
- 1 - | P a g e  
 

Analysis of ASIC Design Flow by performing Design and 

Verification of ALU Block and Lint using Spyglass  

 
A 

Dissertation 

Submitted in the fulfilment of the requirements 

For the award of degree 

 

Of 
 

MASTER OF TECHNOLOGY 

In 

VLSI Design and Embedded System 

  

By 

SHUBHAM GOYAL 

(2K19/VLS/18) 

 
Under the Guidance of 

 

Dr. SONAL SINGH 
 

 

 

 

 

 

 

 

 

 

 

 

ELECTRONICS AND COMMUNICATION DEPARTMENT 

DELHI TECHNOLOGICAL UNIVERSITY 

DELHI-110042 

SESSION 2019-2021 

  



i | P a g e  
 

 

 

 

 

 

 

 

 
ELECTRONICS AND COMMUNICATION DEPARTMENT 

DELHI TECHNOLOGICAL UNIVERSITY 

DELHI-110042 

SESSION 2019-2021 

 

CANDIDATE'S DECLARATION 

 

 
I hereby declare that the work being presented in this dissertation entitled 

“Analysis of ASIC Design Flow by performing Design and Verification of 

ALU Block and Lint using Spyglass” submitted towards the fulfilment of the 

Major project requirements for the award of degree, Master of Technology in 

VLSI Design and Embedded System to the Electronics and Communication 

Dept., Delhi Technological University, is an authentic record of my work 

carried out from January 2021 to June 2021, under the guidance of Dr. Sonal 

Singh, Electronics and Communication Dept., Delhi Technological University, 

Delhi. 

 

 

I have not submitted the matter embodied in the dissertation for the award 

of any other degree. 

 

 

 

 

 

Shubham Goyal 

2K19/VLS/18 

Electronics and Communication Department 

 

Date: 24th June, 2021 



ii | P a g e  
 

 

 

 

 

 

 

 

 

 

 
ELECTRONICS AND COMMUNICATION DEPARTMENT 

DELHI TECHNOLOGICAL UNIVERSITY 

DELHI-110042 

SESSION 2019-2021 

 

 
CERTIFICATE 

 

 

This is to certify that the dissertation entitled “Analysis of ASIC Design Flow 

by performing Design and Verification of ALU Block and Lint using 

Spyglass” is the authentic record of work done by Shubham Goyal under my 

guidance and supervision. This dissertation is being submitted to the Delhi 

Technological University, Delhi towards the fulfilment of the requirements for 

the award of degree of Master of Technology in VLSI Design and Embedded 

System. 

 

 

 

 
Date: 24th June, 2021 

Dr. Sonal Singh 

SUPERVISOR 

Assistant Professor 

Electronics and Communication Department 

Delhi Technological University, Delhi 



iii | P a g e  
 

 

 

 

 

 

ACKNOWLEDGEMENT 

 

 
I would like to express my deep gratitude and appreciation to all the people who 

have helped and supported me in the process of dissertation. Without their help 

and support, 1 would not have been able to reach this level of satisfaction with 

what 1 have learnt and accomplished during my Master's dissertation. First and 

foremost, I would like to express my deep sense of respect and gratitude 

towards my supervisor Dr. Sonal Singh, Assistant Professor, Electronics and 

Communication Dept., DTU, for giving me opportunity to do my Major project 

of master's dissertation under her guidance. I am very thankful for her for giving 

me the opportunity to choose such an interesting topic by my own. I would also 

like to thanks the NPTEL Lectures for their valuable thoughts and knowledge, 

which motivated me to do better. Finally, none of this would have been possible 

without incredible support of my friends. They were always supporting me and 

encouraging me with their best wishes.  

 

 

 

Shubham Goyal 

Roll No. 2K19/VLS/18 

Electronics and Communication Dept. 
 

 

 

 

 

 

 

 

 



iv | P a g e  
 

 

 

ABSTRACT 

 

 
We are living in the era of artificial intelligence where everything which we can 

imagine is in our hands with the help and emergence of the ongoing technology. 

There is a need for the semiconductor industries, as well, to make themselves 

comfortable with the growing pace of the world of technology. With the 

increase demand of the technologies and the evolution of the products, the big 

giants of semiconductor industries like Qualcomm, Intel, NXP Semiconductors 

and Western Digital are finding their way in a best appropriate manner to design 

the product which is user friendly. 

There are various constraints which are implemented, which are imposed by 

these industries like functionality of the electronic device, power dissipation by 

the product, area occupied and also the reliability of the product. All these 

constraints, require some special attention and the measurements, which needs 

to be fulfilled by the design engineers, so that the reputation of the industry, and 

the competition in the products will be sustained. 

There are various steps, followed by every Semiconductor industry to make 

their products the best one. Some of the basic VLSI design flow steps are 

described in this thesis, and a special focus has been done on the frontend part 

of the design flow, which includes the designing of the RTL code, and then the 

Lint process, which generally verifies the syntax and the functionality of the 

coding so that it can be synthesized properly. And then, verification 

environment has been created with the help of system Verilog, so that the 

verification of the RTL code could be done, along with a brief introduction of 

UPF unified power format is also been studied in this thesis, so that the power 

aware estimations can be done, along with the functionality checks of the RTL 

design. 

The last set of these thesis is a study of the clock domain crossing as clock is 

one of the crucial nets in the design of complex SOCs, and there are many clock 

domains running from one part of the SOC to another. So, there must be the 

proper data transfer between the two clock domains. 

To understand the basic concept of design and verification of the SOC, the 

thesis contains one example of ALU, the design part of which is written in the 

Verilog language, it contains all the proper syntax of the language and the code 



v | P a g e  
 

is synthesizable. And to verify the functionality of this, a new environment is 

created with the help of system Verilog which includes the concepts of object-

oriented programming and functional coverage measures. After the verification 

part of the design process, lint is done to verify the functional checks on the 

RTL design so that it can be synthesized properly to the gate level netlist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi | P a g e  
 

 

 

 

TABLE OF CONTENT 
 
 
 
 

 

CHAPTER TITLE PAGE NO. 

 DECLARATION i 

 

 CERTIFICATE ii 

 

 ACKNOWLEDGEMENT iii 

 

 ABSTRACT iv 

 

 LIST OF FIGURES vii 

 

 LIST OF ABBREVIATIONS xi 

 

1 INTRODUCTION 1 

 

2 LITERATURE REVIEW 15 

 

3 LINT, CDC AND UPF 

 

44 

4 RESULT AND DISCUSSION 55 

 

5 CONCLUSION AND FUTURE SCOPE 67 

 

 REFERENCES 68 

 

 

 

APPENDIX 70 

 
 
 
 

 
 
 



vii | P a g e  
 

 
 
 

 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE NO. 

1.1 Memory Specification Chart 3 

1.2 NAND Controller Architecture 4 

1.3 RTL of function and showing data flow 5 

1.4 Basic Architecture of the Testbench Environment 5 

1.5 Conversion of RTL to Gate Level Netlist 6 

1.6 DFT Insertion 7 

1.7 Functional Verification of the logic 7 

1.8 Data path for Timing Analysis 8 

1.9 Conversion of Netlist to Layout is PD 8 

1.10 Partitioning and Floor-Planning 9 

1.11 Placement of the Blocks 10 

1.12 Clock Nets connected to F/Fs 11 

1.13 Routing 11 

1.14 Design Rule Check and Layout Versus Schematic 12 

1.15 CMOS Fabrication Process 13 



viii | P a g e  
 

2.1 Chip after Floor-planning 16 

2.2 Chip after Placement 16 

2.3 Chip after Clock Tree Synthesis 17 

2.4 Chip after Clock Net Shielding 18 

2.5 Chip after Routing 19 

2.6 Chip after Parasitic Extraction 19 

2.7 Width and Height of the core 20 

2.8 Effective area calculation 21 

2.9 Finding the utilization factor 21 

2.10 interconnection of IPs 22 

2.11 Black-Boxing the logic 22 

2.12 Commonly used Macros 23 

2.13 Cells without Decoupling Capacitor 23 

2.14 Cells with Decoupling Capacitor 24 

2.15 Placement of Decoupling capacitances 24 

2.16 Power Planning 25 

2.17 Mesh arrangement of Power Rails 26 

2.18 Pin Placement 27 

2.19 Logical Cell Placement Blockage 27 

2.20 Mapping of Library cells 28 

2.21 Placement of Logical Cells 29 



ix | P a g e  
 

2.22 Optimised placement with inserting Buffers 31 

2.23 Setup time analysis for ideal clocks 32 

2.24 Hold time analysis for ideal clocks 32 

2.25 Clock available at CLK1 33 

2.26 Clock Tree Synthesis 34 

2.27 Clock path using H-tree 35 

2.28 Clock net shielding 36 

2.29 Setup time analysis for Real clocks 36 

2.30 Hold time analysis for real clocks 37 

2.31 Maze Algorithm for Routing 38 

2.32 Routing 39 

2.33 Routing the data path 39 

2.34 Lambda rules 40 

2.35 Steps of Physical Design Flow 43 

3.1 Showing Synchronous Clocks 46 

3.2 Asynchronous clock 47 

3.3 Concept of Metastability 48 

3.4 Advantages of 2 F/F Synchronizers 49 

3.5 Data Copying Problem due to Metastability 50 

3.6 3 F/F Synchronizer 50 

3.7 Explaining Effect of Metastability 51 



x | P a g e  
 

3.8 Metastability on Pulse delay 51 

3.9 Metastability on Pulse Missed 52 

3.10 Metastability on Glitch Captured 52 

4.1 Spyglass error W18 55 

4.2 Spyglass error W19 55 

4.3 Spyglass error W69 56 

4.4 Spyglass error W111 57 

4.5 Spyglass error W123 57 

4.6 Spyglass error W336 58 

4.7 Spyglass error W391 59 

4.8 Spyglass error W392 59 

4.9 Spyglass error W414 60 

4.10 Spyglass error W448 60 

4.11 Error information in Spyglass 61 

4.12 Report generation in Spyglass 61 

4.13 Error reduction in Spyglass 62 

4.14 Functional Coverage in QuastaSim with 25 test 

cases 

62 

4.15 Functional Coverage in QuastaSim with 25 test 

cases for particular inputs. 

