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ABSTRACT 

 
 

With the speedy development of wireless mobile communication, the dimensions of a cell are 

changing into smaller, and also the design of the mobile system needs information about transmission 

over certain sites. An electromagnetic wave propagation model needs to detect a wireless system. In 

the last few decades, several statistical and deterministic channel models have been planned in small 

urban areas. Compared to a statistical channel model, a deterministic channel model can solve 

specific, real-life situations. Considering the design of the future communication system, the Ultra-

wideband (UWB) system will be one of the most important application features in wireless 

communication, and its scenario is very complex and flexible. It is hard for general statistical channel 

models to differentiate these variations, making it difficult to obtain an accurate model. Currently, 

radio broadcasts are simulated to obtain the specific channel features of a specific situation in a 

determination channel model. The deterministic channel model has maintained its acceptance among 

scholars for a long time. In particular, uniform theory of diffraction (UTD) based approaches are still 

being considered even if the surrounding is complex. The subsequent subsections will acquaint the 

reader with the outline of contributions created during this thesis.  

In this study, some new time-domain (TD) solutions are proposed for non-perfectly conducting 

wedges. A new TD solution for single diffraction is proposed where the incident pulse illuminates 

one or both sides of the dielectric wedge with unlike wedge angles. Thereafter, a TD solution for 

double diffraction is proposed that works to all possible illumination regions of wedges. The 

reflection angles and reflection coefficients are modified in different wedge regions. Thereafter, a TD 

solution is proposed for higher-order diffraction using a single diffraction coefficient. It looks at all 

possible variations between the dual wedges. This technique can be applied for more than two wedges 

that consider all the diffraction orders. Following this, the coefficients of Uniform Theory of 



xvii 
 

Diffraction (UTD) coefficients in TD are proposed to be considered for transmission and diffraction 

phenomena from the thin dielectric wedge.  

Finally, novel coefficients are proposed for frequency- domain (FD) and TD. The frequency-domain 

Uniform Theory of Diffraction (FD-UTD) coefficient was shown to be accurate in all the regions 

with a thin lossy wedge. It allows the calculation of the transmitted ray by a dielectric wedge by 

inserting two more terms into the four-terms FD-UTD coefficient. This six-terms FD-UTD 

coefficient is confirmed by the available finite difference time domain (FDTD) technique. In the deep 

shadow region between the incident shadow boundary (ISB) and the transmitted shadow boundary 

(TSB), where only diffracted ray exists, the proposed FD solutions give a 14 percent improvement 

over the previous technique on average. Next, the doubly diffracted field by the slope diffraction 

coefficient behind the double wedge structure and a high lossy building is also presented. Also, the 

coefficient of the novel time-domain Uniform Theory of Diffraction (TD-UTD) was presented based 

on the inverse Laplace transform of the proposed FD solutions. Different input pulses and wedge 

materials have been used to test the full functionality of the proposed TD techniques. TD-UTD results 

are confirmed by inverse fast Fourier transform of frequency domain (IFFT-FD) results, and excellent 

agreements have been reported. An impulse response has also been introduced to explain the 

distortion of the pulse in various conditions. Finally, the TD-UTD procedure is shown to be more 

effective than the IFFT-FD method.  
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Chapter 1 
 

 

Introduction 

 
This chapter discusses the need for channel modeling for Ultra-wideband (UWB) applications, 

the high-frequency phenomenon of electromagnetic waves, the study positions, and the 

research objectives. Finally, the organization of the thesis is presented.   

1.1 The Need of Wireless Channel Modeling 

Mobile communication technology is undergoing new changes every decade. There is also a 

significant improvement in the performance of all generations of technology. This 

technological shift is largely due to the persistent practice of mobile phones, the advent of the 

Internet of Things (IoT), and the demand for high-quality video content. The watching time of 

users is also increasing; it is becoming the norm for users to watch full-length TV programmes 

and movies via streaming video. Also, these things are predicted to rise at high rates [1]. Fifth-

generation technology (5G) will soon be installed globally with additional features compared 

to fourth-generation technology (4G) to meet the needs in this current environment. In general, 

5G is also likely to allow for the Industrial Revolution (Industry 4.0) where everything will be 

digitally connected with the advanced mobile broadband of users. Also, a new level of mobile 

communication, a sixth-generation (6G) communication system is expected to be implemented 

before 2030 with full support for industrial automation and artificial intelligence [2-3]. 

One of the most challenging problems for 5G systems is to strengthen spectral competency and 

capacity by 10 and 1,000 times to support dynamic conditions. One of the most advanced 

wireless technology is the Ultra-Wideband (UWB) (3.1-10.6 GHz) communication for 5G 

picocell and femtocells solution. It can operate with an unlicensed band in the same way as 

existing radio communications without interruption [4]. UWB provides short-range digital 
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transmission using very low power. This technology is favoured by personal wireless network 

(WPAN) systems which means a wireless computer connected to a digital projector in a 

conference room, the transfer of digital images from a digital camera to a computer without the 

need for a cable, etc. The bandwidth of  UWB is more than 20 percent of the centre frequency 

equal to 7.5 GHz. UWB communication is non-Line of sight (NLOS) communication due to 

the presence of several objects between the transmitter and receiver. The signal at the receiver 

is more or less distorted. Therefore, accurate channel modeling is required to determine the 

performance of the communication system and network realization [5]. The diffraction 

phenomenon of UWB signals from the non-perfectly conducting wedge is considered to gain 

signal strength in the shadow region [6].   

1.2 High-frequency Phenomena 

In high-frequency phenomena, the electromagnetic fields are being measured in a structure 

when the electromagnetic properties of the surrounding medium and scatterer size parameters 

vary somewhat over the gap of a wavelength. The engineering problems of such dimensions 

that these methods are valid at microwave frequencies and above; hence the term high-

frequency [7]. Wave propagation mechanisms are quite multifaceted and diverse because of 

the parting between the receiver and the transmitter. Therefore, a reduction in signal strength 

happens [8]. Also, the signal in Fig. 1.1 spreads through reflection, diffraction, transmission, 

scattering, refraction, etc. 

1.2.1  Diffraction  

It arises after direct line-of-sight (LOS) transmission is blocked by an impervious barrier that 

is much greater than the signal wavelength. It happens at the edge of the barrier where radio 

waves scatter, and consequently, the signal strength is further reduced. This phenomenon 
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permits to receive of radio signals in case of non-line-of-sight (NLOS) communication, either 

in city or rural areas. 

1.2.2   Scattering  

It occurs when the propagation path contains obstacles with a size equal to the wavelength. The 

behaviour of this mechanism is like diffraction, but the radio waves are dispersed in many 

places. In all the reported results, scattering is very hard to measure. 

1.2.3   Reflection 

It happens when a radio wave introduces a barrier that is much larger than the wavelength. A 

reflected signal can decay or rise the signal strength at the receiver. For the cases of many 

reflected waves, the obtained signal is typically not stable. This mechanism is often stated as 

multipath fading. The radio signals are usually Rayleigh distributed in this case. 

1.2.4   Transmission  

It happens when a radio wave meets an obvious interference. This phenomenon permits the 

receiving of radio signals inside structures in circumstances when the real transmission points 

are outside. 

1.2.5    Refraction  

It is very significant in designing of macrocell radio system. Because of a variable refractive 

index of the atmosphere, radio waves propagate in a curve. Therefore, the area to cover the 

actual transmitter is usually large. However, due to fluctuations in atmospheric parameters, the 

received signal strength fluctuates again. The signal obtained in NLOS communication is the 

sum of the phenomenon that usually appears in numerous predefined cases. Consequently, the 

level of the signal received varies according to the time and especially about the displacement 

of the receiver or transmitter. Even a slight variation of the distance can cause the signal level 

to fluctuate above 30 dB. This fluctuation is identified as a short-term (or multipath) fading. 
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Instead, the signal level fluctuates slightly with the motion. These slow variations are highly 

dependent on natural factors, and they are identified as long-term fading. 

 

 

 

 

 

 

 

1.3 Research Gaps 

There's a great necessity to develop propagation solutions that measure the delay and amplitude 

of multipath repeats in city surroundings because of the placement of the fast digital 

communication systems. The high-frequency techniques have emerged as being well ideal for 

this task. These strategies inherently offer pulse delay records as a function of total ray path 

length in addition to predicting signal levels. 

The High-frequency electromagnetic methods can be divided into two groups: ray-based 

techniques and induced-source-based techniques. The ray-based methods are Geometrical 

optics (GO) [9-19], Geometrical Theory of Diffraction (GTD) [20-25], and the Uniform Theory 

of Diffraction (UTD) [26-38]. The induced-source-based techniques are Physical Optics (PO) 

[39-50], the Physical Theory of Diffraction (PTD)[51-59], the Modified Theory of Physical 

Optics (MTPO) [60-70],  the Uniform Asymptotic Theory of Diffraction (UAPO) [71-81], etc. 

From the literature surveys, the growing attention in the ultrawideband communication system 

(UWB) is due to high-speed connectivity, high data rates, low equipment costs, and low system 

 

 

Fig.  1.1  Wave propagation mechanisms 
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complexity [82]. Therefore, the UWB is seen as a potential solution of 5G picocell and 

femtocells to fulfil the current requirements. The TD profile provides all required parameters 

in the UWB system, for example, multipath number, delay, power, and distortion of each path. 

It looks and works better in direct operation on TD than using a numerical inverse fast Fourier 

transform procedures to convert FD solutions to TD. The main physical phenomenon in radio 

propagation required to consider are reflections, transmissions through objects, and diffraction 

phenomena. In the case of diffraction, the uniform theory of diffraction (UTD) is most 

commonly used due to its simplicity and ray interpretation [83]. The following untouched areas 

of UWB applications are: 

• In [84], the improvements to a UTD-based diffraction coefficient for non-perfectly 

conducting wedges have been presented in frequency-domain (FD). The improvements 

enable more accurate prediction of diffracted field for any observation angle for 

different wedge angles and for both the parallel and perpendicular polarizations. The 

improvements are based on reflection angles used in the calculation of the Fresnel 

reflection coefficient in some angular region and reconstructing the coefficient in other 

regions. However, the TD-UTD solutions of [84] for UWB applications were not 

addressed in [85-99]. 

• The transmitter may have such a position in a wedge scenario, where it can illuminate 

either single or both faces of the wedge structure. Therefore, the diffraction coefficients 

are defined for both the cases in [84] in frequency domain. In the works of literature 

[85-96], [99], the case of double diffraction in TD was presented for single face 

illumination. But, the case of both face illumination [84] has not been addressed for 

non-perfectly conducting wedges. 
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• The process of accounting for high order diffractions, especially for third and higher 

orders, can be very tedious. In the works of literature [85-96], [99], higher-order 

diffraction coefficients are used to obtain multiple diffractions. However, the self-

consistent method [100] has been used to find the multiple order diffracted field in the 

frequency domain without using the higher-order diffraction coefficients. But the time 

domain solution using this method has not been done to find the double diffraction of 

all possible orders for UWB applications. 

• In [104], a wedge angle of fewer than 20 degrees is considered, and a six-term 

diffraction formula is proposed which takes into account the transmission through the 

wedge. However, the following things are observed based on literature [85-103]. 

1) The TD solution of [104] has not been presented for UWB applications. 

2)  The proposed results in [104] have significant deviations from their FDTD results 

in the deep shadow region.  

1.4   Research Objectives 

Because of the above research opportunities, the following research decisions have been 

determined for UWB applications. 

• To propose a new TD diffraction coefficient for non-perfectly conducting wedges 

operates in a situation where the source illuminates one or both sides of different wedge 

angles. 

• To develop a TD double diffraction coefficient for the source illumination on one or 

both sides of non-perfectly conducting wedges.  
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• To compute the TD double diffraction of all possible orders for UWB application 

without using any higher-order diffraction coefficients. 

• To propose a six-terms diffraction coefficient in TD for UWB applications that include 

transmission through obstacles. 

• To find an improved six-terms diffraction coefficient in FD and TD for UWB 

applications that improves results in the deep shadow region of the obstacles. 

 

1.5 Contribution 

The contributions are as follows: 

• The UWB signals suffer pulse distortion due to the frequency selectivity of the 

propagation path loss; hence, it is more efficient to study UWB propagation directly in 

the time domain (TD), where all the frequencies are treated simultaneously.  

• In addition, all the necessary parameters of a UWB system, such as the number of 

multipath, the delay, the power, and the distortion of every path, can be easily obtained 

from the TD analysis.  

• Moreover, it seems to be more efficient to work directly in the TD than applying the 

numerical inverse fast Fourier transform (IFFT) on each frequency separately. 

• In TD, the channel’s impulse response is calculated in closed form for each possible 

propagation path and then convolved with the input signal to obtain the received field.  

• The proposed TD solution has the potential benefit of having very high computational 

efficiency as opposed to conventional FD method; thus, it can be integrated with the 

existing ray tracing tool, achieving higher speed without compromising accuracy. 

• This signal is compared with the numerical inverse fast Fourier transform of the 

corresponding solution in the FD, so as to validate our method. The results show a very 
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good agreement between the two solutions with the TD solution offering much shorter 

computation times. 

