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Abstract 

Software is a set of instructions with the sole purpose of defining functionality. It helps 

to make our life easier by doing heavy computation. That is precisely why developing 

software has become essential in the modern day. Many researchers are working on bug 

proneness of software using different approaches from manual testing to automation. In 

automation, Machine Learning algorithms are used to detect any flaw in the software. 

Their results vary from dataset to dataset. These algorithms give inconsistent output for 

predicting bugs in a random software project.  

Software Bug Prediction is the process of classifying a new module as buggy or not using 

some historical data. Using Software bug prediction, the number of modules to be tested 

decreases drastically. As software size increases daily, developing a classification model 

becomes challenging due to the massive amount of data to be processed. To that end, 

feature selection can be used to reduce the dimensionality of data. 

Feature selection is the process of reducing the feature space of a system under 

observation by using the evaluation criteria to select N relevant features from the original 

set. This reduced feature set helps in increasing the accuracy as well as the throughput of 

the models.  

In this study, we analyzed the prediction performance of various classifiers based on 

multiple ranked search-based feature selection algorithms (filter algorithms). In other 

terms, we can say that all the different feature selection algorithms are used with each 

classifier to check the model's prediction power. We have used Naive Bayes classifiers, 

Logistic Regression, K-Nearest Neighbours, Bayesian Network, Random Forest, 

Decision Tree, MultiLayer Perceptron and four types of ensemble classifier (Voting, 

Stacking, Bagging and Boosting) for implementation, and data sets are collected from the 

PROMISE repository, which is publicly available. The area under the ROC curve (AUC) 

is used to analyze the prediction performance. Friedman test is used, To check the 

statistical significance of the results of the different models. This study shows that the 

Feature Selection Algorithms improve the performance of SBP Models, and Correlation 

Attribute Feature Evaluation and Symmetrical Uncertainty gives effective results. Also, 

Bagging Ensemble gives the best results in all classifiers studied.  

 

 



V 
 

CONTENTS 

CANDIDATE’S DECLARATION I 

CERTIFICATE II 

ACKNOWLEDGEMENT III 

Abstract IV 

CONTENTS V 

List of Figures VII 

List of Tables VIII 

List of Symbols and Abbreviations IX 

CHAPTER 1 Introduction 1 

     1.1 General 1 

     1.2 Problem Formulation 2 

     1.3 Objectives of the Project 3 

CHAPTER 2 Literature Review 4 

     2.1 Individual Classifiers for Bug Prediction 4 

     2.2 Within- vs Cross-project Bug Prediction 4 

     2.3 Individual Feature Selection for Bug Prediction 5 

     2.4 Homogenous and Heterogeneous Ensemble 5 

CHAPTER 3 Theoretical Concepts 7 

     3.1 Features 7 

     3.2 Data Preprocessing 7 

     3.3 Feature Selection 8 

     3.4 Classification 9 

     3.5 Ensemble Techniques 10 

     3.6 Software Bug Prediction 10 

CHAPTER 4 Proposed Model 12 

     4.1 Dependent and Independent Variable 12 

     4.2 Empirical Data Collection 13 

CHAPTER 5 Experimental Setup 14 

     5.1 Dataset 14 

     5.2 Dataset Preprocessing 14 

    5.3 Feature Selection Algorithm 14 



VI 
 

    5.4 Classification and Ensemble Techniques 17 

    5.5 Performance Evaluation Measure 23 

    5.6 Statistical Test 23 

CHAPTER 6 RESULTS 25 

CHAPTER 7 Discussion on Results 44 

CHAPTER 8 Conclusion and Future Scope 54 

References 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 
 

List of Figures 

Fig. 1.1 Software Bug Prediction Steps 2 

Fig. 1.2 Feature Selection Process 3 

Fig. 2.1 ML Techniques 6 

Fig. 3.1 Data Variable Types 7 

Fig. 3.2 Feature Selection Type 9 

Fig. 4.1 Proposed Architecture 11 

Fig. 5.1 Chi Square distribution for different Df 16 

Fig. 5.2 K2 Algorithm 18 

Fig. 5.3 Decision Tree Example 19 

Fig. 5.4 MLP Classifier Structure 20 

Fig. 5.5 Stacking Ensemble Working 21 

Fig. 5.6 Bagging Working 22 

Fig. 5.7 Boosting Working 22 

Fig. 5.8 AUC ROC 23 

Fig. 7.1 Box Plot of NB 44 

Fig. 7.2 Box Plot of LOG 45 

Fig. 7.3 Box Plot of BN 45 

Fig. 7.4 Box Plot of KNN 46 

Fig. 7.5 Box Plot of RFo 46 

Fig. 7.6 Box Plot of DT 47 

Fig. 7.7 Box Plot of MLP 47 

Fig. 7.8 Box Plot of VE  47 

Fig. 7.9 Box Plot of SE 48 

Fig. 7.10 Box Plot of BE 49 

Fig. 7.11 Box Plot of BoE 49 

Fig. 7.12 Box Plot of GR 50 

Fig. 7.13 Box Plot of IG 50 

Fig. 7.14 Box Plot of RF 51 

Fig. 7.15 Box Plot of OR 51 

Fig. 7.16 Box Plot of SU 52 

Fig. 7.17 Box Plot of CR 52 

Fig. 7.18 Box Plot of CS 53 



VIII 
 

List of Tables 

Table 4.1 Static Code Metrics Detail 12 

Table 4.2 Dataset Details 13 

Table 6.1 AUC values of NB 26 

Table 6.2 AUC values of LOG 27 

Table 6.3 AUC values of BN 28 

Table 6.4 AUC values of KNN 29 

Table 6.5 AUC values of RFo 30 

Table 6.6 AUC values of DT 31 

Table 6.7 AUC values of MLP 32 

Table 6.8 AUC values of VE 33 

Table 6.9 AUC values of SE 34 

Table 6.10 AUC values of BE 35 

Table 6.11 AUC values of BoE 36 

Table 6.12 AUC values of GR 38 

Table 6.13 AUC values of IG 39 

Table 6.14 AUC values of RF 39 

Table 6.15 AUC values of OR 40 

Table 6.16 AUC values of SU 41 

Table 6.17 AUC values of CR 42 

Table 6.18 AUC values of CS 43 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

List of symbols and abbreviations 

Df Degree of Freedom 

SBP Software Bug Prediction 

ANOVA Analysis of Variance 

AUC Area Under the curve 

ROC Receiver Operating Characteristics  

WMC Weighted Methods per Class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Object 

RFC Response for a Class 

LCOM Lack of Cohesion in Methods 

CA Afferent Coupling 

CE Efferent Coupling 

NPM Number of Public Methods 

LCOM3 Lack of Cohesion in Methods version 3 

LOC Lines of Code 

DAM Data Access Metric 

MOA Measure of Aggregation 

MFA Measure of Functional Aggregation 

CAM Cohesion Among Methods 

IC Inheritance Coupling 

CBM Coupling Between Methods 

AMC Average Method Complexity 

max (CC) Maximum McCabe’s Complexity 

avg (CC) Average McCabe’s Complexity 

GR Gain Ratio 

IG Information Gain 



X 
 

OR One R 

RF Relief F 

SU Symmetrical Uncertainty 

CR Correlation 

CS Chi Square 

LOG Logistic Regression 

BN Bayesian Network 

NB Naive Bayes 

KNN K-Nearest Neighbour 

RFo Random Forest 

DT Decision Tree 

MLP MultiLayer Perceptron 

VE Voting Ensemble 

SE Stacking Ensemble 

BE Bagging Ensemble  

BoE Boosting Ensemble 

RFE Recursive Feature Elimination 

CFS Correlation Based Feature Selection 

WEKA Waikato Environment for Knowledge 

Analysis 



1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 General 

 

Software testing is a resource and time-consuming task in the software development 

lifecycle. The end goal of the testing process is to deliver error-free software that meets 

all stakeholders' requirements. Continuous changes, strict deadlines, and the need to 

ensure the correct behaviour of the functionality are some challenges faced by developers 

consistently. However, limited time and workforce are threats to practical testing. 

Therefore, instead of testing the whole software for bugs, allocating all the resources to 

the bug-prone classes will be easier if we know them.   

 

Bug Prediction Model, which predicts the software component which needs to be tested 

more extensively and is more likely to have bugs, offers an effective solution to the above 

problem. Software Bug Prediction (SBP) is one of the most assisting activities in the 

Testing Phase of SDLC. SBF models use multiple software metrics data collected either 

from previous versions of the same system (within-project approach) or from the metric 

data of other systems (cross-project approach). 

 

Ghotra et al. established that the accuracy of a prediction model can increase or decrease 

up to 30% depending upon the classifier used [15]. Also, Panichella et al. prove that the 

predictions of different classifiers are highly interdependent despite similar prediction 

accuracy [28]. 

 

The model can be trained using sufficiently large data from the project under observation 

(within-project strategy) or using data from a similar project, not under observation 

(cross-project strategy). But the main problem with the dataset is the higher 

dimensionality of the metrics, including redundant or irrelevant metrics. Higher 

dimensionality of the dataset will lead to higher costs for building and testing the systems. 

For the foregoing reasons, a variety of feature selection methods were proposed to 

alleviate this issue of high dimensionality by eliminating irrelevant and redundant 

features [39]. 
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Fig.1.1 Software Bug Prediction Steps 

Software Bug Prediction (SBP) Model predicts the software component that needs to 

be analyzed more for the bugs as the bug probability is higher in that component. The bug 

prediction model is a supervised method in which a set of independent variables are 

selected (predictor) and are used to predict the value of the dependent variable (bug 

proneness of the component) using one or more ML Classifiers.   

Feature selection is the process of selecting N relevant features from the original set to 

optimally reduce the feature space according to the evaluation criteria and system under 

observation. Datasets with thousands of features are not uncommon in such applications. 

All features may be necessary for some problems, but for some target concepts, only a 

small subset of features is usually relevant [27]. 

