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ABSTRACT

In Anthropology there is theory of Evolution by Charles Darwin based on the concept of Survival

of the fittest. So as a consequence of it every living organism be it human beings , animals , insects,

or even micro-organisms like Coronavirus have to adapt , mitigate and become resilient with
environment if they want to survive . That means there is a constant learning with some feedback error
so that the species will introduce desired changes in them. That particular thing (Learning with feedback)
is the backbone of Soft Computing. In light of Bio-Inspired Computing we are dealing with the very
recent algorithm which is Mayfly Algorithm (MA) developed in May -2020 itself . In this project we
have done a thorough review of Mayfly Algorithms and the recent developments happened in the Mayfly

Algorithm and with various future applications of it.
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CHAPTER-1
Introduction

1.1 General

Generally Optimisation problems are broadly classified based on the nature of the objective functions

and constraints. If the objective function and constraint both are linear in nature then the Optimisation
problem is linear and can be easily solved with the help of Linear programming techniques like Simplex,
Ellipsoid and Karmakar’s Interior point method . But in case of Non Linearity if suppose our objective
function or constraints or both of them appears to be containing a non linear term then in that scenario

we go for calculus based optimization techniques but the problem is that these techniques are based on

the intuition to compute derivative and hence finding critical points for to check optimality. So doing
optimization with the help of calculus has two significant issues : (a) Problem of getting stuck in local
optima only (b) for to find derivative we have to check certain properties of function whether this function
exist or not . It’s like saying that to compute a derivative we have to verify that given function is
differentiable or not . So there is a need of going for alternative of derivative based optimization techniques
which are also gradient free optimization techniques . These techniques are called Meta-heuristics search
techniques. These are broadly classified into Evolutionary Intelligence like Genetic Algorithm , Differential

Evolution and Swarm Intelligence like PSO , Firefly Algorithm etc.




1.2 Genetic Algorithm [1]

Genetic Algorithm GA (genetic algorithm) was introduced in the 1960s by Holland and further analyzed
by Goldberg(1989).

It has basically three operators : Crossover , Mutation and Selection operators.

Crossover operator : Used for exploration of the search space.

Mutation operator : Used for exploitation of the search space.

Selection Operator : Used for discretization of the search space.

Crossover : Suppose Parents are abc:de and efg:hi . Then after applying crossover last parts are swapped
then new offsprings are formed which are abchi and efgde respectively .

Mutation : In this we have to accept those offsprings having fitness value strictly greater than parents
otherwise there would be no meaning of evolution of present generation .

1.2.1 Working Of Genetic Algorithm

Initial population

le
Calculate the fitness value

v

Selection

v

Crossover

v

Mutation

s termination criteria
satisfied?

Fig 1.1 Figure depicting working of genetic algorithm

Source Image : Albadr, Musatafa Abbas, et al. "Genetic Algorithm Based on Natural Selection Theory for Optimization
Problems." Symmetry 12.11 (2020): 1758.




NUMERICAL OF GENETIC ALGORITHM

Maximize f(x)=x> with X isin theset {0,1,2,,,...,......30}

Step 1) Generate the initial population at random . these are called chromosomes/genotypes.

Foreg: 01101 is binary code of 13
11000 is binary code of 24
01001 is binary code of 9
10101 is binary code of 21

Step 2) Calculate the fitness values with the help of fitness function which is a cubic function.
Foreg: 13 correspondsto 2197

24 corresponds to 13,824

07 corresponds to 343

18 corresponds to 5,832

F, = Fitness value for the string h in the population.

p, = probability of string h being selected.
n = Number of individuals in the population.
n* p, = Expected Count .

This Method of selection is commonly known as Roulette Wheel Selection .

Table 1.1 SELECTION TABLE

Initial X value Fitness value Expected
Population Count

01101

13

2197

0.336

11000

24

13,824

2.124

01001

09

729

0.112

10101

21

9,261

1.424

26,011

( least discard with highest ie 3" string by 2™ string)

CROSSOVER:

Foreg: 100111101
01011

Thus concatenated offsprings are : 100 01011
101 11101

(An example of one point crossover)




Similary one can we even go for n points if the string has at least n +1 characters.

Table 1.2 Crossover table

Crossover
Point
01101 4th
11000 4th
11|000 2nd

10| 101 2nd

Mating Pool Offsprings after | Integer value
Crossover X

01100 12

11001 25

11101 29

10000 16

F(x) =x°

1,728
15,625
24,389
4,096
45,838

Clearly fitness value is 45,838 much greater than as compared to previous 26,011 due to only selection
operator applied .

MUTATION :

Applied to each child individually after crossover technique.

Bits are changed from 0 to 1 or viceversa 1 to 0 at randomly chosen places of randomly selected
strings.

Since the string number 2 and string number 2 are the highest fitness value obtained in the previous
stage. So No need to alter them.

Table 1.3 Mutation Table

Fitness value

String Number

Offspring after
crossover

Offspring after
Mutation

01100

11100

17,576

11001

11001

15,625

11101

11101

24,389

10000

10100

5,832

63,422




1.2.2 Matlab work of Genetic Algorithm

Using genetic Toolbox

File Help

Problem Setup and Results

Options

Solver: jga - Genetic Algorithm

Problem
Fitness function: @sample_ga

Number of variables: |1

= Population
Population type: | Bit string
Population size: (O Use default: 50 for five or fewer variables, otherwise 200

® Specify: 30

Constraints:

Linear inequalities: A

Linear equalities: Aeq:

Bounds: Lower:
Nonlinear constraint function:
Integer variable indices:

Run solver and view results

Use random states from previous run

Start Pause Stop

Current iteration: |18 Clear Results

Creation function: | Uniform

Initial population: @ Use default: []
O Specify:

(®) Use default: []
O Specify:

® Use default: [-10;
@] Specify:

Initial scores:

Initial range:

= Fitness scaling

Scaling function: Proportional

“Constraint dependent” is not a valid Crossover function value for "PopulationType: Bit string”.
Setting Crossover function to "Scattered”.

Optimization running.

Error running optimization.

Index in position 1 is invalid. Array indices must be positive integers or logical values.

Best: 0 Mean: 0

=
w

Fitness value

40 60 80
Generation

Figl.2 Showing Fitness value vs generation

100

Selection Function

Number of children

9 12 15 18

Individual

21 24 27

Figl.3 Showing selection function using Roulette wheel

El Selection

Selection function: Roulette

= Reproduction
@ Use default: 0.05*PopulationSize
O Specify:

Elite count:

Crossover fraction: O Use default: 0.8

@ Specify: 0.072626

E Mutation

30




1.3 PSO [2]

PSO was initially proposed by Ebehart , Kennedy and Shi in 1995 . It basically optimize the function
based on the behaviour of swarm or group of animals , flies , insects etc. Intution is to update the
velocity and position equations stochastically based on certain random parameters.

1.3.1 Working of PSO

Initialize position and velocity of particles

. 2

» Fitness function evaluations

w
Update global besr and find personal bests

v

Update Vi velocities according to Eq. (1)
Update X7 positions according to Eq. (2)

Termination criteria?

Yes

Fig. 1.4 Flowchart representing the working of PSO

Source Image : Aydilek, Ibrahim Berkan. "A hybrid firefly and particle swarm optimization algorithm for
computationally expensive numerical problems.” Applied Soft Computing 66 (2018): 232-249.




