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Abstract

Antimicrobial resistance (AMR) is a concern to public health, prompting the development of
novel strategies for combating AMR. While the use of machine learning (ML) to AMR is in its
infancy, it has made significant progress as a diagnosis tool, owing to the growing availability
of phenotypic/genotypic datasets and much faster computational power. While applying ML
in AMR research is viable, its use is limited. It has been used to predict antimicrobial
susceptibility genotypes/phenotypes, discover novel antibiotics, and improve diagnosis when
combined with spectroscopic and microscopy methods. ML implementation in healthcare
settings has challenges to adoption due to concerns about model interpretability and data
integrity. The focus of this thesis is to outline the significant benefits and drawbacks of ML in
AMR, with emphasis on models built for the prediction of antimicrobial peptides, along with

the salient trends reported in recent studies.
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Chapter 1

Introduction

AMR has emerged as a major public health hazard in the 21st century. It is increasing globally
and is related to increased morbidity and mortality in hospital and community settings [1]. The
expansion of antibiotic resistance to new environmental niches, as well as the emergence of
superbugs, has challenged effective control methods. For a successful outcome, early and
accurate diagnosis of the illness and its drug resistance profile is crucial. Over the years, some
alternatives to standard antibiotic treatment have been presented to avoid the problem of
bacterial resistance. Artificial intelligence (Al), specifically ML, has been widely used in
biomedical field because of its larger capacity for interpreting information from several
different sources and the development of novel methodologies and algorithms for the

prediction of experimentally acquired information.

ML is a branch of Al that allows a computer to predict outcomes using a learnt model and a
large number of empirical observations, referred to as training data [Fig. 1]. ML can aid in the
identification and design of novel antibacterial drugs by generating models based on empirical
knowledge accessible in compound databases. Furthermore, ML approaches can be utilized to
examine the pharmacokinetics and toxicity features of potential antibiotics to improve their

efficacy [2].

Any technique that employs ML models necessitates sufficient input data to create a 'training
set' for guiding the ML model and a 'testing set' for evaluating the model's performance. An
important consideration in the study of AMR is the availability of data sets including correct
genotypic information connected to carefully selected samples of the AMR gene. For this

reason, pre-processing of genotypic data is required before they can be used as input for ML



models. This procedure is called "feature selection" in the ML terminology. The studies took
one of two approaches to this problem: using gene annotations as "features" or using k-mers

(short DNA strings are constructed by combining individual nucleotides).

Most of the algorithms discussed here used supervised ML, where the algorithm is trained on
data with labels to construct a learned model. Hence, these algorithms could analyse test data
and execute self-annotation using their label. They are employed for classification and
regression-based analysis. Regression algorithms and Decision Trees Classifier are some of the
most used supervised algorithms. While some studies have employed unsupervised learning

and deep learning algorithms.

Unsupervised learning makes use of unlabelled training data. To put it differently, observations
are classified without information of the data sample. Clustering can be performed using
unsupervised techniques like hierarchical cluster analysis and principal component analysis

(PCA).

Other Al approach such as deep learning, is based on how the biological neural systems
interpret information and is becoming increasingly popular. Artificial Neural Networks
(ANNSs) are constituted of an input layer of neurons,' which is interconnected to one or more

hidden layers of neurons, which are then linked to an output layer [3].

This thesis will provide an overview of widely used ML and DL techniques in antimicrobial
resistance research, particularly in AMR gene prediction, novel antibiotics/ AMPs discovery
and implementation in several diagnostic tools and techniques. Further, it will delve into the
prediction of AMPs through amino acid composition by using and comparing several ML
algorithms. The primary goal of AMP prediction is to produce novel peptide sequences that
have antimicrobial and therapeutic properties. Despite the fact that peptide design is beyond

the focus of this thesis, we believe that knowing the importance of residues, their
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characteristics, and their placements in the sequence will be critical for the de novo design of

an AMP.

Any techniques that enable
machines to solve a task in a
way like humans do.

»
»

Algorithms that allow computers
to learn from examples without
being explicitly programmed.

A subset of ML that uses deep
artificial neural networks as
models and develops a
hierarchy of data
representations automatically.

Deep Learning

Fig.1: Comparison of Al vs ML vs DL.
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Chapter 2

Antimicrobial Resistance

Fleming's unexpected discovery of antibiotics in 1928 ushered in the current era of antibiotics.
Antibiotics have helped a lot of people who have been infected since then. Antibiotics'
widespread clinical use, however, has resulted in the evolution of drug resistance as well as the
prospect of super-resistant microorganisms or commonly known as "Superbugs".
Antimicrobial resistance (AMR) is anticipated to kill 10 million people each year by 2050, with

an economic cost of $100 billion[1].

Antibiotic resistance mechanisms in bacteria can be divided into three categories:
(1) blocking drug access to its target.

(i1) enzymatic alteration and/or inactivation of the drug.

(ii1) alterations in the target molecule that degrade drug binding [Fig. 2].

The first method occurs when bacteria modify porin channels or their expression on
membranes, causing therapeutic access to the cell to be restricted. Alternatively, efflux pumps
can expel the medication from the cell; for example, Gram-negative bacteria extrude beta-
lactams, and carbapenems reduce permeability [4]. Beta-lactamases, which are produced by
Gram-negative bacteria such as FEnterobacter species, Pseudomonas aeruginosa, and
Klebsiella pneumonia, are one type of enzymatic drug inactivation. Finally, in Gram-positive
bacteria, modifications in therapeutic targets can be significant. Methicillin-resistant
Staphylococcus aureus (MRSA) was found two decades after penicillinase-producing
Staphylococcus aureus was discovered in the 1940s. Some bacterial species require special

attention because of their ability to express some or all of the above-mentioned mechanisms of
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resistance, especially when considering their abundance in hospitals and other healthcare

settings.

To avoid the problem of bacterial resistance, some alternatives to standard antibiotic treatment
have been developed over the years. The use of bacteriophages, antibodies, and AMPs obtained
from natural sources, most of which are in clinical studies, is one of the most promising [5].
Given the alarming state of resistant microorganisms around the world, as well as the
unavailability of short-term options, the discovery of novel antibiotics/AMPs has garnered
considerable attention. Under these conditions, existing antibiotics must be modified or novel
peptides with antimicrobial activities must be discovered. However, drug design is a complex,
time-consuming, and expensive process that requires huge multidisciplinary expert teams as

well as a plethora of various experimental and computational methods.

MLT, in particular, can aid in the identification and design of novel AMPs by generating
models based on empirical knowledge accessible in compound databases [6-9]. Furthermore,
MLT are employed to evaluate the pharmacokinetics and toxicity features of potential

antibiotics in order to improve their efficacy.
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Fig. 2: Various mechanisms through which microbes acquire antimicrobial resistance.
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Chapter 3

Overview of Machine Learning and its types of algorithms

Artificial intelligence (Al), and particularly its subdiscipline ML, have emerged as major
trends that are gaining the interest of biologists. Al is a comprehensive term that can be
understood as the notion and adoption of digital systems to execute complicated activities that
ordinarily require human intellect, like decision-making, visual perception, natural language
processing, and language processing. ML is a computational discipline that enables computers
to learn from data without really being explicitly programmed [10]. This terminology was first
used in 1959, but its possibilities remained limited until about the 1980s given the lack of
computational capabilities, adequate and accurate datasets, storage capacity, and suitable
applications. As of now, ML is permeating every domain including drug discovery, and
healthcare sector, driven by the faster and cost-effective computers, an abundance of data and
information produced by a more data-thriving world, and wider availability and adaptability of

open-source software [10].

ML can be categorised into 4 types based on the amount of data and supervision they receive

during model training:

(1) Supervised learning

(i1) Unsupervised learning
(ii1) Semi-supervised learning

(iv) Reinforcement learning
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3.1 Supervised Learning

Data sets are collected, and training data is labelled in supervised learning. Having knowledge
about the specific outcomes, predictions can be made. It is frequently employed in
classification and regression problems [Table 1]. The most common algorithms used in

supervised learning for AMR are mentioned below:
3.1.1 Linear regression

The most well-known and well-understood technique in the domain of machine learning is
linear regression, which is used to characterise the connection between a dependent variable

and one or more predictors [10].

