

“Comparative Analysis of Filter Feature Selection Algorithms for

Bug Prediction using multiple classifiers”

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By

Harshit Arora

(2K19/SWE/06)

Under the supervision of

Dr. Ruchika Malhotra

Associate Professor

Department of Computer Science & Engineering

Delhi Technological University, Delhi

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2021

1

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Harshit Arora, 2K19/SWE/06 student of M.Tech (SWE), hereby declare that the project

entitled “Comparative Analysis of Filter Feature Selection Algorithms for Bug

Prediction using multiple classifiers” which is submitted by me to the Department of

Computer Science & Engineering, Delhi Technological University, Shahbad Daulatpur,

Delhi in partial fulfilment of the requirement for the award of the degree of Master of

Technology in Software Engineering, has not been previously formed the basis for any

fulfilment of the requirement in any degree or other similar title or recognition.

This report is an authentic record of my work carried out during my degree under the

guidance of Dr. Ruchika Malhotra.

Place: Delhi Harshit Arora

Date: 10th May, 2021 (2K19/SWE/06)

II

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project entitled “Comparative Analysis of Filter Feature

Selection Algorithms for Bug Prediction using multiple classifiers” which is

submitted by Harshit Arora (2K19/SWE/06) to the Department of Computer Science &

Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi in partial

fulfilment of the requirement for the award of the degree of Master of Technology in

Software Engineering, is a record of the project work carried out by the student under my

supervision. To the best of my knowledge this work has not been submitted in part or full

for any degree or diploma to this university or elsewhere.

Place: Delhi Dr. Ruchika Malhotra

Date: SUPERVISOR

 Head of Department

 Dept. of Software Engineering

III

ACKNOWLEDGEMENT

I am very thankful to Dr. Ruchika Malhotra (Associate Professor, Department of

Computer Science) and all the faculty members of the Department of Computer Science

at DTU. They all provided us with immense support and guidance for the project.

I would also like to express my gratitude to the University for providing us with the

laboratories, infrastructure, testing facilities, and environment which allowed us to work

without any obstructions.

I would also like to appreciate the support provided to us by our lab assistants, seniors,

and our peer group who aided us with all the knowledge they had regarding various topics.

Date: Harshit Arora

(2K19/SWE/06)

IV

Abstract

Software is a set of instructions with the sole purpose of defining functionality. It helps

to make our life easier by doing heavy computation. That is precisely why developing

software has become essential in the modern day. Many researchers are working on bug

proneness of software using different approaches from manual testing to automation. In

automation, Machine Learning algorithms are used to detect any flaw in the software.

Their results vary from dataset to dataset. These algorithms give inconsistent output for

predicting bugs in a random software project.

Software Bug Prediction is the process of classifying a new module as buggy or not using

some historical data. Using Software bug prediction, the number of modules to be tested

decreases drastically. As software size increases daily, developing a classification model

becomes challenging due to the massive amount of data to be processed. To that end,

feature selection can be used to reduce the dimensionality of data.

Feature selection is the process of reducing the feature space of a system under

observation by using the evaluation criteria to select N relevant features from the original

set. This reduced feature set helps in increasing the accuracy as well as the throughput of

the models.

In this study, we analyzed the prediction performance of various classifiers based on

multiple ranked search-based feature selection algorithms (filter algorithms). In other

terms, we can say that all the different feature selection algorithms are used with each

classifier to check the model's prediction power. We have used Naive Bayes classifiers,

Logistic Regression, K-Nearest Neighbours, Bayesian Network, Random Forest,

Decision Tree, MultiLayer Perceptron and four types of ensemble classifier (Voting,

Stacking, Bagging and Boosting) for implementation, and data sets are collected from the

PROMISE repository, which is publicly available. The area under the ROC curve (AUC)

is used to analyze the prediction performance. Friedman test is used, To check the

statistical significance of the results of the different models. This study shows that the

Feature Selection Algorithms improve the performance of SBP Models, and Correlation

Attribute Feature Evaluation and Symmetrical Uncertainty gives effective results. Also,

Bagging Ensemble gives the best results in all classifiers studied.

V

CONTENTS

CANDIDATE’S DECLARATION I

CERTIFICATE II

ACKNOWLEDGEMENT III

Abstract IV

CONTENTS V

List of Figures VII

List of Tables VIII

List of Symbols and Abbreviations IX

CHAPTER 1 Introduction 1

 1.1 General 1

 1.2 Problem Formulation 2

 1.3 Objectives of the Project 3

CHAPTER 2 Literature Review 4

 2.1 Individual Classifiers for Bug Prediction 4

 2.2 Within- vs Cross-project Bug Prediction 4

 2.3 Individual Feature Selection for Bug Prediction 5

 2.4 Homogenous and Heterogeneous Ensemble 5

CHAPTER 3 Theoretical Concepts 7

 3.1 Features 7

 3.2 Data Preprocessing 7

 3.3 Feature Selection 8

 3.4 Classification 9

 3.5 Ensemble Techniques 10

 3.6 Software Bug Prediction 10

CHAPTER 4 Proposed Model 12

 4.1 Dependent and Independent Variable 12

 4.2 Empirical Data Collection 13

CHAPTER 5 Experimental Setup 14

 5.1 Dataset 14

 5.2 Dataset Preprocessing 14

 5.3 Feature Selection Algorithm 14

VI

 5.4 Classification and Ensemble Techniques 17

 5.5 Performance Evaluation Measure 23

 5.6 Statistical Test 23

CHAPTER 6 RESULTS 25

CHAPTER 7 Discussion on Results 44

CHAPTER 8 Conclusion and Future Scope 54

References 55

VII

List of Figures

Fig. 1.1 Software Bug Prediction Steps 2

Fig. 1.2 Feature Selection Process 3

Fig. 2.1 ML Techniques 6

Fig. 3.1 Data Variable Types 7

Fig. 3.2 Feature Selection Type 9

Fig. 4.1 Proposed Architecture 11

Fig. 5.1 Chi Square distribution for different Df 16

Fig. 5.2 K2 Algorithm 18

Fig. 5.3 Decision Tree Example 19

Fig. 5.4 MLP Classifier Structure 20

Fig. 5.5 Stacking Ensemble Working 21

Fig. 5.6 Bagging Working 22

Fig. 5.7 Boosting Working 22

Fig. 5.8 AUC ROC 23

Fig. 7.1 Box Plot of NB 44

Fig. 7.2 Box Plot of LOG 45

Fig. 7.3 Box Plot of BN 45

Fig. 7.4 Box Plot of KNN 46

Fig. 7.5 Box Plot of RFo 46

Fig. 7.6 Box Plot of DT 47

Fig. 7.7 Box Plot of MLP 47

Fig. 7.8 Box Plot of VE 47

Fig. 7.9 Box Plot of SE 48

Fig. 7.10 Box Plot of BE 49

Fig. 7.11 Box Plot of BoE 49

Fig. 7.12 Box Plot of GR 50

Fig. 7.13 Box Plot of IG 50

Fig. 7.14 Box Plot of RF 51

Fig. 7.15 Box Plot of OR 51

Fig. 7.16 Box Plot of SU 52

Fig. 7.17 Box Plot of CR 52

Fig. 7.18 Box Plot of CS 53

VIII

List of Tables

Table 4.1 Static Code Metrics Detail 12

Table 4.2 Dataset Details 13

Table 6.1 AUC values of NB 26

Table 6.2 AUC values of LOG 27

Table 6.3 AUC values of BN 28

Table 6.4 AUC values of KNN 29

Table 6.5 AUC values of RFo 30

Table 6.6 AUC values of DT 31

Table 6.7 AUC values of MLP 32

Table 6.8 AUC values of VE 33

Table 6.9 AUC values of SE 34

Table 6.10 AUC values of BE 35

Table 6.11 AUC values of BoE 36

Table 6.12 AUC values of GR 38

Table 6.13 AUC values of IG 39

Table 6.14 AUC values of RF 39

Table 6.15 AUC values of OR 40

Table 6.16 AUC values of SU 41

Table 6.17 AUC values of CR 42

Table 6.18 AUC values of CS 43

IX

List of symbols and abbreviations

Df Degree of Freedom

SBP Software Bug Prediction

ANOVA Analysis of Variance

AUC Area Under the curve

ROC Receiver Operating Characteristics

WMC Weighted Methods per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Object

RFC Response for a Class

LCOM Lack of Cohesion in Methods

CA Afferent Coupling

CE Efferent Coupling

NPM Number of Public Methods

LCOM3 Lack of Cohesion in Methods version 3

LOC Lines of Code

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Aggregation

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

max (CC) Maximum McCabe’s Complexity

avg (CC) Average McCabe’s Complexity

GR Gain Ratio

IG Information Gain

X

OR One R

RF Relief F

SU Symmetrical Uncertainty

CR Correlation

CS Chi Square

LOG Logistic Regression

BN Bayesian Network

NB Naive Bayes

KNN K-Nearest Neighbour

RFo Random Forest

DT Decision Tree

MLP MultiLayer Perceptron

VE Voting Ensemble

SE Stacking Ensemble

BE Bagging Ensemble

BoE Boosting Ensemble

RFE Recursive Feature Elimination

CFS Correlation Based Feature Selection

WEKA Waikato Environment for Knowledge

Analysis

1

CHAPTER 1

INTRODUCTION

1.1 General

Software testing is a resource and time-consuming task in the software development

lifecycle. The end goal of the testing process is to deliver error-free software that meets

all stakeholders' requirements. Continuous changes, strict deadlines, and the need to

ensure the correct behaviour of the functionality are some challenges faced by developers

consistently. However, limited time and workforce are threats to practical testing.

Therefore, instead of testing the whole software for bugs, allocating all the resources to

the bug-prone classes will be easier if we know them.

Bug Prediction Model, which predicts the software component which needs to be tested

more extensively and is more likely to have bugs, offers an effective solution to the above

problem. Software Bug Prediction (SBP) is one of the most assisting activities in the

Testing Phase of SDLC. SBF models use multiple software metrics data collected either

from previous versions of the same system (within-project approach) or from the metric

data of other systems (cross-project approach).

Ghotra et al. established that the accuracy of a prediction model can increase or decrease

up to 30% depending upon the classifier used [15]. Also, Panichella et al. prove that the

predictions of different classifiers are highly interdependent despite similar prediction

accuracy [28].

The model can be trained using sufficiently large data from the project under observation

(within-project strategy) or using data from a similar project, not under observation

(cross-project strategy). But the main problem with the dataset is the higher

dimensionality of the metrics, including redundant or irrelevant metrics. Higher

dimensionality of the dataset will lead to higher costs for building and testing the systems.

For the foregoing reasons, a variety of feature selection methods were proposed to

alleviate this issue of high dimensionality by eliminating irrelevant and redundant

features [39].

2

Fig.1.1 Software Bug Prediction Steps

Software Bug Prediction (SBP) Model predicts the software component that needs to

be analyzed more for the bugs as the bug probability is higher in that component. The bug

prediction model is a supervised method in which a set of independent variables are

selected (predictor) and are used to predict the value of the dependent variable (bug

proneness of the component) using one or more ML Classifiers.

Feature selection is the process of selecting N relevant features from the original set to

optimally reduce the feature space according to the evaluation criteria and system under

observation. Datasets with thousands of features are not uncommon in such applications.