Understanding of PSO with help of Numerical

Velocity Update equation :

Vig =WV, +Clr1(ptb —Xt)+C2I’2(pg _Xt)

Position Update equation can be find out as then :

Xt+l = Xt +Vt+1

Here symbols are as :

t - lteration Number Count
- Random number between 0 and 1

—> pbest position at t iteration

- Velocity at t iteration
-> Position at t iteration
- Inertia weight

-> Correction factors ( parameters)

-> Global best position




NUMERICAL :

Maximize f(X) =X’ —% *X, + X, +2*% +4*X, +3 where -5< X, X, <5.

Here we are taking Population size =5
c,=¢,=15
Max Iteration=20
Dimension of Problem= 2 (Number of linearly independent vectors)
Inertia weight (w) = 0.9

e Since population size =5 . So 5 components are there V,,,V,,,V;5,V,, &V;g
e Similarly V,,V,, Vo3, V,, &V,

For first Iteration :

Randomly choose velocity between 0 and 1.
For position x =L+ rand *(U —L) where L and U can be considered as extreme points of

domain -5 and 5 respectively.
Calculate the fitness value f(x).

Since there is no previous iteration present for comparison. So pbGSt

= X(position) itself.
Calculate g, (P?) . Since our problem is of maximization type . So maximum fitness
Value =48.67 corresponding to that position value will be taken.

0.219 0.224
0.190 0.221 V (Velocity)
0.381 0.321
0.397 0.352
0.093 0.377
v1)  (v2)

3.147 -4.024
4.057 -2.215 X ( Position)
-3.730 0.462
4.133 4.575
1.323 4.648
(x1) (x2)




3.147 -4.024
4057  -2.215 p? ( Personal Best Position)

-3.730 0.462

4,133 4,575

1.323 4.648
(x1) (x2)

[4.133 45751 -=>->- p? (Global Best Position)

Iteration Number -2
For Ist Particle , Ist component we will get using PSO velocity update equation

Which is Egn (1.1)

Vi = WV +C1r1(ptb —Xt)+CZI’2(pg _X’()

Vv, = (0.9%0.291)+(1.5*0.5949)*(3.1472-3.1472)+1.5%(0.085)*(4.138-3.1472)
= 0.3240

Therefore our position using Eqn (1.2) would become

Xt+1 = Xt +Vt+1

X > 3.4712 which belongs to (-5,5)

V ( velocity)

3.471 -2.701 X (Position)
4.239 -1.143
-2.372  1.886
4491  4.894
1.768 4971




27.866
31.032
13.753
53.706
45.565

Clearly , p°best = [4.491 4.894]

e Since 53.706 > 48.675 ( means fitness value of 2" Iteration > fitness value of Ist Iteration)

o p’(best) = [3.147 -4.024

4.057 -2.215
-2.377 1.286
4491 4.8%4
1.768 4.974

The Upper two rows in piID are same as in that fitness value in 2™ iteration less than that of Ist one .
So no need to change.

In last three rows since our 2™ iteration is greater than Ist one so applying greedy based approach we
will change .

REMARK : How to handle boundary violation .

In position update equation if X; doesn’t belongs to given domain say (-5,5) .

Then foreg : If X, =5.2131 clearly doesn’t belongs to (-5,5) we choose 5.000

by default and same goes negative direction as well -5.2131 = -5.000




STOPPING CRITERION :
In these algorithms stopping criterion is said to be reached whenever the difference between

two consecutive iterations become acceptable or permissible .

Similarly we can perform Iteration Number -3

V (velocity ) X (position)

0.133 0.984 3.604 -1.717

0.033 0.782 4293 -0.3611
2.098 1.198 -0.278  2.4848
0.321 0.287 4813  5.000
0.749 0.286 2.151  5.000

p®(gbest) = [4.8137 5.000]




Now we will perform Iteration No :4™

V (velocity) X (position )

0.156 0.869 3.760  -0.848
0.069 0.693 4.342 0.332
2.541 1.401 2.263 3.886
0.289 0.258 5.000 5.000
0.968 0.257 3.488 5.000

p?(gbest) =[5.000 5.000]

e Since still error is not negligible . So we will perform one more iteration.

Iteration Number -5 ;

V ( Velocity) X (Position)

0.160 0.756 3.920 -0.094
0.146 1.222 4.489 1.555
2.638 1.404 4.902 5.000
0.260 0.232 5.000 5.000
1.066 0.231 4.552 5.000




< Optimal value

p?®=Y = [5,000 5.000]

Also the stopping criterion reached as

iter (5th) iter (4th) |__
| fmax T fmax |_

|58 58| =0

Required Answer : X, =5,X, =5, f (X, X,) =58

For our unconstrained, Nonlinear , Maximization type PSO problem.




1.3.2 Matlab work of PSO

Editor - C:\Users\Perfect\ Downloads\psoakash.m

psoakashm ¥ | funm X | #

tic

cle

clear all

close all

rng default

IB=[-5 -5]; %lower hounds of variables

UB=(5 5]; %upper bounds of variables

% pso parameters values

m=2; % number of variables

n=5; % population size

w=0.9; % lnertia weight

cl=1.5; % acceleration factor

c2=1.5; % acceleration factor

§ DS0 MAIN PIOJTall-=================ss=s=ecsmmcsessmeeessseeemsmaeees start
maxite=20; % set maximun number of iteration
maxrun=10; % set maximun number of runs need to be
for run=l:maxrun

run

% pso initialization

for i=l:n

for j=l:m
%0(1,3)=round (LB(j) +rand () * (UB(3)-1B(})));
end

end

x=x0; % initial population
v=0.1*20; % initial velocity
for i=l:n
£0(1,1)=fun(x0(1,:));

end

[fmax0, index0]=max (£0);
phest=x0; % initial phest

% pso initialization--—--—--———————m - end
% pso algorithm
ite=];




while 1te<=maxite && tolerance>10"-12

% pso velocity updates

for i=1:n

for J=1:m

v(i,j)=w*v(i,])+cl*rand()* (pbest(i,j)-x(i,]))..
+c2*rand () * (gbest(1,3)-x(i,3))»

end

end

% pso position update
for i=l:n

for j=1:m
Z(1,3)=x(i,3)+v(i,3);
end

end

-1

% handling boundary viclations

for i=1:n

for j=1:m

if x(i,3)<LB(])
x(1i,3)=LB(3);
elseif x(i,3)>UB(])
®(i,3)=UB(3):

end

end

end

% evaluating fitness
for i=1:n
f(i,1)=fun(zx(i, :)):
end

% updating pbest and fitness

if £(i,1)>f0(4i,1)
phest (i, :)=x(i,:);
fO(i,1)=Ff(i,1);
end
end
[fmax, index]=max (f0); % finding out the best particle
ffmax (ite, run)=fmax; % storing best fitness
ffite(run)=ite; % storing iteration count
% updating gbest and best fitness
if fmax>fmax0
ghest=pbest (index, :);
fmaxO=fmax;
end
% calculating tolerance
if ite>100;
tolerance=abs (ffmin (ite-100, run) -fminl) ;
end
% displaying iterative results
if ite==1
disp (sprintf('Iteration Best particle Objectiwve fun'));
end
fprintf('%0g %0g %0.4f\n',ite, index, fmax0) ;
ite=ite+l;

fvalue=gbest (1) *2-gbest (1) *gbest (2) +gbest (2) ~2+2*gbest (1) +4*gbest (2) +3
fff(run)=£fwvalue;
rgbest (run, : )=gbest;




Plot commands

disp (sprintf ('
end
% pso main program

disp(sprintf('\n"));

