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Abstract

In this study, we have a designed a queue model from the observation of arrival, ser-

vices and departure of vehicles at a toll plaza. Using the system process and appropriate

algorithm, we have minimized the waiting time and by the way improve the service facil-

ity. Based on the arrival frequency of the vehicle numbers the extra service counter are

likely to be opened in the toll liners and as a consequence the customer vehicle has to

wait less time in a queue. Ultimately, the vehicle can also save fuel oil as compared to

waiting vehicle queue lines. In this process, we reformulate the standard Poisson queue

birth death theorem that relating vehicle’s arrival for services and completion of services

theorems in briefly. An application of vehicle queue in the traffic route is also illustrated

with an example.
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Chapter 1

INTRODUCTION

Queuing theory is a Branch of Mathematics and sub-part of operation research that studies

act of waiting in lines. Q.T is the mathematical study of queuing or waiting in lines with

relation to time, customer people in the service locations or item are in the information

queues. Queues forms when there are limited resources for providing the service.

Waiting lines, often known as queues, are a common occurrence in our daily lives. The

main characteristics of a queuing phenomena are that units arrive at a specific spot called

the service centre at regular or irregular intervals of time. for example Trucks arriving at

a loading station, clients entering a retail shop, people coming at a movie theatre, ships

arriving at a port, letters arriving at a typist’s desk, and so on. All of these units are

referred to as client admissions or arrivals.

What is Queuing Theory?

Queuing theory is a statistical analysis of line congestion and delays. Queuing theory

looks at the arrival mechanism, operation process, number of servers, number of device

spaces, and number of customers—which may be people, data-packet, autos, vehicle and

so on.Queuing theory, a subset of operations science, can help users make more educated

decisions on how to design reliable and cost-effective workflow systems. Providing faster

customer service, optimising traffic flow, effectively shipping goods from a warehouse, and

developing telecommunications systems, from data networks to contact centres, are all
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examples of real-world applications of queueing theory.

How Queuing Theory Works? When resources are limited, queues form. In reality,

queues make economic sense; without them, overcapacity would be costly. Queuing theory

aids in the design of balanced structures that support consumers easily and efficiently

while not being prohibitively expensive to operate. The entities queuing for associate

degree operation are attenuated by all queuing processes.

At its most fundamental level, queueing theory comprises analysing arrivals at a facility,

such as a bank or a toll plaza, and determining the facility’s service requirements, such as

bankers or customers visitors. The origins of queuing theory can be traced back to the first

millennium, when Agner Krarup, a engineer and man of science, published a study of the

Kobenhavn central. His contribution to the telephone unit theory of economic networks.

When clients arrive to the service centre in such a manner that either the customer or

the facilities must wait with duration or service time, waiting time then we have a queuing

problem.The queuing problem are minimize the delay time or waiting time during a service

process with due priority.

The reliability of a tollgate operation is determined by the length of the queue line

and the time spent on waiting line in the system.The queue is caused by a discrepancy

in vehicle clearance compare to overall toll arrival per unit of time.The waiting time is a

combination of the length of the line and the time of entry into the queue line.In a peak

hour, the length of time it takes to enter the queue grows exponentially with the function

of time.

In view of the increasing number of vehicle and to save the fuel, we have taken a

problem because of the increasing number of vehicle at toll plaza ,the passengers faces

more trouble.The length of queue line made at the toll plaza can be reduced with the help

of application of queuing theory suggested rules, the has to wait the minimum waiting time

and with this help, we can save the fuel of the vehicle.
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Chapter 2

Concept, Terminologies and

Notations used in queuing Model

2.1 Components of a Queuing-system

The basic elements of a queuing system are as follows:

1. Arrival Procedure - The sequence in which clients arrive for service is handled by

this section of the queuing system. Three factors can be used to describe an input

source.

• Size of the queue - The size of the input source is considered to be finite if the

total number of possible customers requesting service is small. On the other

hand, if the number of potential clients in need of service is great enough, the

input source is termed endless.

