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Abstract

Mathematical equations are used to model a variety of phenomena in natural sciences
and engineering. Various parameters are included in these mathematical equations.
The solutions of these equations are affected by minor changes in these parame-
ters. This minor alteration is called perturbation and the corresponding parameter
is known as the perturbation parameter.
It is difficult to find the exact solutions of these mathematical equations. Therefore,
the alternative way is to find their approximate solutions. These solutions are ob-
tained by using the approximation techniques. These Perturbation techniques further
pave the way to Perturbation theory.
We begin with perturbation theory in chemical kinetics. With the introduction of
Michaelis-Menten mechanism and steady state approximation the concept of singular
perturbation theory in chemical kinetics is studied. As we move further, we discuss
a weakly coupled system of m-equations and study a highly significant numerical
method i.e. q-stage runge Kutta method.
We then discuss a number of iterative methods to solve initial- and/or boundary-value
problems in ordinary and partial differential equations. As a series of iterates, these
iterative procedures have the solution or a close approximation to it. We present and
evaluate an iterative analytic approach based on the Lagrange multiplier technique
to estimate the multiscale solution.
Iteration is used to achieve closed-form analytic approximations to nonlinear bound-
ary value problems. In a general setting, variational theory and Liouville–Green
transforms are used to obtain the Lagrange multiplier optimally. We have taken
singular peturbed problem to test the method and also compare it with the exact so-
lution. Further, two test partial differential equations problems are taken into account
and the findings of a detailed comparative study are discussed.
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Chapter 1

Introduction

Mathematics is used in almost every aspet of our day to day life. The progress in
applicable mathematics has been brought about by the extension and development of
many important approaches and techniques [1]. Differential equations is a broad and
significant branch of mathematics in today’s world. The topic of calculus has long
been a source of both theoretical and functional science, and it remains so today.

Definition 1.0.1 An equation which involves differentials or differential coefficients
is called a differential equation i.e an equation involving dependent and independent
variable and the derivative of dependent variable w.r.t independent variable

Furthermore, differential equations can be divides into two categories which are again
divided into different subcategories. Most two important subcategories are ordinary
differential equations and partial differential equations.

Definition 1.0.2 Ordinary differential equations are differential equations that in-
clude the ordinary derivatives of one or more dependent variables with respect to a
single independent variable.

Example 1.0.1

2
d2y

dx2
+ xy2

dy

dx
= 0 (1.0.1)

Definition 1.0.3 A partial differential equation is a differential equation that in-
cludes partial derivatives of one or more dependent variables with respect to more
than one independent variable.

Example 1.0.2
δv

δx
− 2

δv

δt
= v2 (1.0.2)

The linear and non-linear differential equations are then separated. When a differen-
tial equation is expressed in the form of a polynomial, the derivatives and dependent
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variable are in the first degree, and the coefficients of the various terms are either
constants or functions of the independent variable, while when a non linear differen-
tial equation is expressed in the form of a polynomial, the derivatives and dependent
variable are in more than degree one, and the coefficients of the various terms are
either constants or functions of the independent variable. .
Now that we’ve classified differential equations in various ways, let’s have a look at
where and how they come from. In this way, we can get a sense of the wide range of
things on which differential equations and its methods can be applied.
In various branches of science and engineering differential equations are used to solve
a number equations we highlight a few of these issues here, which can be easily ex-
panded in filling several pages.

1. Dilemma of evaluating a projectile’s, rocket’s, satellite’s, or planet’s motion.

2. In an electric vehicle, deciding the charge or current is a challenge.

3. The analysis of the radioactive substance’s rate of decomposition or the popu-
lation’s rate of growth.

4. The problem of identifying curves with specific geometrical properties.

Differential equations are formed by the mathematical formulation of such problems.
Ordinary differential equation (ODE) [11] with variable coefficient are used in a wide
range of applications. Euler equation, Bessel equation, Legendre equation, and La-
guerre equation are examples of these equations. The literature has also looked at
many nonlinear ODE which are with variable coefficient, such as Duffing equation,
Thomas-Fermi equation, and Van der Pol equation[11]. Linear and nonlinear ordi-
nary differential equations which are with variable coefficients playing an important
role in applied mathematics, physics, engineering.

Researchers wanted to develop accurate methods to solve a wide range of linear and
nonlinear equations and integral equations without having to make any tangible as-
sumptions or discretize the variables.
The term singular perturbation was coined in the 1940s. The subject and the tech-
niques associated with it have evolved over time in order to find approximate solutions
to complex problems.

Differential equations with at least one small parameter are commonly used to express
such problems. Mathematical problems that make substantial use of small parameter
were probably described first by J.H. Poincare [1].

Mathematical equations are used to model a variety of phenomena in natural sciences
and engineering. Various parameters are included in these mathematical equations.
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The solutions of these equations are affected by minor changes in these parame-
ters. This minor alteration is called perturbation and the corresponding parameter
is known as the perturbation parameter.

It is difficult to find the exact solutions of these mathematical equations. There-
fore, the alternative way is to find their approximate solutions. these solutions are
obtained by using the approximation techniques. These Perturbation techniques fur-
ther pave the way to Perturbation theory.
The fundamental concept of perturbation theory is to approach the solution of a prob-
lem by looking for the solution of its neighbouring problem. The theory examines the
behaviour of solutions locally. This can be done by inserting a small dimensionless
quantity. called the perturbation parameter (ε), into the problem. The approximate
solution of the problem can be then written in formal power series of perturbation
parameter. Hence, perturbation theory measures the effect of small disturbances.
The perturbtion is categorized into two classes, namely, regular perturbation and sin-
gular perturbation.

This classification depends on the effect of such disturbances when the effect is small,
then perturbation is termed as regular and when the effect is large, then perturbation
is termed as singular perturbation.
A precise definition of the regularly and singularly perturbed problem is as follows-

Definition 1.0.4 A problem f(y(x), ε) = 0 is said to be Regular Perturbation Prob-
lem if it depends on the perturbation parameter ε in such a way that its solution yε(x)
converges uniformly to the solution y0(x) of the limiting case (f(y(x), 0)) over the
domain of existence as ε→ 0.

Definition 1.0.5 A problem f(y(x), ε) = 0 is said to be a Singular Perturbation
Problem if it depends on the perturbation parameter ε in such a way that its solution
yε(x) is not uniformly convergent to the solution y0(x) of the limiting case (f(y(x), 0))
as ε→ 0.

In this paper,singular perturbation is used in chemical kinetics and weakely coupled
system which is of convection diffustion equation. The study of the time evolution
of chemical reactions is one of the main problems of chemical kinectics .The [2]. The
effort to simulate chemical processes using simple reactions leads to time multiscaling.

