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ABSTRACT
We gave some new results related to common fixed point in complex valued b
metric space for a pair of mappings satisfying more general contraction conditions
of complex valued bmetric spaces introduced by Bakhtin [5]. Further, we provided
related results for composition of metrics in complex valued bmetric space.
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Chapter 1
Introduction

This chapter introduces the basic concepts of fixed point theorem which include
metric spaces, complete metric spaces, contraction mapping, complex valued met
ric spaces and complex valued bmetric space, and some results which help to un
derstand about the main concept of our dissertation.

1.1 Metric Spaces
A function d : A × A → R to find distance between elements a, b of an arbitrary
set A, which could consist of vectors in Rn, functions, sequences, matrices, etc is
called a metric or distance. The distance between elements a, b ∈ A is given by the
number d(a, b).

Definition 1.1.1. Define a function d : A× A → R on an arbitrary set A, the pair
(A, d) is said to be metric space iff ∀ a, b ∈ A, d(a, b) fulfil these properties:

(i) d(a, b) ≥ 0 (Nonnegativeness)

(ii) d(a, b) = 0 ⇐⇒ a = b (Identification)

(iii) d(a, b) = d(b, a) (Symmetry)

(iv) For a, b, c ∈ A, d(a, b) ≤ d(a, c) + d(c, b) (Triangular inequality)

2.1.2. Results
2.1.2.1 Euclidean Metric Suppose A = R and define a function d : R × R → R
by d(a, b) = |a − b| ∀ a, b ∈ A is a metric space (i.e., Standard Metric Space). In
general, let A = Rn:

Rn = {(z1, z2, ..., zn)|zi ∈ R, i = 1 to n}

1
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and for a = (a1, a2, .., an), b = (b1, b2, .., bn) ∈ Rn, defines the funtion d : Rn ×
Rn → R as

d(a, b) =

√√√√ n∑
i=1

(ai − bi)2

is a metric on Rn, called the Euclidean Metric

2.1.2.2 Discrete Metric Space A function d : A × A → R is defined on a set
A by

d(a1, a2) =

{
0 if a1 = a2
1 if a1 ̸= a2

(A, d) forms a metric space.

1.2 Complete metric space

We know that any convergent sequence in a metric space (A, d) is Cauchy but a
Cauchy sequence in a metric space (A, d)may or may not be a convergent sequence
in that metric space.

Definition 1.2.1. A metric space (A, d) is complete iff every Cauchy sequence in
A converges to a point in A.
Open intervals (a, b) are not complete.
Standard metric space of real numbers R is complete. In general, Rn with standard
metric space is complete.
The spaceCb([a, b])which is bounded, real valued continuous functions on interval
[a, b], is complete.

Some important results of Complete metric spaces
There are so many results which include that In a metric space (A, d), any sequence
which is Cauchy is bounded; In a metric space, Any convergent sequence is a
Cauchy sequence; a complete subspace of a metric space (A, d) is a closed sub
set; and many more. Some of the important results are:

Theorem 1.2.2. A subset (which is closed) of a complete metric space is a complete
subspace.

Theorem 1.2.3. Consider a metric space (A, d) and a complete and bounded subset
B ⊆ A. Then B is compact.

Theorem 1.2.4. Suppose (A, d) is a complete metric space. If (Fn) is a sequence
of nonempty closed subsets of A with the property that Fn+1 ⊆ Fn ∀ n ∈ N and
(diam(Fn)) → 0, then ∩∞

n=1Fn is a singleton.
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1.3 Fixed point theorem

The Banach fixed point theorem is one of the most fundamental and important the
orems in metric space which have many useful applications in mathematics as well
as in real life.

Theorem 1.3.1. (Contraction Mapping Theorem or Banach Fixed point theo
rem). Suppose a map G from a complete metric space (X, d) to itself is a con
traction. Then, G has a unique fixedpoint and under the action of iterates of
G : X → X , all points converge with exponential speed to it.

Theorem 1.3.2. (Kannan Fixed Point Theorem [?]) Suppose that f and g are a
self map on a complete metric space (X, d). If ∃ a constant α ∈ [0, 1/2) such that

d(f(a), g(b)) ≤ α(d(a, f(a)) + d(b, g(b))) ∀ a, b ∈ X,

then f and g have a unique common fixed point.
In particular, if ∃ a constant β ∈ [0, 1/2) such that d(f(a), f(b)) ≤ β(d(a, f(a) +
d(b, f(b))) ∀ a, b ∈ X , then f has a unique fixed point.

Theorem 1.3.3. (Gupta and Srivastava [?]) Suppose f and g are a self map on
a complete metric space (X, d). If ∃ a nonnegative integers i, i and constants
α, β ∈ [0, 1) such that

d(f i(a), gj(b)) ≤ αd(a, f i(a)) + βd(b, gj(b))

∀ a, b ∈ X , then f and g have a unique common fixed point.

Theorem 1.3.4. (Suzuki [?]) Suppose that f is a self map on a metric space (X, d)
and a function θ1 : [0, 1] → (1/2, 1] is defined by

θ1(s) :=


1 if 0 ≤ s ≤

√
5−1
2

,
1−s
s2

if
√
5−1
2

≤ s ≤ 1√
2
,

1
1+s

if 1√
2
≤ s < 1.