All features may be necessary for some problems, but for some target concepts, only a

small subset of features is usually relevant [27].

The process of Feature Selection is divided into four parts:

1. Subset Generation

2. Evaluation

3. Stopping Criteria

4. Validation

1.2 Problem Formulation

During the testing phase, it is not feasible to test the complete product, nor is it possible

to perform 100% testing. So to find the bug proneness of a particular function (area), we

use a bug prediction model, which can help identify weak areas. Based on this problem

following question have been identified:

1. What models are used to predict the proneness of a function?

2. What datasets are available to test these models?

3. Do the current models incorporate ensemble techniques?

3

Fig. 1.2 Feature Selection Process

1.3 Objectives of the Project

This study evaluates the performance of Filter Feature Selection Algorithms and

compares their predictive power with different classifiers for SBP. The main focus of this

study is on the following research questions:

1. Which Feature Selection Algorithm gives the best results?

2. What is the effect of Feature Selection Algorithms on Fault Proneness Models?

3. Which classifier or ensemble techniques perform the best?

Therefore, in this study, we will build bug prediction models using multiple classification

techniques and then compare and analyze each classification technique's results based on

AUC values [20]. We will analyze the results of each classification technique based on

different Feature Selection Algorithms.

4

CHAPTER 2

LITERATURE REVIEW

In this section, information related to the variety of research papers concentrating on

software bug prediction using different methodologies, challenges present in bug

prediction, and which techniques can perform better, etc. has been listed. This section

provides a brief insight into the previous works done in the field of software bug

prediction.

Many researchers 6have been trying to build software bug prediction models using

different bug prediction techniques which deliver better performance, but most of them

use static code metrics as independent variables, and few of them use feature selection to

analyze metrics.

Most of the previous work of bug prediction models is done using predictors such as CK

metrics, HIstory Based Metrics.

1. Individual Classifiers for Bug prediction

Several Classifier can be used to build a bug prediction model like Logistic Regression

(LOG), Support Vector Machines (SVM), Radial Basis Function Network (RBF), Multi-

Layer Perceptron (MLP), Bayesian Network (BN), Decision Tree (DTree), and Decision

Tables (DTables). But there is no clear winner from previous studies as to which is the

best classifier to predict bug proneness. Their performance depends upon the predictor

we selected and the dataset used.

Lessman et al. [21] experimented with 22 classification models. The top 17 models were

statistically similar to each other on ten publicly available software development data sets

from the NASA repository. Later Shepperd et al. [34] found that the NASA dataset used

was noisy and biased.

2. Within- vs Cross-Project Bug Prediction

The dataset can be collected in two ways:

a. Within-Project: Dataset only contains Historical data of the system under

observation. It can only be applied to mature projects, where sufficient

amount of project history is available. This strategy is preferred due to the

homogeneity of data.

5

b. Cross-Project: Dataset contains data from other systems that are similar to

the system under observation. It is applied to those projects where a

sufficient amount of project history is not available. So a dataset can only

be constructed with data from other systems.

3. Individual Feature Selection for Bug Prediction

Feature selection is the process of selecting N features from the original set of features to

decrease the dimensionality of the feature pool and increase the performance while

lowering the cost and time to build the prediction model.

Types of Feature Selection methods are listed below:

a. Wrapper Method: These methods carry out the selection process keeping

in mind the classification algorithms that are going to be used. Wrapper

methods use the predictor as a black box and the predictor performance as

the objective function to evaluate the variable subset [9].

b. Filter Method: These methods carry out the selection process without

considering the algorithm used for classification. Filter methods are faster

than wrapper methods and result in a better generalization because they

act independently of the classification algorithm.

c. Embedded method: These methods encompass the benefits of both the

wrapper and filter methods by including interactions of features but also

maintaining reasonable computational cost. Embedded methods are

iterative because they take care of each iteration of the model training

process and carefully extracts those features that contribute the most to the

training for a particular iteration [3].

4. Homogenous and Heterogeneous Ensemble

Ensemble models have been demonstrated exceptionally successfully to inspire the

precision and the presentation of the models. An ensemble consists of a set of individually

trained classifiers, such as neural networks or decision trees, whose predictions are

combined when classifying new instances [29]. Ensemble takes place in two steps:

a. Model Training: Training each individual classifier with the same training

dataset but using different subsets.

b. Model Combination: Combining the power of all the trained classifiers

using one of the combining techniques (Averaging or Voting).

6

There are two types of ensemble techniques:

a. Homogeneous Ensemble: It consists of classifiers having a single-type

base learner. Example bagging or boosting.

b. Heterogeneous Ensemble: It consists of classifiers having different base

learning algorithms. Example stacking or voting of bagged classifiers.

Fig. 2.1 ML Techniques

An Empirical Comparison is made by Zhou et al. [39] consisting of 32 feature selection

methods and the result of this study shows that feature selection algorithms significantly

improve the bug prediction performance. Also, Wrapper and filter feature selection

algorithms give the best result compared to clustering-based, but they tend to take more

time to select features.

Shivaji et al. [35] conducted research showing that the performance of bug prediction

models is increased by eliminating 90% of the original features. Also, NOVAKOVIC et

al. [27] compares the performance of 5 filter feature selection algorithms concluding that

to rank the algorithms based on their performance, one will need to keep indices to check

the best feature subset is selected and a bigger dataset is needed with more classifiers.

7

CHAPTER 3

THEORETICAL CONCEPTS

This section presents the basic theoretical concepts required to understand the key

processes and working of the experiment studied in this project. This section familiarizes

the concept of data preprocessing, features, feature selection algorithms and ensemble

techniques. It also induces the idea of working with individual classifiers. The concepts

introduced in this section help to understand the proposed architecture for software bug

prediction models used.

3.1 Features

A feature is an individual measurable property or characteristic of a phenomenon being

observed [38]. Data objects are described by many features, which captures the essence

of the object under consideration.

Features are also known as Variables, characteristics, attributes, etc.

Fig. 3.1 Data Variable Types [5]

There are 2 types of features:

1. Categorical - values taken from a defined set. Example: Days of the week.

2. Numerical - values are continuous or integer-valued. Example: Speed of the car.

3.2 Data Preprocessing

The process of converting raw data into an efficient and usable format using data mining

techniques. This process reduces the prediction time for our models by selecting the

relevant features for bug prediction and disposing of the rest.

The process of Data Preprocessing includes:

8

1. Data Cleaning: The process of filling the missing information or removing the

noisy data from the dataset is called data cleaning. There are multiple ways to

handle cleaning, like Fill the missing values, clustering, etc.

2. Data Transformation: This process turns the data into a suitable form for the

mining process. Steps include are:

a. Normalization: Getting all the values in a specific range

b. Attribute Selection: Construction of new attribute from older one for

mining purpose

c. Discretization: Replacing the raw value of a numeric attribute by

interval/conceptual levels.

d. Concept Hierarchy Generation: Converting low-level hierarchy attributes

to a higher level.

3. Data Reduction: It helps to reduce the size of data that we process for our

models to amplify the prediction speed and accuracy of the models. Steps

include are:

a. Data Cube Aggregation: Application of Aggregation operation to

generate data cube.

b. Attribute Subset Selection: Forming a subset of those features with

higher relevance to our goal feature.

c. Numerosity Reduction: It is a process of storing a model of data instead

of complete data.

d. Dimensionality Reduction: Process of reducing the size of data by

encoding mechanism. The methods can be lossy or lossless.

3.3 Feature Selection

Feature Selection is the process of selecting a subset of input attributes from a given

set of inputs in order to minimize the computational cost and improve the prediction

abilities of the predictive model to be developed. The aim of feature selection is to

remove the redundant and irrelevant inputs for the predictive model. Feature

Selection is closely related to the dimensionality reduction process. Feature

Selection focuses on adding or deleting data from a dataset whereas dimensionality

reduction focuses on projecting the data to generate entirely new sets of inputs.

9

Fig. 3.2 Feature Selection Types

There are two ways of performing feature selection:

a. Unsupervised: Remove redundant predictors without utilizing the target variable.

Example - Correlation Based Feature Selection (CFS)

b. Supervised: Remove irrelevant predictors using the target variable as guiding

parameter for selection. Example - Recursive Feature Elimination (RFE)

Supervised Feature Selection is further divided into three types:

a. Wrapper: Perform search to select a subset of features that performs well.

Example - RFE

b. Filter: Select subset of features based on the relation with the target variable.

Examples - Feature Importance Methods

c. Intrinsic: Algorithm that automatically selects the feature during model training.

Example - Decision Tree

3.4 Classification

Classification is the process of predicting or assigning class/label to an unknown

input using the set of inputs provided to the predictive model during training. There

are two types of classification:

a. Binary Classification: In this type of classification, only two classes are

available for assignment, i.e., input belongs to either class available. Example -

Spam Classification.

b. Multi-class Classification: In this type of classification, more than two classes

are available for assignment, i.e., the input can belong to one of the available

classes. Example - Plant Species Classification

10

3.5 Ensemble Technique

Ensemble strategies appear to be meta-calculations that are a combination of a few

methods of machine learning into one prescient model to improve predictions (casting a

ballot), decline predisposition (boosting), or decline difference (sacking). With the help

of an ensemble of classifiers, one can achieve the better predictive power of the model

developed. The member classifiers of an ensemble may or may not be of the same type

and may or may not be trained on the same training data (Homogenous or Heterogeneous

Ensemble). The main goal of Ensemble Techniques:

1. Performance: Increases the prediction capabilities of the developed model.

2. Robustness: Reduces the overall dispersion of prediction and model

performance.

3. Low Bias, Low Variance: Provides a way to decrease the variance while

increasing the model's performance.

There are many types of Ensemble like BAGGING, BOOSTING, VOTING,

STACKING, RANDOM FOREST, etc.

3.6 Software Bug Prediction

Software deformity (or deficiency) prediction is viewed as one of the most practical and

furthermore useful devices which let us know whether a specific module is having

imperfection or not. Software professionals consider it to be an essential stage for

guaranteeing the nature of the procedure or the item which is to be created. It made light

of an exceptionally pivotal job in achieving the cases in the software industry that it can't

meet the necessities in the spending plan and on schedule.

Today, software can be huge and to test the complete software is not feasible in terms of

time as well as according to cost perspective. Error could be present anywhere in the code

so to distinguish which modules are defective and which are not plays an important role

in reducing the overall cost of the software. Software bug prediction models helps to find

these bug prone modules as early as possible to increase efficiency, accuracy and

durability of software and to reduce the cost of building the software.

11

CHAPTER 4

PROPOSED MODEL

This section presents the proposed model being utilized in this project. This section

familiarizes the architecture of the model used. It also helps to understand the comparison

of multiple feature selection algorithms and classification algorithms.

Fig. 4.1 Proposed Architecture

12

In this section, static code metrics are used as dependent and independent variables and

are defined below. Also, datasets are collected using empirical data collection methods.

4.1 Dependent and Independent Variables:

Bug proneness is defined as the probability of finding bugs in the class. Independent

variables used in this study are static code metrics, and the dependent variable used in

this study is bug proneness. Table I shows the static code metrics used in this study.

Jureczko and Madeyski[19] defined each of the static metrics given in table 4.1.