• Pattern of arrivals - some Customers may enter in system at predetermined

(regular or otherwise) times, or they may enter at random. Queuing problems

are classified as deterministic models when the arrival timings are known with

certainty. The arrival pattern is established by the mean arrival rate or the

inter-arrival time if the period between consecutive arrivals (inter-arrival times)
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is unknown.The probability distribution associated with this random process

characterises them. The most common stochastic queuing models assume a

Poisson distribution for arrival rates and/or an exponential distribution for inter-

arrival intervals.

• Customer behaviour - It’s also important to understand how a consumer reacts

when he or she first enters in system.Regardless of how long the queue gets, a

customer might choose to wait. (patient customers may choose not to enter the

line if it grows too lengthy for them) (impatient customer). Patient customers

are examples of machines arriving at a plant’s maintenance shop. Customers

who are impatient

2. Queue Discipline - When a wait has formed, consumers are picked for service accord-

ing to this rule. The first−come, first−served (FCFS) or first−in, first−out (FIFO)

rule is the most frequent queue discipline, in which clients are served in the order

in which they arrive.Another queue discipline is the ”last in, first out” (LIFO) rule,

which states that the system’s most recent arrival is served first. Most cargo handling

circumstances follow this discipline, with the last thing loaded being withdrawn first.

3. Service Mechanism - Service time and service facilities are two aspects of the service

mechanism. The time between the start of service and the end of service is referred to

as service time. If there are an unlimited number of servers, there will be no waiting

because all customers will be served instantly upon arrival. Customers are served in

a set order if the number of servers is limited.

4. Capacity of the system - Customer generation might come from a finite or infinite

source. The number of consumers who can be served is limited by a finite resource.

The maximum queue size, in other words, has a limit. A queue with forced baulking,

in which a consumer is forced to baulk if he arrives at a time when the line size has

reached its maximum capacity, can also be considered.
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2.2 Practical concept

The two important parts of queuing theory upon which the whole concept is based are

• Customer

• Service provider

2.2.1 Arrival time of a customer

Average-rate / Expected-rate or Mean arrival rate (λ) - It is defined as the rate at which

the customers are coming to get the services.

Average arrival-rate - number of customer coming to get services with in given period of

time.

To know the average arrival rate we must know the arrival rate or interval time between

the arrival of two customers.

2.2.2 Serving to the customers

Average-rate / Expected-rate or Mean service-rate (µ) - It is defined as the Rate at which

the customers are served by the service facility(provider).

Average service-rate - number of customer that are served with in given period.

2.2.3 Utilization rate (ρ)

= λ
µ

= Average arrival rate / Average service rate

utilization means how much of the capacity is utilized.

2.3 Possibilities of the queue are -

• If λ > µ, Then
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1. Infinite queue.

2. Busy service provider.

3. Failure of service system.

• If λ = µ, Then

1. Customers comes and served.

2. No queue will be there.

3. Service will be busy.

• If λ < µ, Then

1. No queue will be there.

2. There is idle time for server.

2.3.1 Formula Derived for probability of exactly ′n′ customers in

the system

1. If there are no customer (n = 0), then service provider are free and equal to idle rate

p(0) = 1 - R = 1− λ
µ

where R is the utilization rate

2. For customer is 1 (n = 0) then its probability

p(1) = R.p(o) = R(1 - R) = λ
µ
(1− λ

µ
)

3. For customer is 2 (n = 2), then its probability

p(2) = R.p(1) = R.R.p(0) = λ
µ
λ
µ
(1− λ

µ
)

4. For n customers then its probability

p(n) = Rn. p(0) = (λ
µ
)n(1− λ

µ
)
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• The average number of customer in the given system (Ls)

Ls = utilization rate / idle rate

=
λ
µ

(1−λ
µ

)
= λ

µ−λ

• The average number of customer in the given queue Lq = Ls - utilization rate = λ
µ−λ

- λ
µ

= λ2

µ(µ−λ)

• The average waiting time for a customer in given queue -

wq = Avage number of customer in the given queue / Arrival rate

Lq
λ

= λ
µ(µ−λ)

• The average waiting time for a customer in given system ws = Average number of

customer in the system / Average rate

ws = Ls
λ

= 1
µ−λ

2.3.2 Limitation of Queuing Model

• Customers usually have a certain amount of time to wait.