Suppose that there exists a constant s ∈ [0, 1) such that
θ1(s)d(a, f(a)) ≤ d(a, b) implies d(f(a), f(b)) ≤ sd(a, b) ∀ a, b ∈ X .
If X is complete, then f has a unique fixed point z. Moreover lim fn(a) = z ∀a ∈
X .
Conversely, if every self map f on X satisfying the above condition then f has a
fixed point, then X is complete.
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1.4 Complex Valued Metric Space
Azam et al. [1] was the first one to establish the concept of Complex Valued Metric
Spaces and then investigate the existence and uniqueness of the fixed point results
for mapping reassuring the rational inequalities.
Suppose the set of complex numbers be C and w1, w2 ∈ C and define a partial
order ≾ on C as follows:

w1 ≾ w2 if and only if Re(w1) ≤ Re(w2), Im(w1) ≤ Im(w2).

w1 ≾ w2 if we have one of the following cases:

(i) Re(w1) = Re(w2), Im(w1) < Im(w2)

(ii) Re(w1) < Re(w2), Im(w1) = Im(w2)

(iii) Re(w1) < Re(w2), Im(w1) < Im(w2)

(iv) Re(w1) = Re(w2), Im(w1) = Im(w2)

w1 ⋨ w2 if w1 ̸= w2 and one of (i), (ii) and (iii) is acceptable and w1 ≺ w2 if only
(iii) is served. We also have

0 ≾ w1 but w1 ⋨ w2 =⇒ |w1| < |w2|
w1 ≾ w2 ≺ w3 =⇒ w1 ≺ w3

Definition 1.4.1. Let A be a nonempty set. A mapping d : A × A → C is said to
be complex valued metric on A if the following conditions are satisfied:

(i) 0 ≾ d(a, b) ∀a, b ∈ A and d(a, b) = 0 if and only if a = b;

(ii) d(a, b) = d(b, a)∀ a, b ∈ A:

(iii) d(a, b) ≾ d(a, c) + d(c, b) ∀a, b, c ∈ A

Then (A, d) is complex valued metric space.

Example 1.4.2. Let A = C. Then (A, d) is a complex valued metric space for the
mapping d : A× A → C defined by

d(a, b) = |a− b|+ i|a− b|, ∀ a, b ∈ A.

Definition 1.4.3. [4] Suppose that (A, d) is a Complexvalued metric space and
{an} is a sequence in A and a ∈ A. If for every e ∈ C with 0 ≺ e, ∃ N ∈ N such
that ∀ n > N , d(an, a) ≺ e, then we state that {an} is convergent, {an} converges
to a and a is the limit of {an}. Symbolically, limn→∞ an = a or an → a as n → ∞.

If for every e ∈ C, with 0 ≺ e, ∃ N ∈ N such that ∀ n > N , d(an, an+m) ≺ e
wherem ∈ N, then we say {an} is said to be a Cauchy sequence.
If every Cauchy sequence in A is convergent in A, then (A, d) is said to be a Com
plete Complex valued metric space.
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Example 1.4.4. Suppose A = C. Then (A, d) is a Complex valued Metric space
for the mapping d : A× A → C defined by

d(a, b) = |a− b|+ i|a− b|, ∀ a, b ∈ A.

Lemma 1.4.5. Suppose (A, d) is a Complex valuedmetric space and {an} a se
quence inA. Then {an} is a convergent sequence with limit a ⇐⇒ |d(an, a)| → 0
as n → ∞.

Lemma 1.4.6. Suppose (A, d) is a Complex valued metric space and {an} a se
quence in A. Then {an} is said to be a Cauchy sequence ⇐⇒ |d(an, an+m)| → 0
as n → ∞.

1.5 Complex valued bmetric space
Definition 1.5.1. [4] Suppose A is a nonempty set and let t ≥ 1 be a given real
number. Define a mapping d : A × A → C. Then d is said to be Complex value
bmetric on A if these conditions hold:

(i) 0 ≾ d(a, b) ∀a, b ∈ A and d(a, b) = 0 if and only if a = b;

(ii) d(a, b) = d(b, a)∀ a, b ∈ A:

(iii) d(a, b) ≾ t[d(a, c) + d(c, b)] ∀a, b, c ∈ A

Then (A, d) is called a Complexvalued bmetric space. Thus a complex valued
metric space is a particular case of complex valued bmetric space.

Definition 1.5.2. [4] Suppose that (A, d) is a Complexvalued bmetric space and
{an} is a sequence in A and a ∈ A. If for every e ∈ C with 0 ≺ e, ∃ N ∈ N such
that ∀ n > N , d(an, a) ≺ e, then we state that {an} is convergent, {an} converges
to a and a is the limit of {an}. Symbolically, limn→∞ an = a or an → a as n → ∞.

If for every e ∈ C, with 0 ≺ e, ∃ N ∈ N such that ∀ n > N , d(an, an+m) ≺ e
wherem ∈ N, then we say {an} is said to be a Cauchy sequence.
If every Cauchy sequence in A is convergent in A, then (A, d) is said to be a Com
plete Complex valued bmetric space.

Lemma 1.5.3. Suppose (A, d) is a Complex valued bmetric space and {an} a se
quence inA. Then {an} is a convergent sequence with limit a ⇐⇒ |d(an, a)| → 0
as n → ∞.

Lemma 1.5.4. Suppose (A, d) is a Complex valued bmetric space and {an} a se
quence in A. Then {an} is said to be a Cauchy sequence ⇐⇒ |d(an, an+m)| → 0
as n → ∞.
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Lemma 1.5.5. [6] Let α, β ∈ (0, 1) and a, b ∈ A. If X, Y satisfy

d(Xa, Y Xa) ≾ αd(a,Xa) + β
d(a,Xa)d(Xa, Y Xa)

1 + d(a,Xa)

d(XY b, Y b) ≾ αd(Y b, b) + β
d(Y b,XY b)d(b, Y b)

1 + d(Y b, b)

then
|d(Xa, Y Xa)| ≤ α|d(a,Xa)|+ β|d(Xa, Y Xa)|,

|d(XY b, Y b)| ≤ α|d(Y b, b)|+ β|d(Y b,XY b)|

respectively.

Lemma1.5.6. [7] Let {an} be a sequence inA andh ∈ (0, 1). If xn = |d(an, an+1)|
satisfies

xn ≤ hxn−1, ∀ n ∈ N

then {an} is a Cauchy sequence.



Chapter 2
Main Results

Proposition 2.0.1. Suppose (A, d) is a Complex valued bmetric space and a0 ∈ A.
Define the mappings X,Y : A → A and a sequence {an} by

a2n+1 = Xa2n, a2n+2 = Y a2n+1, ∀ n = 0, 1, 2, ...