 

1.6 Scope of the Research 

The major goal of this research is to provide new single-order and multiple-order Uniform 

Theory of Diffraction (UTD) coefficients in the time-domain (TD) for non-perfectly 

conducting wedges using the inverse Laplace transform of the frequency-domain (FD) 

solutions. Here, the source can illuminate on one or both sides of the wedge. The self-consistent 

approach is also applied to the case of multiple-order diffractions. By creating the six-terms 

UTD coefficients in TD and FD, the case of the transmission along with the diffraction 

phenomenon from the thin dielectric wedge has been investigated. Finally, the research is 

limited to a rectangular wedge structure with a maximum of two wedges. As part of a thorough 

and realistic design, some calculations, assumptions, and choices are made. 

 

1.7 Organization of the Thesis 

In the following, we present a summary of the thesis chapters based on research objectives for 

UWB applications. 

Chapter 2 presents a new TD diffraction coefficient based on the direct convolution method 

by taking inverse Laplace transform of FD diffraction coefficients that apply to the case when 

the source illuminates either one or both sides of the non-perfectly conducting wedge with 

arbitrary internal angles.  The Gaussian 2nd order pulse is used as an input pulse in direct TD-

UTD solution and its spectrum is used as an input signal in the IFFT-FD method. The TD 

results are related to the IFFT of FD results for the various scenario to verify accuracy. Finally, 
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the computational efficiency of direct TD and IFFT-FD techniques are presented for hard 

polarization. 

Chapter 3 deals with a TD double diffraction based on the direct convolution method by taking 

inverse Laplace transform of FD diffraction coefficients that apply to the case when the source 

illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles. The different reflection angles and improved reflection coefficients are applied 

in the outside sections of the wedge for formulating TD double diffraction. The Gaussian 2nd 

order pulse is used as an input pulse in direct TD-UTD solution and its spectrum is used as an 

input signal in the IFFT-FD method. The TD results are related to the IFFT of FD results to 

ensure accuracy. Finally, the computational efficiency of direct TD and IFFT-FD techniques 

are presented for hard polarization. 

In general, the higher-order diffraction coefficient is used to consider multiple diffractions. As 

a result, the calculation becomes more complex does not take into account all possible orders 

of diffraction between the wedges. Chapter 4 presents TD multiple-order diffraction 

coefficients based on the direct convolution method by taking inverse Laplace transform of FD 

formulation applied to the dual dielectric wedge. Only, the first-order TD-UTD coefficient is 

applied for finding the higher-order diffraction without using any higher-order diffraction 

technique such as slope diffraction coefficients. Therefore, this technique is modest and 

calculates all possible orders of diffractions. The Gaussian 2nd order pulse is used as an input 

pulse in direct TD-UTD solution and its spectrum is used as an input signal in the IFFT-FD 

method. The TD results are related to the IFFT of FD results to verify accuracy.    

In chapter 5, a new time-domain six-term heuristic diffraction coefficient is proposed to 

consider the effect of diffraction and transmission from the dielectric wedge with an arbitrary 

low wedge angle for UWB applications. The different scenarios are considered to test the 
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overall performance of the TD solution. The results of TD-UTD are confirmed by the inverse 

fast Fourier transform (IFFT) of frequency-based results in hard polarization. The 

computational efficiency of the proposed TD-UTD solutions is demonstrated by comparing the 

time they have taken with their IFFT-FD solutions.        

In chapter 6, we present a novel heuristic diffraction coefficient in frequency-domain (FD) for 

non-perfectly conducting wedges and buildings. A six-term diffraction coefficient which is an 

extension of the four-term UTD coefficient is proposed to include the effect of transmitted ray 

for a lossy dielectric wedge with arbitrary low wedge angle, thus, attaining the continuity of 

the total field all around the structure. Further, a time-domain (TD) solution based on the 

classical frequency domain result is proposed for UWB applications in indoor environments. 

Finally, a case of double diffraction for two consecutive buildings scenario is presented based 

on slope diffraction and their corresponding TD solution is also presented. All the TD results 

are verified with IFFT of the FD solutions in both the soft and hard polarization and the results 

are found to be in very good agreement. The impulse response of the channel is also presented 

to determine the distortion on the input pulse. The computational efficiency of the presented 

TD solutions is demonstrated by comparing them with their IFFT-FD solutions. 

Finally, some concluding remarks and other indications for future work are presented in 

Chapter 7.  
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Chapter 2 
 

 

A New Time-Domain Diffraction Coefficient for Non-

Perfectly Conducting Wedges 

 

In this chapter, a new TD diffraction coefficient based on the direct convolution method by 

taking inverse Laplace transform of FD diffraction coefficients that apply to the case when the 

source illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles. The Gaussian 2nd order pulse is used as an input pulse in direct TD-UTD 

solution and its spectrum is used as an input signal in the IFFT-FD method. The TD results are 

related to the IFFT of FD results for the various scenario to verify accuracy. Finally, the 

computational efficiency of the direct TD and IFFT-FD techniques are presented for hard 

polarization. 

2.1  Background 

 Ultra-wideband (UWB) transmission has been a main motivation of research in the current 

time because of its possible ability to deliver a high data rate at a short distance using low 

power with decent resolution competence, a low-cost system and great bandwidth. UWB 

communication is NLOS communication due to the presence of several objects between sender 

and receiver. Thus, the incident pulse is distorted at the receiver due to the diffraction, reflection 

and refraction from the objects. Hence, the correct depiction of the propagation channel is 

required for the performance and best plan of the UWB system. The diffraction phenomenon 

of UWB pulses from the obstacles has a significant effect on the modelling of the UWB indoor 

propagation channel. In many works of literature [105-108], the heuristic diffraction 

coefficients from dielectric wedges were discussed to incorporate the effect of diffraction with 
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their merits and drawbacks. In [84], the works showed improvements in Holm’s proposed 

method [106] with different reflection angles in the illumination region applied in the transition 

functions. Here, an improved reflection coefficient is presented for the sectors, where the 

modified reflection angles fail resulting in different FD coefficients for different sectors of 

illumination. The TD model has merits for the UWB application presented in [91]. However, 

TD-UTD solutions of [84] for UWB applications were not addressed in [85-99]. Therefore, in 

this chapter, a new TD diffraction coefficient based on the direct convolution method by taking 

inverse Laplace transform of FD diffraction coefficients [84] that apply to the case when the 

source illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles.  The Gaussian 2nd order pulse is used as an input pulse in direct TD-UTD 

solution and its spectrum is used as an input signal in the IFFT-FD method. The TD results are 

related to the IFFT of FD results for the various scenario to verify accuracy. Finally, the 

computational efficiency of direct TD and IFFT-FD techniques are presented for hard 

polarization. 

 

2.2 Propagation Scenario 

Fig. 2.1 shows the propagation path of diffraction with single side illumination (SSI) and 

double side illumination (DSI) from a non-perfectly conducting wedge. The edge of the wedge 

is representing the z-axis of polar coordinates.  The incident angle   and diffracted angle   

are measured with the 0-face of the wedge. The interior angle   is the wedge angle. 0-face and 

n-face of the wedge are defined at 0 =  and n =  with 2 n  = − . The spherical source 

is used to illuminate the faces of the wedge at a distance 1r . The transmitting and receiving 

points are represented by ( )1,r  and  ( )2 ,r  , respectively. There are three cases of illumination 

of wedge faces by the different positions of the transmitting antenna. 
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Case1: 0-face illumination ( )    −  

In this case, 0-face is only illuminated. There may be three regions around the wedge due to 

different wave propagation. All the wave components ( Incident, reflected and diffracted 

waves) exist in Region-I ( )0     − . The limiting boundary ( )  = −  of the reflected 

wave is the reflection shadow boundary (RSB) in Region-I. Only incident and diffracted waves 

are in Region-II ( )     −   + . The limiting boundary ( )  = +  of the incident wave 

is the incident shadow boundary (ISB) in Region-II. Only diffracted waves exist in Region-III 

( )3      +   − − . Region-III is the shadow region. 

Case 2: 0-face and n-face illumination ( )   −    

In this case, both the faces of the wedge are always illuminated. There may also be three regions 

around the wedge for different wave propagation.  Region-I ( )0     −   consists of all 

the wave components (Incident, reflected and diffracted waves). It has a limiting boundary 

(reflection shadow boundary: RSB-DSI-I) at the angle   = − . Region-II 

 

Fig. 2.1 The propagation path of diffraction with single side 

illumination (SSI)  and double side illumination (DSI). 
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( )3 2      −   − −  consists of the only incident and diffracted waves. Region-III 

( )3 2 2     − −   −  consists of all the wave components similar to Region-I. It has a 

limiting boundary (Reflection shadow boundary: RSB-DSI-II) at the angle ( )3 2   = − − . 

Case 3: n-face illumination ( )    

In this case, the n-face is only illuminated. There may also be three regions around the wedge 

for different wave propagation. Region-I consists of only diffracted waves. It is the shadow 

region. It has a limiting boundary (incident shadow boundary: ISB-SSI (n face)) at the angle 

  = − . Region-II ( )2     −   −  consists of the incident and diffracted waves. 

Region-III ( )2 2    −   − consists of all the wave components (incident, reflected and 

diffracted waves). It has a limiting boundary (reflection shadow boundary: RSB-SSI) at the 

angle 2  = − . 

 

2.3 Single  Diffraction 

2.3.1 FD SOLUTION 

Three types of rays (incident, reflected and diffracted rays) are used in the ray-based method 

UTD as shown in Fig. 2.1. The received signal after single diffraction from non-perfectly 

conducting wedge under spherical wave propagation is given by [91] 

( ) ( )1 2

, 2

1

(r ) e
jk r ri

Rx s h

E
E D A

r


− +
=     ( )2.1  

where RxE is the received field. iE is the transmitted field. 1r is the distance from the transmitter 

to the diffracted point. 2r is the distance from the diffracted point to the receiver. k c= is the 

wavenumber. c is the speed of light.  is the angular frequency. ( ) ( )( )2 1 2 1 2A r r r r r= + is the 
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spreading factor. ( )1j = −  is an imaginary number. ( ),s hD   is the diffraction coefficient for 

soft and hard polarization respectively. It is given by [84]  

Case 1: Only 0-face illumination (i.e., incidence angle ( )1n   −  with 2n  = −  ) as 

shown in Fig. 1, 

( ), 1 0 2 0 3 4s h n nD D R R D R D R D = + + + . ( )2.2  

Case 2: Both face illumination (i.e., incidence angle ( )1n   − ) as shown in Fig. 2.1,  

diffraction at ( )2 1n   − −  

( ), 1 0 2 0 3 4s h n nD D R R D R D R D = + + +  ( )2.3  

and diffraction at ( )2 1n   − −  

( ) ( ), 1 2 , 3 4s h s hD D D D D = + +  + . ( )2.4  

Case 3: Only n-face illumination (i.e., incidence angle    ) as shown in Fig. 2.1, 

( ), 0 1 2 3 0 4s h n nD R R D D R D R D = + + +  ( )2.5  

where iD with 1 4i = − is given as in [106] 

( ) ( )
4

2 2cot 2 sin
2 2

j

i i i

e
D a F kLn a

n k





−
 =    ( )2.6  

where ( ) ( )1 2a n  = − −   , and ( ) ( )2 2a n  = + −    are defined for n-face and 0-

face of the wedge related to the incident shadow boundary (ISB). While, 

( ) ( )3 2a n  = − +   , and ( ) ( )4 2a n  = + +    are defined for 0-face and n-face of 

the wedge related to the reflected shadow boundary (RSB). ( )1 2 1 2L r r r r= +  is the distance 

parameter. ( )F X  is the transition function which is given as in [91] 
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  ( )
2

2

u

jX ju jX

u X

F X j X e e du j X e erfc jX
=

−

=

= =  ( )2.7  

where ( )erfc X is the complementary error function with ( )2 22 sin iX kLn a=  and 1j = −  . 

