
Comparative Power Analysis of RISC
Processor using Machine Learning

Algorithms

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

in

VLSI DESIGN AND EMBEDDED SYSTEMS

 Submitted by:

 PRIYA

 2K19/VLS/11

 Under the guidance of

 Dr. MALTI BANSAL

Dept. of Electronics & Communication Engineering,
Delhi Technological University (DTU)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering) Delhi-110042

JUNE 2021

1

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Delhi-110042

 CANDIDATE’S DECLARATION

I Priya, Roll No. 2K19/VLS/11, student of M.Tech (VLSI and Embedded Systems), hereby declare that

the Project Dissertation titled “Comparative Power Analysis of RISC Processor using Machine

Learning Algorithms” which is submitted by me to the Department of Electronics and

Communication Engineering, Delhi Technological University, Delhi, in the partial fulfillment of the

requirement for the award of the degree of Master of Technology, has been done under the guidance of

my project mentor Dr. Malti Bansal, Assistant Professor, Department of Electronics &

Communication Engineering, Delhi Technological University (DTU), is original and not copied from

any source without proper citation. This work has not previously formed the basis for the award of any

Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi PRIYA

Date:25.04.2021 (2K19/VLS/11)

2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering),Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Comparative Power Analysis of RISC Processor

using Machine Learning Algorithms” which is submitted by PRIYA, 2K19/VLS/11 of Electronics

and Communication Department, Delhi Technological University, Delhi, in the partial fulfillment of

the requirement for the award of the degree of Master of Technology, is a record of the project work

carried out by student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Dr. MALTI BANSAL

Date: 25.04.2021 Assistant Professor

 Department of ECE

3

ACKNOWLEDGEMENT

A successful project can never be prepared by the efforts of the person to whom the project is

assigned, but it also demands the help and guardianship of people who helped in completion of the

project. I would like to thank all those people who have helped me in this research and inspired me

during my study.

With profound sense of gratitude, I thank my Research Supervisor Dr. Malti Bansal, Assistant

Professor, Department of Electronics & Communication Engineering, Delhi Technological University

(DTU), for her encouragement, support, patience and her guidance in this project work. I heartily

appreciate the guidance given by her in the project presentation that has improved my presentation

skills with her comments and advices.

I take immense delight in extending my acknowledgement to my family and friends who have helped

me throughout this project work.

 PRIYA

 2K19/VLS/11

4

ABSTRACT

The exigency of automation and advancements ushers machine learning and

artificial intelligence to expand it dimensionality into numerous domains like

Internet of Things (IoT), Military, product and market analytics, language and

sentiment analysis and Very Large Scale Integration of chips is also one of them.

ML has started transuding as an significant application in the development and

evolution of the Computer Aided tools and technologies that are involved in VLSI

domain in the design of ASICs or FPGAs. The SoCs, Macros, IPs and Processors

etc. otherwise would take large turnaround time to spin off as a final chip. As RISC

Processors are being extensively used due to their less flexibility and high

performance as compared to CISC Processors. We focused on the study, design

and imposition of a RISC Processor on the Register Transfer Level (RTL) and

apply machine learning algorithm to predict and analyze its power consumption.

And also we compare which machine learning algorithm fits the power dataset of

RISC Processor in the best possible manner in terms of the performance metrics.

In the thesis, a 32-bit, MIPS based RISC Processor is implemented which supports

basic Instruction Set Architecture (ISA) to perform few simple arithmetic

computations like ADD, SUB, MUL etc. This processor is simulated using Xilinx

VIVADO and its power is calculated and stored as a dataset under various input

conditions often called as dataset features or attributes. The obtained power dataset

is analyzed graphically to know on which factor different types of power majorly

depends. Furthermore, machine learning algorithms are applied to obtain the

classification report stating the accuracy, precision and recall on the power dataset

of the RISC Processor to state which Machine learning algorithm is best fit for the

Power dataset generated. In a nutshell, the thesis focuses on the application and

relative analysis on performance metrics of machine learning algorithms on the

power dataset of RISC Processor.

5

CONTENTS

Candidate’s

Declaration

Certificate

Acknowledgement

Abstract

Contents

List of Figures

List of Abbreviations

Tables

CHAPTER 1 INTRODUCTION

 1

2

3

4

5

6

8

9

1.1 Introduction to RISC Processors 12

1.2 RISC Processor Architecture 13

1.3 Pipelining and its hazards 15
1.4 Instruction Set format 17

1.5 Advantages of Processor 22

1.6 Application of Processor 23

CHAPTER 2 MACHINE LEARNING PERSPECTIVES 25

2.1 Introduction to Machine Learning in VLSI 25

 2.2 The basic paradigm of Machine Learning 26

 2.3 Areas of Machine Learning 27

 2.4 Machine Learning Algorithms 27

2.5 Drawbacks of Machine Learning 31

CHAPTER 3 LITERATURE SURVEY– MACHINE LEARNING
ALGORITHMS

 32

3.1 Support Vector Machine (SVM) 32

3.2 Isolation Forest (IF) Algorithm 34

3.3 Local Outlier Factor (LOF) Algorithm 36

3.4 K-Nearest Neighbor (KNN) Algorithm 36

3.5 Naïve Bayes (NB) Algorithm 37

6

CHAPTER 4 TOOLS USED 40

4.1 Introduction to Verilog HDL 40
4.2 Features of Verilog 42
4.3 Simulation 42
4.4 Advantages of Verilog 43
4.5 Xilinx VIVADO 43

CHAPTER 5 SIMULATION RESULTS 44

5.1 Experimental Setup 44

5.2 Experimental Results 48

CHAPTER 6 CONCLUSION AND FUTURE SCOPE 66

REFERENCES 69

APPENDIX A
APPENDIX B

 71
79

7

LIST OF FIGURES

Figure 1.1 Basic Architectural block diagram of RISC Processor.

Figure 1.2 Instruction execution in pipelined processor.

Figure 1.3 Instruction execution in non-pipelined processor.

Figure 1.4 Distribution of the bits in the Instruction Frame.

Figure 1.5 Opcode and Funct assignment in Instruction Frame.

Figure 1.6 Distribution of Instruction bits in the Datapath.

Figure 2.1 Basic model of Machine Learning with Process Steps

Figure 2.2 Classification of Machine Learning Algorithm

Figure 3.1 Types of SVM Classification

Figure 3.2 (i) Representation of a tree in a forest and as a radial line,

Figure 3.2 (ii) Working of LOF algorithms.

Figure 3.3 Algorithm representation for Naïve Bayes classifier

Figure 4.1: Level of Representation and Abstraction

Figure 4.2: FPGA Design Flow Overview

Figure 5.1 Simulation Result of 32 bit RISC Processor

Figure 5.2 Register Transfer Level schematic of RISC Processor after

implementation stage.

Figure 5.3 Power Report and required Input features.

Figure 5.4 Data Information of Power samples of RISC Processor

8

Figure 5.5 Static power distribution of RISC Processor

Figure 5.6 Input/Output power distribution of RISC Processor

Figure 5.7 Logic power distribution of RISC Processor

Figure 5.8 Signal power distribution of RISC Processor

Figure 5.9 On chip power distribution of RISC Processor

Figure 5.10 (i) Static power vs Output Load of RISC Processor

Figure 5.10 (ii)I/O power vs Output Load of RISC Processor

Figure 5.11 (i) Logic power vs Output Load of RISC Processor

Figure 5.11 (ii) Signal power vs Output Load of RISC Processor

Figure 5.12 (i) On Chip Dynamic power vs Output Load of RISC Processor

Figure 5.12 (ii) Static Power vs Junction Temperature of RISC processor

Figure 5.13 (i) I/O power vs Junction Temperature of RISC Processor

Figure 5.13 (ii) Logic Power vs Junction Temperature of RISC processor

Figure 5.14 (i) Signal power vs Junction Temperature of RISC Processor

Figure 5.14 (ii) On chip Dynamic Power vs Junction Temperature of RISC

processor

Figure 15 Correlation of each features in dataset

Figure 16 Comparative graphical analysis showing performance metric of

Machine Learning algorithms.

9

LIST OF ABBREVIATIONS

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

IR Instruction Register

ID Instruction Decode

PC Program Counter

NPC Next Program Counter

IF Instruction Fetch

EX Execution

MEM Memory Access

WB Write Back

IM/DM Instruction Memory/Data Memory

ML Machine Learning

AI Artificial Intelligence

SVM Support Vector Machine

IF Isolation Forest

LOF Local Outlier Factor

KNN K-Nearest Neighbor

NB Naïve Bayes

HDL Hardware Description Language

RTL Register Transfer Level

FPGA Field Programmable Gate Array

IP Intellectual Property

10

LIST OF TABLES

Table 2.1 Machine Learning algorithms and their Uses, Advantages and its Drawbacks

Table 5.1 Comparative classification report showing performance metric of Machine

Learning algorithms.

11

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO RISC PROCESSOR

In the late 1970s, Researcher who worked with IBM, John Coke and his team

developed the first processor prototype that deployed Reduced Instruction Set

Computer (RISC) architecture [1]. This architecture has reduced number of

instructions which are simpler to implement. Also, RISC architecture has fixed and

same bits of instructions, register file and memory which allows the fetch, decode,

execute, access to the memory and write back to register file, each operation to be

performed in exactly 1 clock cycle. Due to this reason, RISC architecture is less

flexible but delivers high performance by increasing the speed of operations.

 It only has two operations to be performed with the memory i.e. LOAD and

STORE. All the other operations and arithmetic computations are done with the

register files. Since interactions with the memory takes more time or more number

of clock cycles than what is taken by the registers present in the architecture, and

RISC processors mainly performs operations on registers only, makes RISC

Processors faster and efficient enough to implement pipelining in the best way

possible [2]. LD(load) directive allows to access the data/instructions from the

memory and ST(store) directive allows the processor to store the data /results back

into the memory.

However, there is other type of processors also based on Complex Instruction Set

Computer (CISC) Architecture. The main difference is that they support variable

sizes of instructions for example a CISC Processor of 32 bit can support

instructions of 8 bit, 16 bit or 32 bit which means that one instruction may or may

not get fetched, decoded and executed in one clock cycle. This adds to the complex

12

nature of CISC processor. Although CISC processors are flexible in terms of

executing any type of instructions but, performance is greatly affected since many

instructions in this processor might take more cycles or more memories to be

processed. Speeds of such processors are very slow comparative to the RISC

processors.

