

i

HANDWRITTEN CHARACTER

RECOGNITION OF DEVANAGARI
SCRIPT

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHONOLOGY
IN

SIGNAL PROCESSING AND DIGITAL
DESIGN

Submitted by:

SHILPA KAUR MANOCHA
2K19/SPD/16

Under the supervision of

Assistant Prof. Piyush Tewari

DEPARTMENT OF ELECTRONICS AND
COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

OCTOBER- 2021

ii

CANDIDATE’S DECLARATION

I, Shilpa Kaur Manocha, student of MTech (Signal Processing and Digital Design),

hereby declare that the project dissertation titled “Handwritten Character Recognition of

Devanagari Script” which is submitted by me to the Department of Electronics and

Communication Engineering, Delhi Technological University, Delhi in partial

fulfilment of the requirement for the award of the degree of Master of Technology, is

original and not copied from any source without proper citation. This work has not

previously formed the basis for the award of any degree, diploma associate ship,

fellowship or other similar title or recognition.

Place: Delhi

Date: 13 / 10 /2021

Shilpa Kaur Manocha

iii

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project dissertation titled “Handwritten Character Recognition of

Devanagari Script” which is submitted by SHILPA KAUR MANOCHA, 2K19/SPD/16 of

Electronics and Communication Department, Delhi Technological University, Delhi in

partial fulfilment of the requirement for the award of the degree of Master of Technology, is

a record of the project work carried out by the student under my supervision. To the best of

my knowledge this work has not been submitted in part or full for any degree or diploma to

this University or elsewhere.

Place: Delhi Asst Prof. Piyush Tewari

Date: 13 / 10 /2021 SUPERVISOR

Stamp

iv

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to whom the project

is assigned, but it also demands the help and guardianship of people who helped in

completion of the project.

With profound sense of gratitude, I thank Asst. Prof. PIYUSH TEWARI my Research

Supervisor, for his encouragement, support, patience, and guidance in this research work. I

could not have imagined having a better guide and advisor for my MTech study.

I am also grateful to Prof. N.S. RAGHAVA, HOD, Department of Electronics and

Communication Engineering, DTU for providing the right academic resources &

environment for this work to be carried out.

Last but not the least, my whole-heartedly thanks to all my family and friends who have

patiently extended all sorts of help for accomplishing this undertaking.

Shilpa Kaur Manocha

v

ABSTRACT

Optical Character Recognition [1] development has been gaining popularity in recent years, for

Devanagari script along with other Indic Scripts. The script serves as a base for over 100

languages around the world including few popularly used scripts: - Hindi, Marathi, Sanskrit etc.

Development of robust OCR systems for Devanagari script will allow us to preserve old

manuscripts by converting the physical files to digital formats. This will make the process of

storage, retrieval and transfer very convenient.

This project proposes the use of Convolutional Neural Networks as feature extractor for extraction

of features from handwritten Devanagari characters. For classification, classifiers employed are

SVM (Linear, Polynomial and RBF), KNN, RF, DT and MLP. Use of CNN model for feature

extraction eliminates the need of handcrafted features by traditional pattern recognition methods.

The experiments with these seven techniques have been done on the DHCD dataset proposed in

year 2015. Use of CNN proved to be very effective for Devanagari characters recognition as all

the models achieved recognition accuracy of over 93% and total training time including feature

extraction and classification did not exceed a total of 12.16 minutes.

vi

TABLE OF CONTENTS

Candidate’s Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

Contents vi

List of Figures viii

List of Tables ix

CHAPTER 1 INTRODUCTION 1

1.1. Handwriting Recognition 1

1.2. Classification of Handwriting Recognition Methods 1

1.3. Applications of Handwriting Recognition 2

1.4. Challenges in Handwriting Recognition 3

1.5. Organization of the Report 3

CHAPTER 2 DEVANAGARI HANDWRITING RECOGNITION 4

2.1. Devanagari Script 4

2.2. Challenges in Devanagari Script Recognition 5

2.3. Publicly Available Datasets 5

2.4. Devanagari HCR Framework 6

CHAPTER 3 LITERATURE REVIEW 8

 3.1. Review of Machine Learning Algorithms based Recognition Systems 8
 3.2. Review of State-of-the-Art Deep Learning based Recognition Systems 11

CHAPTER 4 PROPOSED DEVANAGARI HANDWRITTEN CHARACTER
RECOGNITION (DHCR) SYSTEM 16

4.1. Objective 16

4.2. Proposed System Framework 16

4.3. CNN Model 18

vii

 4.4. Brief Explanation of the Classifiers Used 22

 4.5. Performance Evaluation Criteria 27

CHAPTER 5 EXPERIMENTAL SETUP 28

5.1. Installation of libraries 28

5.2. Dataset Preparation

5.3. Creation of CNN Model 29

5.3.1. Feature Extraction using CNN 34

5.4. Creation of a generic classifier function 35

5.5. Performance Evaluation Criteria 35

CHAPTER 6 RESULTS AND DISCUSSION 36

CHAPTER 7 CONCLUSION 40

CHAPTER 8 FUTURE DIRECTIONS 41
REFERENCES

viii

LIST OF FIGURES

Fig No.

Title

Page no.

1.1 Classification of Handwriting Recognition Methods

2

2.1 (a) Vowels and Consonants of Devanagari Script. (b)
Consonants and their half forms in Devanagari script.

4

2.2 Offline DHRS Framework.

6

4.1 Framework of the Proposed Recognition System

18

4.2 Graphical Representation of the ReLU function

21

4.3 Graphical Representation of the SVM Classifier

23

4.4 Graphical Representation of the working of KNN
Classifier

24

4.5 Structure of a Decision Tree

25

4.6 Structure of Random Forest Classifier

26

4.7 Multi-Layer Perceptron Classifier

27

5.1 Devanagari Script characters from DHCD Dataset

30

5.2 Count Plot of character labels

32

5.3 CNN Model Architecture

33

5.4 CNN Model for feature extraction

34

6.1 Comparison of Accuracy of all models used

38

6.2 Comparison of Prediction time of all models used 39

ix

LIST OF TABLES

Fig No.

Title

Page no.

2.1 Similar Devanagari handwritten characters

5

2.2 Devanagari handwritten characters datasets

6

3.1 Recognition Results of State-of-the-art Machine
Learning based Devanagari Recognition Systems

9

3.2 Recognition Results of State-of-the-art Deep Learning
based Devanagari Recognition Systems

14

4.1 Types of layers in a CNN model

19

5.1 Devanagari character class labels

31

6.1 Classification Accuracy Results of the proposed
method on the DHCD dataset

36

6.2 Training time results of the CNN Model for feature
extraction

37

6.3 Prediction time Results of the proposed method on the
DHCD dataset

37

x

CHAPTER 1

INTRODUCTION

OCR (Optical Character Recognition) [1] is the technique of optically scanning the documents

and images and then converting the text into machine editable format. The documents and

images scanned may either contain printed text or handwritten text. After the conversion to

digital form, the text can be stored for longer durations without degradation. The storage,

retrieval and transfer of the data from the documents/images/manuscripts becomes very

convenient as opposed to physically maintaining the files and records.

1.1 Handwriting Recognition
Handwriting recognition is one of the important applications of OCR systems. Handwriting

recognition [2] is a major cross domain research area in the field of Image Processing, Pattern

Recognition, Computer Vision, Machine Learning and now Deep Learning [3].

1.2 Classification of Handwriting Recognition Methods
Handwriting recognition problem can be broadly classified as offline and online [4] [5].

Offline handwriting recognition [4] is performed after the writing is completed by converting

the handwritten document into digitally editable form. Example of offline character

recognition is OCR system. Whereas Online character Recognition [5] is done on special

devices where input is taken in real time using touchscreen or stylus like in a tablet. Our focus

will be on Offline handwriting recognition techniques in this project.

The offline recognition systems can be used to extract and read any old documents,

manuscripts, writings and documents, reading postal zip codes, bank cheque amounts,

signature verification.

Further the techniques can be based on whether they use segmentation [6] to separate

characters before classification or are segmentation free. We have studied in this project OCR

systems based on segmentation approach. i.e., single characters are identified after segmenting

lines into words and then words into characters. The results are then combined to identify

1

2

complete word. Such schemes are called as Handwritten Character Recognition (HCR). In

case of segmentation free approach, the words are recognised as whole also known as

Handwritten Word Recognition (HWR). Figure 1 shows the different types of Handwriting

Recognition Methods.