The process of Feature Selection is divided into four parts: 

1. Subset Generation 

2. Evaluation 

3. Stopping Criteria  

4. Validation 

1.2 Problem Formulation 

During the testing phase, it is not feasible to test the complete product, nor is it possible 

to perform 100% testing. So to find the bug proneness of a particular function (area), we 

use a bug prediction model, which can help identify weak areas. Based on this problem 

following question have been identified: 

1. What models are used to predict the proneness of a function? 

2. What datasets are available to test these models? 

3. Do the current models incorporate ensemble techniques? 
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Fig. 1.2 Feature Selection Process 

 

 

1.3 Objectives of the Project   

This study evaluates the performance of Filter Feature Selection Algorithms and 

compares their predictive power with different classifiers for SBP. The main focus of this 

study is on the following research questions: 

1. Which Feature Selection Algorithm gives the best results? 

2. What is the effect of Feature Selection Algorithms on Fault Proneness Models? 

3. Which classifier or ensemble techniques perform the best? 

Therefore, in this study, we will build bug prediction models using multiple classification 

techniques and then compare and analyze each classification technique's results based on 

AUC values [20]. We will analyze the results of each classification technique based on 

different Feature Selection Algorithms. 

  



4 
 

CHAPTER 2 

LITERATURE REVIEW 

In this section, information related to the variety of research papers concentrating on 

software bug prediction using different methodologies, challenges present in bug 

prediction, and which techniques can perform better, etc. has been listed. This section 

provides a brief insight into the previous works done in the field of software bug 

prediction. 

Many researchers 6have been trying to build software bug prediction models using 

different bug prediction techniques which deliver better performance, but most of them 

use static code metrics as independent variables, and few of them use feature selection to 

analyze metrics.  

Most of the previous work of bug prediction models is done using predictors such as CK 

metrics, HIstory Based Metrics. 

1. Individual Classifiers for Bug prediction 

Several Classifier can be used to build a bug prediction model like Logistic Regression 

(LOG), Support Vector Machines (SVM), Radial Basis Function Network (RBF), Multi-

Layer Perceptron (MLP), Bayesian Network (BN), Decision Tree (DTree), and Decision 

Tables (DTables). But there is no clear winner from previous studies as to which is the 

best classifier to predict bug proneness. Their performance depends upon the predictor 

we selected and the dataset used. 

 

Lessman et al. [21] experimented with 22 classification models. The top 17 models were 

statistically similar to each other on ten publicly available software development data sets 

from the NASA repository. Later Shepperd et al. [34] found that the NASA dataset used 

was noisy and biased. 

2. Within- vs Cross-Project Bug Prediction 

The dataset can be collected in two ways: 

a. Within-Project: Dataset only contains Historical data of the system under 

observation. It can only be applied to mature projects, where sufficient 

amount of project history is available. This strategy is preferred due to the 

homogeneity of data. 
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b. Cross-Project: Dataset contains data from other systems that are similar to 

the system under observation. It is applied to those projects where a 

sufficient amount of project history is not available. So a dataset can only 

be constructed with data from other systems. 

3. Individual Feature Selection for Bug Prediction 

Feature selection is the process of selecting N features from the original set of features to 

decrease the dimensionality of the feature pool and increase the performance while 

lowering the cost and time to build the prediction model. 

Types of Feature Selection methods are listed below:  

a. Wrapper Method: These methods carry out the selection process keeping 

in mind the classification algorithms that are going to be used. Wrapper 

methods use the predictor as a black box and the predictor performance as 

the objective function to evaluate the variable subset [9].  

b. Filter Method: These methods carry out the selection process without 

considering the algorithm used for classification. Filter methods are faster 

than wrapper methods and result in a better generalization because they 

act independently of the classification algorithm. 

c. Embedded method: These methods encompass the benefits of both the 

wrapper and filter methods by including interactions of features but also 

maintaining reasonable computational cost. Embedded methods are 

iterative because they take care of each iteration of the model training 

process and carefully extracts those features that contribute the most to the 

training for a particular iteration [3]. 

4. Homogenous and Heterogeneous Ensemble  

Ensemble models have been demonstrated exceptionally successfully to inspire the 

precision and the presentation of the models. An ensemble consists of a set of individually 

trained classifiers, such as neural networks or decision trees, whose predictions are 

combined when classifying new instances [29]. Ensemble takes place in two steps: 

a. Model Training: Training each individual classifier with the same training 

dataset but using different subsets. 

b. Model Combination: Combining the power of all the trained classifiers 

using one of the combining techniques (Averaging or Voting). 
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There are two types of ensemble techniques: 

a. Homogeneous Ensemble: It consists of classifiers having a single-type 

base learner. Example bagging or boosting. 

b. Heterogeneous Ensemble: It consists of classifiers having different base 

learning algorithms. Example stacking or voting of bagged classifiers. 

 
Fig. 2.1 ML Techniques 

 

An Empirical Comparison is made by Zhou et al. [39] consisting of 32 feature selection 

methods and the result of this study shows that feature selection algorithms significantly 

improve the bug prediction performance. Also, Wrapper and filter feature selection 

algorithms give the best result compared to clustering-based, but they tend to take more 

time to select features. 

Shivaji et al. [35] conducted research showing that the performance of bug prediction 

models is increased by eliminating 90% of the original features. Also, NOVAKOVIC et 

al. [27] compares the performance of 5 filter feature selection algorithms concluding that 

to rank the algorithms based on their performance, one will need to keep indices to check 

the best feature subset is selected and a bigger dataset is needed with more classifiers. 
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CHAPTER 3 

THEORETICAL CONCEPTS 

This section presents the basic theoretical concepts required to understand the key 

processes and working of the experiment studied in this project. This section familiarizes 

the concept of data preprocessing, features, feature selection algorithms and ensemble 

techniques. It also induces the idea of working with individual classifiers. The concepts 

introduced in this section help to understand the proposed architecture for software bug 

prediction models used. 

3.1 Features 

A feature is an individual measurable property or characteristic of a phenomenon being 

observed [38]. Data objects are described by many features, which captures the essence 

of the object under consideration.  

Features are also known as Variables, characteristics, attributes, etc. 

 

Fig. 3.1 Data Variable Types [5] 

There are 2 types of features: 

1. Categorical - values taken from a defined set. Example: Days of the week. 

2. Numerical - values are continuous or integer-valued. Example: Speed of the car. 

3.2 Data Preprocessing 

The process of converting raw data into an efficient and usable format using data mining 

techniques. This process reduces the prediction time for our models by selecting the 

relevant features for bug prediction and disposing of the rest. 

The process of Data Preprocessing includes: 
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1. Data Cleaning: The process of filling the missing information or removing the 

noisy data from the dataset is called data cleaning. There are multiple ways to 

handle cleaning, like Fill the missing values, clustering, etc. 

2. Data Transformation: This process turns the data into a suitable form for the 

mining process. Steps include are: 

a. Normalization: Getting all the values in a specific range 

b. Attribute Selection: Construction of new attribute from older one for 

mining purpose 

c. Discretization: Replacing the raw value of a numeric attribute by 

interval/conceptual levels. 

d. Concept Hierarchy Generation: Converting low-level hierarchy attributes 

to a higher level. 

3. Data Reduction: It helps to reduce the size of data that we process for our 

models to amplify the prediction speed and accuracy of the models. Steps 

include are: 

a. Data Cube Aggregation: Application of Aggregation operation to 

generate data cube. 

b. Attribute Subset Selection: Forming a subset of those features with 

higher relevance to our goal feature. 

c. Numerosity Reduction: It is a process of storing a model of data instead 

of complete data. 

d. Dimensionality Reduction: Process of reducing the size of data by 

encoding mechanism. The methods can be lossy or lossless. 

3.3 Feature Selection 

Feature Selection is the process of selecting a subset of input attributes from a given 

set of inputs in order to minimize the computational cost and improve the prediction 

abilities of the predictive model to be developed. The aim of feature selection is to 

remove the redundant and irrelevant inputs for the predictive model. Feature 

Selection is closely related to the dimensionality reduction process. Feature 

Selection focuses on adding or deleting data from a dataset whereas dimensionality 

reduction focuses on projecting the data to generate entirely new sets of inputs. 
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Fig. 3.2 Feature Selection Types 

There are two ways of performing feature selection: 

a. Unsupervised: Remove redundant predictors without utilizing the target variable. 

Example - Correlation Based Feature Selection (CFS) 

b. Supervised: Remove irrelevant predictors using the target variable as guiding 

parameter for selection. Example - Recursive Feature Elimination (RFE) 

Supervised Feature Selection is further divided into three types: 

a. Wrapper: Perform search to select a subset of features that performs well. 

Example - RFE 

b. Filter: Select subset of features based on the relation with the target variable. 

Examples - Feature Importance Methods 

c. Intrinsic: Algorithm that automatically selects the feature during model training. 

Example - Decision Tree 

3.4 Classification 

Classification is the process of predicting or assigning class/label to an unknown 

input using the set of inputs provided to the predictive model during training. There 

are two types of classification: 

a. Binary Classification: In this type of classification, only two classes are 

available for assignment, i.e., input belongs to either class available. Example - 

Spam Classification. 

b. Multi-class Classification: In this type of classification, more than two classes 

are available for assignment, i.e., the input can belong to one of the available 

classes. Example - Plant Species Classification 
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3.5 Ensemble Technique 

Ensemble strategies appear to be meta-calculations that are a combination of a few 

methods of machine learning into one prescient model to improve predictions (casting a 

ballot), decline predisposition (boosting), or decline difference (sacking). With the help 

of an ensemble of classifiers, one can achieve the better predictive power of the model 

developed. The member classifiers of an ensemble may or may not be of the same type 

and may or may not be trained on the same training data (Homogenous or Heterogeneous 

Ensemble). The main goal of Ensemble Techniques: 

1. Performance: Increases the prediction capabilities of the developed model. 

2. Robustness: Reduces the overall dispersion of prediction and model 

performance. 

3. Low Bias, Low Variance: Provides a way to decrease the variance while 

increasing the model's performance. 

There are many types of Ensemble like BAGGING, BOOSTING, VOTING, 

STACKING, RANDOM FOREST, etc. 

3.6 Software Bug Prediction 

Software deformity (or deficiency) prediction is viewed as one of the most practical and 

furthermore useful devices which let us know whether a specific module is having 

imperfection or not. Software professionals consider it to be an essential stage for 

guaranteeing the nature of the procedure or the item which is to be created. It made light 

of an exceptionally pivotal job in achieving the cases in the software industry that it can't 

meet the necessities in the spending plan and on schedule. 

Today, software can be huge and to test the complete software is not feasible in terms of 

time as well as according to cost perspective. Error could be present anywhere in the code 

so to distinguish which modules are defective and which are not plays an important role 

in reducing the overall cost of the software. Software bug prediction models helps to find 

these bug prone modules as early as possible to increase efficiency, accuracy and 

durability of software and to reduce the cost of building the software. 
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CHAPTER 4 

PROPOSED MODEL 

This section presents the proposed model being utilized in this project. This section 

familiarizes the architecture of the model used. It also helps to understand the comparison 

of multiple feature selection algorithms and classification algorithms. 