As a result, the activity of various components in such reaction mixture varies greatly,
those product which are appear in the output have a short lifespan and quickly sta-
bilised. One of its example is that the concentrations of active particles such as
radicals, ions, and other ions change rapid and noticable in 10−6sec, whereas changes
in a stable substance take several hours. Despite their short lifetime or rapid stabil-
isation,such type of things gives an important point in the overall process. In most
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cases, it is impossible to distinguish between fast and slow processes, necessitating
continuously time noticing of the total kinetic process in order to grasp the essential
quality of appearence. The scanning of kinetic curves can be done effectively with
the help of mathematical models.
To solve equations such as linear, nonlinear, original, and boundary value problem,
He invented variational iteration method and homotopy perturbation method. While
Inokuti, Sekine, and Mura [12] are credited with inventing the variational iteration
process, He was first to fully realise the technique’s potential. He also recognised
the physical significance of the variational iteration process, as well as its consistency
with physical problems, and applied this promising technique to a wide range of linear
and nonlinear, ordinary, partial, deterministic, and stochastic differential equations
[12]. He also developed homotopy perturbation method by combining two techniques:
regular homotopy and perturbation. Taking full advantage of the standard homotopy
and perturbation methods, homotopy perturbation method was developed. A per-
turbed model is a mathematical model with a minimal number of parameters. An
unperturbed or reduced model is the equivalent degenerate model. From a statistical
standpoint, the model is singularly perturbed if the small parameter influences the
highest-order differential coefficient. The solutions to these equations have a multi-
scale nature. There are narrow areas where the solution switches quickly and has steep
gradients. Using variational iteration method and homotopy perturbation method a
broad range of functional equations have been studied. Thus, solution is given in an
infinite series in these methods, which typically leads to an accurate solution.
We look at two-point boundary value problems that are singularly perturbed

εy′′(t) + p(t)y′(t) + q(t)y(t) = f(t), t ∈ [a, b] (1.0.3)

with boundary conditions
y(a) = γ y(b) = α (1.0.4)

Where γ and α are real constants whereas ε is small positive parameter
(0 < ε ≤ 1). On [a, b], we conclude p(t), q(t), , f(t) are the continuously differentiable
functions. The Fluid mechanics, the chemical reactor theory, the reaction-diffusion
processes, and the geophysics are all examples of two-point boundary value problems
(1.0.3 ,1.0.4) . A small parameter is multiplied to the highest derivative in these
problems. In certain areas, the solution changes instantly, and in others, it changes
slowly. In thin transition boundary or interior layers where solution can shift quickly,
but the solution behave consistently and change very slowly away from the layers.
Singular perturbation problems can be solved using a number of techniques. Our aim
is to introduce He’s variational iteration method as an alternative to existing methods
for solving singularly perturbed two-point boundary value problems [13], and we use
four numerical examples to demonstrate the method.
In chapter 1, we are going to apply steady state approximation in Chemical kinetics.
The steady state approximation, also known as the stationary state approximation,
entails setting the rate of change of a reaction intermediate in a reaction mechanism
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to zero in order to simplify the kinetic equations by making the rate of formation
equal to the rate of destruction.
The overall chemical change is caused by a reaction mechanism, which is a step-by-
step sequence of elementary reactions.
In practise, it suffices if the rates of formation and destruction are nearly equal,
implying that the net rate of variation of the intermediate’s concentration is small
compared to the rates of formation and destruction, and the intermediate’s concen-
tration varies slowly.
If the convective coupling matrix B is diagonal, the system is weakly coupled, and
the system is coupled only through the lower-order reaction terms.
For a class of singularly perturbed weakly coupled systems, we use an efficient asymptotic-
numerical method (q-stage Runge-kutta method, discussed in Chapter 3).
In chapter 4, we have discussed Variational iteration method for solving ordinary
differential equations and partial differential equation.

Key words: Steady state approximation, singular perturbation, convection diffu-
sion equations, q-stage runge kutta method
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Chapter 2

Singular Perturbation Theory in
Chemical Kinetics

2.1 Introduction

The Michaelis-Menten mechanism is given as follows-

A+B → C → A+D (2.1.1)

Here,
A is the enzyme, B represents the substrate, D denotes the product and C is the
intermediate(Enzyme-Substarte Complex)

Enzymes are highly effective catalyst. As a result, we expect that the conversion
of C to enzyme and product is considered to be a faster process than the formation
of the enzyme-substarte complex.

Now, using steady state approximation,

Rate of formation = Rate of disappearance

k1[B][A] = k−1[AB] + k2[AB]

The rates of formation and degradation are nearly the same in steady state.
Here, k1, k−1 and k2 are rate constants. k1 has different units as compared to k−1 and
k2. We need to remove units from the equation, so that we might be able to make a
comparison in the processes taking place in the mechanism.
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2.2 Equations and Results

The mechanism consists of the following rate equations-

dA

dt
= −k1AB + k−1C + k2C

dB

dt
= −k1AB + k−1C

dC

dt
= k1AB − k−1C − k2C

dD

dt
= k2C

Since, the enzymes is unchanges throughout the reaction, we express the total enzyme
concentration as a sum of enzyme-substarte complex.

The follwing two equations are given as a result of mass-conservation-

A0 = A+ C

B0 = B + C +D

These conservation relations are consequences of the differential equations-

dA

dt
+
dC

dt
= k−1C − k1AB + k2C + k1AB − k−1C − k2C

dB

dt
+
dC

dt
+
dD

dt
= k−1C − k−1AB + k1AB − k−1C − k2C + k2C

Both of these equations give zero.
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Therefore, on substitution, we obtain,

dB

dt
= −k1(A0 − C)B + k−1C (2.2.1)

dC

dt
= k1(A0 − C)B − (k−1 + k2)C (2.2.2)

The SSA is based on the idea that the concentrations of highly reactive intermediates
like C eventually reach a rough equilibrium between production and destruction, re-
sulting in a small net rate of change of C.

In order to make this balance evident, we first have to select new measurement scales
for each of the variables(B, C and t) that are all of unit magnitude.

Defining new variables b, c and τ by-

b =
B

B̃
, (2.2.3)

c =
C

C̃
, (2.2.4)

τ =
t

t̃
(2.2.5)

Here, the tilde symbol denotes a measurement scale with the same units as the cor-
responding variable, implying that the new variables obtained are of unit magnitude.

Consider,

B(0) = B0, therefore, B = B0 and (B,C) = (B0, 0).
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C(t) will be maximum when dC
dt

= 0. Therefore, we have,

k1(A0 − C)B − (k−1 + k2)C = 0

k1A0B − k1CB = k−1C + k2C

k1E0S = k−1C + k1CS + k2C

= (k−1 + k1S + k2)C

Or C = k1A0B
k−1+k2+k1B

Before much B has been consumed, we expect the maximum in C to be reached
early in the reaction.

Therefore, substituting B = B0, we get,

C =
k1A0B0

k1B0 + k−1 + k2

=
A0B0

B0 + kB

where kB = k−1+k2
k1

is the Michaelis constant.
Now,

B = bB0

C = cC̃ = c
A0B0

B0 + kB
and, t = τ t̃
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dB

dt
=

d(bB0)

d(τ t̃)
=
B0db

t̃dτ

We know that,

dB

dt
= −k1(A0 − C)B + k−1C

=⇒ B0

t̃

db

dτ
= −k1(A0 − C)B + k−1C

= −k1bB0

{
A0 − c

A0B0

B0 + kB

}
+ k−1

cA0B0

B0 + kB

db

dτ
= t̃

[(
−k1A0b−

cB0

B0 + kB

)
+ k−1

cA0

B0 + kB

]
= t̃

[
−k1A0b

(
1− cB0

B0 + kB

)
+ k−1

cA0

B0 + kB

]
Similarly, for C,

dC

dt
= k1(A0 − C)B − (k−1 + k2)C

d(cC̃)

d(τ t̃)
= k1(A0 − C)B − (k−1 + k2)C

C̃

t̃

dc

dτ
=

[
k1bB0

(
A0 − c

A0B0

B0 + kB

)]
−
[
(k−1 + k2)c

A0B0

B0 + kB

]
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C̃

t̃

dc

dτ
= A0

[
k1bB0

(
1− c A0

B0 + kB

)
−
(

(k−1 + k2)c
B0

B0 + kB

)]
(2.2.6)

dc

dτ

A0B0

B0 + kB
= t̃A0B0

[
k1b

(
1− c B0

B0 + kB

)
−
(

(k−1 + k2)
c

B0 + kB

)]
dc

dτ
= (B0 + kB)t̃

[
k1b

(
1− c B0

B0 + kB

)
−
(
kBk1

c

B0 + kB

)]
= t̃k1(B0 + kB)

[
b

(
1− c B0

B0 + kB

)
−
(
kB

c

B0 + kB

)]
Let, α = B0

B0+kB
, where α is a parameter between 0 and 1.