Fig. 1.1. Classification of Handwriting Recognition Methods

1.3 Applications of Handwriting Recognition
Some of the most widely popular domains where robust handwriting systems find applications

include:-

i. Healthcare and medical aid: recognition of handwriting on patient forms & on

prescription forms. Automatic processing of prescription forms and conversion to

digital format will enable us to store the patient’s health record and history and can be

used in future diagnosis as well.

ii. Insurance firms: to process the documents and provide timely claims & enhance the user

experience. Automating the complete documentation process of insurance purchase and

claims will make the whole process a lot smoother and more convenient.

iii. In banks and finance sector: to verify signature [7] which speeds up the process and is an

effective way of identifying forgery as opposed to manual verification/check. Systems

3

can be developed to identify signature, cheque number, amount written in words and

digits and complete process of reading and processing cheques can be automated.

iv. Manuscript Preservation: Easier and efficient storage and retrieval of old manuscripts [8]

written Devanagari or related languages. This will allow preservation of cultural

heritage in the form of ancient literature.

1.4 Challenges in Handwriting Recognition

There are several major challenges [9] [10] while recognising handwritten characters from

documents or images starting from image acquisition up to classification. These include the

degradation of old images due to noise or low quality of images to be scanned, huge variation

in writing styles, difficulty in recognition of cursive handwritten characters, text not written

in perfect straight lines leading to skew/slant/rotation/translation and non-availability of

standard labelled datasets, to name a few.

1.5 Organization of the Report

The report consists of the following sections. Chapter 2 describes about Devanagari

Handwriting Recognition – the script, challenges, publicly available datasets and general

system framework. Chapter 3 contains the literature review of state-of-the-art machine

learning and deep learning techniques implemented by researchers for recognition of

Devanagari handwritten characters recognition. Then chapter 4 discusses about the Proposed

Recognition System and related theories in detail. The complete Experimental Setup is

explained in chapter 5 and the results of the experiments are presented in chapter 6. Chapter

7 gives the conclusion drawn from the experiments. Chapter 8, the last section, points out

future directions for enhancing research in this domain. Finally, the references are listed.

4

CHAPTER 2

DEVANAGARI HANDWRITING RECOGNITION

2.1 Devanagari Script
Devanagari script [11], also called as ‘nagari’, means the language from city of divinity;

‘deva’ meaning heavenly or divine and ‘nagari’ meaning city or abode. It is based on the

family of Brahma scripts. It is fourth most widely used script around the world and forms the

base for around 120 languages either in base form or derived form. The scripts that make use

of Devanagari script either alone or along with other scripts are Sanskrit, Marathi, Hindi, Pali,

Nepali, Prakrit, Sindhi to name a few. In India, it is used for languages like Hindi, Marathi

and Sanskrit. The script consists of 47 primary characters - 33 consonants, 14 vowels and 10

numeral characters. Like the other Indian languages, it is also phonetic in nature i.e., the shape

of each character represents unique sound. The script is written from left to right and is cursive

in nature. There is no notion of upper case or lower-case characters. All characters / words

have a horizontal line running at the top known as ‘shirorekha’. The script has similar

structured characters differing only in dots, horizontal line, loops etc.

(a) (b)

5

Fig. 2.1. (a) Vowels and Consonants of Devanagari Script. (b) Consonants and their half forms in Devanagari

script. [12]

2.2 Challenges in Devanagari Script Recognition
The Devanagari script [11] has various characters which have similar structures and differ

only in minor details like dots, horizontal line, loops etc. This makes the classification of

Devanagari characters very challenging. And on top of that different individuals may write

the same characters differently due to cursive nature of the script. Table 1. shows few similar

characters in Devanagari. Non-Availability of benchmark datasets of Devanagari script is yet

another major issue. At present we have very limited number of Devanagari datasets as

compared to English or other non-Indic scripts. There is a requirement of large and inclusive

Datasets like we have for English. The number of datasets available are very less and are small

in size for both isolated characters and words, when compared with those available for

English.

Table 2.1: Similar Devanagari handwritten characters

2.3 Publicly Available Datasets - Devanagari Handwritten Character

Database
Some of the popular Devanagari Handwritten characters datasets have been mentioned in table
2.

6

Dataset Name Year
Proposed

Size Types of characters Number of
Classes

Reference

- 2020 5800 Consonants, Vowels and
Numerals

58 [13]

DHCD 2015 92000 Consonants and Numerals 46 [14]

CPAR -2012 2012 113400 Characters and Numerals 60 [15]

CVPR ISI 2009 22,556 Numerals 10 -

Table 2.2: Devanagari handwritten characters datasets

2.4 Devanagari HCR Framework
Figure 3 shows the general framework of a Devanagari Handwriting Recognition System.

Fig. 2.2. Offline DHRS Framework.

Offline DHRS systems consist of four stages:

i. Image Acquisition: the handwritten characters to be recognised have to be acquired

through scanners or cameras from images or documents .

7

ii. Pre-processing: It is done for the scanned image to make it suitable for further processing.

The process includes steps like binarization, normalization, slant removal as well as

noise removal .

iii. Segmentation: The scanned image/document is segmented into lines, words, and

individual characters before applying to the model for training or testing in case of

Handwritten Character Recognition.

iv. Character Recognition: this steps involves 2 stages. First stage is the feature extraction

stage followed by Classification of characters into their correct classes based on the

combination of features extracted for each character.

8

CHAPTER 3

LITERATURE REVIEW

3.1. Review of Machine Learning Algorithms based Recognition Systems

Handwriting Recognition Systems were developed using traditional methods like Fuzzy logic-

based classification, Support Vector Machines (SVM), K-Nearest Neighbour (KNN), Hidden

Markov Models (HMM) and other classifiers. The conventional methods required feature

selection and Feature extraction stages to be done manually. The features could be structural,

geometrical or global like closed loops, horizontal & vertical lines, inflection points, aspect

ratio etc. of each character. In any recognition scheme, feature extraction is a critical step.

Selection of appropriate features and their efficient extraction affects the recognition rate

vastly. The features are applied as inputs to a classifier like SVM or HMM to recognise the

text. The recognition accuracy and performance of these methods varies, and the systems are

not robust as it is not possible to select best features always. Feature selection and extraction

depends largely on the type of characters and dataset applied.

In [24], the authors made use of discrete cosine transform for extraction of features and Neural

network-based classification for recognition of Devanagari characters. The NN used for

experiments was Artificial NN with different number of hidden layers, starting from 10 up to

80 layers. The highest recognition accuracy obtained was 94.89% for 55 hidden layer

architecture.

In [25], the authors classified 1000 Hindi characters by calculating the histogram of

projections based on mean values, pixel values & vertical zero crossing of characters. Then

the characters were classified with artificial neural network having 2 hidden layers. The

classification accuracy obtained was 98.25%.

In [26], the authors have recognised Devanagari script characters by finding the gradient and

curvature of characters and then classifying them using combination of two classifiers namely

Modifier Quadratic Discriminant Function (MQDF) and Support Vector Machine (SVM). The

recognition accuracy obtained was 95.13%.

9

In [27], the authors employed GLAC (Gradient Local Autocorrelation) feature extraction

method and SVM classifier for recognition of Devanagari handwritten characters. Accuracies

reported for ISIDCHAR and V2DMDCHAR datasets are 93.2% and 95.2% respectively.

In [28], the authors classified Devanagari handwritten characters by combining wavelet-based

feature extraction method and Back Propagation NN classifier. The highest accuracy achieved

was 70%.

In [29], the authors developed a recognition system for Devanagari script by evaluating

various structural and geometrical features and performing classification using MLP

classifier. Maximum classification accuracy achieved was 82.7%.

In [30], the authors developed a novel system for recognition of Devanagari script by

evaluating structural features and performing classification using FFBPN, CFBPN and EBPN

classifiers. Accuracy rates obtained were 97.20%, 97.46% and 98.10% respectively.

In [31], the authors classified handwritten Devanagari words’ database having 10000 samples.

The dataset was divided into 7000 characters for training and 3000 characters for testing.

Features were extracted using strokes method and classifier used was Hidden Markov Model

(HMM). Accuracy observed was 87.71% on the training dataset and 82.89% on the testing

dataset.

In [32], authors proposed the use of curvelet transform for the extraction of textual features

and classifiers used were SVM and KNN. KNN model produced best results with a maximum

accuracy of 93.21%.

In [33], a hybrid feature extraction method has been employed by the authors, by combining

skeleton and contour-based features. The feature maps were classified by SVM classifier. In

[34], the authors used combination of directional and gradient structural curvature features for

classification using SVM classifier.