The 0R  and nR  are the Fresnel reflection coefficient for 0 −  face and n − face which are given 

by [109] 

2

,
2

sin (1,1 ) cos

sin (1,1 ) cos

n n

s h

n n

R
   

   

− −
=

+ −
                           ( )2.8  

where n  is the reflection angles for 0 −  face and n − face as defined in [11]. 0r j   = −

is the complex permittivity.   is the conductivity in S m . 
12

0 8.854 10 −=  f/m is the 

permittivity of free space. r is the relative permittivity.  ,s h  is the modified reflection 

coefficient given in [84] 

2

,
2

(1, ) 1

(1, ) 1
s h

   

   

− − +
 =

− − +
 ( )2.9  

where 

2sin sin ,
2 2

2sin sin ,
2 2

for n

n n
otherwise

 
  


   

    
 −   

    
= 

− −   
       

. ( )2.10  

2.3.2 TD SOLUTION 

The impulse response of a single diffracted ray as shown in Fig. 2.1 can be given by taking 

Inverse Laplace Transform and setting 1iE = (with impulsive excitation) in (2.1). Therefore, 

the impulse response 



 

17 
 

( ) ( ) ( )( )2

, 1 2

1

(r )
s h

A
h t d t t r r c

r
 =   − +   ( )2.11  

where the delta function ( )( )1 2t r r c − + is related to a time shift. This is equal to the time 

that the transmitted signal requires to pass through the path to the receiver. The ( ),s hd t  is the 

TD diffraction coefficient for a non-perfectly conducting wedge which is given for different 

cases in (2.2-2.5) as 

Case 1: Only 0-face illumination (i.e., incidence angle ( )1n   − ) as shown in Fig. 2.1, 

( ), 1 0 2 0 3 4s h n nd t d r r d r d r d= +   +  +  . ( )2.12  

Case 2: Both face illumination (i.e., incidence angle ( )1n   − ) as shown in Fig. 2.1,  

 diffraction at ( )2 1n   − −  

( ), 1 0 2 0 3 4s h n nd t d r r d r d r d= +   +  +   ( )2.13  

and diffraction at ( )2 1n   − −  

( ) ( ) ( ), 1 2 , 3 4*s h s hd t d d t d d= + + + . ( )2.14  

Case 3: Only n-face illumination (i.e., incidence angle    ) as shown in Fig. 2.1, 

( ), 0 1 2 3 0 4s h n nd t r r d d r d r d=   + +  +   ( )2.15  

where ( )id t with 1 4i = −  is given as in [108] 

( )
( )

2 2

sin(2 )
( ) ( )

2 2 2 sin (a )

i i

i

aLn
d t u t

c t t Ln c
= −  

+
 ( )2.16  

with ( )u t  is the Heaviside step function. ( )0, , ,n s hr t is the TD Fresnel reflection coefficient of 

(2.8) for the 0 − and n − face respectively. This is given by [109] 
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( ) 1

, 2
1

4
( ) ( 1) ( )

1

at
q q

s h q

q

p e
r t P t qP I at

tp


− 
+

=

 
= + − 

− 
  ( )2.17  

where ( ) ( ), , ,1 1s h s h s hP p p= − + , ( )2sin coss n r np   = −  , 

( ) ( )2cos sinh r n r np    = −  , ( )t is the Dirac delta function,  ( )qI t is the modified Bessel 

function of order q , ( )02 ra   = , and the leading ( )− + sign is for soft (hard) polarization.

( ),s h t  is the modified TD reflection coefficient which is given by taking inverse Laplace 

transform of (2.9) 

( )

( )
( )1,

2
1

( )

4
( 1) ( )

1

at
qqs h

q

q

P t

p et
q P I at

tp



 − 
+

=

 + 
 

=  −
 − 


 ( )2.18  

where ( ) ( ), , ,1 1s h s h s hP p p  = − + , ( )2 1s rp    = + − , and ( ) ( )2 1h r rp     = + −  .  

In the next section, the TD outcomes are discussed for arbitrary internal angles of the wedge 

with the Gaussian doublet pulse [91] having a pulse length of 0.1 ns shown in Fig. 2.2 as an 

input pulse and its Gaussian spectrum is shown in Fig. 2.3 which is used in IFFT-FD solution 

as the input signal. 

2.4  Results and Discussions 

Considering hard polarization, Figs. 2.4-2.9 display the diffracted field at Rx that is located in 

the deep shadow region of the scenario with the wedge material of [109]. Three cases of the 

source illumination are applied as only 0-face, only n-face, or both sides of a wedge of Fig 2.1. 

In Fig. 2.1, 5r = , 0.016 = S/m, receiver height=1m, wedge height=2m and distance from 

the centre of the wedge= 2m. Here, the results are presented for different incident angles and 

wedge angles concerning the cases of face illuminations. The attenuation and waveform 
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distortion in received signals is achieved due to the only diffraction phenomenon in the shadow 

region of the structure and frequency dependence behaviour of UWB signals. 

Gaussian doublet pulse [91] shown in Fig. 2.2 is used to test the TD solutions proposed. This 

pulse is crossing the zero line two times with a Gaussian shape. Hence, it is called the 2nd order 

Gaussian pulse. It has the time-scaling factor τ = 0.1 ns . 

 

Fig.  2.2  The 2nd order Gaussian input pulse. 
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The Gaussian doublet pulse spectrum shown in Fig. 2.3 is used in IFFT-FD solutions as input 

pulse in FD. This spectrum has a frequency range of UWB signals. Therefore, the pulse is used 

as a transmitted pulse of UWB signals with a short duration in ns. 

 

 

Fig.  2.3 Gaussian doublet pulse spectrum. 

Figs. 2.4 and 2.5 are the case of 0-face illumination for different wedge angles. In this case, 

there is a reflection and incidence shadow boundary. Both the TD and IFFT-FD solutions are 

matching to each other. Therefore, it confirms the accuracy of the proposed TD solution. The 

incident pulses are attenuated and distorted after the diffraction from the non-perfectly 

conducting wedges. This attenuation is due to the lossy behaviour of wedges. While this 

distortion is due to the frequency dependence of the TD diffraction coefficients. 
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Fig.  2.4 The IFFT-FD and direct TD diffracted fields with wedge internal 

angle 50 =   and incidence angle 5 =  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2.5 The IFFT-FD and direct TD diffracted fields with wedge internal 

angle 150 =   and incidence angle 5 =   . 
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Figs. 2.6 and 2.7 are the case of both-face illumination of the wedges of different internal 

angles. In this case, no incidence shadow boundary exists and only, two reflection shadow 

boundary exists. Therefore, the incident pulses are highly attenuated and distorted. But, the TD 

response is completely matching with the IFFT-FD response. Hence, the accuracy of the 

proposed TD solution is confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2.6 The IFFT-FD and direct TD diffracted fields with wedge internal angle 

50 =   and incidence angle 145 =   . 
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Figs. 2.8 and 2.9 are the case of n-face illumination of the non-perfectly conducting wedges of 

different internal angles. In this case, there is an incidence and reflection shadow boundary. 

Here, the incidence angle is very high. Therefore, the Gaussian doublet pulse is extremely 

attenuated and distorted due to the same reason stated earlier. Both the TD response and IFFT-

FD response are matching to each other. Hence, the proposed method is accurate. 

 

 

 

 

 

 

 

 

 

Fig.  2.7 The IFFT-FD and direct TD diffracted fields with wedge internal angle 

150 =   and incidence angle 145 =  . 
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Fig.  2.8 The IFFT-FD and direct TD diffracted fields with wedge internal 

angle 50 =   and incidence angle 225 =  . 

 

Fig.  2.9  The IFFT-FD and direct TD diffracted fields with wedge internal angle 

150 =   and incidence angle 225 =  . 

 

 

 

 



 

25 
 

The  benefit of the proposed algorithm is the saving on the computation time when the 

prediction of the received waveform is carried out directly in the time-domain rather than 

calculating the numerical inverse Fourier transform of the corresponding FD received signal. 

This can be seen in Table 2.1, where the average ratios of the computation times of the two 

methods IFFT FD TDT T− are presented, for the scenarios similar to Fig. 2.1 with only 0-face, 0-

and n-face, and only n-face illumination from the source. This is due to the direct TD method 

based on convolution technique, where all the frequencies are treated simultaneously. Whereas, 

the IFFT-FD method would involve the calculation of the radio propagation effects for each 

frequency separately, which is very inefficient for very large bandwidths particularly for UWB 

applications. Hence, TD is the preferred domain, as long as we can employ simple closed forms 

for the prediction of the radio wave propagation for every path. 

 

Table 2.1 Computational efficiency of proposed TD solution 

Illumination 

face 

Wedge 

angle  

Incident 

angle  

TIFFT-FD/TTD (Ratio of time taken by the 

IFFT-FD method and the direct TD method)    

0-face 50  5  17.1210 

0-face 150  5  30.3229 

0-and n-face 50  145  17.8972 

0-and n-face 150  145  16.9206 

n-face 50  225  17.2395 

n-face 150  225  22.1955 

 

2.5  Conclusion 

In this chapter, a new TD diffraction coefficient based on the direct convolution method by 

taking inverse Laplace transform of FD diffraction coefficients that apply to the case when the 

source illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 
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internal angles is presented.  The Gaussian 2nd order pulse is used as an input pulse in direct 

TD-UTD solution and its spectrum is used as an input signal in the IFFT-FD method. The TD 

results are related to the IFFT of FD results for the various scenario and the accuracy is verified. 

Finally, the computational efficiency of the direct TD and the IFFT-FD techniques are 

presented for hard polarization. It proves that the direct TD technique is efficient than the IFFT-

FD technique. 
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Chapter 3 
 

 

A Time-domain Double Diffraction for Non-perfectly 

Conducting Wedges 

 

This chapter deals with a TD double diffraction based on the direct convolution method by 

taking inverse Laplace transform of FD diffraction coefficients that apply to the case when the 

source illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles. The different reflection angles and improved reflection coefficients are applied 

in the outside sections of the wedge for formulating TD double diffraction. The Gaussian 2nd  

order pulse is used as an input pulse in direct TD-UTD solution and its spectrum is used as an 

input signal in the IFFT-FD method. The TD results are related to the IFFT of FD results to 

ensure accuracy. Finally, the computational efficiency of direct TD and IFFT-FD techniques 

are presented for hard polarization. 

 

3.1 Background 

The key features of growing attention in the ultrawideband communication system (UWB) are 

due to high-speed connectivity, high data rates, low equipment costs, and low system 

complexity [110]. Very short pulse time (impulse-like signals), usually a fraction of 1 ns are 

used in such systems for transmission and reception. Short pulse time is defined in the 

frequency range as a signal with very large bandwidth. It is natural to work in the TD due to 

the consideration of all the frequency components at the same time. The parameters required 

in the UWB system, for example, the number of multipath signals, power, delay and distortion 

of each path are readily available in the TD profile. This looks and works better in direct 

operation on TD than using numerical inverse fast Fourier transform procedures to convert FD 
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solutions into TD. The latter will include calculating the effects of radio propagation on each 

frequency range, which does not work well on very large bandwidths. The resulted impulse 

response is treated as a standard solution, regardless of the bandwidth, which is convolved by 

any incident signal. 

Few heuristic FD models for dielectric wedges were introduced in [105-108]. The model [84] 

delivers enhancement over the model in [106] in the case of both face illumination. The 

emphasis on multiple diffractions among the wedges was presented in [111-112]. The field 

because of the multiple diffractions has a great impact on the shadow region. The TD radio 

channel models are favoured over the FD models for UWB applications. In TD models, the 

study of transient scattering performance of UWB signals is possible and all the frequency 

components are dealt with simultaneously. In the works of literature [85-96], [99], the case of 

double diffraction in TD was presented for single face illumination. But, the case of both face 

illumination [84] has not been addressed for non-perfectly conducting wedges. Therefore, this 

chapter presents a TD double diffraction based on the direct convolution method by taking 

inverse Laplace transform of FD diffraction coefficients of [84] that apply to the case when the 

source illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles. The different reflection angles and improved reflection coefficients are applied 

in the outside sections of the wedge for formulating TD double diffraction. The Gaussian 2nd  

order pulse is used as an input pulse in direct TD-UTD solution and its spectrum is used as an 

input signal in the IFFT-FD method. The TD results are related to the IFFT of FD results to 

ensure accuracy. Finally, the computational efficiency of direct TD and IFFT-FD techniques 

are presented for hard polarization.  
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3.2  TD Techniques and Calculation of Singularity 

Wireless systems are tested on measurements and simulations. However, a simulation-based 

approach is preferred to a measurement-based approach as the latter is site-specific and time-

consuming. The time-domain (TD) solution of UWB systems is more efficient and less time 

consuming than the FD solutions due to the greater operating frequency of UWB signals [103]. 

There are the following ways to get a time-domain response: 

 

3.2.1 Convolution Technique 

If ( )x t  is the transmitted UWB pulse, ( )h t  is the channel response, then the output response 

( )y t is represented mathematically as [113] 

( ) ( ) ( ) ( ) ( )
0

t

y t x t h t x h t d  =  =  −   (3.1) 

where   and  are the sign of convolution and multiplication. 

 

3.2.2 Inverse Fourier Transform (IFT) 

The Inverse Fourier Transform can be used to obtain a TD solution ( )y t  from a given FD 

solution ( )Y   [114],i.e., 

( ) ( )
1

2

j ty t Y e d 




−

=    (3.2) 

where the angular frequency is  . One side of the Fourier transform can be described as 
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( ) ( )
0

1 j ty t Y e d 




+ =    (3.3) 

where TD solution ( )y t+
 is a complex solution and a causal function. The real and imaginary 

part of the same is even and an odd function. Therefore, the analytic solution can be written as 

( ) ( ) ( )y t y t jH y t+ = +     (3.4) 

where ( )H y t   is Hilbert’s transform of ( )y t  and can be provided as 

( ) ( )( )

( ) ( ) ( )

11
pv

1
sgn

2

j t

H y t y t d

j Y e d

  


  



−

−



−

=  −  

=  −



  
(3.5) 

where the pv  and the ( )sgn   are Cauchy principal value integration and signum function. 

The exact TD solution (t)y  in (3.4) is the real part of the analytic solution in (3.3). 

 

3.2.3 Inverse Laplace Transform (ILT) 

Alternative inverse Laplace transform may make it easier to obtain a TD solution from the FD 

solution provided in most cases. Equation (3.2) can be replaced by substituting j  with s  as 

( ) ( ) st1
y t Y s e ds

2



−

=    (3.6) 

where ( )Y s is the Laplace transform of ( )y t . The left-hand side of the imaginary axis of the 

s-plane should have all the poles of ( )Y s  . 
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3.2.4 Inverse Fast Fourier Transform (IFFT) 

Usually, we get a discrete FD solution after simulation. In this case, a higher angular frequency 

is preferred than the transmitted angular frequency without loss of generality. Thereafter, IFFT 

is used to obtain the TD solution from the FD solution. 