  

Fig. 4.1 Proposed Architecture 
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In this section, static code metrics are used as dependent and independent variables and 

are defined below. Also, datasets are collected using empirical data collection methods. 

 

4.1 Dependent and Independent Variables: 

Bug proneness is defined as the probability of finding bugs in the class. Independent 

variables used in this study are static code metrics, and the dependent variable used in 

this study is bug proneness. Table I shows the static code metrics used in this study. 

Jureczko and Madeyski[19] defined each of the static metrics given in table 4.1. 

 

Table 4.1: Static Code Metrics Details 

WMC Weighted Method per Class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Objects 

RFC Response for a Class 

LCOM Lack of Cohesion in Methods 

LCOM3 Lack of Cohesion in Methods version 3 

NPM Number of Public Methods 

DAM Data Access Metric 

MOA Measure of Aggregation 

MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods 

IC Inheritance Coupling 

CBM Coupling Between Methods 

AMC Average Method Complexity 

Ca Afferent Coupling 

Ce Efferent Coupling 

Max (CC) Maximum McCabe’s Complexity 

Avg (CC) Average McCabe’s Complexity 

LOC Lines of Code 
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4.2 Empirical Data Collection: 

The dataset is collected from 9 projects. All are java based projects. Ckjm [23] program 

and the BugInfo [13] tool was used by Madeyski and Jureczko [1] to collect metrics from 

project repositories. Bug is the dependent metric used in this study, the rest are 

independent. The datasets which have been used in this study are shown in table 4.2. 

 

Table 4.2: Dataset Details 

Project name Version Description 

Ant 1.6, 1.7 Java-based build tool. 

Camel 1.4, 1.6 Open-source integration framework 

based on known Enterprise 

Integration Patterns. 

Ivy 1.4,2.0 Dependency Manager. 

Lucene 2.4 Full text search library in java. 

POI 2.5, 3.0 Java- based tool to create and 

maintain API. 

Synapse 1.2 Enterprise service bus 

Tomcat 6.0 Open source implementation of jsp 

Velocity 1.6 Template Builder 

Xalan 2.5,2.6 XSLT processor 
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CHAPTER 5 

EXPERIMENTAL SETUP 

5.1 Dataset 

In the experiment, 15 projects from the PROMISE repository are taken and are then 

cleaned using the WEKA tool. 

5.2 Dataset Preprocessing 

Datasets are downloaded from PROMISE repositories, which may contain some 

missing data or noise, which affect the generated model’s performance. Preprocessing 

is done to avoid these problems, such as removing unwanted metrics like Version 

field, ID field, Project name metric, etc. Using one of the WEKA tool filters, we can 

convert the bug metric from “numeric to nominal” as software’s bug field contains 

binary values either 0 or 1. 

5.3 Feature Selection Algorithm 

Entropy is the foundation of GR, IG and SU which is considered as the measure of 

unpredictability of the system. The entropy of y is: 

𝐻(𝑌) =∑

𝑦𝜖𝑌

𝑝(𝑦)𝑙𝑜𝑔2(𝑝(𝑦)) 

Where p(y) is a marginal probability density function of random variable Y. 

Suppose the observed values of Y in the training data set S is partitioned on the basis 

of second feature X, Y’s entropy with respect to the partitions produced by X is less 

than the entropy of Y prior to partitioning. In that case, there is a relationship between 

features Y and X. The entropy of Y after the partition produced by X is then [27]: 

𝐻(𝑌|𝑋) = −∑

𝑥𝜖𝑋

𝑝(𝑥)∑

𝑦𝜖𝑌

𝑝(𝑦|𝑥)𝑙𝑜𝑔2(𝑝(𝑦|𝑥)) 

In this study we have used seven ranker methods for feature selection:  

a. Gain Ratio (GR) attribute Evaluation: It is the non-symmetrical measure that 

compensates for the bias of the IG [16]. GR is given by:  

𝐺𝑅 =
𝐼𝐺

𝐻(𝑋)
 

Due to this normalization of IG, the GR will lie between [0, 1].  
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Higher the value of GR, higher the relation between X and Y. GR favors variables 

with fewer values [27].   

b. Information Gain (IG) attribute Evaluation: Entropy is a measure of impurity 

in a training set S. We can define a standard by considering additional information 

about Y provided by X that represents the amount by which Y’s entropy decreases  

[16]. This measure is known as IG. It is given by:  

𝐼𝐺 = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)  

IG is symmetrical in nature. The information gained about Y after considering X 

is equal to the information gained about X after considering Y [27]. IG’s problem 

is that it is biased towards features with more values, even if they do not contain 

anything relevant. 

c. Symmetrical Uncertainty (SU) attribute evaluation: The Symmetrical 

Uncertainty measures counterbalance for the inherent bias of IG by dividing it by 

the sum of the entropies of X and Y. It is given by:  

𝑆𝑈 = 2
𝐼𝐺

𝐻(𝑌) + 𝐻(𝑋)
 

SU takes values, which are standardized to the range [0, 1] because of the 

correction factor 2.  

SU = 1 means that one feature completely predicts while SU = 0 indicates that X 

and Y are uncorrelated [27]. SU is biased towards features with fewer values 

similar to GR. 

d. Relief-F (RF) attribute Evaluation: In this, measurement of feature’s worth is 

done by repeated sampling of an instance and the value of the given feature for 

the nearest instance of the same and different class is also considered. To 

distinguish among the classes, this technique assigns a weight to each feature 

which is based on the ability of the feature and then those features are selected 

whose weight is greater than a user defined threshold [27].  

e. One-R (OR) attribute Evaluation: It is useful for determining a baseline 

performance for other techniques. OR builds one rule for each attribute in the 

training set and selects the rule with the smallest error. All numerically valued 

features are treated as continuous and then divide the range of values into several 

disjoint intervals. Missing values are treated as legitimate values by considering 

them as “missing”. Novaković et al. [27] further explained OR’s functioning.  
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f. Correlation (CR) attribute Evaluation: Correlation is used to find good features 

that are strongly correlated to the class concept but are not redundant to any other 

relevant feature. The problem of attribute selection requires a suitable measure of 

correlations between attributes and a sound procedure to select attributes based on 

this measure [36]. It’s value ranges from [-1,1]. Closer to +1 depicts positive 

correlation between the two features and -1 depicts negative correlation between 

the features. There are two types of correlation approaches: 

a. Based on Classical Linear Correlation. 

b. Based on Information Theory. 

Formula for first approach is given below: 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟) =
𝑁(∑ 𝑋𝑌)−∑ 𝑋∑ 𝑌

√[𝑁(∑ 𝑋2−(∑ 𝑋)2)][𝑁(∑ 𝑌2−(∑ 𝑌)2)]

 

 Where X and Y are Relevant features. 

g. Chi Square (CS) Attribute Evaluation: Chi Square is used when the feature is 

categorical. It determines if the degree of association between two categorical 

samples would reflect their real association in population [11]. It assumes that the 

observed value of a variable will match the expected value of the variable (null 

hypothesis). Its 

 Formula for Chi Square is given below: 

 

 where: 

 c = Df 

O = Observed Value(s) 

 E = Expected Value(s) 

 

Fig. 5.1 Chi Square distribution for different Df[14] 
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5.4 Classification and Ensemble Technique 

In this study, we are using seven different classifiers and four ensemble techniques to 

build the prediction model. For implementation, we use the WEKA machine learning 

tool. There can be some string data type variables due to which there can be some error, 

so we use a filtered classifier that provides the facility of all the classifiers with additional 

functionality. We choose meta filtered classifier first. After this, we choose any 

classification technique as classifier and filter as unsupervised.attribute.string to a word 

vector. All the parameter values are initialized with the default values in WEKA. Here 

we are also using a 10- fold cross-validation technique for splitting the dataset into testing 

and training. 

Seven classification and four ensemble techniques which we have chosen for 

implementation are as follows: 

a. Naive Bayes: It is a supervised classification technique. This classification 

technique gives better results and is simple to understand and implement 

[12]],[18]. It is based on one assumption that one feature's value is not dependent 

on another feature value. NB classifier technique follows Bayes theorem: 

P(F/c) = (P(F)*P(c/F))/P(c) 

P(F/c) is the posterior probability. 

P(F) is the class prior probability. 

P(c) is the predictor prior probability. 

P(c/F) is the likelihood. 

Given F is the set of feature values or independent variables and c is the 

dependent variable or class variable having values either 0 or 1.0 value indicates 

not faulty, and 1 indicates faulty modules. 

b. K- nearest neighbor: It is another simple, non-parametric and supervised 

machine learning technique used in classification and regression problems. Also 

known as the lazy learning technique, KNN considers the k most similar instances 

to classify an instance by calculating the euclidean distance between instances 

[37]. It has also been used in pattern recognition, data mining, and intrusion 

detection. 

c. Bayesian Network: Bayesian Network classifier technique is a supervised as well 

as an unsupervised classification technique and is used along with a search 

technique to build the prediction model as it helps in ordering the metrics on their 
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importance in predicting the bugs. The K2 search algorithm is the most famous 

search algorithm used with BN to build the prediction model. 

A Bayesian network is a DAG graph with E edges and V Vertices representing 

joint probability distribution of a set of variables. The probability is given by: 

𝑃(𝑋) =∏

𝑛

𝑖=1

𝑃(𝑋𝑖|𝑋𝑖+1, . . . , 𝑋𝑛) 

Given the parents of Xi, other variables are independent from Xi, so we can write 

the joint probability distribution as : 

𝑃(𝑋) =∏

𝑛

𝑖=1

𝑃(𝑋𝑖|𝑎𝑋𝑖) 

On the other hand, Bayes’ rule is used to calculate Xi’s posterior probability in a 

Bayesian network based on the evidence information present. We can calculate 

probabilities either towards or causes to effects (P(Xi|E)) or from effects to causes 

(P(E|Xi)) [1]. 

The K2 algorithm is given by Cooper and Herskovits which heuristically searches 

for the most probable Bayesian network structure.  

   

Fig 5.2. K2 Algorithm [1] 

d. Random Forest: Random Forest is a supervised classification technique. In this, 

the algorithms generated a large number of decision trees as an ensemble [40]. 