Paper Dataset Feature
Extraction
Method

Classifier Recognition
Accuracy

Size of
Testing
dataset

Type of
characters

10

[24] 2760 Devanagari online
characters

DCT NN 94.89%

[25] 1000 Hindi words Histogram of
projections

ANN 90%

[26] 36,172
(28,937
training set
size and 7,235
testing set
size)

Devanagari
consonants and
vowels

Gradient and
curvature of
characters

Combination
of MQDF
and SVM

95.13%

[27] 36,172 Devanagari
handwritten
characters (49
classes)

GLAC SVM 93.21%

20,305 Devanagari
handwritten
characters (50
classes)

GLAC SVM 95.21%

[28] 2000 Devanagari Wavelet
based
features

BPNN 70%

[29] 5375
(alphabets)
and 3000
(numerals)

Handwritten
Devanagari
alphabets and
digits

Structural
and
geometrical
features

MLP 82.7%

[30] 40,000 (60%
training, 20%
testing and
20%
validation)

Devanagari
(offline)

Structural
features

FFBPN,
CFBPN &
EBPN
networks.

97.20%,
97.46% and
98.10%
respectively

[31] 10000 (7000
training set
and 3000
testing set)

Devanagari
(offline)

Stroke
method

HMM 82.89%

[32] 28,500 Devanagari
(offline) words

Curvelet
Transform

SVM and
KNN

85.61%
(SVM) and
93.21%
(KNN)

[33] 39,700
(training set
size -22,500
and testing set
size- 17,200)

Devanagari
(offline)

Combination
of skeleton
and contour-
based
features

SVM 79.01%

[34] 39,700
(training set
size -22,500

Devanagari
(offline)

Combination
of DDD and
GSC
features

SVM 88.75%

11

and testing set
size- 17,200)

Table 3.1: Recognition Results of State of the art Machine Learning based Devanaagri Recognition

Systems

3.2. Review of State-of-the-Art Deep Learning based Recognition Systems

With the emergence of deep learning [3] methods, major increments in accuracy rate have

been observed in handwriting recognition. The models can extract the features automatically

from the dataset so the need of feature selection by hand engineering has been eliminated

completely. Thus, the feature extraction and character classification stage are combined into

a single stage- character as recognition stage.

Deep learning models are being used since early 2000’s for applications ranging from object

detection, pattern recognition, computer vision and image processing. Various researchers

have also shown that using deep learning models we can get excellent results in handwriting

recognition. The Neural Network models mimic the learning pattern of human brain.

Convolutional Neural Network [35] is one of the popular NNs. It consists of 3 types of layers-

first is convolution layer that has filter banks, and it convolves with input images to generate

features maps. Next is Pooling layer which performs average or max pooling to reduce size

of feature maps. These 2 stages combined are for feature Extraction. Fully Connected layer

activates every neuron from last layer and performs the task of classification. Due to its

properties like weight sharing, multiple layers and pooling, CNN can detect features

automatically. But the model requires large datasets for training and considerable amount of

time. Many researchers have explored the options and state of the art methods like pre-trained

architectures, transfer learning, use of additional classifier, regularization methods, other

techniques to avoid problem of overfitting/under-fitting, use of different optimizers and so on.

We have discussed those experiments and results in the following paragraphs.

In [36], the author has made use of transfer learning scheme using AlexNet [37] which is

trained over a database of 16870 images consisting of 22 more frequently used consonants.

Dataset has been divided as 56%- training, 24%- validation & 20%-testing for evaluation of

performance. A 3D filter has been added to the first stage of Network to convert grayscale

12

images of size 220*220 to coloured images of size 227*227. The results demonstrated that

Transfer Learning is a faster way of achieving training with fewer training samples. In 3

epochs only, the training accuracy went above 90%. The highest validation accuracy and test

accuracy attained are 94.49 % and 95.46% respectively.

In [38], the authors have proposed a new dataset named -DHCD (Devanagari Handwritten

Character Dataset) consisting of 46 different characters of Devanagari script. The author has

focused on the use of dropout and dataset increment methods to improve the test accuracy.

The evaluation has been done on both shallow and deep models - Model1 and Model2

respectively. After training for 50 epochs, the accuracy remained nearly constant. The results

show that Deep architecture’s training accuracy improves with extended dataset (98.47%) and

almost no improvement with dropout. On the contrary, the shallow architecture depicts

increase in training accuracy with dropout and only a slight change with extension of dataset

(98.26%).

In [39], the authors have proposed a new dataset named as UCI Devanagari dataset and has

made it publicly available. DHCRS (Devanagari Handwritten Character Recognition System)

has been proposed specifically for Devanagari characters. The scheme comprises of 2 stages-

In first stage, pre-trained VGG16 [39][40] architecture has been implemented followed by

next stage of newly created Fully Connected layer. The first stage network is wide with a

greater number of parameters as opposed to the compact network of 2nd stage. The fine tuning

of model in 2nd stage increases the overall efficiency of the model. Techniques like Runtime

data augmentation and Regularization techniques like – ‘dropout’ and ‘batch normalization’

are also incorporated to avoid over-fitting. The results were also impressive with 96.55%

recognition accuracy with training loss 0.12 on the UCI dataset. Thus, the model proposed

provides considerably good results with fewer number of training parameters and a small

dataset.

In [41], Layer wise trained Deep convolutional neural network has been used to train 6

network architectures (NA). The 6 Network architectures used to evaluate performance are

namely NA1 to NA6. The optimizers used are SGD, Adagrad, Adam, AdaDelta, AdaMax,

and RMSProp. The Layer-wise trained Deep Convolutional NN have showed highest

recognition accuracy & faster convergence rate on all the 6 architectures when compared with

other state of the art DCNN methods. Highest recognition accuracy has been observed for

NA-6 architecture after layer wise training and using RMSProp optimizer. Thus, the paper

13

[14] summarized the effects of choosing various optimizers and architectures in an extensive

manner.

In [42], DevNet-Handwritten Devanagari Character Recognition has been developed

specifically for enhancing performance and the recognition accuracy of Devanagari

handwritten characters and numerals. The model has been based on CNN architecture since it

is very powerful and capable of extracting relevant features. To prove the efficacy of the

proposed model it has been implemented on four different databases varying in size and

collected from different sources. The proposed method proved to be highly accurate on all

databases used and the accuracy came out to be greater than 97% in all cases (Refer Table 1).

In [43], use of Residual Network (ResNet) has been made to classify the Devanagari

characters of DHCD dataset. The ResNet is able to overcome the problem of degradation

observed in deep CNN owing to presence of large number of layers. The ResNet uses short

connections which reduces number of layers while still providing good results. The two that

were employed are ResNet 34 and ResNet 50, where 34 and 50 denote the number of layers

in the network. The highest recognition accuracy achieved was 99.35% for ResNet50 and

98.73% for ResNet30. ResNet therefore can be used in case of deep learning approaches to

avoid the problem of vanishing gradients and thus degradation of performance due to deep

architecture.

In [44], the authors have proposed the model DeepNetDevanagari for recognition of

Devanagari characters. The model is based on CNN architecture. The model has been trained

on a small database created for testing the efficacy of proposed method. The database has

handwritten characters of Devanagari in base form. Even with a small dataset, the model was

able to recognize the characters with 93.73% accuracy.

In [45], Devanagari numeral characters of database ISI Devanagari characters are recognized.

The authors have used CNN architecture for feature extraction and SVM as classifier. The

model produced excellent results with up to 99.41 % accuracy.

In [46], 7 pre-trained architectures have been used - AlexNet, DenseNet(DenseNet-121,

DenseNet-201), VGG(VGG-11, VGG 16, VGG 19) and Inception-V3. Usage of pre-trained

models eliminates the requirement for training the model from scratch. The work focused on

examination of different pre-trained models for the DHCD dataset. The effects of choosing

pre-trained models on training time and accuracy have been analysed after performing

experiments. The number of epochs were kept low, and the focus was on reducing the number

14

of epochs as well as average time per epoch for training and recognition. The Inception

[46][47] model gave the accuracy of 99% in single epoch only while the AlexNet model

required in 3 epochs to attain best accuracy. The DenseNet [46][48] took the greatest number

of epochs to reach accuracy of 89% and 90%.