63 

4.16 Waveform showing of the functionality of ALU 

with 25 testcases. 

64 

4.17 Functional coverage of ALU with 50 testcases. 64 



xi | P a g e  
 

 

 

LIST OF ABBREVIATIONS 

 

 
RTL Register transfer level 

VLSI Vert Large Scale Integration 

GDSII Graphic design system 

ASIC Application specific integrated circuit 

GPU Graphical processing unit 

SOC System on chip 

FPGA Field programmable gate array 

HDL Hardware description language 

DFT Design for testability 

STA Static timing analysis 

CTS Clock tree synthesis 

UF Utilization factor 

PnR Placement and Routing 

DRC Design rule checks 

IP Intellectual property 

4.18 Functional coverage of ALU with 150 testcases. 65 

4.19 Functional coverage of ALU with 250 testcases. 65 

4.20 Functional Coverage in QuastaSim with 250 test 

cases for particular inputs. 

66 



xii | P a g e  
 

IC Integrated circuit 

EDA Electronic design automation 

CLK Clock 

DUT Design Under Test 

DUV Design Under Verification 

CDC Clock Domain Crossing 

UPF Unified Power Format 

ALU Arithmetic and Logical Unit 

MTBF Mean Time Before Failure 

F/Fs Flip Flop 

I/O Input or Output 

SDs Standard Devices 

PD Physical Design 

 

 

 

 

 
 

 
 
 
 
 
 

 

 

 



xiii | P a g e  
 

 

 

 

 

 

 

 



1 | P a g e  
 

Chapter 1 

 

INTRODUCTION 

 

 
1.1 VLSI DESIGN FLOW 

With the increase of the semiconductor industry and with the emergence of the 

VLSI, there is a lot of contribution of the big giants like Intel, Qualcomm, 

Western digital to produce millions of chips within a small amount of time. And 

the experience we are getting to the evolution of these Products and the IPs 

impact the world of artificial intelligence up to great extent. 

The ongoing process of making the chips by the semiconductor industries 

requires the particular flow for the correct functioning of the chip and the good 

yield which further leads to the marketing strategy of the big giants like 

Western Digital, Qualcomm, Intel and many more. The VLSI Design Flow is 

depicted below which is followed by almost all the industries in the world to 

make their products a better one. 

Here in this session, the VLSI design flow is explained thoroughly so that a 

brief idea could get, how the industry follows the basic steps from the design 

specification, up to the final silicon, which we are using in our PCs, in our 

mobile phones and in our day to day life. 

There are many steps, which mainly include the front end of the VLSI design 

flow and the backend design flow and also the packaging part. Each industry 

has its different names given to be intermediate steps but generally, the major 

ones are as follows. There is a difference between the ASIC design flow and 

FPGA design flow. 

The front end of the basic design for an FPGA design flow is common for the 

ASIC as well. It has input as the design specification and goes to the gate level 

netlist, which is nothing but the synthesizable RTL code. The difference 

between the ASIC and FPGA design flow comes in the backend part, as in 

FPGA we already have the hardware, so we don't need the floor planning and 

placement steps of the physical design. These steps have been eliminated in the 

FPGA part since FPGA design flow basically eliminates, and we don't get the 

entire flow of the backend part. So here, the VLSI design flow is basically 

depicted in terms of the ASIC design flow. 

 



2 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYSTEM SPECIFICATION 

ARCHITECTURE DESIGN 

LOGIC DESIGN 

FUNCTION VERIFICATION 

LOGIC SYNTHESIS 

DFT INSERTION 

FORMAL VERIFICATION 

STATIC TIMING ANALYSIS 

FLOOR PLANNING 

PLACEMENT 

CLOCK TREE SYNTHESIS 

PACKAGING 

SIGN-OFF LVS 

FABRICATION 

SIGN-OFF STA 

GDSII RELEASE 

TESTING 

ROUTING 

SIGN-OFF DRC 

PRODUCT VALIDATION 

DESIGN 

SYNTHESIS 

LAYOUT 

PHYSICAL VERIFICATION 

AND TAPE-OUT 

PRODUCT FABRICATION PRODUCTION 

PHYSICAL DESIGN 

LOGIC DESIGN 

RTL 

TO 

GDSII 



3 | P a g e  
 

1.1.1 LOGIC DESIGN 

Starting with the first part of the ASIC design flow is the logical design. This is 

also known as the front end of VLSI, where we have the specifications of the 

product which we needed for the designing part. Then we had the architectural 

design, logical design, functional verification, logical synthesis, DFT, formal 

verification and static timing analysis and this is basically what the logical 

design do. The input of the logical design part of the ASIC Design Flow is the 

specifications provided by the marketing team, or by the directors and the 

managers of the industry, which are having their look to the ongoing production 

which they have launched in the market, till the gate level netlist which can be 

synthesizable and which should be given as an input to the physical design 

engineers of the ASIC design flow. 

 

1.1.2 SYSTEM SPECIFICATION 

Starting with the VLSI Design Flow, the first step is a system specification. 

System Specification basically includes all the things which industry have as the 

ongoing customer demand, which the marketing team have analyzed in the 

market phenomena. It contains all the specifications of the blocks which the 

organization wants to design in terms of functionality, speed, power and area, or 

whether in terms of the research done by the marketing team. The one such kind 

of specification is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

Fig 1.1: Memory Specification Chart 



4 | P a g e  
 

1.1.3 ARCHITECTURE DESIGN 

Next step after the design and Market Specification is Architecture Design. 

Now in architecture design the organization generally have the broad idea of the 

architecture or the higher level of abstraction where engineers know all the 

components and all the SOCs needed to be integrated for the designing part. 

One SOC contains millions of IPs and the interconnections between them so it's 

the part of the high level of engineers to implement such an architecture like for 

example, some SoC then it's a part of the architectural design, which designers 

have to implement this, either by using the ripple carry adder or by the carry 

Look ahead adder or skip carry adder or many other topologies. This is the type 

of architecture design the industry generally have. Figure 1.2 shows one such 

type of Architecture of the NAND Memory. 

 

 

 

 

 

 

 

 

 

Fig 1.2: NAND Controller Architecture. 

 

1.1.4 LOGIC DESIGN 

The next step after the architectural design is the logical design, where 

designers are actually designing the logic of the Product based on the 

specification. For all the specification and for all the product, designer want to 

design for the requirement of the industry logic design, like for example if the 

requirement is to design the and gate then, let's suppose there is a four input 

NAND gate using two input AND gate. Then there are two ways to design it, 

the logic one is this and the logic, two is shown in the figure. The design can be 

implemented with the help of HDLs (Hardware Descriptive Language),as 

shown in Figure 1.3. 



5 | P a g e  
 

 

 

 

 

 

 

Fig 1.3: RTL of function and showing data flow. 

 

1.1.5 FUNCTIONAL VERIFICATION 

After that we'll go for the functional verification. Functional verification is the 

major step for defining the yield of the VSI design flow as to check the 

functionality of the logic design which we have implemented so that in the later 

part of this flow, the industry can get the correct yield, and the correct output so 

that we should not go to the entire flow process which is time consuming and 

expensive as well. This can be done with the help of high-level verification 

environment made with the help of system Verilog and UVM (Universal 

Verification Methodologies). The components of Environment are shown in the 

Figure 1.4. 

 

Fig 1.4: Showing the Basic Architecture of the Testbench Environment. 



6 | P a g e  
 

1.1.6 LOGIC SYNTHESIS 

After the verification. After the functional verification of the above design 

which we have implemented using these specifications given by the marketing 

team or by the customers, we want to design it for the hardware purpose so the 

next step comes is the logical synthesis. Synthesis is basically the step where we 

need to convert the RTL into the gate level netlist, so that it can be 

synthesizable. And it can be implemented in the actual hardware. This step, 

eliminates all the unwanted and unnecessary coding styles which we have made 

by mistake in RTL Design part while writing the Verilog and System Verilog 

code, it contains the elimination of unwanted Latches, width mismatch, 

unintentional loops, and many other errors. So, this part is basically the actual 

synthesis part of this design process where we are getting the Actual Hardware, 

as shown in Figure 1.5. 

 

 

 

 

 

 

 

 

Fig 1.5: Conversion of RTL to Gate Level Netlist 

 

 

1.1.7 DFT INSERTION 

After the synthesis, where we get the gate level netlist of the design, we move to 

the DFT insertion In this step we are just inserting the DFT that is design for 

testability block into the design, so that the block can test itself in the simulation 

flow, and it will create test vectors for functional analysis, we have random 

generator block, which will create error patters and test patterns to test the 

circuitry of design which we have implemented so that it can be verified 

properly. The Scan and MBIST topologies are shown in Figure 1.6. 



7 | P a g e  
 

 

Fig 1.6: Showing the DFT Insertion. 