"))
[bestfun,bestrun]l=min (fff)

best_variables=rgbest (bestrun, :)

dlSp (Sprintf{'t‘t‘l"l“l‘t‘l"l"l“l‘t‘l"l"t‘l‘t‘l"l“t‘l"l“l"l“l"l"l“l‘t‘l"l"l“l‘t‘l‘tttt‘ttttt‘tttttttttttt‘tt'))’-
toc

% PSO convergence characteristic

plot (ffmax (1:ffite(bestrun),bestrun), '-k");

xlabel ('Iteration');

ylabel ('Fitness function wvalue');

title ("PSO convergence characteristic')

RESULTS:

LR R RS R R ]

Final Result

bestfun

58

bestrun

best_variables =

khkkkkkkkkkkhkkhkkhkkhkhhkbhhhbhhbhkhrhkhrhkdhbhhhrbhrd
Elapsed time is 0.193289 seconds.
L Fig 1.5 Showing Output of our Numerical

4 Figure 1

File Edit View Insert Tools Desktop Window Help

Dcde @08 KE

PSO convergence characteristic

Fitness function value

it Fig 1.6 Showing Convergence graph of our numerical




1.4 Firefly Algorithm [3]

Firefly Algorithm was recently proposed by Yang in 2007. It becomes a special case of PSO
by putting scaling parameter y =0.

1.4.1 Working of Firefly Algorithm

( START |

¥
Initialization of Firefly

|

Objective function evaluation

v

Ranking of Firefly

v

Find the current best function

v

Movement of all Firefly to their better sollution

Print result

l FNN \

Fig 1.7 Representing the working of Firefly Algorithm

Image Source : Kumar, Ram, et al. "Quality factor optimisation of spiral inductor using firefly algorithm and its
application in amplifier." International Journal of Advanced Intelligence Paradigms 11.3-4 (2018): 299-314.




Mathematical Equations of firefly Algorithm

Assumptions :

o All the firelies are unisex that means any firefly can be attracted to any other brighter firefly
regardless of their sex.

Brightness is determined by calculating the fitness value of objective function.

Since we know the fact that intensity of light is inversely proportional to the square of the
distance.

Therefore Variation of attractiveness £ with distance r from source given by

B(r)=pe”™ (1.3)

Position Update equation in case of firefly is given by

X=Xy e’ (XS =X+ (1.4)

Where «, is the random parameter lies between (0,1)
And r; iscalculated as per Eucledian distance norm .

%+ s the vector of random numbers drawn from Gaussian or any statistical distribution
at time t.




1.4.2 Matlab Work of FireFly

Solving the above same question with FA as we did in case of PSO we get :
Maximize f(X)=x"—X*X, +X;+2*x +4*x,+3 where 5< X, X, <5
Algorithm of firefly in MATLAB :

Code of Objective function :

.m
| fireflym | Untitled5 * | Untitleds * | + |
function out = fun(X)

xl X(:,1);

X2 X(:,2);

out = xl.72-x1.%x2+x2.72+2.%x1+4

Code of Firefly Algorithm :

funm | fireflym | Untitleds | Untitleds | + |
- clear all
- clc
= d=2;
n=>5; % Population size (number of fireflies)
Randomness strength 0--1 (highly random)

betal= 0.9; % Attractiveness constant

Ebsorption coefficient
Randomness reduction factor theta=10"(-5/tMax)

gamma=0.9;
theta=0.9;
d=2;

10 iter max=7; % Maximum number of iterations

|
1
2
3
4
5 alpha= 0.9;
&
7
8
9

G oP ol

Number of dimensions

11 ILb=[-5 -5]; % Lower bounds/limits
12 Ub=[5 53]; % Upper bounds/limits
13 for i=1:n
14 for j =1:d
15 popln(i,j)= Lb(:,j)+rand.* (Ub(:,3)-Lb(:,3)) % Randomization
16 end
17 end
18
fx(i)=fun (popln(i, :}):

2
2

alpha=alpha*theta: % Reduce alpha by a factor theta
scale=abs (Ub—-LDb) ; % Scale of the optimization problem
for iter = l:iter max
for i=l:mn
for j=1:n
% BEvaluate the objective wvalues of current solutions
fx(i)=fun(popln(i, :z)); % Call the objectiwve
% Update moves
if fx(i)>fx (7). Brighter/more attractiwve
popln(i, : y=popln (i, :
elseif fx(i)<Ex(])

L S B o B B O R L R S At
[l U TS B+ VT WY S V¥ R 5 ]




Xi= popln(i,:)}-
Xj= popln(j,:)-
r=sgrt(sum((Xi - Xj).~2));

o

beta=betal*exp (—gamma*r."2) ; % Attractiveness

steps=alpha.* (rand(1l,d)-0.5) . *scale;
Xnew=Xitbeta* (¥J-X1i)+steps;
%% Checking Bounds
for k=l:size (¥new, 2)
if Xnew(k)>Ub (k)
¥new (k) =Ub (k) -
elseif Xnew(k)<Lb (k)
¥new(k)=Lb (k) -
end
end
% greedy based approach
fnew=fun (Xnew) ;
if fnew >fx (i)
fx (i) =fnew:
popln (i, :)=Xnew;
end
end
end
end
% Memorizing the solution
[optimumval, cpd]l=max (fx (1)) ;
Bestfnew (iter)=optimumval;
BestX (iter, :)=popln(opd, :);

A mrrm A T TH v+ 2 T srramm et e 2+ )
disp(['Iteration' numZstr(iter)...
': Best Cost = " numZ2str(Bestfnew(iter))1):
plot (Bestfnew, 'Linewidth', 2)
|end

RESULTS OF FIREFLY ALGORITHM :

Iterationl: 25.4845
Iteration2: 41.9805
Iteration3: 41.5805
Iterationd: 58
Iteration5: 58
Iterationé: 58
Iteration7: 58
X >>

Fig 1.8 Showing values in each iteration of Firefly Algo
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Fig .1.9 Showing convergence graph of Firefly where on x axis it number of iteration
And on Y axis representing fitness function value coreeesponding.

REMARK : Since size and dimension of our problem is very small just for simplification and
Ilustration purpose but if we increase the size very large then Firefly algorithm will
better convergence rate can be visible clearly as compare to PSO.




CHAPTER -2
MAYFLY ALGORITHM

2.1 MAYFLY ALGORITHM [4]

Mayfly Algorithm is a very novel algorithm . It is proposed by Zervoudakis and Tsafarakis in
May 2020[4].

Since Mayfly Algorithm is inspired by the mating and the levy flight behaviour of Mayflies. But its
Mathematical model is coming straight from the GA , PSO and FA. So it becomes very essential to
-first understand the these three GA, PSO and FA to get the better understanding of MA. So that’s the
-reason why Chapter -1 Introduction was entirely dedicated for these algorithms . As these algorithms
are serving as a building block for Mayfly Algorithm.

Fig 2.1 Reprsenting the components of Mayfly Algorithm




2.1.1 WORKING OF MAYFLY ALGORITHM

Position Equation of Male mayflies

Xt =x v 1)

Here Xlt is the present position of 1" mayfly at iteration t ; the position is modified with the help of

introduction of a velocity vlt+1 to the just previous position.

Velocity Equation of Male mayflies

t+1

*vi 1 ce”™ (pbest, —xt ) +c,e™ (gbest, — x')
- g j 1 p 1j hj 2 g j j

Vj;

Symbols can be interpreted as :

v, is the velocity of 1™ mayfly in dimension j=1,2, .....n at time step t. X is the position of

I"™ mayfly in dimension j at time step t.

Cc,and C,are attraction constants for scaling the influence of cognitive and social component
respectively.

pbest, is the best position of mayfly 1" had ever visited.

b is visibility coefficient.

r, is the Cartesian distance between X, and pbest, .