Table 4.1: Static Code Metrics Details

WMC Weighted Method per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

RFC Response for a Class

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion in Methods version 3

NPM Number of Public Methods

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

Ca Afferent Coupling

Ce Efferent Coupling

Max (CC) Maximum McCabe’s Complexity

Avg (CC) Average McCabe’s Complexity

LOC Lines of Code

13

4.2 Empirical Data Collection:

The dataset is collected from 9 projects. All are java based projects. Ckjm [23] program

and the BugInfo [13] tool was used by Madeyski and Jureczko [1] to collect metrics from

project repositories. Bug is the dependent metric used in this study, the rest are

independent. The datasets which have been used in this study are shown in table 4.2.

Table 4.2: Dataset Details

Project name Version Description

Ant 1.6, 1.7 Java-based build tool.

Camel 1.4, 1.6 Open-source integration framework

based on known Enterprise

Integration Patterns.

Ivy 1.4,2.0 Dependency Manager.

Lucene 2.4 Full text search library in java.

POI 2.5, 3.0 Java- based tool to create and

maintain API.

Synapse 1.2 Enterprise service bus

Tomcat 6.0 Open source implementation of jsp

Velocity 1.6 Template Builder

Xalan 2.5,2.6 XSLT processor

14

CHAPTER 5

EXPERIMENTAL SETUP

5.1 Dataset

In the experiment, 15 projects from the PROMISE repository are taken and are then

cleaned using the WEKA tool.

5.2 Dataset Preprocessing

Datasets are downloaded from PROMISE repositories, which may contain some

missing data or noise, which affect the generated model’s performance. Preprocessing

is done to avoid these problems, such as removing unwanted metrics like Version

field, ID field, Project name metric, etc. Using one of the WEKA tool filters, we can

convert the bug metric from “numeric to nominal” as software’s bug field contains

binary values either 0 or 1.

5.3 Feature Selection Algorithm

Entropy is the foundation of GR, IG and SU which is considered as the measure of

unpredictability of the system. The entropy of y is:

𝐻(𝑌) =∑

𝑦𝜖𝑌

𝑝(𝑦)𝑙𝑜𝑔2(𝑝(𝑦))

Where p(y) is a marginal probability density function of random variable Y.

Suppose the observed values of Y in the training data set S is partitioned on the basis

of second feature X, Y’s entropy with respect to the partitions produced by X is less

than the entropy of Y prior to partitioning. In that case, there is a relationship between

features Y and X. The entropy of Y after the partition produced by X is then [27]:

𝐻(𝑌|𝑋) = −∑

𝑥𝜖𝑋

𝑝(𝑥)∑

𝑦𝜖𝑌

𝑝(𝑦|𝑥)𝑙𝑜𝑔2(𝑝(𝑦|𝑥))

In this study we have used seven ranker methods for feature selection:

a. Gain Ratio (GR) attribute Evaluation: It is the non-symmetrical measure that

compensates for the bias of the IG [16]. GR is given by:

𝐺𝑅 =
𝐼𝐺

𝐻(𝑋)

Due to this normalization of IG, the GR will lie between [0, 1].

15

Higher the value of GR, higher the relation between X and Y. GR favors variables

with fewer values [27].

b. Information Gain (IG) attribute Evaluation: Entropy is a measure of impurity

in a training set S. We can define a standard by considering additional information

about Y provided by X that represents the amount by which Y’s entropy decreases

[16]. This measure is known as IG. It is given by:

𝐼𝐺 = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

IG is symmetrical in nature. The information gained about Y after considering X

is equal to the information gained about X after considering Y [27]. IG’s problem

is that it is biased towards features with more values, even if they do not contain

anything relevant.

c. Symmetrical Uncertainty (SU) attribute evaluation: The Symmetrical

Uncertainty measures counterbalance for the inherent bias of IG by dividing it by

the sum of the entropies of X and Y. It is given by:

𝑆𝑈 = 2
𝐼𝐺

𝐻(𝑌) + 𝐻(𝑋)

SU takes values, which are standardized to the range [0, 1] because of the

correction factor 2.

SU = 1 means that one feature completely predicts while SU = 0 indicates that X

and Y are uncorrelated [27]. SU is biased towards features with fewer values

similar to GR.

d. Relief-F (RF) attribute Evaluation: In this, measurement of feature’s worth is

done by repeated sampling of an instance and the value of the given feature for

the nearest instance of the same and different class is also considered. To

distinguish among the classes, this technique assigns a weight to each feature

which is based on the ability of the feature and then those features are selected

whose weight is greater than a user defined threshold [27].

e. One-R (OR) attribute Evaluation: It is useful for determining a baseline

performance for other techniques. OR builds one rule for each attribute in the

training set and selects the rule with the smallest error. All numerically valued

features are treated as continuous and then divide the range of values into several

disjoint intervals. Missing values are treated as legitimate values by considering

them as “missing”. Novaković et al. [27] further explained OR’s functioning.

16

f. Correlation (CR) attribute Evaluation: Correlation is used to find good features

that are strongly correlated to the class concept but are not redundant to any other

relevant feature. The problem of attribute selection requires a suitable measure of

correlations between attributes and a sound procedure to select attributes based on

this measure [36]. It’s value ranges from [-1,1]. Closer to +1 depicts positive

correlation between the two features and -1 depicts negative correlation between

the features. There are two types of correlation approaches:

a. Based on Classical Linear Correlation.

b. Based on Information Theory.

Formula for first approach is given below:

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟) =
𝑁(∑ 𝑋𝑌)−∑ 𝑋∑ 𝑌

√[𝑁(∑ 𝑋2−(∑ 𝑋)2)][𝑁(∑ 𝑌2−(∑ 𝑌)2)]

 Where X and Y are Relevant features.

g. Chi Square (CS) Attribute Evaluation: Chi Square is used when the feature is

categorical. It determines if the degree of association between two categorical

samples would reflect their real association in population [11]. It assumes that the

observed value of a variable will match the expected value of the variable (null

hypothesis). Its

 Formula for Chi Square is given below:

 where:

 c = Df

O = Observed Value(s)

 E = Expected Value(s)

Fig. 5.1 Chi Square distribution for different Df[14]

17

5.4 Classification and Ensemble Technique

In this study, we are using seven different classifiers and four ensemble techniques to

build the prediction model. For implementation, we use the WEKA machine learning

tool. There can be some string data type variables due to which there can be some error,

so we use a filtered classifier that provides the facility of all the classifiers with additional

functionality. We choose meta filtered classifier first. After this, we choose any

classification technique as classifier and filter as unsupervised.attribute.string to a word

vector. All the parameter values are initialized with the default values in WEKA. Here

we are also using a 10- fold cross-validation technique for splitting the dataset into testing

and training.

Seven classification and four ensemble techniques which we have chosen for

implementation are as follows:

a. Naive Bayes: It is a supervised classification technique. This classification

technique gives better results and is simple to understand and implement

[12]],[18]. It is based on one assumption that one feature's value is not dependent

on another feature value. NB classifier technique follows Bayes theorem:

P(F/c) = (P(F)*P(c/F))/P(c)

P(F/c) is the posterior probability.

P(F) is the class prior probability.

P(c) is the predictor prior probability.

P(c/F) is the likelihood.

Given F is the set of feature values or independent variables and c is the

dependent variable or class variable having values either 0 or 1.0 value indicates

not faulty, and 1 indicates faulty modules.

b. K- nearest neighbor: It is another simple, non-parametric and supervised

machine learning technique used in classification and regression problems. Also

known as the lazy learning technique, KNN considers the k most similar instances

to classify an instance by calculating the euclidean distance between instances

[37]. It has also been used in pattern recognition, data mining, and intrusion

detection.

c. Bayesian Network: Bayesian Network classifier technique is a supervised as well

as an unsupervised classification technique and is used along with a search

technique to build the prediction model as it helps in ordering the metrics on their

18

importance in predicting the bugs. The K2 search algorithm is the most famous

search algorithm used with BN to build the prediction model.

A Bayesian network is a DAG graph with E edges and V Vertices representing

joint probability distribution of a set of variables. The probability is given by:

𝑃(𝑋) =∏

𝑛

𝑖=1

𝑃(𝑋𝑖|𝑋𝑖+1, . . . , 𝑋𝑛)

Given the parents of Xi, other variables are independent from Xi, so we can write

the joint probability distribution as :

𝑃(𝑋) =∏

𝑛

𝑖=1

𝑃(𝑋𝑖|𝑎𝑋𝑖)

On the other hand, Bayes’ rule is used to calculate Xi’s posterior probability in a

Bayesian network based on the evidence information present. We can calculate

probabilities either towards or causes to effects (P(Xi|E)) or from effects to causes

(P(E|Xi)) [1].

The K2 algorithm is given by Cooper and Herskovits which heuristically searches

for the most probable Bayesian network structure.

Fig 5.2. K2 Algorithm [1]

d. Random Forest: Random Forest is a supervised classification technique. In this,

the algorithms generated a large number of decision trees as an ensemble [40].

The Decision tree with the highest vote becomes the model predictor. Two

conditions for Random Forest are:

i. A model with some actual signal should be built so that model does better

than random guessing with those features

19

ii. The predictions made by the individual trees need to have low correlation

with each other.

e. Logistic Regression: Logistic Regression is a supervised classification technique

which is a widely used statistical technique used to predict dependent variables

with the help of independent variables. Here binary Logistic regression is used to

build the model as the dependent variable has binary values either 0 or 1. The

classification takes place in 2 steps:

i. First data is fit into the linear regression model as linear regression outputs

continuous variables, so logistic regression makes use of the logistic

sigmoid function to transform this output into probability value.

ii. The probability is mapped to the target dependent variable categorically.

A detailed description of logistic regression is given by Basili et al. (1996) [4] and

Hosmer and Lemeshow (1989) [17].

f. Decision Tree: A Decision Tree is a non-parametric supervised classification

technique. Its structure is like a flow chart where the internal nodes (decision

nodes) describe the test on the features, and the leaf nodes describe a decision

(label for classification). The main goal of DT is:

1. Generalize beyond the training sample so that unseen samples could be

classified with as high accuracy as possible [33].

2. Classifying training sample as accurately as possible.

3. Easily modifiable to accommodate more training samples when available.

4. To have a simple structure.

Fig. 5.3 Decision Tree example [10]

20

Keeping point as mentioned earlier, the design of the DT classifier can be broken

into the following tasks [2] [25] [26]:

1. The appropriate choice of the tree structure.

2. The choice of feature subsets to be used at each internal node.

3. The choice of the decision rule or strategy to be used at each internal node

[33].

g. MultiLayer Perceptron: MLP is a supervised classification technique and is a

part of a feed-forward neural network. The neurons of MLP are trained with a

back-propagation learning algorithm to give approximate values of continuous

functions. Also, it can help to solve non-linearly separable problems. The

classifier consists of three layers:

1. Input Layer: The data flow starts from this layer.

2. Hidden Layer: Performs all the computation of MLP, and the number of

hidden layers can be arbitrary.

3. Output Layer: Prediction and classification are performed here.

The main use of MLP classifier is for pattern classification, prediction,

approximation and Recognition.

