.05 seconds on an average. Optimal choice 

of method for the recognition of Devanagari handwritten characters, however, is feature 

extraction with CNN model and classification with SVM classifier. 
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CHAPTER 8 

FUTURE DIRECTIONS 

 

 
 

From the study and analysis of presently available Devanagari Handwritten character 

Recognition systems, following future directions are pointed out: -  

1. Development of a benchmark handwritten characters dataset containing all primary 

characters, compound characters and numerals in handwritten form. The dataset must 

incorporate handwriting of different individuals from a large community, so that the 

dataset can have more variance in terms of translation, rotation, noise and it must 

consist of a very large sample size.  

2. Propose a novel feature extraction method for selection of appropriate features of 

Devanagari characters that can allow classifier to distinguish similar characters and 

improve accuracy for the cursive Devanagari characters.  

3. Exploration of Xception Net and XGB Classifier for recognition of Devanagari 

characters. Use of parameter tuning using XGBoost Algorithm for improvement of 

classification of handwritten Devanagari characters. 
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