 

1.1.8 FORMAL VERIFICATION 

After the insertion DFT insertion, next is the formal verification, where the tool 

verifies the logic and the DFT part which it has implemented, and verify all the 

things in a broad aspect. The concept of emulation is used by the verification 

engineers where, the bits patterns are given to the DUT in terms of C Codes and 

the log file is maintained for all the mis-matches based on the golden response. 

The following image is shown below for the formal verification. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.7: Showing the Functional Verification of the logic. 



8 | P a g e  
 

1.1.9 STATIC TIMING ANALYSIS 

After the formal verification done by the verification engineers, next is to move 

to the static timing analysis. The analysis done till now is for the functionality 

of the design. Now it comes to the timing part of the design, where industries 

are using static timing analysis, static timing analysis is also the timing analysis, 

which contains many constraints and many parameters like setup constraints, 

hold constraints, clock frequency, skew rate, effect of jitter on the timing, effect 

of delta delay on the timing. There are many questions in a static timing 

analysis where STA engineer checks all the parameters, and then verify, and 

then rolls the ball to the layout team. So here ends the logical design of the 

ASIC design flow, which is generally refers to the FRONT END of ASIC 

design Flow. 

 

 

 

 

 

 

Fig 1.8: Showing Data path for Timing Analysis 

 

1.1.10 PHYSICAL DESIGN FLOW 

After completing the logical design of the ASIC design flow, we move to the 

physical design. Physical design is the other angle of the flow where we have 

the gate level netlist generated by the step of synthesis, and then we move to the 

layout part. There are various steps which include from floor planning to the 

Layout part, which comes under the physical design. 



9 | P a g e  
 

Fig 1.9: Conversion of Netlist to Layout is PD 

1.1.11 PARTITIONING AND FLOOR PLANNING 

This is the first step of the Physical Design where the big SoC is divided into 

small sub groups and generally this step is referred to as Partitioning which is 

based on some constraints like interfaces must be minimum, each partition 

much get almost equal amount to gates and complexity. After that, the next step 

is Floor-planning. Like for example, when we make the house we have the 

blueprint of the house we have the bathrooms, we have the location of the 

kitchen, all the blueprints which we have for the house similar Blueprint we 

have for the chip as well, where we have the location of the pre-placement cells, 

where we have 

the pin 

placement, power 

planning and 

other 

information. 

 

 

 

 

Fig 1.10 (a) 

 

 

 

 



10 | P a g e  
 

 

 

Fig 1.10 (b) 

 

 

 

 

 

 

 

Fig 1.10 (a) Showing the Partitioning (b) Showing the Floor-Planning 

1.1.12 PLACEMENT 

After the Floor-planning, we have the placement of the logical blocks, how they 

are placed on the basis of the flow of the data. So, there are many constraints of 

the placements like whether we have to include buffers in the parts, whether we 

have to replace IOs, technology cells, S/Ds, IPs. So, in this step we roughly 

placed all these cells, and we just measure the locations inside the core. 

As mentioned in the floor-planning step, we generally measured the width and 

the height of the core, and in the placement, we take the blocks of the cells from 

the libraries, and we just fit it inside the core so that it can be placed according. 

 

 

 

 

 

 

 

 

 



11 | P a g e  
 

 

Fig 1.11 Placement of the Blocks 

 

1.1.13 CLOCK TREE SYNTHESIS 

After the placement is done, the most important step is to fix the clock nets, as 

we know that clock is a major source of concern in the field of VLSI, it is the 

most switching signal, and the product efficiency depends majorly on the clock 

frequency. It decides the overall frequency of this system. So, this step includes 

the synthesis of the clock tree, what are the measures which are taken for the 

implementing clock in this circuit, it contains many constraints like we have to 

check the pulse width of the clock, pulse duration, we have to check skew, we 

have to check slew rate, we have to check the latency. So, these things are 

covered in the clock the synthesis part.  

 

 

 

 

 

 

 

 

 

Fig 1.12 Showing the Clock Nets connected to F/Fs 

 

1.1.14 ROUTING 

The next part after synthesizing the clock, we generally synthesize the data 

paths, since we have just placed the cells we haven't connected, or we haven't 

routed it yet. So now in the routing part we can only connect the data path in an 

efficient manner. So here we generally use the algorithms of the shortest path, 

of which we generally covered in the data structure subject. 



12 | P a g e  
 

 

 

 

 

 

 

 

 

 

Fig 1.13 Showing the Net connection between the Blocks. 

 

 

1.1.15 SIGN-OFF DRC, LVS, STA 

After the routing part we have the sign-off things, Layout v/s Schematic, DRC 

and STA. These are the three tasks, we complete with the help of tool so that it 

measures all the timing requirements of the product, of the placement and clock 

tree synthesis and the routing which we have developed. If there is any error or 

if there any mismatch in the timing, which we found in these checks, then we'll 

go above the flow and we'll do the changes in the placement, in the clock tree 

and in the routing part, we generally avoid changes in the clock path as the 

clock net is the most critical net and we have to take care of it, so we generally 

change in the data path that is in Routing. 



13 | P a g e  
 

 

 

Fig 1.14: Showing the Design Rule Check and Layout Versus Schematic 

 

1.1.16 PRODUCTION 

After the functional checks which we have done, like Layout versus schematic, 

DRC checks and STA checks, we are ready for our GDSII log file which we 

have the information of all the layout kind of thing that is layout and systematic, 

which is the input to the foundry. So, many VLSI industries have their 

foundries, which take the GDSII file from the engineers from the software 

patch, and they do the necessary steps of lithography and etching so that they 

can fabricate the Silicon chips.  

The next step is to fabricate the chip based on the GDSII and the machines 

present in foundry. Now, after the fabrication of the chips, there are many chips 

inside. Inside the silicon wafers which are not functionality correct, which 

should be checked so that so to maintain the functionality of the products which 

we have implemented, so the next step is Testing. This is the post Silicon 

testing. In the above verification part, we have used pre-silicon testing where we 

have tested we have verified through simulation. Now this is we are verifying 

with the help of hardware we have in the hands. We have many test vectors, we 

generally use C codes and the Python codes for testing. We verified these 

results with the golden results and verify the functional coverage. After the 

testing, the product which we are desired, is allowed to done with validation 



14 | P a g e  
 

part, where we do the last function checks of the product which we have 

created.  

In this way the entire basic flow goes from the specification to the product 

validation, which includes several steps and there are many intermediate steps 

between these major steps, so the necessary parts are covered in the following 

sections. 

 

 

Fig 1.15: Showing the CMOS Fabrication Process 

 

1.2 OBJECTIVES 

The main objectives of this thesis are as follows: 

• To understand the ASIC design Flow in great extent by analysing its 

various stages from Design Specification till the Production of the 

Product. 

• To understand the various stages in the Physical Design Flow. 

• The functional checks in the Verilog like: Lint, Clock Domain Crossing 

and UPF. 

• To Design and Verify the ALU with the help of Quartus Prime and 

calculate its functional coverage. 

 

1.3 THESIS ORGANIZATION 

The Thesis is organized in 5 chapters which are as follows: 



15 | P a g e  
 

 

• Chapter 1 introduces the overall aspect of the ASIC Design Flow, which 

starts with the specification till the Production of the product. And the 

objective of the thesis which is showing the motivation while taking this 

title. 

 

• Chapter 2 helps in understanding the Physical Design Flow in detail, 

which includes the Floor-Planning step and then the placement and 

Routing till the Sign-off STA. 

 

• Chapter 3 includes 3 major steps of Linting, Clock Domain Crossing and 

UPF. These are the functional checks which helps in the synthesis of the 

gate level netlist from the Verilog code. 

 

• Chapter 4 shows the results which includes the ALU Design and 

Verification of ALU depending on the code coverage. And the various 

cases in the Lint using Spyglass which helps in understanding the 

Functional Checks easily. 

 

• Chapter 5 results in the conclusion and the future scope of the thesis and 

also what can be done next and the improvement in the design flow 

which helps in the industry to improvise. 

 

 

 

 

 

 

 

 

Chapter 2 

 

 

LITERATURE REVIEW 

 

 



16 | P a g e  
 

2.1 INTRODUCTION 

As discussed earlier in the first chapter that the VLSI design flow comprises of 

the physical design flow. Here is a quick overview of the physical design flow, 

where the input is the gate level netlist, and we have to design till the GDSII 

which contains the layout files of the gates for all the SOCs or the IPs which are 

needed to be implemented. There are many steps in the physical design flow, 

which contains many further steps depending on the topologies used by the 

particular industry. 

The physical design steps comprise of: 

1) Floor Planning 

2) Placement and Optimize Placement 

3) Clock Tree Synthesis 

4) Clock Shielding 

5) Routing 

6) DRC check. 

7) Parasitic Extraction 

 

2.2 OVERVIEW OF PHYSICAL DESIGN FLOW  

2.2.1 Floor Planning 

Starting with the floor-planning, where we have the constraints on width and 

height of the core, and to integrated many pre-placed cells. Power planning and 

Pin placement is also done in this step of Physical Design Flow. Figure 2.1 is 

showing the snippet of Floor Planning where there are many components like, 

core and die, decoupling capacitance, power grids and pins connections. 

 

 

 

 

 

 

 

 



17 | P a g e  
 

 

 

 

 

 

 

Figure 2.1: Snippet of the chip after Floor-planning  

 

2.2.2 Placement and Optimised Placement 

Then we have the netlist binding and placement optimization, where we are just 

finding the netlist and we have the placements, which get optimized, including 

the buffers and all the necessary things. Figure 2.2 is showing the chip where 

the blocks are placed according to the defined regions based on the placement 

optimisation tool. 