Pape
r

Dataset Recognition
Technique

Recognitio
n
Accuracy Name Size of

dataset
Training
Data size

Testing
Data
size

Number
of
Classes

Types of
Character
s

[36] - 16870 9447 3374 22 Consonant
s

Transfer
Learning
using
AlexNet

95.46%

[38] DHCD 920000 78200 13800 46 Consonant
s and
numerals

Deep CNN -
with focus on
dropout and
dataset
increment

98.47%
and
98.26%

[39] UCI
Devana
gari
Dataset

5800 4640 1160 58 Consonant
s, vowels
and
numerals

DCHRS- 2
Stage VGG
Architecture
-Fine Tuning
with Deep
CNN

96.55%
with 0.12
training
loss

[41] ISIDC
HAR

36172 - - 49 Consonant
s and
vowels

Deep CNN -
trained Layer
Wise

97.30%

V2DM
DCHA
R

20305 - - 50 Consonant
s and
vowels

Deep CNN -
trained Layer
Wise

98%

[42] UCI
DCD

920000 78200 13800 46 Consonant
s and
numerals

DevNet:
Modified
CNN for
Devanagari

99.54%

CVPR
ISI

22000 18784 3772 10 Numerals DevNet:
Modified
CNN for
Devanagari

99.63%

15

CMAT
Edb
3.2.1

3000 2000 10000 10 Numerals DevNet:
Modified
CNN for
Devanagari

98.70%

Kaggle
 Deva
nagari
charact
er
dataset

12992 10350 2642 58 Consonant
s, vowels
and
numerals

DevNet:
Modified
CNN for
Devanagari

97.29%

[43] DHCD 920000 78200 13800 46 Consonant
s and
numerals

Residual
Network(Res
Net)

99.35%

[44] - 5484 4113 1371 33 consonants
, vowels in
base form

CNN 93.73%

[45] ISI
Kolkat
a
Devana
gari
Dataset

22556 - - 10 Numerals CNN (feature
extractor)
+SVM
(classifier)

99.41%

[46] DHCD 920000 78200 13800 46 Consonant
s and
numerals

AlexNet with
Deep CNN

95%

DHCD 920000 78200 13800 46 Consonant
s and
numerals

DenseNet
with Deep
CNN

90%

DHCD 920000 78200 13800 46 Consonant
s and
numerals

VGG with
Deep CNN

97%

DHCD 920000 78200 13800 46 Consonant
s and
numerals

Inception
with Deep
CNN

99%

Table 3.2: Recognition Results of State of the art Deep Learning based Devanaagri Recognition

Systems

16

CHAPTER 4

PROPOSED DEVANAGARI HANDWRITTEN CHARACTER
RECOGNITION (DHCR) SYSTEM

4.1. Objective
Development of a robust handwritten character recognition system requires the selection of

best feature extraction algorithm. Since there are numerous feature extraction methods

available, it becomes difficult to choose the suitable algorithm. The aim of proposed method is

to save the hassle and struggle of selection & extraction of relevant features from handwritten

characters and make the process completely automatic. While doing so, the classification

accuracy must also increase. The training time and prediction time must also be a reduced

value.

Thus, the motivation behind proposed method is to

(i) Minimise the requirement for image pre-processing.

(ii) Eliminate the need of hand engineered feature selection and extraction.

(iii) Improve accuracy over other recognition systems available.

(iv) Reduction in training and prediction time.

4.2. Proposed Recognition System Framework
The proposed system architecture is described below. Various steps and related theories are

explained in upcoming sections. Figure 4 shows the framework of the proposed recognition

system.

Loading the dataset:

The dataset consists of isolated characters of each character class in separate folders. The raw

pixel information is available in a csv file. Each character is of size 32*32 i.e., having 1024-

pixel values. The character labels have also been mentioned for all characters. Input features

(1024) are read into one array and character labels in another array.

Image Pre-processing:

17

The pixels contain information of the gray scaled images. The images are converted to binary.

Normalisation is performed for all features by dividing them by 255(highest pixel value in

black and white image). Thus, we get features normalised to a scale of 1. The features and

character label arrays are split into training and testing set.

Feature Extraction using CNN:

CNN automatically extracts relevant features from the data fed. Convolution layers are used

to create feature maps from training samples and pooling layers are used for reducing the size

of feature maps generated. Instead of connecting the last fully connected dense layer for

classification, the features are obtained in an array and fed to different classifiers as input. The

model is trained for 3 epochs to learn the features from the training samples. Figure 2 shows

the CNN model architecture used for the purpose of feature extraction.

Classification:

Features extracted from last layer of CNN model are fed to various classifiers and test samples

are applied for prediction. Classifiers are fed with two arrays, X - input features obtained from

last/Dense layer of CNN and y-class labels for training and then tested on test samples. Total

number of character classes are 46. Default parameter values have been used for each classifier

for simplicity. Classifiers employed are Support Vector Machine(SVM), K- Nearest

Neighbours(KNN), Decision Tree(DT), Random Forest(RF) and Multi-layer

perceptron(MLP).

Performance Evaluation:

For performance analysis, metrics used are classification accuracy and prediction time, for all

classifier models. Since the dataset is balanced, classification accuracy is a reliable parameter

and there is no need for evaluating precision, recall or F1-score values.

18

Fig. 4.1. Framework of the Proposed Recognition System

4.3. CNN Model
Convolutional Neural Networks [49] are popularly used for image classification, computer

vision and object detection tasks. The Network is inspired by the learning model of neurons

of human brain and requires very less pre-processing of input images. They consist of five

different types of layers:

i. Convolution layers: - which perform the operation of convolution of input images with

filter or kernel and generates feature maps. The filters slide over the input image for

performing the mathematical operation of convolution, by finding dot product of filter

value with image pixel value. The feature maps give information about text in images

like it may detect lines, corners, edges etc. The feature maps are large due to multiple

convolutions with the entire image.

ii. Pooling Layer: - down samples the size of feature maps. It reduces the dimensions of

features by performing pooling or aggregation operation. The most commonly and

widely used pooling methods are average pooling and max pooling. Average pooling

takes average pixel value from a section of input image and rest pixel values are

discarded. Similarly, in max pooling operation, maximum value from nearby pixel

19

values is retained. This is done to reduce computational costs. The convolution layers

and pooling layers are together called as Feature Extractors.

iii. Dropout layer: - If all learned features are connected to the FC layer, the model may

learn all necessary and unnecessary features resulting in overfitting on the training

dataset. To avoid any such issue, we can add one or multiple dropout layers which

randomly drops/ removes specified percentage of neurons. This also results in reduced

size of network model. A dropout layer can be inserted after convolution layer or

pooling layer.

iv. Flatten layer: - this layer flattens the feature maps obtained from convolution and

pooling layers and converts them into a 1-dimensional feature map. This flattened 1D

vector is fed to fully connected layer/s for classification.

v. Fully Connected layer: - consist of weights and biases and units/neurons which are used

to establish connections between two layers. These are the layers responsible for

performing the classification of dataset images into respective classes. They take the

feature maps from previous layers as inputs and based on the combination of features

learned, this layer can classify the samples correctly. There may be multiple fully

connected layers in the network.

Layer type Functions Parameters Input Output
Convolution
Layers

§ Convolution of
filters with
images to
generate
feature maps.

§ Filters are made
of kernels
having 1 bias
per filter.

§ Activate all
values in
feature map

§ No. of Kernels.
§ Size of kernels

(width and
height)

§ Activation
function

§ Stride size
§ Padding value
§ Value & type of

Regularization

3D array,
prior
feature
maps.

3D array,
1- 2D
feature
map for
every
filter.

Pooling
Layers

§ Dimensionality
Reduction.

§ Extract average
or max. pixel
value from a
region.

§ Sliding window
approach.

§ Stride size
§ Window size

3D array,
prior
feature
maps.

3D array, 1
2D map
per filter,
reduced
spatial
dimensions

20

Fully
connected
layers

§ Summation of
information
from all feature
maps.

§ Classification
into classes.

§ No. of nodes
§ Activation

function : if
aggregating info,
use ReLU, for
final
classification use
SoftMax

Flattened
3D cube,
previous set
of feature
maps.

3D cube,
one 2D
map per
filter

Table 4.1: Types of layers in a CNN model.

Besides these layers, activation function plays an important role. An activation function adds

non-linearity to the model. Commonly used activation functions are ReLU, sigmoid, tanh and

sigmoid. We have used ReLU activation function in all convolution layers and in the output

layer the ‘SoftMax’ activation function is used for the multi-class classification task. The

‘SoftMax’ activation used gives a probability for each class and the model will makes

prediction based on the class with highest probability. The model learning happens because

of loss function and optimizer. The loss function tells the model its task. e.g., to reduce the

mean absolute error between predicted class label and the actual class label. The loss function

employed is Cross-Entropy. The optimizer tells the network on how to achieve that aim. Most

popular optimizers are Adam, AdaGrad and RMSProp that do an excellent job of updating

weights in an adaptive manner and thus improving accuracy of model. The optimizer

employed is ‘Adam’ optimizer.

ReLU Activation function:-

The Rectified Linear Unit is one of the most commonly used activation functions. It can be

represented mathematically as: f(x) = max (0,x) .i.e., it reduces the negative values to zero and

returns the original value for positive numbers. Though in formulation the function is very

simple, yet it generates excellent results when used in deep models for introducing non-

linearities. It helps the models to account for interactive effects and non-linear effects well.

21

Fig. 4.2. Graphical Representation of the ReLU function

SoftMax Activation function:-

SoftMax activation is used in the output layer of a multi-class classification model. It

normalizes the outputs of each class by converting their weighted sum values to probability

values. The probabilities of all the classes add up to value one. The classification is then done

by the classifier based on class probabilities. The input is classified into the class having

maximum probability.