Most of the operations in the CISC Processor involve the interactions with the

memory which adds to more number and types of instructions. Since interaction

with the memory is slower process than the interaction with register, this is one

more reason that why CISC Processors are slower. CISC Processors have lesser

numbers of Registers but definitely have more number of instructions and more

number of modes to address those instructions. The major disadvantage of CISC

processor is that the pipelining implementation is never effectively done in CISC

Processor which adds to the fact that CISC Processors although being too flexible

but compromises in the performance part.

1.2 RISC PROCESSOR ARCHITECTURE

The RISC processor that has been implemented has 32-bit core with separate data

and instruction memory (Harvard architecture) where instruction memory is

generally read only memory and data memory is both read-write memory. The

register transfer level code is written in Verilog language and named as RISC.v. It

is instantiated in the test bench named RISC_TB.v file. The code also has a double

bank of 16 registers (Register File) to allow two simultaneous reads in addition to

one write operations from the register file. Also, it has a set of instructions of fixed

size but different structure depending on the addressing modes and the specific

instructions.

There are five stages incorporated in executing a instruction in 32 bit RISC i.e. IF,

ID, EX, MEM and WB as shown in Figure below. Figure 1 shows the basic

13

Architecture which shows the pipelining stages in the RISC Processor.

Figure 1.1 Basic Architectural block diagram of RISC Processor [3].

There are five stages in a processor pipeline to perform a specific operation. This is

coded in hexadecimal instruction format. The IF stage allows fetching of

succeeding instruction by accessing the address of IM stored in program counter

and stores the fetched instruction into the Instruction Register (IR). Next stage is

the Instruction Decode (ID) which calculates the next PC (NPC), decodes the

Instruction stored in IR and performs read operations from the register file (reading

rs and rd registers). In the Execution stage, based on the opcode and funct decoded

in the previous stage, ALU performs the operations on the operands and stores the

value in intermediate register called ALUOut. Memory Access stage allows

operations on data to be performed to and from the memory such as load and

store(LD/ST). Final stage is the Write Back Stage which perform the Write

operation on the register file [3].

14

1.3 PIPELINING AND ITS HAZARDS

Pipelining is one of the prominent attribute of RISC Processors which when

incorporated to the architecture helps in improving the throughput and

performance of the processors[3]. Pipelining divides the entire execution of a

Instruction (particularly a task like arithmetic computations) into multiple stages,

often the operations executing at these stages are called micro-operations. These

stages help the processors to work on multiple numbers of instructions at a time.

For example: In the RISC processor designed, there are five stages as we discussed

in the previous section. Suppose we have our Instructions say, I0, I1, I2, I3…so on.

In first cycle of clock, I0 will be fetched. In the second clock cycle, I0 will move to

second stage i.e. I0 will be decoded. And by the time I0 is decoded, processor can

fetch I1. Processor handles two instructions simultaneously in different stages. In

the third clock cycle, I0 moves to third stage i.e. execution, I1 moves to decode

stage and I2 moves fetch stage. Here, Processor handles three instructions

simultaneously in different stages. In the fourth clock cycle, I0 moves to fourth

stage i.e. memory access, I1 moves to execution stage and I2 moves decode stage

and I3 moves to fetch stage. So now, Processor handles four instructions

simultaneously in different stages. In the fifth clock cycle, I0 moves to fifth stage

i.e. write back, I1 moves to memory access stage and I2 moves execution stage and

I3 moves to decode stage, I4 moves to fetch stage. So now, Processor handles five

instructions simultaneously in different stages. In the coming next cycles, new

instruction enters fetch stage and one Instruction completes the entire execution

and gets out of the pipeline.

This simultaneous execution of multiple instructions at a time increases the

efficiency of the processor. The processor does sit idle waiting for the next

instruction.

15

Figure 1.2 Instruction execution in pipelined processor

Figure 1.3 Instruction execution in non-pipelined processor

If we have k number of stages and n number of instructions, then the overall

execution of all the instructions will take (n+(k-1) clock cycles which very less

than the non- pipelined execution where number of clock cycles for the same is

(n*k). For example 50 instructions in 5 stages of pipeline takes 54 cycles in a

pipelined processor where as non-pipelined processor would take 250 clock cycles.

Here, non-pipelined processor is 5 times slower and time consuming than the

pipelined one. This is the reason why performance of pipelined processors like

RISC is very high. As far as throughput is concerned, pipelined processor

automatically has higher throughput since throughput is number of instructions per

16

clock cycle. Pipelined processor after first instruction completes its entire

execution; the every next clock cycle will then complete one instruction means its

nearly one instruction per clock cycle. In case of non-pipelined processor, in every

5 clock cycle, one instruction is executed. So, the throughput is very less in non-

pipelined processor.

Also, the most important requirement while implementation of pipelining is the

storing the results of the micro-operations because if each stage is connected to

next one directly, there is possibility that data may change before it is used in the

next stage while the current stage is working on new data changes the input to next

stage which needs to work on previous data. So, to store the results of each stage

such that it does not change, we need to use latches or registers in between two

stages so that the output of a particular stage is not changing in between the micro-

operations and this result in the successful functioning of pipeline. These

latches/registers are the part of register file of Processor used to store the data.

They are named as ID_IF_IR, IF_EX_IR, IF_EX_A, IF_EX_B, IF_EX_NPC etc.

Hazards in pipelining: There are some challenges faced during the proper

implementation of pipelining. 100% implementation of pipelining of Processors is

not possible due to some reasons such as data hazards, structural hazards and

control hazards.

1) Data hazards: This can be understood with the help of the following example. I0

: ADD R5 R3 R4; I1 : ADD R6 R5 R7. In this example, I0 instruction executing

first, writes the final result in 5th stage and I1 instruction reads the data stored in R5

in the second stage. So, I1 accesses the data before the final result gets written in

register R5. In such a case, I1 accesses the wrong data present in the R5. Hence, it

leads to the incorrect result. This hazard can be removed by introducing the

dummy instruction. For example: I0 : ADD R5 R3 R4; I1 : ADD R5 R5 R0; I2 :

17

ADD R6 R5 R7. Here, I1 is dummy instruction. Another solution can be renaming

the registers or using different registers. Latter solution needs more memory and

clock cycle and former one only need extra clock cycle.

2) Structural hazards: This hazard occurs when there is conflict at different stages

for different instruction to use the same resource such as memory or a register

simultaneously. If both the instructions are trying to access the memory, let’s say

one for reading the instruction and another for reading the data from memory. In

such case, one instruction gets the resource but other one waits for it thereby

killing the pipelining. Solution for this hazard is that to use different memory for

the instruction such as Instruction memory and different memory to store and

access the data.

3) Branch hazards: This hazard occurs when there are some branch instructions in

the program. Whenever branch is encountered the execution of upcoming

instruction has to be stopped and the execution has to be carried out from the

address indicated by the branch instruction. It is generally not the next instruction

indicated by the Program Counter. It has the address other than the next

instruction. Hence, the next instruction has to be stopped from changing or writing

the value in the memory. Also, we cannot stop the entire processor at a time after

encountering a branch instruction because previous instructions are also in the

ahead stages and they should be allowed to complete their write operations to the

memory. Solution to above hazard is the use of two flag registers such as Halted

and Branch Taken. Whenever branch instruction is decoded, these flag registers

should be set to 1. Next instructions that are already fetched should write in the

memory only when Branch Taken register is set to 0. If Branch Taken register is

set to 1, write operations for those instructions should be disabled. And instruction

fetching should start again when Halted register is set to 0 after the execution of

18

the branch instruction.

Due to presence of these three hazards during the pipelining of the instruction, the

pipelining is never implemented in the excellent manner but it does gives us

advantages over CISC processor where the implementation of pipelining is even

poorer.

1.4 INSTRUCTION SET FORMAT

A designer can control the distribution of bits in the instruction frame depending

upon the applications to be performed and operations to be performed. Also, it can

be designed in a way so that processor can run in various addressing modes. So,

while deciding the position and number of the fields in each type of Instruction

Frame, it was taken into account which bits were going to be used and which ones

were not in each case, mainly so that there is no need to change their position in

other configurations/ modes that shared that field (rd , rs , funct and rt). The

following Figure 2 depicts the distribution of the bits in the instruction frame.

Figure 1.4 Distribution of the bits in the Instruction Frame.

19

Figure 1.5 Opcode and Funct assignment in Instruction Frame.

Each of the four immediate type distributions corresponds to a specific type with 2

bits that are used to identify them in the Processor: I = 00, X = 01, Y = 10, J = 11.

When deciding the encoding of the opcode and the arithmetic and logical functions

(funct field), this frame had to be re-used throughout the design as conditional

jump share a bit that differentiates them from the rest of the instructions to use it

directly in the control signals. And to save program bits, arithmetic-logical

functions share opcode and use a funct field.

For Example, If the functions are to be 8 and fit in 3 bits, the load and store

commands took advantage of the fact that they did not need to use the bit that

differentiated immediate from non-immediate functions, and were joined in the

same opcode, differentiating them precisely with that bit. It was also necessary to

make a change in the encoding of the opcode because it was chosen for the address

000 for the beq function, which when resetting the microcontroller caused that the

equal operands (they were 0 due to the reset), it always executed the jump

command and did not it never worked. To decide the code of the “funct” field, it is

only necessary to comment that when required only 6 functions, there were two

valid codes that had no implementation. So it was decided to make those codes

20

give an output with the 32 bits at the logic level low to take advantage of this

function in the ALU to generate a one in the zero output and thus implement by

means of “funct” = 000 or “funct” = 111 the unconditional jumps. All instructions

have an associated "funct" function, but only arithmetic operations indicate this

function in a field of its plot, the rest are generated by the decoder according to the

opcode it receives.

Bit "I" (4th bit) differentiates if it is immediate operation from non-immediate

except for lw / sw which identifies precisely whether it is lw or sw. The default

value for “I” bit is 0 which is non-immediate or lw where as I = 1 is immediate or

sw.