Suppose ∃ a mapping λ : A × A → [0, 1) such that λ(Y Xa, α) ≤ λ(a, α) and
λ(XY a, α) ≤ λ(a, α) ∀ a ∈ A and for fixed element α ∈ A. Then

λ(a2n, α) ≤ λ(a0, α) , λ(a2n+1, α) ≤ λ(a1, α), ∀ n = 0, 1, 2, . . .

Proof. Let a ∈ A. Then for n = 0, 1, 2, ...,

λ(a2n, α) = λ(Y Xa2n−2, α) ≤ λ(a2n−2, α) = λ(Y Xa2n−4, α)

≤ λ(a2n−4, α) ≤ . . . ≤ λ(a0, α)

Similarly,

λ(a2n+1, α) = λ(XY a2n−1, α) ≤ λ(a2n−1, α) = λ(XY a2n−3, α)

≤ λ(a2n−3, α) ≤ . . . ≤ λ(a1, α)

Example 2.0.2. Let A = {1, 1/2, 1/22, 1/23, . . .} and define d : A× A → C as

d(a, b) = |a− b|2 + i|a− b|2

Clearly, (A, d) is a Complex valued bmetric space with t = 2.
Define X,Y : A → A by

X

(
1

2n

)
=

1

2n+1
= Y

(
1

2n

)
, ∀ n = 0, 1, 2, . . . .

7
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Consider the sequence {an} where an = 1
2n
, ∀ n = 0, 1, 2, . . ..

Then a0 = 1, a1 =
1
2
∈ A. Clearly, Xa2n = a2n+1 and Y a2n+1 = a2n+2.

Consider a mapping λ : A× A → [0, 1) defined by λ(a, α) = a
2
+ α

3
, ∀ a ∈ A so

that for fixed α = 1
2
∈ A, λ(a, α) = a

2
+ 1

6
.

Clearly, λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α), ∀ a ∈ A and for fixed
α = 1

2
∈ A.

Further

λ(a2n, α) =
1

22n.2
+

1

6
≤ 1

2
+

1

6
= λ(a0, α)

and

λ(a2n+1, α) =
1

22n+1.2
+

1

6
≤ 1

2.2
+

1

6
=

(1/2)

2
+

1

6
= λ(a1, α)

which verifies proposition 2.1.

Theorem 2.0.3. Suppose (A, d) is a complete Complex valued bmetric space with
coefficient t ≥ 1. Define self mappings X, Y : A → A. Suppose ∃ mappings
λ, µ : A× A → [0, 1) such that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α),
µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α)

(ii) d(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a,Xa)d(b, Y b)

1 + d(a, b)

]
(iii) 2tλ(a, α) + 2µ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A

Then, X, Y have a unique common fixed point in X .

Proof. Let a, b ∈ A and α a fixed point in A.

d(Xa, Y Xa) ≾
[
λ(a, α) + λ(Xa, α)

2

]
d(a,Xa)

+

[
µ(a, α) + µ(Xa, α)

2

] [
d(a,Xa)d(Xa, Y Xa)

1 + d(a,Xa)

]

|d(Xa, Y Xa)| ≤
[
λ(a, α) + λ(Xa, α)

2

]
|d(a,Xa)|

+

[
µ(a, α) + µ(Xa, α)

2

]
|d(Xa, Y Xa)|

(2.0.1)
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Similarly,

d(XY b, Y b) ≾
[
λ(Y b, α) + λ(b, α)

2

]
d(Y b, b)

+

[
µ(Y b, α) + µ(b, α)

2

] [
d(Y b,XY b)d(b, Y b)

1 + d(Y b, b)

]
|d(XY b, Y b)| ≤

[
λ(Y b, α) + λ(b, α)

2

]
|d(Y b, b)|

+

[
µ(Y b, α) + µ(b, α)

2

]
|d(Y b,XY b)|

(2.0.2)

Let a0, a1 ∈ A be arbitrary and let {an} be a sequence defined by

a2n+1 = Xa2n, a2n+2 = Y a2n+1, ∀ n = 0, 1, 2, . . .

as in proposition 2.1. Now, for k = 0, 1, 2, . . .,

|d(a2k+1, a2k)| = |d(XY a2k−1, Y a2k−1)|

≤
[
λ(Y a2k−1, α) + λ(a2k−1, α)

2

]
|d(Y a2k−1, a2k−1)|

+

[
µ(Y a2k−1, α) + µ(a2k−1, α)

2

]
|d(Y a2k−1, XY a2k−1)|

=

[
λ(a2k, α) + λ(a2k−1, α)

2

]
|d(a2k, a2k−1)|

+

[
µ(a2k, α) + µ(a2k−1, α)

2

]
|d(a2k, a2k+1)|

≤
[
λ(a0, α) + λ(a1, α)

2

]
|d(a2k−1, a2k)|

+

[
µ(a0, α) + µ(a1, α)

2

]
|d(a2k, a2k+1)|

∴ |d(a2k+1, a2k)| ≤
[

λ(a0, α) + λ(a1, α)

2− [µ(a0, α) + µ(a1, α)]

]
|d(a2k−1, a2k)| (2.0.3)

Similarly,

|d(a2k+2, a2k+1)| ≤
λ(a0, α) + λ(a1, α)

2− [µ(a0, α) + µ(a1, α)]
|d(a2k, a2k+1)| (2.0.4)

By condition (iii), h =
λ(a0, α) + λ(a1, α)

2− [µ(a0, α) + µ(a1, α)]
< 1.

This gives

|d(a2k+1, a2k)| ≤ h|d(a2k, a2k−1)| and |d(a2k+2, a2k+1)| ≤ h|d(a2k+1, a2k)|
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Therefore
|d(a2n+1, a2n)| ≤ h|d(a2n, a2n−1)|, ∀n ≥ 0.