Adam Optimizer: -

Adam optimizer is an improvement over stochastic gradient descent (SGD) algorithm, used

or updating the network weights in an iterative manner. It is widely used in training of deep

learning models. It combines the best features of AdaGrad and RMSProp optimization

algorithms. Besides it is simple to implement, has very less memory requirements and works

well with (non-stationery) noisy or large data problems.

Loss function: Categorical Cross-Entropy: -

Categorical cross entropy loss function is used in a multi-class classification task, where the

output can be classified into one of the multiple class labels available. The model uses cross

entropy function and assigns a high probability to the correctly classified class label and a

low probability to other classes.

 x

 f(x)

22

We have built a CNN model and trained it to learn best features from the images and for the

purpose of classification, various classifiers have been used instead of the fully connected

layer in CNN.

4.4. Brief Explanation of the Classifiers Used

1. Support Vector Machine (SVM): -

Support Vector Machine [50] is a supervised machine learning method used for classification

and regression tasks. SVM is a popular and widely used classifier for image classification

tasks. It distinguishes the sample points by identifying a hyperplane that separates the classes.

The sample points that are nearest to the hyperplane are called “support vectors”. The

classifier aims to maximise the margin (difference between support vectors) on either side of

hyperplane. The classifier takes 2 inputs: an array of shape (number_of_samples,

number_of_features) and another array containing class labels, either as numerical or string

format, of shape (number_of_samples). A kernel function has to be specified which can be

linear, polynomial, radial basis function or any other custom function.

Different Kernel types used in the project are: -

I. Linear Kernel: - {x, x’}

II. Polynomial (Poly): - {γ (x, x’) + r) ^ d, where γ- gamma, d is degree, r- coefficient.

III. Radial Basis Function (RBF): (−γǁx−x′ǁ2), where γ is gamma (> 0).

The classifier has following advantages: - powerful in high dimensional spaces, effective in

cases where number of dimensions are more than the number of examples, is memory

effective as it only focuses on a subset of training points i.e., the support vectors and is

versatile i.e., different kernel functions can be used.

The disadvantages of the classifier are overfitting may occur in cases where number of

features are greater than the number of sample points, selection of kernels is difficult, and

calculation of scores & probabilities is done using expensive k-fold cross-validation.

23

Fig. 4.3. Graphical Representation of the SVM Classifier [55]

2. K- Nearest Neighbours (KNN): -

KNN [51] is a supervised learning method. The idea behind this algorithm is that similar

things occur in proximity. Closeness between points is measured using distance between the

points ex. by using Euclidean distance. It finds distance between the query and all data points

and selects a specified number of samples (k) closest data points from query. The query is

classified to the class label that is the most repeating in the chosen k points group. The

advantages of using KNN are: - easy and simple to implement, no need of tuning parameters,

can be employed for classification as well as regression tasks. The disadvantage of algorithm

lies in the slow classification time for large number of samples/classes. KNN algorithm is a

popular choice in recommender systems, as they work on principle of close data points.

z

x

y

24

Fig. 4.4. Graphical Representation of the working of KNN Classifier [56]

3. Decision Tree (DT): -

Decision Tree [52] is a powerful classification and prediction tool that learns using an

inductive approach. It has a tree structure like that of a flowchart. In a decision tree, there are

several nodes, that present a decision condition, starting from parent node at the top to the

terminal node as the final class label. At each node, the data is classified based on a test on

the attribute and each branch represents the result of the test/decision. A DT is built by

recursively splitting the data samples into subsets based on the attribute tests at each node.

The splitting is stopped when we have the final predicted classes at the final nodes. An optimal

DT is one that is able to represent all data points with least number of node levels. Pruning

methods are used to drop nodes that are not critical for classification, hence reducing size of

DT. Use of DT has following advantages: - they can handle both categorical and numerical

values, no prior domain knowledge requirement, can be visualised, results can be interpreted

and analysed to understand critical decision rules. DT have following limitations: - may lead

to overfitting on data by creating complex tree, problem of variance i.e change in tree with

even slight changes in data points, no guarantee of optimal tree by use of greedy algorithms

and it results in a biased tree if some classes in the dataset dominate.

x - axis

 y-axis

25

Fig. 4.5. Structure of a Decision Tree [57]

4. Random Forest (RF): -

Random Forest [53] is a supervised learning algorithm that combines decision tree classifier

with the bagging method. A forest is a set of decision trees, that collectively vote for the

correct label. The model builds multiple trees by randomly a subset of features for each tree.

Thus, multiple trees of reduced depth are built, and overfitting is reduced. The results from

subtrees are averaged to reach to final class label. The classifier also makes it possible to

measure the importance of features on a scale of 0-1. Important features are those having

higher importance value. The classifier doesn’t require much hyper-parameter tuning, is

simple and easy to build, reduces chances of overfitting and mostly results in good accuracy

for both classification as well as regression tasks. The training of model doesn’t need much

time, but prediction takes some time. In case of large number of trees, model gives higher

accuracy, but the computations become slow.

26

Fig. 4.6. Structure of Random Forest Classifier [58]

5. Multi-Layer Perceptron (MLP): -

Multi-layer perceptron [54] is a deep, artificial neural network (ANN). It has 3 types of layers-

1 input layer, multiple hidden layers and one output layer. The input layers relate to output

layers as directed graph. The classifier trains by method of back-propagation. It can be used

as a classifier or a regressor. The model minimises cross entropy loss function for

classification. For multi-class classification, SoftMax activation function is used. The

advantages of using MLP are: - it can understand nonlinear models & can learn models in real

time. The limitations include requirement of tuning of hyper parameters such as the no. of

hidden units, no. of layers and no. of iterations, difference in validation accuracy with different

random weight initialisations due to non-convex loss function of hidden layers. The model is

also sensitive to feature scaling.

27

Fig. 4.7. Multi-Layer Perceptron Classifier [59]

4.5.Performance Evaluation Criteria

For recognition of handwritten characters, the most widely used evaluation parameters are

accuracy and time required for training the model. Since the dataset is balanced, accuracy

proves to be an effective evaluation metric.

1. Classification Accuracy: It is the ratio of correct predictions made to the total number

of test samples. High accuracy percentage is the desired outcome.

2. Prediction Time: The time required by the classifier to segregate the test samples into

different classes, after they have been fed with input features to be classified. Lowest

prediction time for correctly identifying the classes is the desired outcome.

28

 CHAPTER 5

 EXPERIMENTAL SETUP

The proposed work was implemented in Anaconda Jupyter Notebooks, and Python 3 was used

as the programming language. The complete experimental setup is described below stepwise:

5.1. Installation of libraries:
Following libraries have been used in the project: -

Data Pre-processing libraries: - Pandas, NumPy

Pandas: Pandas [60] stands for “Python Data Analysis Library”. It creates a python object

called dataframe that provides an easier way to read and represent data, from a csv or tsv file,

in the form of rows and columns. The library is used for converting a list, dictionary or NumPy

array to a Pandas data frame. It can be used to open a file, usually a CSV file. Storing the data

in a tabular form allows easier manipulation. We can also get statistics on the dataframe like

mean, correlation, median, count, max, min, std. which helps in understanding the data in a

better way. The library can be used for selection of data, filtering, sorting & grouping of data,

cleaning of data, combining or joining of data frames. Pandas functions used in the project

include pandas.read_csv (“File_path”) - for reading the csv file of dataset, pandas.groubpy()

– for grouping the values by “character” count.

NumPy: NumPy [61], stands for “Numerical Python”, and is a array processing package. The

library is used for performing mathematical & logical operations on multidimensional arrays.

The arrays can be arranged, reshaped or flattened. We can also create arrays having all zeroes,

or a specific number. Elements of array can be operated on using unary, binary or universal

functions pre-built in the NumPy library. Various sorting methods are also available.

NumPy functions used in the project include numpy.array(), shape, reshape().

Model building libraries: - Sklearn, Keras, TensorFlow

29

Sklearn: Scikit-learn or sklearn library [62] is used of building machine learning models in

Python. The library provides tools for performing machine learning and statistical modelling

tasks like classification, clustering, regression & dimensionality reduction. Classifiers like K

Neighbors Classifier, SVC, Random Forest Classifier, MLP Classifier, Decision Tree

Classifier, XGB classifier have been imported from the sklearn library in the project.

TensorFlow: TensorFlow [63] is a symbolic math library used for creating neural networks

and deep learning models. The library is flexible and allows distributed computing. Though it

is a very powerful library but difficult to use for creation of deep neural models.

Keras: is one of the most popular and easy to use python library for building deep learning

models. It has been built on top of deep learning libraries like TensorFlow, Theano, Caffe etc.

The library has a very minimal structure which makes it a favourable choice for deep learning

applications. It supports multiple platforms and runs on both CPU & GPU. From Keras [64] ,

following imports have been made in the project: Sequential from keras.models, layers like

Dense, Conv2D, MaxPool2D, Flatten, Dropout from keras.layers and the function

to_categorical from keras.utils.