By building a linear model with features and a random error, it optimizes the residual sum of
squares between the values based on the linear model and the observed values in the dataset

[10].
3.1.2 Logistic regression

A logistic function, which is a sigmoid function with a typical S-shaped curve that outputs a
number between 0 and 1, can be used to convert a Linear Regression to a Logistic

Regression[10].

However, when non-linear correlations are taken into consideration, both regression

algorithms underperform and are not equipped to handle more complicated patterns.
3.1.3 Naive Bayes Classifier (NB)

Naive Bayes classifier is a probabilistic approach based on Bayes' theorem and each feature's
independent assumptions. The input/output combined probability distribution is produced for
a given training dataset. The model is easy to build and therefore does not involve iterative

parameter estimate, making it extremely useful in the healthcare sector.
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In recent investigations, the naive Bayes model has been used to track AMR. Rezaei-Hachesu
et al.,[11] for example, employed naive Bayes and a probabilistic algorithm to extract resistant
patterns and discover the essential element of resistance. Choisy et al.[12] also employed naive

Bayes to calculate the chances of ineffective therapy due to AMR.

3.1.4 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a binary classifier model that finds a partitioned hyper-
plane in the sample space to classify samples [13]. SVM models have frequently been used in
recent studies to predict AMR phenotypes, such as 'resistant' or 'susceptible.' Her et al.,[ 14] for

example, used SVM models to predict antibiotic resistant E.coli.

The results showed that this model was able to provide average accurate predictions of up to
0.95 (AUC curve analysis). Furthermore, Liu et al.[15] used SVM models to
evaluate the several antibiotic drugs, with the results indicating that the model's accuracy is at
least 90%. As a result, SVM models could be useful for AMR monitoring and clinical

diagnosis.

3.1.5 Decision Trees (DT)

For classification, the decision tree is commonly employed. A decision tree's learning process
normally involves three steps: feature selection, decision tree generation, and decision tree

pruning.

By calculating the burden of AMR, the decision tree model is frequently used to distribute
medical resources effectively. Reynolds et al.,[16] for example, used a decision tree model for
predicting healthcare utilisation and costs for AMR, suggesting that lowering AMR or
improving antibiotic selection could result in significant cost savings. To guide antibiotic use,
Voermans et al.[17] developed a procalcitonin (PCT)-based decision tree model, which

resulted in a reduced treatment period and significantly smaller dosages.
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3.1.6 Random Forest (RF)

Random forest is indeed an ensemble approach that improves accuracy and dependability by
combining multiple decision trees [18]. It employs two fundamental concepts rather than
merely averaging the prediction outcomes of all trees. The first is random selection from the
training set, which means that only certain samples will appear in the tree several times. The
other is a random subset of features, which means that while the efficiency of a single tree in a
random forest could be degraded, the random forest normally converges to a lower

generalisation error as the number of trees increases.

Antibiotic combinations are frequently predicted using random forest models. Incorporating
chemo-genomics data and orthology, Chandrasekaran et al.[19] used a random forest model to
predict efficient antibiotic combination therapy. However, because chemo-genomics data are
insufficient, Mason et al.[20] used the molecular fingerprint as a feature to increase the

predictive power of the previously mentioned models.

Methods Advantages and Disadvantages

NE Fast and simple to use, this method is ideal for datasets having missing data.

DT The decision tree's results are simple to understand, and depending on the tree's
complexity, it can also be used to analyse datasets having missing information.

RF This approach works well with huge datasets containing a variety of features. It
1s, however, not accurate where there is an outlier data.

SVM SVM can deal with complex issues by using kernel functions, however it is
slower in processing and require specifying each and every features.

A large number of neural networks can be used to learn a range of complicated
issues. The accuracy of the model will improve as the depth of the model grows,
although the learning rate may be slow.

ANN

Table 1: Comparison of commonly used Al algorithms for AMR.
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3.2 Unsupervised Learning

The training data in unsupervised learning are not labelled. To put it differently, observations
are categorised without any prior knowledge of the data sample. It recognises the data's class

via prior knowledge about features when newer data is introduced.

Unsupervised methods can be used for clustering (e.g., k-means clustering, hierarchical cluster

analysis), visualisation, and dimensionality reduction (e.g., principal component analysis).
3.3 Semi-supervised Learning

Semi-supervised learning algorithms combine the benefits of both supervised and unsupervised
learning techniques. It might be useful in ML and DL if there is already unlabelled data and
acquiring the annotated data is a time-consuming operation. It is frequently used in medical

image classification.
3.4 Reinforcement Learning

In reinforcement learning, an entity (i.e., the learning system) learns which actions to do in
order to maximise the cumulative reward or optimise the outcome of an approach (i.e., a
policy). The two main concepts that govern reinforcement learning are trial and error searches

and delayed results.

It assists in the detection of public health risks by spotting trends and modelling disease

progression.
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Chapter 4

Applications of ML in AMR

4.1 AMR Genes Prediction

The most common way of developing antibiotic resistance is the transfer of antibiotic resistance
genes (ARG) among the bacterial species. Current methods are incapable which rely on
inefficient phenotypic data. Therefore, it becomes an important step to predict these ARGs
accurately for a better understanding of their transmission from the environment. Most
bioinformatics tools have been based on either assembly-based methods or read-based methods
to identify or annotate resistance genes [Table 2]. With ever-increasing genomic data, ML
models have been built to learn the statistical patterns of ARGs and may potentially identify
novel ones as they detect certain features rather than using sequence similarity [Fig. 3]. Some
ML methods have reported models to identify novel ARGs from pan-genome and metagenomic
data [21,22]. Although the results were satisfactory, these models used limited features and did
not include any feature selection method to remove redundant data. Subsequently, Li et al. [23]
developed HMD-ARG (Hierarchical Multi-task Deep learning framework for prediction of the
ARG) coupled with deep neural networks. The framework provides detailed information on
annotated ARGs based on their biochemical properties and covers three significant aspects:
resistance class, gene mobility, and mechanism. In another study, Chowdhury et al. [24]
proposed a model called PARGT (Prediction of Antimicrobial Resistance via Game Theory),
which can identify ARGs from bacterial species. The model utilized the supervised ML
algorithm. These two methods [23,24] validated their results for feature selection. However, in
the future, these methodologies should be made compatible with current sequencing
technologies, which work on short reads like nanopore sequencing rather than on assembled

sequences.
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Tool Type of AI method Description
ABCRpred Supervised ML Predict ceftazidime re51stan§e/suscept1b111ty of
(Random Forest) beta-lactamase protein sequence
GenTB Supervised ML Predict antibiotic resistance against
(Random Forest) Mycobacterium tuberculosis
Supervised ML Utilize next-generation sequencing data to
VAMPr .. - e .
(Decision Tree) determine antibiotic resistance
Deep learning
DeepARG (Artificial Neural Utilize metagenomic data to characterize ARG
Networks)

Table 2: Al-based ARGs Databases.

4.2 Assist in Diagnostic Methods

When designing a new AST (Antibiotic Susceptibility Testing) method, several nonautomated
procedures are considered gold standards for comparative reasons. These methods include agar
dilution, broth microdilution, disc diffusion, and the E-test. While these tests are cost-effective,
they must be carried out manually and take 18-24 hours to complete. Although these are not
considered quick AST techniques, they provide valid MIC values. Scientific research over the
last few years has not only resulted in the development of novel AST platforms but also
improve existing platforms. The integration of ML algorithms has resulted in a significant

progression of AST approaches [Fig. 3].

MALDI- TOF MS has proven to be a fast, inexpensive, and accurate tool that is being used
in the identification of antibiotic-resistant microorganisms by generating characteristic mass
spectral fingerprints which are unique to microbes at genus and species level, which are then
compared with a reference library database comprising of well- identified organisms for each

isolate [25]. Unlike, conventional methods MALDI-TOF offers species-level identification
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with reduced turn-around time and far more accurate results. Recently, ML algorithms have
been employed in the optimization of MALDI- TOF to enhance species identification which
can reveal unknown or novel information hidden in the mass spectra and, in antibiotic
resistance profiling of closely related bacterial species [26]. However, there is an increased
interest in utilizing MALDI-TOF for AST. Data retrieved from traditional methods may serve

as user input for ML algorithms.