From Lemma 1.8, we deduce that {an} is a Cauchy sequence in (A, d). By com
pleteness property of complex valued bmetric A, ∃ a ∈ A such that an → a as
n → ∞.
We will show that a is the common fixed point of X and Y . By condition (ii) and
Proposition 2.1, we have

d(a,Xa) ≾ t{d(a, Y a2n+1) + d(Y a2n+1, Xa)}
= t{d(a, a2n+2) + d(Xa, Y a2n+2)}

≾ t

[
d(a, a2n+2) +

{
λ(a, α) + λ(a2n+1, α)

2

}
d(a, a2n+1)

+

{
µ(a, α) + µ(a2n+1, α)

2

}{
d(a,Xa)d(a2n+1, Y a2n+1)

1 + d(a, a2n+1)

}]
≾ t

[
d(a, a2n+2) +

{
λ(a, α) + λ(a1, α)

2

}
d(a, a2n+1)

+

{
µ(a, α) + µ(a1, α)

2

}{
d(a,Xa)d(a2n+1, a2n+2)

1 + d(a, a2n+1)

}]
Letting n → ∞, we obtain d(a,Xa) = 0 giving Xa = a.
Similarly,

d(a, Y a) ≾ t{d(a,Xa2n) + d(Xa2n, Y a)}

≾ t

[
d(a, a2n+1) +

{
λ(a2n, α) + λ(a, α)

2

}
d(a2n, a)

+

{
µ(a2n, α) + µ(a, α)

2

}{
d(a2n, Xa2n)d(a, Y a)

1 + d(a2n, a)

}]
≾ t

[
d(a, a2n+1) +

{
λ(a0, α) + λ(a, α)

2

}
d(a2n, a)

+

{
µ(a0, α) + µ(a, α)

2

}{
d(a2n, a2n+1)d(a, Y a)

1 + d(a2n, a)

}]
Letting n → ∞, we have d(a, Y a) = 0 giving Y a = a.
The uniqueness can be easily established by using conditions (ii) and (iii).

Taking µ = 0 in Theorem 2.3, we get the following corollary.

Corollary 2.0.4. Suppose (A, d) is a complete Complex valued bmetric space with
coefficient t ≥ 1. Define self mapping X,Y : A → A. Suppose ∃ a mapping
λ : A× A → [0, 1) such that ∀ a, b ∈ A and for fixed α ∈ A,
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(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α)

(ii) d(Xa, Y b) ≾ λ(a, α) + λ(b, α)

2
d(a, b)

(iii) 2tλ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A.

Then, X, Y have a unique common fixed point in A. Taking X = Y in Theorem
2.3, we obtain this result.

Corollary 2.0.5. Suppose (A, d) be a complete Complex valued bmetric space with
coefficient t ≥ 1. Define self mapping Y : A → A. Suppose ∃ mappings λ, µ :
A× A → [0, 1) such that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y 2a, α) ≤ λ(a, α), µ(Y 2a, α) ≤ µ(a, α)

(ii) d(Y a, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a.b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a, Y a)d(b, Y b)

1 + d(a, b)

]
(iii) 2tλ(a, α) + 2µ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A.

Then Y has a unique fixed point in A.

Example 2.0.6. Let A = [0, 1]. Define d : A× A → C as

d(a, b) = |a− b|2 + i|a− b|2.

Clearly, (A, d) is a complex valued bmetric space with t = 2.
Define X, Y : A → A as

X(a) =
a

11
, Y (b) =

b

11
, ∀ a, b ∈ A.

For fixed α = 1/7 ∈ A, let λ, µ : A× A → [0, 1) be defined as

λ(a, α) =
a

11
+

α

4
, µ(a, α) =

aα

110
, ∀ a ∈ A

Clearly,

2tλ(a, α) + 2µ(a, α) < 1,

λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α),

µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α).
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Also, ∀ a, b ∈ A, we have

0 ≾ d(a, b), d(Xa, Y b),
d(a,Xa)d(b, Y b)

1 + d(a, b)

It is enough to show that

d(Xa, Y b) ≾ λ(a, α) + λ(b, α)

2
d(a, b)

Now

d(Xa, Y b) = d(a/11, b/11) =

∣∣∣∣ a11 − b

11

∣∣∣∣2 + i

∣∣∣∣ a11 − b

11

∣∣∣∣2
=

1

121
{|a− b|2 + i|a− b|2}

≾ 1

7.4
{|a− b|2 + i|a− b|2}

≾
(

1

7× 4
+

a

2× 11
+

b

2× 11

)
d(a, b)

=
1

2

(
a

11
+

α

4
+

b

11
+

α

4

)
d(a, b)

=

[
λ(a, α) + λ(b, α)

2

]
d(a, b)

All conditions of Theorem 2.3 are satisfied. Also a = 0 remains fixed point under
X,Y and it is unique.

Theorem 2.0.7. Let (A, d) be a complete complex valued bmetric space with coef
ficient t ≥ 1. Define self mapping X,Y : A → A. If ∃ mappings λ, µ : A× A →
[0, 1) such that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α)
µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α)

(ii) d(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a,Xa)d(b, Y b)

d(a, Y b) + d(b,Xa) + d(a, b)

]
∀ a, b ∈ A such that a ̸= b, d(a, Y b) + d(b,Xa) + d(a, b) ̸= 0 where
2λ(a, α) + 2tµ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A

or
d(Xa, Y b) = 0 if d(a, Y b) + d(b,Xa) + d(a, b) = 0.