Visualization Libraries: - Matplotlib

Matplotlib: is a visualization library used in Python for plot of arrays. It consists of several

types of plots:- line_plot, bar_plot, scatter_plot, histogram etc. The plots allow one to

recognise and analyse patterns and trends among the data. Matplotlib.pyplot [65] is used in

Python that works like MATLAB and helps in creating figures, plots and graphs. In the project

matplotlib.pyplot is used to display results in the form of bar plots.

5.2. Dataset Preparation:

For Experimental Analysis, we have made use of the DHCD [38] dataset, proposed by

Acharya et. al, in 2015. The dataset includes 46 handwritten Devanagari characters - 36

alphabets and 10 numerals. Each character label has 2k image samples. i.e., a total of 92k

samples. The dataset is divided into two parts: training set -to train and extract the features

from CNN and testing set - fed to classifiers for testing the performance of classifier.

30

We have considered 3 cases of dataset splitting for our experiments. Case 1) 70:30, Case 2)

75:25, Case 3) 80:20.

Algorithm:

1. The dataset is read into a Pandas data frame.

2. The dataset is segregated such that the pixel values of each character are stored in

variable X and the character class labels are stored in variable Y.

3. Variable ‘n_classes’ stores the number of different character classes available in the

dataset (

here 46).

4. Normalization of Pixel values in X by dividing each pixel value by the highest pixel

value (255).

5. Split of dataset into training and testing data using ‘train_test_split’ function from

sklearn library. Train: Test ratios used: - 1) 80:20 2) 75:25 3) 70:30. (For each split

ratio separate experiments are conducted).

6. Label Encoding of character classes in Y. The categorical values are transformed to

numerical values for simplified processing.

7. Input Image Size used is 32*32*1.

Fig. 5.1. Devanagari Script characters from DHCD Dataset

 Character class labels are described in the table below.

31

Label Number Character Type Character Class
‘Character_01’ Characters – consonants and

vowels
Ka

‘Character_02’ Kha

‘Character_03’ Ga

‘Character_04’ Gha

‘Character_05’ Kna

‘Character_06’ Cha

‘Character_07’ Chha

‘Character_08’ Ja

‘Character_09’ Jha

‘Character_10’ Yna

‘Character_11’ Taamatar

‘Character_12’ Thaa

‘Character_13’ Daa

‘Character_14’ Dhaa

‘Character_15’ Adna

‘Character_16’ Tabala

‘Character_17’ Tha

‘Character_18’ Da

‘Character_19’ Dha

‘Character_20’ Na

‘Character_21’ Pa

‘Character_22’ Pha

‘Character_23’ Ba

‘Character_24’ Bha

‘Character_25’ Ma

‘Character_26’ Yaw

‘Character_27’ Ra

‘Character_28’ La

‘Character_29’ Waw

‘Character_30’ Motosaw

‘Character_31’ Petchiryakha

‘Character_32’ Patalosaw

‘Character_33’ Ha

‘Character_34’ Chhya

‘Character_35’ Tra

‘Character_36’ Gya

‘Character_37’ Digits – Zero to Nine Digit_0

32

‘Character_38’ Digit_1

‘Character_39’ Digit_2

‘Character_40’ Digit_3

‘Character_41’ Digit_4

‘Character_42’ Digit_5

‘Character_43’ Digit_6

‘Character_44’ Digit_7

‘Character_45’ Digit_8

‘Character_46’ Digit_9

Table 5.1: Devanagari character class labels

Fig. 5.2. Count Plot of character labels

Transformation of categorical variables (characters) into numerical variables is done using

label encoder.

{'adna': 0, 'ba': 1, 'bha': 2, 'cha': 3, 'chha': 4, 'chhya': 5,
'da': 6, 'daa': 7, 'dha': 8, 'dhaa': 9, 'ga': 10, 'gha': 11,
'gya': 12, 'ha': 13, 'ja': 14, 'jha': 15, 'ka': 16, 'kha': 17,
'kna': 18, 'la': 19, 'ma': 20, 'motosaw': 21, 'na': 22, 'pa':
23, 'patalosaw': 24, 'petchiryakha': 25, 'pha': 26, 'ra': 27,
'taamatar': 28, 'tabala': 29, 'tha': 30, 'thaa': 31, 'tra': 32,
'waw': 33, 'yaw': 34, 'yna': 35}

5.3. Creation of CNN Model:

33

CNN is built using Sequential Modelling in Keras i.e., each layer is added one by one using

the add() function. This allows one to build a network in a simple manner.

Fig. 5.3. CNN Model Architecture

Explanation of the layers used for building the CNN model: -

conv2d: Input Layer : A 2D convolutional layer is added having 32 filters and kernel size of

3*3. Activation function used is ‘ReLU’.

conv2d_1: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function

used is ‘ReLU’

max_pooling2d: Maximum Pooling layer is added to subsample the size of feature maps from

previous layers. Pool size is (2,2) and stride of 2 is used.

conv2d_2: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function

used is ‘ReLU’

conv2d_3: 2D convolutional layer having 64 filters and kernel size of 3*3. Activation function

used is ‘ReLU’

max_pooling2d_1: Maximum Pooling layer is added to subsample the size of feature maps

from previous layers. Pool size is (2,2) and stride of 2 is used.

34

dropout: A dropout layer is added to avoid the chances of overfitting. 20% of the units have

been randomly dropped from connections.

flatten_1: Flatten layer is added to convert the feature maps from previous layers of size

(5*5*64) into a single dimensional vector of size(1600).

dense: The flattened layer is fed to the fully connected layer having 128 filters.

dense_1: Another fully connected layer is added having 64 filters.

dense_2: Last fully connected layer has number of filters equal to the number of character

classes to be recognised (=46 here).

5.3.1. Feature Extraction using CNN:

A custom model is created using input model from CNN model. The outputs of this model are

2nd last dense layer (dense_1) of CNN model built above. Therefore, the last fully connected

layer having 46 units is removed and the outputs from the custom model are fed to classifiers

instead. For feeding the feature maps to a classifier, a generic function is created.

Fig. 5.4. CNN Model for feature extraction

35

5.4. Creation of a generic function for passing various classifiers

A generic function is created that takes following inputs :-

clfr – classifier

x_train_data – pixel values of characters in the training dataset

y_train_data – character_labels in the training dataset

x_test_data – pixel values of characters in the testing dataset

y_test_data - character labels in the testing dataset

acc_str - String to display accuracy of respective classifier

Function methods:

i. Function to train the model using clfr.fit method

ii. Function to predict the character labels from the test dataset fed

iii. Function to calculate the time taken by the classifier for prediction

Values returned from the generic function :

y_pred – predicted character labels

acc - accuracy score i.e., closeness of predicted class labels to the actual class label

Generic function is called by various classifiers- SVM, KNN, MLP, DT, RF

5.5. Comparitive Analysis of Models:

The classification accuracy and prediction time for each model is noted. The classifiers are

compared on the basis of these two metrics and the results have been compiled in the form of

a table and bar plots for easier comprehension. The plots have been analysed in the results

section.

36

CHAPTER 6

RESULTS AND DISCUSSION

The models have been analysed on the basis of classification accuracy (performance) and

training & prediction time (speed). Recognition results on the DHCD dataset have been

presented in the form of tables and graphs for easier interpretation.

Table 6.1. shows the classification accuracy obtained with various models. The top 3 models

in terms of accuracy rate are Model 4 (CNN + SVM_RBF), Model1 (CNN + KNN) and Model

7 (CNN+RF), in the decreasing order. Model 6 (CNN + DT) gives accuracy rate of approx.

94% on the given dataset.

Model Used Classification Accuracy Average
Classification

Accuracy Case 1:
Dataset
Split -
70:30

Case 2:
Dataset
Split -
75:25

Case 3:
Dataset
Split -
80:20

Model 1:
CNN + KNN

98.73% 98.91% 98.99% 98.876 %

Model 2:
CNN + SVM_Linear

98.41% 98.40% 98.87% 98.56 %

Model 3:
CNN + SVM_Poly

98.36% 98.63% 98.74% 98.576 %

Model 4:
CNN + SVM_RBF

98.88% 99.01% 99.13% 99.006 %

Model 5:
CNN + MLP

98.55% 98.69% 98.86% 98.7 %

37

Model 6:
CNN + DT

93.54% 93.85% 94.41% 93.93 %

Model 7:
CNN + RF

98.57% 98.84% 98.7% 98.703 %

Table 6.1: Classification Accuracy Results of the proposed method on the DHCD dataset

Table 6.2. shows the training time taken by CNN model for the extraction of features from

handwritten Devanagari characters. Average time taken is around 8 min for 3 cases of dataset

split.