The decoder generates the following control signals : RegWrite: which helps in

activating the write input of the register bank. MemtoReg: which helps in

indicating whether the command output comes from the ALU (0) or from memory.

(i) MemWrite: helps in activating the write input of the data memory.

(ii) Branch: helps in indicating if the order is a jump (1) or not (0).

(iii)Funct: will tell which ALU operation to be performed (it only generates it if

opcode is not 100). Type : iindicates the type immediately, if it is 17 bits (00), 20

bits (01), 24 bits (10) or 28 bits (11).

(iv) ALUsrc: iindicates if the operation is on a register (0) or an immediate (1) [in

the case of jump indicates if it is addressed to imm + reg (1) or only to imm (0)].

(v) mbs: by default it is always low level, except for conditional jump bgt and blt,

since it indicates that the output that is evaluated at the output of the ALU to jump

is the heavier bit instead of zero.

(vi) Output: by default it is always at a low level, except for the conditional jumps

bne and bgt, since it inverts the signal that indicates whether the jump occurs, since

for bne and bgt it would be 0 instead of 1.

21

Figure 1.6 Distribution of Instruction bits in the Datapath

1.5 ADVANTAGES OF RISC PROCESSORS

1. Power Consumption: RISC processors consume and dissipate lesser power due

to execution of simpler operation and dealing with the simpler hardware. The

lesser the hardware, the lesser will be power consumption at device level. It has

two advantages. Longer use of battery. No need form cooling of device. Smaller

device design without noise.

2. Simpler hardware: All the components of processor are fabricated on a same

chip. Smaller chips allow a semiconductor manufacturer to place more parts on a

single silicon wafer, which can lower the per-chip cost dramatically.

3. Less area: The chip area used in the design of control unit is considerably

reduced. More area is available for additional features.

4. Excellent performance: since in RISC processor, pipelining can be implemented

in the excellent way. Number of cycle to execute a program drastically reduces

22

leading to the excellent performance. Also, as no. of bit processing per second is

increasing, the operations are performed at faster rate which increases the

performance.

5. Addressing modes: RISC processors use less number of addressing modes since

majority of the read and write operations are performed on the registers. Very few

operations such as only load and store are the operations are done with memory.

This is the main reason lesser ways of accessing the instructions are available since

lesser operation are on memory.

6. Memory: These processors have lesser use of memory hence memory

consumption to store the data is less. Only results of the computation and data on

which computation is done are stored in memory. Instead large numbers of on-chip

registers are used to store intermediate results. This is one of the reasons that these

processors are faster since we know that interactions with memory can take

multiple cycles.

1.6 APPLICATIONS OF PROCESSOR

1. Single board Microcomputers: simplest, cheapest general purpose processor

based device with the minimum possible hardware and software attached. Used for

universities and educational institutional for delivering training to the student and

in industries for evaluation of the processor or for buildingeprototypeesystems.

2. Terminals: Used for communication between a device and its user. Instructions

and data to be fed into the computer are given by the help of keyboard and mouse,

and the output of the computer is displayed on the monitor screen.

3. Personal computers: Used for playing games and learning simple programming

and 16-bit processors are used for word processing, payroll, business accounts,

emedicalerecordekeeping and inventoryecontrol.

4. CAD Machines: execute powerful functions, with their increased word length

and memory size. Used to make powerful microcomputer. Used as an

23

engineeringeworkstation and computer aided design (CAD) machines.

5. Communication: Used in a wide range of communication equipment. Used in

digital telephone sets, telephone exchanges and modems. Widespread use of

processors in radio, telephone, television and satellite communication,

teleconferencing, railway reservation systems at the national level and air

reservation systems at the international level.

6. Instrumentation: Processor based frequency meters, frequency synthesizers,

function generator, spectrum analyzer and controllers are used in medical

instrumentation, e.g. patient monitoring in intensive care unit,

pathologicaleanalysis and the measurements of parameters like blood pressure and

temperature.

7. Control: Controllers are used in home appliances such as microwave oven,

washing machine. Used in controlling various PVT parameters such as speed,

temperature and pressure.

8. Automation and Publication: Instead of typing, drafting and fling, processor

based systems are applied in word processing, excel sheet operation, storing and

retrieving the information from secondary devices. In publishing houses, used for

automating phototypesetting directly from the output of the word process or

system.

9. Consumers: Used in toys, entertainment equipment and home appliances with

novel features.

24

CHAPTER 2

MACHINE LEARNING PERSPECTIVES

2.1 INTRODUCTION TO MACHINE LEARNING IN VLSI

Machine learning is a field growing rapidly which has brought up a revolution in

the world by combining the advancements in Artificial Intelligence(AI) and data

science that comes up with the systems and solutions which can learn from the

prior experiences or preexisting information or data and improve without being

implicitly and comprehensively programmed for the same i.e. evolving the

methods or solutions without help of human intelligence which is more of

developing its own intelligence to deal with a problem. In a nutshell, Machine

Learning is the enabling the computers with human intelligence[4]. Machine

learning revolves around finding and creating effective and efficient learning

algorithms that assists the machines to analyze the available data and train itself to

accurately predict for the unknown data samples.

In 1950’s, a computer program for playing checkers was created by Arthur Samuel

who worked with IBM in the AI domain. In this program, Samuel used a scoring

mechanism using the locations of the pieces on board and tried calculating the

probability of each side winning. Using a minimax technique, the program selects

its next move and this technique eventually got developed into Minimax algorithm.

A variety of mechanisms were also developed by Samuel to allow his program

become better. His program remembered all the locations on the board that was

valued for the reward function. His program had learned from the available data

samples and predicted the reward function. Arthur Samuel was the first who coined

the term Machine Learning [5]. ML is progressively developing in numerous

spheres like Quantum computing, Robotics, Data Mining, VLSI, Automation,

Signal Processing, Artificial Intelligence, Internet of Things (IoT), Medical,

25

Military etc. As ML is majorly working on neural networks and logical &

computational algorithms, it makes a system both smartly accurate and highly

beneficial. Due its accuracy, reliability, efficiency and ability to improve, ML is

excessively effective over the human biological intelligence [6].

2.2 THE BASIC PARADIGM OF MACHINE LEARNING

The basic model of Machine Learning consists of few steps starting from the

Collection of data samples from the experiences. This is the preexisting data

samples that help the machine to learn a given task. Data is conditioned by

removing errors, missing values, repeated values etc. Next step chooses an

algorithm model according to aptness with different tasks/problems /data.. Now,

the model is trained iteratively followed by the evaluation in which the model is

tested against unknown data samples. Further, tuning of the model parameter is

done to increase the performance of the model proceeded with the final step of

making the predictions in the real scenario. The performance in the tasks improves

as the machines gains experience while executing the tasks and updating the model

each time [5]. The basic model and its process has been represented in the block

diagram Figure2.1.

Figure 2.1 Basic model of Machine Learning with Process Steps

26

2.3 AREAS OF MACHINE LEARNING

ML has uncountable number of applications and it offers solutions to many real

time issues. Some of the areas where machine learning is being progressively

applied are mentioned below[5]: i)Face Detection and Recognition ii) Visual

Perception iii)Classification iv)Adaptive Systems v) Modeling vi) Speech and

Image processing vi)Automation vii) Problem Solving viii) Genetics

ix)Anomalies Detection x)Games xi)Internet of Things (IoT) xii) Quantum

computing xiii) Medical Diagnosis xiv) VLSI xv) Stock Market Trading xvi)

Virtual Personal Assistant xvii) Online Fraud Detection xviii) Speech

Recognition

2.4 MACHINE LEARNING ALGORITHMS

The highest level of abstraction in machine learning methods is based on the

source of data/information that directs into the learning[7]. It is broadly classified

into three categories. These are:

 i) Unsupervised Learning

 ii) Supervised Learning

iii) Semi-Supervised.

In unsupervised learning, only input data is available and some structure or label

needs to be developed to distinguish between the input data samples. In supervised

learning, input and corresponding output data samples are available along with the

structure/ labels. In semi-supervised learning, only some fraction of input data

samples have corresponding output pairs i.e. few of them are labeled or

structured[8]. Figure 2.2 represents the basic classification of machine learning

methods and the algorithms used for learning in different methods.

27

Figure 2.2 Classification of Machine Learning Algorithms

A brief summary of different Machine Learning algorithms has been represented in

the form of table that briefly lists the Uses, Advantages and its Drawbacks which

can be useful in the appropriate selection of algorithm is given below.

28

Table 2.1 Machine Learning algorithms and their Uses, Advantages and its Drawbacks.

S.

no

.

Machine Learning Algorithms

Name of
Algorithm

Uses Advantages Drawbacks

1.

Gradient Descent

To minimize cost
function

Efficient , Stable
error gradient

Never converges for too
high and too low learning
rate

2.

Linear Regression

Models
continuous
variables,
prediction,
Data analysis
process

Easier to
understand,
Easy to avoid
Over fitting

Not a good fit for nonlinear
relationships, cannot handle
complex pattern, over
simplifies real word issues

3

Multi –Variate
Regression
Analysis

Used on number
of independent
variable and
single dependent
variable

Deeper insight to
relationship
between variables
Models complex
real time issues,
Realistic and
practical

Complex, High knowledge
is required for modeling,
sample size needs to be
high, difficult to analyze

4
Logistic
Regression

Used on
classification
problem

Simple to
implement,
Ease of
regularization,
Efficient in
computation and
training, no
scaling required,
reliable

Unable to solve nonlinear
problem, prone to over
fitting, does not work well
unless all the variables are
identified.

5
Descion
Tree

Used on
regression and
classification
problem

suitable for
regression
Classification
problem, easy to
interpret and
handle, capability
to fill missing
values, high
performance due
to efficiency of
tree traversal.

unstable, difficult to control
size of tree, it may be prone
to sampling error and it
gives a locally optimal
solution- not optimal
solution. Prone to Over-
fitting

29

S.

no

.

Machine Learning Algorithms

Name of
Algorithm

Uses Advantages Drawbacks

6
Support
Vector Machine

Used on
regression and
classification
problem

Handles both
semi structured
and structured
data, can handle
complex
function, less
probability of
over fitting,
scales up the high
dimensional data.
does not get stuck
in local optima.