• It’s possible that the arrival rate is state-dependent. When a customer arrives and

sees a long line, he or she may decide not to join it and leave without receiving

service.

• It’s possible that the arriving procedure won’t be static. There may be peak and null

periods when the λ is higher or lower than the average arrival-rate.

• Customers may not be limitless in number, and queuing(discipline) may not be

strictly first come, first served.

• Services may not be provided on a constant basis. It’s possible that the service

facility will break down, and that the service will be delivered in batches rather than

individually.
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• It’s possible that the queuing mechanism hasn’t reached a stable state. Instead, it

could be in a transitory state. It’s typical when a line is just getting started and the

time remaining isn’t long enough.
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Chapter 3

Design of a queuing model from the

case study

3.1 Problem Description

In this report, we discuss a real daily life problem of toll plaza, we take data from National

highways Authority of india (NHAI) of one month.In which we calculate average queue

length (Including customer currently being served), traffic intensity, waiting time of the

system and expected length a non empty queue. The data received from NHAI of 24 hour

than we convert into the number of vehicle an hour and also convert into in single counter

(Because we have assumed that the data is four different counters) at the toll plaza. we

have supposed the service rate depend upon the arrival rate per day. According to problem

we have assumed that are 4 counters and we have considered only 1 counter because we

have converted the average of 4 counter then waiting time and queue length will be reduced

and the main thing are vehicle fuel also saved.

Observation-

1. We have plotted the graph between number of days and number of vehicle.According

to this picture, 1000 vehicles have come almost every day.
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figure 1.1

2

This picture shows traffic intensity and traffic intensity it is ratio of λ and µ. The graph

of traffic-intensity represent the utilization rate means the service provider 97% (Average)

busy but 3% are free (idle rate).
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figure 1.2

3

This graph represent the length of the system and graph plotes between number of days

and number of vehicles. According to the graph 1 − 9 days and 16 − 19 days the arrival

number of vehicle are 20. due to service provider are busy approximate 97% given by

utilization intensity. If the service provider working fast then length of would be reduced.
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figure 1.3

4

This graph represent the waiting-time of the given system (we have include the waiting

time + Service time) and we have plot the graph between the number of days and the

number of hours. we convert the the data into the minute (multiply by 60).Then the

average arrival rate is 4− 8 minute per vehicle.
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figure 1.4

5

The fifth graph represent the expected graph length of a non-empty queue and the graph

plotted between the number of days and the number of vehicles arrived at the toll plaza.

In this situation the given length of the system and expected length of system a non-empty

queue are approximately same.
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figure 1.5
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traffic_per_day traffic_per_hour traffic on counter name Service_rate traffic_intensity