Our two rate equations become :-

db

dτ
= t̃

[
−k1A0b

(
1− c B0

B0 + kB

)
+ k−1c

A0

B0 + kB

]
(2.2.7)

dc

dτ
= t̃k1(B0 + kB)[b(1− αc)− c(1− α)] (2.2.8)

The terms in the square brackets of the second of these equations are now clearly
balanced. Each is made up of a product of quantities which are of unit magnitude.
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Now, we are left to decide t̃.

The back reaction C → A+B is not particularly important for many enzymes. Under
these circumstances, the first term −k1A0b(1− αc)t̃ should dominate db

dτ
.

This implies that we should use t̃−1 = k1A0, to achieve the desired balance between
the derivative and its term. In other words, we expect (k1A0)

−1 to represent a slow
time scale that controls the rate at which the substarte is consumed.

If the above hypothesis does not hold true for a specific enzyme, a different choice for
t̃ should be made.

In any case, our choice leads to -

db

dτ
= −b(1− αc) + c

k−1
k−1 + k2

(1− α)

dc

dτ
=

B0 + kB
A0

b(1− αc)− c(1− α).

We define,

β =
k−1

k−1 + k2
,

and µ =
A0

B0 + kB

Then we have

db

dτ
= −b(1− αc) + βc(1− α), (2.2.9)

and µ
dc

dτ
= b(1− αc)− c(1− α). (2.2.10)
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2.3 Conclusion

It is frequently stated that the Steady state approximation holds true when the en-
zyme concentration (µ) is small. If µ is negligible, then our differential equation
(2.2.11) is close to the algebraic equation

0 ≈ b(1− αc)− c(1− α) (2.3.1)

i.e. the SSA.

A small value of µ implies that

A0 << B0 + kB

This implies that the SSA will hold true under this condition. it is to be noted that
this is a sufficient, but not a necessary condition. If time scaling is done in some other
way, we discover other conditions which lead to the validity of the SSA.

We began with two differential equations (2.2.1) and (2.2.2). We discovered that
one of the differential equations degenerates to an algebraic equation.

The equation (2.2.8) requires the values of both b and c to specify the initial condition,
while the equation (2.2.9) requires only a value for b, the value of c being computed
from equation (2.3.1).

Here, we considered the limit µ → 0. In practice, this limit can never be reached.
Such problems are called singular perturbation problems [5].
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Chapter 3

Singular Perturbation Theory in
Convection-Diffusion Equations

3.1 Introduction

We are already familiar with differentail equations in which at the highest derivatives
there is a small parameter. These type of equations are known as singularly perturbed
differential equations. To obtain the solution of singularly perturbed systems, an
efficient asymptotic-numerical method is presented in this chapter. A weakly coupled
convection dominated system of m-equations is analyzed.

Lu := εu′′ + Eu′ + Su = f (3.1.1)

u(0) = 0, u(1) = 0 in Ω = (0, 1)

where ε = diag(ε1, ...., εm), the permutation parameters 0 < εi << 1 for 1 = 1, ....,m
and u = (u1, ..., um) ∈ (C2(Ω) ∩ C(Ω̄))m.
The problem (3.1.1) is considered to be the most widespread fundamental sub-problem
in science and engineering.

Now, E = diag(e1, ..., em) represents the convective matrix, S = (sij)m×m is the
coupling matrix and the source vector f = (f1, ...., fm)T are assumed to be suffi-
ciently smooth on Ω̄.
Moreover, for each i, j
ei > 0, sii ≤ 0 and sij ≥ 0 ∀i 6= j.
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The ith component of the system (3.1.1) is given by -

εiu
′′
i + ei(x)u′i +

m∑
j=1

sij(x)uj = fi(x) (3.1.2)

ui(0) = 0, ui(1) = 0

in Ω = (0, 1) for i = 1, 2, ...,m.

For x ∈ Ω, it can be transformed to

εiu
′′
i + ei(x)u′i + sii(x)ui = f(x)−

m∑
j=1,j 6=i

sij(x)uj (3.1.3)

ui(0) = 0, ui(1) = 0, ui(1) = 0

The system is referred as to be coupled weakly if the convective coupling matrix S is
daigonal, therefore, only through the lower-order reaction terms the given system is
coupled.
Using the following theorems and Results, it follows that

||ui||+
m∑

j=1,j 6=i

Zij||uj|| ≤ min

{∥∥∥∥ fisii , fiai
∥∥∥∥} (3.1.4)

where the matrix Z = (Zij)m×m is such that Zii = 1 and Zij = −min
∥∥∥ sijsii , sijai ∥∥∥ , for

i 6= j, where ‖.‖ denotes the maximum norm over Ω.
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3.1.1 Theorems and Results

Now, we make use of the test function T : x → T (x) = 1 − x, and observe that
the differential operator L in Lu := −εu′′ − bu′ + cu = f satisfies the hypothesis of
lemma(3.1.1) , because LT ≥ β > 0.

Consequently, it obeys a comparison princuple and in association with lemma(3.1.2),
we get,

|u(x)| ≤ max {|Z0| , |Z1|}+ (1− x)

∥∥∥∥fb
∥∥∥∥
∞

for x ∈ [0, 1]

=⇒ ‖v‖∞ ≤
∥∥∥∥Lvb

∥∥∥∥
∞
∀ v ∈ C2[0, 1] with v(0) = v(1) = 0.

Alternatively, if c > 0 on [0, 1], then lemma(3.1.2) with Z = 1 yields

‖v‖∞ ≤
∥∥∥∥Lvc

∥∥∥∥
∞
∀ v ∈ C2[0, 1] with v(0) = v(1) = 0 (3.1.5)

Theorem 3.1.1 Set β∗ = εd(µ1 − µ0). The operator L satisfies

‖v‖∞ ≤
∥∥Lv

c

∥∥
∞ ∀v ∈ Ẋ

1,∞(0, 1) ∩X2,∞(0, 1)

‖v‖∞ ≤
2
β∗ ‖Lv‖1 ∀v ∈ Ẋ1,∞(0, 1) ∩X2,1(0, 1)

‖v′‖1 ≤
2
β∗v ‖Lv‖1 ∀v ∈ Ẋ1,∞(0, 1) ∩X2,1(0, 1)

and

|‖v‖|∞ ≤ ‖Lv‖−1,∞ ∀v ∈ X1,∞(0, 1).

22



Lemma 3.1.1 let ∃ a function T ∈ C2(0, 1)∩C[0, 1] with T > 0 on [0, 1] and LT > 0
in (0, 1). Then the operator L is inverse monotone.

Lemma 3.1.2 Suppose ∃ a function T ∈ C2(0, 1) ∩ C[0, 1] with T > 0 on [0, 1] and
LT > 0 in (0, 1). Then for any function v ∈ C2(0, 1) ∩ C[0, 1] with v(0) = v(1) = 0.

|v| ≤ T
∥∥ Lv
LT

∥∥
∞ in [0, 1]

we have

εiu
′′
i + eiu

′
i +

m∑
j=1

sijuj = fi

Rewriting above equation as

εiu
′′
i + eiu

′
i = fi −

m∑
j=1

sijuj

Then using (3.1.5), we get,

‖ui‖+
m∑

j=1,j 6=i

Zij ‖uj‖ ≤ min

{∥∥∥∥ fisii
∥∥∥∥ ,∥∥∥∥fiei

∥∥∥∥} , i = 1, ...,m

where the matrix τ = (Zij)m×m is so that Zii = 1, Zij = −min
{∥∥∥ sijsii ∥∥∥ ,∥∥∥ sijei ∥∥∥} and

‖.‖ denotes the maximum norm over Ω.
The uniqueness of the solution and maximum norm stability of the operator L follows
from-

Theorem 3.1.2 Assume that the matrix A has non-negative diagonal entries. Sup-
pose also that all entries of A lie in C[0, 1]. Assume that τ(A, s) is inverse monotone.
Then for k = 1, ..., l one has

‖vk‖∞ ≤
l∑

m=1

(τ̃)kmmin

{∥∥∥∥(Lv)m
amm

∥∥∥∥
∞
,

∥∥∥∥(Lv)m
sm

∥∥∥∥
∞

}
(3.1.6)

for any function v = (v1, ..., vl)
T ∈ (C2(0, 1) ∩ C[0, 1])l with v(0) = v(1) = 0.
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Under the hypothesis of the above theorem, the boundary value problem has a
unique solution u, and ‖u‖∞ ≤ C ‖f‖∞ for some constant C.