Huang et al. [27] evaluated five ML algorithms (RF, logistic regression, NB, NN, and SVM)
to check their antibiotic susceptibility of Klebsiella pneumoniae against carbapenem. A total
of 100 spectra peaks from K. pneumoniae isolates were used as the training dataset for their
classification. RF algorithm surpasses the other algorithms achieving an overall classification
accuracy of 97%. Sogawa and colleagues [28] tested a prediction model using a supervised ML
algorithm to classify 50 isolates of both Methicillin-susceptible S. aureus (MSSA) and MRSA.
The accuracy rates were 90% and 87.5% respectively. This study has proposed rapid detection
from one colony in 5 minutes, however, the accuracy rate was not 100% which is crucial for
clinical diagnosis. Wang et al. [29] included 787 Group-B streptococci (GBS) isolates in their
analysis where they have used supervised ML to build models for the prediction of 5 different
serotypes achieving up to 87.5 % accuracy while other studies [27,29] included less than or
equal to 50 isolates only which is quite a small sample size for ML models that require larger
sample size to feed. Although most of the studies showed good results, lack of external

validation and poor reproducibility dampen progress towards this approach.

Raman spectroscopy analyses biochemical composition by using multichromatic emitters in
the ultraviolet/infrared/visible spectrum. Raman scattering can be used to measure small
quantities of material, such as single bacterial cells, and has several microbiological
applications. Laser light can be used to investigate the physicochemical characteristics of the
probed sample. Molecular bonds then inelastically scatter the photons which are analyzed by
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spectrophotometer and a Raman spectrum is plotted to depict the intensity of the inelastic
scattering [30]. These Raman spectra and their associated information can be utilized for the
identification of bacteria and for other microbial diagnoses by analyzing through multivariate
statistics and ML algorithms. Finally, these class-specific Raman spectral models, after

iterations by ML algorithms, can be utilized to distinguish bacterial classes of interest [30].

Ullah et al. [31] employed unsupervised ML techniques to classify 60 tuberculosis (TB) serum
samples (30- TB positive and 30- TB negative) based on the variation in biochemical
concentration. The findings indicate a significant difference in Raman spectra in both TB
positive and TB negative groups as well as in the control group too. Similarly, Moawad et al.
[32] developed an SVM model in combination with PCA to identify Burkholderia mallei and
related species. The optimized model identification accuracy reached above 90%. However,
the model's reliability was limited due to the occurrence of misclassification of B. thailandensis
with B. mallei. For which, the authors suggested that this misclassification occurred due to the
less representation of B. thailandensis samples in the training dataset. Rebrosova et al. [33]
successfully identified 277 staphylococci strains from 16 species by utilizing Raman
spectroscopy with supervised ML algorithms showing better results achieving an accuracy of
99%. Meanwhile, Ho et al. [34] implemented DL, along with logistic regression for the rapid
classification of (n=30) bacterial isolates, for antibiotic resistance and empirical treatment. For
(n=30) bacterial species classification, the DL classifier comprised of 25 1-D convolutional
layers along with some residual connections which achieved an average isolate-level accuracy
of 82%. However, most of the misclassifications occurred at the genus level. Moreover, a
binary DL classifier was built to classifty MRSA and MSSA which achieved an accuracy of
89%, and another DL model categorized known bacterial isolates into several groups based on

the common empirical antibiotic treatment that achieved an accuracy of 97%.
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Additionally, Yi et al. [35] devised a rapid AST based on Raman scattering, which detects an
activity and stability of certain metabolites in the presence of antibiotics via single-cell Raman
spectroscopy (SCRS). SCRS works by detecting the biomolecules' vibrations within a
cell/bacterium, hence determining their biochemical attributes or phenotype. In this study,
FRAST was applied to (n=8) bacterial species, consisting of 4 Gram-positive and 4 Gram-
negative bacterial species along with ML algorithms to train a model to classify training dataset
which achieved sensitivities of 98.8% for Gram-positive bacteria and 94.3% for Gram-negative
bacteria at the unicellular level. The model only took less than 30 minutes for the results. The
model was then validated using (n=6) bacterial isolates consisting of 3 Gram-positive and 3
Gram-negative bacterial species, which achieved an overall sensitivity of over 90%, which was

then confirmed by 16S rRNA sequencing.

However, the current limitations of implementing Raman spectroscopy in clinical labs are that
first, they generate huge amount of data shortly, which could be surpassed by employing ML
techniques. Second, training datasets consisting of a small sample size result in lower accuracy
by the learning model that might be resolved by feeding the training model with large datasets
encompassing varieties of antibiotic-susceptible and resistant bacteria. Finally, the improper
optimization of training data and lack of external validation of the analysis results in

misclassifications amongst similar bacterial species.

Several other diagnostic tools with the help of ML algorithms have been employed to improve
accuracy and turnaround time in AST. For instance, Inglis et al. [36] implemented AST with
the flow cytometry method (FAST). The method utilized a decision tree algorithm to deliver
the results within 3 hr. Based on a multivariate analysis of microcolony images, Maeda et al.
[37] employed a novel technology known as "colony fingerprinting" to distinguish five
Staphylococcus species. The method used supervised ML and deep learning algorithms which
showed high performance and generated the results within 11 hr. Moreover, Smith et al. [38]
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developed an AST platform, based on microscopy (MAST) which used deep neural networks
for classification and could determine the AST after incubation of 2 hr. Further, Lechowicz et
al. [39] used the combination of deep neural networks and infrared spectroscopy to classify
109 uropathogenic E. coli strains against cephalothin. The method generated quick results

within 30 min. which are much faster than conventional AST methods (24 hr.).

4.3 Antibiotics/Antimicrobial Peptides Discovery

This will be discussed in detail in next chapter.
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Chapter S

Prediction of small antimicrobial peptides using Machine learning

Antimicrobial peptides (AMPs) are considered a promising antibiotic replacement candidate
because they are key part of the innate immunity with a broad spectrum of activities that can
protect the host from a spectrum of pathogenic microorganisms such as viruses, bacteria,

parasites, and fungi.

Nonetheless, identifying and extracting AMPs is costly and time-consuming. To mitigate these
dangers, in silico ML can be used for early screening to shortlist proteins with possible

antimicrobial activity before proceeding to the lab testing phase [40].

The preliminary stage in AMPs design is to acquire a training dataset (input) that comprises
non-AMPs and AMPs databases with specific protein composition features to achieve a
suitable balance of desirable and undesirable inputs. Although some databases, such as the
Antimicrobial Peptide Database (APD), the Collection of Antimicrobial Peptides (CAMPR3),
and Yet Another Database of Antimicrobial Peptides (YADAMPs), are publicly available, the
non-AMPs were excluded in most studies since there is no experimentally tested data available

in such non-AMPs databases [41,42]. [Table 3].