22246 926.9166667 231.7291667 Thakurtola (End of Durg Bypass)240 0.965538194

25077 1044.875 261.21875 Bankapur 268 0.974696828

27249 1135.375 283.84375 Hirebagewadi 290 0.978771552

20742 864.25 216.0625 Durg Bypass (Dhamdanaka)224 0.964564732

33898 1412.416667 353.1041667 Hattargi 361 0.978127886

44415 1850.625 462.65625 Kognoli 471 0.982285032

47978 1999.083333 499.7708333 Tundla 520 0.961097756

33886 1411.916667 352.9791667 Brahamarakotlu 365 0.96706621

52993 2208.041667 552.0104167 Cable Stayed Naini Bridge568 0.971849325

10168 423.6666667 105.9166667 Bassi 125 0.847333333

9900 412.5 103.125 Aroli 119 0.866596639

11617 484.0416667 121.0104167 Dhaneshwar 139 0.870578537

9515 396.4583333 99.11458333 Fatehpur 122 0.812414617

12970 540.4166667 135.1041667 Simliya 147 0.919075964

54304 2262.666667 565.6666667 Omallur 571 0.990659661

25484 1061.833333 265.4583333 Nathakkarai 274 0.968826034

36196 1508.166667 377.0416667 Veeracholapuram (West)385 0.979329004

55726 2321.916667 580.4791667 Palayam (Dharmapuri) 594 0.977237654

23232 968 242 Rasampalayan 254 0.952755906

91814 3825.583333 956.3958333 Nemili (Sriperumbudur) 996 0.96023678

36353 1514.708333 378.6770833 Joya 387 0.978493755

31026 1292.75 323.1875 Khalghat -MP/Maharashtra Border(Sendhwa, Jamli)336 0.96186756

24618 1025.75 256.4375 Boothakudi 264 0.971354167

34617 1442.375 360.59375 Chittampatti 372 0.969338038

48847 2035.291667 508.8229167 Banglore - Neelamangla 521 0.976627479

25023 1042.625 260.65625 Chalageri 273 0.954784799

29310 1221.25 305.3125 Choundha 322 0.948175466

46360 1931.666667 482.9166667 Brijghat 496 0.973622312

28557 1189.875 297.46875 Usaka ( Chamari) 312 0.953425481



mhu-lamda length_of_system waiting_time_of_system expected_length

8.270833333 28.01763224 0.120906801 29.01763224

6.78125 38.52073733 0.147465438 39.52073733

6.15625 46.10659898 0.162436548 47.10659898

7.9375 27.22047244 0.125984252 28.22047244

7.895833333 44.72031662 0.126649077 45.72031662

8.34375 55.4494382 0.119850187 56.4494382

20.22916667 24.70545829 0.049433574 25.70545829

12.02083333 29.36395147 0.083188908 30.36395147

15.98958333 34.52312704 0.062540717 35.52312704

19.08333333 5.550218341 0.052401747 6.550218341

15.875 6.496062992 0.062992126 7.496062992

17.98958333 6.726693688 0.055587724 7.726693688

22.88541667 4.330905781 0.043695949 5.330905781

11.89583333 11.35726795 0.084063047 12.35726795

5.333333333 106.0625 0.1875 107.0625

8.541666667 31.07804878 0.117073171 32.07804878

7.958333333 47.37696335 0.12565445 48.37696335

13.52083333 42.93220339 0.073959938 43.93220339

12 20.16666667 0.083333333 21.16666667

39.60416667 24.14886902 0.025249868 25.14886902

8.322916667 45.49812265 0.120150188 46.49812265

12.8125 25.22439024 0.07804878 26.22439024

7.5625 33.90909091 0.132231405 34.90909091

11.40625 31.61369863 0.087671233 32.61369863

12.17708333 41.78528657 0.082121471 42.78528657

12.34375 21.1164557 0.081012658 22.1164557

16.6875 18.29588015 0.059925094 19.29588015

13.08333333 36.91082803 0.076433121 37.91082803

14.53125 20.47096774 0.068817204 21.47096774



Chapter 4

Reviewing of Queue Model

4.1 Arrival Distribution theorem (Poisson process /

Pure birth process)

Concept - The model in which only arrivals are counted and no departures takes place are

called pure birth models. The term birth refers to the arrival of a new calling unit in the

system and the death refers to the departure of a served unit.

Theorem- If the arrival are completely random, then the probability distribution of

number of arrivals is in fixed time interval follows a poisson distribution.

proof-

In order to derive the arrival distribution in queues we make the three assumptions axioms.

1. There are n units in the system at time t and the probability that exactly one arrival

(birth) will occur during small time interval ∆t be given by λ(∆t) +O(∆t)

Where λ is the arrival rate independent of t and O(∆t) include the terms of higher

order of ∆t.

2. Secondly, assume that the time ∆t is so small that the probability of more than one

arrival in time ∆t is O(∆t)2 i.e almost zero.