Figur

e 2.2: 

Snipp

et of 

the 

chip 

after 

Place

ment 

2.2.3 

Clock 

Tree 

Synth

esis 

Then we have the timing issues and the clock and data path in the physical 

design flow, we have to generally study, the static timing analysis, and the clock 

synthesis. Figure 2.3 depicts the chip have the clock path connected with the 

flip-flops using the H-Tree algorithm. 



18 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Snippet of chip after Clock Tree Synthesis 

 

2.2.4 Clock Net Shielding 

Then we have the shielding of the clock nets as clock is the most critical net so 

we shield them so that it can be glitch free. So here we study the signal integrity 

issue, which is generally a crosstalk, which is a combination of glitch and the 

data delays, which will affect the timing. Figure 2.4 shows that the clock nets 

have been shielded by the lines which are not fluctuating, to reduce the effect of 

glitch in clock signal. 



19 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Snippet of chip after Clock Net Shielding 

 

2.2.5 Routing  

After the shielding of the clock net, we have to route the data for the proper 

functioning of the SOC. The routing of the data path can be done by various 

ways using the shortest path algorithms where we have the source point and the 

destination point and the connection between them is generally, the L shape. 

Figure 2.5 depicts the routing of the data path, and if some data paths are 

critical, which means that if data path is crucial for the timing and performance 

point of view, then it can also be shielded as like the clock nets. 

 

 

 

 

 

 



20 | P a g e  
 

 

 

 

 

 

 

 

 

 

Figure 2.5: Snippet of chip after Routing 

 

2.2.6 DRC and Parasitic Extraction 

Then the last step of the physical design flow is the violation checks of the data 

wires, which contains the DRC checks and parasitic extraction, and then after 

the final step we have the static timing analysis for all the real clock path and 

the data path. Figure 2.6 shows the parasitic resistances and capacitances which 

are present in the SOC because of the interconnection of the wires and the nets 

running very close to each other. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Snippet of chip after Parasitic Extraction. 



21 | P a g e  
 

2.3 FLOOR PLANNING  

 

There are series of steps that are followed in floor planning. The sequence of 

steps that are followed are: 

 

1) Define width and height of core and die. 

2) Define the location of preplaced cells. 

3) Surround the preplaced cells with a decoupling capacitor. 

4) Power Planning 

5) Pin placement 

6) Logical Cell Placement Blockage 

2.3.1 Width and Height of core and die 

The first step of the physical design flow is floor-planning which includes many 

small steps, the initial one is the utilization factor and the aspect ratio of the core 

and the die. The first step is to measure the width and the height of the core and 

die so that the designer can get the overall area where he can do the placement 

of the blocks. 

Here, the utilization factor is calculated and the aspect ratio is calculated in 

terms of the gates and in terms of the area of the core and the type of the 

technology node used, which is effectively used by the core and by the 

interfaces. Utilization factor can never be 100% since we want space between 

the cells, so that there can be an interconnection amongst the blocks on the same 

layer. Figure 2.7 is showing the core and die of the chip, where the actual logic 

of the chip will be placed in further steps. Figure 2.8 is showing the calculation 

of the effective area of the logic which is used inside the chip for the desired 

functionality. Figure 2.9 depicts the utilization factor, which means the amount 

of area of the core being utilized by the logic to the total amount of the area of 

core. 

 

 

Figure 2.7: Snippet of 

chip showing the width 

and Height of the core. 



22 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Snippet of chip showing the effective area calculation. 

 

 

 

Fig

ure 

2.9

: 

Sni

pp

et 

of 

chip for finding the utilization factor. 

 

2.3.2 Pre-placed cells 

After the calculation of the width and the height of the core and utilization 

factor, pre-placement cells are included in the core. These pre-placement cells 

are basically the IPs/ IOs used frequently into the design and in the big SOCs, 

so that they can be available in each and every session in which they are 

required. For example, some of the common IPs, which we generally used are 



23 | P a g e  
 

some Digital IPs, like adders, multiplexers, some Analog IPs like regulators, 

crystal oscillators, so these are some of the examples of IPs which frequently 

use, so these are considered under the pre-placement cells. Figure 2.10 shows 

the logic which is commonly used in the SOC. Figure 2.11 shows, how the 

common logic can be converted into black box and can be used as the IP. Figure 

2.12 shows the commonly used macros in the SOC Design which contains both 

Analog and Digital IPs, IOs and Macros. 

 

 

 

 

 

 

 

 

 

Figure 2.10: Snippet of chip making interconnection of IPs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Snippet of chip for Black-Boxing the logic. 



24 | P a g e  
 

 

 

 

 

 

 

Figure 2.12: Snippet of chip for commonly used Macros. 

 

2.3.3 Use of Decoupling Capacitance 

Then the next step is to include the decoupling capacitors. The decoupling 

capacitors are used in this circuit so that there can be a measure for the 

unwanted saturations in the power supply. As some of the common problem of 

Voltage drawn and ground bounce occurs in the SOC, so these decoupling 

capacitors provide a backup supply to the cells, when there is a need of power. 

Figure 2.13 shows the logic which is not having the Decoupling capacitance. 

Figure 2.14 shows the logic which is having the capacitance for resolving the 

issue of voltage drop and ground bounce. Figure 2.15 shows the placements of 

Macros and Decoupling capacitances. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Snippet of chip showing cells without Decoupling Capacitor. 



25 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Snippet of chip showing cells with Decoupling Capacitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Snippet of chip showing placement of Decoupling 

capacitances. 



26 | P a g e  
 

2.3.4 Power Planning 

The next step after the Decoupling capacitance is the Power-Planning, where 

generally, the names of the powers are made, the layer above the blocks, so that 

each and every block can get the continuous supply of the VDD and the VSS 

for the correct operation. And there would be the minimum delay amongst the 

power nets and the wires so that they are within the noise margins, and the 

effect due to parasitic delays can be avoided. Figure 2.16 depicts the logic high 

line and logic low line supply, which is connected to each logic, so that there 

will be no problem of supply rails while the particular block is not active mode, 

or in power save mode. This is basically the local power connection technique. 

Figure 2.17 depicts the global power grid for the entire SOC, so that the 

appropriate power rails is available within the short distance to each and every 

block of the IP or SOC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Snippet of chip showing Power Planning 

 



27 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Snippet of chip showing Mesh arrangement of Power Rails. 

 

2.3.5 Pin Placement and Logical Cell Placement Blockage 

And the final step is logical cell placement blockage, where the pins are placed 

according to the need of the SOC design, the pins are placed according to their 

interfaces inside the code and logical cell placement blockage is done to block 

the area of the core where we don't have to place any cells, these areas can be 

blocked due to the other block which is inherently present there, or avoid to run 

the placement optimization tool. Figure 2.18 shows the arrangement of the pins 

in the die location which depends on the requirement given by the design team 

for the timing constraints. Figure 2.19 depicts the Blockage of the placement 

tool, so that no logical cell could be allowed to get placed onto that specific 

region where it should not be. 



28 | P a g e  
 

 

 Figure 2.18: Snippet of chip showing Pin Placement 

 

 

Figure 2.19: Snippet of chip showing Logical Cell Placement Blockage. 



29 | P a g e  
 

 

2.4 PLACEMENT 

The next step after the Floor Planning is the placement process, it carries 

various steps starting with binding the netlist into the physical cells with the 

help of technology node present in the library of the particular dataset of the 

organization which is generated after the synthesis part in the design flow. 

Following steps are performed in Placement 

1. Bind the netlist with Physical Cells. 

2. Placement 

3. Optimize Placement 

 

2.4.1 Physical cells in the netlist 

Netlist contains many IPs, IOs, S/Ds that are technology dependent so we have 

to link those blocks or cells to some technology node.  There are the libraries 

present which contains different technology in the database, so the optimized 

gate with respect to time period, power and area is taken from the library and 

are integrated and placed into that core region. Figure 2.20 shows many logical 

cells which are present in the library and are needed to be integrated in the 

netlist. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20: Snippet of chip showing Mapping of Library cells. 

 



30 | P a g e  
 

 

2.4.2 Placement of the logical Blocks 

The placement of the blocks is done based on the requirement of the design of 

the IP or SOC. All the blocks which have common path of data are placed to 

each other. Placement is done with the help of automatic tools which exclude 

the region of pins and location of pre-placement cells. Figure 2.21 shows the 

placement of the blocks based on the EDA tool. 

 

 

Figure 2.21: Snippet of chip showing Placement of Logical Cells. 

 

2.4.3 Optimised Placement 

Optimised placement is done to ensure the correct functionality of the data path, 

while transferring the data from one logic gate to another. There are many 

parasitic resistances and capacitances present in the SOC, due to which there 

can be the effect of signal integrity issues and the most common is of crosstalk 

which can disturb the original signal. Thus, to eliminate or to minimise the 

effect of glitches and crosstalk, buffers are added in the path to maintain the 

signal strength of the data. Optimize placement is done using the estimated wire 

delay and lumped capacitances to measure the delays, which can change the 



31 | P a g e  
 

strength of the signal. So, accordingly optimized placement is done. Figure 2.22 

shows the introduction of the buffers inside the Core, so as to improve the 

quality of the signal being transferred from one logic gate to another, depending 

on the relative connectivity of the logical blocks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22(a) 

 

 

Figure 2.22(b) 



32 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22(c) 

Figure 2.22: Snippet of chip showing Optimised placement with inserting 

Buffers. 