Whereas T, is the distance between X, and gbest.

Then the calculation of distances is done by Eqn (2.3)

” X _XI ||:1/i_(x|j _le)2

(Where X, corresponds to pbest, or gbest)




Movement of Female Mayflies :

t+1

Y

t t+1
=YtV

Velocity of Female Mayflies :

g% e OG-y L FO)> f(x)

g*v; +rl*Db’ ; fly)<f(x)

Symbols can be interpreted as :

e Here rl isthe random walk coefficient
e b'israndom value in the range [-1, 1]

e I isthe Cartesian distance between male and female.

Mating Process : With the help of crossover operation children can be generated as :

offspring. = Q*male+(1-Q)*female (2.6)
offspring, = Q*female+(1-Q)*male

where Q is the random value within a specific range.

Male case in multi-objective optimization:.
Remains same as in the case of a single objective.

Female case in multi-objective optimization:

t+1 t —brZ st t i
v _ g*v +ce (X — Vi) if male leads female

g*v, +rl*b’ , Otherwise




FLOW CHART REPRESENTING OF MAYFLY ALGO

J

Initialize the male mayfly swarm position X, (h= 1,2, ..., N) and velocities
v,, Initialize the female mayfly swarm position y, (h= 1,2, ..., M) and velocitiesV , .

Evaluate the fitness function and find the gbest .

|/

Update the Velocities and position for next iteration based on a greedy approach

Rank the Mayflies

Mating of Mayflies and Evaluation of offsprings

Separate the offsprings to male and female. Then substitute the poorest solutions with the
finest new ones and update the pbest and gbest .

Is stopping criteria

reached?

END of Algorithm

Fig.2.2 Explaining the working of MA




2.1.2 Recent developments in MA

1.Hybrid MA-Harmony Search(HS) [5]
e Combines MA and HS
e uses S shape transfer function to change the continuous objective into
binary one.
e Can be used in Feature selection in Al and ML.

2. MA-OBL [6]
e Combines the MA with opposition-based rules.
e Better convergence rate with both multimodal and unimodal benchmark
function as compared to MA.

3.Negative MA [7]
e Considers the worst position of a swarm and tries to implement the
Mayfly in a negative approach.
e Better simulation result only in multimodal and non-symmetric
benchmark functions.

4.Improved MA [8]
e Velocity updation of original MA.
e Useful for both uni and multimodal objective functions.

5. MA-Chebyshev map [9]
e Based on the idea to replace random coefficients with chaotic maps. Here,
Chebyshev maps are used.
e Useful for unimodal functions but with less efficacy as compared to MA.

6. Regrouping MA [10]
e Based on the regrouping of a swarm of mayflies .
e Useful to avoid stagnation during the iterations of MA.

7. Multi-Start MA [11]
e Based on idea to incorporate the Multi start initialization of may-flies .
e Solves the problem of stucking to local optima to some extent.

8. Heterogeneous MA [12]
e Multiple ways to update their position in this heterogeneous type of MA .
e Increased the efficiency of the original algorithm.




CHAPTER-3
COMPARISON AND RESULTS

3.1 BENCHMARK FUNCTIONS

In order to check the consistency, robustness and stability of non gradient optimization
algorithms . It becomes essential thing that they qualify their properties for certain set of
universally acclaimed state-of-the-art benchmark functions.

Benchmark functions are available for Both kinds of objective optimization problem. Be it
Single objective or Multiobjective.

Further benchmark functions are classified into basis of number of modality they posses.
If benchmark function has single point of optimality then that benchmark function is
Unimodal otherwise for multiple optimal points it falls under the category of Multimodal
Benchmark functions.

3.2 Matlab Work of Benchmark functions

Unimodal Functions

e Sphere function :

B
Fl(X) = Z X|2

Where
~10< x, <10

Matlab code of sphere function
1-  x = linspace(-10,10,100);

2-  surf](sphereFN(x))




Surface plot of sphere function

Fig3.1 Showing surface plot of sphere benchmark function

Contour Plot :
x = linspace(-10,10,100);
contour(sphereFN(x))

i 1 t
10 20 30 40 50

Fig.3.2 Showing the contour plot of sphere function




e RosenBrock Function :

F(X) = f[lOO(Xm - X|2)2 +(1-x )’]

Matlab Code of Rosenbrock Valley function:

b4 Editor - C\Users\Perfect\Desktop\Untitled6.m
| Untitled6.m | + |
— [¥,Y]=meshgrid(-2:0.1:2);

7=100% (Y-X."2) .2+ (ones (size (X)) -X)."2;
= surf (¥,Y,2)

Surface Plot of Rosenbrock Valley function :

Fig 3.3 Showing surface plot of rosenbrock function

Contour Plot of Rosenbrock Function

’ or — NUISETS P

|‘ Untitled6.m [ contourrosenbrock.m

1 — [, ¥]=meshgrid(—2:0.1:2)

2 = E=100% (Y—-X."~2) .2+ (ones (size (X)) —-X) ."~2;
3 — contour (X, ¥, %)

Fig.3.4 Representing the Contour curves of Rosenbrock function




Multimodal

Rastringin Function :

F(x)=10+ ﬁ:[xf —10*cos(27x))]

Matlab code of rastringin

[¥,Y]=meshgrid(-2:0.1:2);
2=10 +(square(¥X) - 10%cos(2%pi*X));
surf (¥,¥Y,2)

Surface Plot of rastringin

Fig.3.5 Showing Surface Plot of Rastringin function




3.3 COMPARISON OF MA with PSO, GA, and FA. .

Table.3.1 MA with PSO and GA. Below we consider average run.[4]

Function ID GA PSO MA

F1 1.73e-02 1.63e-07 1.17e-07
F2 1.82¢+02 6.33¢+01 6.77¢+01
F3 2.83e+01 8.18e+01 1.19e+01

Table.3.2 MA with FA on rastringin[4]

Statistics Firetly (FA) Mavtly (MA)
Best run 1.34¢+02 5.96¢+00
Avg run 1.78e+02 1.19e+01
Worst run 2.48e+02 2.18e+01

OBSERVATIONS : which can be inferred from the above tables

e MA dominates firefly in all three scenarios of best , worst and mean.

MA dominates in terms of superiority in case of PSO , GA on sphere and rastringin.

But PSO showed slightly better average convergence rate in case of rosenbrock.




3.4 CONVERGENCE GRAPHS OF MAYFLY

Matlab work of Mayfly

| MayflyAlgorithm.m |+
cle; clear; close all;
%% Problem Definition

% Objective Function

ANSWER=1istdlg ('PromptString', 'Choose Objective Function', 'SelectionMode','single', 'ListString', {'l. Sphere', '2. Rastrigin'});
if eq(RANSWER,1); ObjectiveFunction=@(x) Sphere(x); funcname='Sphere';
elseif eqg(ANSWER,2): ObjectiveFunction=@(x) Rastrigin(x); funcname='Rastrigin';
else; disp('Terminated'); return

end

ProblemSize=[1 50]: % >ision Variabl Size
LowerBound=-10; % on Var 1 Lower Bound
UpperBound= 10; B ¢ Upper Bound

%% Mayfly Parameters

methname="Mayfly Algorithm';

MaxIt=200; % Maximum Number of Iterations

nPop=20; nPopf=20; % Population Size (males and females)
g=0.8; % Inertia Weight

gdamp=1; % Inertia Weight Damping Ratio

al=1.0; % Personal Learning Coefficient

a2=1.5; a3=1.5; % Global Learning Coefficient

beta=2; % Distance sight Coefficient

dance=5; % Nuptial Dance

f1=1; % Random flight

dance_damp=0.8; % Damping Ratio

£l damp=0.99;