The Decision tree with the highest vote becomes the model predictor. Two 

conditions for Random Forest are: 

i. A model with some actual signal should be built so that model does better 

than random guessing with those features 
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ii. The predictions made by the individual trees need to have low correlation 

with each other. 

e. Logistic Regression: Logistic Regression is a supervised classification technique 

which is a widely used statistical technique used to predict dependent variables 

with the help of independent variables. Here binary Logistic regression is used to 

build the model as the dependent variable has binary values either 0 or 1. The 

classification takes place in 2 steps: 

i. First data is fit into the linear regression model as linear regression outputs 

continuous variables, so logistic regression makes use of the logistic 

sigmoid function to transform this output into probability value. 

ii. The probability is mapped to the target dependent variable categorically.  

A detailed description of logistic regression is given by Basili et al. (1996) [4] and 

Hosmer and Lemeshow (1989) [17]. 

f. Decision Tree: A Decision Tree is a non-parametric supervised classification 

technique. Its structure is like a flow chart where the internal nodes (decision 

nodes) describe the test on the features, and the leaf nodes describe a decision 

(label for classification). The main goal of DT is: 

1. Generalize beyond the training sample so that unseen samples could be 

classified with as high accuracy as possible [33]. 

2. Classifying training sample as accurately as possible. 

3. Easily modifiable to accommodate more training samples when available.  

4. To have a simple structure. 

 

Fig. 5.3 Decision Tree example [10] 
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Keeping point as mentioned earlier, the design of the DT classifier can be broken 

into the following tasks [2] [25] [26]: 

1. The appropriate choice of the tree structure.  

2. The choice of feature subsets to be used at each internal node. 

3. The choice of the decision rule or strategy to be used at each internal node 

[33]. 

g. MultiLayer Perceptron: MLP is a supervised classification technique and is a 

part of a feed-forward neural network. The neurons of MLP are trained with a 

back-propagation learning algorithm to give approximate values of continuous 

functions. Also, it can help to solve non-linearly separable problems. The 

classifier consists of three layers: 

1. Input Layer: The data flow starts from this layer. 

2. Hidden Layer: Performs all the computation of MLP, and the number of 

hidden layers can be arbitrary.  

3. Output Layer: Prediction and classification are performed here. 

The main use of MLP classifier is for pattern classification, prediction, 

approximation and Recognition. 

 

 

Fig. 5.4 MLP classifier structure [24] 

h. Ensemble Techniques: The ensemble combines more than one classifier of the 

same or different types to achieve better accuracy for the model. In this study, an 

ensemble of aforementioned techniques is taken. Four types of Ensemble 

Techniques Used in this study: 

a. Voting: It combines the classification result of all the member classifiers 

to create a better classifier. Voting can be used for classification as well as 
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regression. For classification, it uses the majority vote rule, i.e., more than 

half of the member classifiers should agree, whereas, for regression, it uses 

the average of all member classifier’s results. We can also consider the 

Voting Ensemble as a meta-model as it could be used with any collection 

of existing trained machine learning models, and the existing models do 

not need to be aware that they are being used in the ensemble [7]. 

b. Stacking: It uses a meta-learning algorithm to learn how to best combine 

the predictions from two or more base machine learning algorithms [6]. 

There are two levels in stacking ensemble architecture: 

i. Level 0 - It contains base models (2 or more) fitted on training 

data, and their results are compiled for level 1. 

ii. Level 1 - It contains the meta-model, which learns how to best 

combine the results of the base models (Level 0). 

The prediction (output) of level 0 is fed to level 1 as input which can be 

real values in case of regression and probability value or class labels in 

case of classification.  

 

Fig. 5.5 Stacking Ensemble Working [31] 

Base models can be a combination of any classification models used for 

that particular study. For Meta classifier, classifier that is commonly used 

is (but not compulsorily): 

I. For Classification: Logistic Regression 

II. For Regression: Linear Regression 
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c. Bagging: Bagging is short for Bootstrap Aggregation. It often considers 

homogeneous weak learners. Bagging learns these models parallely and 

combines them using an averaging process. It generally prefers to generate 

an ensemble of learners having less variance than its individual 

components. We use Bootstrapping for Bagging Ensemble but in WEKA 

tool the ensemble is already developed. We use Bootstrap sampling to 

obtain subsets to train our base models. Bootstrap sampling is the process 

of using increasingly large random samples until you achieve diminishing 

returns in predictive accuracy. Each sample is used to train a separate 

decision tree, and the results of each model are aggregated [8].  

          

Fig. 5.6 Bagging working     Fig. 5.7 Boosting Working [8] 

d. Boosting: Boosting considers homogenous weak learners to combine the 

results of weak learners following a deterministic strategy. It learns about 

the classifiers sequentially (base model depending upon previous one). 

AdaBoost is the most used Boosting technique. The main goal of Boosting 

is to fit several individual classifiers and average out their prediction to 

generate a model with lower bias and less variance. 
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5.5 Performance Evaluation Measure 

In this study, we use AUC (area under ROC curve) to evaluate the prediction 

performance. Although the ROC (Receiver Operating Characteristics) curve is the 

accurate measure for prediction performance [20] [30], it does not give the numeric 

values to discriminate between the results, so AUC is the better choice for measuring 

prediction performance. AUC represents the worthiness of model predictions (Fig. 

26). It is the degree of how superior a model is capable of discerning between positive 

and negative occurrences. 

 

Fig. 5.8 AUC and ROC 

1.0 value in AUC means model prediction is 100% accurate and 0.5 means model 

prediction is worthless for unknown instances prediction. AUC value is the average 

of all threshold values. A detailed description of how to calculate AUC values is given 

in Dejaeger et al. [20]. 

5.6 Statistical Test: 

In this study, we use Kruskal Wallis Test to check whether there is a significant difference 

between the predictive performances of various classification techniques or not. 

1. Kruskal Wallis Test: 

It is a non-parametric test that means this test doesn't require that data should be 

normal. Kruskal Wallis test is used to compare the predictive performances of 

three or more independent samples. Independent samples mean all the sample 

values are defined on different datasets. The test is a non-parametric version of 

the one-way ANOVA test. Kruskal Wallis is the same as the Wilcoxon Mann 

Whitney Test as both are ranking methods; the main difference is that the 

Wilcoxon Mann Whitney test considers two data samples, but the Kruskal Wallis 

test is applied in case of three or more than three samples.  
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In this test, we compare the calculated H-statistics value with the tabulated chi-

square value to check whether our null hypothesis is accepted or rejected.  

H-statistics is calculated using the given formula: 

 

             

 

2. Nemenyi Test: 

This test is utilized to contrast numerous procedures and each other when the 

sample sizes are equivalent. It is a post hoc test as it is applied if there is a rejection 

of the null hypothesis when we use Kruskal Wallis or Friedman test. This test is 

the same as the Bonferroni test as both are post hoc tests. However, the main 

difference is that in the Nemenyi test, we compare multiple techniques with each 

other, and in Bonferroni, we compare all the techniques with one control 

technique.  

A comparison between critical distance and pairwise difference of average ranks 

occurs to check whether the null hypothesis is accepted or rejected. We can 

calculate the critical distance value using the given formula: 
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CHAPTER 6 

RESULTS 

Q Which feature selection algorithm gives the best result? 

To compare the feature selection algorithms for Bug Prediction Performance, we analyze 

some models using multiple classification Techniques: 

Model-1: contains features selected from Gain Ratio Attribute Evaluation. 

Model-2: contains features selected from Information Gain Attribute Evaluation. 

Model-3: contains features selected from Relief F Attribute Evaluation. 

Model-4: contains features selected from One R Attribute Evaluation. 

Model-5: contains features selected from Symmetrical Uncertainty Attribute Evaluation. 

Model-6: contains features selected from Correlation Attribute Evaluation. 

Model-7: contains features selected from Chi Squared Attribute Evaluation. 

In this section we analyze the results of all the seven models using different classifiers 

on the basis of AUC values. 

The performance of different feature selection algorithms with different models are 

shown in the following tables: 

Naive Bayes Analysis:   

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using NB are presented in this section. Table 6.1 shows the AUC values 

of all the seven models implemented using NB classification techniques. This table shows 

that in 40% of cases, CR gives better AUC values, in 33.3% cases, CS gives better AUC 

values, in 26.7 % cases, IG gives better AUC values, in 20% cases, RF gives better AUC 

values, in 13.3% cases, GR and SU gives better AUC values, and in 6.7 % cases, OR 

gives better AUC values. 

If we statistically analyze the results of Table III using Kruskal Wallis at the 0.05 

significance level, then the results show that the calculated H-value is 2.3078, and the p-

value is 0.8893. χ2 value at 0.05 and k=6 is 12.5916, which is greater than the calculated 

H-value, so there is no significant difference between all the models implemented using 

NB. 
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Table 6.1: AUC values using NB 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.825 0.825 0.803 0.816 0.825 0.823 0.825 

ANT  1.7 0.793 0.794 0.76 0.824 0.794 0.825 0.815 

CAMEL 1.4 0.651 0.634 0.648 0.605 0.634 0.689 0.634 

CAMEL 1.6 0.623 0.624 0.619 0.575 0.609 0.58 0.644 

IVY 1.4 0.569 0.569 0.6 0.605 0.569 0.693 0.569 

IVY 2.0 0.788 0.793 0.74 0.754 0.788 0.8 0.805 

LUCENE 2.4 0.699 0.691 0.724 0.727 0.682 0.731 0.691 

POI 2.5 0.726 0.819 0.825 0.806 0.815 0.79 0.817 

POI 3.0 0.666 0.805 0.813 0.765 0.805 0.8 0.757 

SYNAPSE 1.2 0.735 0.735 0.705 0.768 0.735 0.73 0.73 

TOMCAT 6.0 0.794 0.803 0.755 0.748 0.803 0.803 0.803 

VELOCITY 1.6 0.764 0.766 0.765 0.759 0.763 0.766 0.766 

XALAN 2.4 0.745 0.74 0.723 0.651 0.74 0.686 0.744 

XALAN 2.5 0.596 0.612 0.635 0.624 0.596 0.611 0.612 

XALAN 2.6 0.784 0.797 0.795 0.774 0.793 0.79 0.797 

 

Logical Regression Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Logistic Regression are presented in this section. Table 6.2 

shows the AUC values of all the seven models implemented using Logistic Regression 

classification techniques. This table shows that in 40% of cases CS gives better AUC 

values, in 33.3 % cases CR gives better AUC values, in 20 % cases IG and SU gives better 

AUC values, in 13.3% cases OR gives better AUC values, and in 6.7% cases GR and RF 

gives better AUC values.   