Then, X,Y have a unique common fixed point.
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Proof. Let a, b ∈ A and α ∈ A be fixed.
Let a0, a1 ∈ A be arbitrary and {an} a sequence defined as

a2n+1 = Xa2n, a2n+2 = Y a2n+1, ∀ n = 0, 1, 2, . . .

as defined in Proposition 2.1.

d(a2n+1, a2n) = d(Xa2n, Y a2n−1)

≾
[
λ(a2n, α) + λ(a2n−1, α)

2

]
d(a2n, a2n−1) +

[
µ(a2n, α) + µ(a2n−1, α)

2

]
×

[
d(a2n, Xa2n)d(a2n−1, Y a2n−1)

d(a2n, Y a2n−1) + d(a2n−1, Xa2n) + d(a2n, a2n−1)

]
=

[
λ(a0, α) + λ(a1, α)

2

]
d(a2n, a2n−1) +

[
µ(a0, α) + µ(a1, α)

2

]
×
[

d(a2n, a2n+1)d(a2n−1, a2n)

d(a2n, a2n) + d(a2n−1, a2n+1) + d(a2n, a2n−1)

]

|d(a2n+1, a2n)| ≤
[
λ(a0, α) + λ(a1, α)

2

]
|d(a2n, a2n−1)|

+

[
µ(a0, α) + µ(a1, α)

2

]
|d(a2n, a2n+1)||d(a2n−1, a2n)|

|d(a2n−1, a2n+1)|+ |d(a2n, a2n−1)|
(2.0.5)

(using triangular inequality of complex valued bmetric space)

|d(a2n+1, a2n)| ≤
[
λ(a0, α) + λ(a1, α)

2

]
|d(a2n, a2n−1)|

+ t

[
µ(a0, α) + µ(a1, α)

2

]
|d(a2n−1, a2n)|

=
1

2
[(λ(a0, α) + λ(a1, α)) + t(µ(a0, α) + µ(a1, α))] |d(a2n−1, a2n)|

|d(a2n+1, a2n)| ≤
1

2
[(λ(a0, α) + λ(a1, α)) + t(µ(a0, α) + µ(a1, α))]|d(a2n−1, a2n)|

By condition (ii), 2λ(a, α) + 2tµ(a, α) < 1 so that h = 1
2
[(λ(a0, α) + λ(a1, α)) +

t(µ(a0, α) + µ(a1, α))] < 1. Therefore,

|d(a2n+1, a2n)| ≤ h|d(a2n, a2n−1)|.

By Lemma 1.8, {an} is a Cauchy sequence. By completeness of A, there exists
a ∈ A such that an → a as n → ∞.
We now show that a is a common fixed point of X and Y .
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By condition (ii) and Proposition 2.1, we have

d(a,Xa) ≾ t{d(a, Y a2n+1) + d(Y a2n+1, Xa)}
= t{d(a, a2n+2) + d(Xa, Y a2n+1)}

≾ t

[
d(a, a2n+2) +

{
λ(a, α) + λ(a2n+1, α)

2

}
d(a, a2n+1)

+

{
µ(a, α) + µ(a2n+1, α)

2

}{
d(a,Xa)d(a2n+1, Y a2n+1)

d(a, Y a2n+1) + d(a2n+1, Xa) + d(a, a2n+1)

}]
≾ t

[
d(a, a2n+2) +

{
λ(a, α) + λ(a1, α)

2

}
d(a, a2n+1)

+

{
µ(a, α) + µ(a1, α)

2

}{
d(a,Xa)d(a2n+1, a2n+2)

d(a, a2n+2) + d(a2n+1, Xa) + d(a, a2n+1)

}]
Letting n → ∞,we get d(a,Xa) = 0 which yields Xa = a.
Similarly,

d(a, Y a) ≾ s[d(a,Xa2n) + d(Xa2n, Y a)]

≾ s

[
d(a, a2n+1) +

{
λ(a2n, α) + λ(a, α)

2

}
d(a2n, a)

+

{
µ(a2n, α) + µ(a, α)

2

}{
d(a2n, Xa2n)d(a, Y a)

d(a2n, Y a) + d(a,Xa2n) + d(a2n, a)

}]
≾ s

[
d(a, a2n+1) +

{
λ(a0, α) + λ(a, α)

2

}
d(a2n, a)

+

{
µ(a0, α) + µ(a, α)

2

}{
d(a2n, a2n+1)d(a, Y a)

d(a2n, Y a) + d(a, a2n+1) + d(a2n, a)

}]
Letting n → ∞,we get d(a, Y a) = 0 which gives Y a = a.
The uniqueness follows from condition (ii).

By taking X = Y in Theorem 2.5, we get this corollary.

Corollary 2.0.8. Suppose (A, d) is a complete complex valued bmetric space with
coefficient t ≥ 1. Define self mapping Y : A → A. If ∃ mappings λ, µ : A×A →
[0, 1) such that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y a, α) ≤ λ(a, α)
µ(Y a, α) ≤ µ(a, α)

(ii) d(Y a, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a, Y a)d(b, Y b)

d(a, Y b) + d(b, Y a) + d(a, b)

]
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∀ a, b ∈ A such that a ̸= b, d(a, Y b) + d(b, Y a) + d(a, b) ̸= 0 where
2λ(a, α) + 2tµ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A

or
d(Y a, Y b) = 0 if d(a, Y b) + d(b, Y a) + d(a, b) = 0.

Then, Y have a unique fixed point.
Taking t = 1 in Theorems 2.3 and 2.5, we obtain these theorems for complex

valued metric space which is a particular case of complex valued b metric space.
Theorem 2.0.9. Suppose (A, d) is a complete complex valued metric space. Define
self mappings X,Y : A → A. Suppose ∃ a mapping λ, µ : A × A → [0, 1) such
that ∀ a, b ∈ A and for fixed α ∈ A,
(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α)

µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α)

(ii) d(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)+

[
µ(a, α) + µ(b, α)

2

] [
d(a,Xa)d(b, Y b)

1 + d(a, b)

]
(iii) 2λ(a, α) + 2µ(a, α) < 1 ∀ a ∈ A and for fixed α ∈ A.

Then, X, Y have a unique common fixed point in A.

Proof. By Theorem 2.3 and equations (2.3) and (2.4), we get

h =
λ(a0, α) + λ(a1, α)

2− [µ(a0, α) + µ(a1, α)]
< 1

and
|d(a2n+1, a2k)| ≤ h|d(a2n, a2n−1)|, ∀ n ≥ 0.