Theorem 3.1.3 If a = (a1, a2, ..., am) is the solution of problem (3.1.1), then

∥∥∥a(k)i ∥∥∥ =

{
O
(
ε−ki
)

if k = 1, 2,

O
(
ε−kp
)

if k ≥ 3,

for i = 1, ...,m, where εp := min1≤i≤mεi.

Proof:- We begin by stating the following theorem,

Theorem 3.1.4 If e(x) > 0, s(x) and c(x) are sufficiently smooth functions, then the
solution a(x) of the problem (3.1.1) satisfies

∣∣a(i)(x)
∣∣ ≤ C

{
1 + ε−iexp

(
ax
ε

)}
, where

C is an arbitrary constant. [3]

Using the statement of the above theorem, we get the required bounds for k = 1, 2.
Differentiating (3.1.2) for k = 3, we obtain,

‖a′′′i ‖ ≤
‖ei‖
εi
‖a′′i ‖+

‖ei‖
εi
‖a′i‖+

‖f ′i‖
εi

+
m∑
j=1

(
‖sij‖
εi
‖aj‖+

‖sij‖
εi

∥∥a′j∥∥)

≤ C

(
ε−3i + ε−2i + ε−1i +

m∑
j=1

(
ε−1i + ε−1i ε−1j

))

≤ C

(
ε−3p + ε−2p + ε−1p +

m∑
j=1

(
ε−3i
))

≤ C
(
ε−3p
)
,

where εp := min1≤i≤mεi. for k ≥ 3, on further differentiation we obtain the required
result.
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3.2 Solution methodology

Breaking the solution a of (3.1.1) into regular(r) and singular(s) components as a =
r+ s. We then expand the regular component r in the perturbation series of the form

r = r0 + εr1 + ε2r2 + ...+ εkrk + εk+1R(x, ε), (3.2.1)

where for each i = 0, 1, ..., k, ri = (ri1, ..., rim)T represents a column vector. Moreover,
the regular component ri satisfies the following system of IVPs in Ω :

Ev′0 + Sv0 = f (3.2.2)

r0(1) = 0

Ev′i + Svi = −ri−1 (3.2.3)

ri(1) = 0

For i = 1, 2, ..., k and

εV ′′ +RV ′ + SV = −v′′k (3.2.4)

V (0) = 0,

V (1) = 0.

Let Ω̄N := xn : xn = nh;n = 0, 1, .., N be the discrete domain with equally spaced
notes on Ω̄, where N is a natural number. Here, h = 1

N
represents uniform mesh

diameter. Following that, the result below provides a high-order approximation of
the solution’s smooth component.
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Theorem 3.2.1 Suppose explicit q-stage Runge-Kutta method is used to approximate
the solutions of (3.2.2) and (3.2.3) and if (vi)n be the approximated equivalent of vi
for i = 0, 1, ..., k, then

‖v(xn)− (v)n‖ = O(hp); p ≤ q, (3.2.5)

where

(v)n = (v0)n + ε(v1)n + ε2(v2)n + ...+ εk(vk)
n (3.2.6)

Proof:- The system of IVPs (3.2.2) can be written as

v′0 = F0(x, v0), v0(1) = 0 (3.2.7)

where F0 : Ω × Rm → Rm is defined as F0(x, v0) = −A−1Bv0 + A−1f . The system
(3.2.7) has a unique solution because the matrices A,B, and f are continuous on Ω̄
and |A| 6= 0.
Because the degenerate system does not satisfy the condition at x = 0, its contribution
to the (3.1.1) solution is limited to those values of x that are not x = 0. As a result,
the solution is the same as the outer solution. Using the explicit q-stage Runge-Kutta
method on (3.2.7):

(v0)n+1 = (v0)n − h
q∑
r=1

w0
rk

0
r , (3.2.8)

where

k0r = F0(xn − α0
rh, (v0)n − h

q∑
s=1

β0
rsk

0
s), β

0
rs = 0fors ≥ rand

q∑
s=1

β0
rs = α0

r (3.2.9)

for r = 1, ..., q.
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p(ζ) = ζ − 1 is the corresponding characteristic polynomial. Clearly, ρ(1) = 0 and
the root condition is satisfied by the polynomial. Furthermore, let the

∑q
r=1w

0
r = 1

to meet the q-stage Runge-Kutta method’s stability and consistency requirements.

Consequently, Lax-Ritchmayer theorem(A consistent finite difference scheme for a
partial differential equation for which the initial-value problem is well posed is con-
vergent if and only if stable) leads to converegence. It is easy to follow from [3]
that

‖v0(xn)− (v0)n‖ = O(hp); p ≤ q (3.2.10)

3.3 q-Stage Runge Kutta Method

Consider the initial value problem (IVP)

y′ = f(x, y), y(a) = η, f : R× Rm → Rm.

The q-stage Runge Kutta method for the above IVP is defined as

yn+1 = yn + h

q∑
i=1

biki,

where h is the step size and

ki = f

(
xn + cih, yn + h

q∑
j=1

aijkj

)
, i = 1, 2, . . . , q.

ci =

q∑
j=1

aijkj, i = 1, 2, . . . , q.

The method is said to be Explicit Runge Kutta method if aij = 0 for all j ≥ i and
the method is said to be implicit Runge-Kutta method if aij 6= 0 for some j > i.
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Stability of Explicit Runge-Kutta Method

The stability of a numerical method is observed when a minor change in the initial
conditions or data, results into a correspondingly minor change in subsequent approx-
imations. A Runge-Kutta method is said to satisfy root condition if all of the roots
of the characteristic polynomial have modulus less than or equal to unity and those
of modulus unity are simple.

In other words, we can say that all the root being complex must lie in or on the
unit circle, and there must be no multiple roots on the unit circle. The significance
of root condition lies in the fact that it is the necessary and sufficient condition for
the stability of the RK-methods.

Consistency of Runge-Kutta method

A numerical method is said to be consistent if the successive local truncation error
tends to zero as the step size tends to zero.

The necessary and sufficient condition for a general Runge-Kutta method to be con-
sistent is that

q∑
i=1

bi = 1.
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u1 u2
x Exact Approximate Exact Approximate
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.01 -0.009800000 -0.0098999974 1.9700000000 1.9799999984
0.02 -0.019500000 -0.0195999974 1.9500000000 1.9599999984
0.03 -0.029000000 -0.0290999995 1.9300000000 1.9399999984
0.04 -0.038300000 -0.0383999983 1.9200000000 1.9199999984
0.05 -0.047400000 -0.0474999986 1.9000000000 1.8999999984
0.06 -0.056300000 -0.0563999976 1.8700000000 1.8799999984
0.07 -0.065200000 -0.0650999984 1.8600000000 1.8599999984
0.08 -0.073500000 -0.0735999976 1.8300000000 1.8399999984
0.09 -0.081800000 -0.0818999977 1.8100000000 1.8199999984
0.10 -0.091000000 -0.0899999979 1.8000000000 1.7999999984
0.20 -0.162000000 -0.1599999993 1.7000000000 1.5999999984
0.30 -0.220000000 -0.2099999979 1.5000000000 1.3999999984
0.40 -0.230000000 -0.2399999986 1.3000000000 1.1999999985
0.50 -0.240000000 -0.2499999987 1.0000000000 0.9999999985
0.60 -0.230000000 -0.2399999979 0.8000000000 0.7999999985
0.70 -0.220000000 -0.2099999990 0.6000000000 0.5999999986
0.80 -0.150000000 -0.1599999994 0.4000000000 0.3999999987
0.90 -0.090000000 -0.0899999995 0.2000000000 0.1999999988
1.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Table 3.1: Numerical computations for above example with ε1 = ε2 = 10−20, N = 100.