 

3.2.5 Calculation of Singularity in the System Response 

The system response ( )0y is evaluated at 0t =  in (3.1). But in some cases, there is a singularity 

at 0t =  when 0,1t t→ →  . As a result, the waveform of the system response is distorted. 

Let, ( )h t has a singularity in the time domain in (3.1). An effective method is used to remove 

this singularity from [12-13] as follows: 

( ) ( ) ( ) ( )( )
0 0

t t

x t h t dt x t h t dt =    (3.7) 

In (3.7),  the singularity of ( )h t  was removed by the integration ( )
0

t

h t dt . The evaluation of 

the integral is performed in numerically or closed form.  

 

3.3 Propagation Scenario 

Fig. 3.1 shows the propagation path of double diffraction with single side illumination (SSI) 

and double side illumination (DSI) from a non-perfectly conducting wedge. 
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Fig. 3.1 The propagation path of the double-diffracted signal. 

The edge of the wedge is representing the z-axis of polar coordinates.  The incident angle 1  

and diffracted angle 1  are measured with the 0-face of wedge 1. The incident angle 2  and 

diffracted angle 2  are measured with the 0-face of wedge 2. The interior angle   is the wedge 

angle. The spherical source is used to illuminate the faces of wedge 1 at a distance 0s . The 

distance between the wedges is 1s . The transmitting and receiving points are represented by 

( )0 1,s  and  ( )2 2,s  , respectively. There are three cases of illumination of wedge 1 faces by 

the different positions of the transmitting antenna. 
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3.4 Formulation of Double Diffraction 

3.4.1 Frequency-domain Formulation 

The FD single diffraction coefficients for a single wedge structure is given by [84]  

( ) ( ) ( )( )

( )

( ) ( )

(1) (2) (3) (4)

0 0

(1) (2) (3) (4)

0,

(1) (2) , (3) (4)

,

1 1 2 1 .

,

,

1 2 1

n n

n n ns h

s h

R R D D R D R D

for n n n

D R R D R D R D
D

for

D D D D

for n n

      

 

    

 + + +


   −   −   − −


 + + +

= 
 




+ +  +


  −   − −

 (3.8) 

where 
( )iD with 1 4i = −  given as in [106]. The 0R  and nR  are the Fresnel reflection 

coefficient for 0 − face and n – face same as (2.8) of Chapter 2.   and  are the diffracted 

angle and incident angle for a single wedge structure. 
,s h  is the modified reflection coefficient 

same as (2.9) of Chapter 2.   

2
,

2

(1, ) 1

(1, ) 1

s h    

   

− − +
 =

− − +
 (3.9) 

where, 0r j   = − and  

2sin sin , '
2 2

2sin sin ,
2 2

for n

n n
otherwise

 
  


   

    
 −   

    
= 

− −   
       

 (3.10) 

with  is the wedge angle. The received field afterwards the double diffraction is specified by 

[106] 



 

34 
 

0 1 2( )

0

0 1 2 0 1 2

' '

1 1 1 2 2 2

1 2 '

1 1 2

( )

( , ) ( , )1

jk s s s

RD

E e
E

s s s s s s

D D
D D

jks

   

 

− + +

= 
+ +

  
− 

  

 (3.11) 

In (3.11), only the first and second-order field has been considered for simplicity. '

1 1 1( , )D  

and '

2 2 2( , )D   are the first-order diffraction coefficients of the first and second wedge. 

'

1 1 1

1

( , )D  






and 

'

2 2 2

'

2

( , )D  






are the slope diffraction coefficients and they can be defined as 

[62,79]. 

 

3.4.2 Time-domain Formulation 

Taking inverse Laplace transform of (3.8), the TD solution is given as in [115] 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )

(1) (2)

0

(3) (4)

0

,

(1) (2)

0

(3) (4)

0

(1) (2) (3) (4)

* *

* * ,

1

1 2 1 .

* *

* * , .

* ,

1 2 1 .

n

n

s h

n

n

r t r t d t d t

r t d t r t d t

for n

n n

d t
d t r t r t d t

r t d t r t d t for

d t d t t d t d t

for n n

 

    

 



    

 + +


+


  − 


  −   − −



= 
+ +

 + 




+ + +


  −   − −

 (3.12) 

( ) ( )( ) , 1 4id t i = −  in the above formulations is specified as in [91] 

( )
( )

2 2

sin(2 )
( ) ( )

2 2 2 sin ( )

i i

i

Ln
d t u t

c t t Ln c



 
= −  

+
 (3.13) 

( )t  is given by taking inverse Laplace transform of (3.9) as 
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( ) 1

2
1

1 4
( ) ( 1) ( )

1 1

xt
n n

n

n

k k e
t t nk I xt

k tk
 

− 
+

=

 −
= +  − 

+ − 
  (3.14) 

with 

1
2 1r

k
 



−

 + −
 =
 
 

for soft polarization, 

2 1r

r

k
 

 

 + −
 =
 
 

 for hard polarization and 

02 r

x


 
= . The leading ( )− +  sign is for soft (hard) polarization. ( )nI t  is the modified Bessel 

function n . Taking inverse Laplace transform of (3.11), the field in TD 

0 1 2 0 1 2

0 1 2 1 2

1

0 1 2

1

( )

1
( ) ( ) ( ) ( ) ( ) ( )f f

RD

s s s s s s

e t e t d t d t d t d t
s

s s s
t

c


 
 

+ + 
  
 =   −  
  
 

+ +   −    

 (3.15) 

where, 1 ( )d t  and 2 ( )d t are the single order diffraction coefficients in TD from wedge 1 and 

wedge 2 as (3.12). In (3.15), the derivatives of TD reflection coefficients are made simple by 

the early time estimate as in [92] assuming that the derivatives of FD reflection coefficients do 

not fluctuate  . Thus, the 0R  and nR  in  (3.8) are revised by substituting r   as follows   

2

,

2

sin (1,1 ) cos

sin (1,1 ) cos

r rs h

r r

R
   

   

− −
=

+ −
 (3.16) 

where the reflection angle   is stated as in [84]. The (3.9) is also revised by substituting

r  . Then, the 1 ( )fd t  and 2 ( )fd t  of (3.15) are defined using the concept of [92] 
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( ) ( ) ( )

( ) ( )

( ) ( )( )

( ) ( )

( )

( ) ( ) ( ) ( )( )

( ) ( )

1 1

1

1

(1) (2) (3)

0 0

(4)

(1) (2) (3)

0

(4)

0

(1) (2) (3) (4)

1
( )

, 1

1 2 1 .

( )
2

, .

,

1 2 1 .

f

n s s s

n s

s n s n s

s

s s s s

D
d t L

jk

R R F t F t R F t

R F t for n

n n

L
F t R R F t R F t

R F t for

F t F t F t F t

for n n



 

    


 

    

−
  

=  
  

 − + −


  − 

  −   − −

−
= − + −

 

− +  −

  −   − −




 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(3.17) 
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1 4
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 
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 
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 
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  + +   

 

and  
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( ) ( ) ( ) ( )
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 (3.18) 
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where, ( )( )

3/2
( )

2( )

ii

s

i

a
F t u t

t a
= 

+
 and 2 22 sin ( ) .i ia Ln c=  

In the following section, the TD results are deliberated for different face illumination. The 

incident pulse [91] having full width half maximum pulse duration of 0.1 ns shown in Fig. 2.2 

as an input pulse and its Gaussian spectrum is shown in Fig. 2.3 which is used in the IFFT-FD 

solution as the input signal. Fig. 3.1 consists of two wedges and its parameters are given in 

Table 3.1. 
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3.5   Results Analysis 

Fig. 3.2 - Fig. 3.4 display the TD electric fields at the receiver due to double diffraction in hard 

polarization. The wedge material has 10r = and 0.001 = S/m. Now, three cases of face 

illumination are considered for wedge structure as in [109]. The good agreement of TD and 

IFFT-FD results proves the accuracy of the TD solution. 

In Fig. 3.2, only the 0-face of the wedge is illuminated by the spherical source. It can be 

observed that the double diffracted field has been extremely attenuated and distorted in 

comparison to the input 2nd order Gaussian pulse due to the double diffraction and frequency 

dependence of UWB signals.  

 

Fig.  3.2 TD double diffracted fields at the receiver for  30 =  , 1 10 =  , 1 255 =  , 1 2s = m, 

2 2s = m, Receiver Height=2m, and Wedge Height= 3m.    
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In Fig. 3.3, the source illuminates both faces of the wedge. In this case, the received pulse is 

similar to the source pulse in shape but highly attenuated due to double diffraction.  

 

Fig.  3.3 TD double diffracted fields at the receiver for  30 =  , 1 155 =  , 1 327 =  , 1 2s =

m, 2 2s = m, Receiver Height=2m, and Wedge Height= 3m.    
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In Fig. 3.4, only the n-face is illuminated by the source. In this case, again the received pulse 

is highly attenuated and distorted due to the same reason stated earlier in case 1. The direct TD 

result and the equivalent IFFT-FD result are completely matching to each other. Hence, the 

accuracy of the stated techniques is confirmed.  

 

 

Fig.  3.4  TD double diffracted fields at the receiver for  30 =  , 1 190 =  , 1 255 =  , 1 2s =

m, 2 2s = m, Receiver Height=2m, and Wedge Height= 3m.   
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Finally, Table 3.1 shows the comparison of the computational times taken by IFFT-FD and 

proposed TD solutions. Clearly, it can be observed that the TD solution takes less computation 

time to provide the simulation results and so outperforms the IFFT-FD method. This significant 

time saving is because of the efficient convolution technique used in TD method. This is also 

due to the fact that the short duration Gaussian pulses directly correspond to very huge 

bandwidth in FD and will require the computations for each frequency component separately 

that is a time consuming process. 

 

Table 3.1 Computational Efficiency 

Illumination 

face 

Wedge 

angle   

Incident 

angle 1  

Diffracted 

angle 1  

TIFFT-FD /TTD (Ratio of time taken 

by the IFFT-FD method and time 

taken by the direct TD method) 

0-face 30  10  255  15.1230 

0-and n-face 30  155  327  16.7982 

n-face 30  190  255  16.2593 

 

 

3.6   Conclusion 

In this Chapter, a TD double diffraction based on the direct convolution method by taking 

inverse Laplace transform of FD diffraction coefficients that apply to the case when the source 

illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles is presented. The different reflection angles and improved reflection coefficients 

are applied in the outside sections of the wedge for formulating TD double diffraction. The 

Gaussian 2nd order pulse is used as an input pulse in direct TD-UTD solution and its spectrum 
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is used as an input signal in the IFFT-FD method. The direct TD results are related to the IFFT 

of FD results that ensure accuracy. Finally, It proves that the direct TD technique is efficient 

than the IFFT-FD technique. 
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Chapter 4 
 

 

Time-domain Multiple-order Diffraction for Two 

Wedges of Arbitrary Angles 
 

In general, the higher-order diffraction coefficient is used to consider multiple diffractions. As 

a result, the calculation becomes more complex does not take into account all possible orders 

of diffraction between the wedges. This chapter presents a TD multiple-order diffraction 

coefficient based on the direct convolution method by taking inverse Laplace transform of FD 

formulation applied to the dual dielectric wedge. Only, the first-order TD-UTD coefficient is 

applied for finding the higher-order diffraction without using any higher-order diffraction 

technique such as slope diffraction coefficients. Therefore, this technique is modest and 

calculates all possible orders of diffractions. The Gaussian 2nd order pulse is used as an input 

pulse in direct TD-UTD solution and its spectrum is used as an input signal in the IFFT-FD 

method. The TD results are related to the IFFT of FD results to verify accuracy. 

 

4.1  Background 

 The request for high data rates is growing pointedly in wireless communication over the 

previous periods. The signal features fluctuate over the wireless medium and are subject to 

several factors such as the distance, paths and objects between transmitter and receiver. The 

fields at the receiver are attained by the convolution of the input signal with the impulse 

response of the channel. Hence, channel modelling is significant to know the performance of 

communication systems. Lately, Ultra-wideband transmission has paid the attention of research 

scholars from all over the world for communication at high data rates on short distances using 

low power. The UWB pulse distortion is the main problem because of its high bandwidth and 
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NLOS communication [116]. This distortion arises mainly due to the diffraction phenomena 

from the obstacle edges. The TD study is more effective to obtain this distortion as it calculates 

all frequencies of UWB signals instantaneously. The FD solution is transformed into a TD 

solution applying the inverse fast Fourier transform (IFFT). But, this technique requires extra 

time to consider each frequency component distinctly. Thus, the direct TD technique based on 

the efficient convolution method is favoured over the IFFT of the FD solution [91,117-118]. 

The TD model of multiple diffractions was presented in [91]. In [119], a hybrid UTD-PO TD 

model of multiple diffractions was presented. 