3. The number of arrival in non-overlapping intervals are statistically independent.

18



The probability of n arrivals in a time interval of length t denoted by Pn(t)

Case 1 ;

When n > 0

There are n units in the system at time t and no arrival takes place during time interval

∆t, Hence there will be n units at time (t+ ∆t) also.

figure 1.1

Probability of two combined events = Probability of n units at time t ∗ probability of

no arrival during ∆t

= Pn(t)(1− λ∆t) (4.1)

Secondly, there are (n−1) units in the system at time t and one arrival takes places during

∆t. Hence there will remain n units in the system at time (t+ ∆t)

19



figure 1.2

Probability = prob. of (n− 1) units at time t ∗ prob. of one arrival in time ∆t

= Pn−1(t) ∗ λ(∆t) (4.2)

Adding equations (4.1) and (4.2), we get the probability of n arrival at time (t+ ∆t) is :

Pn(t+ ∆t) = Pn(1− λ∆t) + Pn−1(t)λ∆t (4.3)

Case -2 ;

when n = 0

P0(t+ ∆t) = prob. (no unit at time t) ∗ prob.(no arrival in time ∆t)

P0(t+ ∆t) = P0(t)(1− λ∆t) (4.4)

Rewriting the Eq. (4.3) and (4.4) after taking terms P0 to the left hand side , we get

Pn(t+ ∆t)− Pn(t) = Pn(t)(−λ∆t) + Pn−1(t)λ∆t (n > 0)

Pn(t+ ∆t)− P0(t) = P0(t)(−λ∆t) (n = 0)

Dividing the both side of above equation by ∆t and than taking limit as (∆t −→ 0)

lim
∆t→0

Pn(t+ ∆t)− Pn(t)

∆t
= [−λPn(t) + λPn−1(t)]

P ′n(t) = −λPn(t) + λPn−1(t) (4.5)

The left hand side becomes by definition of first derivative

and

20



lim
∆t→0

P0(t+ ∆t)− Po(t)
∆t

=
−λP0(t)∆t

∆t

P ′0(t) = −λP0(t) (4.6)

by definition of first derivative we can write

lim∆t→0
P0(t+∆t)−Po(t)

∆t
= P ′0(t)

Rewriting it again Eq. 4.5 and 4.6

P ′0(t) = λP0(t) n = 0 (4.7)

P ′n(t) = −λPn(t) + λPn−1(t) n > 0 (4.8)

This is known as the system of differential difference equation.

now to solve Eq. 4.7 and 4.8
P ′0(t)

P0(t)
= −λ

we can write it as;
d

dt
[logP0(t)] = −λ (4.9)

Integrating on both side of Eq. 4.9

logP0(t) = −λt+ A (4.10)

where A is constant of integration, using boundary condition to obtain constant of inte-

gration

Pn(0) = 0 for n = 0 ,

and = 0 for n > 0

putting t = 0 in Eq. 4.10

log1 = -λ(0) +A =⇒ A = 0 then using Eq.4.10

logP0(t) = −λt

P0(t) = e−λt (4.11)

putting n = 1 in Eq. 4.8

P ′1(t) = −λP1(t) + λP0(t)
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P ′1(t) + λP1(t) = λe−λt (4.12)

As this the linear differential equation of first order it can be easily solved by multiplying

both of eq. 4.12 by integration factor.

P ′1(t) + λP1(t) = λe−λt

eλt[P ′1(t) + λP1(t)] = λ

eλtP ′1(t) + λeλtP1(t) = λ

d

dt
[eλtP1(t)] = λ (4.13)

integrating both side of eq. 4.13, we get

eλtP1(t) = λt+B (4.14)

where B is constant of integration , in order to determine B put t = 0 in eq.4.14, we get

e0P1(0) = λ(0) +B =⇒ B = 0

so eq. 4.14

eλtP1(t) = λt

we can write it as

P1(t) =
λte−λt

1!
(4.15)

putting n = 2 in eq. 4.8 and using eq. 4.15

P ′2(t) + λP2(t) = λP1(t)