3.4 Numerical Results and Examples

Consider the weakly coupled system below(
ε1 0
0 ε2

)(
u′′1
u′′2

)
+

(
2 0
0 3

)(
u′1
u′2

)
+

(
−5 4
2 −3

)(
u1
u2

)
=

(
f1(x)
f2(x)

)
(3.4.1)

with homogeneous boundary conditions. Here, f1(x) and f2(x) are those functions of
x for which exact solution of the problem comes

u1(x) =
1− e−2x/ε1
1− e−2/ε1

− 1− e−3x/ε2
1− e−3/ε2

+ x2 − x; u2(x) =
1− e−2x/ε1
1− e−2/ε1

+
1− e−3x/ε2
1− e−3/ε2

− 2x.

(3.4.2)
The following table represents the numerical computations for the above example.
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3.5 Conclusion

In this chapter, we introduce the q-stage Runge Kutta method for a class of weakly
coupled system that are singularly perturbed. We analyze a weakly coupled system
of m− equations. the solution of the system is decomposed into regualr and singular
components and we move further in order to find our solution. The q-stage Runge
Kutta method is an efficient asymptotic numerical method.

The numerical scheme is found to be robust in terms of the perturbation parame-
ter, and it produces much better results than existing numerical schemes.[4].

This scheme gives more accurate solutions in comparison to other schemes. The
method presented here is simple to implement and can easily be extended to even
more general situations with a little tweaking. [4].
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Chapter 4

Variational Iteration Method

A Chinese mathematician, Ji-huan, firstly introduced the variational iteration ap-
proach in 1999 which can be used to solve both partial as well as ordinary differential
equations without taking use of prohibitive hypotheses that might alter the phys-
ical structure of the solution. For both weakly and strongly nonlinear equations,
the variational iteration approach is the most efficient and convenient method .This
approach is also very efficient on comparing with other methods like the adomian
method, perturbation method, and so on. On solving, if an exact solution exists, this
approach provides speedily convergent successive approximations of it ; or else, some
type of approximations were used for numerical purposes. The limiting assumptions
that are used to treat nonlinear terms are a flaw in current numerical techniques. For
nonlinear operators, the VIM has no such unique criteria, like linearization, Adomian
polynomials, and so on. Another significant benefit of the VIM approach is its ability
to significantly reduce calculation size while retaining high numerical accuracy. Fur-
thermore, this method’s capacity allows it to handle a vast range of theoretical and
computational applications in our real-world problems.
The VIM is an iterative method which is used for solving nonlinear ordinary and par-
tial differential equations that relies on the use of the lagrange multiplier, restricted
variations, and correction functional. The solution is given as series of iterates, and
approach does not require the existence of small parameters in the differential equa-
tion. The non linearities do not have to be differentiable with respect to the dependent
variable and its derivatives for the method to work. As like many perturbation method
[13] as like other non linear analytical approaches , that approach need not rely on
small parameters, and initially our guess could be easily selected even with some un-
known parameters, allowing it to be used in a wide range of non-linear problems that
do not need linearization or small perturbations.
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4.1 Brief analysis of the method

We will go through the basic concepts, in this section that underpin the variational
iteration process. Now,take a look at the following nonlinear equation:

Ly(s) ≡ L(y(s)) +N(y(s)) = f(s) (4.1.1)

where L stands for linear, here, N for nonlinear, and f(s) for the given analytic
inhomogeneous term. By using variational theory, we can also write a correction
functional in the following format:

yn+1(s) = yn(s) +

∫ s

0

λ(t){Lyn(t) +Nỹn(t)− f(t)}dt, n ≥ 0 (4.1.2)

where λ stands for lagrange’s multiplier that could be easily calculated using varia-
tional theory , integration by parts and liouville-Green transforms. Also, yn(x) is nth
approximation of y(x)and ỹn(x) be the restricted variation which means , δỹn = 0 so,
on the first step we will calculate the value of lagrange multiplier λ then select Ji-huan
a appropriate intial function which satisfies the boundary conditions, y0 then succes-
sive approximations yn of the function y can be easily obtained through correction
function (4.1.1). Therefore, exact solution of the problem (4.1.2) :

y(x) = limn→∞yn(x)

4.2 Variational iteration method for Ordinary dif-

ferential equations

In 2000 the variational iteration approach is used to solve autonomous ordinary differ-
ential equation . Momani et al.(2006) investigate the application of this approach to
the Helmholtz equation. In Abdou et al.(2005), burger and coupled burger equation
can be solved using this approach [12, 13] . To coupled Schrondinger KdV equations
and shallow water equations which are presented by Abdou et al.(2005) is its main
application [15]. Numerical methods are oftenly used since most differential equa-
tion donot have exact analytic solution ,such approaches are effective while solving
nonlinear and linear issues, as it provides analytical solutions and has some advan-
tages over traditional numerical methods. This approach was used to solve a system
of ordinary differential equations by Biazar et al (2004) [15]. Applying Variational
iteration method to Singularity perturbed problem;

Example 4.2.1 Consider the following two-point boundary problem:

ε
d2y(t)

dt2
− 4

dy(t)

dt
= 0, t ∈ (0, 1); y(0) = U, y(1) = V, (4.2.1)

32



here ε,is small peturbation [10]. Then, with respect to root (0, 4/ε) of applicable
characteristic polynomial, exact solution is given as

y(t) =
−V + U exp (4/ε)

−1 + exp (4/ε)
− U − V
−1 + exp (4/ε)

exp (4t/ε)

=
exp (4t/ε)− exp (4/ε)

1− exp (4/ε)
for U=1 and V=0. (4.2.2)

The correction functional with respect to the equation (4.2.1) can be written as

yn+1(t) = yn(t) +

∫ t

0

λ(s)

[
ε
d2yn(s)

ds2
− 4dyn(s)

ds

]
ds

= yn(t)− εdλ(s)

ds
yn(s)|ts=0 − 4λ(s)yn(s)|ts=0 + ελ(s)

dyn(s)

ds
|ts=0

+

∫ t

0

(
ε
d2λ(s)

ds2
+ 4

dλ(s)

ds

)
yn(s)ds. (4.2.3)

Proceed variation with respect to yn and then creating correction functional (4.2.3)
stationary, i.e., δyn+1 = 0:

δyn+1(t) =

(
1− εdλ(s)

ds
− 4λ(s)

)
s=t

δyn(t) + ελ(s)|s=tδy′n(t)

+

∫ t

0

(
ε
d2λ(s)

ds2
+ 4

dλ(s)

ds

)
δyn(s)ds

= 0.

Therefore,we obtained the Euler-Lagrange equation

ε
d2λ(s)

ds2
+ 4

dλ(s)

ds
= 0 (4.2.4)

and the stationary conditions are(
1− εdλ

ds
− 4λ(s)

)
s=t

= 0 and λ(s)|s=t = 0. (4.2.5)

Consequently, Euler equation (4.2.4) combining with stationary conditions (4.2.5)
gives

λ(s) =
1

4

(
1− exp 4

(
t− s
ε

))
.