 

2.5 Static Timing Analysis with Ideal Clocks 

Now since for the connection of the clock, for the proper functioning of the 

SOC, there are some measures like the data delays, and the slew rate, latency, 

should be studied so that the signal integrity should be maintained. 

The next step after the placement is to perform the timing analysis with the 

estimated clock nets and the estimated data wire delays. Here the timing 

analysis performed on the basis of the setup and hold constraints, and the 

introduction of the clock jitter and uncertainty is also engaged so to perform the 

clock domains in a more efficient manner. After the static timing analysis, with 

a single clock. the STA is performed with the help of multiple clocks. Multiple 

clocks are introduced in this method and the multifrequency clocks, multi-level 

clocks are introduced. Figure 2.23 shows one of the stages of pipelined 

architecture where there are two F/Fs, one is Launch (Left) and the other is 

Capture (Right) and Setup timing constraints have been verified with real clock. 

Figure 2.24 shows the calculation of Hold time constraints with real clock. 

 



33 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: Snippet of chip showing Setup time analysis for ideal clocks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24: Snippet of chip showing Hold time analysis for ideal clocks.  



34 | P a g e  
 

2.6 CLOCK TREE SYNTHESIS 

Now, after the static timing analysis status check is done. To maintain the clock 

net and the data net of the SOC functional correct, the next step is clock 

synthesis, where the clock path is analysed and synthesis is done in between the 

clock signals so that the signal integrity can be matched accordingly. 

The general algorithm which is used in the clock tree is the tree algorithm, 

where the main objective is to minimize the latency, and to reduce the skew for 

launch and capture F/Fs. Figure 2.25 shows the clock pin CLK1, which is 

needed to make the connection to the desirable F/Fs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25: Snippet of chip showing Clock available at CLK1.  

 

For Clock there are various quality parameters check that are needed to be 

verified. The six quality parameters checks are: 

1. SKEW 

2. PULSE WIDTH 

3. DUTY CYCLE 

4. LATENCY 

5. CLOCK TREE POWER 

6. SIGNAL INTEGRITY AND CROSS TALK 



35 | P a g e  
 

 

Figure 2.26 shows the typical implementation of the H tree, which is used to 

make the skew as low as possible by eliminating the latency difference between 

the Launch F/F and Capture F/F which will be working and transferring the data 

from the same clock pin. Figure 2.27 depicts the H-tree implementation into the 

SOC, where the shape of ‘H’ can easily be visible through the clock path. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26: Snippet of chip showing Clock Tree Synthesis  

 

 

 

 

Figure 2.27(a)                                                 

 

 

 

 

 

 



36 | P a g e  
 

 

 

 

 

Figure 2.27(b) 

 

 

 

 

Figure 2.27: Snippet of chip showing Clock path using H-tree.  

 

There are various checks which are needed to be performed while doing the 

proper synthesis of clock tree. Latency is basically the time, from the pin of the 

clock to the input of the F/F, the clock skew is basically the latency difference 

between the two F/Fs which are engaging in the data flow. These are generally 

termed as the launch clock path and the capture clock path. The third is the 

pulse width of the clock, it should be constant throughout as desirable. And it 

can be changed by the signal integrity issues and with the change in the strength 

of the signal is because of the parasitic resistances and the capacitances in the 

SOC. The another is the duty section of the clock. This is the parameter to be 

checked, and the clock power and signal integrity of the clock tree. These are 

the various parameters which are needed to take care by designing the clock tree 

synthesis. 

 

2.7 CLOCK SHIELDING 

After the CTS, another important point, which comes after the clock synthesis 

in the flow is that the clock is a critical net so it should be glitch free. The 

concept of crosstalk, and the interface amongst the clock were needed to be 

minimized and for that the net shielding is done, and after the clock shielding, 

static timing analysis is done with the real clock. Figure 2.28 shows the view of 

clock path which is shielded by the rails of either Vdd or Vss, so that there will 

not be the fluctuations on these lines and through which, the problem of glitch, 



37 | P a g e  
 

delta delay, change in the rise time and fall time, and change in the pulse width 

and duty cycle of the clock can easily be eliminated. 

 

 

 

 

 

 

 

 

 

 

Figure 2.28: Snippet of chip showing Clock net shielding. 

 

2.8 Static Timing Analysis with real clocks 

After the clock net shielding, STA is done with real clocks, which includes the 

presence of buffers in the clock path. These buffers were not in STA when done 

with ideal clocks. The effect of Jitter and Skew is also been taken into 

consideration in the STA. Figure 2.29 shows the Setup time constraints analysis 

for real clock and figure 2.30 shows the hold time constraints for real clock. 

 

 

 

 

 

 

 

 



38 | P a g e  
 

 

 

Figure 

2.29: 

Snippet of 

chip 

showing 

Setup 

time 

analysis for 

Real 

clocks.  

 

 

 

 

 

 

 

 

 

 

Figure 2.30: Snippet of chip showing Hold time analysis for real clocks.  

 

2.9 ROUTING 

The next step after performing the STA in the real clock path and in the 

estimated data path, then the routing is turned with the help of the maze 

algorithm that is maze routing. It includes various steps. 

1. Finding the Source point and the sink point (destination point). 

2. Mark grids on the core and die region. 

3. Mark the points on the neighbouring cells in the increasing order while 

moving from source to destination cell location. 



39 | P a g e  
 

4. Trace the shortest path. 

5. The path can be straight or L-shape depending on the availability of the 

connection between the two blocks. 

 

Figure 2.31 shows the Maze Algorithm, where the numbers of the adjacent cells 

are increasing when the tool is moving from source point location to the 

destination point location. Figure 2.32 depicts the path taken by the tool based 

on the shortest path via the values of the adjacent cells. Figure 2.33 shows the 

SOC, where the data path is also routed after applying the Maze Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31: Snippet of chip showing Maze Algorithm for Routing.  

 

 

 

 

 

 

 

 



40 | P a g e  
 

 

 

 

 

Figure 2.32: Snippet of chip showing Routing.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33: Snippet of chip after Routing the data path.  

 

2.10 DESIGN RULE CHECKS 

 

After performing the STA with real clock delay and real data path delay, the 

parasitic extraction has been done and design rule check have been 

implemented onto the SoC, so that it can be fabricated in the industry with the 

proper available resources of lithography and mask proximity. Lambda rules 

have been set by the foundry to make the layout a proper one and which can be 

used to generate the desirable silicon. Figure 2.34 shows some of the Lambda 

rules which are given by the foundry, based on their measure of approximations. 

The actual values needed to be filed by the Layout Engineer which can be 

greater than the Design Rule, but cannot be less, since it will violate the DRC  



41 | P a g e  
 

 

Figure 2.34: Snippet of chip showing Lambda rules.  

 

2.11 SUMMARY 

 

This is the brief overview of the physical design flow in which, we have the 

flow planning, then we have the placement, then we have to optimize placement 

of the cells, then we have static timing analysis where we have the estimated 

clock delays and the estimated data path delays, then we do the clock to 

synthesis where we fix the clock wires and the clock path. And after that we 

again do static timing analysis with the real clock delay and the estimated data 

path delay. Then we have the routing path. And then we do the STA at real 

clock path and the real data path. 

Then we do the clock shielding so that it can be glitch free, and in the data paths 

which are the critical paths, also. Then we do the final DRC checks, and then 

layout checks, and then do the STA for parasitic extractions, as well, where we 

include the effect of the lumped resistances and the capacitances. 

Figure 2.35 shows the chip after each and every transition in the Physical 

Design Flow, starting with the input of logic synthesis, followed by Floor-

planning and then by placement. After Placement, Clock tree synthesis is done 

and lastly the Routing is done followed by the Design Rule check. 



42 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35(a) 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35(b) 

 

 



43 | P a g e  
 

 

Fig

ure 

2.3

5(c) 

 

 

 

 

 

 

 

 

 

 

 

Fig

ure 

2.35(d) 

 

 



44 | P a g e  
 

 

 

Figure 2.35(e) 

Figure 2.35: Snippet of the chip showing the steps of Physical Design Flow  

 

 

 

 

 

 

 

 

 

 



45 | P a g e  
 

RTL INTEGRATION 

LINTING 

CDC 

LEC 

RTL SYNTHESIS 

LOW POWER UPF 

STA 

FECO 

 

Chapter 3 

 

 

LINT, CLOCK DOMAIN CROSSING, UPF 

 

 
3.1 LINTING 

 

VLSI Design Flow is an integration of various steps, which are needed to be 

performed to meet the constraints of the design within the limited time frame as 

required in the Semiconductor industry and one such step is of linting. Linting is 

a step which comes just after the RTL Design in the flow and after the Lint is 

done, the flow rolls over to CDC and synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 | P a g e  
 

 

The concept is Linting is introduced in the Design so as to check the syntax 

errors in the RTL coding of the Design and to validate the quality of the code on 

the basis of good coding practices. Linting tool has the facility to raise some 

indication in terms of flag when there is any misuse of the coding practice and 

errors in the code. 

The importance of the Lint process is to filter out the unwanted errors which are 

not because of the logic but because of the syntax which may cause a severe 

problem when the design is allowed to go in back end where the netlist is 

converted into layouts and thus in the tape-out of the chip. 

If the linting process has not been done, then the synthesis tool will take a huge 

amount of time to verify the correct functionality of the design which again 

results in the miss in the deadline of the product launch by the big giants of 

VLSI thus Linting helps in the great reduction of time in design process. 