Database Type o.f ML Description
algorithm
INDIGO
(INferring Drug

Supervised learning Exploits chemogenomic data of model organisms for the

Interacti i Sl o .
nieractions using (Random Forest) prediction of antibiotic combinations

chemo-Genomics and

Orthology)
CAMP Semi-supervised
(Callection of Anft learning Detailed information on 8164 AMR sequences with 752
otiection of Anti- (Hidden Markov AMR 3-D structure
Microbial Peptides)
Model)
YADAMP
(Yet Another Database Supervised learni Contain comprehensive information on 2525 AMPs
of Anti-Microbial pervised fearning against common bacterial species
Peptides)

Table 3: Al-based AMPs Databases.
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Following that, the appropriate peptide descriptors must be chosen based on the expected final
result. These descriptors are used to assess the value of specific features in the design of
antimicrobial protein characteristics. 2D Quantitative Structure—Activity Relationship (QSAR)
descriptors, 3D QSAR descriptors, inductive descriptors, and other descriptors like the number
of residues between amino acids are the four most prevalent types of descriptors. Then, an
algorithm will be devised or determined based on the accuracy of the desired outcomes and the
stability of the input dataset [43]. The algorithm will provide a list of AMPs, which will then

be analyzed for antibacterial activity and toxicity.
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Fig.4: Overview of the workflow of antibiotic/antimicrobial peptides discovery by using
machine learning and deep learning algorithm. The researchers first constructed a training
dataset of compounds capable of inhibiting the growth of common bacterial species such as E.
coli. They improved their model by specifying phenotypic and genotypic features, adjusting
hyperparameters, and assembling the ML model, which resulted in the final machine learning
or deep learning algorithm via iterative model re-training. In comparison to the traditional
approach, this in-silico approach enabled the researchers to systematically scan over a 100
million compounds, many of which had molecular structures that differed from known
antibiotics. The number of screened compounds is approximately 100 times more than the

typical approach, which is more inexpensive at this scale.
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5.1 Literature review

Despite the clear need for more antibiotics, very few antibiotics have been available in the
market. The last entire class of antibiotics was discovered in the late 1980s. Many
pharmaceutical companies have gradually shied away from antibiotic research and
development due to the several challenges posed in the discovery of novel antibiotics as their
development is time-consuming and expensive. The cost-benefit ratio is much less favourable
than for other drugs. Subsequently, physicians avoid prescribing new antibiotics to delay
antibiotic resistance and are usually used as "last resort drugs" when traditional medicines
failed to do their work. Hence, these industries shift their focus on developing profitable long-
term treatments for chronic infections. These limitations have been addressed progressively
with the employment of various ML techniques that discover newer antibiotics and potential
lead compounds which makes their identification less laborious and cost-effective. For
instance, Stokes et al. [44] implemented deep neural networks to identify eight novel broad-
spectrum antibiotic molecules. These identified molecules were structurally distinct from all
known antibiotics. In this study, more than 107 million molecules from the ZINC15 database
were assembled to build a training dataset of 2335 molecules for the prediction of potential
molecules showing the inhibitory action on Escherichia coli. The researchers were able to find
out the potential candidates who met a predetermined threshold score and various other
exclusion criteria [Fig. 4]. The study successfully identified “halicin” as a potent growth
inhibitor of E. coli and efficient against other bacterial infections in animal models. In recent
years, most of the studies employed ML algorithms to identify novel antimicrobial peptide
(AMP) drugs [45]. These AMPs are the class of small peptides that can directly kill pathogenic
microbes as well as can indirectly modulate the host defence system [46]. In a study conducted
by Capecchi et al. [47], deep neural networks and supervised learning algorithms were utilized

to generate a classifier model to predict non-haemolytic AMPs for Methicillin Resistant
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Staphylococcus Aureus (MRSA), P. aeruginosa, and A. baumannii. The training and testing
dataset were assembled from 4774 peptides found in “DBAASP” (Database of Antimicrobial
Activity and Structure of Peptides) [Some other databases are discussed in Table 3]. The study
showed promising results by identifying eight non-haemolytic AMPs that met a predetermined
threshold value of minimum inhibitory concentration (MIC). Moreover, Boone et al. [48]
successfully employed supervised ML and a codon-based genetic algorithm to identify an
active AMP against S. epidermidis, a normal commensal found on skin. Several studies have
been implementing ML to find a treatment for COVID-19 [49]. Kowalewski and Ray [50]
developed models for the prediction of potential drugs against 65 target human proteins,
including the ACE-2 receptor by employing supervised ML algorithms. The researchers
gathered 14 million compounds from the ZINC database and applied ML models for the
prediction of certain features like binding affinity and toxicity to classify molecules and
identify compounds with similar chemical space [Fig. 5]. Altogether, a thorough investigation
of literature reviews briefs us about the application of ML for AMPs design. With sufficient
prior information about known AMPs, ML can be applied to discover novel AMPs by which
the development of novel antibiotics would become cost-effective and time-efficient while

achieving more efficacy than conventional methods.

[ Hydrophobicity ]

[ Binding Energy Charge ]

[ Penetration capability ]‘7 Feature Selecti ) >{ Lipophilicity ]

[ Flexibility Isoelectric Point ]

[ Experimental MIC values ]

Fig. 5: Combinations of certain features are selected for the novel and/or effective
antibiotics/ AMPs determination.
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5.2 Methodology

Machine Learning algorithms depend upon the quality and quantity of dataset. For AMPs
design, this in-silico approach can be utilized to screen candidates that show antimicrobial
activities based on certain pre-defined selected features. The overview of the workflow is

provided in fig. which involves the following steps:

Data
Preprocessing /

v
Removal of
/ Redundant 4
/ Seq. Using /
/ CD-HIT

v 7
Feature /
selection & ,./

/ Data splitting ~ /
/ for training  /

£

v
. 3 L
R \\ ' /
. Accuracy & Matthews . / Model /

Correlation Coefficient / Evaluation 4

Fig. 6: Workflow of Methodology conducted in the study.
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5.2.1 Prerequisites

For building and comparing various ML models for the prediction of amino acid
composition in short AMPs, a web-based workspace called “Google colab” [51] was
used. It allows and executes Python [52] in a browser with comprehensive
configurations and free of charge access to GPUs. It contains Jupyter [53] notebook

which is a prerequisite for writing and executing relevant codes in Python.

5.2.2 AMPs Dataset Preparation

The dataset for short AMPs was filtered from AmPEP database, which includes peptide
sequences having only 5-30 amino acids in length [Fig. 7]. The dataset consists of 1529

positive and 1529 negative AMPs in Fasta format.

Short Anti-Microbial Peptides

Deep-AmPEP30 |~ X

= (e L2

VWNPFAA Bacteria
Inhibition assay

Data is filtered from our AmPEP dataset, include sequences only with 5-30 AA in length. This dataset is used for constructing the Deep-AmPEP30 and RF-
AmMPEP30 prediction models. An independent dataset was constructed as benchmark to compare model performances with other existing methods.

Fig. 7: Dataset for Short AMPs filtered out from AmPEP database.
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5.2.3 Removal of Redundant AMPs sequences using CD-HIT

CD-HIT is a common web-based tool that allow to filter out any redundancy in the
peptide sequences meaning that similar peptides are removed and a non-redundant or a
unique subset of peptides is obtained for better results in the ML model [54] [Fig. 8].
After executing CD-HIT in the dataset, 108 redundant or similar peptide sequences

were removed. The non-redundant dataset contained 1421 unique short AMPs.

- Remove redundant sequences using CD-HIT

[ ] ! cd-hit -i train_po.fasta -o train_po_cdhit.txt -c 0.99
{ ] ! cd-hit -i train_ne.fasta -o train_ne_cdhit.txt -c 0.99
1 tls -1

([ ] t grep ">" train_po_cdhit.txt | wc =1

[ 1 ! grep ">" train_po.fasta | we -1

[ ] ! grep ">" train_ne.fasta | wc -1

[ 1 ! grep ">" train_ne_cdhit.txt | wec -1

Fig.8: The above Python codes was used to filter redundant sequences in the dataset
using CD-HIT.

5.2.4 Feature Selection using Pfeature

Pfeature is a web-based server that uses an amino acid sequence to compute a variety
of protein and peptide properties [55] [Fig. 9]. It is useful in annotating certain features

to a peptide/protein sequence [Fig. 10,11].
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Feature claass

Description

Function

AAC Amino acid composition aac_wp
DPC Dipeptide composition dpc_wp
TPC Tripeptide composition tpc_wp
ABC Atom and bond composition atc_wp, btc_wp
PCP Physico-chemical properties pPCcp_wp
AAI Amino acid index composition aai_wp
RRI Repetitive Residue Information ri_wp
DDR Distance distribution of residues ddr_wp
PRI Physico-chemical properties repeat composition pri_wp
SEP Shannon entropy sep_wp
SER Shannon entropy of residue level ser_wp
SPC Shannon entropy of physicochemical property spc_wp
ACR Autocorrelation acr_wp
CTC Conjoint Triad Calculation ctc_wp
CcTD Composition enhanced transition distribution ctd_wp
PAAC Pseudo amino acid composition paac_wp
APAAC Amphiphilic pseudo amino acid composition apaac_wp
QsO Quasi sequence order qos_wp
SOC Sequence order coupling soc_wp

Fig.9: A total of 19 composition-based feature classes provided by Pfeature. However,
in this study only feature i.e., amino acid composition has been used to build ML model.