The process of accounting for high order diffractions, especially for third and higher orders, 

can be very tedious. In the works of literature [85-96], [99], higher-order diffraction 

coefficients are used to obtain multiple diffractions. However, the self-consistent method [100] 

has been used to find the multiple order diffracted field in the frequency domain without using 

the higher-order diffraction coefficients. But the time domain solution using this method has 

not been done to find the double diffraction of all possible orders for UWB applications. This 

chapter presents a TD multiple-order diffraction coefficient based on the direct convolution 

method by taking inverse Laplace transform of FD formulation of [100] applied to the dual 

dielectric wedge. Only, the first-order TD-UTD coefficient is applied for finding the higher-

order diffraction without using any higher-order diffraction technique such as slope diffraction 

coefficients. Therefore, this technique is modest and calculates all possible orders of 

diffractions. The Gaussian 2nd order pulse is used as an input pulse in direct TD-UTD solution 

and its spectrum is used as an input signal in the IFFT-FD method. The TD results are related 

to the IFFT of FD results to verify accuracy. 
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4.2 Propagation Scenario 

Fig. 4.1 shows the propagation path of multiple diffractions from non-perfectly conducting 

wedges. Here, the diffracted signal from wedge 1 is again diffracted by wedge 2 and vice versa. 

Therefore, this is a case of multiple order diffraction. The edge of the wedge is representing 

the z-axis of polar coordinates.  The incident angle 1  and diffracted angle 1  are measured 

with the 0-face of wedge 1. The incident angle 2  and diffracted angle 2  are measured with 

the 0-face of wedge 2. The interior angle   is the wedge angle. The spherical source is used to 

illuminate the face of wedge 1 at a distance 0s . The distance between the wedges is d . The 

transmitting and receiving points are represented by ( )0 1,s  and  ( )2 2,s  , respectively.  

 

Fig. 4.1 Multiple order diffraction between two wedges. 
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4.3 Problem Formulation 

4.3.1 FD Solution 

Here, a consistent approach [100] used for multiple diffractions in Fig. 4.1 is defined. The 

diffractions by wedge 1 because of the radiation from the source and because of all orders of 

diffraction from wedge 2 can be written as  

( )
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−
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 = +
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

 (4.1) 

where 

,

1 1( , )s hE s  =Total diffracted field by wedge 1 in soft and hard polarization, 

,

0

s hE = Field from the source at wedge 1, 

,

2 2( , 0)s hE s d = = = Entire diffracted field by wedge 2 next to wedge 1 with all orders of 

diffraction, 

,

10

s hD = Diffraction coefficient for wedge 1 due to radiation from the source, 

,

12

s hD = Diffraction coefficient for wedge 1 due to radiation from wedge 2, 

10 = Diffracted angle of wedge 1 due to radiation from the source, 

12 = Diffracted angle of wedge 1 due to radiation from wedge 2, 

10' = Incident angle of wedge 1 due to radiation from the source, 

12' = Incident angle of wedge 1 due to radiation from wedge 2, 
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10L =Distance parameter of the first wedge as a result of radiation by the Transmitter, 

12L =Distance parameter of the first wedge as a result of radiation by the second wedge, 

1n = Angle parameter of the first wedge, 

10A = Spreading factor of wedge 1 as a result of radiation by the Transmitter, 

12A = Spreading factor of wedge 1 as a result of radiation by the second wedge, and 

,

2 2( , 0)s hE s d = =  is the unknown component in (4.1). A consistent method will be used to 

determine it.  

Similarly, a total diffracted field by wedge 2 for all orders of diffraction from wedge 1 can be 

given as 

( )
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, ,

2 2 1 1

,

21 21 21 0 21 0 2

21 2
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 (4.2) 

where ,

2 2( , )s hE s  = Total diffracted field by wedge 2, 

,

1 1( , )s hE s d  = = = The entire diffracted field with the first wedge facing the second wedge 

with all orders of diffraction, 

,

21

s hD = Diffraction coefficient of wedge 2 due to radiation from wedge 1, 

21L = Distance parameter of wedge 2 due to radiation from wedge 1, 

21 = Diffracted angle of wedge 2 due to radiation from wedge 1, 

21' = Incident angle of wedge 2 due to radiation from wedge 1, 

2n = Angle parameter of the second wedge, 
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21A = Spreading factor of the second wedge  as a result of radiation by the first wedge, and 

 ,

1 1( , )s hE s d  = =  is an unknown component in (4.2). It will be determined using the 

consistent method. 

(4.1) and (4.2) form a fixed pair for two unknown components, namely ,

2 2( , 0)s hE s d = =   and 

,

1 1( , )s hE s d  = = . If these two terms are found, then they are applied to measure the 

diffracted fields from each wedge considering all diffraction orders. The two unknown ones 

can be found as follows.  

The total diffracted field by wedge 1 in place of wedge 2 1( , )s d  = = , as given by (4.1), can 

be reduced to 

( )

( )

, , ,

1 1 0 10 10 10 0 10 1

10 1

,

2 2

,

12 12 12 0 12 1

12 1

( , ) , , ' ,

( )

( , 0)

, , ' ,

( )

s h s h s h

jkd

s h

s h

jkd

E s d E D L x n

A s d e

E s d

D L x n

A s d e

    



 

−

−

= = =  = +

 =

+ = =

 =

 =

. (4.3) 

Similarly, the total diffracted field by wedge 2 in place of wedge 1 2( , 0)s d = = , as given by 

(4.2), can be reduced to 
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A simplified form of (4.3) and (4.4) 

, , ,
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2 2 12
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E s d E T

E s d R

 



= = = 

+ = = 
 (4.5) 

Where ( ), ,

10 10 10 10 0 10 1 10 1, , ' , ( )s h s h jkdT D L x n A s d e   −= = +  =  
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 ( ), ,

12 12 12 12 0 12 1 12 1, , ' , ( )s h s h jkdR D L x n A s d e  −= =  =  

and 

, , ,

2 2 1 1 21( , 0) ( , )s h s h s hE s d E s d R  = = = = =   (4.6) 

where, ( ), ,

21 21 21 21 0 21 0 2 21 2, , ' , ( )s h s h jkdR D L x x n A s d e  −= = =  =  

Writing in matrix form to the (4.5) and (4.6), we have 
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 (4.7) 

                or 
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,
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1

1 0

s h s h

s h

RE E T

RE

−
−    
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 (4.8) 

The above-explained method does not use any higher-order diffraction coefficients for the 

calculation of multiple diffractions and it can be extended as well as applied to the interactions 

between a large number of edges. However, the order of the system of equations to be answered 

is also rising and will be identical to the number of communications amid the numerous edge 

groupings. Using this method, the double diffracted field in TD at the receiver is calculated by 

a single order diffraction coefficient than in other works [91] for multiple diffractions. 
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4.3.2 TD Solution 

Taking inverse Laplace transform of (4.1), (4.2) and (4.8), we have total fields in the time 

domain by wedge1 and wedge 2 as follows 
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In the matrix form 

1,
121 1

,
212 2

,

0 10

1 ( )( , , )

( ) 1( , 0, )

( ) * ( )
*

0

s h

s h

s h

r te s d t

r te s d t

e t t

 





−
− = =  

=   
−= =   

 
 
 

 (4.11) 

   where 

( )

( )

( )

,

12 12 12 0 12 1

12 12 1

,

21 21 21 0 21 0 2

21 21 2

,

10 10 10 0 10 1

10 10 1

, , ' , ,
( ) ( )

* ( )

, , ' , ,
( ) ( )

* ( )

, , ' , ,
( ) ( )

* ( )

s h

s h

s h

d L x n t
r t A s d

t d c

d L x x n t
r t A s d

t d c

d L x n t
t A s d

t d c

 



 



  




 =
= =   

− 

 = =
= =   

− 

 = +
= =   

− 

 (4.12) 

and  
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where, ( ) ( )( ) , 1 4id t i = −  are defined  as [91]  
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The ( )0r t  and ( )nr t are the reflection coefficients in TD for 0-face and n-face which are given 

as in [91]. 
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− 
  ( )4.15  

where ( ) ( ), , ,1 1s h s h s hP p p= − + , ( )2sin coss n r np   = −  , 

( ) ( )2cos sinh r n r np    = −  , ( )t is the Dirac delta function,  ( )qI t is the modified Bessel 

function of order q , ( )02 ra   = , and the leading ( )− + sign is for soft (hard) polarization. 

n  is the reflection angles for 0 −  face and n − face. 
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4.4 Results and Discussion 

In this section, the time domain solutions are discussed for different scenarios. The 2nd order 

Gaussian pulse as in [92] is applied as the incident pulse shown in Fig. 4.2 and its Gaussian 

spectrum is shown in Fig. 4.3 which is used in the IFFT-FD solution as the input signal. Fig. 

4.1 consists of two wedges and its parameters are 10r =  and 0.001 = S/m. 

 

 

Fig.  4.2  The 2nd order Gaussian input pulse. 
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Fig.  4.3 Gaussian doublet pulse spectrum. 

 

From Fig. 4.4-4.6, we see that the proposed TD solutions are matching with their corresponding 

IFFT-FD solutions but are highly attenuated and distorted due to the multiple order diffraction 

and frequency dependence behaviour of UWB signals. In Fig. 4.5, a grazing incidence case has 

also been considered in a building scenario. In this case, the received field is obtained without 

using any slope diffraction terms in (4.11). Hence, it proves that the proposed technique has 

merits over the techniques introduced in numerous works of literature [85-96, 99]. Therefore, 

the proposed method is suitable for UWB applications where the distance between wedges is 

small and requires considering all possible orders of diffraction for accurate prediction of the 

signal at the receiver. 
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Fig.  4.4  TD received fields. TX height= 1m, Rx height=1m, wedge height= 4m, d=4m and 

45 = . 

 

Fig.  4.5 TD received fields. Tx height= 1m, Rx height=1m , wedge height= 4m, d=4m and 

90 = . 
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Fig.  4.6  TD received fields. Tx height= 5m, Rx height=1m , wedge height= 4m, d= 4m and 

55 = . 
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In Fig. 4.7, the received field is decreasing because the wedge angle is increasing. Even for 

the case of Fig. 4.6 wherever transmitter height is more than the wedge height, the received 

field has attenuated significantly due to the multiple order diffraction.

 

Fig.  4.7 Comparison of TD received fields for the wedge scenarios Fig. 4.4-4.6. 

 

4.5 Conclusion 

In this chapter, the TD multiple-order diffraction coefficients are presented. Only, the first-

order TD-UTD coefficient is applied for finding the higher-order diffraction without using any 

higher-order diffraction technique such as slope diffraction coefficients. Therefore, this 

technique is modest and calculates all possible orders of diffractions. The Gaussian 2nd order 

pulse is used as an input pulse in direct TD-UTD solution and its spectrum is used as an input 

signal in the IFFT-FD method. The direct TD results are related to the IFFT of FD results that 

verify the accuracy.    
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  Chapter 5 
 

 

A Novel TD-UTD Coefficients for Evaluation of 

Diffraction and Transmission from Dielectric Wedges 
 

In this chapter, a new time-domain six-term heuristic diffraction coefficient is proposed to 

consider the effect of diffraction and transmission from the dielectric wedge with an arbitrary 

low wedge angle for UWB applications. The different scenarios are considered to test the 

overall performance of the TD solution. The results of TD-UTD are confirmed by the inverse 

fast Fourier transform (IFFT) of frequency-based results in hard polarization. The 

computational efficiency of the proposed TD-UTD solutions is demonstrated by comparing the 

time they have taken with their IFFT-FD solutions. 

 

5.1 Background 

The Ultra-Wideband (UWB) communication (3.1-10.6 GHz) is the most emerging wireless 

technology as a potential solution for 5G picocells and femtocells. It is capable to operate in an 

unlicensed band with high data rates for short-range using very low power parallelly with 

current radio communications without creating interference [4]. The propagated pulse through 

the UWB channel is distorted due to its frequency selective nature resulting in performance 

degradation [116]. Therefore, accurate UWB channel modeling is required to determine the 

performance of the communication system and network arrangement [5]. It is since the UWB 

channel has a large bandwidth and thus, working for the entire range of UWB signal in 

frequency-domain (FD) is difficult. Therefore,  many works of literature have a time-domain 

solution of various propagation scenarios with UWB applications [91,99,103]. The time-

domain analysis of the UWB channel can be done in two ways. 1) Taking the IFFT of the 
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conventional FD solution in the entire UWB frequency range, and 2) directly converting the 

FD formula into the TD formula using Inverse Laplace transform. The second method is more 

convenient and less time-consuming than its IFFT counterpart. There are three important 

phenomena to characterize the behaviour of UWB channels: (i) Reflection, (ii) Diffraction, and 

(iii) Transmission. 

The diffraction phenomenon is considered by the most popular theory known as the Uniform 

Theory of Diffraction (UTD) [6]. In [104], a six-term UTD formula has been proposed in FD 

to consider the transmission through the dielectric wedge. However, the TD solution has not 

been presented for this case [85-103]. There are various papers where an emphasis on 

considering transmission through lossy electromagnetic materials has been given [121-123].  

In this work, the analytical TD-UTD formulations are obtained by taking the inverse Laplace 

transform of the FD solutions in [104]. The TD results are verified with the IFFT for the FD 

solutions and the results are found to be very consistent with IFFT solutions. Section-5.2 of the 

paper explains the propagation scenario with single-order diffraction by a dielectric wedge. In 

Section 5.3, the formulations for the TD-UTD diffraction coefficient is derived. Finally, 

Section-5.4 presents a detailed discussion of the proposed outcomes.  