Low performance in large
data sets, difficult to find
appropriate kernel function,
Does not work in noisy
dataset. No probability
estimates. Difficult to
understand

7

Bayesian
Learning

To handle
incomplete
data sets.

Prevents over-
fitting, no
removal of
contradictions
required.

Prior selection is not easy.
distribution can be
influenced by prior, wrong
predictions possible,
complex computation

8. Naïve Bayes

Used on binary
and multi-class
classification
problems

easy to
implement, gives
good performance
,
less training data
required, scales
linearly with
predictors and
data samples,
handles
continuous,
discrete data.
insensitive to
irrelevant
features

Model often outperforms,
too simple, cannot be
applied directly, requires
retraining, stops scaling
when data points are high,
more runtime memory
required, complex
computation for more
variables.

9.
K Nearest
Neighbour

Used on
classification
problems

Simple and easy
to implement,
cheap and
flexible
classification,
suitable for multi
modal classes

Expensive, computation is
distant and intense, less
accuracy, no
generalization, data large
sets

30

2.5 DRAWBACKS OF MACHINE LEARNING

Despite Machine learning being very effective and offering a technical

advancement in various domains, it has numerous drawbacks related to a specific

problem or a particular machine learning algorithm. The drawbacks of ML are

mentioned as following.

(i) Volume of Data : When the training and learning process is carried out, a large

volume of data is required and used. The data used in this process should be non-

partisan and unbiased consistency and high quality which might need the

generation of more data and hence, more time, space and power is required for

better quality of results.

(ii) Authentic and Dependable Resources: are required in case learning

algorithms show time consuming errors and complexity. It is very important to

check that the algorithms that has been assisted in the process is producing the

desired output or not because to get the desired output we need an accurate

learning algorithm with high performance.

(iii) Selection and availability of accurate algorithm : is also a challenge.

Machine learning still needs a lot of improvements in algorithms and the software

that performs the analysis on datasets.

(iv) Moreover, due to large volume of data, Error susceptibility is also high

which needs to be taken care of while using a particular dataset and learning

algorithms.

(v) Drawbacks related to a specific machine learning algorithm such as non-

linearity, sampling errors, overfitting, noisy datasets, incomprehensible datasets,

low performance, complex and expensive computation, insufficient runtime

memory etc.

31

CHAPTER 3

LITERATURE SURVEY - MACHINE LEARNING
ALGORITHMS

The power dataset of RISC Processor is used in the implementation of five

different Machine Learning Algorithms to find the Accuracy, precision and Recall.

These Five algorithms are studied and summarized as follows.

3.1 SUPPORT VECTOR MACHINE

For the statistical analysis of classification based power dataset, an appropriate ML

algorithm can be Support Vector Machine (SVM) [9]. It is applicable to both

binary and multi class dataset. To define a Binary classification problem using

SVM, a hyper-plane is constructed and optimized. The optimization of this hyper-

plane involves the maximization of margin separating the two different classes [9].

SVM dealing with multiple classes combines many binary classifiers. Figure 5

shows the two types of classification where support vector machine is applicable.

Let us assume that a set of n number of data vectors are available which can be

written in a form (Xi,Yi) where i=1,2,…,n given that Yi belongs to the range

between -1 to 1 and Xi belongs to RN. Here, X denotes the data vector, Y denotes

the binary class and i denote the ith number of data vector or binary class.

Figure 3.1 Types of SVM Classification

32

This type of SVM classification aims at constructing the following optimization

function for the hyper plane that accurately distinguishes the difference between

the class label/tag of input data sample to be tested X[10].

 Y(X) = sgn[w. φ(X) + b] (1)

such that φ(X) is a mapped function of input data X. It is nonlinear in nature and

maps to high dimensional characteristics space of available data. The difference

between two support vectors is 2/||w||.We obtain the optimization by maximizing

the difference between the support vectors.

The general separating hyper-plane equation where input data is lying on the hyper

plane itself, is written as w⋅φ(X) + b = 0. When two classes are linearly separable,

the expression for two separating hyper plane are written as w.Xi + b is greater

than or equal to +1 given that Yi is +1 and w .Xi + b is less than or equal to −1

given that Yi is −1[11]. On combining both the conditions, we get the following

expression.

 Yi(w · Xi + b) − 1 ≥ 0 (2)

and its optimization is obtained by min{(1/2)||w||2}. But, when the classes cannot

be separated by linear expression, we need to modify the hyper plane expression as

well as its optimization by using slack variable which helps in penalizing the non-

linearity problem in separating the two classes. The modified hyper plane

expression is given as

 Y(w · Xi + b) > 1 − ξi. (3)

The optimization obtained from modified expression is given as :

min[{(1/2)||w||2}+P∑ ξ i] , where P∑ ξ i is the penalty term [11] and ξ i is the slack

variable in which value of i=1,2,…,n. these parameters are selected by the user

depending on their requirements. The more the value of C, the higher is the penalty

for wrongly classifying the data [10].

33

 3.2 ISOLATION FOREST (IF) ALGORITHM

The Isolation Forest (IF) algorithm is applied when at least one class is an

anomaly i.e. one class is very small in proportion to the other class in terms of

numbers of samples or size and there is notable difference between the two

classes[12]. While constructing a random tree, the instances or attributes of the

entire dataset is partitioned in a repetitive manner until all the attributes/instances

are completely separated from each other. In such a case when tree is generated by

partitioning, the anomalies will have distinguishable shortest path among the entire

dataset because anomalies will be detected in smaller number of partitions only.

So, they are the fastest one to be detected when a large number of random trees are

produced together, also called Random Forest Trees [14].

Consider an initial node T, which is called to be a parent node or root node in an

Isolation Tree. The node T can be an exterior-node possessing no sub nodes or an

interior-node having performed 1 test and 2 sub nodes, say (Tl ,Tr). An assessment

is carried where the attribute value of an instance (m) and attribute value of a

randomly chosen instance often called split value(s) are compared. Depending on

the condition- m < s, it will segregate the data into two data points’ i.e Tl and Tr.

This, building up of isolation tree is performed with repetitive segregation of entire

data sample X by randomly choosing an instance and respective split value

considering a data sample X where X has n number of instances/ attribute. The

process is repeated till the tree attains a certain height or the data sample left = 1.

An isolation tree can simply be called a binary tree in which every node has either

zero or two sub nodes. If all instance/attributes are mutually exclusive and

separable, then instance/attribute are isolated as root node and the total count of

root node is equal to the total number of instances in the dataset X i.e. nr and nr – 1

is the no. of sub nodes. 2nr – 1 is the total number of nodes of an isolation Tree.

Memory required for isolation forest algorithm grows in a linear fashion with nr.

34

[14].Path Length of isolation tree is the number of branches covered while moving

from root/main node of the tree to the last terminating node of the tree[12].

Figure 3.2 (i) Representation of a tree in a forest and as a radial line [13], (ii)

Working of LOF algorithms [16].

35

3.3 LOCAL OUTLIER FACTOR (LOF) ALGORITHM

Local Outlier Factor (LOF) algorithm is used to demarcate the outlier samples

from the usual or ordinary samples in the dataset which is done with the help of

comparison of dataset points. To ascertain whether a given sample point is outliers

or not, we calculate the deviation of data points from the other and the data point

with less density is labeled as outlier. Normal data is given the output as ‘1’ and

outlier as ‘0’ [15]. For example- noise detection in pixels, fraud detection in ATM

transaction [17]. The distance between the data points are measured by term k-

distance (k-dis(c5))of a sample point c5 which is stated as the Euclidean distance

between data points c5 & c1 i.e. d(c1.c5) such that at least k data points have

d(c1,ci) less than d(c1,c5) where i ={2,3,4,..n} and k should be greater than

one[18].

K-distance neighborhood of a sample/data point say c1 is the k-distance

neighborhood of c1 consists of every data point in the sample space which are less

than k-distance (d (c1, c5)) distant apart from c1 as represented all the data points

in a circle in figure 3.2(ii). k reach-distance (c1, c5). Local Outlier Factor (LOF) of

a sample/data point say c1. is can be defined as the mean of the ratio of c1’s local

reachability density and data points in k nearest neighbors e.g. c2, c3, c4, where

local reachability density of c1 is{mean(k-reach-distance of data points)}-1 which

are in the k-distance neighborhood of the data point c1 i.e. c2, c3, c4 etc. to the

data point c1 itself and k-reach-distance (c1,c5) is defined as real distance from c5

to c1[18].

3.4 K-NEAREST NEIGHBOR(KNN) CLASSIFIER

The most commonly applied machine learning algorithm is K-Nearest-Neighbor

classifier for the classification based problems. This algorithm is very simple,

efficient and has high accuracy [19]. In KNN, the classification is done on the

36

basis Euclidean distance. The data points close to the Kth nearest neighbor are

given the label of Kth neighbors group. The only disadvantage of KNN classifier is

that when the dataset volume is huge, it consumes more time to find out the K-

nearest neighbors [20][21].

The working of K-Nearest Neighbor classifier is elucidated in accordance with the

following steps: first step is to pick minimum number of neighbors say K. Second

step is to determine the Euclidean distance of those K no. of neighbor data points.

Third step is to consider only the K nearest neighbors. Next step is that out of these

K neighbors, segregate the data points categorizing them according to proximity

and for each new category, set new data points considering the fact of keeping

neighbor as maximum as possible. Last step makes the KNN classifier ready for a

use as a model. While choosing the value of K, following points should be

considered: If value of K is very small, the model becomes sensitive to outliers and

If value of K is large, classifier may include in the neighborhood, those data points

which are part of other categories. KNN Classifier can be improved on accuracy by

adding weights to the sample features and adjusting the value of K[21].

3.5 NAÏVE BAYES(NB) ALGORITHM

NB is a plain classification machine learning algorithm which uses mathematical

Bayes theorem [23] and has higher accuracy [22]. Naïve Bayes theorem is of

mainly three types. i)Multinomial ii)Gaussian iii)Bernoulli[24].