[19) import pandas as pd

9 # Amino acid composition (AAC)
from Pfeature.pfeature import aac_wp

def aac(input):
a = input.rstrip(’'txt’)
output = a + 'aac.csv’
df_out = aac_wp(input, output)
df_in = pd.read_csv(output)
return df_in

aac( 'train_po_cdhit.txt')

Fig.10: Python codes for applying a certain feature i.e., amino acid composition
(aac_wp) from Pfeature in the dataset. aac_wp stands for amino acid composition of
whole protein/peptide.
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MCA MCC AMD MCE MCT ACG MCH ACT MCK AL MCX MCK MCP ANQ MCR MCS ACT MCY MCK MCY  class

0 2077 000 909 000 509 905 000 000 0CO 000 000 ¥ 96 000 000 000 000 1618
1000 545 000 909 000 000 00O 000 000 000 0C0 000 000 000 000 1818 1818 000
2 000 000 909 1816 909 909 09 000 0C0 909 09 000 1818 000 000 000 000 909
3000 000 000 1816 909 905 SO 000 000 909 909 909 1618 000 000 000 000 909
4 000 000 909 1818 1818 909 000 000 000 909 909 909 1818 000 000 000 000 000
W7 1338 000 333 333 000 1333 000 338 2667 1000 33 33 31 3} 000 000 33 000
We 667 000 000 3% 667 2000 333 33 1333 1338 333 000 333 1000 000 667 33 8
W9 667 2000 000 33 000 1000 000 667 1000 3N 000 W 667 000 000 667 667 1000
W20 667 000 33 333 667 000 33 33 33 647 33 1667 33 667 1000 667 000 13
W2 000 2000 667 667 000 667 667 667 662 1000 1000 000 667 000 338 3/ 00 I

00
00
00
00
00
100
00
00
00
00

509 postive
000 posiive
000 postive
000 posthve
000 postive
000 negetive
000 negative
667 negathe
33 negelive
333 negatie

Fig.11: Data matrix showing results obtained after applying feature selection.

5.2.5 Building ML Model

The dataset was then split into training and testing dataset in 80:20 ratio. Three Python
libraries (lazypredict, sklearn, matplotlib) were installed[Fig. 12]. Lazy Predict allows
you to easily construct ML models at scale, choose the best suitable mode without
writing a code from scratch, and determine which models perform better without having
to tweak any parameters [56]. Sklearn is a free ML building software and library for

Python [57]. Matplotlib is a graph-plotting library for Python for visualization [58].

purposes.

o # Import libraries

Ei

import lazypredict

from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train test_split
from sklearn.metrics import matthews_corrcoef

# Load dataset
X = feature.drop('class', axis=l)
y = feature[ ‘class'].copy()

# Data split
X_train, X_test, y train, y test = train_test_split(X, y, test_size=(.2, random state =42, stratify=y)

# Defines and builds the lazyclassifier

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=matthews_corrcoef)
models_train,predictions_train = clX.fit(X_train, X_train, y_train, y_train)
models_test,predictions_test = clf.fit(X_train, X_test, y_train, y_test)

100+ | N | 29/29 (00:07<00:00, 3.84it/s)
100 | | 29729 (00:00<00:00, 7963.52it/s)

Fig.12: Python code for building 29 ML models. The dataset was split into training and

testing dataset in the ratio 80:20.
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5.2.6 Plotting ML Performance

ML models’ performance was evaluated on the basis of three parameters: Accuracy,
Matthew’s correlation coefficient (MCC) and time taken for the prediction [Fig. 13].
MCC seems to be a more valid and reliable rate that yields a high score only if the
prediction performed well in all 4 confusion matrix classes, proportionately to both the
size of positive and negative values in the data set [59]. It has a range of +1 to -1, with

+1 representing the highest correlation among expected and actual values.

° # Prints the model performance (Training set)
models_train

[ ) # Prints the model performance (Test selL)
models_test

[ ] # Plot of Accuracy
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(5, 10))

sns.set_theme(style="whitegrid")

ax = sns.barplot(y=models test.index, x="Accuracy’, data=models test)
ax.set(xlim=(0, 1))

+ Code + Text

[ ) # Plot of MCC
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(5, 10))

sns.set_theme(style="whitegrid")
ax = sns.barplot(y=models test.index, x="matthews corrcoef”, data=models test)
ax.set(xlim=(0, 1)) bt

.
-~

Fig.13: Python code for plotting ML model performance for training and testing dataset.
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Chapter 6

Results and Discussion

Initially, the dataset contained 1529 short AMPs sequences which was then reduced to 1421
unique sequences by using CD-HIT software. It is observed through table that DT algorithms
perform better than rest of the ML model applied [Table 4]. The time taken by DT classifier is

0.07 sec. and it has a MCC of 0.86 that is close to +1 which indicated a strong model

performance [Fig. 15,16].

Model Accuracy Matfhesss Time Taken
corrcoeff.

RandomForestClassifier 0.93 0.86 0.59
LabelSpreading 0.93 0.86 0.68
LabelProgression 0.93 0.86 0.58
DecisionTreeClassifier 0.93 0.86 0.07
ExtraTreeClassifier 0.93 0.86 0.05
ExtraTreesClassifier 0.93 0.84 0.41
LGBMClassifier 0.92 0.84 0.21
BaggingClassifier 0.92 0.83 0.20
MuSVC 0.86 0.72 0.51
SVC 0.82 0.65 0.44
KNeighboursClassifier 0.82 0.64 0.29
XGBClassifier 0.80 0.61 0.22
AdaBoostClassifier 0.76 0.51 0.34
QDC 0.75 0.51 0.08
RidgeClassifier 0.74 0.48 0.08
RidgeClassifierCV 0.74 0.48 0.30
LinearSVC 0.74 0.47 0.31
LDA 0.73 0.47 0.09
LogisticRegression 0.73 0.47 0.09
CalibratedClassifierCV 0.73 0.41 0.09
NearestCentroid 0.72 0.46 0.06
GaussianNB 0.71 0.45 0.06
BernoulliNB 0.7 0.42 0.06
SGDClassifier 0.67 0.33 0.09
Perception 0.65 0.29 0.08
PassiveAggressiveClassifier 0.64 0.30 0.07
DummyClassifier 0.49 -0.01 0.05

Table 4: Performance of various ML algorithms in which DT classifier gave strong

performance.
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RandomForestClassifier
LabelSpreading
LabelPropagation
DecisionTreeClassifier
ExtraTreeClassifier
ExtraTreesClassifier
LGBMClassifier
BaggingClassifier
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KNeighborsClassifier
CQuadraticDisciminantAnalysis
RedgeCiassifier
RidgeClassifierCV
LnearSvC
LinearDiscriminantAnalysis
NearestCentroid

Model

7Fig. 14: Comparison of various ML algorithms vs their respective accuracy scores.
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6.1 Discussion

Alternative therapies for infectious diseases, such as AMPs and antibiotic combinations, are
being developed to address the AMR problem. Despite some success with Al technologies for
AMPs, there are still many challenges to resolve [60]. First, because collecting AMPs and
antibiotic combination data is quick and inexpensive with the progression of experimental
techniques, substantial and accurate databases with combined higher data quality and recurring
updates are possible, which can improve the predictive accuracy of AMPs models [60].
Secondly, current ML-based AMP prediction models employ binary classification approaches,
which could only determine whether or not AMPs are active, but not how active they are [60].
Lastly, despite the fact that doses, antibiotic characteristics, and infections all influence
antibiotic combinations, existing ML-based algorithms only consider one of these issues,
resulting in reduced prediction performance [60]. However, advances in ML and AL
technologies can alleviate these issues if a large amount of high-quality data is available to

validate the efficacy of the AMP design.
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Conclusion

The application of ML to AMR is in its early phases, however due to the increasing availability
of genetic information, the most immediate applications of ML to AMR are expected to be
laboratory-based, such as AST phenotypic prediction. Despite the obvious benefits of ML in
improving overall laboratory productivity and optimising diagnostic procedures, integration
into everyday practise remains difficult due to concerns about model interpretability and data
quality. There is a need to improve laboratory personnel' understanding of the broader ML
ecosystem. It is critical to understand that ML will not work immediately, but as a critical
supporting tool. Finally, ML has significantly improved AMR identification, antibiotic
development, and discovery procedures by minimizing resources, time, and effort as compared

to traditional methods.