If we statistically analyze the results of table IV using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 2.5701 and the p-value is 0.8605. χ2 

value at 0.05 and k=5 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Logistic Regression. 
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Table 6.2: AUC values using LOG 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.836 0.836 0.789 0.837 0.836 0.835 0.836 

ANT  1.7 0.823 0.821 0.754 0.828 0.821 0.826 0.83 

CAMEL 1.4 0.708 0.704 0.665 0.632 0.704 0.684 0.704 

CAMEL 1.6 0.664 0.649 0.628 0.628 0.667 0.656 0.67 

IVY 1.4 0.648 0.648 0.654 0.484 0.648 0.772 0.648 

IVY 2.0 0.783 0.799 0.75 0.791 0.783 0.788 0.788 

LUCENE 2.4 0.738 0.757 0.755 0.747 0.754 0.752 0.757 

POI 2.5 0.706 0.797 0.786 0.785 0.805 0.814 0.807 

POI 3.0 0.803 0.814 0.805 0.789 0.81 0.818 0.777 

SYNAPSE 1.2 0.748 0.748 0.716 0.789 0.748 0.744 0.744 

TOMCAT 6.0 0.806 0.812 0.772 0.799 0.812 0.812 0.812 

VELOCITY 1.6 0.78 0.769 0.801 0.757 0.764 0.769 0.769 

XALAN 2.4 0.772 0.779 0.729 0.611 0.779 0.685 0.787 

XALAN 2.5 0.601 0.592 0.624 0.61 0.601 0.625 0.592 

XALAN 2.6 0.805 0.795 0.79 0.779 0.805 0.799 0.795 

 

Bayesian Network Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using NB are presented in this section. Table 6.3 shows the AUC values 

of all the seven models implemented using NB classification techniques. This table shows 

that in 33.3% of cases, CR and SU gives better AUC values, in 26.6 % cases, CS gives 

better AUC values, in 20 % cases, IG gives better AUC values, and in 13.3% cases, RF, 

OR and GR gives better AUC values.  

If we statistically analyze the results of table V using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 2.3704 and the p-value is 0.8827. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using BN. 

 

 

 



28 
 

Table 6.3: AUC values using BN 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.806 0.806 0.777 0.794 0.806 0.825 0.806 

ANT  1.7 0.815 0.807 0.873 0.815 0.807 0.798 0.806 

CAMEL 1.4 0.669 0.651 0.596 0.586 0.651 0.659 0.651 

CAMEL 1.6 0.591 0.653 0.49 0.509 0.652 0.639 0.679 

IVY 1.4 0.423 0.423 0.412 0.423 0.423 0.46 0.423 

IVY 2.0 0.764 0.774 0.638 0.775 0.764 0.772 0.773 

LUCENE 2.4 0.679 0.684 0.682 0.689 0.691 0.679 0.648 

POI 2.5 0.854 0.851 0.878 0.853 0.867 0.826 0.864 

POI 3.0 0.836 0.836 0.833 0.861 0.861 0.801 0.844 

SYNAPSE 1.2 0.762 0.762 0.612 0.757 0.762 0.728 0.728 

TOMCAT 6.0 0.783 0.79 0.706 0.739 0.79 0.79 0.79 

VELOCITY 1.6 0.714 0.731 0.697 0.71 0.728 0.731 0.731 

XALAN 2.4 0.765 0.774 0.699 0.641 0.774 0.659 0.78 

XALAN 2.5 0.64 0.635 0.64 0.645 0.64 0.648 0.635 

XALAN 2.6 0.803 0.8 0.785 0.792 0.808 0.662 0.8 

 

K Nearest Neighbor Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using KNN (K=3) are presented in this section. Table 6.4 shows the 

AUC values of all the seven models implemented using KNN classification techniques. 

This table shows that in 33.3% of cases GR gives better AUC values, in 20 % cases IG, 

RF and CS gives better AUC values, in 6.7% cases CR and OR gives better AUC values, 

and in 0% cases SU gives better AUC values.   

If we statistically analyze the results of table VI using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 2.0208 and the p-value is 0.9178. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using KNN (K=3). 
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Table 6.4: AUC values using KNN 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.733 0.733 0.681 0.702 0.737 0.729 0.753 

ANT  1.7 0.714 0.728 0.629 0.701 0.728 0.718 0.758 

CAMEL 1.4 0.651 0.611 0.58 0.606 0.611 0.632 0.611 

CAMEL 1.6 0.673 0.635 0.592 0.647 0.637 0.627 0.638 

IVY 1.4 0.648 0.648 0.678 0.68 0.648 0.667 0.626 

IVY 2.0 0.706 0.732 0.728 0.728 0.706 0.71 0.719 

LUCENE 2.4 0.709 0.704 0.649 0.654 0.699 0.659 0.704 

POI 2.5 0.834 0.854 0.863 0.843 0.869 0.877 0.862 

POI 3.0 0.836 0.847 0.83 0.844 0.843 0.818 0.825 

SYNAPSE 1.2 0.727 0.727 0.674 0.721 0.727 0.705 0.74 

TOMCAT 6.0 0.732 0.709 0.688 0.61 0.709 0.709 0.716 

VELOCITY 1.6 0.657 0.718 0.719 0.684 0.687 0.718 0.718 

XALAN 2.4 0.722 0.688 0.679 0.687 0.688 0.61 0.668 

XALAN 2.5 0.631 0.629 0.688 0.667 0.631 0.68 0.629 

XALAN 2.6 0.765 0.777 0.778 0.773 0.772 0.772 0.777 

 

Random Forest Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Random Forest are presented in this section. Table 6.5 shows the 

AUC values of all the seven models implemented using Random Forest classification 

techniques. This table shows that in 40% of cases GR gives better AUC values, in 33.3% 

cases, IG gives better AUC values, in 26.7% cases, SU gives better AUC values, in 20% 

cases, RF and CS gives better AUC values, in 13.3% cases OR gives better AUC values, 

and in 6.7% cases CR gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 1.8699 and the p-value is 0.9313. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Random Forest. 
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Table 6.5: AUC values using RFo 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.797 0.797 0.797 0.797 0.797 0.811 0.797 

ANT  1.7 0.826 0.826 0.74 0.813 0.826 0.807 0.808 

CAMEL 1.4 0.67 0.672 0.623 0.595 0.672 0.658 0.672 

CAMEL 1.6 0.659 0.699 0.647 0.628 0.698 0.64 0.682 

IVY 1.4 0.72 0.72 0.604 0.691 0.72 0.667 0.72 

IVY 2.0 0.803 0.781 0.762 0.781 0.803 0.801 0.801 

LUCENE 2.4 0.763 0.757 0.72 0.728 0.751 0.746 0.757 

POI 2.5 0.877 0.878 0.893 0.857 0.89 0.874 0.864 

POI 3.0 0.863 0.87 0.851 0.878 0.869 0.835 0.868 

SYNAPSE 1.2 0.755 0.755 0.761 0.793 0.755 0.786 0.786 

TOMCAT 6.0 0.799 0.797 0.708 0.753 0.797 0.797 0.797 

VELOCITY 1.6 0.757 0.746 0.769 0.743 0.756 0.746 0.746 

XALAN 2.4 0.777 0.748 0.753 0.719 0.748 0.668 0.759 

XALAN 2.5 0.611 0.681 0.731 0.716 0.683 0.707 0.681 

XALAN 2.6 0.794 0.812 0.811 0.796 0.797 0.792 0.812 

 

Decision Tree Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Decision Tree are presented in this section. Table 6.6 shows the 

AUC values of all the seven models implemented using Decision Tree classification 

techniques. This table shows that in 26.7% of cases RF gives better AUC values, in 20% 

cases, IG, OR, CR and CS gives better AUC values, in 13.3% cases, SU gives better AUC 

values, and in 6.7% cases GR gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 0.8131 and the p-value is 0.9917. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Decision Tree. 
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Table 6.6: AUC values using DT 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.764 0.764 0.714 0.764 0.764 0.782 0.764 

ANT  1.7 0.745 0.734 0.723 0.753 0.734 0.737 0.744 

CAMEL 1.4 0.64 0.642 0.593 0.582 0.642 0.611 0.642 

CAMEL 1.6 0.612 0.615 0.575 0.586 0.598 0.595 0.637 

IVY 1.4 0.436 0.436 0.439 0.45 0.436 0.433 0.436 

IVY 2.0 0.67 0.629 0.689 0.588 0.67 0.617 0.617 

LUCENE 2.4 0.676 0.676 0.671 0.648 0.644 0.69 0.676 

POI 2.5 0.838 0.825 0.861 0.809 0.841 0.823 0.835 

POI 3.0 0.812 0.837 0.797 0.804 0.712 0.808 0.827 

SYNAPSE 1.2 0.674 0.674 0.672 0.746 0.674 0.732 0.732 

TOMCAT 6.0 0.715 0.734 0.595 0.73 0.734 0.734 0.734 

VELOCITY 1.6 0.717 0.648 0.728 0.687 0.681 0.648 0.648 

XALAN 2.4 0.731 0.706 0.599 0.655 0.706 0.634 0.712 

XALAN 2.5 0.644 0.631 0.698 0.684 0.644 0.662 0.631 

XALAN 2.6 0.787 0.752 0.76 0.777 0.767 0.767 0.752 

 

MultiLayer Perceptron Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using MultiLayer Perceptron are presented in this section. Table 6.7 

shows the AUC values of all the seven models implemented using MultiLayer Perceptron 

classification techniques. This table shows that in 26.7% of cases RF and OR gives better 

AUC values, in 20% cases, GR gives better AUC values, in 13.3% cases, CS gives better 

AUC values, in 6.7% cases, IG and CR gives better AUC values, and in 0% cases SU 

gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 0.9278 and the p-value is 0.9882. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using MultiLayer 

Perceptron. 
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Table 6.7: AUC values using MLP 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.809 0.809 0.766 0.821 0.809 0.784 0.809 