Fig. 5.4 MLP classifier structure [24]

h. Ensemble Techniques: The ensemble combines more than one classifier of the

same or different types to achieve better accuracy for the model. In this study, an

ensemble of aforementioned techniques is taken. Four types of Ensemble

Techniques Used in this study:

a. Voting: It combines the classification result of all the member classifiers

to create a better classifier. Voting can be used for classification as well as

21

regression. For classification, it uses the majority vote rule, i.e., more than

half of the member classifiers should agree, whereas, for regression, it uses

the average of all member classifier’s results. We can also consider the

Voting Ensemble as a meta-model as it could be used with any collection

of existing trained machine learning models, and the existing models do

not need to be aware that they are being used in the ensemble [7].

b. Stacking: It uses a meta-learning algorithm to learn how to best combine

the predictions from two or more base machine learning algorithms [6].

There are two levels in stacking ensemble architecture:

i. Level 0 - It contains base models (2 or more) fitted on training

data, and their results are compiled for level 1.

ii. Level 1 - It contains the meta-model, which learns how to best

combine the results of the base models (Level 0).

The prediction (output) of level 0 is fed to level 1 as input which can be

real values in case of regression and probability value or class labels in

case of classification.

Fig. 5.5 Stacking Ensemble Working [31]

Base models can be a combination of any classification models used for

that particular study. For Meta classifier, classifier that is commonly used

is (but not compulsorily):

I. For Classification: Logistic Regression

II. For Regression: Linear Regression

22

c. Bagging: Bagging is short for Bootstrap Aggregation. It often considers

homogeneous weak learners. Bagging learns these models parallely and

combines them using an averaging process. It generally prefers to generate

an ensemble of learners having less variance than its individual

components. We use Bootstrapping for Bagging Ensemble but in WEKA

tool the ensemble is already developed. We use Bootstrap sampling to

obtain subsets to train our base models. Bootstrap sampling is the process

of using increasingly large random samples until you achieve diminishing

returns in predictive accuracy. Each sample is used to train a separate

decision tree, and the results of each model are aggregated [8].

Fig. 5.6 Bagging working Fig. 5.7 Boosting Working [8]

d. Boosting: Boosting considers homogenous weak learners to combine the

results of weak learners following a deterministic strategy. It learns about

the classifiers sequentially (base model depending upon previous one).

AdaBoost is the most used Boosting technique. The main goal of Boosting

is to fit several individual classifiers and average out their prediction to

generate a model with lower bias and less variance.

23

5.5 Performance Evaluation Measure

In this study, we use AUC (area under ROC curve) to evaluate the prediction

performance. Although the ROC (Receiver Operating Characteristics) curve is the

accurate measure for prediction performance [20] [30], it does not give the numeric

values to discriminate between the results, so AUC is the better choice for measuring

prediction performance. AUC represents the worthiness of model predictions (Fig.

26). It is the degree of how superior a model is capable of discerning between positive

and negative occurrences.

Fig. 5.8 AUC and ROC

1.0 value in AUC means model prediction is 100% accurate and 0.5 means model

prediction is worthless for unknown instances prediction. AUC value is the average

of all threshold values. A detailed description of how to calculate AUC values is given

in Dejaeger et al. [20].

5.6 Statistical Test:

In this study, we use Kruskal Wallis Test to check whether there is a significant difference

between the predictive performances of various classification techniques or not.

1. Kruskal Wallis Test:

It is a non-parametric test that means this test doesn't require that data should be

normal. Kruskal Wallis test is used to compare the predictive performances of

three or more independent samples. Independent samples mean all the sample

values are defined on different datasets. The test is a non-parametric version of

the one-way ANOVA test. Kruskal Wallis is the same as the Wilcoxon Mann

Whitney Test as both are ranking methods; the main difference is that the

Wilcoxon Mann Whitney test considers two data samples, but the Kruskal Wallis

test is applied in case of three or more than three samples.

24

In this test, we compare the calculated H-statistics value with the tabulated chi-

square value to check whether our null hypothesis is accepted or rejected.

H-statistics is calculated using the given formula:

2. Nemenyi Test:

This test is utilized to contrast numerous procedures and each other when the

sample sizes are equivalent. It is a post hoc test as it is applied if there is a rejection

of the null hypothesis when we use Kruskal Wallis or Friedman test. This test is

the same as the Bonferroni test as both are post hoc tests. However, the main

difference is that in the Nemenyi test, we compare multiple techniques with each

other, and in Bonferroni, we compare all the techniques with one control

technique.

A comparison between critical distance and pairwise difference of average ranks

occurs to check whether the null hypothesis is accepted or rejected. We can

calculate the critical distance value using the given formula:

25

CHAPTER 6

RESULTS

Q Which feature selection algorithm gives the best result?

To compare the feature selection algorithms for Bug Prediction Performance, we analyze

some models using multiple classification Techniques:

Model-1: contains features selected from Gain Ratio Attribute Evaluation.

Model-2: contains features selected from Information Gain Attribute Evaluation.

Model-3: contains features selected from Relief F Attribute Evaluation.

Model-4: contains features selected from One R Attribute Evaluation.

Model-5: contains features selected from Symmetrical Uncertainty Attribute Evaluation.

Model-6: contains features selected from Correlation Attribute Evaluation.

Model-7: contains features selected from Chi Squared Attribute Evaluation.

In this section we analyze the results of all the seven models using different classifiers

on the basis of AUC values.

The performance of different feature selection algorithms with different models are

shown in the following tables:

Naive Bayes Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using NB are presented in this section. Table 6.1 shows the AUC values

of all the seven models implemented using NB classification techniques. This table shows

that in 40% of cases, CR gives better AUC values, in 33.3% cases, CS gives better AUC

values, in 26.7 % cases, IG gives better AUC values, in 20% cases, RF gives better AUC

values, in 13.3% cases, GR and SU gives better AUC values, and in 6.7 % cases, OR

gives better AUC values.

If we statistically analyze the results of Table III using Kruskal Wallis at the 0.05

significance level, then the results show that the calculated H-value is 2.3078, and the p-

value is 0.8893. χ2 value at 0.05 and k=6 is 12.5916, which is greater than the calculated

H-value, so there is no significant difference between all the models implemented using

NB.

26

Table 6.1: AUC values using NB

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.825 0.825 0.803 0.816 0.825 0.823 0.825

ANT 1.7 0.793 0.794 0.76 0.824 0.794 0.825 0.815

CAMEL 1.4 0.651 0.634 0.648 0.605 0.634 0.689 0.634

CAMEL 1.6 0.623 0.624 0.619 0.575 0.609 0.58 0.644

IVY 1.4 0.569 0.569 0.6 0.605 0.569 0.693 0.569

IVY 2.0 0.788 0.793 0.74 0.754 0.788 0.8 0.805

LUCENE 2.4 0.699 0.691 0.724 0.727 0.682 0.731 0.691

POI 2.5 0.726 0.819 0.825 0.806 0.815 0.79 0.817

POI 3.0 0.666 0.805 0.813 0.765 0.805 0.8 0.757

SYNAPSE 1.2 0.735 0.735 0.705 0.768 0.735 0.73 0.73

TOMCAT 6.0 0.794 0.803 0.755 0.748 0.803 0.803 0.803

VELOCITY 1.6 0.764 0.766 0.765 0.759 0.763 0.766 0.766

XALAN 2.4 0.745 0.74 0.723 0.651 0.74 0.686 0.744

XALAN 2.5 0.596 0.612 0.635 0.624 0.596 0.611 0.612

XALAN 2.6 0.784 0.797 0.795 0.774 0.793 0.79 0.797

Logical Regression Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Logistic Regression are presented in this section. Table 6.2

shows the AUC values of all the seven models implemented using Logistic Regression

classification techniques. This table shows that in 40% of cases CS gives better AUC

values, in 33.3 % cases CR gives better AUC values, in 20 % cases IG and SU gives better

AUC values, in 13.3% cases OR gives better AUC values, and in 6.7% cases GR and RF

gives better AUC values.

If we statistically analyze the results of table IV using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 2.5701 and the p-value is 0.8605. χ2

value at 0.05 and k=5 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Logistic Regression.

27

Table 6.2: AUC values using LOG

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.836 0.836 0.789 0.837 0.836 0.835 0.836

ANT 1.7 0.823 0.821 0.754 0.828 0.821 0.826 0.83

CAMEL 1.4 0.708 0.704 0.665 0.632 0.704 0.684 0.704

CAMEL 1.6 0.664 0.649 0.628 0.628 0.667 0.656 0.67

IVY 1.4 0.648 0.648 0.654 0.484 0.648 0.772 0.648

IVY 2.0 0.783 0.799 0.75 0.791 0.783 0.788 0.788

LUCENE 2.4 0.738 0.757 0.755 0.747 0.754 0.752 0.757

POI 2.5 0.706 0.797 0.786 0.785 0.805 0.814 0.807

POI 3.0 0.803 0.814 0.805 0.789 0.81 0.818 0.777

SYNAPSE 1.2 0.748 0.748 0.716 0.789 0.748 0.744 0.744

TOMCAT 6.0 0.806 0.812 0.772 0.799 0.812 0.812 0.812

VELOCITY 1.6 0.78 0.769 0.801 0.757 0.764 0.769 0.769

XALAN 2.4 0.772 0.779 0.729 0.611 0.779 0.685 0.787

XALAN 2.5 0.601 0.592 0.624 0.61 0.601 0.625 0.592

XALAN 2.6 0.805 0.795 0.79 0.779 0.805 0.799 0.795

Bayesian Network Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using NB are presented in this section. Table 6.3 shows the AUC values

of all the seven models implemented using NB classification techniques. This table shows

that in 33.3% of cases, CR and SU gives better AUC values, in 26.6 % cases, CS gives

better AUC values, in 20 % cases, IG gives better AUC values, and in 13.3% cases, RF,

OR and GR gives better AUC values.

If we statistically analyze the results of table V using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 2.3704 and the p-value is 0.8827. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using BN.

28

Table 6.3: AUC values using BN

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.806 0.806 0.777 0.794 0.806 0.825 0.806

ANT 1.7 0.815 0.807 0.873 0.815 0.807 0.798 0.806

CAMEL 1.4 0.669 0.651 0.596 0.586 0.651 0.659 0.651

CAMEL 1.6 0.591 0.653 0.49 0.509 0.652 0.639 0.679

IVY 1.4 0.423 0.423 0.412 0.423 0.423 0.46 0.423

IVY 2.0 0.764 0.774 0.638 0.775 0.764 0.772 0.773

LUCENE 2.4 0.679 0.684 0.682 0.689 0.691 0.679 0.648

POI 2.5 0.854 0.851 0.878 0.853 0.867 0.826 0.864

POI 3.0 0.836 0.836 0.833 0.861 0.861 0.801 0.844

SYNAPSE 1.2 0.762 0.762 0.612 0.757 0.762 0.728 0.728

TOMCAT 6.0 0.783 0.79 0.706 0.739 0.79 0.79 0.79

VELOCITY 1.6 0.714 0.731 0.697 0.71 0.728 0.731 0.731

XALAN 2.4 0.765 0.774 0.699 0.641 0.774 0.659 0.78

XALAN 2.5 0.64 0.635 0.64 0.645 0.64 0.648 0.635

XALAN 2.6 0.803 0.8 0.785 0.792 0.808 0.662 0.8

K Nearest Neighbor Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using KNN (K=3) are presented in this section. Table 6.4 shows the

AUC values of all the seven models implemented using KNN classification techniques.

This table shows that in 33.3% of cases GR gives better AUC values, in 20 % cases IG,

RF and CS gives better AUC values, in 6.7% cases CR and OR gives better AUC values,

and in 0% cases SU gives better AUC values.