Future Scope of Research

Despite obtaining great success in combating antibiotic resistance using ML approaches, it has
certain inevitable flaws. Inefficient data is one of the core issues that must be solved. The
success of these strategies is dependent on the complete quality of the databases containing
vast clinical data that has been put into the ML models for training [60]. Lack of uniform
standardisation and intermittent data updates in AMR databases prevent ML models from
training efficiently in the above-mentioned AMR prediction and classification scenarios. As a
result, several ML models performed poorly. These databases should be carefully curated in
order to obtain reliable information on the genotype-phenotype relationships of microbial
species, as inaccuracies in the training dataset will result in faulty ML models. The majority of
AMR-prediction methods are binary classifiers, which can only predict whether AMPs are
active against a certain bacterium. There appears to be no information in those studies about

the level of their antibacterial action. Furthermore, a lack of interpretability results from the
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"black box" approach of ML algorithms, which extracts crucial information in a way that makes
data interpretation difficult for analysts and researchers. To make things easier for doctors and
lab professionals, the interface of ML algorithms and models should be constructed in such a
way that they can grasp the mechanism and its output. The open sourcing of high-quality
machine learning algorithms and models can lead to faster adoption. Furthermore, laboratory
professionals can conduct scientific research freely and without supervision. Furthermore,
some research based on AMR diagnosis did not provide the validation of the ML models,
implying that the dataset (which was not included in the training) was not used to test the
efficiency of ML models. This "external" validation verifies that the model is not impacted by
other biological processes. Furthermore, validation in studies verifies that the projected results
are meaningful and that they can be implemented in the clinical situation. To do this, diagnostic
methods such as MALDI-TOF and Raman spectroscopy should be standardised across such
clinical labs and associated locally constructed ML models should be adapted to datasets from
other geographical locations, particularly those in low and middle-income nations. Data
privacy and adaptation are two more basic concerns when deploying ML in clinical contexts.
The first concern is the exchange of sensitive information between researchers and medical
personnel. The developers have the ability to falsify the data in order to mislead ML models
for the benefit of studies, which raises ethical questions about patient data confidentiality,
autonomy, and informed permission. The latter concern is that laboratory experts who will be
dealing with ML models in the future must embrace this growing and revolutionary technology
and be actively involved in its development and application. Otherwise, without their
involvement, the developers or owners may distort the outcomes in order to benefit their
research. In conclusion, Al has been a huge boost in the detection of AMR and new antibiotics
because to the tremendous reduction in time and effort required in compared to traditional

methodologies.
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Abstract— Antimicrobial resistance (AMR) is a concern to
public health, prompting the development of novel strategies for
combating AMR. While the use of machine learning (ML) to
AMR is in its infancy, it has made significant progress as a
diagnosis tool, owing to the growing availability of
phenotypic/genotypic datasets and much faster computational
power. While applying ML in AMR research is viable, its use is
limited. It has been used to predict antimicrobial susceptibility
genotypes/phenotypes, discover novel antibiotics, and improve
diagnosis when combined with spectroscopic and microscopy
methods. ML implementation in healthcare settings has
challenges to adoption due to concerns about model
interpretability and data integrity. The focus of this review is to
outline the significant benefits and drawbacks along with the
salient trends reported in recent studies.

Keywords— antibiotics, antimicrobial resistance, artificial
intelligence, COVID-19, deep learning, halicin, machine learning.

I INTRODUCTION

AMR has emerged as a major public health hazard in the 21st
century. It is increasing globally and is related to increased
morbidity and mortality in hospital and community settings
[1]. The expansion of antibiotic resistance to new
environmental niches, as well as the emergence of superbugs,
has challenged effective control methods. For a successful
outcome, early and accurate diagnosis of the illness and its
drug resistance profile is crucial. Over the years, some
alternatives to standard antibiotic treatment have been
presented to avoid the problem of bacterial resistance. Among
these, the use of artificial intelligence (Al), particularly ML,
has been widely used in the medicinal chemistry field due to
its high capacity for processing data from multiple sources as
well as the development of new methods and algorithms for
predicting experimental data. ML is an Al subset that gives a
computer the ability to predict events using a learned model
and a vast amount of experimental data, often known as
training data. ML can aid in the identification and design of
novel antibacterial drugs by generating models based on
empirical knowledge accessible in compound databases.
Furthermore, ML approaches can be utilized to examine the
pharmacokinetics and toxicity features of potential antibiotics
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to improve their efficacy [2]. Any technique that employs ML
models necessitates sufficient input data to create a 'training
set' for guiding the ML model and a 'testing set' for evaluating
the model's performance. An important consideration in the
study of AMR is the availability of data sets including correct
genotypic information connected to carefully selected samples
of the AMR gene. For this reason, pre-processing of genotypic
data is required before they can be used as input for ML
models. This procedure is called "feature selection" in the ML
terminology. The studies took one of two approaches to this
problem: using gene annotations as "features" or using k-mers
(short DNA strings are constructed by combining individual
nucleotides). Most of the algorithms discussed here used
supervised ML, where the algorithm is trained on data with
labels to construct a learned model. Hence, these algorithms
could analyze test data and execute self-annotation using their
label. Generally, they are employed for classification and
regression-based analysis. Linear Regression, Logistic
Regression, K-Nearest Neighbors (KNN), Support Vector
Machines (SVMs), Decision Trees (DTs), and Random
Forests (RFs) are some of the most used supervised
algorithms. While some studies have employed unsupervised
learning and deep learning algorithms. Unsupervised learning
makes use of unlabeled training data. To put it differently,
observations are classified without information of the data
sample. Clustering can be performed using unsupervised
techniques like hierarchical cluster analysis and principal
component analysis (PCA). Other Al approach such as deep
learning, is based on how the biological neural systems
interpret information and is becoming increasingly popular.
Artificial Neural Networks (ANNs) are constituted of an input
layer of 'meurons,' which is interconnected to one or more
hidden layers of neurons, which are then linked to an output
layer [3]. This review will not delve into detailed discussions
on these algorithms. However, this review article will present
an up-to-date summary of recent advances in antimicrobial
resistance research utilizing the current machine-learning
techniques.
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II.  APPLICATIONS OF ML TECHNIQUES IN ANTIMICROBIAL
RESISTANCE

A.  Antibiotics/Anti-microbial peptides Discovery

Despite the clear need for more antibiotics, very few
antibiotics have been available in the market. The last entire
class of antibiotics was discovered in the late 1980s. Many
pharmaceutical companies have gradually shied away from
antibiotic research and development due to the several
challenges posed in the discovery of novel antibiotics as their
development is time-consuming and expensive. The cost-
benefit ratio is much less favourable than for other drugs.
Subsequently, physicians avoid prescribing new antibiotics to
delay antibiotic resistance and are usually used as "last resort
drugs" when traditional medicines failed to do their work.
Hence, these industries shift their focus on developing
profitable long-term treatments for chronic infections. These
limitations have been addressed progressively with the
employment of various ML techniques that discover newer
antibiotics and potential lead compounds which makes their
identification less laborious and cost-effective. For instance,
Stokes et al. [4] implemented deep neural networks to identify
eight novel broad-spectrum antibiotic molecules. These
identified molecules were structurally distinct from all known
antibiotics. In this study, more than 107 million molecules
from the ZINC15 database were assembled to build a training
dataset of 2335 molecules for the prediction of potential
molecules showing the inhibitory action on Escherichia coli.
The researchers were able to find out the potential candidates
who met a predetermined threshold score and various other
exclusion criteria [Fig. 1]. The study successfully identified
“halicin” as a potent growth inhibitor of E. coli and efficient
against other bacterial infections in animal models. In recent
years, most of the studies employed ML algorithms to identify
novel antimicrobial peptide (AMP) drugs [5]. These AMPs are
the class of small peptides that can directly kill pathogenic
microbes as well as can indirectly modulate the host defence
system [6]. In a study conducted by Capecchi et al. [7], deep
neural networks and supervised learning algorithms were
utilized to generate a classifier model to predict non-
haemolytic AMPs for Methicillin Resistant Staphylococcus
Aureus (MRSA), P. aeruginosa, and A. baumannii. The
training and testing dataset were assembled from 4774
peptides found in “DBAASP” (Database of Antimicrobial
Activity and Structure of Peptides) [Some other databases are
discussed in Table 1]. The study showed promising results by
identifying eight non-haemolytic AMPs that met a
predetermined threshold value of minimum inhibitory
concentration (MIC). Moreover, Boone et al. [8] successfully
employed supervised ML and a codon-based genetic algorithm
to identify an active AMP against S. epidermidis, a normal
commensal found mainly on skin. Several studies have been
implementing ML to find a possible treatment for COVID-19
[9]. Kowalewski and Ray [10] developed models for the
prediction of potential drugs against 65 target human proteins,
including the ACE-2 receptor by employing supervised ML
algorithms. The researchers gathered 14 million compounds