From Lemma 1.8, {an} is a Cauchy sequence in (A, d). By completeness of A, ∃
a ∈ A such that an → a as n → ∞.
By condition (ii) and Proposition 2.1,

d(a,Xa) ≾ d(a, Y a2n+1) + d(Y a2n+1, Xa)

= d(a, a2n+2) + d(Xa, Y a2n+2)

≾ d(a, a2n+2) +

[
λ(a, α) + λ(a2n+1, α)

2

]
d(a, a2n+1)

+

[
µ(a, α) + µ(a2n+1, α)

2

] [
d(a,Xa)d(a2n+1, Y a2n+1)

1 + d(a, a2n+1)

]
≾ d(a, a2n+2) +

[
λ(a, α) + λ(a1, α)

2

]
d(a, a2n+1)

+

[
µ(a, α) + µ(a1, α)

2

] [
d(a,Xa)d(a2n+1, a2n+2)

1 + d(a, a2n+1)

]
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Letting n → ∞, we get d(a,Xa) = 0 which gives Xa = a
Similarly,

d(a, Y a) ≾ d(a,Xa2n) + d(Xa2n, Y a)

≾ d(a, a2n+1) +

[
λ(a2n, α) + λ(a, α)

2

]
d(a2n, a)

+

[
µ(a2n, α) + µ(a, α)

2

] [
d(a2n, Xa2n)d(a, Y a)

1 + d(a2n, a)

]
≾ d(a, a2n+1) +

[
λ(a0, α) + λ(a, α)

2

]
d(a2n, a)

+

[
µ(a0, α) + µ(a, α)

2

] [
d(a2n, a2n+1)d(a, Y a)

1 + d(a2n, a)

]
Letting n → ∞, we obtain d(a, Y a) = 0 which gives Y a = a.
The uniqueness follows from conditions (ii) and (iii).

The result for complex valued metric space is obtained by taking µ = 0.

Corollary 2.0.10. Suppose (A, d) is a complete complex valued metric space. De
fine self mappings X, Y : A → A. If ∃ a mapping λ : A × A → [0, 1) such that
∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α),

(ii) d(Xa, Y b) ≾ λ(a, α) + λ(b, α)

2
d(a, b),

(iii) 2λ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A.

Then, X, Y have a unique common fixed point in A.

Corollary 2.0.11. Suppose (A, d) is a complete complex valued metric space and
Define self mapping Y : A → A. Suppose ∃ mappings λ, µ : A× A → [0, 1) such
that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y 2a, α) ≤ λ(a, α), µ(Y 2a, α) ≤ µ(a, α),

(ii) d(Y a, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)+

[
µ(a, α) + µ(b, α)

2

] [
d(a, Y a)d(b, Y b)

1 + d(a, b)

]
,

(iii) 2λ(a, α) + 2µ(a, α) < 1 ∀a ∈ A and for fixed α ∈ a.

Then, Y has a unique fixed point in A.
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Theorem 2.0.12. Suppose (A, d) is a complete complex valued metric space and
Define self mappings X,Y : A → A. Suppose ∃ mappings λ, µ : A × A → [0, 1)
such that ∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α)
µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α),

(ii) d(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a,Xa)d(b, Y b)

d(a, Y b) + d(b,Xa) + d(a, b)

]
∀ a, b ∈ A such that a ̸= b, d(a, Y b) + d(b,Xa) + d(a, b) ̸= 0 where
2λ(a, α) + 2µ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A

or
d(Xa, Y b) = 0 if d(a, Y b) + d(b,Xa) + d(a, b) = 0.

Then, X, Y have a unique common fixed point.

Proof. By equation (2.5) and triangular inequality condition of complex valued
metric space, we have

|d(a2n+1, a2n)| ≤
[
λ(a0, α) + λ(a1, α)

2

]
|d(a2n, a2n−1)|

+

[
µ(a0, α) + µ(a1, α)

2

]
|d(a2n−1, a2n)|

=
1

2
[(λ(a0, α) + λ(a1, α)) + (µ(a0, α) + µ(a1, α))]|d(a2n−1, a2n)|

|d(a2n+1, a2n)| ≤
1

2
[(λ(a0, α) + λ(a1, α)) + (µ(a0, α) + µ(a1, α))]|d(a2n−1, a2n)|

By condition (ii), 2λ(a, α) + 2µ(a, α) < 1 so that h = 1
2
[(λ(a0, α) + λ(a1, α)) +

(µ(a0, α) + µ(a1, α))] < 1. Therefore

|d(a2n+1, a2n)| ≤ h|d(a2n, a2n−1)|

By Lemma 1.8, {an} is a Cauchy sequence. By completeness of A, ∃ a ∈ A such
that an → a as n → ∞.
We now show that a is a fixed point of X and Y .
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By condition (ii) and Proposition 2.1, we have

d(a,Xa) ≾ d(a, Y a2n+1) + d(Y a2n+1, Xa)

= d(a, a2n+2) + d(Xa, Y a2n+1)

≾ d(a, a2n+2) +

[
λ(a, α) + λ(a2n+1, α)

2

]
d(a, a2n+1)

+

[
µ(a, α) + µ(a2n+1, α)

2

] [
d(a,Xa)d(a2n+1, Y a2n+1)

d(a, Y a2n+1) + d(a2n+1, Xa) + d(a, a2n+1)

]
≾ d(a, a2n+2) +

[
λ(a, α) + λ(a1, α)

2

]
d(a, a2n+1)

+

[
µ(a, α) + µ(a1, α)

2

] [
d(a,Xa)d(a2n+1, a2n+2)

d(a, a2n+2) + d(a2n+1, Xa) + d(a, a2n+1)

]
Letting n → ∞,we get d(a,Xa) = 0 which gives Xa = a.
Similarly,

d(a, Y a) ≾ d(a,Xa2n) + d(Xa2n, Y a)

≾ d(a, a2n+1) +

[
λ(a2n, α) + λ(a, α)

2

]
d(a2n, a)

+

[
µ(a2n, α) + µ(a, α)

2

] [
d(a2n, Xa2n)d(a, Y a)

d(a2n, Y a) + d(a,Xa2n) + d(a2n, a)

]
≾ d(a, a2n+1) +

[
λ(a0, α) + λ(a, α)

2

]
d(a2n, a)

+

[
µ(a0, α) + µ(a, α)

2

] [
d(a2n, a2n+1)d(a, Y a)

d(a2n, Y a) + d(a, a2n+1) + d(a2n, a)

]
Letting n → ∞,we get d(a, Y a) = 0 which yields Y a = a.
The uniqueness follows from condition (ii).