Hence,we can write the variational iteration formulas as

yn+1(t) = yn(t) +

∫ t

0

1

4

(
1− exp 4

(
t− s
ε

))(
ε
d2y(t)

dt2
− 4

dy(t)

dt

)
ds. (4.2.6)
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We consider the linearly independent solutions of (4.2.1) to obtain iterate series and
starts with initial approximation y0 = A + B exp (4t), where c and d denotes free
constants that can be set with the use of boundary conditions. Using formula (4.2.6),
we have

y1 = A+B exp (t) +B(ε− 4)
1

4

∫ t

0

(
1− exp 4

(
t− s
ε

))
exp (s)ds

= A+B −B ε
4

(
1− exp

(
4t

ε

))
.

If we inflict boundary conditions U = 1 and V = 0, and so, in such type the solution
we obtained by variation iteration method at first iteration given as

y1(t) =
exp (4t/ε)− exp (4/ε)

1− exp (4/ε)
,

which is indeed the exact solution (4.2.2).

Example 4.2.2 Consider the following boundary value problem

ε
d2y(t)

dt2
+ 4y(t) = 0, t ∈ (0, 1); y(0) = U, y(1) = V, (4.2.7)

Here ε is small peturbation [6]. And linearly independent solutions sin(2/
√
ε)t and

cos(2/
√
ε)t correspond to the large imaginary roots of related characteristic polyno-

mial then exact solution is:

y(t) = acos(2/
√
ε)t+

V − Ucos(2/
√
ε)

sin(2/
√
ε)

.sin(2/
√
ε)t

= cos(2/
√
ε)t+

2− cos(2/
√
ε)

sin(2/
√
ε)

.sin(2/
√
ε)t for U=1 and V=2 (4.2.8)

Then correction functional corresponding to 4.2.6 is:

yn+1(t) = yn(t) +

∫ t

0

λ(s)

[
ε
d2yn(s)

ds2
+ 4yn(s)

]
ds

= yn(t)− εdλ(s)

ds
yn(s)|ts=0 + ελ(s)

dyn(s)

ds
|ts=0

+

∫ t

0

(
ε
d2λ(s)

ds2
+ 4λ

)
yn(s)ds. (4.2.9)

by imposing the variation and by considering the restricted variation i.e δyn+1 = 0
equation 4.2.9 becomes

δyn+1(t) =

(
1− εdλ(s)

ds

)
δyn(s) + ελ(s)|ts=0δy

′
n(s)

+

∫ t

0

(
ε
d2λ(s)

ds2
+ 4λ

)
δyn(s)ds. (4.2.10)

= 0
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Therefore, we get Euler-Lagrange equation as

ε
d2λ(s)

ds2
+ 4λ(s) = 0 (4.2.11)

and the stationary conditions obtained are(
1− εdλ

ds

)
s=t

= 0 and λ(s)|s=t = 0. (4.2.12)

Consequently, (4.2.11) together with stationary conditions (4.2.12) yield

λ(s) =
1√
ε
sin

(
2s− 2t√

ε

)
.

As a result,we can write variational iteration formulas as

yn+1(t) = yn(t) +

∫ t

0

1√
ε
sin

(
2s− 2t√

ε

)[
ε
d2yn(s)

ds2
+ 4yn(s)

]
ds

(4.2.13)

We consider the linearly independent solutions of (4.2.6) to obtain iterate series. and
starts with initial approximation y0 = C1 cos2t+C2 sin2t, where C1 and C2 denotes
free constants that can be determined using boundary conditions. Using formula
(4.2.13), we have

y1 = C1cos2t+ C2sin2t+
4(1− ε)√

ε

∫ t

0

sin

(
2s− 2t√

ε

)
(C1cos2t+ C2sin2t)ds

= cos(2/
√
ε)t+

2− cos(2/
√
ε)

sin(2/
√
ε)

.sin(2/
√
ε)t for a=1 and b=2 (4.2.14)

which indeed the exact solution (4.2.8)

4.2.1 Problem Description

Consider the following nonlinear singularly perturbed two-point boundary value prob-
lem [10]:

εy′′ = h(t, y(t), y′(t)); t ∈ (0, 1)
y(0) = β, y(1) = α.

(4.2.15)

When dealing with singularly perturbed boundary value problems, it’s common to
want results that guarantee the solution’s survival and provide an estimate position
of boundary layers that appear in the proof. Most of these results were obtained
using a maximum theory statement. [15]. The solution is approximated in terms of
values on interval’s boundary within its interval existence. We will create a few such
supporting results in the following discussion.
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Figure 4.1: Numerical solution of example
4.2.1 for different values of ε.
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Figure 4.2: Numerical solution of example
4.2.2 for different values of ε.
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4.2.2 Solution Methodology

We will try to understand using two possible cases separately [10]:

h(t, y(t), y′(t)) =

{
g(t, y(t), y′(t))− p(t)y′(t)− q(t)y(t); p(t) 6= 0 and
g(t, y(t), y′(t)),

(4.2.16)

i.e., The first one arises when the linear element of h(t, y(t), y′(t)) can be directly
extracted, and the second case is otherwise.

Case-I:h(t, y(t), y′(t)) = g(t, y(t), y′(t))− p(t)y′(t)− q(t)y(t); p(t) 6= 0.
So, we can write the correction functional corresponding to (4.2.15) as

yn+1(t) = yn(t) +

∫ t

0

λ(ξ) (εy′′(ξ) + p(ξ)y′(ξ) + q(ξ)y(ξ)− g̃(ξ, y, y′)) dξ

= yn(t) + ε

{
λ(ξ)y′(ξ)|t0 −

∫ t

0

dλ(ξ)

dξ
y′(ξ)dξ

}
+

{
λ(ξ)p(ξ)y(ξ)|t0 −

∫ t

0

(
dλ(ξ)

dξ
p(ξ) + λ(ξ)

dp(ξ)

dξ

)
y(ξ)dξ

}
+

∫ t

0

λ(ξ)q(ξ)y(ξ)dξ −
∫ t

0

λ(ξ)g̃(ξ, y, y′)dξ

= yn(t) + ε

{
λ(ξ)y′(ξ)|t0 −

(
dλ(ξ)

dξ
y(ξ)|t0 −

∫ t

0

d2λ(ξ)

dξ2
y(ξ)

)}
+

{
λ(ξ)p(ξ)y(ξ)|t0 −

∫ t

0

(
dλ(ξ)

dξ
p(ξ) + λ(ξ)

dp(ξ)

dξ

)
y(ξ)dξ

}
+

∫ t

0

λ(ξ)q(ξ)y(ξ)dξ −
∫ t

0

λ(ξ)g̃(ξ, y, y′)dξ (4.2.17)

Here λ(ξ, t) := λ(ξ) is Lagrange multiplier, it should be determined and g̃(ξ, y(ξ), y′(ξ))
this function is denoting the restricted variation of nonlinear source term (i.e., δg̃ = 0).
We will use variational theory to calculate Lagrange’s multiplier, take variation w.r.t
independent variable yn (notice that δyn(0) = 0) and making the correctional func-
tional (4.2.17) stationary, means.,δyn+1 = 0:
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δyn+1(t) = δyn(t) + ε

{
λ(ξ)δy′(ξ)|ξ=t −

(
dλ(ξ)

dξ
δy(ξ)|ξ=t −

∫ t

0

d2λ(ξ)

dξ2
δy(ξ)

)}
+

{
λ(ξ)p(ξ)δy(ξ)|ξ=t −

∫ t

0

(
dλ(ξ)

dξ
p(ξ) + λ(ξ)

dp(ξ)

dξ

)
δy(ξ)dξ

}
+

∫ t

0

λ(ξ)q(ξ)δy(ξ)dξ −
∫ t

0

λ(ξ)δg̃(ξ, y, y′)dξ

=

(
1− εdλ(ξ)

dξ
+ p(ξ)λ(ξ)