Feature Extraction time taken by CNN

(in seconds)

Case 1: Dataset Split -
70:30

Case 2: Dataset Split -
75:25

Case 3: Dataset Split - 80:20

497.36 sec
 = 8.289 min

467.68 sec
= 7.794 min

532.48 sec
= 8.874 min

Table 6.2: Training time results of the CNN Model for feature extraction

Table 6.3. shows the classification time or prediction time required by various models to

classify the Devanagari handwritten characters, by taking input as feature maps obtained from

custom CNN model. The top 3 models in terms of prediction time are Model 6 (CNN + DT),

Model 2 (CNN + SVM_Linear and Model 3 (CNN + SVM_Poly) in the decreasing order,

respectively.

Model Used Prediction Time (in seconds) Average
Prediction

Time Case 1:
Dataset
Split -
70:30

Case 2:
Dataset
Split -
75:25

Case 3:
Dataset
Split -
80:20

Model 1:
CNN + KNN

21.35 sec 30.84 sec 25.60 sec 25.93 sec

38

Model 2:
CNN + SVM_Linear

10.78 sec 10.80 sec 12.03 sec 11.203 sec

Model 3:
CNN + SVM_Poly

20.82 sec 20.79 sec 22.20 sec 21.246 sec

Model 4:
CNN + SVM_RBF

23.78 sec 23.21 sec 26.60 sec 24.53 sec

Model 5:
CNN + MLP

22.84 sec 17.73 sec 30.03 sec 23.53 sec

Model 6:
CNN + DT

2.95 sec 2.79 sec 3.43 sec 3.05 sec

Model 7:
CNN + RF

20.21 sec 20.20 sec 23.88 sec 21.43 sec

Table 6.3: Prediction time Results of the proposed method on the DHCD dataset

Comparison of all models accuracy rates has been presented in figure 6.1.

Fig. 6.1. Comparison of Classification Accuracy of all models used

39

Comparison of all prediction time required by all models has been presented in figure 6.2.

Fig. 6.2. Comparison of Prediction time of all models used

40

CHAPTER 7

CONCLUSION

It has been observed that CNN is able to identify relevant features from images and thus results

in computational cost saving as compared to traditional pattern recognition techniques for

feature extraction. It also saves the hassle and struggle of analysing and identifying best

features for the image dataset and then applying various techniques or combination of feature

extraction techniques to get appropriate feature maps. Use of CNN as feature extractor

reduced the training and prediction time significantly for all classifiers (in the range of few

seconds), along with achieving accuracy rates as high as 99% (CNN + SVM_RBF). In terms

of computational speed, combination of CNN and DT gives reasonably good accuracy

(approx. 94%) within least time, requiring only 3.05 seconds on an average. Optimal choice

of method for the recognition of Devanagari handwritten characters, however, is feature

extraction with CNN model and classification with SVM classifier.

41

CHAPTER 8

FUTURE DIRECTIONS

From the study and analysis of presently available Devanagari Handwritten character

Recognition systems, following future directions are pointed out: -

1. Development of a benchmark handwritten characters dataset containing all primary

characters, compound characters and numerals in handwritten form. The dataset must

incorporate handwriting of different individuals from a large community, so that the

dataset can have more variance in terms of translation, rotation, noise and it must

consist of a very large sample size.

2. Propose a novel feature extraction method for selection of appropriate features of

Devanagari characters that can allow classifier to distinguish similar characters and

improve accuracy for the cursive Devanagari characters.

3. Exploration of Xception Net and XGB Classifier for recognition of Devanagari

characters. Use of parameter tuning using XGBoost Algorithm for improvement of

classification of handwritten Devanagari characters.

42

REFERENCES

[1] Mithe, R., Indalkar, S., & Divekar, N., “Optical character recognition”,

International journal of recent technology and engineering (IJRTE), 2(1), 72-

75,2013.

[2] Yadav, P., & Yadav, N. (2015). Handwriting recognition system-a review.

International Journal of Computer Applications, 114(19), 36-40.

[3] Le Cun,Y., Bengio , Y.& Hinton, G.“ Deep learning”, Nature 521, 436– 444 ,

2015.

[4] Umapada Pal, Ramachandran Jayadevan, and Nabin Sharma, “Handwriting

recognition in Indian regional scripts: A Survey of Offline Techniques.”, ACM

Transactions on Asian Language Information Processing 11, 1, Article 1, 35

pages, March 2012.

[5] Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting

recognition: a comprehensive survey. IEEE Transactions on pattern analysis and

machine intelligence, 22(1), 63-84.

[6] Caesar, T., Gloger, J. M., & Mandler, E. (1993, October). Preprocessing and

feature extraction for a handwriting recognition system. In Proceedings of 2nd

International Conference on Document Analysis and Recognition (ICDAR'93)

(pp. 408-411). IEEE.

[7] Sanmorino and S. Yazid, "A survey for handwritten signature verification," 2012

2nd International Conference on Uncertainty Reasoning and Knowledge

Engineering, 2012, pp. 54-57, doi: 10.1109/URKE.2012.6319582.

[8] Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., & Stolz, M. (2010,

June). Ground truth creation for handwriting recognition in historical documents.

In Proceedings of the 9th IAPR International Workshop on Document Analysis

Systems(pp. 3-10).

43

[9] Beigi, H. S., Nathan, K., Clary, G. J., & Subrahmonia, J. (1994, July). Challenges

of handwriting recognition in Farsi, Arabic and other languages with similar

writing styles an on-line digit recognizer. In Second Annual Conference on

Technological Advancements in Developing Countries.

[10] Rusu, A., & Govindaraju, V. (2006, October). The influence of image

complexity on handwriting recognition. In Tenth International Workshop on

Frontiers in Handwriting Recognition.

[11] Bright, W., “The devanagari script.”, The world’s writing systems, pp.384-

390,1996.

[12] R.Jayadevan, S. R. Kolhe, P. M. Patil and U. Pal, "Offline Recognition of

Devanagari Script: A Survey," in IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 41, no. 6, pp. 782-796,

Nov. 2011.

[13] Deore, S.P., Pravin, A. Devanagari Handwritten Character Recognition using

fine-tuned Deep Convolutional Neural Network on trivial dataset. Sādhanā 45,

243 (2020). https://doi.org/10.1007/s12046-020-01484-1

[14] S.Acharya, A. K. Pant and P. K. Gyawali, "Deep learning based large scale

handwritten Devanagari character recognition," 2015 9th International

Conference on Software, Knowledge, Information Management and

Applications (SKIMA), pp. 1-6,2015.

[15] R.Kumar, A. Kumar, and P. Ahmed, A Benchmark Dataset for Devanagari

Document Recognition Research, WSEAS Press, Lemesos, Cyprus, 2013

[16] N.Majid and E. H. Barney Smith, "Performance Comparison of Scanner and

Camera-Acquired Data for Bangla Offline Handwriting Recognition," 2019

International Conference on Document Analysis and Recognition Workshops

(ICDARW), 2019, pp. 31-36, doi: 10.1109/ICDARW.2019.30061.

[17] Algiahi, Y. (2010). Preprocessing techniques in character recognition. Character

recognition, 1, 1-19.

[18] Khan, A. M., & Ravi, S. (2013). Image segmentation methods: A comparative

study.

44

[19] Choudhary, A. (2014). A review of various character segmentation techniques

for cursive handwritten words recognition. Int J Inf Comput Technol, 4(6), 559-

564.

[20] Soora, N. R., & Deshpande, P. S. (2018). Review of feature extraction techniques

for character recognition. IETE Journal of Research, 64(2), 280-295.

[21] Chacko, A. M. M., & Dhanya, P. M. (2015). A comparative study of different

feature extraction techniques for offline Malayalam character recognition. In

Computational Intelligence in Data Mining-Volume 2 (pp. 9-18). Springer, New

Delhi.

[22] W. Liu, J. Wei and Q. Meng, "Comparisions on KNN, SVM, BP and the CNN

for Handwritten Digit Recognition," 2020 IEEE International Conference on

Advances in Electrical Engineering and Computer Applications(AEECA),

2020, pp. 587-590, doi: 10.1109/AEECA49918.2020.9213482.

[23] P. C. Vashist, A. Pandey and A. Tripathi, "A Comparative Study of Handwriting

Recognition Techniques," 2020 International Conference on Computation,

Automation and Knowledge Management (ICCAKM), 2020, pp. 456-461, doi:

10.1109/ICCAKM46823.2020.9051464.

[24] S. Kubatur, M. Sid-Ahmed and M. Ahmadi, "A neural network approach to

online Devanagari handwritten character recognition," 2012 International

Conference on High Performance Computing & Simulation (HPCS), 2012, pp.

209-214, doi: 10.1109/HPCSim.2012.6266913.