If we statistically analyze the results of table VI using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 2.0208 and the p-value is 0.9178. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using KNN (K=3).

29

Table 6.4: AUC values using KNN

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.733 0.733 0.681 0.702 0.737 0.729 0.753

ANT 1.7 0.714 0.728 0.629 0.701 0.728 0.718 0.758

CAMEL 1.4 0.651 0.611 0.58 0.606 0.611 0.632 0.611

CAMEL 1.6 0.673 0.635 0.592 0.647 0.637 0.627 0.638

IVY 1.4 0.648 0.648 0.678 0.68 0.648 0.667 0.626

IVY 2.0 0.706 0.732 0.728 0.728 0.706 0.71 0.719

LUCENE 2.4 0.709 0.704 0.649 0.654 0.699 0.659 0.704

POI 2.5 0.834 0.854 0.863 0.843 0.869 0.877 0.862

POI 3.0 0.836 0.847 0.83 0.844 0.843 0.818 0.825

SYNAPSE 1.2 0.727 0.727 0.674 0.721 0.727 0.705 0.74

TOMCAT 6.0 0.732 0.709 0.688 0.61 0.709 0.709 0.716

VELOCITY 1.6 0.657 0.718 0.719 0.684 0.687 0.718 0.718

XALAN 2.4 0.722 0.688 0.679 0.687 0.688 0.61 0.668

XALAN 2.5 0.631 0.629 0.688 0.667 0.631 0.68 0.629

XALAN 2.6 0.765 0.777 0.778 0.773 0.772 0.772 0.777

Random Forest Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Random Forest are presented in this section. Table 6.5 shows the

AUC values of all the seven models implemented using Random Forest classification

techniques. This table shows that in 40% of cases GR gives better AUC values, in 33.3%

cases, IG gives better AUC values, in 26.7% cases, SU gives better AUC values, in 20%

cases, RF and CS gives better AUC values, in 13.3% cases OR gives better AUC values,

and in 6.7% cases CR gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 1.8699 and the p-value is 0.9313. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Random Forest.

30

Table 6.5: AUC values using RFo

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.797 0.797 0.797 0.797 0.797 0.811 0.797

ANT 1.7 0.826 0.826 0.74 0.813 0.826 0.807 0.808

CAMEL 1.4 0.67 0.672 0.623 0.595 0.672 0.658 0.672

CAMEL 1.6 0.659 0.699 0.647 0.628 0.698 0.64 0.682

IVY 1.4 0.72 0.72 0.604 0.691 0.72 0.667 0.72

IVY 2.0 0.803 0.781 0.762 0.781 0.803 0.801 0.801

LUCENE 2.4 0.763 0.757 0.72 0.728 0.751 0.746 0.757

POI 2.5 0.877 0.878 0.893 0.857 0.89 0.874 0.864

POI 3.0 0.863 0.87 0.851 0.878 0.869 0.835 0.868

SYNAPSE 1.2 0.755 0.755 0.761 0.793 0.755 0.786 0.786

TOMCAT 6.0 0.799 0.797 0.708 0.753 0.797 0.797 0.797

VELOCITY 1.6 0.757 0.746 0.769 0.743 0.756 0.746 0.746

XALAN 2.4 0.777 0.748 0.753 0.719 0.748 0.668 0.759

XALAN 2.5 0.611 0.681 0.731 0.716 0.683 0.707 0.681

XALAN 2.6 0.794 0.812 0.811 0.796 0.797 0.792 0.812

Decision Tree Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Decision Tree are presented in this section. Table 6.6 shows the

AUC values of all the seven models implemented using Decision Tree classification

techniques. This table shows that in 26.7% of cases RF gives better AUC values, in 20%

cases, IG, OR, CR and CS gives better AUC values, in 13.3% cases, SU gives better AUC

values, and in 6.7% cases GR gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 0.8131 and the p-value is 0.9917. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Decision Tree.

31

Table 6.6: AUC values using DT

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.764 0.764 0.714 0.764 0.764 0.782 0.764

ANT 1.7 0.745 0.734 0.723 0.753 0.734 0.737 0.744

CAMEL 1.4 0.64 0.642 0.593 0.582 0.642 0.611 0.642

CAMEL 1.6 0.612 0.615 0.575 0.586 0.598 0.595 0.637

IVY 1.4 0.436 0.436 0.439 0.45 0.436 0.433 0.436

IVY 2.0 0.67 0.629 0.689 0.588 0.67 0.617 0.617

LUCENE 2.4 0.676 0.676 0.671 0.648 0.644 0.69 0.676

POI 2.5 0.838 0.825 0.861 0.809 0.841 0.823 0.835

POI 3.0 0.812 0.837 0.797 0.804 0.712 0.808 0.827

SYNAPSE 1.2 0.674 0.674 0.672 0.746 0.674 0.732 0.732

TOMCAT 6.0 0.715 0.734 0.595 0.73 0.734 0.734 0.734

VELOCITY 1.6 0.717 0.648 0.728 0.687 0.681 0.648 0.648

XALAN 2.4 0.731 0.706 0.599 0.655 0.706 0.634 0.712

XALAN 2.5 0.644 0.631 0.698 0.684 0.644 0.662 0.631

XALAN 2.6 0.787 0.752 0.76 0.777 0.767 0.767 0.752

MultiLayer Perceptron Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using MultiLayer Perceptron are presented in this section. Table 6.7

shows the AUC values of all the seven models implemented using MultiLayer Perceptron

classification techniques. This table shows that in 26.7% of cases RF and OR gives better

AUC values, in 20% cases, GR gives better AUC values, in 13.3% cases, CS gives better

AUC values, in 6.7% cases, IG and CR gives better AUC values, and in 0% cases SU

gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 0.9278 and the p-value is 0.9882. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using MultiLayer

Perceptron.

32

Table 6.7: AUC values using MLP

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.809 0.809 0.766 0.821 0.809 0.784 0.809

ANT 1.7 0.805 0.802 0.737 0.807 0.802 0.806 0.814

CAMEL 1.4 0.705 0.696 0.625 0.609 0.696 0.683 0.696

CAMEL 1.6 0.633 0.623 0.634 0.639 0.607 0.621 0.631

IVY 1.4 0.626 0.626 0.671 0.532 0.626 0.733 0.626

IVY 2.0 0.769 0.773 0.752 0.771 0.769 0.701 0.764

LUCENE 2.4 0.716 0.724 0.753 0.718 0.739 0.723 0.724

POI 2.5 0.818 0.835 0.845 0.825 0.804 0.815 0.843

POI 3.0 0.808 0.801 0.782 0.811 0.802 0.784 0.817

SYNAPSE 1.2 0.729 0.729 0.757 0.761 0.729 0.718 0.718

TOMCAT 6.0 0.787 0.791 0.786 0.796 0.791 0.791 0.791

VELOCITY 1.6 0.758 0.754 0.775 0.734 0.75 0.754 0.754

XALAN 2.4 0.789 0.782 0.702 0.68 0.782 0.775 0.785

XALAN 2.5 0.615 0.6 0.678 0.667 0.615 0.589 0.6

XALAN 2.6 0.807 0.795 0.796 0.782 0.804 0.801 0.795

Voting Ensemble Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Voting Ensemble are presented in this section. Table 6.8 shows

the AUC values of all the seven models implemented using Voting Ensemble

classification techniques. This table shows that in 33.3% of cases CR gives better AUC

values, in 26.7% cases, GR gives better AUC values, in 20% cases, CS and IG gives better

AUC values, and in 13.3% cases RF, OR and SU gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 1.8283 and the p-value is 0.9348. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Voting Ensemble.

33

Table 6.8: AUC values using VE

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.818 0.818 0.81 0.814 0.818 0.835 0.818

ANT 1.7 0.833 0.832 0.779 0.822 0.832 0.822 0.82

CAMEL 1.4 0.707 0.688 0.659 0.646 0.688 0.688 0.688

CAMEL 1.6 0.701 0.708 0.658 0.677 0.695 0.673 0.723

IVY 1.4 0.67 0.67 0.589 0.643 0.67 0.725 0.67

IVY 2.0 0.806 0.805 0.771 0.8 0.806 0.81 0.808

LUCENE 2.4 0.757 0.758 0.746 0.738 0.756 0.751 0.758

POI 2.5 0.697 0.697 0.689 0.715 0.705 0.707 0.696

POI 3.0 0.851 0.863 0.847 0.861 0.862 0.852 0.853

SYNAPSE 1.2 0.782 0.782 0.766 0.814 0.782 0.798 0.798

TOMCAT 6.0 0.815 0.815 0.767 0.785 0.815 0.815 0.815

VELOCITY 1.6 0.765 0.767 0.796 0.756 0.766 0.767 0.767

XALAN 2.4 0.804 0.774 0.753 0.729 0.774 0.786 0.785

XALAN 2.5 0.685 0.68 0.733 0.72 0.685 0.714 0.68

XALAN 2.6 0.819 0.814 0.816 0.815 0.819 0.815 0.814

Stacking Ensemble Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Stacking Ensemble are presented in this section. Table 6.9 shows

the AUC values of all the seven models implemented using Stacking Ensemble

classification techniques. This table shows that in 33.3% of cases SU gives better AUC

values, in 26.7% cases, IG gives better AUC values, in 20% cases, CR and CS gives better

AUC values, and in 13.3% cases GR, RF and OR gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level, then results show that the calculated H-value is 1.5887 and the p-value is 0.9534.

χ2 value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using Stacking

Ensemble.

34

Table 6.9: AUC values using SE

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.813 0.813 0.786 0.798 0.813 0.825 0.813

ANT 1.7 0.825 0.828 0.771 0.812 0.828 0.813 0.826

CAMEL 1.4 0.694 0.675 0.655 0.622 0.675 0.673 0.675

CAMEL 1.6 0.673 0.687 0.659 0.657 0.686 0.637 0.676

IVY 1.4 0.53 0.53 0.533 0.504 0.53 0.621 0.53

IVY 2.0 0.762 0.754 0.728 0.723 0.762 0.741 0.766

LUCENE 2.4 0.758 0.763 0.741 0.738 0.763 0.745 0.763

POI 2.5 0.876 0.879 0.885 0.859 0.892 0.877 0.87

POI 3.0 0.855 0.86 0.844 0.868 0.864 0.839 0.856

SYNAPSE 1.2 0.773 0.773 0.755 0.806 0.773 0.786 0.786

TOMCAT 6.0 0.753 0.797 0.658 0.75 0.797 0.797 0.797

VELOCITY 1.6 0.751 0.728 0.777 0.741 0.748 0.728 0.728

XALAN 2.4 0.78 0.766 0.761 0.698 0.766 0.763 0.771

XALAN 2.5 0.677 0.675 0.729 0.712 0.677 0.714 0.675

XALAN 2.6 0.815 0.813 0.815 0.81 0.82 0.808 0.813

Bagging Ensemble Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Bagging Ensemble are presented in this section. Table 6.10

shows the AUC values of all the seven models implemented using Bagging Ensemble

classification techniques. This table shows that in 26.7% of cases IG, SU and CR gives

better AUC values, in 20% cases, CS gives better AUC values, in 13.3% cases, GR and

OR gives better AUC values, and in 6.7% cases RF gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 2.0695 and the p-value is 0.9132. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Bagging Ensemble.