% Mating Parameters

nc=20; % Number of Offsprings (also Parnets)
nm=round (0.05*nPop) ; % Number of Mutants

mu=0.01; % Mutation Rate

|
% velocity Limits]
VelMaxz=0.1*% (UpperBound-LowerBound) ; VelMin=-VelMax;
%% Initialization

empty mayfly.Position=[];
empty mayfly.Cost=[];
empty mayfly.Velocity=[];
empty mayfly.Best.Position=[];
empty mayfly.Best.Cost=[]:
Mayfly=repmat (empty mayfly,nPop,1):
Mayflyf=repmat (empty mayfly,nPopf,1);
GlobalBest.Cost=inf;
funccount=0;
for i=1:nPop
% Initialize Position of Males
Mayfly (i) .Position=unifrnd (LowerBound, UpperBound, ProblemSize) ;
% Initialize Velocity
Mayfly (i) .Velocity=zeros (ProblemSize);
% Evaluation
Mayfly (i) .Cost=0bjectiveFunction (Mayfly (i) .Position);
% Update Personal Best
Mayfly (i) .Best.Position=Mayfly(i).Position;
Mayfly (i) .Best.Cost=Mayvfly (i) .Cost;
funccount=funccount+1;
% Update Global Best
if Mayfly (i) .Best.Cost<GlobalBest.Cost
GlobalBest=Mayfly (i) .Best;
end




end

for i=1:nPopf
% Initialize Position of Females

Mayflyf (1) .Position=unifrnd(LowerBound, UpperBound, ProblemSize) ;

Mayflyf (i) .Velocity=zeros (ProblemSize) ;

Mayflyf (i) .Cost=0bjectiveFunction (Mayflyf(i).Position);

funccount=funccount+1;

Update Global Best (Uncomment if you use the PGB-IMA version)

if Mayflyf (i) .Best.Cost<GlobalBest.Cost
GlobalBest=Mayflyf (i) .Best;

a\?  &®  o®  ol@
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end
BestSolution=zeros (MaxIt,1);
%% Mayfly Main Loop
for it=1:MaxIt
for i=1:nPopf
% Update Females
e=unifrnd(-1,+1, ProblemSize);

rmf=(Mayfly (i) .Position-Mayflyf(i).Position);
if Mayflyf(i).Cost>Mayfly(i).Cost
Mayflyf (i) .Velocity = g*Mayflyf(i).Velocity

+ald*exp (-beta.*rmf.*2) .* (Mayfly (i) .Position-Mayflyf (1) .Position) ;
else
Mayflyf (i) .Velocity = g*Mayflyf (i) .vVelocity+fl™*(e);

end

% hpply Velocity Limits

Mayflyf (i) .Velocity = max (Mayflyf(i).velocity,VelMin);
Mayflyf (i) .Velocity = min (Mayflyf (i) .Velocity, VelMax);
% Update Position
Mayflyf(i).Position = Mayflyf(i).Position + Mayflyf(i).Velocity;
% Velocity Mirror Effect
%$Isoutside=(Mayflyf (i) .Position<LowerBound Mayflyf (i) .Position>UpperBound) ;
tMayflyf (i) .Velocity(IsOutside)=-Mayflyf(i).Velocity(IsCutside);
% Position Limits
Mayflyf (i) .Position max (Mayflyf (i) .Position, LowerBound) ;
Mayflyf (i) .Position min (Mayflyf (i) .Position, UpperBound) ;
% Evaluation
Mayflyf (i) .Cost = ObjectiveFunction (Mayflyf(i).Position);
funccount=funccount+1;

Update Global Best (Uncomment if you use the PGB-IMA version)
if Mayflyf (i) .Best.Cost<GlobalBest.Cost

GlobalBest=Mayflyf (i) .Best;
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i=1l:nPop

% Update Males

rpbest=(Mayfly (i) .Best.Position-Mayfly (i) .Position);

rgbest=(GlobalBest.Position-Mayfly (i) .Position);

e=unifrnd(-1,+1, ProblemSize);

% Update Velocity

if Mayfly (i) .Cost>GlobalBest.Cost

Mayfly (i) .Velocity = g*Mayfly (i) .Velocity ...

+al*exp(-beta.*rpbest.”2).* (Mayfly (i) .Best.Position-Mayfly (i) .Position)
+a2%exp(-beta.*rgbhest.”2).* (GlobalBest.Position-Mayfly (i) .Position);




else

Mayfly (i) .Velocity = g*Mayfly (i) .Velocity+dance* (e);
end
% Bpply Velocity Limits
Mayfly (i) .Velocity = max (Mayfly (i) .velocity,VelMin);
Mayfly (i) .Velocity min (Mayfly (i) .Velocity, VelMax) ;
% Update Position
Mayfly(i).Position = Mayfly (i) .Position + Mayfly(i).velocity;

ity Mirror Effect

Outside=(Mayfly (i) .Position<LowerBound | Mayfly(i).Position>UpperBound) ;
EMayfly (i) .Velocity (IsOutside)=-Mayfly (i) .Velocity (Isoutside);
% Position Limits
Mayfly(i).Position = max (Mayfly(i).Position,LowerBound);
Mayfly (i) .Position = min (Mayfly (i) .Position, UpperBound);

o

% Evaluation

Mayfly (i) .Cost = ObjectiveFunction (Mayfly (i) .Position);

funccount=funccount+1;

% Update Personal Best

if Mayfly (i) .Cost<Mayfly(i).Best.Cost
Mayfly (i) .Best.Position=Mayfly(i).Position;
Mayfly (i) .Best.Cost=Mayfly (i) .Cost;
% Update Global Best
if Mayfly(i).Best.Cost<GlobalBest.Cost

GlobalBest=Mayfly (i) .Best;

end

end

end

[~, SortMayflies]=sort([Mayfly.Cost]);
Mayfly=Mayfly(SortMayflies);
[~, SortMayflies]=sort([Mayflyf.Cost]):
Mayflyf=Mayflyf (SortMayflies);
% MATE
MayflyOffspring=repmat (empty mayfly,nc/2,2);
for k=l:nc/2
% Select Parents
il=k;
iz=k;
pl=Mayfly(il);
p2=Mayflyf (i2);
% Apply Crossover
[MayflyOffspring(k,1l) .Position, MayflyQOffspring(k,2).Position]=Crossover (pl.Position,p2.Position,LowerBound,UpperBound):
% Evaluate Offsprings
MayflyOffspring(k,1) .Cost=ObjectiveFunction (MayflyOffspring(k,1).Position);
if Mayflyoffspring(k,1).Cost<GlobalBest.Cost
GlobalBest=Mayflyoffspring(k,1);
end
funccount=funccount+1;
MayflyOoffspring(k,2) .Cost=0ObjectiveFunction (Mayflyoffspring(k,2).Position);
if Mayflyoffspring(k,2).Cost<GlobalBest.Cost
GlobalBest=MayflyOffspring(k,2):
end
funccount=funccount+1;
Mayflyoffspring(k, 1) .Best.Position = Mayflyoffspring(k,1).Position;
Mayflyoffspring(k, 1) .Best.Cost = Mayflyoffspring(k,1).Cost;
Mayflyoffspring(k, 1) .Vvelocity= =zeros (ProblemsSize) ;
Mayflyoffspring(k, 2) .Best . Position = Mayflyoffspring(k, 2) .Position:
Mayflyvoffspring(k, 2) .Best . Cost = Mavyflvoffspring(k, 2) .Cost;
Mayvflyvoffspring(k, 2) . Velocity= =zeros (ProblemSize)
end
MayflyOoffspring=MayflyOoffspring(:) 7
% Mutation
MutMayflies=repmat (empty mayfly,nm, 1) 7
for k=1:nm
% Select Parent
i=randi([1 nPopl)
p=Mayflyoffspring (i) -
Sp=Mayfly (i) -
MutMayflies (k) . Position=Mutate (p.Position,mu, LowerBound, UpperBound) ;
%= BEvaluate Mutant
MutMayflies (k) . Cost=0bJjectiveFunction (MutMayflies (k) . Position) -
if MutMayiflies (k) .Cost<GlobalBest.Cost
GlobalBest=MutMayflies (k) -
end
MutMayflies (k) .Best.Position = MutMayflies (k) .Position:
MutMayflies (k) .Best.Cost = MutMayflies (k) .Cost;
MutMayflies (k) . Velocity= =zeros (ProblemSize) ;
end
% Create Merged Population
Mayflyoffspring=[Mayflyoffspring
MutMayflies]l: T#ok
split=round((size (Mayflyvoffspring, 1)) ./2)