Some of the examples where the process of linting helps in raising the flag are 

as follow 

• Design of any unintentional latch 

• Conflicts between set/reset 

• Formation of combinational loops  

• Presence of Non-synthesizable Blocks  

• Errors due to undriven nets 

• Unequal length of the operands 

• Uncovered case items. 

• Unused flops in the design or Extra states in FSM. 

• Wrong use of Blocking/nonblocking assignments 

• Occurrence of race around condition. 

 

3.2 CLOCK DOMAIN CROSSING 

3.2.1 Synchronous and Asynchronous Clocks. 

The first concept that while studying the clock domain crossing is the 

understanding of asynchronous and synchronous clocks, as in the world of 

VLSI each of the SOC designed is having the clock which is moving from one 

domain to another. There is a multiple domain clocks, or multiple clock design 

process. There are very less circuits or IPS, in the SOC, which is having single 



47 | P a g e  
 

block design. The concept of synchronous and asynchronous clocks is also 

become important while understanding the concept of multi clock designs.  

Synchronous clocks as the word implies Synchronous means in relation with 

each other. The two clocks are set to be synchronous with each other, if they are 

having the same timing of the event occurred. Synchronous clocks have a phase 

to phase relation with each other. When there is a defined same phase relation. 

The respective clocks can be generated with the help of phase lock loop or can 

be derived with one another. The most important property of the synchronous 

locks, is that they have the occurrence of either positive edge or negative edge 

at the same time, or the edges of the clocks in which the circuit is dependent is 

having the relation with each other. 

 

 

 

 

 

 

 

 

 

Fig 3.1: Showing Synchronous Clocks 

 

The clocks, are said to be asynchronous when there is no a fixed relation of 

phases of clocks with each other. When the Launch and Capture flip flop of the 

same data path are getting the rising edge of the clock, then there is no relation 

between those two positive edges of the clock. At that time when we don't have 

the exact relation between the positive edges of the globe, we can say that the 

clocks are asynchronous. 

And if there are multiple clocks present in the circuit then the static timing 

analysis depends on the frequency of the multiple clocks, and also on the phase 

relation in the clocks. When the clocks are synchronous, then a static timing 

analysis will become easier. The calculation of the setup and the hold 

constraints will be easier. 



48 | P a g e  
 

But when the clocks are asynchronous and doesn't have any relation between 

them, then the static timing analysis with multiple clock domains requires extra 

care. Thus, the concept of clock domain crossing came into existence. 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Showing Asynchronous clock 

 

3.2.2 Metastability 

When the pipeline is introduced in digital circuit it contains the back to back 

F/Fs in between combinational block. And when there is a data flow between 

the launch Flop, and the capture Flop, the data will flow, then there is a 

particular requirement of the capture Flop which deals with the setup 

requirements. And there are certain requirements of the launch flop, which deals 

with the hold time requirements. 

There is a situation in digital circuits, when the data is changing with the effect 

of process, variation and temperature. And there is a failure in meeting the 

timing of the synchronous circuits. So, the output is undetermined, whether it 

will take the logic high or logic low, or logic value under this condition where 

the output is not defined to any particular logic, and it will stay in the metastable 

state. This whole process in VLSI is known as metastability. 

Metastability can be avoided in synchronous circuits with the help of proper 

timing analysis like STA and DTA, but in asynchronous circuits where the 

clocks are in different domains, this is unavoidable.  



49 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3(a) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3 (b) 

Fig 3.3: Showing the concept of Metastability. 



50 | P a g e  
 

3.2.3 Synchronizers 

The basic element in the digital circuit which is used to minimise the effect 

of Metastability is the Synchronizer. There are various types of 

synchronisers which are used in the asynchronous digital systems depending 

on the requirement of the amount of metastability and also about the 

connection between the ports where there is the cause of the metastability. 

The most common synchronizer is the cascade connection of 2 F/Fs which is 

used to minimise the setup and hold constraint violation in the data path of 

the SOC. 

 

Fig 

3.4(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4 (B) 



51 | P a g e  
 

Fig 3.4: Showing Advantages of 2 F/F Synchronizers 

According to this type of technique, the stability is achieved when more time is 

given from the output to get stable. The 2 cascaded F/Fs helps in time 

borrowing for one more clock cycle, for the output data to get stable. 

 

3.2.3 Mean Time Before Failure (MTBF) 

While using the technique of 2 cascaded F/Fs, there is a possibility that the 

output may not get stable even using 2 F/Fs, so there is a need to calculate the 

time before which the output data can be stabilize. This parameter is known as 

MTBF.  

 

 

 

 

 

 

 

 

 

Fig 3.5 Showing Data Copying Problem due to Metastability. 

 

There are some Digital Designs where MTBF is too short for 2 F/Fs, so the 3 

F/Fs design is implemented for high speed digital circuits. MTBF should ideally 

be as high as possible for the design to be free from Metastability, so that the 



52 | P a g e  
 

failure frequency is low and the signal integrity is maintained. 

Fig 3.6: Showing 3 F/F Synchronizer 

 

3.2.4 Effects of Metastability 

For understanding the effect of Metastability, considering the following figure 

which contains 2 F/Fs synchronizer: 

 

 

 

 

 

 

 

 

 

Fig 3.7 Showing 2 F/F Synchronizer for Explaining Effect of Metastability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.8: Effect of Metastability on Pulse delay. 



53 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.9: Effect of Metastability on Pulse Missed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 | P a g e  
 

Fig 3.10: Effect of Metastability on Glitch Captured. 

 

 

3.3 UPF (Unified Power Format) 

Unified Power Format is one of the crucial aspects in the world of VLSI, which 

leads to the enhancement in the design and verification strategy of the 

semiconductor industry. The following shows the VLSI Design flow and where 

UPF fits into the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARKET ANALYSIS / 

PRODUCT SPECIFICATION 

PHYSICAL LAYOUT 

TAPE OUT 

FRONT END 

DESIGN SPECIFICATION 

DESIGN ENTRY (HDL) 

FUNCTIONAL 

VERIFICATION 

LOGIC SYNTHESIS 

FLOOR PLANNING 

LAYOUT/ PNR 

FORMAL VERIFICATION 

GATE LEVEL SIMULATION 

POWER ESTIMATION 

POWER AWARE 

BACK END 



55 | P a g e  
 

As discussed earlier, the VLSI Design Flow includes many phases and one of 

the topics to be focused upon is the need of UPF which typically comes both in 

the design part as well as in the verification part of the cycle. 

According to the Moore’s Law, the complexity of the design or SoC is 

increasing every 18 months, so as the Power concern because the Power 

dissipation in the circuit is increasing exponentially. The size of the transistors 

is reducing resulting the increase of the parasitic capacitance and Dynamic 

power dissipation is directly proportional to the Capacitance and frequency and 

also on the voltage supply.  

Pd = C*Vdd2*Fswitching 

 

The Dynamic power dissipation is increasing so there must be a way to control 

the unwanted the power wasted in the system. One considerable example is 

given below. 

 

 

 

 

 

 

 

 

 

 

 

Here the assumption is that the CPU is working on high frequency like on 3 

GHz (1V-2V) and the video player on low frequency like on 2 GHz (0.5V-

1.5V). During the time of interaction between CPU and Video player, the 

operating voltage would be 1V. Since video player can be operated on the given 

frequency at low voltage so the extra voltage supply results in the extra Power 

dissipation.  Thus, there is a need of power aware concepts in the design 

architecture. 

CPU 

GPIOs VIDEO TIMERS  

FLASH MEMORY GPU 

HIGH SPEED BUS 



56 | P a g e  
 

RTL Simulation v/s Power Aware Verification Using UPF 

There is a need of Power aware verification as many things can’t be taken into 

consideration while written the code in Verilog. There are certain predefined 

assumptions which are made by the simulation tool but at the time of synthesis 

creates a major cause of error in the design of chip or SOC. The example in this 

context is given above. 

Chapter 4 

 
RESULTS AND DISCUSSIONS 

 
 

 

 

 

 

 

 

 

 

Fig 4.1: Spyglass error W18 

 

In the code (Figure 4.1), which is having the module of the D flip flop when the 

clock edge is positive, then after this synchronous reset becomes 1’b0 it will 

assign the value, data to the output node. But when the reset is 1’b1. There is no 

value of the output So, it must retain its value. That means the latch is inferred 

by the synthesis software. And this is an unknown latch, which is been created 

and the extra hardware is needed to implement this code, so this is the error, 

shown 

by the 

spyglass 

lint tool. 

 

 

 



57 | P a g e  
 

 

 

 

 

 

 

Fig 4.2: Spyglass error W19 

 

The value of Q is assigned as the four bit binary 0101, which means value five 

is assigned to the output Q, when the reset is one, also the reset is this 

syncronous reset. when the reset is zero, then the value of input is assigned to Q, 

D is mentioned as a one bit value. It is not the vector.And in the above case 

when the set is one, output will getting the value as four bits, but it is declared 

as a one bit. Output  is not declared as the vector. So the rest of the bits will be 

truncated.And this will create a difficulty in the code coverage and in the design 

for testability part. (Figure 4.2) 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.3: Spyglass error W69 

 

In the above code (Figure 4.3), the design function is to implement the 4*1 

mux, where there is a two bit select line. Y0 and Y1, and the four inputs are A, 

B, C and D. Here the behavioral level of coding is done With the help of cases 

statements where output is assigned according to these selected combination 



58 | P a g e  
 

that is output is A when {Y1,Y0} is 00 output is B when this combination is 01 

and output is connected to C when this combination is 01. But here there is no 

information about the Select line as 2’B11. So this synthesis tool will 

automatically generate a Latch, when the condition of select line is one, one.To 

avoid the extra Latch which is created by this synthesis tool, either all the 

possible cases should be written in the case statement, or the default statement 

should be present, which allocates a particular input to this output, so that each 

and every value of the input, select lines, The output has a unique value, it will 

not infered some latch. 