35

Table 6.10: AUC values using BE

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.823 0.823 0.812 0.82 0.823 0.828 0.823

ANT 1.7 0.832 0.834 0.776 0.826 0.834 0.828 0.831

CAMEL 1.4 0.713 0.696 0.668 0.647 0.696 0.686 0.696

CAMEL 1.6 0.701 0.716 0.667 0.675 0.708 0.684 0.721

IVY 1.4 0.663 0.663 0.628 0.671 0.663 0.716 0.663

IVY 2.0 0.808 0.806 0.775 0.816 0.808 0.82 0.816

LUCENE 2.4 0.763 0.772 0.75 0.753 0.768 0.759 0.772

POI 2.5 0.87 0.875 0.886 0.87 0.887 0.87 0.875

POI 3.0 0.848 0.869 0.847 0.858 0.868 0.851 0.853

SYNAPSE 1.2 0.787 0.787 0.767 0.814 0.787 0.797 0.797

TOMCAT 6.0 0.827 0.828 0.768 0.789 0.828 0.828 0.828

VELOCITY 1.6 0.758 0.763 0.786 0.753 0.76 0.763 0.763

XALAN 2.4 0.803 0.785 0.753 0.753 0.785 0.786 0.784

XALAN 2.5 0.69 0.691 0.741 0.746 0.724 0.723 0.722

XALAN 2.6 0.816 0.817 0.816 0.817 0.822 0.818 0.818

Boosting Ensemble Analysis:

The results of analyzing all the seven models to check which models give the best result

for bug prediction using Boosting Ensemble are presented in this section. Table 6.11

shows the AUC values of all the seven models implemented using Boosting Ensemble

classification techniques. This table shows that in 33.3% of cases SU gives better AUC

values, in 26.7% cases, GR gives better AUC values, in 20% cases, RF gives better AUC

values, in 13.3% cases, CR and CS gives better AUC values, and in 6.7% cases IG and

OR gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 0.8456 and the p-value is 0.9908. χ2

value at 0.05 and k=6 is 12.5916 which is greater than the calculated H-value, so there is

no significant difference between all the models implemented using Boosting Ensemble.

36

Table 6.11: AUC values using BoE

Project name/

Feature Selection

algorithms

GR IG RF OR SU CR CS

ANT 1.6 0.821 0.821 0.791 0.809 0.821 0.829 0.821

ANT 1.7 0.815 0.827 0.778 0.81 0.827 0.807 0.802

CAMEL 1.4 0.713 0.681 0.654 0.636 0.681 0.687 0.681

CAMEL 1.6 0.673 0.71 0.669 0.67 0.687 0.663 0.727

IVY 1.4 0.68 0.68 0.596 0.723 0.68 0.748 0.68

IVY 2.0 0.798 0.783 0.783 0.788 0.798 0.777 0.796

LUCENE 2.4 0.754 0.753 0.736 0.737 0.768 0.738 0.753

POI 2.5 0.857 0.865 0.892 0.864 0.883 0.875 0.867

POI 3.0 0.845 0.848 0.838 0.858 0.865 0.843 0.854

SYNAPSE 1.2 0.782 0.782 0.766 0.809 0.782 0.797 0.797

TOMCAT 6.0 0.814 0.797 0.756 0.769 0.797 0.797 0.797

VELOCITY 1.6 0.743 0.746 0.785 0.729 0.745 0.746 0.746

XALAN 2.4 0.777 0.774 0.763 0.744 0.744 0.766 0.777

XALAN 2.5 0.668 0.677 0.737 0.694 0.668 0.694 0.677

XALAN 2.6 0.801 0.808 0.809 0.799 0.811 0.803 0.808

Q What is the effect of feature selection algorithms on fault proneness models?

Previous studies have shown that the effect of feature selection algorithms on fault

proneness models is positive. The power of the models has increased, and faultier

modules, functions or classes can be accurately classified as faulty or not.

The comparison done by Zhou et al. clearly shows the increase in power of bug prediction

models with wrapper and filter methods showing better results than clustering-based

feature selection algorithms.

These models' power can be increased by 90 by eliminating redundant or less useful

features.

Q Which classifier or ensemble technique performs the best?

To compare the classifiers for Bug Prediction Performance, we analyze some models

using multiple feature selection algorithms Techniques:

Model-1: classification using Bayesian Network.

Model-2: classification using Naive Bayes.

37

Model-3: classification using Logistic Regression.

Model-4: classification using Random Forest.

Model-5: classification using K-Nearest Neighbor.

Model-6: classification using Decision Tree.

Model-7: classification using MultiLayer Perceptron.

Model-8: classification using Voting Ensemble.

Model-9: classification using Stacking Ensemble.

Model-10: classification using Bagging Ensemble.

Model-11: classification using Boosting Ensemble.

In this section we analyze the results of all the eleven models using different feature

selection algorithms on the basis of AUC values.

The performance of different classifiers with different feature selection algorithms are

shown in the following tables:

Gain Ratio Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Gain Ratio are presented in this section. Table 6.12 shows the

AUC values of all the eleven models implemented using Gain Ratio classification

techniques. This table shows that in 46.7% of cases BE gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 16.0398 and the p-value is 0.0985.

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using Gain Ratio.

Information Gain Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Information Gain are presented in this section. Table 6.13 shows

the AUC values of all the eleven models implemented using Information Gain

classification techniques. This table shows that in 60% of cases BE gives better AUC

values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 15.9929 and the p-value is 0.09984.

38

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using Information Gain.

Relief F Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Relief F are presented in this section. Table 6.14 shows the AUC

values of all the eleven models implemented using Relief F classification techniques. This

table shows that in 33.3% of cases BE gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 15.4822 and the p-value is 0.1154.

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using Relief F.

Table 6.12: AUC values using GR

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.806 0.825 0.836 0.797 0.733 0.764 0.809 0.818 0.813 0.823 0.821

ANT 1.7 0.815 0.793 0.823 0.826 0.714 0.745 0.805 0.833 0.825 0.832 0.815

CAMEL 1.4 0.669 0.651 0.708 0.67 0.651 0.64 0.705 0.707 0.694 0.713 0.713

CAMEL 1.6 0.591 0.623 0.664 0.659 0.673 0.612 0.633 0.701 0.673 0.701 0.673

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68

IVY 2.0 0.764 0.788 0.783 0.803 0.706 0.67 0.769 0.806 0.762 0.808 0.798

LUCENE 2.4 0.679 0.699 0.738 0.763 0.709 0.676 0.716 0.757 0.758 0.763 0.754

POI 2.5 0.854 0.726 0.706 0.877 0.834 0.838 0.818 0.697 0.876 0.87 0.857

POI 3.0 0.836 0.666 0.803 0.863 0.836 0.812 0.808 0.851 0.855 0.848 0.845

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782

TOMCAT 6.0 0.783 0.794 0.806 0.799 0.732 0.715 0.787 0.815 0.753 0.827 0.814

VELOCITY 1.6 0.714 0.764 0.78 0.757 0.657 0.717 0.758 0.765 0.751 0.758 0.743

XALAN 2.4 0.765 0.745 0.772 0.777 0.722 0.731 0.789 0.804 0.78 0.803 0.777

XALAN 2.5 0.64 0.596 0.601 0.611 0.631 0.644 0.615 0.685 0.677 0.69 0.668

XALAN 2.6 0.803 0.784 0.805 0.794 0.765 0.787 0.807 0.819 0.815 0.816 0.801

39

Table 6.13: AUC values using IG

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.806 0.825 0.836 0.797 0.733 0.764 0.809 0.818 0.813 0.823 0.821

ANT 1.7 0.807 0.794 0.821 0.826 0.728 0.734 0.802 0.832 0.828 0.834 0.827

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681

CAMEL 1.6 0.653 0.624 0.649 0.699 0.635 0.615 0.623 0.708 0.687 0.716 0.71

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68

IVY 2.0 0.774 0.793 0.799 0.781 0.732 0.629 0.773 0.805 0.754 0.806 0.783

LUCENE 2.4 0.684 0.691 0.757 0.757 0.704 0.676 0.724 0.758 0.763 0.772 0.753

POI 2.5 0.851 0.819 0.797 0.878 0.854 0.825 0.835 0.697 0.879 0.875 0.865

POI 3.0 0.836 0.805 0.814 0.87 0.847 0.837 0.801 0.863 0.86 0.869 0.848

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746

XALAN 2.4 0.774 0.74 0.779 0.748 0.688 0.706 0.782 0.774 0.766 0.785 0.774

XALAN 2.5 0.635 0.612 0.592 0.681 0.629 0.631 0.6 0.68 0.675 0.691 0.677

XALAN 2.6 0.8 0.797 0.795 0.812 0.777 0.752 0.795 0.814 0.813 0.817 0.808

Table 6.14: AUC values using RF

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.777 0.803 0.789 0.797 0.681 0.714 0.766 0.81 0.786 0.812 0.791

ANT 1.7 0.873 0.76 0.754 0.74 0.629 0.723 0.737 0.779 0.771 0.776 0.778

CAMEL 1.4 0.596 0.648 0.665 0.623 0.58 0.593 0.625 0.659 0.655 0.668 0.654

CAMEL 1.6 0.49 0.619 0.628 0.647 0.592 0.575 0.634 0.658 0.659 0.667 0.669

IVY 1.4 0.412 0.6 0.654 0.604 0.678 0.439 0.671 0.589 0.533 0.628 0.596

IVY 2.0 0.638 0.74 0.75 0.762 0.728 0.689 0.752 0.771 0.728 0.775 0.783

LUCENE 2.4 0.682 0.724 0.755 0.72 0.649 0.671 0.753 0.746 0.741 0.75 0.736

POI 2.5 0.878 0.825 0.786 0.893 0.863 0.861 0.845 0.689 0.885 0.886 0.892

POI 3.0 0.833 0.813 0.805 0.851 0.83 0.797 0.782 0.847 0.844 0.847 0.838

SYNAPSE 1.2 0.612 0.705 0.716 0.761 0.674 0.672 0.757 0.766 0.755 0.767 0.766

TOMCAT 6.0 0.706 0.755 0.772 0.708 0.688 0.595 0.786 0.767 0.658 0.768 0.756

VELOCITY 1.6 0.697 0.765 0.801 0.769 0.719 0.728 0.775 0.796 0.777 0.786 0.785

XALAN 2.4 0.699 0.723 0.729 0.753 0.679 0.599 0.702 0.753 0.761 0.753 0.763

XALAN 2.5 0.64 0.635 0.624 0.731 0.688 0.698 0.678 0.733 0.729 0.741 0.737

XALAN 2.6 0.785 0.795 0.79 0.811 0.778 0.76 0.796 0.816 0.815 0.816 0.809

40

One R Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using One R are presented in this section. Table 6.15 shows the AUC

values of all the eleven models implemented using One R classification techniques. This

table shows that in 53.3% of cases BE gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 13.7615 and the p-value is 0.1842.

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using One R.