end

newmayflies=MayflyOoffspring(l:split);
Mayfly=[Mayfly
newmayflies]; %#ok

newmayflies=Mayflyoffspring(split+l:size (Mayflyoffspring,1));

Mavflyf=[Mayflyf

newmayflies]; %#ock
[~, SortMayflies]=sort([Mayfly.Cost]);
Mayfly=Mayfly (SortMayflies);
Mayfly=Mayfly(l:nPop); % Keep best males
[~, SortMayflies]=sort([Mayflyf.Cost]);:
Mayflyf=Mayflyf (SortMayflies);
Mayflyf=Mayflyf (l:nPopf); % EKeep best females
BestSolution(it)=GlobalBest.Cost;
disp([methname ' on the ' funcname ' Function:
g=g*gdamp;
dance = dance*dance_damp;
fl1 = f1*fl damp;

%% Results
figure;
plot (BestSolution, 'LineWidth',2); semilogy (BestSolution, 'LinewWidth',2);

Iteration =

xlabel ('Iterations'); ylabel('Objective function'); grid on;

%

function [0ffl, off2]=Crossover (xl,x2,LowerBound,UpperBound)
L=unifrnd (0,1, size(xl)):
offl=L.*xl+(1-L).*=x2;
of £2=L.%x2+ (1-L) . *x1;

Position Limits

num2str (it)

'
’

' funcname

offl=max (offl, LowerBound); offl=min(offl, UpperBound):;

off2=max (off2, LowerBound) ; off2=min(off2, UpperBound) ;

end
%%

function y=Mutate (x,mu, LowerBound, UpperBound)

nvVar=numel (¥) ;
nmu=ceil (mu*nvar) ;
j=randsample (nVar, nmu) ;

sigma (1:nVar)=0.1*% (UpperBound-LowerBound) ;

Y=,

y(J)=x(j)+sigma(j) * (randn(size(j))");
y=max (¥, LowerBound) ; y=min (v, UpperBound) ;

end

5%

function z=Sphere (x)
z=sum(x.”2);

end

function z=Rastrigin (x)
n=numel (x) ;

B=10;

z=n*RA+sum(x."2-A*cos (2*pi*x));
end

'
r

Evaluations




Results of Mayfly in case of Sphere ( unimodal function)

For iterations = 100

Iteration = 1, Sphere, Evaluations = 100. Best Cost 700.455
Iteration = 2, Sphere, Evaluations 160. Best Cost 437.4814
Iteration 3, Sphere, Evaluations = 220. Best Cost 308.7689
Iteration = 4, Sphere, Evaluations 280. Best Cost 212.4862
Iteration 5, Sphere, Evaluations 340. Best Cost 157.2799
Iteration = 6, Sphere, Evaluations 400. Best Cost 92.0261
Iteration 7, Sphere, Evaluations 460. Best Cost 76.4375
Iteration 8, Sphere, Evaluations = 520. Best Cost 49.4866
Iteration = 9, Sphere, Evaluations 580. Best Cost 46.8509
Iteration Sphere, Evaluations 640. Best Cost = 41,9728
Iteration 11, Sphere, Evaluations 700. Best Cost 35.188
Iteration Sphere, Evaluations 760. Best Cost = 32.7997
Iteration = Sphere, Evaluations 820. Best Cost 29,0739
Iteration Sphere, Evaluations 880. Best Cost = 23.9193
Iteration Sphere, Evaluations 940. Best Cost 21.4393
Iteration Sphere, Evaluations 1000. Best Cost .2108
Iteration Sphere, Evaluations 1060. Best Cost .5022
Iteration Sphere, Evaluations 1120. Best Cost .7501
Iteration Sphere, Evaluations 1180. Best Cost .8442
Iteration = Sphere, Evaluations 1240. Best Cost .0708
Iteration = Sphere, Evaluations 1300. Best Cost .54893
Iteration = Sphere, Evaluations 1360. Best Cost L2046
.863
L7606
.5073
8966
4739
179
L7568
L2327
L7906
.581
.1818
.6519
.4394
.9931
.7998
.6699
.5773
L4714
.3174
.2543
.1514
.5549
.8729
.7355
.652
.5993
.4997
.4206
.393e
L3334
.2776
.2541
.2249
.2007
L1714
.056
.99098
.52165
.B8258

Iteration = &2, Sphere, Evaluations = 27&0. Best = 0.
Iteration €3, Sphere, Evaluations 3820. Best =
Iteration €4, Sphere, Evaluations 3880. Best =
Iteration €5, Sphere, Evaluations 3940. Best
Iteration €6, Sphere, Evaluations 4000. Best
Iteration 67, Sphere, Evaluations . Best
Iteration 68, Sphere, Evaluations . Best
Iteration 69, Sphere, Evaluations . Best
Iteration 70, Sphere, Evaluations . Best
Iteration 71, Sphere, Evaluations . Best
Iteration 72, Sphere, Evaluations . Best
Iteration 73, Sphere, Evaluations . Best
Iteration 74, Sphere, Evaluations . Best
Iteration 75, Sphere, Evaluations . Best
Iteration 76, Sphere, Evaluations . Best
Iteration = 77, Sphere, Evaluations = . Best

=]

Iteration = Sphere, Evaluations 1420. Best Cost
Iteration = Sphere, Evaluations 1480. Best Cost
Iteration Sphere, Evaluations 1540. Best Cost
Iteration = Sphere, Evaluations 1600. Best Cost
Iteration = Sphere, Evaluations 1660. Best Cost
Iteration Sphere, Evaluations 1720. Best Cost
Iteration = Sphere, Evaluations 1780. Best Cost
Iteration Sphere, Evaluations 1840. Best Cost
Iteration Sphere, Evaluations 1900. Best Cost
Iteration Sphere, Evaluations 1%960. Best Cost