It detects and predicts the internet traffic while assuming that that the sample

features/attributes are mutually exclusive to each other i.e. independent of one

another [26]. Every machine learning algorithm has two main stages i.e. training

the model and testing/predicting the unknown sample using the trained model. This

trained model here works on Naïve Bayes algorithm [25]. In the initial training

process, data set comprising of input features/attributes and selected output is fed

37

to the model implementing NB classifier algorithm. From this training data, NB

Classifier calculates the independent probabilities e.g. P(A), P(B) of the data

whose output class has to be predicted i.e. target data. In the next step, dependent

probabilities of input attributes of data set is calculated with the help of already

calculated target data probabilities e.g.(A|B) or P(B|A) etc. Next is the testing

phase where data to be tested i.e. test data’s new input attributes are fed to the NB

classifier model. Finally, the probability of output class of test data given that

probability of input attribute of test data is already known; P(A|B), is calculated.

The expression for the posteriori probability is P(A|B) given as

 P(A|B) = [P(B|A)*P(A)]/P(B) (4)

Such that P(B|A) is the likelihood probability; P(A) and P(B) are the independent

probabilities in the expression 4[24].

Figure 3.3 Algorithm representation for Naïve Bayes classifier[24]

38

Naive Bayes(NB) Classifier have good speed and performance since they take

lesser starting up time and are accurate in producing results.

Performance Metrics

Every machine learning algorithm is evaluated on the basis of some parameters

also called performance metrics that measures how a machine learning algorithm is

performing on particular problem or dataset. These parameters are named as

Precision, Recall, F1-Score and support. Let us briefly understand their meaning.

With respect to the power dataset we have used, power consumption more than

3000W is beyond tolerable limits and it is unacceptable.

We have divided the power dataset as class ‘0’ when power is under tolerable limit

and class ‘1’ when beyond the tolerable limit. When data is predicted as class’0’

when it was actually class ‘0’, it is called True Positive (TP). When data is

predicted as class’1’ when it was actually class ‘0’, it is called False Negative(FN).

When data is predicted as class’0’ when it was actually class ‘1’, it is called False

Positive(FP). When data is predicted as class’1’ when it was actually class ‘1’, it is

called True Negative(TN).

i) Precision (P): It is the ratio of True Positive to the sum of True Positive and

False Negative.

ii) Recall (R): It is the ratio of True Negative to the sum of True Negative and

False Positive.

iii) Support (S): Number of samples in Class ‘0’ i.e. Total number of power data

samples which are under tolerable limit in Target.

iv) F1-Score: It is the harmonic mean of the precision and recall. i.e.

{2*(P*R)}(P+R)

39

CHAPTER 4

TOOLS USED

4.1 INTRODUCTION TO VERILOG HDL

Verilog HDL is widely used as design description language for field programmable

gate arrays and application specific integrated circuits in the automation of

electronic design circuits. Verilog HDL is a generic language which needs a

simulator to run the design code. Due to its generic nature, it is quite possible to

code a test bench which verifies and checks whether the design code written is

working correctly or not.

4.2 FEATURES OF VERILOG

Following are the major features and capabilities that Verilog provides which

makes itself different from other hardware languages.

 Exchange medium between chip vendors and CAD Tool users.

 Open Source, comprehensible, readable to machine.

 Flexible design methodologies: top to down, bottom to up, mixed.

 Supports hierarchy.

 Not technology specific, but supports the technology related features.

 Support various hardware technologies.

 Synchronous and asynchronous timing models supported.

 An IEEE and ANSI standard; hence models are portable.

 Three different description styles: structural, behavioral, data flow supported.

 Test benches allowed to be written to test other Verilog models.

 A wide range of abstraction level is supported.

 It does not, support modeling at or below the transistor level.

 Propagation delays, min max delays, setup and hold timing, timing constraints,

spike detection can be described.

40

There are several abstraction levels in which a digital circuit can be designed

which are shown in Fig.4.1. The lowest level from where we start designing a

digital circuit is the transistor level; it deals with the discrete transistors. The

transistors are connected with each other to make a circuit. Gate level is higher

level in the abstraction where we combine logic gates to form the circuit. With the

use of logic gates, standard combinational as well as sequential circuits can be

made.

These combinational and sequential circuits are put together to form the larger

circuits such as processor. It becomes an easier to solve a digital problem when we

solve it from lower level to higher abstraction level. The RTL consists of data path

and control circuit along with their connections that makes the data flow within

these functional units. Behavioral level is the highest level of abstraction which

describes the operation of the larger circuits.

Figure 4.1: Level of Representation and Abstraction [28]

41

4.3 SIMULATION

The stimulation is done with the help of test benches. They check and tell whether

the output generated is correct or not. The block representation of stimulation is

shown in Figure 4.2.

4.4 ADVANTAGES OF VERILOG

The main advantages of Verilog can be listed as following:

 Description of a concurrent system which is not possible in other programming

languages like Pascal, BASIC, C, low level assembly language.

 Translates the gates and wires of CPLD or FPGA which no other language can

do.

 It is just like an actual hardware being configured.

Figure 4.2: FPGA Design Flow Overview[27]

42

4.5 XILINX VIVADO

4.5.1 INTRODUCTION TO XILINX VIVADO SOFTWARE

XILINX VIVADO is a software tool mainly used for the synthesis, simulation,

analysis and implementation of digital circuit design. It helps the designers to

simulate and synthesize the digital designs, performing the analysis on timing

constraint and examining the RTL schematics. It also helps simulating a design's

response to various stimulus, and also configure the targeted device. It supersedes

the Xilinx ISE with added feature SoC development and High Level synthesis.

Vivado came up in April 2012[29] and is an integrated design environment with

system to IC level tools which is built on a shared data paradigm and a common

debug environment. Vivado incorporates ESL design tools for synthesis and

verification of C based IP; standard packaging of RTL IP for reuse; standard IP

integration of all kinds of system blocks; and their verification[30].

 Vivado HLS helps C, C++ and SystemC programs to be directly targeted into

Xilinx devices without the need to manually create RTL. Vivado HLS increases

designer’s productivity, and supports C++ classes, templates, functions and

operators[31].

 Vivado Simulator bolsters mixed language like Tcl scripts, IP and its

verification.

 The Vivado IP Integrator combines and configure IP from the large Xilinx IP

library.

 Vivado Tcl Store develops add on to Vivado, and used to add and change

Vivado's capabilities. Vivado is based on Tcl scripting language. Internal

functions can be called and controlled using Tcl scripts[32].

43

CHAPTER 5

 SIMULATION RESULTS

5.1 EXRIMENTAL SETUP

The RTL code for the RISC Processor is written in Verilog Hardware Description

Language and the software used for its behavioral simulation, RTL analysis, RTL

synthesis and schematic generation and design implementation is XILINX

VIVADO 2019.1 version.

Figure 5.1 Simulation Result of 32 bit RISC Processor

Figure 5.1 shows that 32 bit RISC processor so designed is working correctly and

the simulation results are generated. It is just to show that this RTL code is the

basic model of RISC Processor and its simulation results showing that the RTL

code is bug/error free. On the analysis of RTL code, the elaborated design of the

RTL schematic is shown as in the figure 5.2. The RTL code synthesizes to a circuit

as shown in the figure depending upon constraint files and design code files

44

depicting number of logic cells and their interconnections when implemented on a

FPGA.

Figure 5.2 Register Transfer Level schematic of RISC Processor after
implementation stage.

After the design and simulation of 32 bit RISC Processor, its power reports has

been generated giving variety of inputs such as Output Load, Junction

Temperature, Ambient Temperature,Effective SJA, Airflow, Heat Sink, Theata,

Board Selection, No. of board layers, Board Temperature , Thermal Margin etc.

The output report consisted of Logic power, On chip dynamic power, Static power

and I/O power, Total on chip power, signal power, class etc. All the inputs and

outputs given here are the features/attributes of a data sample. Approximately 50

data samples has been recorded and maintained in .csv file.

45

Figure 5.3 Power Report and required Input features.

These data samples are used as training sample for the analysis of power dataset

and implementation of ML Algorithms to obtain their comparative performance

measuring parameters such as macro average and weighted average of Precision,

Recall, F1-Score and Accuracy.

Implementation of Machine Learning :

The first step is the collection of data samples. Here, the collection of different

types of power consumption is the data on which the machine learning algorithm

will be applied. A comma separated file is created from the different input of

power samples. This data is analyzed first hence is called power analysis of RISC

46

Processor. Figure 5.4 represents the data information mainly the input features or

attributes and their related power outcomes included in the dataset created from

various power samples of RISC Processor.

Figure 5.4 Data Information of Power samples of RISC Processor

There are five types of power dissipation calculated and recorded from VIVADO

which can enumerated as static power dissipation, I/O power dissipation, Signal

Power dissipation, Logic Power dissipation and On chip power dissipation. Further

Figure 5.5 to Figure 5.9 all the types of power are represented in the form of bar

and pie. They represent what is the power consumption in majority of the samples.

47

5.2 EXPERIMENTAL RESULTS

Figure 5.5 Static power distribution of RISC Processor

48

Figure 5.6 Input/Output power distribution of RISC Processor

49

Figure 5.7 Logic power distribution of RISC Processor

50

The three main type of powers out total five power are discussed below.

(i) Static Power (ii) Input/Output Power (iii) Logic Power

Figure 5.5 shows the distribution of static power consumed by the RISC Processor.

Static power consumption by RISC processor is the power consumed by Processor

when there are no switching activities taking place. This power is mainly due to the

leaky current when the processor is in OFF state. Maximum number of samples

consuming static power equal to 0.790 W, rest of the samples consuming 0.043 W,

0.143W, 0.08W, 0.693W and so on. There are various input features on which

static power depends. This variation in Static power consumption depends on what

input was given to generate the power report of RISC Processor.

Similarly, for the Input/Output power distribution among the samples is shown in

Figure 5.6. I/O power is power consumed by the inputs and output ports of the

processor while transitioning the signal from high to low or low to high. Maximum

number of samples consuming 112.489W and rest of the samples consuming

2504.77W, 2265.54W, 14466.1W, 390.95W, 1739.24W and so on. Maximum I/O

power reaches 14466.1W under some input conditions.

Figure 5.7 shows Logic Power distribution of the RISC Processor. Logic power

consumed by the processor is the power consumed by the logic implementation

present inside the processor. Here, all the samples consume nearly same amount of

power i.e 10.990W and 10.995W treated as differently but not much difference in

the logic power consumption can be inferred that it does not much depend upon the

variation of input features in the power report of the processor. This processor

consumes same logic power i.e. it depends on processor internal implementation

rather than outside application of the various inputs.