Table 6.15: AUC values using OR

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.794 0.816 0.837 0.797 0.702 0.764 0.821 0.814 0.798 0.82 0.809

ANT 1.7 0.815 0.824 0.828 0.813 0.701 0.753 0.807 0.822 0.812 0.826 0.81

CAMEL 1.4 0.586 0.605 0.632 0.595 0.606 0.582 0.609 0.646 0.622 0.647 0.636

CAMEL 1.6 0.509 0.575 0.628 0.628 0.647 0.586 0.639 0.677 0.657 0.675 0.67

IVY 1.4 0.423 0.605 0.484 0.691 0.68 0.45 0.532 0.643 0.504 0.671 0.723

IVY 2.0 0.775 0.754 0.791 0.781 0.728 0.588 0.771 0.8 0.723 0.816 0.788

LUCENE 2.4 0.689 0.727 0.747 0.728 0.654 0.648 0.718 0.738 0.738 0.753 0.737

POI 2.5 0.853 0.806 0.785 0.857 0.843 0.809 0.825 0.715 0.859 0.87 0.864

POI 3.0 0.861 0.765 0.789 0.878 0.844 0.804 0.811 0.861 0.868 0.858 0.858

SYNAPSE 1.2 0.757 0.768 0.789 0.793 0.721 0.746 0.761 0.814 0.806 0.814 0.809

TOMCAT 6.0 0.739 0.748 0.799 0.753 0.61 0.73 0.796 0.785 0.75 0.789 0.769

VELOCITY 1.6 0.71 0.759 0.757 0.743 0.684 0.687 0.734 0.756 0.741 0.753 0.729

XALAN 2.4 0.641 0.651 0.611 0.719 0.687 0.655 0.68 0.729 0.698 0.753 0.744

XALAN 2.5 0.645 0.624 0.61 0.716 0.667 0.684 0.667 0.72 0.712 0.746 0.694

XALAN 2.6 0.792 0.774 0.779 0.796 0.773 0.777 0.782 0.815 0.81 0.817 0.799

Symmetrical Uncertainty Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Symmetrical Uncertainty are presented in this section. Table 6.16

shows the AUC values of all the eleven models implemented using Symmetrical

Uncertainty classification techniques. This table shows that in 60% of cases BE gives

better AUC values.

41

If we statistically analyze the results of table 6.16 using Kruskal Wallis at 0.05

significance level then results show that the calculated H-value is 19.0802 and the p-value

is 0.03926. χ2 value at 0.05 and k=10 is 18.307 which is less than the calculated H-value,

so there is a significant difference between all the models implemented using

Symmetrical Uncertainty. As the results differ significantly, we will apply Nemenyi test

to check the pairwise comparison of the techniques. The results show that there exist

significant difference between BN and BE, NB and BE, LOG and DT, RFo and DT, KNN

and VE, KNN and BE, KNN and BoE, DT and VE, DT and SE, DT and BE, DT and BoE,

and MLP and BE.

Table 6.16: AUC values using SU

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.806 0.825 0.836 0.797 0.737 0.764 0.809 0.818 0.813 0.823 0.821

ANT 1.7 0.807 0.794 0.821 0.826 0.728 0.734 0.802 0.832 0.828 0.834 0.827

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681

CAMEL 1.6 0.652 0.609 0.667 0.698 0.637 0.598 0.607 0.695 0.686 0.708 0.687

IVY 1.4 0.423 0.569 0.648 0.72 0.648 0.436 0.626 0.67 0.53 0.663 0.68

IVY 2.0 0.764 0.788 0.783 0.803 0.706 0.67 0.769 0.806 0.762 0.808 0.798

LUCENE 2.4 0.691 0.682 0.754 0.751 0.699 0.644 0.739 0.756 0.763 0.768 0.768

POI 2.5 0.867 0.815 0.805 0.89 0.869 0.841 0.804 0.705 0.892 0.887 0.883

POI 3.0 0.861 0.805 0.81 0.869 0.843 0.712 0.802 0.862 0.864 0.868 0.865

SYNAPSE 1.2 0.762 0.735 0.748 0.755 0.727 0.674 0.729 0.782 0.773 0.787 0.782

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797

VELOCITY 1.6 0.728 0.763 0.764 0.756 0.687 0.681 0.75 0.766 0.748 0.76 0.745

XALAN 2.4 0.774 0.74 0.779 0.748 0.688 0.706 0.782 0.774 0.766 0.785 0.744

XALAN 2.5 0.64 0.596 0.601 0.683 0.631 0.644 0.615 0.685 0.677 0.724 0.668

XALAN 2.6 0.808 0.793 0.805 0.797 0.772 0.767 0.804 0.819 0.82 0.822 0.811

Correlation Attribute Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Correlation Attribute are presented in this section. Table 6.17

shows the AUC values of all the eleven models implemented using Correlation Attribute

classification techniques. This table shows that in 53.3% of cases BE gives better AUC

values.

42

As the results differ significantly, we will apply Nemenyi test to check the pairwise

comparison of the models. The results show that there exists significant difference

between BN and BE, LOG and DT, KNN and VE, KNN and BE, KNN and BoE, DT and

VE, DT and BE, DT and BoE, MLP and VE, and MLP and BE

Table 6.17: AUC values using CR

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.825 0.823 0.835 0.811 0.729 0.782 0.784 0.835 0.825 0.828 0.829

ANT 1.7 0.798 0.825 0.826 0.807 0.718 0.737 0.806 0.822 0.813 0.828 0.807

CAMEL 1.4 0.659 0.689 0.684 0.658 0.632 0.611 0.683 0.688 0.673 0.686 0.687

CAMEL 1.6 0.639 0.58 0.656 0.64 0.627 0.595 0.621 0.673 0.637 0.684 0.663

IVY 1.4 0.46 0.693 0.772 0.667 0.667 0.433 0.733 0.725 0.621 0.716 0.748

IVY 2.0 0.772 0.8 0.788 0.801 0.71 0.617 0.701 0.81 0.741 0.82 0.777

LUCENE 2.4 0.679 0.731 0.752 0.746 0.659 0.69 0.723 0.751 0.745 0.759 0.738

POI 2.5 0.826 0.79 0.814 0.874 0.877 0.823 0.815 0.707 0.877 0.87 0.875

POI 3.0 0.801 0.8 0.818 0.835 0.818 0.808 0.784 0.852 0.839 0.851 0.843

SYNAPSE 1.2 0.728 0.73 0.744 0.786 0.705 0.732 0.718 0.798 0.786 0.797 0.797

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.709 0.734 0.791 0.815 0.797 0.828 0.797

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746

XALAN 2.4 0.659 0.686 0.685 0.668 0.61 0.634 0.775 0.786 0.763 0.786 0.766

XALAN 2.5 0.648 0.611 0.625 0.707 0.68 0.662 0.589 0.714 0.714 0.723 0.694

XALAN 2.6 0.662 0.79 0.799 0.792 0.772 0.767 0.801 0.815 0.808 0.818 0.803

Chi Square Analysis:

The results of analyzing all the eleven models to check which models give the best result

for bug prediction using Chi Square are presented in this section. Table 6.18 shows the

AUC values of all the eleven models implemented using Chi Square classification

techniques. This table shows that in 46.7% of cases BE gives better AUC values.

If we statistically analyze the results of table VII using Kruskal Wallis at 0.05 significance

level then results show that the calculated H-value is 16.3288 and the p-value is 0.0906.

χ2 value at 0.05 and k=10 is 18.307 which is greater than the calculated H-value, so there

is no significant difference between all the models implemented using Chi Square.

43

Table 6.18: AUC values using CS

Project

name/

Classifier
BN NB LOG RFo KNN DT MLP VE SE BE BoE

ANT 1.6 0.806 0.825 0.836 0.797 0.753 0.764 0.809 0.818 0.813 0.823 0.821

ANT 1.7 0.806 0.815 0.83 0.808 0.758 0.744 0.814 0.82 0.826 0.831 0.802

CAMEL 1.4 0.651 0.634 0.704 0.672 0.611 0.642 0.696 0.688 0.675 0.696 0.681

CAMEL 1.6 0.679 0.644 0.67 0.682 0.638 0.637 0.631 0.723 0.676 0.721 0.727

IVY 1.4 0.423 0.569 0.648 0.72 0.626 0.436 0.626 0.67 0.53 0.663 0.68

IVY 2.0 0.773 0.805 0.788 0.801 0.719 0.617 0.764 0.808 0.766 0.816 0.796

LUCENE 2.4 0.648 0.691 0.757 0.757 0.704 0.676 0.724 0.758 0.763 0.772 0.753

POI 2.5 0.864 0.817 0.807 0.864 0.862 0.835 0.843 0.696 0.87 0.875 0.867

POI 3.0 0.844 0.757 0.777 0.868 0.825 0.827 0.817 0.853 0.856 0.853 0.854

SYNAPSE 1.2 0.728 0.73 0.744 0.786 0.74 0.732 0.718 0.798 0.786 0.797 0.797

TOMCAT 6.0 0.79 0.803 0.812 0.797 0.716 0.734 0.791 0.815 0.797 0.828 0.797

VELOCITY 1.6 0.731 0.766 0.769 0.746 0.718 0.648 0.754 0.767 0.728 0.763 0.746

XALAN 2.4 0.78 0.744 0.787 0.759 0.668 0.712 0.785 0.785 0.771 0.784 0.777

XALAN 2.5 0.635 0.612 0.592 0.681 0.629 0.631 0.6 0.68 0.675 0.722 0.677

XALAN 2.6 0.8 0.797 0.795 0.812 0.777 0.752 0.795 0.814 0.813 0.818 0.808

44

CHAPTER 7

DISCUSSION ON RESULTS

In this section, we analyse the results using box plots. We analysed different types of

feature selection to check the Bug prediction power of the model. When using the

Bayesian network, Naive Bayes, Voting Ensemble and Bagging Ensemble, Correlation

Attribute Evaluation gives better results than the rest of the feature selection algorithms.

When the Kruskal Wallis Test was applied, the result concluded that there is no significant

difference between the feature selection algorithms using any classifiers.

Naive Bayes analysis:

Fig 7.1 represents the box plot using NB. We can see that CR Attribute Evaluation

performed better than all other Attribute Evaluation algorithms.

Logistic Regression analysis:

Fig 7.2 represents the box plot using LOG. We can see that CS Attribute Evaluation

performed better than all other Attribute Evaluation algorithms.

Bayesian Network analysis:

Fig 7.3 represents the box plot using BN. We can see that CR and SU Attribute Evaluation

performed better than all other Attribute Evaluation algorithms and there is an outlier in

2 models, 1 outlier in GR model and 1 outlier in IG model only.

Fig 7.1. Box plot of NB

45

Fig 7.2. Box plot of LOG

Fig 7.3. Box plot of BN

K Nearest Neighbor analysis:

Fig 7.4 represents the box plot using KNN. We can see that GR Attribute Evaluation

performed better than all other Attribute Evaluation algorithms and there is an outlier in

3 models, 1 outlier in RF model, 1 outlier in OR and 1 outlier in CR model only.

46

Fig 7.4. Box plot of KNN

Random Forest analysis:

Fig 7.5 represents the box plot using RFo. We can see that GR Attribute Evaluation

performed better than all other Attribute Evaluation algorithms.

Fig 7.5. Box plot of RFo

Decision Tree analysis:

Fig 7.6 represents the box plot using DT. We can see that RF Attribute Evaluation

performed better than all other Attribute Evaluation algorithms and there is an outlier in

4 models, 1 outlier in GR model, 1 outlier in IG, 1 outlier in SU and 1 outlier in CS model

only.