P ′2(t) + λP2(t) =
λ.(λt)e−λt

1!

eλtP ′2(t) + λeλtP2(t) =
λ.(λt)

1!
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integrating w.r.t ’t’

eλtP2(t) =
λ2t2

2!
+ C

eλtP2(t) =
(λt)2

2!
+ C

put t = 0, P2(0) = 0 to obtain C

P2(t) =
(λt)2

2!
e−λt for n = 2 (4.16)

similarly

P3(t) =
(λt)3

3!
e−λt for n = 3

for n = m

Pm(t) =
(λt)m

m!
e−λt (4.17)

It can be proved the result Eq. 4.17 is also true for n = m+1, then by induction hypothesis

result Eq. 4.17 will be true for general values of n.

put n = m+ 1 in eq. 4.8 and using eq. 4.17 also

P ′m+1(t) + λPm+1(t) =
λ(λt)m

m!
e−λt

d

dt
[eλtPm+1(t)] =

λ(λt)m

m!

Integrating both side of above equation

eλtPm+1(t) =
(λt)m+1

(m+ 1)m
+D

where D is constant of integration , in order to determine D put t = 0, Pm+1(0) = 0 and

D = 0, we get

Pm+1(t) =
(λt)m+1e−λt

(m+ 1)m!
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Hence in general

Pn(t) =
(λt)ne−λt

n!

This is the poisson distribution.

4.2 Pure Death Process(Distribution of Departure)

Theorem -

In this process assume that there are N customers in the system at time t = 0, also assume

that no arrival (birth) can occur in the system. Departure occur at a rate µ per unit time

i.e output rate is µ.

we will derive the distribution of departures from the system on the basis of the following

three axioms:

1. Probability (one departure during ∆t) = µ∆t+O(∆t)2

= µ∆t O(∆t)2 is negligible

2. Probability (more than one departure during ∆t) = O(∆t)2 = 0

3. The number of departures in non-overlapping intervals are statistically independent

and identically distributed random variable i.e the process N(t) has independent

increment.

First obtain the differential difference equation in three mutually exclusive ways.

Case 1 When 0 < n < N (same as pure birth process)
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figure 1.3

Probability(t+ ∆t) = Pn(t)(1− µ∆t) + Pn−1(t)µ∆t (4.18)

figure 1.4

Case 2, when n = N since there are exactly N units in the system Pn+1(t) = 0

PN(t+ ∆t) = PN(t)(1− µ∆t) (4.19)

Case 3, when n = 0

P0(t+ ∆t) = P0(t) + P1(t)µ∆t (4.20)
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figure 1.5

figure 1.6

Since there is no unit in the system at the time t, the question of any departure during ∆t

does not arrive.

therefore, probability of no departure is unity in this case.

Now using Eqs. 4.18, 4.19 and 4.20; rearranging them and dividing them by ∆t and taking

limit ∆t −→ 0

Now eq. 4.19

PN(t+ ∆t) = PN(t)(1− µ∆t)

lim
∆t→o

PN(t+ ∆t)− PN(t)

∆t
= lim

∆t→0

−PN(t)µ∆t

∆t
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P ′N(t) = −µPN(t) (4.21)

Similarly for Eq. 4.18

lim
∆t→0

Pn(t+ ∆t)− Pn(t)

∆t
= lim

∆t→0

[
−Pn(t)µ∆t

∆t
+
Pn+1(t)µ∆t

∆t

]
P ′n(t) = −µPn(t) + µPn+1(t) (4.22)

Now Eq. 4.20

lim
∆t→0

P0(t+ ∆t)− P0(t)

∆t
= lim

∆t→0

P1(t)µ∆t

∆t

P ′0(t) = µP1(t) (4.23)

Now to solve Eqs. 4.21, 4.22 and 4.23, we use iteration method

Step 1 for eq. 4.21

P ′N(t) = −µPN(t)

P ′N(t)

PN(t)
= −µ

d

dt
[logPN(t)] = −µ

integrating on both side

logPN(t) = −µt+ A (4.24)