8
7
€.
6.
6.
5
5
4

Iteration Sphere, Evaluations 2020. Best Cost
Iteration = Sphere, Ewaluations 2080. Best Cost
Iteration = Sphere, Ewvaluations 2140. Best Cost
Iteration = Sphere, Evaluations = 2200. Best Cost
Iteration Sphere, Evaluations 22¢0. Best Cost
Iteration Sphere, Evaluations 2320. Best Cost
Iteration = Sphere, Ewaluations 2380. Best Cost
Iteration = Sphere, Evaluations = 2440. Best Cost
Tteration = Sphere, Evaluations = 2500. Best Cost
Iteration = Sphere, Ewaluations 2560. Best Cost
Iteration = Sphere, Ewvaluations 2620. Best Cost
Iteration = Sphere, Evaluations = 2680. Best Cost
Iteration = Sphere, Evaluations = 2740. Best Cost
Tteration = Sphere, Evaluations = 2B800. Best Cost
Iteration = Sphere, Ewaluations 2860. Best Cost
Iteration = Sphere, Ewvaluations 2920. Best Cost
Tteration = Sphere, Evaluations = 29%30. Best Cost
Iteration = Sphere, Ewvaluations = 3040. Best Cost
Iteration Sphere, Ewvaluations 3100. Best Cost
Iteration 52, Sphere, Evaluations 3160. Best Cost
Iteration 53, Sphere, Evaluations 3220. Best Cost
Tteration = 54, Sphere, Evaluations = 3280. Best Cost
Iteration 55, Sphere, Ewvaluations = 3340. Best Cost
Iteration 56, Sphere, Evaluations 3400. Best Cost
Iteration 57, Sphere, Evaluations 3460. Best Cost
Iteration 58, Sphere, Evaluations 3520. Best Cost
Iteration = 59, Sphere, Evaluations = 3580. Best Cost
Iteration = 60, Sphere, Evaluations = 3640. Best Cost
Iteration 61, Sphere, Evaluations 3700. Best Cost
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Iteration Sphere, Evaluations 4720. Best Cost .478
Iteration Sphere, Evaluations 4780. Best Cost .46025
Iteration Sphere, Evaluations 4340, Best Cost .43501
Iteration 81, Sphere, Evaluations 4800. Best Cost .41383
Iteration 82, Sphere, Evaluations 4860. Best Cost .409827
Iteration 83, Sphere, Evaluations 5020. Best Cost .3891
Iteration 84, Sphere, Evaluations 5080. Best Cost .38804
Iteration 85, Sphere, Evaluations 5140. Best Cost .38156
Iteration 86, Sphere, Evaluations 5200. Best Cost .37944
Iteration 87, Sphere, Evaluations 5260. Best Cost .37012
Iteration 38, Sphere, Evaluations 5320. Best Cost .36544
Iteration 39, Sphere, Evaluations 5380. Best Cost .36328
Iteration 90, Sphere, Evaluations 5440. Best Cost .35623
Iteration 91, Sphere, Evaluations 5500. Best Cost .35054
Iteration 92, Sphere, Evaluations 5560. Best Cost .3455
Iteration 93, Sphere, Evaluations 5620. Best Cost .3383
Iteration 94, Sphere, Evaluations 5680. Best Cost .33351
Iteration 95, Sphere, Evaluations 5740. Best Cost .31718
Iteration 96, Sphere, Evaluations 5800. Best Cost .3088
Iteration 97, Sphere, Evaluations 5860. Best Cost .30237
Iteration 98, Sphere, Evaluations = 59%20. Best Cost .25933
Iteration 99, Sphere, Evaluations = 5980. Best Cost .268413
Iteration 100, Sphere, Evaluations = €040. Best Cost = 0.27443
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Fig.3.6 Showing convergence of MA on Sphere objective function




Results of MA in case of Rastringin (multimodal)

Iteration = 1, Rastrigin, Evaluations = 100. Best Cost = 1216.2473
Iteration = 2, Rastrigin, Evaluations = 16é0. Best Cost 940.9884

Iteration = 3, Rastrigin, Evaluations = 220. Best Cost 713.8422

Iteration 4, Rastrigin, Evaluations = 280. Best Cost 637.3465

Iteration 5, Rastrigin, Evaluations 340. Best Cost 521.4825

Iteration = 6, Rastrigin, Evaluations = 400. Best Cost = 521.4825

Iteration 7, Rastrigin, Evaluations 460. Best Cost 521.4825

Iteration 8, Rastrigin, Evaluations 520. Best Cost 467.0568

Iteration = 9, Rastrigin, Evaluations = 580. Best Cost 464.7963

Iteration = 10, Rastrigin, Evaluations = €40. Best Cost = 464.7963
Iteration = 11, Rastrigin, Evaluations = 700. Best Cost = 436.9671
Iteration 12, Rastrigin, Evaluations = 760. Best Cost 431.9787
Iteration = 13, Rastrigin, Evaluations = 820. Best Cost 409.7375
Iteration 14, Rastrigin, Evaluations = 880. Best Cost 409.7375
Iteration = 15, Rastrigin, Evaluations = %40. Best Cost 335.0713
Iteration = 16, Rastrigin, Evaluations = 1000. Best Cost .0713
Iteration = 17, Rastrigin, Evaluations = 1060. Best Cost .8916
Iteration 18, Rastrigin, Evaluations = 1120. Best Cost .422
Iteration 1%, Rastrigin, Evaluations = 1180. Best Cost _7589
Iteration 20, Rastrigin, Evaluations = 1240. Best Cost .4518
Iteration 21, Rastrigin, Evaluations = 1300. Best Cost .4681
Iteration 22, Rastrigin, Evaluations = 1360. Best Cost .7332
Iteration 23, Rastrigin, Evaluations = 1420. Best Cost .7332
Iteration 24, Rastrigin, Evaluations = 1480. Best Cost 24817
Iteration 25, Rastrigin, Evaluations = 1540. Best Cost L1273
Iteration = 26, Rastrigin, Evaluations = 1600. Best Cost = .B694
Iteration = 27, Rastrigin, Evaluations = 1660. Best Cost = .0287
Iteration = 28, Rastrigin, Evaluations = 1720. Best Cost = .6155
Iteration = 29, Rastrigin, Evaluations = 1780. Best Cost .5666

Iteration = 30, Rastrigin, Evaluations = 1840. Best Cost = _2855
Iteration 31, Rastrigin, Evaluatiens = 1900. Best Cost .4238