 

Fig 4.4: Spyglass error W111 

 

The above code (Figure 4.4) shows the illegal you use of an assign statement 

where on the left-hand side, argument, A is not fully used, which will create the 

extra hardware loss in the synthesizable process. As A is getting the three bits in 



59 | P a g e  
 

the declaration part, but in the actual code only the two bits have been used so 

the extra 3th bit which will create some hardware limitations in the synthesis 

process and will create the problem in the lint, and is depicted as the error w111 

in the Spyglass. 

 

Fig 4.5: Spyglass error W123 

In the above code (Figure 4.5), using the assign statement, which is not declared 

above, the net the statement is declared as the wire, and it's not the input or the 

output port which can be initialized during the simulation process. So, while 

assigning the value of C, tool should get the value of net as the intermediate 

wire, and if the value is not getting right, then it will create the signal and the 

variables issues values by performing the lint process in the Spyglass. 

 

Fig 4.6: Spyglass error W336 

 

There are two types of continuous assignments in Verilog. The first is Blocking 

type procedural assignment and the second is the non-blocking type, each 

having its own importance and each will result in a different type of hardware 

after the synthesis process of the VLSI design. Same variable cannot be 

assigned to both non-blocking and blocking type because of the implementation 

order of these statements in Verilog. There will be the conflict type of 

occurrence of these statements. This will result in the error in the process, the 

general trend is to implement sequential blocks with the help of non-blocking 



60 | P a g e  
 

statements. When the sequential block is implemented using blocking the 

statements the error W336 occurred in spyglass lint. (Figure 4.6) 

 

 

 

 

 

 

Fig 4.7: Spyglass error W391 

 

The above case (Figure 4.7) represents the use of both positive edge and 

negative edge of the clock, which will create problem in the Timing Analyses of 

the block and also in the Design for Testability part. The setup and the hold 

requirements will be difficult while measuring both the end points of the clock. 



61 | P a g e  
 

 

 

Fig 4.8: Spyglass error W392 

 

The above case (Figure 4.8) represents the use of both positive edge and 

negative edge of the reset, which will create problem in the Timing Analysis of 

the block and also in the Design for Testability part. The recovery and the 

removal requirements will be difficult while measuring both the end points of 

the reset. 

 

Fig 4.9: Spyglass error W414 

 



62 | P a g e  
 

The above case (Figure 4.9) shows the use of Non- blocking statement while 

designing the Combinational Block, which will create problem in the designing 

part of the SOC, as there will be a trade-off between the synthesis of the 

hardware which the different coding style is done for the desired block. (Figure 

4.10) 

 

Fig 4.10: Spyglass error W448 

The above case (Figure 4.10) represents the use of both Synchronous and 

asynchronous reset, which will create problem in the Timing Analysis of the 

block and also in the Design for Testability part. The recovery and the removal 



63 | P a g e  
 

requirements will be difficult while measuring both the end points of the 

Synchronous and asynchronous reset. 

 

Fig 4.11 Snippet of the report showing the Error information in Spyglass. 

Fig 4.12 Snippet of the report showing the Report generation in Spyglass. 

 

Fig 4.13: Snippet of the report showing the error reduction in Spyglass. 



64 | P a g e  
 

 

 

Fig 4.14: Snippet of the report showing of the functional Coverage in 

QuastaSim with 25 test cases. 

 

 

 

 



65 | P a g e  
 

 

 



66 | P a g e  
 

Fig 4.15: Snippet of the report showing of the functional Coverage in 

QuastaSim with 25 test cases for particular inputs. 

 

Fig 4.16: Snippet of the waveform showing of the functionality of ALU with 

25 testcases. 

 



67 | P a g e  
 

 

Fig 4.17: Snippet of the report showing of the functional coverage of ALU 

with 50 testcases. 

 

 

Fig 4.18: Snippet of the report showing of the functional coverage of ALU 

with 150 testcases. 

 



68 | P a g e  
 

Fig 4.19: Snippet of the report showing of the functional coverage of ALU 

with 250 testcases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.20: Snippet of the report showing of the functional Coverage in 

QuastaSim with 250 test cases for particular inputs. 

CHAPTER 5 

 

CONCLUSION AND FUTURE SCOPE 

 
With the increase in the growth of VLSI, the products are manufacturing in 

great extent. This leads to the increase in demand of electronic products like 

Memory components, Processors, and Various other functional blocks, which 

are needed to be designed and verified properly so that it results in good yield. 

There is a need to proper flow from the design level specification till the 

product been manufactured and tested. The early part of the work deals with this 

ASIC Flow. 

 

The Second half denotes to the Functional checks which have to be done, so 

that the desired functionality which is written in HDL code can be synthesized 

properly with the help of any EDA tool. The process of Lint, CDC and UPF 

have been studied thoroughly and the concepts which will create problems in 

the respective steps have been shown in figures and results. 

 



70 | P a g e  
 

The Last section of the work depicts the Design and Verification of ALU, so 

that the compete flow can be understood with one practical example. There the 

code functional coverage is maximum reached to 84%. For the complete 

functional coverage, manual test cases must have been inserted to cover all 

possible cases. 

 
After understanding the topics which have been covered in this thesis, one can 

easily get the idea about how the chips are going to be made in any 

semiconductor industry and the correct procedure for designing the required 

functionality. The Designers working in different industries will get a brief idea 

about how different profiles are interacting with each other to make a product a 

valuable one. 

 
The next step after completing the Designing and Verification of the ALU, so to 

syntheses its hardware using EDA tool and then the by applying BIST concepts 

the DFT will be done, so that the block can test itself. And then the PnR steps 

will be performed so that the complete ASIC flow can be understood with the 

help of simple ALU Block as a reference. 

 

 

 

 

 

 

REFERENCES 

 

 
[I] Sameer Palitkar, “Verilog HDL A guide to Digital Design and Synthesis” 

SunSoft Press, 1996. 

 

[2] J Bhaskar. “Verilog Primer and Guide for Synthesis”, Springer. 

 

[3] Chentouf Mohamed, Alaoui Ismaili and Zine El Abidine, "Physical Design 

Automation of Complex ASICs", IJCSI International Journal of Computer 

Science Issues, vol. 15, no. 1, January 2018, ISSN 1694-0814. 

 

[4] S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N. Parakh and 

P. H. Madden, “Bench-marking for Large-Scale Placement and Beyond”,IEEE 

Transactions on Computer-Aided Design ofIntegrated Circuits and 

Systems23(4) (2004), pp. 472-487.. 



71 | P a g e  
 

 

[5] Arnold S. Tran; Richard A. Forsberg; Jack C. Lee, “A VLSI Design 

verification strategy”, IEETrasn. IBM Journal of Research and Development. 

 

[6] A.E. Ruehli; G.S. Ditlow, “Circuit analysis, logic simulation, and design 

verification for VLSI”,Proceedings of the IEEE ( Volume: 71 , Issue: 1 ). 

 

[7] R. Aitken, G. Yeric, B. Cline, S. Sinha, L. Shifren, I. Iqbal and V. chandra, 

“Physical Design and FinFETs”, Proc. ACM International Symposium on 

Physical Design, 2014, pp. 65-68. 

 

[8] Guirong Wu, Song Jia, Yuan Wang and Ganggang Zhang, "An efficient 

clock tree synthesis method in physical design," 2009. 

 

[9] IEEE Standard for “Design and Verification of Low-Power Integrated 

Circuits” (IEEE 1801™-2013), New York, NY: IEEE. 

 

[10] Robinson, David, “Aspect-Oriented Programming with the Verification 

Language”: A Pragmatic Guide for Testbench Developers, First Edition. 

Morgan Kauffman, 2007. 

 

[11] Fredrik Wickberg, “HDL Code Analysis for ASICs In Mobile System”, 

Jan. 2007. 

 

[12] Questa Clock Domain Crossing Datasheet, April 2017. 

[13] [Synopsys]-Spyglass Reset Domain Crossing Verification Datasheet 

Author: Synopsys. 

 

[14] [Synopsys]-Spyglass Clock Domain Crossing Verification Datasheet 

Author: Synopsys. 

 

[15] Clock Domain Crossings Technical Paper Author: Cadence. 

 

[16] SpyGlass® Predictive Analyzer User Guide Version 3.8.1, August 2006. 

 

[17] SpyGlass® DC Rules Reference Version 3.8.0.3, July 2006. 

 

[18] Spyglass Lint Verification Datasheet Author: Synopsys. 

 

 

 

 



72 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 
The programming language used for the design of the ALU is Verilog and the 

verification has been done by System Verilog. The transcript for the simulation 

is given below. 