51

Figure 5.8 Signal power distribution of RISC Processor

52

Figure 5.9 On chip power distribution of RISC Processor

53

Two more power out of total five powers are described below.

(iv) Signal Power (v) On chip Dynamic Power

Figure 5.8 shows the distribution of signal power of RISC processor that what

amount of power is consumed by the signals in the processor. Here, all the samples

consume fixed amount of signal power i.e. 14.735W which can also infer that

signal power of the processor does not vary with the variation in the input features.

It is fixed under all conditions.

Figure 5.9 shows On chip dynamic power distribution of RISC processor. It is the

power consumed by the processor during the switching activities caused to the

transistors used in the implementation of the processor circuit. Maximum numbers

of samples consume 138.252W On chip dynamic power. Rest of the samples

consumes 2530.53W, 2291.3W, 616.71W, 14491.9W, 1573.62W, 1765W and so

on. The maximum and unacceptable on chip dynamic power consumed is

14491.9W. The variation in the on chip dynamic power consumption depends upon

the variation in the values of Input features.

Factors affecting various power of the processor:

There are two factors on which power of the processor depends and have been

listed as (i) Output Load Capacitance (ii) PVT conditions – Junction Temperature

(i) Output Load Capacitance (fF):

The output load capacitance is the major factor in the variation of power of RISC

Processor. We have found experimentally the variation of different kinds of power

with respect to the output load capacitance.

 Static Power

Figure 5.10 (i) shows the dependence of Static power on the output load

capacitance of the processor. From the graph, Static power depends on various

other factors when output load is less than approximately 250µF showing

undefined behavior.

54

Figure 5.10 (i) Static power vs Output Load of RISC Processor (ii)I/O power vs

output load of RISC Processor .

55

This is also due to the fact that some samples in the dataset may have varied other

input factor but not much variation is done with output load. When output load

exceeds 250µF, static power becomes constant to approximately 0.8W. If the

output load increases further, there is no change in the static power dissipation.

Hence it saturates after 250 µF.

 I/O Power

Figure 5.10 (ii) shows the dependence of I/O power on the output load capacitance

of the processor. From the graph, it is clear that the I/O power of the power directly

depends upon upon the output load capacitance. It varies linearly with the output

load since I/O power also depends upon the switching activities and also power

needed by the input and output pins of the design to function properly. From the

graph, we can deduce that I/O Power α CL .

 Logic Power

Figure 5.11 shows variation of Logic power with respect to output Load of RISC

Processor. Logic power has two constant values when output Load is less

than125µF i.e 0.0060W and 0.0090W. Beyond output load capacitance of 125µF,

the processor consumes constant power of 0.0090W. This also infers that for low

values of load capacitance, other factors also affect the power but for higher

values, output load capacitance becomes the dominant factor on which power

depends. Logic power does not vary with output load. It remains mostly constant.

 Signal Power

Similarly in figure 5.11 (ii) signal power variation is shown with respect to Output

Load of RISC processor. Signal power is constant and equal to 14.735W and does

not vary with the output load of the RISC processor.

56

Figure 5.11 (i) Logic power vs Output Load of RISC Processor (ii) Signal power

vs Output Load of RISC Processor

57

 On Chip Dynamic Power

Figure 5.12 (i) shows the variation of on chip dynamic power with respect to

output load. The graph shows that as the output load increases dynamic power

increases linearly. Also theoretically, from the expression, Pdynamic = CL VDD
2 f.

Figure 5.12 (i) On Chip Dynamic power vs Output Load of RISC Processor (ii)

58

Static Power vs Junction Temperature of RISC processor.

The dynamic on/off chip power of a digital circuit depends upon the switching

activities on input and output i.e. charging and discharging of output load

capacitance and Pdynamic α CL. Hence, graph shows the correct relationship between

the dynamic power and output load.

(ii) PVT conditions - Junction Temperature :

The power of processor depends upon the PVT conditions as well. Process,

Voltage and Temperature are the reasons power of processor may vary. In this

thesis, we have focused on Temperature specifically. Temperature can be Ambient

Temperature or Junction Temperature. Ambient Temperature comes into play

when Processor chip is fabricated and in the surrounding how the power of

processor varies. Junction Temperature is important while designing the processor

chip and simulating and improving the design for better power consumption.

 Factor considered here on which the power of RISC processor depends is Junction

temperature. Analysis of all the power is done with respect to the parameter

junction temperature. Figure 5.12 (ii) to Figure 5.14 (ii) shows the behavior of

power when junction temperature was varied in C.

 Static Power

 As shown in Figure 5.12 (ii) Static power initially varies linearly with some

undefined behavior due to dependence on other factors too and after around 200 C,

Static power is constant and does not change with respect to junction temperature.

 I/O power

Similarly, in figure 5.13 (i) when junction temperature is less than 400 C, I/O is

constant i.e around 2500W and beyond this temperature, I/O power increases and

becomes constant at around 14000W.

.

59

Figure 5.13 (i) I/O power vs Junction Temperature of RISC Processor (ii) Logic

Power vs Junction Temperature of RISC processor

60

 Logic Power

For Logic power figure 5.13(ii) shows its variance with Junction Temperature i.e.

increases linearly from 0.0060W to 0.0090W when Junction Temperature is less

150 C and after constant at 0.0090W if further increases in Junction Temperature

 Signal Power

Figure 5.14 (i) shows Signal power variation with the Junction Temperature of

RISC Processor and figure 5.14 (ii) shows On chip Dynamic Power variation with

the Junction Temperature of RISC processor. Signal power remains constant to

14.735W with the increase in the value of Junction Temperature.

 On Chip Dynamic Power

On chip dynamic power shows undefined behavior and it can be approximated as

constant at around 2500W when junction temperature is less than 400 C and

constant to approximately at 14000W when Junction Temperature is more than 400

C. So, an abrupt change in On chip dynamic power is visible when Junction

Temperature was increased beyond a fixed value.

Figure 5.14 (i) Signal power vs Junction Temperature of RISC

61

Figure 5.14 (i) Signal power vs Junction Temperature of RISC Processor (ii) On

chip Dynamic Power vs Junction Temperature of RISC processor

CORRELATION MATRIX

Correlation of Input and Output Features :

The correlation matrix gives the idea about the amount of correlation between the

the input and output features. To know the relation between the various input and

output features among themselves and among each other. Higher the value of co -

variance means they are highly related to each other.

Figure 15 represents the correlation between each i.e. input and output feature of a

data sample

62

Figure 15 Correlation of each features in dataset

. They are also called correlation heatmap mainly helpful in the dataset analysis. It

plots the covariance of the features of the data sample. It varies from -1 to +1.

From the graph, the correlation between the output load and junction temperature

is 0.89, output load and air flow is 0.65, on chip power and output load is 1, Logic

power and output load is 0.22, I/O power and output load is 1 etc

63

Table 1 Comparative classification report showing performance metric of Machine
Learning algorithms.

S.No. Classification Report of Machine Learning Algorithms

1. Isolation Forest Accuracy Score 0.88

No. of class ‘1’ 3
 Performance

Metrics
Precision Recall F1-Score Support

 Class 0 0.95 0.90 0.93 21

 Class 1 0.60 0.75 0.67 4

 Accuracy 0.88 25

 Macro
Average

0.77 0.83 0.80 25

 Weighted
Average

0.89 0.88 0.89 25

2. Local Outlier Factor Accuracy Score 0.96
No. of class ‘1’ 1

 Performance
Metrics

Precision Recall F1-Score Support

 Class 0 1.00 0.95 0.98 21

 Class 1 0.80 1.00 0.89 4

 Accuracy 0.96 25

 Macro
Average

0.90 0.98 0.93 25

 Weighted
Average

0.97 0.96 9.96 25

3. Support Vector Machine Accuracy Score 0.56
No. of class ‘1’ 11

 Performance
Metrics

Precision Recall F1-Score Support

 Class 0 0.86 0.57 0.69 21

 Class 1 0.18 0.50 0.27 4

64

 Accuracy 0.56 25

 Macro
Average

0.52 0.54 0.48 25

 Weighted
Average

0.75 0.56 0.62 25

4. Naïve Bayes Classifier Accuracy Score 0.84
No. of class ‘1’ 4

 Performance
Metrics

Precision Recall F1-Score Support

 Class 0 0.84 1.00 0.91 21

 Class 1 0.00 0.00 0.00 4

 Accuracy 0.84 25

 Macro
Average

0.42 0.50 0.46 25

 Weighted
Average

0.71 0.84 0.77 25

5. K-Nearest Neighbor
Classifier

Accuracy Score 0.84
No. of class ‘1’ 4

 Performance
Metrics

Precision Recall F1-Score Support

 Class 0 0.84 1.00 0.91 21

 Class 1 0.00 0.00 0.00 4

 Accuracy 0.84 25

 Macro
Average

0.42 0.50 0.46 25

 Weighted
Average

0.71 0.84 0.77 25

65

Based on the performance metrics in the Table 1, The algorithm for the highest

accuracy is the Local Outlier Factor i.e. 0.96, highest precision is Local Outlier

factor i.e. 1.00, highest Recall is Naïve Bayes and KNN Classifier for Class’0’and

Local Outlier Factor for class ‘1’, highest F1-Score is Local Outlier Factor.

Following Figure 12 shows the comparative graphical analysis of these five

machine learning algorithms (SVM, IF, LOF, KNN, NB) on the basis of

performance metrics such as Precision, Recall, F1 score and Accuracy. On the

basis of the graph, Local Outlier Factor (LOF) is the best suited machine learning

algorithm for the analysis of Power dataset of a RISC Processor.

Figure 16 Comparative graphical analysis showing performance metric of

Machine Learning algorithms.

66

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

The design architecture is written in VERILOG HDL code using Xilinx VIVADO

tool for synthesis and simulation. RISC processor is designed to carry out various

arithmetic and logic instructions. The various blocks like ALU are simulated and

synthesized using the software Xilinx VIVADO Simulator. Constraint files were

added for timing and Implemented by selecting the ARTIX-7 FPGA Board. This

thesis also comprehends the relevance and utilization of ML algorithms at the RTL

level of a digital circuit design. We have studied and simulated a 32 bit MIPS

RISC Processor. On implementation, power reports were generated and recorded

in a .csv file.