)
δyn(ξ)|ξ=t + ελ(ξ)δ

dyn(ξ)

dξ
|ξ=t

+

∫ t

0

(
ε
d2λ(ξ)

dξ2
− p(ξ)dλ(ξ)

dξ
+

(
q(ξ) +

dp(ξ)

dξ

)
λ(ξ)

)
δyn(ξ)dξ

= 0. (4.2.18)

Therefore, Euler-Lagrange’s equation becomes

εd
2λ(ξ)
dξ2
− p(ξ)dλ(ξ)

dξ
+
(
q(ξ) + dp(ξ)

dξ

)
λ(ξ) = 0(

1− εdλ(ξ)
dξ

+ p(ξ)λ(ξ)
)
ξ=t

= 0

λ(ξ)ξ=t = 0

 (4.2.19)

Here Lagrange multiplier (λ), obtained by the use of Liouville’s green transformation.
Defining Liouville-Green transformation x, φ(x) and w(ξ) as follows

x = φ(ξ) = −1
ε

∫
p(ξ)dξ

ψ(ξ) = φ′(ξ) = −1
ε
p(ξ)

w(x) = ψ(ξ)λ(ξ).

 (4.2.20)

It follows that
dλ(ξ)

dξ
=
φ′(ξ)

ψ(ξ)

dw

dx
− ψ′(ξ)

ψ2(ξ)
w, and (4.2.21a)

d2λ(ξ)

dξ2
=
φ′2(ξ)

ψ(ξ)

d2w

dx2
+

(
φ′′(ξ)

ψ(ξ)
− 2

φ′(ξ)ψ′(ξ)

ψ2(ξ)

)
dw

dx
−
(
ψ′′(ξ)

ψ2(ξ)
− 2

ψ′2(ξ)

ψ3(ξ)

)
w.

(4.2.21b)
Substitute (4.2.21) into (4.2.19), it gives

d2w

dx2
+

(
φ′′(ξ)

ψ2(ξ)
− 2

φ′(ξ)ψ′(ξ)

ψ3(ξ)
− p(ξ)φ′(ξ)

εψ2(ξ)

)
dw

dx

+

(
q(ξ)

εψ2(ξ)
− ψ′′(ξ)

ψ3(ξ)
+ 2

ψ′2(ξ)

ψ4(ξ)
+
p(ξ)ψ′(ξ)

εψ3(ξ)
+

p′(ξ)

εψ2(ξ)

)
w = 0.

d2w

dx2
+
dw

dx
= ε

(
G(ξ, ε)w(x)−F(ξ)

dw

dx

)
(4.2.22)
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where

F(ξ) =
p′(ξ)

p2(ξ)
and G(ξ, ε) =

(
ε
p′′(ξ)

p3(ξ)
− 2ε

p′2(ξ)

p3(ξ)
− 2p′(ξ) + q(ξ)

p2(ξ)

)
.

Since p(·) ∈ C2[0, 1], q(·) ∈ C[0, 1] and F(·), G(·, ε) are bounded on [0, 1], we have

ε

(
G(ξ, ε)w(x)−F(ξ)

dw

dx

)
→ 0 as ε→ 0.

Therefore, (4.2.22) reduces to
d2w

dx2
+
dw

dx
≈ 0

and hence
w(x) = C1 + C2 exp(−x). (4.2.23)

In view of (4.2.20), (4.2.23) yields

λ(ξ, t) = − ε

p(ξ)

(
C1 + C2 exp

(
1

ε

∫ ξ

t

p(s)ds

))
. (4.2.24)

where C1 and C2 are arbitrary constants . Consequently, boundary conditions yields

λ(ξ, t) = − 1

p(ξ))

(
1− exp

(
1

ε

∫ ξ

t

p(s)ds

))
. (4.2.25)

As a result, iteration formula for (4.2.15)is given as

yn+1(t) = yn(t) +

∫ t

0

− 1

p(ξ))

(
1− exp

(
1

ε

∫ ξ

t

p(s)ds

))
×(

ε
d2y(ξ)

dξ2
+ p(ξ)

dy(ξ)

dξ
+ q(ξ)y(ξ)− f

(
ξ, u(ξ),

dy(ξ)

dξ

))
dξ.(4.2.26)

Case-II: h(t, y(t), y′(t)) = g(t, y(t), y′(t)); contain purely nonliner/implicit terms.

The correction functional with respect to (4.2.15) is given as

yn+1(t) = yn(t) +

∫ t

0

λ(ξ) (εy′′(ξ)− g̃(ξ, y, y′)) dξ

= yn(t) + ε

{
λ(ξ)y′(ξ)|t0 −

∫ t

0

dλ(ξ)

dξ
y′(ξ)dξ

}
−
∫ t

0

λ(ξ)g̃(ξ, y, y′)dξ

= yn(t) + ε

{
λ(ξ)y′(ξ)|t0 −

(
dλ(ξ)

dξ
y(ξ)|t0 −

∫ t

0

d2λ(ξ)

dξ2
y(ξ)

)}
−
∫ t

0

λ(ξ)g̃(ξ, y, y′)dξ (4.2.27)
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Here λ(ξ, t) := λ(ξ) is the Lagrange multiplier and g̃(ξ, y(ξ), y′(ξ)) denoting the re-
stricted variation of the nonlinear source term. We will use variational theory in order
to calculate Lagrange’s multiplier, we will take variation w.r.t independent variable
yn (notice that δyn(0) = 0) and δyn+1 = 0:

δyn+1(t) = δyn(t) + ε

{
λ(ξ)δy′(ξ)|t0 −

(
dλ(ξ)

dξ
δy(ξ)|t0 −

∫ t

0

d2λ(ξ)

dξ2
δy(ξ)

)}
−
∫ t

0

λ(ξ)δg̃(ξ, y, y′)dξ

=

(
1− εdλ(ξ)

dξ

)
ξ=t

δy(t) + ελ(ξ)|ξ=tδy′(t) + ε

∫ t

0

d2λ(ξ)

dξ2
δy(ξ)dξ

= 0. (4.2.28)

Therefore, Euler-Lagrange’s equation becomes

d2λ(ξ)

dξ2
= 0;

(
1− εdλ(ξ)

dξ

)
ξ=t

= 0, λ(ξ)ξ=t = 0

which in turn yields

λ =
ξ − t
ε

.

As a result, iteration formula reads

yn+1(t) = yn(t) +

∫ t

0

(
ξ − t
ε

)(
ε
d2y(ξ)

dξ2
− g

(
ξ, u(ξ),

dy(ξ)

dξ

))
dξ. (4.2.29)

4.3 Variational iteration method for Partial differ-

ential equations

For several years, nonlinear differential equations in engineering and applied math-
ematics have been the focus of intense research. In the analysis of very mechanic
systems and other fields of research, partial differential equation systems are used.
For instance, consider wave propagation. Current methods for solving these equa-
tions interface with sever computation when many systems must be solved. The
Variational iteration method (VIM) is used to solve these equations . This is critical
when designing an iteration function.
Applying variational iteration method to solve partial differential equations:

Example 4.3.1 Parabolic partial differential equation
Let us consider a problem [8]:

yt = yxx + e−x(cost− sint) (4.3.1)
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with initial conditions y(x, 0) = x and there are boundary conditions[14]

y(0, t) = sint, y(1, t) =
1 + sint

e

Which is readily apparent to provide the exact solution

y(x, t) = x+ e−x(cost− sint) (4.3.2)

The correction functional corresponding to 4.3.1 can be written as:

yn+1(x, t) = yn(x, t)+

∫ t

0

λ

(
∂yn(x, ξ)

∂ξ
− ∂2yn(x, ξ)