By putting X = Y , we get this corollary.

Corollary 2.0.13. Suppose (A, d) is a complete complex valued metric space and
define a self mapping Y : A → A. Let ∃ mappings λ, µ : A×A → [0, 1) such that
∀ a, b ∈ A and for fixed α ∈ A,

(i) λ(Y a, α) ≤ λ(a, α), µ(Y a, α) ≤ µ(a, α),

(ii) d(Y a, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
d(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
d(a, Y a)d(b, Y b)

d(a, Y b) + d(b, Y a) + d(a, b)

]
∀ a, b ∈ A such that a ̸= b, d(a, Y b) + d(b, Y a) + d(a, b) ̸= 0 where
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2λ(a, α) + 2µ(a, α) < 1 ∀a ∈ A and for fixed α ∈ A

or
d(Y a, Y b) = 0 if d(a, Y b) + d(b, Y a) + d(a, b) = 0.

Then, Y T has a unique fixed point.

Proposition 2.0.14. Suppose (A, d) is a complex valued bmetric space with coef
ficient t ≥ 1 and Define a mapping f : C → C such that

(i) f(a) = 0 if and only if a = 0,

(ii) b ≾ a then f(b) ≾ f(a) and f(la +mb) = lf(a) +mf(b) where l, m are
constants.

Then (A, fod) is complex valued bmetric space.

Proof. For all a, b, c ∈ A,

(i) 0 ≾ fod(a, b) as 0 ≾ d(a, b) using condition (ii)
and fod(a, b) = 0 ⇐⇒ f(d(a, b)) = 0 ⇐⇒ d(a, b) = 0 ⇐⇒ a = b

(ii) fod(a, b) = fod(b, a) ⇐⇒ f(d(a, b)) = f(d(b, a)) ⇐⇒ d(a, b) = d(b, a)

(iii) As d(a, b) ≾ t{d(a, c) + d(c, b)} and f(la+mb) = lf(a) +mf(b)
fod(a, b) ≾ t{fod(a, c) + fod(c, b)}

Then, (A, fod) is a complex valued bmetric space.

Example 2.0.15. Let d : A× A → C defined by d(a, b) = |a− b|2 + i|a− b|2.
Clearly, (A, d) is complex valued bmetric space with coefficient t = 2.
Define a function f : C → C as

f(a) =

{
a if a ∈ C− {0}
0 if a = 0

satisfying

(i) f(a) = 0 if and only if a = 0

(ii) b ≾ a then f(b) ≾ f(a) and f(la+mb) = lf(a) +mf(b)

Then, (A, fod) is a complex valued bmetric space.

Let the mappings f, g : C → C be defined such that

(i) f(a) = 0 and g(a) = 0 if and only if a = 0

(ii) b ≾ a then f(b) ≾ f(a), g(b) ≾ g(a) and f(la+mb) = lf(a)+mf(b), g(la+
mb) = lg(a) +mg(b)
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Then, (A, (f + g)od) is a complex valued bmetric space as:

(i) Clearly 0 ≾ ((f+g)od)(a, b) and ((f+g)od)(a, b) = 0 ⇐⇒ (f+g)(d(a, b)) =
0 ⇐⇒ d(a, b) = 0 ⇐⇒ a = b

(ii) ((f+g)od)(a, b) = ((f+g)od)(b, a) ⇐⇒ (f+g)(d(a, b)) = (f+g)(d(b, a)) ⇐⇒
d(a, b) = d(b, a)

(iii) As d(a, b) ≾ t{d(a, c) + d(c, b)} and f(la+mb) = lf(a) +mf(b), g(la+
mb) = lg(a) +mg(b)

(f + g)(d(a, b)) ≾ (f + g)(t{d(a, c) + d(c, b)})
= t{(f + g)(d(a, c)) + (f + g)(d(c, b))}

fod(a, b) ≾ t{fod(a, c) + fod(c, b)}

Similarly, we can prove that (A, (fog)od) and (A, (gof)od) are complex valued
bmetric spaces where fog : C → C and gof : C → C satisfy

(i) fog(a) = 0 and gof(a) = 0 if and only if a = 0

(ii) b ≾ a then fog(b) ≾ fog(a), gof(b) ≾ gof(a) and

fog(la+mb) = l.fog(a) +m.fog(b),

gof(la+mb) = l.gof(a) +m.gof(b)

The mapping d in condition (ii) of Theorem 2.0.3 can be replaced by fod, ((f +
g)od), ((fog)od) and ((gof)od). For instance, the following relation holds:

fod(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
fod(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
fod(a,Xa).fod(b, Y b)

1 + fod(a, b)

]
Similar results can be obtained by replacing the mapping d with the composition of
mappings  fod, ((f + g)od), ((fog)od) and ((gof)od), in Theorems 2.0.5.

Theorem 2.0.16. Let f : C → C be defined as

(1) f(a) = 0 if and only if a = 0

(2) b ≾ a then f(b) ≾ f(a) and f(la+mb) = lf(a) +mf(b)

Suppose (A, fod) is a complete complex valued bmetric space with coefficient t ≥
1 and Define self mappings X,Y : A → A. If ∃ mappings λ, µ : A × A → [0, 1)
such that ∀ a, b ∈ A and for fixed α ∈ A,
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(i) λ(Y Xa, α) ≤ λ(a, α), λ(XY a, α) ≤ λ(a, α)
µ(Y Xa, α) ≤ µ(a, α), µ(XY a, α) ≤ µ(a, α)

(ii) fod(Xa, Y b) ≾
[
λ(a, α) + λ(b, α)

2

]
fod(a, b)

+

[
µ(a, α) + µ(b, α)

2

] [
fod(a,Xa)fod(b, Y b)

1 + fod(a, b)

]

(iii) 2tλ(a, α) + 2µ(a, α) < 1 ∀a ∈ X and for fixed α ∈ A.