This dataset was analyzed and understood that power dissipation mainly depends

on the output capacitive load and vaguely on the Junction Temperature. On the

analyzing the power dataset, we were able to find out that dynamic and signal

power varied linearly with the output load capacitance and signal, I/O and static

power were approximately close to a constant value. On generating the correlation

matrix, we identified the covariance of input and output features among each other.

Furthermore, we implemented five ML algorithms – KNN Classifier, Isolation

Forest (IF), Local outlier Factor (LOF), SVM, and NB classifier. The order of

accuracy on the power data set of these algorithms is as follows: Local outlier

factor > Isolation Forest >KNN Classifier = NB Classifier > Support Vector

Machine. Along with the accuracy, other performance metrics have also been

evaluated and arranged in a tabular form.

We can improve the performance, power and area of the implemented processor by

reducing the instruction and finding out machine learning algorithms that can fit

well for the power analysis. It can also be improved by adding more strength to the

67

instruction set, which has the capability perform the required operations which in

turn increases the speed/performance of the RISC Processor. We further can look

forward to the application of more ML algorithms with an extensive dataset on the

same processor. Moreover, we can modify the RISC processor and perform the

analysis using same machine learning algorithms to know the application of ML

algorithms at the RTL level of an IP or SoC. Machine learning has a very bright

scope at every abstraction level of designing a chip.

We need apt machine algorithms that can find and optimize the critical path of the

design to improve the timing performance of RISC Processor. Area and power

consumption can be reduced by low power techniques such as logic restructuring

and pin ordering etc.

68

References

[1] https:// www.ibm.com/ibm/history/ibm100/us/en/icons/risc/
[2] Preetam bhosale, Hari Krishna Murti, “FPGA implementation of Low Power Pipelined 32 Bit RISC

Processor “ IJITEE Volume-1, Issue-3,August 2012
[3] Pranjali S. Kelgaonkar and Shilpa Kodgire, "Design of 32 Bit MIPS RISC processor based on

Soc," International Journal of Latest Trends in Engineering and Technology (IJLTET), Volume-6,
Issue-3, January 2016.

[4] M. Xue and C. Zhu, "A Study and Application on Machine Learning of Artificial Intellligence," 2009
International Joint Conference on Artificial Intelligence, Hainan Island, 2009, pp. 272-274, doi:
10.1109/JCAI.2009.55.

[5] Samuel, Arthur (1959). "Some Studies in Machine Learning Using the Game of Checkers". IBM
Journal of Research and Development. 3 (3):210-229. CiteSeerX 10.1.1.368.2254.

[6] A. Nayak and K. Dutta, "Impacts of machine learning and artificial intelligence on mankind," 2017
International Conference on Intelligent Computing and Control (I2C2), Coimbatore, 2017.

[7] S. Ray, "A Quick Review of Machine Learning Algorithms," 2019 International Conference on
Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019,
pp. 35-39.

[8] Elfadel, Ibrahim (Abe) M., Boning, Duane S., Li, Xin (Eds.), Machine Learning in VLSI Computer-
Aided Design, 2019, Springer International Publishing, Springer Nature Switzerland AG.

[9] Qiang He and Jun-Fen Chen, "The inverse problem of support vector machines and its solution,"
2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005, pp.
4322-4327 Vol. 7.

[10] Yi-Min Huang and Shu-Xin Du, "Weighted support vector machine for classification with uneven
training class sizes," 2005 International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 2005, pp. 4365-4369 Vol. 7.

[11] A. Mathur and G. M. Foody, "Multiclass and Binary SVM Classification: Implications for Training
and Classification Users," in IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 2, pp. 241-
245, April 2008.

[12] D. Xu, Y. Wang, Y. Meng and Z. Zhang, "An Improved Data Anomaly Detection Method Based on
Isolation Forest," 2017 10th International Symposium on Computational Intelligence and Design
(ISCID), Hangzhou, China, 2017, pp. 287-291.

[13] S. Hariri, M. C. Kind and R. J. Brunner, "Extended Isolation Forest," in IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 4, pp. 1479-1489, 1 April 2021.

[14] F. T. Liu, K. M. Ting and Z. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on
Data Mining, Pisa, Italy, 2008, pp. 413-422.

[15] H. Budiarto, A. Erna Permanasari and S. Fauziati, "Unsupervised Anomaly Detection Using K-
Means, Local Outlier Factor and One Class SVM," 2019 5th International Conference on Science and
Technology (ICST), Yogyakarta, Indonesia, 2019, pp. 1-5.

[16] Breunig, Markus M., et al. "LOF: identifying density-based local outliers." ACM sigmod record. Vol.
29. No. 2. ACM, 2000

[17] W. Wang and P. Lu, "An Efficient Switching Median Filter Based on Local Outlier Factor," in IEEE
Signal Processing Letters, vol. 18, no. 10, pp. 551-554, Oct. 2011.

[18] F. Zhang, F. Yin and G. Huang, "An Optimized LOF algorithm Based on Tree structure," 2020 3rd
International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 2020,
pp. 167-171.

[19] F. Sanei, A. Harifi and S. Golzari, "Improving the precision of KNN classifier using nonlinear
weighting method based on the spline interpolation," 2017 7th International Conference on Computer
and Knowledge Engineering (ICCKE), Mashhad, Iran, 2017, pp. 289-292.

[20] Belur V. Dasarathy, “ Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques”, Mc
Graw-Hill Computer Science Series, IEEE Computer Society Press, Las Alamitos, California,
pp.217- 224,1991

[21] M. Manjusha and R. Harikumar, "Performance analysis of KNN classifier and K-means clustering for
robust classification of epilepsy from EEG signals," 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2016, pp. 2412-
2416.

[22] S. F. Rodiyansyah and E. Winarko, “Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota
Bandung Menggunakan Naive Bayesian Classification,” FMIPA UGM, vol. 6, no. 1, pp. 91–100,
2012

[23] S. Ernawati, E. R. Yulia, Frieyadie and Samudi, "Implementation of The Naïve Bayes Algorithm with
Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online
Companies," 2018 6th International Conference on Cyber and IT Service Management (CITSM),
Parapat, Indonesia, 2018, pp. 1-5.

[24] M. Dixit, R. Sharma, S. Shaikh and K. Muley, "Internet Traffic Detection using Naïve Bayes and K-
Nearest Neighbors (KNN) algorithm," 2019 International Conference on Intelligent Computing and
Control Systems (ICCS), Madurai, India, 2019, pp. 1153-1157.

69

[25] R.S. Anu Gowsalya, S. Miruna, Joe Amali, “Naive Bayes Based Network Traffic Classification Using
Correlation Information”, International Journal of Advanced Research in Computer Science and
Software Engineering Volume 4 issue 3

[26] Andrew W. Moore, Denis Zeuy, “ Internet Traffic Classification Using Bayesian Analysis
Techniques”, SIGMETRICS '05 Proceedings of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems

[27] www.Xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_design__ow _overview.htm.
[28] A verilog HDL Primer, J.Bhasker
[29] "Xilinx Inc, Form 8-K, Current Report, Filing Date Apr 25, 2012". secdatabase.com. Retrieved May

6, 2018.
[30] EDN. "The Vivado Design Suite accelerates programmable systems integration and implementation

by up to 4X." Jun 15, 2012. Retrieved Jun 25, 2013.
[31] "Vivado Design Suite 2014.1 Increases Productivity with Automation of UltraFast Design

Methodology and OpenCL Hardware Acceleration". SAN JOSE: Market Watch. 2014-04-16.
[32] Morris, Kevin (2014-05-06). "Viva Vivado!, Xilinx Tunes-Up Tools". Electronic Engineering

Journal.

70

APPENDIX A

Procedure to calculate the power samples using Xilinx Vivado

software

1. Start with the Xilinx Vivado by double-clicking the Vivado desktop icon .

2. By clicking on the Create Project, a New Project window will open.

3. Choose Next so as to open Project Name dialog box.

 Type our project name

 Choose a location where we want to save your project files.

 Select Create project subdirectory check box

 Click Next.

4. A Project Type page will appear, select RTL Project, and click Next.

5. Next will be the Add Sources page, set Target language to Verilog.

6. Set the simulator language to Mixed and click Next.

6. Choose and add your constraint file in the Add Constraints page, go for Next

button.

7. Next, we have a Default Part page,

 Select Boards.

 Select All to view all versions of the supported boards in Xilinx Vivado.

 Select the version of the Artix-7 Evaluation Board.

 Click on the Next button.

After this, we write the design code and simulation code in verilog for the 32 bit

RISC processor and the file for it is with .v extension which is included in the

Design sources. This design source and simulation source can be successfully

simulated for by clicking on the Run Simulation.

 This will check the behvioral working of the code whether the design code with

the help of applied simulation source is prodcing the correct output or not. The

71

Figure shows the sources included for the implemented design.

Along the side we can see different views like Simulation, RTL analysis,Synthesis

and implementation. We can simulate our design code by clicking on the Run

Simulation tab. We can generate the RTL schematic by clicking on the Open

Elaborated Design tab. We can synthesize the code by choosing Run Synthesis

tab and can view the implementation by choosing the Run Implementation tab.

Figure Sources included in the Implemented Design.

Xilinx Vivado facilitates the incorporation of constraint files known as XDC file. It

is becomes a challenging task for the novice user to write design constraint file as

per own because we have limited knowledge regarding the physical connections

of the FPGA pins on the board.

72

We can add test benches which appear in the Sources view hierarchy. Multiple test

benches can be added to the project. All source files like design sources, constraint

sources and simulation sources of the project are simulated by clicking on the

Simulation option. Figure shows the main source files in design, constrain and

simulation. When you add a test bench to the project, you must ensure that the

associated Design View is set to a Simulation view. For simulation source files,

Project Navigator automatically selects the Design View association based on

the file name.

Figure Design, constraint and simulation source files.