∂x2
− e−xcost+ e−xsint

)
dξ (4.3.3)

where λ is the lagrange multiplier, which can be easily obtained using variational
theory:

δyn+1(x, t) = δyn(x, t) + δ

∫ t

0

λ

(
∂yn(x, ξ)

∂ξ
− ∂2yn(x, ξ)

∂x2
− e−xcost+ e−xsint

)
dξ

(4.3.4)
Applying by parts ,we obtain λ = −1

δyn+1(x, t) = δyn(x, t) + δ

∫ t

0

(−1)

(
∂yn(x, ξ)

∂ξ
− ∂2yn(x, ξ)

∂x2
− e−xcost+ e−xsint

)
dξ

(4.3.5)
Now,take arbitrary intial approximation which satisfying the intial condition

y0(x, t) = x

substitute initial condition into (4.3.5)

y1(x, t) = x− e−x + e−xsint+ e−xcost (4.3.6)

similarly,

y2(x, t) = x+ 2e−xsint− e−xt (4.3.7)

y3(x, t) = x+ e−xsint+ e−x − e−xcost− 1

2
e−xt2 (4.3.8)

In the same way rest of the iterations can also be obtained
The outcomes of this analysis were compared to those of an exact solution and

results are approximately same. In terms of accuracy and effectiveness, the variational
iteration method was found to be effective and a strong mathematical tool for solving
differential equations.
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t yexact yvim
0.1 0.190333 0.190333
0.3 0.367396 0.367397
0.5 0.533801 0.531465
0.7 0.68292 0.674006
0.9 0.808783 0.794705

Table 4.1: Numerical results for x = 0.1

Example 4.3.2 Consider a non linear partial differential equation

∂u

∂x
− ∂2u

∂t2
= u2 −

(
∂u

∂t

)2

(4.3.9)

with initial condition u(t, 0) = et [9]. Determine the value of the nonlinear parabolic
equation in equation using the variational iteration method.
The correction functional corresponding to 4.3.9

un+1(x, t) = un(x, t) +

∫ x

0

λ

(
∂un(t, ξ)

∂ξ
− ∂2un(t, ξ)

∂t2
− u2n(t, ξ) +

(
∂u(t, ξ)

∂t

)2
)
dξ

(4.3.10)
where λ is the lagrange multiplier, which can be easily obtained using variational
theory:

δun+1(x, t) = δun(x, t)+δ

∫ x

0

λ

(
∂un(t, ξ)

∂ξ
− ∂2un(t, ξ)

∂t2
− u2n(t, ξ) +

(
∂u(t, ξ)

∂t

)2
)
dξ

(4.3.11)
Applying by parts ,we obtain λ = −1

δun+1(x, t) = δun(x, t)+δ

∫ x

0

(−1)

(
∂un(t, ξ)

∂ξ
− ∂2un(t, ξ)

∂t2
− u2n(t, ξ) +

(
∂u(t, ξ)

∂t

)2
)
dξ

(4.3.12)
Now,take arbitrary intial approximation which satisfying the intial condition

u(t, 0) = et
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substitute initial condition into (4.3.12)

u1(x, t) = et(1 + x),

u2(x, t) = et
(

1 + x+
x2

2!

)
,

u3(x, t) = et
(

1 + x+
x2

2!
+
x3

3!

)
,

...

un(x, t) = ex
(

1 + t+
t2

2!
+
t3

3!
+ · · ·+ tn

n!

)
,

...

Taking n→∞ gives us the exact solution to Equation 4.3.9, so we get

un(x, t) = ex
(

1 + t+
t2

2!
+
t3

3!
+ · · ·+ tn

n!
· · ·
)

(4.3.13)

or
u(x, t) = ex+t (4.3.14)

The number of iterations used to solve Equation 4.3.9 decides its accuracy. Figures
(a) and (b) show an intermediate comparison of the exact and approximate solutions
for n = 2 and n = 8 .
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Figure 4.3: (a) Comparison of exact
soluion with 0 ≤ x ≤ 2

Figure 4.4: (b) Comparison of exact solu-
tion with x = 2

Comparision of the exact solution with u2 and u8 with 2 ≤ t ≤ 6 :
(a) 0 ≤ x ≤ 2, (b) x = 2

Figure 3.1 and 3.2 shows that the curve formed by u8(x, t) is more closely con-
nected to u(x, t) than the other curves. This means that using further iterations to
complete an approximation will get you closer to the exact completion.

4.3.1 Problem Description

Consider the following parabolic partial differential equation,

∂y
∂t
− ∂2y

∂x2
− a(x, t)y = f(x, t)

y(x, 0) = α, y(0, t) = y(1, t) = β, t, x ∈ (0, 1)
(4.3.15)

while dealing with such type of problems , it’s common to want results that guarantee
the solution’s survival . Here we consider a general parabolic partial differential
equation and lagrange multiplier can be calculated by the use of variational theory ,
integration by parts or liouville-green transform and we obtained a iterative formula
for the given problem.

4.3.2 Solution Methodology

To solve eqn 4.3.15 using variational iteration method , the correctional function is
defines as :

yn+1(x, t) = yn(x, t) +

∫ t

0

λ

(
∂yn(x, ξ)

∂ξ
− ∂2ỹn(x, ξ)

∂x2
− ayn − f(x, ξ)

)
dξ (4.3.16)
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where λ is the lagrange multiplier that need to be determined and ỹn is the restricted
variation i.e ỹn = 0 and lagrange multiplier can be easily obtained using variational
theory and to find the optimal value of λ we have:

δyn+1(x, t) = δyn(x, t) + δ

∫ t

0

λ

(
∂yn(x, ξ)

∂ξ
− ∂2ỹn(x, ξ)

∂x2
− ayn − f(x, ξ)

)
dξ

= δyn(x, t) + δ

∫ t

0

λ

(
∂yn(x, ξ)

∂ξ
− ayn

)
dξ

= δyn +

[
λδyn|t0 −

∫ t

0

λ′δyndξ

]
−
∫ t

0

aδyndξ

= δyn(1 + λ)−
∫ t

0

δyn(λ′ + a)dξ

= 0 (4.3.17)

Therefore , the Euler lagrange equation becomes:

λ′(ξ) + a = 0
1 + λ = 0

}
(4.3.18)

Therefore, we find the value of λ and write it as:

λ′(ξ) = −a
λ(ξ) = a(t− ξ)− 1

As a result , we obtained the iteration formula as:

yn+1(x, t) = yn(x, t) +

∫ t

0

(a(t− ξ)− 1)

(
∂yn(x, ξ)

∂ξ
− ∂2yn(x, ξ)

∂x2
− ayn − f(x, ξ)

)
dξ

(4.3.19)
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Chapter 5

Conclusion

Nonlinear problems are often linearized using the quasi-linearization technique. The
linear version of the problem is then solved using either analytic or numerical meth-
ods. However, linearizing nonlinear problems reduces the precision of the solution
in several ways. We also proposed an iterative analytic approach in this paper to
resolve some of the relevant issues. The methodology presented has been shown to
be effective. The proposed method provides us with an analytic approximation that
is extremely accurate. The results are, in fact, comparable to simple analytic so-
lutions.The approach presented is simple to apply, and it can easily be generalised
to even more general situations such as problems with discontinuous source terms
and mathematical physics evolution equations with minor modifications. Since this
method justifies its efficiency and delivers promising findings with just a few itera-
tions, and without any restrictive assumptions, the numerical results obtained are
indistinguishable.
Further, we have taken parabolic partial differential equations and iterative method
is successful in solving PDE’s too. We clearly observed that the exact solution is
obtained by taking infinte iterations and it can be shown that increasing the number
of iterations leads to a solution that is similar to the exact solution. Therefore, this
approach can be used to get a close approximation to the exact solution.
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