from the ZINC database and applied ML models for the
prediction of certain features like binding affinity and toxicity
to classify molecules and identify compounds with similar
chemical space [Fig. 2]. Altogether, with sufficient prior
information about known AMPs, ML can be applied to
discover novel AMPs by which the development of novel
antibiotics would become cost-effective and time-efficient
while achieving more efficacy than conventional methods.

Ierative Model Re-training

Tring Dt T N
(AnbiticMolsale) > Algorih > ModelValidtion

V4
v ‘ Lo letfcation EeraalValdton
——>  Predited Chenicals | | ———  Phenotype Screning nd — and

Chemical Libraries ‘ ‘ Optimisation Clinical Trials
(ZINCIS, DBAASP)

Fig. 1. Overview of the workflow of antibiotic/antimicrobial peptides
discovery by using machine learning and deep learning algorithm. The
researchers first constructed a training dataset of compounds capable of
inhibiting the growth of common bacterial species such as E. coli. They
improved their model by specifying phenotypic and genotypic features,
adjusting hyperparameters, and assembling the ML model, which resulted in
the final machine learning or deep learning algorithm via iterative model re-
training. In comparison to the traditional approach, this in-silico approach
enabled the researchers to systematically scan over a 100 million compounds,
many of which had molecular structures that differed from known antibiotics.
The number of screened compounds is approximately 100 times more than the
typical approach, which is more inexpensive at this scale.

TABLE 1. AI-BASED AMP DATABASES

Database Tzl};)roifhhr/r[lL Description
INDIGO
(ITri?larcltgical;ug Sll?:rr:iilsed Exploits chemogenomic data of model
: & organisms for the prediction of
using chemo- (Random P S
Genomics and Forest) antibiotic combinations
Orthology)
Semi-
CAMP supervised
(Collection of learning Detailed information on 8164 AMR
Anti-Microbial (Hidden sequences with 752 AMR 3-D structure
Peptides) Markov
Model)
YADAMP
(Yet Another Supervised Contain comprehensive information on
Database of lfarnin 2525 AMPs against common bacterial
Anti-Microbial & species
Peptides)
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Fig. 2. Combinations of certain features are selected for the novel and/or
effective antibiotics/ AMPs determination.

B.  Assist in Diagnosis

When designing a new AST (Antibiotic Susceptibility
Testing) method, several nonautomated procedures are
considered gold standards for comparative reasons. These
methods include agar dilution, broth microdilution, disc
diffusion, and the E-test. While these tests are cost-effective,
they must be carried out manually and take roughly 18-24
hours to complete. Although these are not considered quick
AST techniques, they provide valid MIC values. Scientific
research over the last few years has not only resulted in the
development of novel AST platforms but also improve
existing platforms. The integration of ML algorithms has
resulted in a significant progression of AST approaches [Fig.
3]

MALDI- TOF MS has proven to be a fast, inexpensive,
and accurate tool that is being used in the identification of
antibiotic-resistant microorganisms by generating
characteristic mass spectral fingerprints which are unique to
microbes at genus and species level, which are then compared
with a reference library database comprising of well-
identified organisms for each isolate [11]. Unlike,
conventional methods MALDI-TOF offers species-level
identification with reduced turn-around time and far more
accurate results. Recently, ML algorithms have been
employed in the optimization of MALDI- TOF to enhance
species identification which can reveal unknown or novel
information hidden in the mass spectra and, in antibiotic
resistance profiling of closely related bacterial species [12].
However, there is an increased interest in utilizing MALDI-
TOF for AST. Data retrieved from traditional methods may
serve as user input for ML algorithms. Huang et al. [13]
evaluated five ML algorithms (RF, logistic regression, naive
Bayes, NN, and SVM) to check their antibiotic susceptibility
of Klebsiella pneumoniae against carbapenem. A total of 100
spectra peaks from 46 carbapenem-resistant K. pneumoniae
and 50 carbapenem-susceptible K. pneumoniae isolates were
used as the training dataset for their classification. RF
algorithm surpasses the other algorithms achieving an overall
classification accuracy of 97%. Mather et al. [14] successfully

employed a supervised ML algorithm to differentiate
vancomycin-intermediate Staphylococcus aureus (VISA) and
heterogeneous VISA (hVISA) from vancomycin-susceptible S.
aureus (VSSA) achieving overall classification accuracy of
89%. Sogawa and colleagues [15] tested a prediction model
using a supervised ML algorithm to classify 50 isolates of
both Methicillin-susceptible S. aureus (MSSA) and MRSA.
The accuracy rates were 90% and 87.5% respectively. This
study has proposed rapid detection from one colony in 5
minutes, however, the accuracy rate was not 100% which is
crucial for clinical diagnosis. Wang et al. [16] included 787
Group-B streptococci (GBS) isolates in their analysis where
they have used supervised ML to build models for the
prediction of 5 different serotypes achieving up to 87.5 %
accuracy while other studies [13,14,15] included less than or
equal to 50 isolates only which is quite a small sample size for
ML models that require larger sample size to feed. Although
most of the studies showed good results, lack of external
validation and poor reproducibility dampen progress towards
this approach.

Raman spectroscopy analyses biochemical composition by
using multichromatic emitters in the
ultraviolet/infrared/visible spectrum. Raman scattering can be
used to measure small quantities of material, such as single
bacterial cells, and has several microbiological applications.
Laser light can be used to investigate the physicochemical
characteristics of the probed sample. Molecular bonds then
inelastically scatter the photons which are analyzed by
spectrophotometer and a Raman spectrum is plotted to depict
the intensity of the inelastic scattering [17]. These Raman
spectra and their associated information can be utilized for the
identification of bacteria and for other microbial diagnoses by
analyzing through multivariate statistics and ML algorithms.
Finally, these class-specific Raman spectral models, after
iterations by ML algorithms, can be utilized to distinguish
bacterial classes of interest [17]. Ullah et al. [18] employed
unsupervised ML techniques to classify 60 tuberculosis (TB)
serum samples (30- TB positive and 30- TB negative) based
on the variation in biochemical concentration. The findings
indicate a significant difference in Raman spectra in both TB
positive and TB negative groups as well as in the control
group too. Similarly, Moawad et al. [19] developed an SVM
model in combination with PCA to identify Burkholderia
mallei and related species. The optimized model identification
accuracy reached above 90%. However, the model's reliability
was limited due to the occurrence of misclassification of B.
thailandensis with B. mallei. For which, the authors suggested
that this misclassification occurred due to the less
representation of B. thailandensis samples in the training
dataset. Rebrosova et al. [20] successfully identified 277
staphylococci strains from 16 species by utilizing Raman
spectroscopy with supervised ML algorithms showing better
results achieving an accuracy of 99%. Meanwhile, Ho et al.
[21] implemented a deep learning technique known as
convolutional neural network (CNN), along with logistic
regression for the rapid classification of (n=30) bacterial
isolates, for antibiotic resistance and empirical treatment. For
(n=30) bacterial species classification, the CNN classifier
comprised of 25 1-D convolutional layers along with some
residual connections which achieved an average isolate-level
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accuracy of 82%. However, most of the misclassifications
occurred at the genus level. Moreover, a binary CNN classifier
was built to classify MRSA and MSSA which achieved an
accuracy of 89%, and another CNN model categorized known
bacterial isolates into several groups based on the common
empirical antibiotic treatment that achieved an accuracy of
97%. Additionally, Yi et al. [22] devised a rapid AST based
on Raman scattering, which detects an activity and stability of
certain metabolites in the presence of antibiotics via single-
cell Raman spectroscopy (SCRS). SCRS works by detecting
the biomolecules' vibrations within a cell/bacterium, hence
determining their biochemical attributes or phenotype. In this
study, FRAST was applied to (n=8) bacterial species,
consisting of 4 Gram-positive and 4 Gram-negative bacterial
species along with ML algorithms to train a model to classify
training dataset which achieved sensitivities of 98.8% for
Gram-positive bacteria and 94.3% for Gram-negative bacteria
at the unicellular level. The model only took less than 30
minutes for the results. The model was then validated using
(n=6) bacterial isolates consisting of 3 Gram-positive and 3
Gram-negative bacterial species, which achieved an overall
sensitivity of over 90%, which was then confirmed by 16S
rRNA sequencing. However, the current limitations of
implementing Raman spectroscopy in clinical labs are that
first, they generate huge amount of data shortly, which could
be surpassed by employing ML techniques. Second, training
datasets consisting of a small sample size result in lower
accuracy by the learning model that might be resolved by
feeding the training model with large datasets encompassing
varieties of antibiotic-susceptible and resistant bacteria.
Finally, the improper optimization of training data and lack of
external validation of the analysis results in misclassifications
amongst similar bacterial species.