To determine A, use the boundary condition PN(t) = 0 we get A = 0

logPN(t) = −µt

PN(t) = e−µt (4.25)

Step-2

now eq. 4.22, put n = N − 1 and the value PN(t) from eq. 4.25

P ′N−1(t) = −µPN−1(t) + µPN(t)

P ′N−1(t) = −µPN−1(t) + µe−µt
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P ′N−1(t) + µPN−1(t) = µe−µt

eµtP ′N−1(t) + eµtµPN−1(t) = µ

PN−1(t)eµt =

∫
µeµte−µt +B (I.F = eµt)

PN−1(t) = µte−µt +Be−µt (4.26)

Now determine B, put t = 0, PN−1(t) = 0 in eq. 4.26 we get B = 0

PN−1(t) =
µte−µt

1!

Step-3

put n = (N − 2) in eq. 4.22

PN−2(t) =
e−µt(µt)2

2!

putting n = N − 3, N − 4, N − 5, .....N − i and using induction process

PN−3(t) =
e−µt(µt)3

3!

........................

PN−i(t) =
e−µt(µt)i

i!

on letting n = N − i

Pn(t) =
e−µt(µt)N−n

(N − n)!
(4.27)

where n = 1, 2, 3, 4, .......N

Step-4 To find the P0(t) use the following procedure

1 =
N∑
n=0

Pn(t) = P0(t) +
N∑
n=1

Pn(t)

P0(t) = 1−
N∑
n=1

Pn(t) = 1−
N∑
n=1

e−µt(µt)N−n

(N − n)!
(4.28)

28



now Eq. 4.27 and 4.28

Pn(t) =
(µt)N−ne−µt

(N − n)!
; for n = 1, 2, 3...N

= 1−
N∑
n=1

(µt)N−ne−µt

(N − n)!
for n = 0

Thus the number of departures in time ′t′ follows the Truncated poisson distribution.
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4.3 Birth and Death Model / Model (M/M/1) :(∞/FCFS)

Step-1 To obtain the system of steady- state equation.

The Probability that there will be n units (n > 0) in the system at time t + ∆t may be

expressed as the sum of three independent compound probabilities, by using the funda-

mental properties of probability poisson arrivals and of exponential arrivals times.

1. The product of three probabilities in fig 1.7

figure 1.7

(a) If there are n units in the system at time t, the probability denoted by = Pn(t)

(b) If there is no arrival in time ∆t = P0(∆t) = 1− λ∆t

(c) If there is no service in time ∆t = φ∆t(0) = 1− µ∆t

Pn(t)(1− λ∆t)(1− µ∆t) = Pn(t)[1− (λ+ µ)∆t] +O1(∆t) (4.29)

2. The product of three probabilities in fig(1.8)
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figure 1.8

(a)If there are n−1 units in the system at time t, the probability denoted by = Pn−1(t)

(b)If there is one arrival in time ∆t = P1(∆t) = λ∆t

(c)If there is no service in time ∆t = φ∆t(0) = 1− µ∆t

Pn−1(t)(λ∆t)(1− µ∆t) = λPn−1(t)∆t+O2(∆t) (4.30)

3. The product of three probabilities in fig(1.9)

figure 1.9

(a)If there are n+1 units in the system at time t, the probability denoted by = Pn+1(t)

(b)If there is no arrival in time ∆t = P0(∆t) = 1− λ∆t

(c)If there is one service in time ∆t = φ∆t(1) = µ∆t
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Pn+1(t)(1− λ∆t)µ∆t ∼= Pn+1(t)µ∆t+O3(∆t) (4.31)

Now adding above three independent component probabilities, we obtain the probability

of n units in the system at time t+ ∆t i.e (eqs. 4.29, 4.30 and 4.31), we get

Pn(t+ ∆t) = Pn(t)[1− (λ+ µ)∆t] + Pn−1(t)λ∆t+ Pn+1(t)µ∆t+O(∆t) (4.32)

we consider [O1(∆t) +O2(∆t) +O3(∆t) = O(∆t)]