MultiLayer Perceptron analysis:

Fig 7.7 represents the box plot using MLP. We can see that RF and OR Attribute

Evaluation performed better than all other Attribute Evaluation algorithms.

47

Fig 7.6. Box plot of DT

Fig 7.7. Box plot of MLP

Fig 7.8. Box plot of VE

48

Voting Ensemble analysis:

Fig 7.8 represents the box plot using VE. We can see that CR Attribute Evaluation

performed better than all other Attribute Evaluation algorithms.

Stacking Ensemble analysis:

Fig 7.9 represents the box plot using SE. We can see that SU Attribute Evaluation

performed better than all other Attribute Evaluation algorithms and there is an outlier in

1 model, 1 outlier in OR model only.

Fig 7.9. Box plot of SE

Bagging Ensemble analysis:

Fig 7.10 represents the box plot using BE. We can see that IG, SU and CR Attribute

Evaluation performed better than all other Attribute Evaluation algorithms and there is an

outlier in 1 model, 1 outlier in RF model only.

Boosting Ensemble analysis:

Fig 7.11 represents the box plot using BoE. We can see that SU Attribute Evaluation

performed better than all other Attribute Evaluation algorithms and there is an outlier in

1 model, 2 outliers in RF model only.

49

Fig 7.10. Box plot of BE

Fig 7.11. Box plot of BoE

We also analysed different types of classifiers and ensemble techniques to check the Bug

prediction power of the model. Bagging Ensemble gives better results with all seven

feature selection algorithms as compared to rest of the classifiers and ensemble

techniques. When the Kruskal Wallis Test was applied, the result concluded that there is

a significant difference between classifiers using SU and CR feature selection algorithm.

50

Gain Ratio Analysis:

Fig 7.12 represents the box plot using GR. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in

BN model and 1 outlier in DT model only.

Fig 7.12. Box plot of GR

Information Gain Analysis:

Fig 7.13 represents the box plot using IG. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in

BN model and 1 outlier in DT model only.

Fig 7.13. Box plot of IG

51

Relief F Analysis:

Fig 7.14 represents the box plot using RF. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 2 models, 1 outlier in

the BE model and 1 outlier in the BoE model only.

Fig 7.14. Box plot of RF

One R Analysis:

Fig 7.15 represents the box plot using OR. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in

SE model only.

Fig 7.15. Box plot of OR

52

Symmetrical Uncertainty Analysis:

Fig 7.16 represents the box plot using SU. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in

DT model only.

Fig 7.16. Box plot of SU

Correlation Attribute Analysis:

Fig 7.17 represents the box plot using CR. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in

KNN model only.

Fig 7.17. Box plot of CR

53

Chi Square Analysis:

Fig 7.18 represents the box plot using CS. We can see that BE performed better than all

other classifiers and ensemble techniques and there is an outlier in 1 model, 1 outlier in

DT model only.

Fig 7.18. Box plot of CS

54

CHAPTER 8

CONCLUSION AND FUTURE SCOPE

Many models exist and give good results for Software Bug Prediction. Here we are

analyzing the effect of feature selection algorithms on bug proneness using multiple

classification techniques. The following conclusion has been made:

● The performance of Software Bug Prediction models is increased by 90% using

Feature Selection algorithms.

● In this study, we concluded that Correlation Attribute Evaluation and Symmetric

Uncertainty Attribute Evaluation are better predictors as compared to other filter

feature selection algorithms.

● Chi Square, One R and Information Gain Attribute Evaluation performs the worst

among the filter feature selection algorithms.

● We can also conclude that Bagging Ensemble Techniques gives the best result

with every filter feature selection algorithm used individually.

● While using SU and CR feature selection algorithms, there exist significant

difference between various techniques.

The future scope of this project is as follows:

● This study can further be improved by using more classifiers and feature selection

algorithms that may or may not be of filter type.

● New Ensemble techniques can also be used to check its effect on bug proneness.

● Also ensemble of feature selection techniques can be used for comparison.

55

REFERENCES

[1] A. Okutan and O. T. Y. Software defect prediction using Bayesian networks.

Empirical Software Engineering, 19(1):154–181, 2014.

[2] 777-> A. V. Kulkarni and L. N. Kanal, "An optimization approach to hierarchical

classifier design," Proc. 3rd Int. Joint Conf. on Pattern Recognition, San Diego, CA,

1976.

[3] A. (2020, December 02). Feature Selection Techniques in Machine Learning.

Retrieved September 09, 2020, from

https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-

machine-learning/

[4] Basili, V., Briand, L. and Melo, W. (1996) ‘A validation of object-oriented design

metrics as quality indicators’, IEEE Transactions on Software Engineering, Vol. 22,

No.10, pp.751–761.

[5] Brownlee, J. (2020, August 20). How to Choose a Feature Selection Method For

Machine Learning. Machine Learning Mastery.

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-

data/

[6] Brownlee, J. (2020a, April 10). Stacking Ensemble Machine Learning With Python.

Machine Learning Mastery. https://machinelearningmastery.com/stacking-ensemble-

machine-learning-with-python/

[7] Brownlee, J. (2020a, April 17). How to Develop Voting Ensembles With Python.

Machine Learning Mastery. https://machinelearningmastery.com/voting-ensembles-

with-python/#:%7E:text=A%20voting%20ensemble%20

[8] Budzik, J. (n.d.). Many Heads Are Better Than One: The Case For Ensemble

Learning. KDnuggets. Retrieved June 1, 2021, from

https://www.kdnuggets.com/2019/09/ensemble-learning.html

[9] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.

Computers & Electrical Engineering, 40(1), 16-28

[10] Chowdary, D. H. (2020, May 28). Decision Trees Explained with a Practical

Example. Towards AI — The Best of Tech, Science, and Engineering.

https://towardsai.net/p/programming/decision-trees-explained-with-a-practical-

example-fe47872d3b53

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://machinelearningmastery.com/voting-ensembles-with-python/#:%7E:text=A%20voting%20ensemble%20
https://machinelearningmastery.com/voting-ensembles-with-python/#:%7E:text=A%20voting%20ensemble%20
https://www.kdnuggets.com/2019/09/ensemble-learning.html
https://towardsai.net/p/programming/decision-trees-explained-with-a-practical-example-fe47872d3b53
https://towardsai.net/p/programming/decision-trees-explained-with-a-practical-example-fe47872d3b53

56

[11] Chugh, A. (2018, December 24). ML | Chi-square Test for feature selection.

GeeksforGeeks. https://www.geeksforgeeks.org/ml-chi-square-test-for-feature-

selection/

[12] C. Catal, U. Sevim, and B. Diri. Practical development of an eclipse-based

software fault prediction tool using Na¨ıve Bayes algorithm. Expert Systems with

Applications, 38(3):2347 – 2353, 2011.

[13] Diomidis Spinellis. Tool writing: A forgotten art? IEEE Software, 22(4):9–11,

July/August 2005. (doi:10.1109/MS.2005.111).

[14] Gajawada, S. K. (2019, October 4). Chi-Square Test for Feature Selection in

Machine learning. Medium. https://towardsdatascience.com/chi-square-test-for-

feature-selection-in-machine-learning-206b1f0b8223

[15] Ghotra, B., McIntosh, S., & Hassan, A. E. (2015, May). Revisiting the impact of

classification techniques on the performance of defect prediction models. In

Proceedings of the 37th International Conference on Software Engineering-Volume

1 (pp. 789-800). IEEE Press

[16] Hall, M.A., and Smith, L.A., “Practical feature subset selection for machine

learning”, Proceedings of the 21st Australian Computer Science Conference, 1998,

181–191.

[17] Hosmer, D. and Lemeshow, S. (1989) Applied Logistic Regression, John Wiley

& Sons.

[18] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop

on empirical methods in artificial engineering. Volume 3 (pp 41-46).

[19] Jureczko, M., & Madeyski, L. (2011c). Software product metrics used to build

defect prediction models. Report SPR 2/2014, Faculty of Computer Science and

Management, Wroclaw University of Technology.

[20] K. Dejaeger, T. Verbraken, and B. Baesens. Toward comprehensible software

fault prediction models using Bayesian network classifiers. IEEE Transactions on

Software Engineering, 39(2):237–257, 2013.

[21] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking

classification models for software defect prediction: A proposed framework and novel

findings. IEEE Transactions on Software Engineering, 34(4), 485-496.

[22] Madeyski, L. (2011). Software Defect Prediction. Retrieved November 12, 2020,

from https://madeyski.e-informatyka.pl/tools/software-defect-prediction/

https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://madeyski.e-informatyka.pl/tools/software-defect-prediction/

57

[23] Mohanty, A. (2019, May 15). Multi layer Perceptron (MLP) Models on Real

World Banking Data. Medium. https://becominghuman.ai/multi-layer-perceptron-

mlp-models-on-real-world-banking-data-f6dd3d7e998f

[24] M. W. Kurzynski, "Decision rules for a hierarchical classifier," Pattern

Recognition Lett. vol. 1, 305-310, (1983)

[25] M. W. Kurzynski, "The optimal strategy of a tree classifier," Pattern Recognition

vol. 16, 81-87 (1983).

[26] Novaković, J. (2016). Toward optimal feature selection using ranking methods

and classification algorithms. Yugoslav Journal of Operations Research, 21(1).

[27] Panichella, A., Oliveto, R., & De Lucia, A. (2014, February). Cross-project defect

prediction models: L'union fait la force. In 2014 Software Evolution Week-IEEE

Conference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE) (pp. 164-173). IEEE.

[28] 555->Petrakova, A., Affenzeller, M., & Merkurjeva, G. (2015). Heterogeneous

versus homogeneous machine learning ensembles. Information Technology and

Management Science, 18(1), 135-140.

[29] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general software defect-

proneness prediction framework. IEEE Transactions on Software Engineering,

37(3):356–370, 2011.

[30] Raschka, S. (2020). StackingClassifier - mlxtend. Mlxtend.

http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/#:%7E:text=S

tacking%20is%20an%20ensemble%20learning,models%20via%20a%20meta-

classifier.&text=The%20meta-

classifier%20can%20either,or%20probabilities%20from%20the%20ensemble

[31] R. Malhotra. Empirical Research in Software Engineering. Chapman &

Hall/CRC:978-1-4987-1972-8, 2015.

[32] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.

[33] Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data quality: Some

comments on the nasa software defect datasets. IEEE Transactions on Software

Engineering, 39 (9), 1208-1215.

https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

58

[34] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing features to improve

code change-based bug prediction. IEEE Transactions on Software Engineering,

39(4): 552-569, 2013.

[35] Tiwari, R., & Singh, M. P. (2010). Correlation-based attribute selection using

genetic algorithms. International Journal of Computer Applications, 4(8), 28-34.

[36] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[37] Wikipedia contributors. (2021, May 15). Feature (machine learning). Wikipedia.

https://en.wikipedia.org/wiki/Feature_(machine_learning)

[38] Xu, Z., Liu, J., Yang, Z., An, G., & Jia, X. (2016, October). The impact of feature

selection on defect prediction performance: An empirical comparison. In 2016 IEEE

27th International Symposium on Software Reliability Engineering (ISSRE) (pp. 309-

320). IEEE.

[39] Yiu, T. (2019, August 14). Understanding Random Forest. Retrieved September

05, 2020, from https://towardsdatascience.com/understanding-random-forest-

58381e0602d2

https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