Several other diagnostic tools with the help of ML
algorithms have been employed to improve accuracy and
turnaround time in AST. For instance, Inglis et al. [23]
implemented AST with the flow cytometry method (FAST).
The method utilized a decision tree algorithm to deliver the
results within 3 hr. Based on a multivariate analysis of
microcolony images, Maeda et al. [24] employed a novel
technology known as "colony fingerprinting" to distinguish
five Staphylococcus species. The method used supervised ML
and deep learning algorithms which showed high performance
and generated the results within 11 hr. Moreover, Smith et al.
[25] developed an AST platform, based on microscopy
(MAST) which used deep neural networks for classification
and could determine the AST after incubation of 2 hr. Further,
Lechowicz et al. [26] used the combination of deep neural
networks and infrared spectroscopy to classify 109
uropathogenic E. coli strains against cephalothin. The method
generated quick results within 30 min. which are much faster
than conventional AST methods (24 hr.).
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Fig. 3. Overview of the workflow for antibiotic resistant genes prediction and
AMR species identification using machine learning and deep neural networks.

C. AMR Genes Prediction

The most common way of developing antibiotic resistance
is the transfer of antibiotic resistance genes (ARG) among the
bacterial species. Current methods are incapable which rely on
inefficient phenotypic data. Therefore, it becomes an
important step to predict these ARGs accurately for a better
understanding of their transmission from the environment.
Most bioinformatics tools have been based on either
assembly-based methods or read-based methods to identify or
annotate resistance genes [Table 2] With ever-increasing
genomic data, ML models have been built to learn the
statistical patterns of ARGs and may potentially identify novel
ones as they detect certain features rather than using sequence
similarity [Fig. 3]. Some ML methods have reported models to
identify novel ARGs from pan-genome and metagenomic data
[27,28]. Although the results were satisfactory, these models
used limited features and did not include any feature selection
method to remove redundant data. Subsequently, Li et al. [29]
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developed HMD-ARG (Hierarchical Multi-task Deep learning
framework for prediction of the ARG) coupled with deep
neural networks. The framework provides detailed information
on annotated ARGs based on their biochemical properties and
covers three significant aspects: resistance class, gene
mobility, and mechanism. In another study, Chowdhury et al.
[30] proposed a model called PARGT (Prediction of
Antimicrobial Resistance via Game Theory), which can
identify ARGs from bacterial species. The model utilized the
supervised ML algorithm. These two methods [29,30]
validated their results for feature selection. However, in the
future, these methodologies should be made compatible with
current sequencing technologies, which work on short reads
like nanopore sequencing rather than on assembled sequences.

TABLE II. AI- BASED AMR PREDICTION TOOLS

Type of Al -
Tool method Description
; Predict ceftazidime
ABCRpred supervised ML, resistance/susceptibility of beta-
(Random Forest) 1 .
actamase protein sequence
Supervised ML Predict antibiotic resistance against
GenTB
(Random Forest) Mycobacterium tuberculosis
VAMPr Supervised ML Utilize next-generation sequencing data
(Decision Tree) to determine antibiotic resistance
Deep learning - ; :
Diecphlt® || Chrtiticial Nougal Utilize metagenomic data to characterize
ARG
Networks)

III. CHALLENGES AND OPPORTUNITIES

Despite achieving remarkable results in applying ML
techniques to combat antibiotic resistance, it has some
unavoidable shortcomings. One of the fundamental challenges
that should get addressed is inefficient data. The success of
these techniques relies on the comprehensive quality of the
databases with extensive clinical data that has been fed to train
the ML models. Lack of universal standardization and
sporadic data updates in AMR databases restrict ML models
from training efficiently in the scenarios of AMR prediction
and classification outlined above. Therefore, some ML models
gave a below-par performance. These databases should be
aptly curated to ascertain accurate information on the
genotype-phenotype of microbial species, as errors in the
training dataset will cause inaccurate ML models. Most AMR-
predictive models are binary classifiers that can only predict
whether AMPs are active against a specific microbe. There
seems to be no information about the extent of their
antimicrobial activity in those studies. In addition, a lack of
interpretability arises from the "black box" approach of ML
algorithms extract necessary information in such a way that
makes the data interpretation difficult for the analysts and
researchers. To make things easier for clinicians and lab
workers, the interface of ML algorithms and models should
get designed in such a user-friendly manner so that it would be
easier for them to understand the mechanism and its output.
Open sourcing of high-quality ML algorithms and models can
result in faster adoption. In addition, laboratory professionals

can independently perform scientific research without any
intervention. Also, some studies based on the diagnosis of
AMR did not report the validation of the ML models, which
means that the dataset (not included in the training) was not
adequately employed to test the efficiency of ML models. This
"external" validation ensures that the model is unbiased and
not influenced by other biological factors. Further, validation
in studies ensures the predicted results are significant and can
be applied to the clinical setting. To achieve this, diagnostic
tools like MALDI-TOF and Raman spectroscopy should get
standardized across such clinical labs and, associated locally
designed ML models should get generalized to the dataset of
other geographical regions, especially in low and middle-
income countries. Other general challenges concern while
implementing ML in clinical settings are data privacy and
adaptability. The former issue involves the sharing of sensitive
information between the researchers and health care
personnel. The developers can manipulate the data to mislead
ML models for the benefit of studies, which in fact, raises
ethical concerns regarding patient data confidentiality,
autonomy, and informed consent. The latter issue revolves
around laboratory professionals who eventually deal with ML
models in the future are needed to embrace this emerging and
revolutionary technology and should be actively involved in
the development and implementation. Otherwise, without their
cooperation, the developers or the owners may misinterpret
the results to favor their study. In conclusion, due to the
significant reduction in time and effort required in comparison
to previous methods, Al has been an enormous help in the
identification of AMR and novel antibiotics.

IV. CONCLUSION

The use of ML to tackle AMR is in its initial stages, but
due to the growing availability of genetic datasets, the most
imminent applications of ML to AMR are expected to be
laboratory-based, such as AST phenotypic prediction. Despite
the obvious advantages of ML to improve the overall
productivity of laboratory process and optimize diagnostic
methods, application into everyday practice remains
challenging due to concerns regarding model interpretability
and data quality. There is a need to enhance knowledge among
laboratory professionals about the wide ML ecosystem. It is
important to understand that ML will not operate promptly,
but rather will serve as a vital supporting tool. Ultimately, ML
has considerably improved AMR identification, antibiotic
development, and discovery procedures by significantly
reducing resources, time, and effort compared to conventional
methods.
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