73

The design description comprising of ports, registers, flops, cells, pins, and nets as

design device, user defined modules, library elements instances(BELs), LUTs, FF,

RAMs, DSP, etc. is known as Netlist. The following Figure shows the netlist

section of the implemented RISC processor design code showing the ID,IF,

RegALU, MEM, registers used for ALU_OUT for each stage transition i.e EX to

MEM, MEM to WB, ID to EX etc. Each of the netlist refers to digital circuit of the

processor components like datapath, control unit, ALU etc.

Figure Netlist of the Implemented Design

The project summary gives the overview of the setting, synthesis, implementation,

summary, DRC violations, Timing, Setup, Utilization and power consumed by the

design. Following Figure shows the project summary of a Project 1.

74

Figure The summary of the project 1

Figure The summary of the project 2

75

Following Figure shows the Device level of the Implemented Design of RISC

processor. This is a kind of a Floor Plan of the processor on FPGA, where it shows

the schematic of how the design of the processor is placed in FPGA tentatively.

We can see partitions in the overall FPGA area available as X0Y0, X0Y1,X1,Y2

etc. as an individual blocks. Also, we can see that mainly only two blocks X0Y2

and X0Y1are used for the implementation of the processor we designed.

Figure Device of the Implemented Design

After we are completed with the design code, we move on to the next stage of

generating the netlist of the design to see what the design code get synthesized to.

The Xilinx Vivado incorporates an environment that customizes the IP and

analyses the RTL. Elaborated Design in the Flow Navigator helps in detail analysis

76

of code by using various RTL code DRCs to examine and improve the timing or

power of the design. This generates simple and an elaborated netlist to also check

synthesis of that design code.

Figure RTL Schematic of the RISC Processor

Figure Schematic of the Elaborated RISC Processor Design

77

The Elaborated RTL Design Schematic allows the numerous analytical views that

include an RTL Netlist, Schematic, and Graphical Hierarchy. Cross select feature

is included in the view section to lets us debug and optimize the RTL of the design

code.

Figure Schematic of the Elaborated RISC Processor Design(Zoomed Version)

Next step is the checking the functional correctness of the design code of

Processor. So we simulate and check its behavioral. After the design is working

correctly, we generate the Power Report filling in the required inputs.

78

APPENDIX –B

Python Code used while modeling machine learning algorithm and analyzing both
power dataset and different types of power consumptions.

CODE :

//Loading the libraries

import numpy as np

import pandas as pd

import sklearn

import scipy

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import classification_report,accuracy_score

from sklearn.ensemble import IsolationForest

from sklearn.neighbors import LocalOutlierFactor

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import OneClassSVM

79

from pylab import rcParams

rcParams['figure.figsize'] =12,8

RANDOM_SEED = 42

//Uploading the dataset

// Reading the dataset – first 10 entries

data = pd.read_csv('processor2.csv',sep=',')

data.head(n=10)

Following Figure showing first ten entries in the Power dataset.

Figure First Ten entries in power dataset

80

data.info()

// Above command prints the information about the dataset as all the columns

and their Non-null count and Dtype

The following figure shows the information about the dataset as all the columns

and their Non-null count and Dtype. Also, total entries as 50, all the input and

output as the column, which will also be referred as instances. And each entries

will be referred as samples.

Figure Information about the dataset as all the columns and their Non-null count

and Dtype

81

//Checking dataset if containing any null values or missing values

//Checking if the dataset is consistent

data.isnull().values.any()

Following Figure shows the output of the above snippet.

//Power analysis

//Plotting the distribution of the different types of Power generated from the

//power report

// Static Power Distribution

count_classes = pd.value_counts(data['Static Power in W'], sort = True)

count_classes.plot(kind = 'pie', rot=0)

plt.title("Static Power Distribution")

plt.xlabel("Static Power")

plt.ylabel("No. of Samples")

// Logic Power in w Distribution

count_classes = pd.value_counts(data['Logic Power in w'], sort = True)

count_classes.plot(kind = 'pie', rot=0)

82

plt.title("Logic Power in w Distribution")

plt.xlabel("Logic Power in w")

plt.ylabel("No. of Samples")

// I/O Power Distribution

count_classes = pd.value_counts(data['I/O power in W'], sort = True)

count_classes.plot(kind = 'pie', rot=0)

plt.title("I/O Power Distribution")

plt.xlabel("I/O Power")

plt.ylabel("No. of Samples")

// Signal Power Distribution

count_classes = pd.value_counts(data['Signal Power in W'], sort = True)

count_classes.plot(kind = 'pie', rot=0)

plt.title("Signal Power Distribution")

plt.xlabel("Signal Power")

plt.ylabel("No. of Samples")

//On chip Dynamic power in W

count_classes = pd.value_counts(data['On chip Dynamic power in W'], sort = True
)

count_classes.plot(kind = 'pie', rot=0)

83

plt.title("On chip Dynamic power Distribution")

plt.xlabel("On chip Dynamic power in W")

plt.ylabel("No. of Samples")

Following Figure shows data shape command and printing the data.

Figure data shape command and printing the data

84

//Plotting the different types of power with respect to output load and

//Junction Temperature

data.plot(x='output Load', y='On chip Dynamic power in W')

data.plot(x='output Load', y='Signal Power in W')

data.plot(x='output Load', y='Logic Power in w')

data.plot(x='output Load', y='I/O power in W')

data.plot(x='output Load', y='Static Power in W')

data.plot(x='Junction Temperature in C', y='On chip Dynamic power in W')

data.plot(x='No. of Board Layers', y='On chip Dynamic power in W')

data.plot(x='Junction Temperature in C', y='On chip Dynamic power in W')

data.plot(x='Junction Temperature in C', y='Signal Power in W')

data.plot(x='Junction Temperature in C', y='Logic Power in w')

data.plot(x='Junction Temperature in C', y='I/O power in W')

data.plot(x='Junction Temperature in C', y='Static Power in W')

data1= data.sample(frac = 0.5,random_state=1)

data1.shape

invalid_data = data1[data1['Total On Chip Power in W']>3000]

85

valid_data = data1[data1['Total On Chip Power in W']<3000]

outlier_fraction = len(invalid_data)/float(len(valid_data))

print(outlier_fraction)

print("Invalid data Cases : {}".format(len(invalid_data)))

print("Valid data Cases : {}".format(len(valid_data)))

Figure showing output of the above commands

Figure output of data1 shape and outlier fraction command

86

//Correlation

// Generating the correalation Matrix

import seaborn as sns

#get correlations of each features in dataset

corrmat = data1.corr()

top_corr_features = corrmat.index

plt.figure(figsize=(20,20))

//plotting the heat map

g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn")

//Create independent and Dependent Features

columns = data1.columns.tolist()

//Filter the columns to remove data we do not want

columns = [c for c in columns if c not in ["class"]]

//Store the variable we are predicting

target = "class"

// Define a random state

state = np.random.RandomState(42)

X = data1[columns]

Y = data1[target]

X_outliers = state.uniform(low=0, high=1, size=(X.shape[0], X.shape[1]))

//Print the shapes of X & Y

87

print(X.shape)

print(Y.shape)

//Define the outlier detection methods

//Defining all the five Machine Learning Algorithms

classifiers = {

 "Isolation Forest":IsolationForest(n_estimators=100, max_samples=len(X),

 contamination=outlier_fraction,random_state=state, verbo

se=0),

 "Local Outlier Factor":LocalOutlierFactor(n_neighbors=20, algorithm='auto',

 leaf_size=30, metric='minkowski',

 p=2, metric_params=None, contamination=outlier_fra

ction),

 "Support Vector Machine":OneClassSVM(kernel='rbf', degree=3, gamma=0.1,n

u=0.05,

 max_iter=-1),

 "GaussianNB" : GaussianNB(priors= None , var_smoothing=1e-09),

 "KneighborsClassifier": KNeighborsClassifier(algorithm='auto', leaf_size

=30, metric='minkowski',

metric_params=None, n_jobs=None, n_neighbors=5, p=2,

weights='uniform')

}

88

n_outliers = len(invalid_data)

for i, (clf_name,clf) in enumerate(classifiers.items()):

 //Fit the data and tag outliers

//Fitting the Machine Learning Algorithms

 if clf_name == "Local Outlier Factor":

 y_pred = clf.fit_predict(X)

 scores_prediction = clf.negative_outlier_factor_

 elif clf_name == "Support Vector Machine":

 clf.fit(X)

 y_pred = clf.predict(X)

 elif clf_name =="GaussianNB":

 clf.fit(X, y_pred)

 y_pred = clf.predict(X)

 elif clf_name =="KneighborsClassifier":

 clf.fit(X, y_pred)

 y_pred = clf.predict(X)

 else:

 clf.fit(X)

 scores_prediction = clf.decision_function(X)

 y_pred = clf.predict(X)

89

 //Reshape the prediction values to 0 for Valid transactions , 1 for Fraud trans

actions

 y_pred[y_pred == 1] = 0

 y_pred[y_pred == -1] = 1

 n_errors = (y_pred != Y).sum(

//Run Classification Metrics

// Generation of Classification Report

 print("{}: {}".format(clf_name,n_errors))

 print("Accuracy Score :")

 print(accuracy_score(Y,y_pred))

 print("Classification Report :")

 print(classification_report(Y,y_pred))

90

Figure showing output of the classification metric report

Figure output of the classification metric report

91

Figure output of the classification metric report

Another code run for Graphical comparison of Machine learning Algorithms.

//Loading libraries

import numpy as np

import pandas as pd

92

import sklearn

import scipy

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import classification_report,accuracy_score

from sklearn.ensemble import IsolationForest

from sklearn.neighbors import LocalOutlierFactor

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import OneClassSVM

from pylab import rcParams

rcParams['figure.figsize'] =12,8

RANDOM_SEED = 42

data = pd.read_csv('MLA.csv',sep=',', encoding='latin-1')

data.head(n=10)

data.info()

Following Figure shows the dataset for Five machine learning algorithms.

93

Figure dataset for Five machine learning algorithms.

// Plotting the comparison of machine learning algorithm on the basis of their

performance metrics

data.plot(x ='MLA_name',kind = 'bar', rot=0)

plt.title("comparison")

94

plt.xlabel("MLA_name")

plt.ylabel("Performance metrics")

Following figure showing the output of above snippet code

Figure Comparison of Different machine learning algorithms on the basis of their

performance metrics.