ANT  1.7 0.805 0.802 0.737 0.807 0.802 0.806 0.814 

CAMEL 1.4 0.705 0.696 0.625 0.609 0.696 0.683 0.696 

CAMEL 1.6 0.633 0.623 0.634 0.639 0.607 0.621 0.631 

IVY 1.4 0.626 0.626 0.671 0.532 0.626 0.733 0.626 

IVY 2.0 0.769 0.773 0.752 0.771 0.769 0.701 0.764 

LUCENE 2.4 0.716 0.724 0.753 0.718 0.739 0.723 0.724 

POI 2.5 0.818 0.835 0.845 0.825 0.804 0.815 0.843 

POI 3.0 0.808 0.801 0.782 0.811 0.802 0.784 0.817 

SYNAPSE 1.2 0.729 0.729 0.757 0.761 0.729 0.718 0.718 

TOMCAT 6.0 0.787 0.791 0.786 0.796 0.791 0.791 0.791 

VELOCITY 1.6 0.758 0.754 0.775 0.734 0.75 0.754 0.754 

XALAN 2.4 0.789 0.782 0.702 0.68 0.782 0.775 0.785 

XALAN 2.5 0.615 0.6 0.678 0.667 0.615 0.589 0.6 

XALAN 2.6 0.807 0.795 0.796 0.782 0.804 0.801 0.795 

 

Voting Ensemble Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Voting Ensemble are presented in this section. Table 6.8 shows 

the AUC values of all the seven models implemented using Voting Ensemble 

classification techniques. This table shows that in 33.3% of cases CR gives better AUC 

values, in 26.7% cases, GR gives better AUC values, in 20% cases, CS and IG gives better 

AUC values, and in 13.3% cases RF, OR and SU gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 1.8283 and the p-value is 0.9348. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Voting Ensemble. 
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Table 6.8: AUC values using VE 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.818 0.818 0.81 0.814 0.818 0.835 0.818 

ANT  1.7 0.833 0.832 0.779 0.822 0.832 0.822 0.82 

CAMEL 1.4 0.707 0.688 0.659 0.646 0.688 0.688 0.688 

CAMEL 1.6 0.701 0.708 0.658 0.677 0.695 0.673 0.723 

IVY 1.4 0.67 0.67 0.589 0.643 0.67 0.725 0.67 

IVY 2.0 0.806 0.805 0.771 0.8 0.806 0.81 0.808 

LUCENE 2.4 0.757 0.758 0.746 0.738 0.756 0.751 0.758 

POI 2.5 0.697 0.697 0.689 0.715 0.705 0.707 0.696 

POI 3.0 0.851 0.863 0.847 0.861 0.862 0.852 0.853 

SYNAPSE 1.2 0.782 0.782 0.766 0.814 0.782 0.798 0.798 

TOMCAT 6.0 0.815 0.815 0.767 0.785 0.815 0.815 0.815 

VELOCITY 1.6 0.765 0.767 0.796 0.756 0.766 0.767 0.767 

XALAN 2.4 0.804 0.774 0.753 0.729 0.774 0.786 0.785 

XALAN 2.5 0.685 0.68 0.733 0.72 0.685 0.714 0.68 

XALAN 2.6 0.819 0.814 0.816 0.815 0.819 0.815 0.814 

 

Stacking Ensemble Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Stacking Ensemble are presented in this section. Table 6.9 shows 

the AUC values of all the seven models implemented using Stacking Ensemble 

classification techniques. This table shows that in 33.3% of cases SU gives better AUC 

values, in 26.7% cases, IG gives better AUC values, in 20% cases, CR and CS gives better 

AUC values, and in 13.3% cases GR, RF and OR gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level, then results show that the calculated H-value is 1.5887 and the p-value is 0.9534. 

χ2 value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using Stacking 

Ensemble. 
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Table 6.9: AUC values using SE 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.813 0.813 0.786 0.798 0.813 0.825 0.813 

ANT  1.7 0.825 0.828 0.771 0.812 0.828 0.813 0.826 

CAMEL 1.4 0.694 0.675 0.655 0.622 0.675 0.673 0.675 

CAMEL 1.6 0.673 0.687 0.659 0.657 0.686 0.637 0.676 

IVY 1.4 0.53 0.53 0.533 0.504 0.53 0.621 0.53 

IVY 2.0 0.762 0.754 0.728 0.723 0.762 0.741 0.766 

LUCENE 2.4 0.758 0.763 0.741 0.738 0.763 0.745 0.763 

POI 2.5 0.876 0.879 0.885 0.859 0.892 0.877 0.87 

POI 3.0 0.855 0.86 0.844 0.868 0.864 0.839 0.856 

SYNAPSE 1.2 0.773 0.773 0.755 0.806 0.773 0.786 0.786 

TOMCAT 6.0 0.753 0.797 0.658 0.75 0.797 0.797 0.797 

VELOCITY 1.6 0.751 0.728 0.777 0.741 0.748 0.728 0.728 

XALAN 2.4 0.78 0.766 0.761 0.698 0.766 0.763 0.771 

XALAN 2.5 0.677 0.675 0.729 0.712 0.677 0.714 0.675 

XALAN 2.6 0.815 0.813 0.815 0.81 0.82 0.808 0.813 

 

Bagging Ensemble Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Bagging Ensemble are presented in this section. Table 6.10 

shows the AUC values of all the seven models implemented using Bagging Ensemble 

classification techniques. This table shows that in 26.7% of cases IG, SU and CR gives 

better AUC values, in 20% cases, CS gives better AUC values, in 13.3% cases, GR and 

OR gives better AUC values, and in 6.7% cases RF gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 2.0695 and the p-value is 0.9132. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Bagging Ensemble. 
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Table 6.10: AUC values using BE 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.823 0.823 0.812 0.82 0.823 0.828 0.823 

ANT  1.7 0.832 0.834 0.776 0.826 0.834 0.828 0.831 

CAMEL 1.4 0.713 0.696 0.668 0.647 0.696 0.686 0.696 

CAMEL 1.6 0.701 0.716 0.667 0.675 0.708 0.684 0.721 

IVY 1.4 0.663 0.663 0.628 0.671 0.663 0.716 0.663 

IVY 2.0 0.808 0.806 0.775 0.816 0.808 0.82 0.816 

LUCENE 2.4 0.763 0.772 0.75 0.753 0.768 0.759 0.772 

POI 2.5 0.87 0.875 0.886 0.87 0.887 0.87 0.875 

POI 3.0 0.848 0.869 0.847 0.858 0.868 0.851 0.853 

SYNAPSE 1.2 0.787 0.787 0.767 0.814 0.787 0.797 0.797 

TOMCAT 6.0 0.827 0.828 0.768 0.789 0.828 0.828 0.828 

VELOCITY 1.6 0.758 0.763 0.786 0.753 0.76 0.763 0.763 

XALAN 2.4 0.803 0.785 0.753 0.753 0.785 0.786 0.784 

XALAN 2.5 0.69 0.691 0.741 0.746 0.724 0.723 0.722 

XALAN 2.6 0.816 0.817 0.816 0.817 0.822 0.818 0.818 

 

Boosting Ensemble Analysis: 

The results of analyzing all the seven models to check which models give the best result 

for bug prediction using Boosting Ensemble are presented in this section. Table 6.11 

shows the AUC values of all the seven models implemented using Boosting Ensemble 

classification techniques. This table shows that in 33.3% of cases SU gives better AUC 

values, in 26.7% cases, GR gives better AUC values, in 20% cases, RF gives better AUC 

values, in 13.3% cases, CR and CS gives better AUC values, and in 6.7% cases IG and 

OR gives better AUC values.   

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 0.8456 and the p-value is 0.9908. χ2 

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is 

no significant difference between all the models implemented using Boosting Ensemble. 
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Table 6.11: AUC values using BoE 

Project name/ 

Feature Selection 

algorithms 

GR IG RF OR SU CR CS 

ANT 1.6 0.821 0.821 0.791 0.809 0.821 0.829 0.821 

ANT  1.7 0.815 0.827 0.778 0.81 0.827 0.807 0.802 

CAMEL 1.4 0.713 0.681 0.654 0.636 0.681 0.687 0.681 

CAMEL 1.6 0.673 0.71 0.669 0.67 0.687 0.663 0.727 

IVY 1.4 0.68 0.68 0.596 0.723 0.68 0.748 0.68 

IVY 2.0 0.798 0.783 0.783 0.788 0.798 0.777 0.796 

LUCENE 2.4 0.754 0.753 0.736 0.737 0.768 0.738 0.753 

POI 2.5 0.857 0.865 0.892 0.864 0.883 0.875 0.867 

POI 3.0 0.845 0.848 0.838 0.858 0.865 0.843 0.854 

SYNAPSE 1.2 0.782 0.782 0.766 0.809 0.782 0.797 0.797 

TOMCAT 6.0 0.814 0.797 0.756 0.769 0.797 0.797 0.797 

VELOCITY 1.6 0.743 0.746 0.785 0.729 0.745 0.746 0.746 

XALAN 2.4 0.777 0.774 0.763 0.744 0.744 0.766 0.777 

XALAN 2.5 0.668 0.677 0.737 0.694 0.668 0.694 0.677 

XALAN 2.6 0.801 0.808 0.809 0.799 0.811 0.803 0.808 

 

Q What is the effect of feature selection algorithms on fault proneness models? 

Previous studies have shown that the effect of feature selection algorithms on fault 

proneness models is positive. The power of the models has increased, and faultier 

modules, functions or classes can be accurately classified as faulty or not.  

The comparison done by Zhou et al. clearly shows the increase in power of bug prediction 

models with wrapper and filter methods showing better results than clustering-based 

feature selection algorithms. 

These models' power can be increased by 90 by eliminating redundant or less useful 

features. 

Q Which classifier or ensemble technique performs the best? 

To compare the classifiers for Bug Prediction Performance, we analyze some models 

using multiple feature selection algorithms Techniques: 

Model-1: classification using Bayesian Network. 

Model-2: classification using Naive Bayes. 
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Model-3: classification using Logistic Regression. 

Model-4: classification using Random Forest. 

Model-5: classification using K-Nearest Neighbor. 

Model-6: classification using Decision Tree. 

Model-7: classification using MultiLayer Perceptron. 

Model-8: classification using Voting Ensemble. 

Model-9: classification using Stacking Ensemble. 

Model-10: classification using Bagging Ensemble. 

Model-11: classification using Boosting Ensemble. 

In this section we analyze the results of all the eleven models using different feature 

selection algorithms on the basis of AUC values. 

The performance of different classifiers with different feature selection algorithms are 

shown in the following tables: 

Gain Ratio Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Gain Ratio are presented in this section. Table 6.12 shows the 

AUC values of all the eleven models implemented using Gain Ratio classification 

techniques. This table shows that in 46.7% of cases BE gives better AUC values. 

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 16.0398 and the p-value is 0.0985. 