Now Eq. 4.32 can be written as

Pn(t+ ∆t)− Pn(t) = −(Λ + µ)∆tPn(t) + λPn−1(t)∆t+ µPn+1(t)∆t+O(∆t)

Now taking limit as ∆t→ 0 on both side

lim
∆t→0

Pn(t+ ∆t)− Pn(t)

∆t
= lim

∆t→0

[
− (λ+ µ)Pn(t) + λPn−1(t) + µPn+1(t) +

O(∆t)

∆t

]

for higher order terms lim∆t→0
O(∆t)

∆t
= 0

dPn(t)

dt
= −(λ+ µ)Pn(t) + λPn−1(t) + µPn+1(t) (4.33)

In a similar fashion, the probability that there will be no unit (i.e n = 0) in the system at

the time (t+ ∆t) will be the sum of the following independent probability.

• Prob.[that there will be no unit in the system at time t, and no arrival in time ∆t]

= P0(t)(1− λ∆t) ....(A)

• Probability that there is one unit in the system at the time t, one unit serviced in

∆t and no arrival in ∆t

= P1(t)µ(∆t)(1− λ∆t) ∼= P1(t)µ∆t+O(∆t) ...(B)

now combine the Eqs. A and B of the two probabilities, we get

P0(t+ ∆t) = P0(t)[1− λ∆t] + P1(t)µ∆t+O(∆t) (4.34)
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dividing both side by ∆t

P0(t+ ∆t)− P0(t)

∆t
= −λP0(t) + µP1(t) +

O(∆t)

∆t

taking limit ∆t→ 0 both side of above equation

dP0(t)

dt
= −λP0(t) + µP1(t) for n = 0 (4.35)

since for only steady state probability are considered there as

lim
t→∞

d[Pn(t)]

dt
= 0 for n ≥ 0

and

lim
t→∞

Pn(t) = Pn

which is independent of t

The eqs. 4.33 and 4.34 can be written as

−(λ+ µ)Pn + λPn−1 + µPn+1 = 0 if n > 0 (4.36)

λP0 + µP1 = 0 if n = 0 (4.37)

The equation 4.36 and 4.37 constitute the system of steady state difference equation for

the above model.

step-2

To solve the system of difference equation

−(λ+ µ)Pn + λPn−1 + µPn+1 = 0 if n > 0 (4.38)

λP0 + µP1 = 0 if n = 0 (4.39)

Since P0 = P0

P1 =
λP0

µ
from eq.(4.39)

now put n = 1 in eq.4.38

−(λ+ µ)P1 + λP0 + µP2 = 0
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−λ2P0

µ
+ λP0 − λP0 + µP2 = 0

P2 =

(
λ

µ

)2

P0

Simliarly

P2 =
λ

µ
P1 =

(
λ

µ

)2

P0

P3 =
λ

µ
P2 =

(
λ

µ

)3

P0

.

.

.

Pn =

(
λ

µ

)n
P0 for n ≥ 0

Now using
∞∑
n=0

= 1

P0 + P1 + P2 + P4 + .... = 1

P0 +
λ

µ
P0 +

(
λ

µ

)2

P0 + .... = 1

P0

[
1 +

λ

µ
+

(
λ

µ

)2

+ ....

]
= 1

P0

[
1

1− λ
µ

]
= 1

Since λ
µ
< 1, so sum of infinite G.P is valid.

P0 =

(
1− λ

µ

)
(4.40)

Substitute above value, we get

Pn =

(
λ

µ

)n(
1− λ

µ

)
(4.41)

The Eqs. 4.40 and 4.41 gives the probability distribution of the queue length.
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4.4 Conclusion

This survey of the vehicle data suggests that the toll plaza’s authorities should increase

the number of counters.By doing this, we can save the wastage of working hours in our

nation which can result in country’s growth. We can also reduce the fuel wastage which

ultimately will save money and our environment.
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