Iteration 32, Rastrigin, Evaluations = 1960. Best Cost .1235
Iteration = 33, Rastrigin, Evaluations = 2020. Best Cost = .4768
Iteration 34, Rastrigin, Evaluations = 2080. Best Cost = .4201
Iteration 35, Rastrigin, Evaluations = 2140. Best Cost = .6282
Iteration = 36, Rastrigin, Evaluations = 2200. Best Cost = .8133
Iteration 37, Rastrigin, Evaluations = 2260. Best Cost = .6992
Iteration 38, Rastrigin, Evaluatiens = 2320. Best Cost = .8117
Iteration 39, Rastrigin, Evaluatiens = 2380. Best Cost = .7357
Iteration 40, Rastrigin, Evaluations = 2440. Best Cost = .6741
Iteration = 41, Rastrigin, Evaluations = 2500. Best Cost = .1876
Tteration = 42, Rastrigin, Evaluations = 2560. Best Cost = .1691
Iteration 43, Rastrigin, Evaluations = 2620. Best Cost = .6333
Iteration = 44, Rastrigin, Evaluations = 2680. Best Cost = .8382
Iteration 45, Rastrigin, Evaluations = 2740. Best Cost = .381
Iteration 46, Rastrigin, Evaluations = 2800. Best Cost = .7237
Iteration 47, Rastrigin, Evaluations = 2860. Best Cost = .7965
Iteration 48, Rastrigin, Evaluations = 2920. Best Cost = .7965
Iteration = 489, Rastrigin, Evaluations 29880. Best Cost .4482
Tteration = 50, Rastrigin, Evaluations = 3040. Best Cost = 4482
Iteration 51, Rastrigin, Evaluations = 3100. Best Cost = L1392
Iteration 52, Rastrigin, Evaluations = 3160. Best Cost = .545
Iteration 53, Rastrigin, Evaluations 3220. Best Cost .7112
Iteration = 54, Rastrigin, Evaluations = 3280. Best Cost = .713
Iteration 55, Rastrigin, Evaluatiens = 3340. Best Cost = .8119
Iteration 56, Rastrigin, Evaluations = 3400. Best Cost = .457
Iteration = 57, Rastrigin, Evaluations = 3460. Best Cost = .8769
Iteration 58, Rastrigin, Evaluations = 3520. Best Cost = .0072
Iteration 59, Rastrigin, Evaluations = 3580. Best Cost = .8582
Iteration = 60, Rastrigin, Evaluations = 3640. Best Cost = .9999
Iteration 61, Rastrigin, Evaluations = 3700. Best Cost . 605
Iteration 62, Rastrigin, Evaluations = 3760. Best Cost .1288
Iteration 63, Rastrigin, Evaluations = 3820. Best Cost L6212
Iteration 64, Rastrigin, Evaluations = 3880. Best Cost L6302
Iteration 65, Rastrigin, Evaluations = 3940. Best Cost 23134
Iteration 66, Rastrigin, Evaluations = 4000. Best Cost .3896
Iteration 67, Rastrigin, Evaluations 4060. Best Cost .5628
Iteration 68, Rastrigin, Evaluations 4120. Best Cost .8004
Iteration = 69, Rastrigin, Evaluations = 4180. Best Cost .7743
Iteration 70, Rastrigin, Evaluations 4240. Best Cost .5841
Iteration 71, Rastrigin, Evaluations 4300. Best Cost .175
Iteration 72, Rastrigin, Evaluations 4360. Best Cost .5624
Iteration 73, Rastrigin, Evaluations 4420. Best Cost . 6405
Iteration 74, Rastrigin, Evaluations 4480. Best Cost _6678
Iteration 75, Rastrigin, Evaluations 4540. Best Cost .0274
Iteration = 76, Rastrigin, Evaluations = 4600. Best Cost .7723
Iteration 77, Rastrigin, Evaluations 4660. Best Cost .4553
Iteration 78, Rastrigin, Evaluations 4720. Best Cost .1237
Iteration = 79, Rastrigin, Evaluations = 4780. Best Cost .7057
Iteration 80, Rastrigin, Evaluations 4840. Best Cost .308
Iteration 81, Rastrigin, Evaluations 4900. Best Cost .378
Iteration 82, Rastrigin, Evaluations 4960. Best Cost .378
Iteration 83, Rastrigin, Evaluations 5020. Best Cost .378
Iteration 84, Rastrigin, Evaluations 5080. Best Cost .378
Iteration 85, Rastrigin, Evaluations 5140. Best Cost .378

Iteration = 86, Rastrigin, Evaluations = 5200. Best Cost .378
Iteration 87, Rastrigin, Evaluations 5260. Best Cost .378
Iteration 88, Rastrigin, Evaluations = 5320. Best Cost .378
Iteration 89, Rastrigin, Evaluations = 5380. Best Cost .378
Iteration 90, Rastrigin, Evaluations = 5440. Best Cost .378
Iteration 91, Rastrigin, Ewaluations = 5500. Best Cost .378

Iteration 92, Rastrigin, Evaluations = 5560. Best Cost .378
Iteration = 93, Rastrigin, Evaluations = 5620. Best Cost = .378
Iteration = 94, Rastrigin, Evaluations = 5680. Best Cost .378
Iteration = 95, Rastrigin, Evaluations = 5740. Best Cost .378
Iteration 96, Rastrigin, Evaluations = 5800. Best Cost .378
Iteration 97, Rastrigin, Evaluations = 58€0. Best Cost .378
Iteration 98, Rastrigin, Ewvaluations = 59%20. Best Cost .378
Iteration 99, Rastrigin, Evaluations = 5960. Best Cost .378
Iteration 100, Rastrigin, Evaluations = €040. Best Cost = 82.378
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Fig.3.7 Shows convergence graph of MA in Multimodal function




CHAPTER- 4
APPLICATIONS OF MAYFLY ALGORITHM

Table4.1 Applications of MA

DOMAIN

APPLICATIONS

1. Artificial Intelligence

In neural networks like optimization of
weights of neural nets.

Can better work in tuning of parameters
as compare to GA.

Hence can be used in the wide field of
Robotics , Automation and Soft
Computing.

2.0ptimization

In finding optimal solution of NP hard
and NP complete problems like
Travelling salesman problem,Knapsack
problem, other routing and scheduling
problems.

3.Multiobjective Optimisation based Engineering
problems

Like in various structural engineering
problems,VVLSI designing , mechanical
and instrumentation problems.

4. Operational Research

Can easily handle big size constrained
and unconstrained optimization problems.

Like of Economics planning,
multicriterion decision making, Statistical
Quality control , inventory problems etc.

5.Data Mining and Machine learning

Can be used in ML techniques to
minimize the learning error in place of
gradient descent or conventional
evolutionary algorithms.

Can be used in data mining techniques

as it can work better for multimodal
functions. Also MA is good alternative to
Firefly algorithm in the solving problem
of reduction of dimension or size of data .
FEATURE SELECTION.

Prediction , Forecasting and Projection
Analysis.

6. Fuzzy Inference Systems and Clustering

Can be used as integrated approach in
fuzzy logic based inference systems to
increase the efficiency of the device.

In design of Hybrid Neural-Fuzzy
systems.




CHAPTER -5
CONCLUSION AND FUTURE PROSPECTS

5.1 ADVANTAGES OF MA

Bypass the problem of getting caught in local optima due to exploration and exploitation of
complete search space.[4]

Suitable for both single objective and Multi-objective optimization problems .

Multiobjective MA can better handle the Pareto front as compare to NSGA-II. So it can be
widely deployed in those problems having two or more objective functions.

Even though it seems difficult for other landmark algorithms like GA, PSO, etc. to locate
global optima. MA located superior values on various state-of-the-art test functions including
both unimodal as well as Multi-modal benchmark functions.

With the same resources, it has better efficiency, consistency, and convergence rate as
compared to previous algorithms (GA, FA, PSO, etc.).

It can tackle both continuous and discrete optimization problems.

CHALLENGES OF MA

Premature Convergence.
Problem of feature selection.
Problem of stucking to local optima still prevails.

Velocity updation may cause stability issues due to change in existing solutions.

5.3 FUTURE PROSPECTS

After doing a review of the MA and the recent developments that happened in MA. We are in
a position to say that MA is a better algorithm as compared to the previous landmark
algorithms like PSO, GA, and FA.

By the virtue of the No Free Lunch Theorem, it becomes essential to dig further so to improve
the loopholes of the present algorithm and make it more robust to wider applications.

So the scope of further improvements and research haven’t been finished yet.

We can also go for a hybrid of MA with other landmark group behavior algorithms like ABC
(Artificial Bee Colony) [14], Social Group Optimization (SGO)[15], etc. By replacing the
demerits of MA on certain parameters with merits of the latter one.




Even one can also go into Quantum computing. For that, they can replace the PSO-based position and
velocity equations of MA with Quantum-PSO [16] equations to bring more robustness, stability, and
better convergence.

Again for future perspectives Multiobjective MA can be used to solve various types of multiobjective
optimization-based engineering and real-life problems[13] as this method is more robust than NSGA-II.

Lastly, the dynamic alteration of parameters involved in the velocity and position equations with the
help of fuzzy reasoning can increase the efficiency of the original algorithm.
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