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using Gain Ratio. 

 

Information Gain Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Information Gain are presented in this section. Table 6.13 shows 

the AUC values of all the eleven models implemented using Information Gain 

classification techniques. This table shows that in 60% of cases BE gives better AUC 

values. 

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 15.9929 and the p-value is 0.09984. 
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χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using Information Gain. 

 

Relief F Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Relief F are presented in this section. Table 6.14 shows the AUC 

values of all the eleven models implemented using Relief F classification techniques. This 

table shows that in 33.3% of cases BE gives better AUC values. 

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 15.4822 and the p-value is 0.1154. 

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using Relief F. 

 

Table 6.12: AUC values using GR 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.806 0.825 0.836 0.797 0.733 0.764 0.809 0.818 0.813 0.823 0.821 

ANT  1.7 0.815 0.793 0.823 0.826 0.714 0.745 0.805 0.833 0.825 0.832 0.815 

CAMEL 1.4 0.669 0.651 0.708 0.67 0.651 0.64 0.705 0.707 0.694 0.713 0.713 

CAMEL 1.6 0.591 0.623 0.664 0.659 0.673 0.612 0.633 0.701 0.673 0.701 0.673 

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68 

IVY 2.0 0.764 0.788 0.783 0.803 0.706 0.67 0.769 0.806 0.762 0.808 0.798 

LUCENE 2.4 0.679 0.699 0.738 0.763 0.709 0.676 0.716 0.757 0.758 0.763 0.754 

POI 2.5 0.854 0.726 0.706 0.877 0.834 0.838 0.818 0.697 0.876 0.87 0.857 

POI 3.0 0.836 0.666 0.803 0.863 0.836 0.812 0.808 0.851 0.855 0.848 0.845 

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782 

TOMCAT 6.0 0.783 0.794 0.806 0.799 0.732 0.715 0.787 0.815 0.753 0.827 0.814 

VELOCITY 1.6 0.714 0.764 0.78 0.757 0.657 0.717 0.758 0.765 0.751 0.758 0.743 

XALAN 2.4 0.765 0.745 0.772 0.777 0.722 0.731 0.789 0.804 0.78 0.803 0.777 

XALAN 2.5 0.64 0.596 0.601 0.611 0.631 0.644 0.615 0.685 0.677 0.69 0.668 

XALAN 2.6 0.803 0.784 0.805 0.794 0.765 0.787 0.807 0.819 0.815 0.816 0.801 
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Table 6.13: AUC values using IG 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.806 0.825 0.836 0.797 0.733 0.764 0.809 0.818 0.813 0.823 0.821 

ANT  1.7 0.807 0.794 0.821 0.826 0.728 0.734 0.802 0.832 0.828 0.834 0.827 

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681 

CAMEL 1.6 0.653 0.624 0.649 0.699 0.635 0.615 0.623 0.708 0.687 0.716 0.71 

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68 

IVY 2.0 0.774 0.793 0.799 0.781 0.732 0.629 0.773 0.805 0.754 0.806 0.783 

LUCENE 2.4 0.684 0.691 0.757 0.757 0.704 0.676 0.724 0.758 0.763 0.772 0.753 

POI 2.5 0.851 0.819 0.797 0.878 0.854 0.825 0.835 0.697 0.879 0.875 0.865 

POI 3.0 0.836 0.805 0.814 0.87 0.847 0.837 0.801 0.863 0.86 0.869 0.848 

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782 

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797 

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746 

XALAN 2.4 0.774 0.74 0.779 0.748 0.688 0.706 0.782 0.774 0.766 0.785 0.774 

XALAN 2.5 0.635 0.612 0.592 0.681 0.629 0.631 0.6 0.68 0.675 0.691 0.677 

XALAN 2.6 0.8 0.797 0.795 0.812 0.777 0.752 0.795 0.814 0.813 0.817 0.808 

 

Table 6.14: AUC values using RF 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.777 0.803 0.789 0.797 0.681 0.714 0.766 0.81 0.786 0.812 0.791 

ANT  1.7 0.873 0.76 0.754 0.74 0.629 0.723 0.737 0.779 0.771 0.776 0.778 

CAMEL 1.4 0.596 0.648 0.665 0.623 0.58 0.593 0.625 0.659 0.655 0.668 0.654 

CAMEL 1.6 0.49 0.619 0.628 0.647 0.592 0.575 0.634 0.658 0.659 0.667 0.669 

IVY 1.4 0.412 0.6 0.654 0.604 0.678 0.439 0.671 0.589 0.533 0.628 0.596 

IVY 2.0 0.638 0.74 0.75 0.762 0.728 0.689 0.752 0.771 0.728 0.775 0.783 

LUCENE 2.4 0.682 0.724 0.755 0.72 0.649 0.671 0.753 0.746 0.741 0.75 0.736 

POI 2.5 0.878 0.825 0.786 0.893 0.863 0.861 0.845 0.689 0.885 0.886 0.892 

POI 3.0 0.833 0.813 0.805 0.851 0.83 0.797 0.782 0.847 0.844 0.847 0.838 

SYNAPSE 1.2 0.612 0.705 0.716 0.761 0.674 0.672 0.757 0.766 0.755 0.767 0.766 

TOMCAT 6.0 0.706 0.755 0.772 0.708 0.688 0.595 0.786 0.767 0.658 0.768 0.756 

VELOCITY 1.6 0.697 0.765 0.801 0.769 0.719 0.728 0.775 0.796 0.777 0.786 0.785 

XALAN 2.4 0.699 0.723 0.729 0.753 0.679 0.599 0.702 0.753 0.761 0.753 0.763 

XALAN 2.5 0.64 0.635 0.624 0.731 0.688 0.698 0.678 0.733 0.729 0.741 0.737 

XALAN 2.6 0.785 0.795 0.79 0.811 0.778 0.76 0.796 0.816 0.815 0.816 0.809 
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One R Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using One R are presented in this section. Table 6.15 shows the AUC 

values of all the eleven models implemented using One R classification techniques. This 

table shows that in 53.3% of cases BE gives better AUC values. 

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 13.7615 and the p-value is 0.1842. 

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using One R. 

Table 6.15: AUC values using OR 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.794 0.816 0.837 0.797 0.702 0.764 0.821 0.814 0.798 0.82 0.809 

ANT  1.7 0.815 0.824 0.828 0.813 0.701 0.753 0.807 0.822 0.812 0.826 0.81 

CAMEL 1.4 0.586 0.605 0.632 0.595 0.606 0.582 0.609 0.646 0.622 0.647 0.636 

CAMEL 1.6 0.509 0.575 0.628 0.628 0.647 0.586 0.639 0.677 0.657 0.675 0.67 

IVY 1.4 0.423 0.605 0.484 0.691 0.68 0.45 0.532 0.643 0.504 0.671 0.723 

IVY 2.0 0.775 0.754 0.791 0.781 0.728 0.588 0.771 0.8 0.723 0.816 0.788 

LUCENE 2.4 0.689 0.727 0.747 0.728 0.654 0.648 0.718 0.738 0.738 0.753 0.737 

POI 2.5 0.853 0.806 0.785 0.857 0.843 0.809 0.825 0.715 0.859 0.87 0.864 

POI 3.0 0.861 0.765 0.789 0.878 0.844 0.804 0.811 0.861 0.868 0.858 0.858 

SYNAPSE 1.2 0.757 0.768 0.789 0.793 0.721 0.746 0.761 0.814 0.806 0.814 0.809 

TOMCAT 6.0 0.739 0.748 0.799 0.753 0.61 0.73 0.796 0.785 0.75 0.789 0.769 

VELOCITY 1.6 0.71 0.759 0.757 0.743 0.684 0.687 0.734 0.756 0.741 0.753 0.729 

XALAN 2.4 0.641 0.651 0.611 0.719 0.687 0.655 0.68 0.729 0.698 0.753 0.744 

XALAN 2.5 0.645 0.624 0.61 0.716 0.667 0.684 0.667 0.72 0.712 0.746 0.694 

XALAN 2.6 0.792 0.774 0.779 0.796 0.773 0.777 0.782 0.815 0.81 0.817 0.799 

 

Symmetrical Uncertainty Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Symmetrical Uncertainty are presented in this section. Table 6.16 

shows the AUC values of all the eleven models implemented using Symmetrical 

Uncertainty classification techniques. This table shows that in 60% of cases BE gives 

better AUC values. 
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If we statistically analyze the results of table 6.16 using Kruskal Wallis at 0.05 

significance level then results show that the calculated H-value is 19.0802 and the p-value 

is 0.03926. χ2 value at 0.05 and k=10 is 18.307 which is less than the calculated H-value, 

so there is a significant difference between all the models implemented using 

Symmetrical Uncertainty. As the results differ significantly, we will apply Nemenyi test 

to check the pairwise comparison of the techniques. The results show that there exist 

significant difference between BN and BE, NB and BE, LOG and DT, RFo and DT, KNN 

and VE, KNN and BE, KNN and BoE, DT and VE, DT and SE, DT and BE, DT and BoE, 

and MLP and BE. 