 

5.2  Propagation Scenario with a Dielectric Wedge 

Fig. 5.1 shows the propagation path of diffraction and transmission with single side illumination (SSI) 

from a dielectric wedge. The edge of the wedge is representing the z-axis of polar coordinates. The 

incident angle   and diffracted angle   are measured with the 0-face of the wedge. The interior angle 

 is the wedge angle. A line source is used to illuminate the face of the wedge at a distance 1r . The 

transmitting and receiving points are represented by ( )1,r  and  ( )2 ,r  , respectively. There are four 



 

59 
 

regions of observation with 0-face illumination ( )    − . Region-I ( )0     − has incident, 

reflected, and diffracted fields. The limiting boundary ( )  = −  of the reflected wave is the 

reflection shadow boundary (RSB). Only incident and diffracted fields exist in Region-II 

( )     −   + . The limiting boundary ( )  = +  of the incident wave is the incident 

shadow boundary (ISB). Region-III ( )( )0g     +   + has diffracted fields only. The limiting 

boundary ( )( )0g  = + of the transmitted ray is the transmission shadow boundary (TSB). Region-

IV ( )( )0 3g      +   − −  has the diffracted and the transmitted fields. This is the shadow 

region of the scenario. The ( )0g  is defined in [104]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1  Propagation scenario by a dielectric wedge. 
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5.3 Formulation of the Proposed TD-UTD Coefficient 

The diffraction and transmission phenomena show a vital role in the modeling of the wireless 

channel. The diffracted and transmitted fields compensate for the discontinuities of each 

geometrical optics (GO) field at ISB, RSB, and TSB by adding antisymmetric discontinuities, 

so that the entire field is continuous around the structure. The impulse response of the received 

field in the shadow region of Fig. 5.1 can be obtained by taking the inverse Laplace transform 

of (1) in [104] with impulse input. Hence, the impulse response 

( ) ( ) ( )( )2 , 1 2(r )d s hu t A d t t r r c =   − +   ( )5.1  

 

 

where 2(r )A is the amplitude spreading factor, and the delta function ( )( )1 2t r r c − + is the 

time delay that occurs between transmitter and receiver. The ( ),s hd t  is the diffraction 

coefficient in TD for a dielectric wedge which is obtained by taking the inverse Laplace 

transform of (3) in [104] 

( ), 1 2 0 3 4 0 0 5 6s h n n nd t d d r d r d t t d t t d = + +  +  +   +    ( )5.2
 

 where ( )id t with 1 4i = −  is given as in [91] 

( )2 2

sin(2 )
( ) ( )

2 2 2 sin (a )

i

i

i

aLn
d t u t

c t t Ln c
= −  

+
 ( )5.3  

   ( ),s hr t is the Fresnel reflection coefficient in TD. This is obtained from [109] 

( ) 1

, 2
1

4
( ) ( 1) ( )

1

at
q q

s h q

q

p e
r t P t qP I at

tp


− 
+

=

 
= + − 

− 
  ( )5.4  

where ( ) ( ), , ,1 1s h s h s hP p p= − + , ( )2

1 1sin cossp   = −  , 

( ) ( )2

1 1cos sinhp    = −  , the modified Bessel function of order q is ( )qI t , 

( )02 ra   = , and soft (hard) polarizations represented by the leading ( )− + sign. 

Taking inverse Laplace transform of (7) and (14) in [104], 5d  and 6d  of (5.2) can be given as  
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( )
5

5 2 2

5

sin(2 )
( ) ( )

2 2 2 sin (a )

i

i

aL n
d t u t

v t t L n v
= −  

+
 ( )5.5  

and  

( )
6

6 2 2

6

sin(2 )
( ) ( )

2 2 2 sin (a )

i

i

aL n
d t u t

v t t L n v
= −  

+
 ( )5.6  

The ( ) ( ) ( ), ,s h s ht t t r t= + and ( ) ( ) ( ), ,s h s ht t t r t = +  in (2) are the transmission coefficients in 

TD on the first interface (air/dielectric), and the second interface (dielectric/air) with ( ),s hr t  as 

in (5.4) 

( ) 1

, 2
1

4
( ) ( 1) ( )

1

at
q q

s h q

q

p e
r t P t qP I at

tp


− 
+

=

 
  = + − 

− 
  ( )5.7  

where ( ) ( ), , ,1 1s h s h s hP p p  = − + , ( )2

2 2cos 1 sinsp    = −  , 

( ) ( )2

2 21 sin coshp     = − , and 
rv c = . All the other terms are defined as in [104]. 
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5.4 Results and Discussions 

The 2nd order Gaussian pulse [103] shown in Fig. 5.2 is used to test the TD solutions proposed 

in Section-5.3. This pulse is crossing the zero line two times with a Gaussian shape. Hence, it 

is called the 2nd order Gaussian pulse. It has the time-scaling factor τ = 0.1 ns .  

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 2nd-order Gaussian pulse. 
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The 2nd order Gaussian pulse spectrum shown in Fig. 5.3 is used in IFFT-FD solutions. This 

spectrum has a frequency range of UWB signals. Therefore, the pulse is used as a transmitted 

pulse of UWB signals with a short duration in ns. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 2nd-order Gaussian pulse spectrum. 



 

64 
 

In Fig. 5.4, the TD response is compared with its corresponding IFFT-FD response and both have very 

good matching. Therefore, the proposed method is verified. Here, the incidence angle is 15 =   and 

wedge angle is 17 =   which is selected as in [10] to have transmitted fields. The received pulse is 

attenuated and distorted in comparison to the input pulse due to the lossy behaviour of the dielectric 

wedge and frequency dependence nature of the UWB signal in the shadow region of the structure. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4  TD received fields. 15 =  , 335 =  , 1 3r = m, 2 2r = m, 17 =  , relative 

permittivity 10r = , conductivity 0.001 = S/m.  
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In Fig. 5.5, the TD received pulse is also matching with its corresponding IFFT-FD solution for a 

different scenario where incidence angle is 75 =  . In this case, the received pulse is strongly 

attenuated and distorted due to the only transmitted and diffracted fields available in the shadow region. 

The received pulse is also subject to the frequency dependence of UWB signals. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5  TD received fields. 75 =  , 335 =  , m, 1 3r = 2 2r = m, 17 =  , relative 

permittivity 10r = , conductivity 0.001 = S/m.  
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In Fig. 5.6, a different scenario is selected where the incidence angle is 115 =  . Here, the received 

pulse is less attenuated and distorted than in the earlier cases. This is due to the only diffracted fields 

available in the shadow region. Here, both the TD-UTD and IFFT-FD solutions are matching each 

other. Therefore, it confirms the accuracy of the proposed method. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6  TD received fields. 115 =  , 335 =  , 1 3r = m, 2 2r = m, 17 =  , relative 

permittivity 10r = , conductivity 0.001 = S/m.  



 

67 
 

In Fig. 5.7, a very thin wedge structure is selected with a wedge angle 13 =  . In this case, the 

TD-UTD and IFFT-FD solutions are also similar. Therefore, the proposed TD solution is 

guaranteed to be accurate. The received pulse is strong due to the high transmission fields. 

Minor distortions are caused by the frequency dependence of the proposed TD-UTD 

coefficients. 

 

     

 

 

 

 

 

 

 

Fig. 5.7  TD received fields. 75 =  , 335 =  , 1 3r = m, 2 2r = m, 13 =  , relative 

permittivity 10r = , conductivity 0.001 = S/m.  
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Table 5.1 and Fig. 5.8 present the computational efficiency of the proposed TD technique with 

its corresponding IFFT-FD technique. It is quite clear that the TD-UTD solution works much 

better than the IFFT-FD method. It is because the TD-UTD method is based on the effective 

convolution method. While the IFFT-FD method takes longer to convert each frequency 

component of UWB signals to TD due to a shorter Gaussian pulse. 

 

Table 5.1 Details of the time taken in simulation by the TD-UTD and IFFT-FD 

techniques. 

 

 

 

 

 

 

 

Fig. 5.8 Time taken by the direct TD-UTD method and the IFFT-FD method.   
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5.5 Conclusion 

In this chapter, novel six-terms UTD diffraction coefficients in TD has been presented to 

consider transmission and diffraction phenomena from a thin dielectric wedge. The TD-

UTD results are compared with its corresponding IFFT-FD results in hard polarization 

showing excellent matching. Various scenarios have been selected to test the proposed TD 

solutions. Finally, the TD-UTD process is more effective than the IFFT-FD method.  
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Chapter 6 
 

 

Characterization of Diffracted and Transmitted Field 

with UWB Applications   
 

One of the foremost propagation phenomena based on the ray concept is diffraction. The 

classical frequency-domain model of Uniform Theory of Diffraction (UTD) is used to evaluate 

the signal diffracted in the shadow region of the scenario as well as to determine the cell 

coverage of the wireless communication system. The Time-domain formulation of UTD is used 

to analyze the UWB channel characteristics in the time-domain.  In this chapter, a novel 

heuristic diffraction coefficient in frequency-domain (FD) for non-perfectly conducting 

wedges and buildings is proposed. A six-term diffraction coefficient which is an extension of 

the four-term UTD coefficient is proposed to include the effect of transmitted ray for a lossy 

dielectric wedge with arbitrary low wedge angle, thus, attaining the continuity of the total field 

all around the structure. This new six-terms UTD diffraction coefficient is verified with a finite 

difference time domain (FDTD) based on a numerical method. Further, a time-domain (TD) 

solution based on the classical frequency domain result is proposed for UWB applications in 

indoor environments. Finally, a case of double diffraction for two consecutive buildings 

scenario is presented based on slope diffraction and their corresponding TD solution is also 

presented. The different input pulses and building materials are considered to test the overall 

behaviour of the TD model. All the TD results are verified with inverse fast Fourier transform 

(IFFT) of the FD results in both the soft and hard polarization and the results are found to be 

in very good agreement. The impulse response of the channel is also presented to determine 

the distortion on the input pulse. The computational efficiency of the proposed TD solutions is 

demonstrated by comparing them with IFFT-FD solutions. 
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6.1 Background 

The wireless systems are assessed through measurements and simulations. But, the simulation-

based method is preferred over the measurement-based approach as the latter is site-specific 

and time-consuming. Moreover, the wave propagation calculation is required repeatedly. 

Hence, it is appropriate to use the high-frequency asymptotic methods i.e. the geometrical 

theory of diffraction (GTD) and its improvement in the uniform theory of diffraction (UTD). 

These techniques were developed for perfectly conducting wedges where reflection and 

diffraction effects in an urban environment are evaluated. Many researchers proposed heuristic 

methods to study dielectric wedges [84, 106]. The time-domain (TD) solution of UWB systems 

is more efficient and less time consuming than the FD solutions due to the large operating 

frequency of UWB signals [103]. In [99, 124], the reflected fields are specified in TD. In [116],  

the TD solutions are presented in closed form for ultra-wideband applications where both the 

perfectly conducting and dielectric wedges are considered. The TD results are compared with 

their corresponding IFFT-FD solutions in the urban environment. The impulse response is 

derived from Bertoni’s propagation model and a case of pulse distortion is also investigated to 

explain the performance of the UWB system. In [91], the TD multiple-diffraction solutions are 

investigated for metallic and dielectric wedges. The TD results are validated with their IFFT-

FD results. An algorithm is also proposed to measure the TD diffracted field after an arbitrary 

number of wedges of different shapes and types. In [103], A TD diffraction solution is 

presented for lossy wedges and buildings which is pertinent for different wedge face 

illumination by the source. A new time-domain (TD) solution is proposed for analyzing the 

diffraction of ultra-wideband (UWB) signals in three dimensional (3-D) scenarios [120]. But, 

the above TD solutions do not consider the transmitted ray in the diffraction coefficient due to 

the thick wedge size. 
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In [121-123], the transmitted field along with the diffracted field is considered to predict the 

total field at the receiver in the urban environment. The transmitted fields become very 

significant in UWB communication due to the non-line-of-sight (NLOS) communications 

where the diffracted and reflected fields are very weak in the deep shadow regions. In [99], the 

TD model based on FD solutions is presented to consider the transmission phenomenon 

through the dielectric wedge and building made of low-loss materials. The results are validated 

with IFFT-FD solutions. In [124], the TD pulse distortion is analyzed due to the multiple 

reflections and transmissions of the UWB signal from the lossy dielectric walls. In [104], the 

author has presented a heuristic diffraction coefficient including the transmitted field when the 

dielectric wedge angle is less than 20˚. In this case, the diffracted field in the shadow region 

has significant improvement and the total field is continuous all around the wedge. Also, the 

UTD results confirmed with the FDTD method where a significant alteration is detected 

between ISB and TSB except other parts of the wedge geometry.   

 

Fig. 6.1.    Dielectric wedge. 900f =  MHz, 105 =  , 2 1r = m, 10 =  , 0.001 = S/m. 
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In this work, a heuristic four terms UTD is presented in frequency-domain (FD).  Then, a novel 

six-terms UTD is established to consider the transmitted ray in the diffraction coefficient as (3) 

of [104] where two more terms are added in four terms UTD. It predicts a better response 

between ISB and TSB  than the result given in Fig. 6 of [104] shown in Fig. 6.1. Further, it is 

validated with FDTD. Subsequently, we present the formulation for multiple diffraction cases 

with two successive wedge vertices and a building structure. Here, the doubly diffracted field 

by the slope diffraction is calculated behind the structure when the refracted field doesn’t occur.  