[25] Yadav, D., Sánchez-Cuadrado, S., & Morato, J. (2013). Optical character

recognition for Hindi language using a neural-network approach. Journal of

Information Processing Systems, 9(1), 117-140.

[26] Pal, U., Chanda, S., Wakabayashi, T., & Kimura, F. (2008, August). Accuracy

improvement of Devnagari character recognition combining SVM and MQDF.

In Proc. 11th Int. Conf. Frontiers Handwrit. Recognit (pp. 367-372).

[27] Jangid,M.,&Srivastava,S.(2014).Gradient localauto-correlation for handwritten

Devanagari character recognition. In IEEE International Conference on High

Performance Computing and Applications (pp. 1–5). Bhubaneswar: IEEE Press.

[28] Dixit, A. Navghane and Y. Dandawate, "Handwritten Devanagari character

recognition using wavelet based feature extraction and classification scheme,"

45

2014 Annual IEEE India Conference (INDICON), 2014, pp. 1-4, doi:

10.1109/INDICON.2014.7030525.

[29] J. Dongre and V. H. Mankar, "Devanagari offline handwritten numeral and

character recognition using multiple features and neural network classifier,"

2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), 2015, pp. 425-431.

[30] S. Shelke and S. Apte, "Performance optimization and comparative analysis of

neural networks for handwritten Devanagari character recognition," 2016

International Conference on Signal and Information Processing (IConSIP), 2016,

pp. 1-5, doi: 10.1109/ICONSIP.2016.7857482.

[31] Parui, S. K., & Shaw, B. (2007). Offline handwritten Devanagri word

recognition: An HMM based approach. In A. Ghose, R. K. De, & S. K. Pal

(Eds.), PReMI (Vol. 4815, pp. 528–535). Berlin: Springer-verlag, LNCS.

[32] Singh, B., Mittal, A., Ansari, M. A., & Ghosh, D. (2011). Handwritten word

recognition: A curvelet transform based approach. International Journal of

Computer Science and Engineering Survey (IJCSES), 3(4), 1658–1665.

[33] Shaw,B.,Bhattacharya, U.,& Parui, S.K.(2014).Combination of features for

efficient recognition of offline handwritten Devanagri words. In IEEE 14th

International Conference on Frontier in Handwritten Recognition (pp. 240–245).

Heraklion: IEEE Press.

[34] Shaw,B.,Bhattacharya,U.,&Parui, S.K.(2015).Offline handwritten Devanagari

word recognition: Information fusion at feature and classifier level. In IEEE 3rd

IAPR Asian Conference on Pattern Recognition (pp. 720–724). Malaysia: IEEE

Press.

[35] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional

neural network," 2017 International Conference on Engineering and Technology

(ICET), pp. 1-6, 2017.

[36] P. K. Sonawane and S. Shelke, "Handwritten Devanagari Character

Classification using Deep Learning.," 2018 International Conferenceon

Information, Communication, Engineering and Technology (ICICET), pp. 1-4,

2018.

46

[37] Krizhevsky, "One weird trick for parallelizing convolutional neural networks",

CoRR, [online], 2014.

[38] S. Acharya, A. K. Pant and P. K. Gyawali, "Deep learning based large scale

handwritten Devanagari character recognition," 2015 9th International

Conference on Software, Knowledge, Information Management and

Applications (SKIMA), pp. 1-6,2015.

[39] Deore, S.P., Pravin, A. “Devanagari Handwritten Character Recognition using

fine-tuned Deep Convolutional Neural Network on trivial dataset.”, Sādhanā 45,

243 ,2020.

[40] Simonyan, Karen, and Andrew Zisserman. "Very Deep Convolutional Networks

for Large-Scale Image Recognition", arXiv preprint arXiv:1409.1556 (2014).

[41] Jangid, Mahesh; Srivastava, Sumit. "Handwritten Devanagari Character

Recognition Using Layer-Wise Training of Deep Convolutional Neural

Networks and Adaptive Gradient Methods" J. Imaging 4, no. 2: 41, 2018.

[42] Guha, R., Das, N., Kundu, M., Nasipuri, M., Santosh, K. C., & IEEE senior

member. “DevNet: an efficient CNN architecture for handwritten Devanagari

character recognition. International Journal of Pattern Recognition and Artificial

Intelligence.”,2019.

[43] Mhapsekar M., Mhapsekar P., Mhatre A., Sawant V. “Implementation of

Residual Network (ResNet) for Devanagari Handwritten Character

Recognition.”, Advanced Computing Technologies and Applications.

Algorithms for Intelligent Systems,2020.

[44] Narang, S.R., Kumar, M. & Jindal, M.K." DeepNetDevanagari: a deep learning

model for Devanagari ancient character recognition.” Multimed Tools Appl 80,

20671–20686, 2021.

[45] S. M. Pande and B. K. Jha, "Character Recognition System for Devanagari Script

Using Machine Learning Approach," 2021 5th International Conference on

Computing Methodologies and Communication (ICCMC), pp. 899-903, 2021.

[46] Mohite and S. Shelke, "Handwritten Devanagari Character Recognition using

Convolutional Neural Network," 4th International Conference for Convergence

in Technology (I2CT), pp.1-4, 2018.

47

[47] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. "Rethinking the

inception architecture for computer vision.”, In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 2818-2826),2016.

[48] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. “Densely

connected convolutional networks.” In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 4700- 4708),2017.

[49] Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.

and Summers, R.M., 2016. Deep convolutional neural networks for computer-

aided detection: CNN architectures, dataset characteristics and transfer learning.

IEEE transactions on medical imaging, 35(5), pp.1285-1298.

[50] Ramya, S., & Shama, K. Comparison of SVM Kernel effect on online

handwriting recognition: A case study with Kannada script. In Data engineering

and intelligent computing (pp. 75-82), 2018. Springer, Singapore.

[51] Zhang, M. L., & Zhou, Z. H. ML-KNN: A lazy learning approach to multi-label

learning. Pattern recognition, 40(7), 2038-2048, 2007.

[52] Song, Y. Y., & Ying, L. U. Decision tree methods: applications for classification

and prediction. Shanghai archives of psychiatry, 27(2), 130, 2015.

[53] Bernard, S., Adam, S., & Heutte, L. Using random forests for handwritten digit

recognition. In Ninth international conference on document analysis and

recognition (ICDAR 2007) (Vol. 2, pp. 1043-1047), 2007. IEEE.

[54] Satange, D. D., Ajmire, D. P., & Khandwani, F. I. Offline Handwritten Gujrati

Numeral Recognition Using MLP Classifier. International Journal of Novel

Research and Development, 3(8), 2018.

[55] Rahman MH, Shahjalal M, Hasan MK, Ali MO, Jang YM. Design of an SVM

Classifier Assisted Intelligent Receiver for Reliable Optical Camera

Communication. Sensors. 2021; 21(13):4283.

[56] Atallah, Dalia & Badawy, Mohammed & El-Sayed, Ayman & Ghoneim,

Mohamed. (2019). Predicting kidney transplantation outcome based on hybrid

feature selection and KNN classifier. Multimedia Tools and Applications. 78.

20383–20407. 10.1007/s11042-019-7370-5.

48

[57] Zhou, Bei & Li, Zongzhi & Zhang, Shengrui & Zhang, Xinfen & Liu, Xin & Ma,

Qiannan. (2019). Analysis of Factors Affecting Hit-and-Run and Non-Hit-and-

Run in Vehicle-Bicycle Crashes: A Non-Parametric Approach Incorporating

Data Imbalance Treatment. Sustainability. 11. 1327. 10.3390/su11051327.

[58] Akpojaro, Jackson & Bello, Rotimi-Williams. (2020). Image Processing and

Supervised Learning for Efficient Detection of Animal Diseases.. 11. 39-48.

[59] Alboaneen, Dabiah & Tianfield, Hua & Zhang, Yan. (2017). Glowworm Swarm

Optimisation for Training Multi-Layer Perceptrons. 131-138.

10.1145/3148055.3148075.

[60] McKinney, W. (2011). pandas: a foundational Python library for data analysis

and statistics. Python for high performance and scientific computing, 14(9), 1-9.

[61] Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser et al. "Array programming with

NumPy." Nature 585, no. 7825 (2020): 357-362.

[62] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal

of machine Learning research, 12, 2825-2830.

[63] Brownlee, J. (2016). Deep learning with Python: develop deep learning models

on Theano and TensorFlow using Keras. Machine Learning Mastery.

[64] Chollet, F. (2018). Keras: The python deep learning library. Astrophysics Source

Code Library, ascl-1806.

[65] Ari, N., & Ustazhanov, M. (2014, September). Matplotlib in python. In 2014

11th International Conference on Electronics, Computer and Computation

(ICECCO) (pp. 1-6). IEEE.