 

Table 6.16: AUC values using SU 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.806 0.825 0.836 0.797 0.737 0.764 0.809 0.818 0.813 0.823 0.821 

ANT  1.7 0.807 0.794 0.821 0.826 0.728 0.734 0.802 0.832 0.828 0.834 0.827 

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681 

CAMEL 1.6 0.652 0.609 0.667 0.698 0.637 0.598 0.607 0.695 0.686 0.708 0.687 

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68 

IVY 2.0 0.764 0.788 0.783 0.803 0.706 0.67 0.769 0.806 0.762 0.808 0.798 

LUCENE 2.4 0.691 0.682 0.754 0.751 0.699 0.644 0.739 0.756 0.763 0.768 0.768 

POI 2.5 0.867 0.815 0.805 0.89 0.869 0.841 0.804 0.705 0.892 0.887 0.883 

POI 3.0 0.861 0.805 0.81 0.869 0.843 0.712 0.802 0.862 0.864 0.868 0.865 

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782 

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797 

VELOCITY 1.6 0.728 0.763 0.764 0.756 0.687 0.681 0.75 0.766 0.748 0.76 0.745 

XALAN 2.4 0.774 0.74 0.779 0.748 0.688 0.706 0.782 0.774 0.766 0.785 0.744 

XALAN 2.5 0.64 0.596 0.601 0.683 0.631 0.644 0.615 0.685 0.677 0.724 0.668 

XALAN 2.6 0.808 0.793 0.805 0.797 0.772 0.767 0.804 0.819 0.82 0.822 0.811 

 

Correlation Attribute Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Correlation Attribute are presented in this section. Table 6.17 

shows the AUC values of all the eleven models implemented using Correlation Attribute 

classification techniques. This table shows that in 53.3% of cases BE gives better AUC 

values. 
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As the results differ significantly, we will apply Nemenyi test to check the pairwise 

comparison of the models. The results show that there exists significant difference 

between BN and BE, LOG and DT, KNN and VE, KNN and BE, KNN and BoE, DT and 

VE, DT and BE, DT and BoE, MLP and VE, and MLP and BE 

 

Table 6.17: AUC values using CR 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.825 0.823 0.835 0.811 0.729 0.782 0.784 0.835 0.825 0.828 0.829 

ANT  1.7 0.798 0.825 0.826 0.807 0.718 0.737 0.806 0.822 0.813 0.828 0.807 

CAMEL 1.4 0.659 0.689 0.684 0.658 0.632 0.611 0.683 0.688 0.673 0.686 0.687 

CAMEL 1.6 0.639 0.58 0.656 0.64 0.627 0.595 0.621 0.673 0.637 0.684 0.663 

IVY 1.4 0.46 0.693 0.772 0.667 0.667 0.433 0.733 0.725 0.621 0.716 0.748 

IVY 2.0 0.772 0.8 0.788 0.801 0.71 0.617 0.701 0.81 0.741 0.82 0.777 

LUCENE 2.4 0.679 0.731 0.752 0.746 0.659 0.69 0.723 0.751 0.745 0.759 0.738 

POI 2.5 0.826 0.79 0.814 0.874 0.877 0.823 0.815 0.707 0.877 0.87 0.875 

POI 3.0 0.801 0.8 0.818 0.835 0.818 0.808 0.784 0.852 0.839 0.851 0.843 

SYNAPSE 1.2 0.728 0.73 0.744 0.786 0.705 0.732 0.718 0.798 0.786 0.797 0.797 

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797 

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746 

XALAN 2.4 0.659 0.686 0.685 0.668 0.61 0.634 0.775 0.786 0.763 0.786 0.766 

XALAN 2.5 0.648 0.611 0.625 0.707 0.68 0.662 0.589 0.714 0.714 0.723 0.694 

XALAN 2.6 0.662 0.79 0.799 0.792 0.772 0.767 0.801 0.815 0.808 0.818 0.803 

 

Chi Square Analysis: 

The results of analyzing all the eleven models to check which models give the best result 

for bug prediction using Chi Square are presented in this section. Table 6.18 shows the 

AUC values of all the eleven models implemented using Chi Square classification 

techniques. This table shows that in 46.7% of cases BE gives better AUC values. 

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance 

level then results show that the calculated H-value is 16.3288 and the p-value is 0.0906. 

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there 

is no significant difference between all the models implemented using Chi Square. 
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Table 6.18: AUC values using CS 

Project 

name/ 

Classifier 
BN NB LOG RFo KNN DT MLP VE SE BE BoE 

ANT 1.6 0.806 0.825 0.836 0.797 0.753 0.764 0.809 0.818 0.813 0.823 0.821 

ANT  1.7 0.806 0.815 0.83 0.808 0.758 0.744 0.814 0.82 0.826 0.831 0.802 

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681 

CAMEL 1.6 0.679 0.644 0.67 0.682 0.638 0.637 0.631 0.723 0.676 0.721 0.727 

IVY 1.4 0.423 0.569 0.648 0.72 0.626 0.436 0.626 0.67 0.53 0.663 0.68 

IVY 2.0 0.773 0.805 0.788 0.801 0.719 0.617 0.764 0.808 0.766 0.816 0.796 

LUCENE 2.4 0.648 0.691 0.757 0.757 0.704 0.676 0.724 0.758 0.763 0.772 0.753 

POI 2.5 0.864 0.817 0.807 0.864 0.862 0.835 0.843 0.696 0.87 0.875 0.867 

POI 3.0 0.844 0.757 0.777 0.868 0.825 0.827 0.817 0.853 0.856 0.853 0.854 

SYNAPSE 1.2 0.728 0.73 0.744 0.786 0.74 0.732 0.718 0.798 0.786 0.797 0.797 

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.716 0.734 0.791 0.815 0.797 0.828 0.797 

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746 

XALAN 2.4 0.78 0.744 0.787 0.759 0.668 0.712 0.785 0.785 0.771 0.784 0.777 

XALAN 2.5 0.635 0.612 0.592 0.681 0.629 0.631 0.6 0.68 0.675 0.722 0.677 

XALAN 2.6 0.8 0.797 0.795 0.812 0.777 0.752 0.795 0.814 0.813 0.818 0.808 
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CHAPTER 7 

DISCUSSION ON RESULTS 

In this section, we analyse the results using box plots. We analysed different types of 

feature selection to check the Bug prediction power of the model. When using the 

Bayesian network, Naive Bayes, Voting Ensemble and Bagging Ensemble, Correlation 

Attribute Evaluation gives better results than the rest of the feature selection algorithms. 

When the Kruskal Wallis Test was applied, the result concluded that there is no significant 

difference between the feature selection algorithms using any classifiers.  

Naive Bayes analysis: 

Fig 7.1 represents the box plot using NB. We can see that CR Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms.  

 

Logistic Regression analysis: 

Fig 7.2 represents the box plot using LOG. We can see that CS Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms.  

 

Bayesian Network analysis: 

Fig 7.3 represents the box plot using BN. We can see that CR and SU Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms and there is an outlier in 

2 models, 1 outlier in GR model and 1 outlier in IG model only. 

 

 

Fig 7.1. Box plot of NB 
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Fig 7.2. Box plot of LOG 

 

 

Fig 7.3. Box plot of BN 

 

K Nearest Neighbor analysis: 

Fig 7.4 represents the box plot using KNN. We can see that GR Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms and there is an outlier in 

3 models, 1 outlier in RF model, 1 outlier in OR and 1 outlier in CR model only. 
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Fig 7.4. Box plot of KNN 

Random Forest analysis: 

Fig 7.5 represents the box plot using RFo. We can see that GR Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms. 

 

Fig 7.5. Box plot of RFo 

 

Decision Tree analysis: 

Fig 7.6 represents the box plot using DT. We can see that RF Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms and there is an outlier in 

4 models, 1 outlier in GR model, 1 outlier in IG, 1 outlier in SU and 1 outlier in CS model 

only. 

 

MultiLayer Perceptron analysis: 

Fig 7.7 represents the box plot using MLP. We can see that RF and OR Attribute 

Evaluation performed better than all other Attribute Evaluation algorithms.  
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Fig 7.6. Box plot of DT 

 

 

Fig 7.7. Box plot of MLP 

 

 

Fig 7.8. Box plot of VE 
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Voting Ensemble analysis: 

Fig 7.8 represents the box plot using VE. We can see that CR Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms. 

 

Stacking Ensemble analysis: 

Fig 7.9 represents the box plot using SE. We can see that SU Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms and there is an outlier in 

1 model, 1 outlier in OR model only. 

 

 

Fig 7.9. Box plot of SE 

 

Bagging Ensemble analysis: 

Fig 7.10 represents the box plot using BE. We can see that IG, SU and CR Attribute 

Evaluation performed better than all other Attribute Evaluation algorithms and there is an 

outlier in 1 model, 1 outlier in RF model only. 

 

Boosting Ensemble analysis: 

Fig 7.11 represents the box plot using BoE. We can see that SU Attribute Evaluation 

performed better than all other Attribute Evaluation algorithms and there is an outlier in 

1 model, 2 outliers in RF model only. 
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Fig 7.10. Box plot of BE 

 

 

Fig 7.11. Box plot of BoE 

 

 

We also analysed different types of classifiers and ensemble techniques to check the Bug 

prediction power of the model. Bagging Ensemble gives better results with all seven 

feature selection algorithms as compared to rest of the classifiers and ensemble 

techniques. When the Kruskal Wallis Test was applied, the result concluded that there is 

a significant difference between classifiers using SU and CR feature selection algorithm. 

 

 



50 
 

Gain Ratio Analysis: 

Fig 7.12 represents the box plot using GR. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in 

BN model and 1 outlier in DT model only. 

 

 

Fig 7.12. Box plot of GR 

 

Information Gain Analysis: 

Fig 7.13 represents the box plot using IG. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in 

BN model and 1 outlier in DT model only. 

 

Fig 7.13. Box plot of IG 
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Relief F Analysis: 

Fig 7.14 represents the box plot using RF. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in 

the BE model and 1 outlier in the BoE model only. 

 

 

Fig 7.14. Box plot of RF 

 

One R Analysis: 

Fig 7.15 represents the box plot using OR. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in 

SE model only. 

 

 

Fig 7.15. Box plot of OR 
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Symmetrical Uncertainty Analysis: 

Fig 7.16 represents the box plot using SU. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in 

DT model only. 

 

 

Fig 7.16. Box plot of SU 

 

Correlation Attribute Analysis: 

Fig 7.17 represents the box plot using CR. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in 

KNN model only. 

 

Fig 7.17. Box plot of CR 
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Chi Square Analysis: 

Fig 7.18 represents the box plot using CS. We can see that BE performed better than all 

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in 

DT model only. 

 

Fig 7.18. Box plot of CS 
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CHAPTER 8 

CONCLUSION AND FUTURE SCOPE 

Many models exist and give good results for Software Bug Prediction. Here we are 

analyzing the effect of feature selection algorithms on bug proneness using multiple 

classification techniques. The following conclusion has been made: 

● The performance of Software Bug Prediction models is increased by 90% using 

Feature Selection algorithms. 

● In this study, we concluded that Correlation Attribute Evaluation and Symmetric 

Uncertainty Attribute Evaluation are better predictors as compared to other filter 

feature selection algorithms. 

● Chi Square, One R and Information Gain Attribute Evaluation performs the worst 

among the filter feature selection algorithms. 

● We can also conclude that Bagging Ensemble Techniques gives the best result 

with every filter feature selection algorithm used individually.  

● While using SU and CR feature selection algorithms, there exist significant 

difference between various techniques.  

The future scope of this project is as follows: 

● This study can further be improved by using more classifiers and feature selection 

algorithms that may or may not be of filter type. 

● New Ensemble techniques can also be used to check its effect on bug proneness. 

● Also ensemble of feature selection techniques can be used for comparison. 
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