Moreover,  the TD solution is proposed through the above FD solution for UWB applications 

which contemplates the transmitted ray. As we know that the TD solutions are favoured over 

the FD solutions due to the high operating frequency range of UWB signals [103]. The TD 

double diffraction solution is also presented by the TD slope diffraction coefficient in the case 

of grazing incidence. 

Section-6.2 of this chapter explains the propagation scenario with single-order diffraction by a 

lossy wedge. In Section 6.3, the formulation for single-order FD-UTD and TD-UTD diffraction 

coefficient is specified. Here,  we describe the implementation of UTD  for lossy dielectric 

wedges with an additional transmission coefficient. In Section 6.4, the case of multiple 

diffractions is stated in both the FD and TD. There, slope diffraction is used to interpret grazing 

incidence or double diffraction. Section-6.5 deals with results and discussion. There, the 

proposed FD and TD results are represented for both the polarization soft and hard. Results 

obtained by the six-terms UTD coefficient are good and the same has been verified with FDTD. 

Further, the TD outcomes are verified with the IFFT of the alike FD solutions. Various input 

pulses and wedge materials are used to check the overall performance of the TD solutions. 

Improvement of the results due to double diffraction is also presented in the shadow region of 

the structure. UWB pulse distortion is evaluated by exploring the channel impulse response. 
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The computational effectiveness of TD and IFFT-FD solution is also projected. Finally, 

conclusions are presented in Section-6.6. 

 

6.2 Propagation Scenario with Single-order Diffraction by a 

Lossy Wedge 

Fig. 6.2  shows the propagation path of diffraction and transmission with single side 

illumination (SSI) from a non-perfectly conducting wedge.  

 

 

 

 

 

 

 

 

 

 

The edge of the wedge is representing the z-axis of polar coordinates. The edge of the wedge 

is representing the z-axis of polar coordinates. The incident angle   and diffracted angle   

are measured with the 0-face of the wedge. The interior angle  is the wedge angle. A plane 

 

Fig. 6.2 Propagation scenario by a lossy wedge. 
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wave source is used to illuminate the face of the wedge at a distance 
1r . The transmitting and 

receiving points are represented by ( )1,r  and  ( )2 ,r  , respectively. There are four regions of 

observation due to different wave propagation when 0-face illumination ( )    −  of a 

wedge is considered.  

Region-I ( )0     −  is having wave components (incident, reflected, and diffracted 

waves). The limiting boundary ( )  = −  of the reflected wave is the reflection shadow 

boundary (RSB) in Region-I. Only incident and diffracted waves exist in Region-II 

( )     −   + . In Region-II, the limiting boundary ( )  = +  of the incident wave is 

the incident shadow boundary (ISB). Region-III ( )( )0g     +   + is having diffracted 

waves only. In Region-III, the limiting boundary ( )( )0g  = + of the transmitted wave is 

the transmission shadow boundary (TSB). Region-IV ( )( )0 3g      +   − −  is having 

diffracted and transmitted waves. This is the shadow region of the wedge. ( )0g  is defined in 

(6.14). 

 

6.3 Proposed Heuristic Diffraction Coefficient 

6.3.1   FD-UTD 

The diffraction phenomenon occurs when an electromagnetic wave falls on a metallic or 

dielectric edge as shown in Fig. 6.2. It has an important role in the modeling of wireless 

communications links with mobiles. The diffracted field compensates for the discontinuity of 

each geometrical optics (GO) field at the ISB and RSB by adding anti-symmetrical 

discontinuity. Thus, the total field is continuous around the structure. One of the fast well-
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known asymptotic ray-based methods is the uniform theory of diffraction (UTD). The received 

signal after single diffraction from non-perfectly conducting wedge under plane wave 

propagation is given by [91] 

( ) ( )1 2

, 2(r ) e
jk r r

Rx i s hE E D A
− +

=     ( )6.1  

where RxE  is the received field. iE  is the transmitted field. 1r is the distance from the 

transmitter to the diffracted point. 2r is the distance from the diffracted point to the receiver. 

k c= is the wavenumber. c is the speed of light.  is the angular frequency. ( )2 21A r r=

is the spreading factor. ( ),s hD   is the diffraction coefficient for soft and hard polarization 

correspondingly. It is proposed as 

( ), 1 2 0 3 0 4s h nD D D R D R R D = + + +  ( )6.2  

where
iD with 1 4i = − is given as in [91] 

( ) ( )
4

2 2cot 2 sin
2 2

j

i i i

e
D a F kLn a

n k





−
 =    ( )6.3  

with ( ) ( )1 2a n  = − −   , ( ) ( )2 2a n  = + −   , ( ) ( )3 2a n  = − +   , and 

( ) ( )4 2a n  = + +   . 
2L r=  is the distance parameter. The transition function is ( )F X

which is given as in [91] 

  ( )
2

2 jX ju jX

X

F X j X e e du j X e erfc jX


−= =  ( )6.4  

where ( )erfc X is the complementary error function. The Fresnel reflection coefficient for soft 

and hard polarization is given by [109] 

( )
2

1 1

, 1
2

1 1

sin (1,1 ) cos

sin (1,1 ) cos
s hR

   


   

− −
=

+ −
 ( )6.5  
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where 1,0 = and 1,n n  = −  are the reflection angles for 0 −  and n − face respectively, 

0r j   = − is the complex permittivity,  is the conductivity in S m , 12

0 8.854 10 −= 

f/m is the permittivity of free space, and r is the relative permittivity.  

 An incident wave penetrates the wall of the dielectric wedge if the interior angle is less than 

20 =   [104]. A refracted ray occurs across the dielectric wedge in this case. Due to this, an 

extra shadow boundary exists in the shadow region of the structure that is called transmitted 

shadow boundary (TSB). In this case, the above four terms UTD (6.2) is not able to end the 

discontinuity at the TSB. Thus, two more terms are added to the four-terms UTD to confirm 

the continuity at the TSB [104]. Now, the proposed six-terms UTD is stated as 

( ), 1 2 0 3 0 4 0 0 5 6s h n n nD D D R D R R D T T D T T D  = + + + + +  ( )6.6  

where ( ) ( ), 1 , 11s h s hT R = +  is the transmission coefficients for soft and hard polarization 

distinctly on the first interface (air/dielectric), and ( ) ( ), 2 , 21s h s hT R  = +  is the transmission 

coefficients on the second interface (dielectric/air) with  

( )
2

2 2

, 2
2

2 2

cos (1, ) 1 sin

cos (1, ) 1 sin
s hR

   


   

 − −
  =
 + − 

 ( )6.7  

( )( )2,0, arcsin cos ,n rn     = − −  ( )6.8  

Here, 5D  and 6D  are defined as the (14) and (7) of [104].    
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 ( )6.10  

5N  is the nearest integer solution of  
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( )( )( )5 02 nN g    + − + = −  ( )6.11  

5b  of (6.10) can also be simplified using the (13) of [125] to remove the integer 5N  as 

( )2 2

5 52 sinb n a= . Hence, 5D can be written in simple form as follows 
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6N  is the nearest integer solution of  

( )( )( )62 nnN g    + + + =  ( )6.17  

6b  of (6.16) can also be simplified using the (13) of [125] to remove the integer 6N  as 

( )2 2

6 62 sinb n a= . Hence, 6D can be written in simple form as follows 
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( )
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2

n r

r

g
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   + 
  = − − −         

 ( )6.20  

where 
d rk k = . 

 

6.3.2 TD-UTD 

The impulse response of a single diffracted ray shown in Fig. 6.2 can be given by setting 1iE =

(with impulsive excitation) in (6.1). Therefore, the impulse response 

( ) ( ) ( )( )2 , 1 2(r ) s hh t A d t t r r c =   − +   ( )6.21  

where the delta function ( )( )1 2t r r c − + is related to a shift in time that the transmitted signal 

takes to traverse the path to the receiver. The ( ),s hd t  is the TD-UTD for a non-perfectly 

conducting wedge which is expressed as 

( ), 1 2 0 3 0 4s h nd t d d r d r r d= + +  +    ( )6.22  

 where ( )id t with 1 4i = −  is given as in [91] 
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c t t Ln c
= −  

+
 ( )6.23  

The Heaviside step function is ( )u t . ( ),s hr t is the TD Fresnel reflection coefficient of (6.5). 

This is given by [109] 

( ) 1

, 2
1

4
( ) ( 1) ( )

1

at
q q

s h q

q

p e
r t P t qP I at

tp


− 
+

=

 
= + − 

− 
  ( )6.24  

where ( ) ( ), , ,1 1s h s h s hP p p= − + , ( )2

1 1sin cossp   = −  , 

( ) ( )2

1 1cos sinhp    = −  , ( )t is the Dirac delta function, the modified Bessel function 
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of order q is ( )qI t , ( )02 ra   = , and soft (hard) polarizations represented by the leading 

( )− + sign.  

Considering the refracted rays from the dielectric interface, the (6.6) can be written in the time-

domain as 

( ), 1 2 0 3 0 4 0 0 5 6s h n n nd t d d r d r r d t t d t t d = + +  +   +   +    ( )6.25  
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 ( )6.27  

Where ( ) ( ) ( ), ,s h s ht t t r t= + is the time-domain transmission coefficients on the first interface 

(air/dielectric), and ( ) ( ) ( ), ,s h s ht t t r t = + is the TD transmission coefficients on the second 

interface (dielectric/air) with ( ),s hr t  as in (6.24) 
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2 2cos 1 sinsp    = −  ,
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rv c = . 
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6.4 Multiple Diffraction 

Figs. 6.3 (a) and (b) show the multiple diffractions by two consecutive wedge structures and a 

lossy building structure respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

The transmitting and receiving points are represented by ( )1 1,r  and ( )3 1,r  respectively. In Fig. 

6.3 (b), the case of grazing incidence is considered where the incident angle 2  is 0 . In this 

 

(a) 
 

 

 

(b) 

 

Fig. 6.3  Double diffraction. (a) by two consecutive wedges. (b) by a lossy building. 
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case, slope diffraction is used to find a doubly diffracted field. There are five regions in Fig. 

6.3  and each region has the following fields  for an incident wave on the 01-face of the wedge: 

Region I Total Field=Reflected Field + Incident Field + Diffracted Field. The limiting 

boundary is the double scattered shadow boundary (DSSB). 

Region II   Total Field=Reflected Field + Incident Field + Diffracted Field + Doubly 

Diffracted Field. The limiting boundary is RSB. 

Region III  Total Field=Incident Field + Diffracted Field + Doubly Diffracted Field. The 

limiting boundary is ISB. 

Region IV  Total Field=Diffracted Field + Doubly Diffracted Field. The limiting boundary 

is the scattered shadow boundary (SSB). 

Region V   Total Field=Doubly Diffracted Field. This region is limited by the wedge 

structure. 

 

6.4.1 FD Solution 

The doubly diffracted field at the receiver for plane wave incidence is expressed as [106]  

1 2 4(r ) 1 ' 2 '

1 2 1 1 2 2
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2 1 22 4

( , ) ( , )1
jk r r

i

DRx
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 (6.29) 

where 1 '

1 1( , )D   and 2 '

2 2( , )D   are the FD-UTD coefficient on the first and second wedge. 

1 '
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




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'

2

( , )D  






are the slope diffraction coefficients. It can be given as in [91,106]. 
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6.4.2 TD Solution 

The TD doubly diffracted field can be given by taking inverse Laplace transform of (6.29) as 

1 2 1 2 1 2 4

22 4
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e t d t d t d t d t t

r cr r


   + + 
=   −   −   

   
 (6.30) 

where, 1 ( )d t and 2 ( )d t are the TD-UTD diffraction for wedge 1 and wedge 2. They are derived 

similarly to (6.22). The 
1 ( )fd t  and 

2 ( )fd t  are expressed as [92] 
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where ( )( )

3/2
( )

2( )
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F t u t
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= 

+
 and 2 22 sin (a )i iLn c = with a i as defined earlier. The 

derivative terms 0

2
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




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1
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




can be given as [91]. 

The simulation results are projected in the following section to check the exactness of proposed 

FD and TD solutions as discussed in section 6.3 and 6.4. The TD solutions will also be tested 

for different types of excitation pulses and wedge materials. 
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6.5  Results and Discussions 

A heuristic four-terms UTD and its extended formulation of six-terms UTD are proposed in 

this paper. Our work shows how the six terms UTD performs in the case of a lossy wedge with 

an internal angle that is small enough. In Figs. 6.4 (a) and (b), the total field around a lossy 

wedge is irregular on the transmission shadow boundary (TSB) in the case of the four-terms 

UTD coefficient (6.2) in both the polarization soft and hard. Subsequently, this irregularity 

vanishes by the six-terms UTD where two extra terms are included in the four-terms UTD 

coefficient.  

 
(a) 
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We represent the usefulness of the proposed six-terms UTD coefficient in Fig. 6.5 and Fig. 6.6. 