 
# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 176,b=157 ,sel=0 and out=x 

# PACKET NUMBER 0  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 36,b=31 ,sel=0 and out=x 

# PACKET NUMBER 1  

# I am in the ALU_GEN 



73 | P a g e  
 

# I AM IN ALU_TX 

# value for a= 246,b=101 ,sel=3 and out=x 

# PACKET NUMBER 2  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 87,b=50 ,sel=2 and out=x 

# PACKET NUMBER 3  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 136,b=105 ,sel=2 and out=x 

# PACKET NUMBER 4  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 142,b=24 ,sel=2 and out=x 

# PACKET NUMBER 5  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 194,b=193 ,sel=2 and out=x 

# PACKET NUMBER 6  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 254,b=210 ,sel=1 and out=x 

# PACKET NUMBER 7  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 238,b=154 ,sel=0 and out=x 

# PACKET NUMBER 8  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 239,b=51 ,sel=3 and out=x 

# PACKET NUMBER 9  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 253,b=248 ,sel=2 and out=x 

# PACKET NUMBER 10  

# I am in the ALU_GEN 



74 | P a g e  
 

# I AM IN ALU_TX 

# value for a= 232,b=208 ,sel=3 and out=x 

# PACKET NUMBER 11  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 219,b=129 ,sel=0 and out=x 

# PACKET NUMBER 12  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 102,b=70 ,sel=1 and out=x 

# PACKET NUMBER 13  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 147,b=112 ,sel=1 and out=x 

# PACKET NUMBER 14  

# I am in the ALU_GEN 

# I AM IN ALU_TX 

# value for a= 12,b=3 ,sel=2 and out=x 

# PACKET NUMBER 15  

# alu_scb::run 

# alu_cov::run 

# new received packet in monitor: a=176 b=157 sel=0 out= 77 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Addition test Passes 

# alu_scb::run 

# new received packet in monitor: a= 36 b= 31 sel=0 out= 67 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Addition test Passes 

# alu_scb::run 

# new received packet in monitor: a=246 b=101 sel=3 out=  2 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Division test passes 

# alu_scb::run 



75 | P a g e  
 

# new received packet in monitor: a= 87 b= 50 sel=2 out=254 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a=136 b=105 sel=2 out=200 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a=142 b= 24 sel=2 out= 80 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a=194 b=193 sel=2 out= 66 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a=254 b=210 sel=1 out= 44 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Subtraction Test Paased 

# alu_scb::run 

run 

# new received packet in monitor: a=238 b=154 sel=0 out=136 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Addition test Passes 

# alu_scb::run 

# new received packet in monitor: a=239 b= 51 sel=3 out=  4 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Division test passes 

# alu_scb::run 



76 | P a g e  
 

# new received packet in monitor: a=253 b=248 sel=2 out= 24 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a=232 b=208 sel=3 out=  1 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Division test passes 

# alu_scb::run 

# new received packet in monitor: a=219 b=129 sel=0 out= 92 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Addition test Passes 

# alu_scb::run 

# new received packet in monitor: a=102 b= 70 sel=1 out= 32 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Subtraction Test Paased 

# alu_scb::run 

# new received packet in monitor: a=147 b=112 sel=1 out= 35 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Subtraction Test Paased 

# alu_scb::run 

# new received packet in monitor: a= 12 b=  3 sel=2 out= 36 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a= 12 b=  3 sel=2 out= 36 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

# new received packet in monitor: a= 12 b=  3 sel=2 out= 36 



77 | P a g e  
 

# COVERAGE IS GETTING COMPUTED: 

# alu_cov::run 

# Multiplication test Passes 

# alu_scb::run 

The System Verilog code for the environment is as follows: 

//Transaction class 

class alu_tx; 

rand  logic [7:0] a; 

rand  logic [7:0] b; 

rand  logic [1:0] sel; 

logic [7:0] out ; 

function print(); 

$display ("value for a= %0d,b=%0d ,sel=%0d and out=%0d",a,b,sel,out);  

endfunction  

constraint a_greater_b {a > b;} 

constraint b_not_eqaul_zero {b>0;} 

endclass  

//driver class 

class alu_drv; 

alu_tx tx; 

 virtual alu_intf vif; 

mailbox # (alu_tx) gen2drv; 

function new(); 

this.gen2drv=alu_cfg::gen2drv; 

this.vif=alu_cfg::vif; 

endfunction 

task run(); 

forever 

begin 

wait (!vif.rst); 

gen2drv.get(tx); 

@ (posedge vif.clk) 

Begin 

vif.a=tx.a; 

vif.b=tx.b; 



78 | P a g e  
 

vif.sel=tx.sel; 

end 

end 

task 

endclass 

//generator class 

typedef class alu_cfg; 

class alu_gen; 

alu_tx tx; 

mailbox #(alu_tx) gen2drv; 

function new (); 

this.gen2drv=alu_cfg::gen2drv; 

endfunction 

task run(); 

begin 

for (int i=0;i<256; i++) 

begin 

tx=new(); 

assert(tx.randomize()); 

tx.print(); 

gen2drv.put(tx); 

$display ("PACKET NUMBER %0d ",i); 

end  

end 

endtask 

endclass 

//monitor class 

class alu_mon; 

alu_tx tx; 

virtual alu_intf vif; 

mailbox #(alu_tx) mon2scb; 

mailbox #(alu_tx) mon2cov; 

function new (); 

this.mon2scb=alu_cfg::mon2scb; 

this.mon2cov=alu_cfg::mon2cov; 

this.vif = alu_cfg::vif; 



79 | P a g e  
 

endfunction 

task run (); 

@(posedge vif.clk); 

Forever 

Begin 

while(vif.rst) 

@(posedge vif.clk); 

tx=new(); 

#1; 

tx.a=vif.a; 

tx.b=vif.b; 

tx.sel=vif.sel; 

@(posedge vif.clk); 

tx.out=vif.out;$display ("new received packet in monitor: a=%d b=%d sel=%d out=%d",tx.a,tx.b,tx.sel,tx.out); 

mon2scb.put(tx); 

mon2cov.put(tx); 

end  

endtask 

endclass 

//interface 

interface alu_intf (input logic clk, input logic rst); 

logic [7:0] a,b; 

logic [1:0] sel; 

logic [7:0] out; 

endinterface 

//scoreboard 

class alu_scb; 

mailbox #(alu_tx) mon2scb; 

alu_tx tx; 

function new(); 

this.mon2scb=alu_cfg::mon2scb; 

endfunction 

task run (); 

forever 

begin 

mon2scb.get(tx); 



80 | P a g e  
 

case (tx.sel) 

2'b00: begin 

if (tx.a + tx.b == tx.out) 

$display("Addition test Passes"); 

Else 

$display("Addition test FAILS"); 

End 

2'b01:  begin 

if (tx.a- tx.b == tx.out) 

$display("Subtraction Test Paased"); 

Else 

$display ("Subtraction test FAILS"); 

End 

2'b10:  begin 

if (tx.a * tx.b == tx.out) 

$display ("Multiplication test Passes"); 

Else 

$display ("Multioplication test FAILS");              

end   

2'b11: begin              

if (tx.a /tx.b == tx.out) 

$display ("Division test passes"); 

Else 

$display("Division test FAILS");              

end     

default: $display("SELECT DOES NOT HAVE A VALID VALUE");     

endcase      

end  

endtask 

endclass 

// functional coverage class 

class alu_cov; 

mailbox # (alu_tx) mon2cov; 

alu_tx tx; 

covergroup alu_cg; 

alu_a   :coverpoint tx.a {bins a []={[0:255]};} 



81 | P a g e  
 

alu_b   :coverpoint tx.b {bins b [50]={[0:100]};} 

alu_sel :coverpoint tx.sel {bins sel []={[0:3]};} 

endgroup 

function new(); 

alu_cg=new(); 

this.mon2cov=alu_cfg::mon2cov; 

endfunction 

task run(); 

forever  

begin 

mon2cov.get(tx); 

alu_cg.sample(); 

end 

endtask       

endclass 

//class  for defining static mailbox 

class alu_cfg; 

static mailbox # (alu_tx) gen2drv=new();  

static mailbox # (alu_tx) mon2scb=new(); 

static mailbox # (alu_tx) mon2cov=new(); 

static virtual alu_intf vif; 

endclass 

//environment class 

class alu_env;  

alu_gen gen; 

alu_drv drv; 

alu_mon mon;  

alu_scb scb;  

alu_cov cov;   

function new();     

gen=new();     

drv=new();     

mon=new();     

scb=new(); 

cov=new();     

endfunction    



82 | P a g e  
 

task run(); 

begin     

fork    

gen.run();    

drv.run();    

mon.run();    

scb.run();    

cov.run();    

 join      

end       

endtask   

endclass 

//top class 

module alu_top();  

logic clk,rst;    

alu_intf intf (clk,rst);    

alu_tb tb ();    

alu a1 (intf.a,intf.b,intf.sel,clk,rst,intf.out); 

initial     

begin     

clk=0;     

end     

always      

#5 clk=~clk; 

initial      

begin        

rst=1;    

#10 rst=0;      

end      

initial       

begin      

alu_cfg::vif=intf;      

end  

endmodule 

The Verilog code for the ALU Design is as follows: 



83 | P a g e  
 

//ALU module 

module alu(input [7:0] a,b,                             

input [1:0] sel,            

input clk,rst,            

output reg [7:0] out);      

always @(posedge clk)     

begin         

if (rst)            

out=0;          

else             

begin          

case(sel) 

2'b00: // Addition            

out = a + b ;          

2'b01: // Subtraction            

out = a - b ;         

2'b10: // Multiplication            

out = a * b;         

2'b11: // Division            

out = a/b;           

default: out= a + b ;          

endcase              

end      

end 

endmodule 

//alu testbench 

program alu_tb();  

alu_env env;   

initial       

begin       

env=new();       

env.run(); 

end  

endprogram     

 

 



84 | P a g e  
 

 

 

 

 

 