Then, X,Y have a unique common fixed point in A.

Proof. Let a, b ∈ A. For fixed α ∈ A,

fod(Xa, Y Xa) ≾
[
λ(a, α) + λ(Xa, α)

2

]
fod(a,Xa)

+

[
µ(a, α) + µ(Xa, α)

2

] [
fod(a,Xa)fod(Xa, Y Xa)

1 + fod(a,Xa)

]
|fod(Xa, Y Xa)| ≤

[
λ(a, α) + λ(Xa, α)

2

]
|fod(a,Xa)|

+

[
µ(a, α) + µ(Xa, α)

2

]
|fod(Xa, Y Xa)|

Similarly,

fod(XY b, Y b) ≾
[
λ(Y b, α) + λ(b, α)

2

]
fod(Y b, b)

+

[
µ(Y b, α) + µ(b, α)

2

] [
fod(Y b,XY b)fod(b, Y b)

1 + fod(Y b, b)

]
|fod(XY b, Y b)| ≤

[
λ(Y b, α) + λ(b, α)

2

]
|fod(Y b, b)|

+

[
µ(Y b, α) + µ(b, α)

2

]
|fod(Y b,XY b)|

Let a0, a1 ∈ X be arbitrary and {an} a sequence defined by

a2n+1 = Xa2n, a2n+2 = Y a2n+1, ∀n = 0, 1, 2, . . .

as defined in Proposition 2.1.
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For all k = 0, 1, 2, . . .,

|fod(a2k+1, a2k)| = |fod(XY a2k−1, Y a2k−1)|

≤
[
λ(Y a2k−1, α) + λ(a2k−1, α)

2

]
|fod(Y a2k−1, a2k−1)|

+

[
µ(Y a2k−1, α) + µ(a2k−1, α)

2

]
|fod(Y a2k−1, XY a2k−1)|

=

[
λ(a2k, α) + λ(a2k−1, α)

2

]
|fod(a2k, a2k−1)|

+

[
µ(a2k, α) + µ(a2k−1, α)

2

]
|fod(a2k, a2k+1)|

≤
[
λ(a0, α) + λ(a1, α)

2

]
|fod(a2k, a2k−1)|

+

[
µ(a0, α) + µ(a1, α)

2

]
|fod(a2k, a2k+1)|

|fod(a2k+1, a2k)| ≤
[

λ(a0, α) + λ(a1, α)

2− (µ(a0, α) + µ(a1, α))

]
|fod(a2k, a2k−1)| (2.0.6)

Similarly, we get

|fod(a2k+2, a2k+1)| ≤
[

λ(a0, α) + λ(a1, α)

2− (µ(a0, α) + µ(a1, α))

]
|fod(a2k+1, a2k)| (2.0.7)

By condition (iii),

h =
λ(a0, α) + λ(a1, α)

2− (µ(a0, α) + µ(a1, α))
< 1.

Therefore, equations (2.0.6) and (2.0.7) respectively become

|fod(a2k+1, a2k)| ≤ h|fod(a2k, a2k−1)|,

|fod(a2k+2, a2k+1)| ≤ h|fod(a2k+1, a2k)|

Hence, for all n ≥ 0,

|fod(a2n+1, a2n)| ≤ h|fod(a2n, a2n−1)|.

From Lemma 1.8, {an} is a Cauchy sequence in (A, fod). By completeness of A,
∃ a ∈ A such that an → a as n → ∞. We now show that a is the common fixed
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point of X and Y . By condition (ii) and Proposition 2.1, we have

fod(a,Xa) ≾ t{fod(a, Y a2n+1) + fod(Xa2n+1, Xa)}
= t{fod(a, a2n+2) + fod(Xa, Y a2n+2)}

≾ t

[
fod(a, a2n+2) +

{
λ(a, α) + λ(a2n+1, α)

2

}
fod(a, a2n+1)

+

{
µ(a, α) + µ(a2n+1, α)

2

}{
fod(a,Xa)fod(a2n+1, Y a2n+1)

1 + fod(a, a2n+1)

}]
≾ t

[
fod(a, a2n+2) +

{
λ(a, α) + λ(a1, α)

2

}
fod(a, a2n+1)

+

{
µ(a, α) + µ(a1, α)

2

}{
fod(a,Xa)fod(a2n+1, a2n+2)

1 + fod(a, a2n+1)

}]
Letting n → ∞, we get fod(a,Xa) = 0 which yields Xa = a.
Similarly,

fod(a, Y a) ≾ t{fod(a,Xa2n) + fod(Xa2n, Y a)}

≾ t

[
fod(a, a2n+1) +

{
0
λ(a2n, α) + λ(a, α)

2

}
fod(a2n, a)

+

{
µ(a2n, α) + µ(a, α)

2

}{
fod(a2n, Xa2n)fod(a, Y a)

1 + fod(a2n, a)

}]
≾ t

[
fod(a, a2n+1) +

{
λ(a0, α) + λ(a, α)

2

}
fod(a2n, a)

+

{
µ(a0, α) + µ(a, α)

2

}{
fod(a2n, a2n+1)fod(a, Y a)

1 + fod(a2n, a)

}]
Letting n → ∞, we have fod(a, Y a) = 0 which gives Y a = a.
The uniqueness follows from conditions (ii) and (iii).



Chapter 3
Conclusions

In this paper, we explained some new results related to common fixed point for a pair
of mappings satisfying more general contraction conditions represented by rational
expressions having point dependent control functions of two variables as coefficient
in complex valued bmetric space. Then we gave related results for composition of
function and complex valued b metric space.
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