Here, the six-terms UTD [104] and the proposed six-terms UTD are compared with the FDTD 

method. A better agreement is obtained between the proposed UTD and FDTD than the results 

[104]. It is observed that there is an agreement between FDTD and the results of the proposed 

method in the regions where the GO field occurs. However, there is a significant difference 

between FDTD and the proposed method in the region between ISB and TSB where only 

diffracted field exists. This difference could be occurred due to ignorance of multipath between 

the two interfaces by the heuristic proposed method, while the same is considered in the full-

wave FDTD approach.  

Fig. 6.4  Comparison of 4 Terms UTD and 6 Terms UTD using the scenario of Fig. 6.2. 

900f =  MHz, 105 =  , 2 1r = m, 10 =  , relative permittivity ( 10r = ), and 

conductivity ( 0.001 = S/m). (a) Soft polarization. (b) Hard polarization. 

(b) 
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Table  6.1 Various parameters from the simulated results of Fig. 6.5. 

Parameter Value at 305 =   Value at 313 =   

Diffraction Coefficient, ( )D   0.2113- 0.1212i 0.1581-0.1119i 

Amplitude of received electric field (Ez) by 

FDTD method 

-5.7208 dB -5.1729 dB 

Ez by proposed method with respect to the 

FDTD result 

-2.30 dB -1.04 dB 

Ez (Luebbers) [104] with respect to the FDTD 

result 

-3.23 dB -1.856 dB 

Improvement of the proposed method over 

existing method [104] with respect to the 

FDTD result 

0.93 dB 0.816 dB 

% Improvement with respect to the FDTD 

result 

16.24 % 14.88 % 

 

 

Fig. 6.5  Comparison of 6 Terms UTD (Proposed) and 6 Terms UTD (Luebbers) with 

FDTD using the scenario of Fig. 6.2. 900f =  MHz, 105 =  , 2 1r = m, 10 =  , 

relative permittivity ( 10r = ), and conductivity ( 0.001 = S/m). 
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From the Table 6.1, the value of diffraction coefficients between ISB and TSB are decreasing 

because the receiver moved from 305 =   to 313 =  . The improvement of the proposed 

method over the existing method [104] with respect to the FDTD result is also decreasing due 

to the non-linear behaviour of the diffraction coefficient. Similarly, % of improvement has 

decreased in Fig 6.6. 
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Fig. 6.6  Improvement (%) of 6 Terms UTD (Proposed) over 6 Terms UTD 

(Luebbers) of [104] in the deep shadow region (ISB-TSB) 
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Figs. 6.3 (a) and (b) show the scenario of multiple diffractions. We select a high lossy wedge 

material with a large thickness in Fig. 6.3 (b). The total field around the structure is calculated 

by applying UTD on two consecutive wedge vertices. Furthermore, we have calculated the 

doubly diffracted field using the slope diffraction all around the structure even in Region V. 

The results are presented in Figs. 6.7 and 6.8 show a good agreement with and without the 

slope diffraction before the SSB. Indeed, the diffracted field is the only field calculated after 

the ISB. Only, we get the doubly diffracted field in Region V. Thus, the results for both the 

soft and hard polarization are good in all the regions around the dielectric wedge. 

 

 

 

 

(a) 
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(b) 

 

Fig. 6.7  Comparison of 6 Terms UTD without slope diffraction and 6 Terms UTD with slope 

diffraction using the scenario shown in Fig. 6.3 (a). 900f =  MHz, 55 =  , 2 0.9r = m, 

3 1r = m, 1 10 =  , 2 10 =  , 10r = , 0.001 = S/m.  

 

(a) 
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(b) 
 

Fig. 6.8  Comparison of 6 Terms UTD without slope diffraction and 6 Terms UTD with 

slope diffraction using the scenario shown in Fig. 6.3 (b). 900f =  MHz, 55 =  , 2 0.9r =

m, 3 1r = m, 1 90 =  , 2 90 =  , 10r = , 0.001 = S/m.  
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The Gaussian pulses [103]  shown in Fig. 6.9 are used to test the TD solutions proposed in 

Sections 6.3 and 6.4. Here, the time-scaling factor τ = 0.1 ns is selected. It is seen that the first-

order Gaussian pulse is crossing the zero line only once. However, its next derivatives are 

crossing the zero line twice and thrice. It means each derivative is producing extra zero 

crossings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9 Input Gaussian pulses. 
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The second-order Gaussian pulse is shown in Fig. 6.9 is the most common pulse stated in many 

works of literature [109,124]. The TD received signal due to diffraction by a dielectric wedge 

is shown in Fig. 6.10. It is seen that the TD-UTD results are matching with the IFFT-FD results 

in both the soft and hard polarization. Hence, the proposed TD-UTD is right. From Figs. 6.9 

and 6.10, It is also observed that the input pulse has been extremely attenuated and distorted 

due to diffraction by a dielectric wedge. This attenuation and shape distortion is resulted due 

to the lossy nature of dielectric materials and frequency dependence of the TD-UTD 

coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10  TD received field for the scenario shown in Fig. 6.1. 105 =  , 345 =  , 

2 1r = m, 10 =  , relative permittivity 10r = , conductivity 0.001 = S/m. Gaussian 

2nd-order input pulse and single diffraction. 
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Figs. 6.11 (a) and (b) show the received signal for the scenario shown in Fig. 6.2 in response 

to first- and fourth-order Gaussian input pulses which again confirms the overall performance 

of the TD-UTD solution. There are good matching between TD-UTD and IFFT-FD results in 

both the polarization. It is also observed that the diffraction coefficient is frequency-dependent 

which distorts the input pulses. These input pulses are of very short duration (in ns). Therefore, 

it is very well suitable for UWB communication in 5G that supports wide bandwidth and high 

data rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Fig. 6.11  TD received field due to single diffraction by the scenario shown in Fig. 

6.2. 105 =  , 345 =  , 2 1r = m, 10 =  , 10r = , 0.001 = S/m. (a) Response for 

first-order gaussian pulse. (b) Response for fourth-order Gaussian pulse. 
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Furthermore, the wave propagation of signals has different behaviour for different dielectric 

wedge materials. The following wedge materials shown in Table 6.2 are considered in the 

simulation to see the TD-UTD behaviour. 

 

Table  6.2 Different wedge materials [103]. 

Wedge materials Relative permittivity r  Conductivity  (S/m) 

Concrete 10 0.001 

Glass 6.7 0.001 

Brick 4.4 0.018 

Wood 2 0.01 
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Fig. 6.12 shows the diffracted signals in response to the Gaussian 2nd -order input pulse for the 

scenario stated in Fig. 6.2 considering soft polarization. Here, also attenuation and pulse 

distortion is observed in the received signals due to the same reasons stated earlier. Moreover, 

it is seen that the strength of diffracted signals decreases for further lossy wedge materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12  TD received fields for the scenario shown in Fig. 6.1 in which wedge is  made 

with different building materials. 105 =  , 345 =  , 2 1r = m, 10 =  . Single 

diffraction and 2nd-order Gaussian input pulse. 
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Figs. 6.13 and 6.14 show the doubly diffracted field at the receiver for 2nd -order Gaussian input 

pulse by two wedges of the same structure Fig. 6.3 (a) and a high lossy building Fig. 6.3 (b) 

under soft polarization. There are good matching among TD-UTD and IFFT-FD results. 

Therefore, it confirms the exactness of the TD-UTD solution. It is also seen that the doubly 

diffracted fields are extremely attenuated and distorted to the input pulse applied due to the 

high-frequency dependence of the response. This attenuation and pulse distortion is more for 

the case of building scenarios than the two wedge structure. This is due to the case of grazing 

incidence where only slope diffracted fields are available at the receiver.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13  TD received field for the scenario shown in Fig. 6.2 (a). 1 55 =  , 1 290 = 

, 2 0.9r = m, 3 1r = m , 10 =  , 10r = , 0.001 = S/m. Double diffraction. 
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Fig. 6.14  TD received field for the scenario shown in Fig. 6.3 (b). 1 55 =  , 1 290 = 

, 2 0.9r = m, 3 1r = m , 90 =  , 10r = , 0.001 = S/m. Double diffraction (gazing 

incidence case) . 
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It is seen that the received signal is not similar to the input pulse in shape and is distorted. Fig. 

6.15 demonstrates the impulse response for the scenario shown in Figs. 6.2 and 6.3 considering 

soft polarization. We know that the different frequency components of the TD-UTD coefficient 

have different attenuation. Due to this, the shape of the received signal is not similar to the 

impulse signal and hence, it is distorted. Furthermore, it is also observed that the doubly 

diffracted fields are more distorted due to the only consideration of slope diffraction. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 6.15  The channel impulse response for the scenario shown in Figs. 6.2, 6.3 (a) 

and (b).  
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Table 6.3 and Fig. 6.16 project the details of the time taken in simulation by the TD-UTD and 

IFFT-FD techniques. It is seen that the IFFT-FD solution consumes more time than the TD-

UTD technique due to the following reasons.1) The TD-UTD technique is based on the 

effective convolution method. 2) The IFFT-FD method computes a large range of frequency 

due to the short duration of the input Gaussian pulse. 

 

Table 6.3 Details of the time taken in simulation by the TD-UTD and IFFT-FD techniques. 

Dielectric Wedge  

Scenario 

Time (TD-UTD) in 

(Sec.) 

Time (IFFT-FD) in 

(Sec.) 

Time (IFFT-FD)/ 

Time (TD-UTD)  

    

Single Wedge 0.26 12.69 47.09 

Building 0.99 22.76 22.95 

Two wedge 

structure  

0.85 20.67 24.18 

 

 

  

 

 

 

 

Fig. 6.16 Time taken by the direct TD-UTD method and the IFFT-FD method.   
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6.6  Conclusion 

Novel diffraction coefficients in FD and TD have been presented in this chapter. The FD-UTD 

coefficient was shown to be accurate in all the regions for a thin lossy wedge. It permits the 

computation of the transmitted ray through the dielectric wedge by including two more terms 

in the four-terms FD-UTD coefficient. This novel six-terms FD-UTD coefficient has been 

verified with the available FDTD technique. Next, the doubly diffracted field due to the slope 

diffraction coefficient behind the double wedge structure and a high lossy building is also 

presented. Furthermore, a novel TD-UTD coefficient has been presented based on the IFFT of 

the proposed FD solutions. The different input pulses and wedge materials have been used to 

test the overall performance of the proposed TD techniques. The TD-UTD results have been 

verified with IFFT-FD results, and very good agreements have been reported. The impulse 

response is also presented to explain the pulse distortion for the different scenarios. Finally, it 

is seen that the TD-UTD technique is shown to be computationally more efficient than the 

IFFT-FD technique.  
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Chapter 7 
 

 

Conclusion and Future Scope 
 

This chapter deals with the conclusion of the complete work that has been done in the thesis 

and the future scope of the proposed concept. This thesis is mainly focused on TD modeling of 

the wireless channel for UWB applications.  

 

7.1  Conclusion 

The main conclusions of this thesis are abridged as follows: 

Chapter 1 starts with the significance of UWB communications in 5G innovation, the need for 

channel modeling for Ultra-wideband applications, and the high-frequency phenomenon of 

electromagnetic waves. From that point onward, the study positions and research objectives 

are clarified. 

In Chapter 2, a new TD diffraction coefficient is proposed. It is based on the direct convolution 

method by taking inverse Laplace transform of FD diffraction coefficients that apply to the 

situation when the source illuminates possibly one or the two sides of the non-perfectly 

conducting wedge with arbitrary internal angles.   

In Chapter 3,  a TD double diffraction is presented that applies to the case when the source 

illuminates either one or both sides of the non-perfectly conducting wedge with arbitrary 

internal angles.  

In Chapter 4, TD multiple-order diffraction coefficients are introduced. Just, the first-order TD-

UTD coefficient is applied for calculating the higher-order diffraction without utilizing any 

higher-order diffraction terms such as slope diffraction coefficients.  
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In chapter 5, novel six-terms UTD diffraction coefficients in TD has been introduced to 

consider transmission and diffraction phenomena from a thin dielectric wedge  

Novel diffraction coefficients in FD and TD have been introduced in chapter 6. The FD-UTD 

coefficient was demonstrated to be exact in every one of the regions for a thin lossy wedge. It 

allows the calculation of the transmitted ray through the dielectric wedge by including two 

additional terms in the four-terms FD-UTD coefficient. Besides, a novel TD-UTD coefficient 

has been introduced dependent on the IFFT of the proposed FD solutions.  

In the above parts, The TD-UTD results have been checked with IFFT-FD results, and excellent 

matchings have been accounted for. At long last, it is seen that the TD-UTD procedures are 

demonstrated to be computationally more productive than the IFFT-FD method. 

 

7.2  Future Scope 

In this thesis, a time-domain model has been presented for rectangular shaped wedge structure 

maximum up to two wedges but there are also other structures even more than two need to be 

investigated in future work. 

• The self-consistent method in the time-domain for UWB applications may be applied 

for considering multiple order-diffracted fields between more than two wedges with all 

possible orders of diffraction. 

• The six-terms UTD formulation of diffraction and transmission phenomenon in time-

domain may be extended for curved shaped wedge structure for UWB applications. 

• Field measurements at the receiver can be carried out for various scenarios and 

compared to simulated results to determine the accuracy of the proposed TD solutions. 
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