
Interior Point Method for Nonlinear Optimization

A Dissertation report submitted in partial fulfillment of the
requirements for the degree

of

M.Sc in Mathematics

Submitted by

Sakshi Daksh
2K19/MSCMAT/16

Under the supervision of

Dr. L N Das

DEPARTMENT OF APPLIED MATHEMATICS

DELHI TECHNOLOGICAL UNIVERSITY
(FORMERLY DELHI COLLEGE OF ENGINEERING), BAWANA ROAD,

DELHI – 110042

APRIL 2021

Department of Applied Mathematics
Delhi Technological University
(Formerly Delhi College of Engineering), Bawana
Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, Sakshi Daksh, Roll No. (2K19/MSCMAT/16) of M.Sc (Mathematics), hereby
declare that the project Dissertation titled Interior Point Method for Nonlinear
Optimization,which is submitted by me to the Department of Applied Mathemat-
ics, Delhi Technological University Delhi , in partial fulfillment of the requirement
for the award of the degree of Master of Science, is original and not copied from
any source without proper citation. This work has not previously formed the basis
for the award of any Degree, Associateship, Fellowship or other similar title or
recognition.

(....................)
Place: Delhi Sakshi Daksh
Date: 2K19/MSCMAT/16

ii

FreeText
24.05.2021

Stamp

Department of Applied Mathematics
Delhi Technological University
(Formerly Delhi College of Engineering), Bawana
Road, Delhi – 110042

CERTIFICATE

I hereby certify that the Project dissertation titled Interior Point Method for Non-
linear Optimization, which is submitted by Sakshi Daksh (2K19/MSCMAT/16)
an postgraduate student of the Department of Applied Mathematics, Delhi Tech-
nological University, Delhi in partial fulfillment of the requirement for the award of
the degree of Master of Science, is a record of the project work carried out by the
students under my supervision. To the best of my knowledge this work has not
been submitted in part or full for any Degree to this University or elsewhere.

(....................)
Place: Delhi Dr. L N Das
Date: Department of Applied Mathematics, Delhi

iii

Stamp

FreeText
24.05.2021

ACKNOWLEDGEMENTS

It is an incredible pleasure for me to communicate my regard and profound
feeling of appreciation to my M.Sc supervisor Dr. L N Das, Professor, Department
of Applied Mathematics, Delhi Technological University, Delhi, for his wisdom,
vision, ability, direction, eager contribution and tireless consolation during the
arranging and improvement of this research work. I also thankfully acknowledge
his meticulous endeavors in completely going through and improving the original
copies without which this work couldn’t have been completed.

I am exceptionally obliged to Prof. S. Shivprasad Kumar, Head of the Depart-
ment, Applied Mathematics for providing all the facilities, help and support for
doing this research work.

I’m obliged to my parents for their ethical help, love, consolation and favors to
finish this task.

I likewise might want to communicate my friends and all other peoples whose
names don’t show up here, for helping me either straightforwardly or in a round-
about way in all even and odd times.

Finally, I am obliged and thankful to the Almighty for helping me in this en-
deavor.

(Sakshi Daksh)

iv

ABSTRACT

The line search methods are effective tool to solve nonlinear optimization problems.
A variant line search method namely interior point estimation method has been
effectively efficient to solve nonlinear constrained optimization problems. In this
report we will present an interior point estimation method that solves perturbed
Karush Kuhn Tucker conditions in a primal-dual optimization problem. At each
iteration of the interior point estimation method, the algorithmic process computes
the direction in which to be proceeded, and then calculates the suitable step length
along the search direction. In order to compute the search direction, interior point
estimation method utilizes Newton method and a merit function to decide a step
length that balances the conflicting situation of reducing the objective function with
satisfying the constraints. The proposed computation method is investigated on
some test problems and real world problems. Further numerical comparison with
existing methods shows that the computation process is efficient.

Keywords: Interior Point Method, Newton Method, Merit Function

v

Contents

1 Introduction 1
1.1 Preliminaries and Notations . 2

1.1.1 Basic Definitions . 3
1.1.1.1 Local minimizer . 3
1.1.1.2 Global minimizer . 3
1.1.1.3 Descent Direction . 3
1.1.1.4 Convex Function . 3
1.1.1.5 Feasible point . 3
1.1.1.6 Karush-Kuhn-Tucker conditions 4

2 Interior Point Method 5
2.1 Description of Interior Point Method 5

2.1.1 Selection of step length . 8
2.2 Merit Function . 8

2.2.1 Selection of Barrier Parameter 10
2.2.2 Algoritm 1 . 10

3 Numerical Experiments 12
3.1 Numerical Implementation . 12

3.1.1 Test Problems . 12
3.1.1.1 Test 1 . 12
3.1.1.2 Test 2 . 12
3.1.1.3 Test 3 . 13
3.1.1.4 Test 4 . 13

3.1.2 Real World Problems . 13
3.1.2.1 Welded Beam Design Problem (WBDP) [13] 13

vi

3.1.2.2 Weight of a Tension /Compression Spring Problem (WSP)
[14] . 16

3.1.2.3 Three Bar Truss Problem (TBTB) [14] 17

4 Conclusion 23

5 MATLAB CODE (Test 1) 24

vii

List of Figures

3.1 Convergence of Algorithm 1 for Test1 14
3.2 Convergence of Algorithm 1 for Test 2 15
3.3 Convergence of Algorithm 1 for Test 3 16
3.4 Convergence of Algorithm 1 for Test 4 17
3.5 Welded Beam Design . 19
3.6 Convergence of Algorithm 1 for Welded Beam Design Problem . . . 20
3.7 Tension/compression string problem 20
3.8 Convergence of Algorithm 1 for Tension string problem 21
3.9 Three Bar Truss Problem . 21
3.10 Convergence of Algorithm 1 for Three Bar Truss Problem 22

viii

List of Tables

3.1 Data for the test problems performed by the Algorithm 1. 13
3.2 Optimal value for WBDP of different algorithm and Algorithm 1 . . 18
3.3 Optimal value for WSB of different algorithm and Algorithm 1. . . . 18
3.4 Optimal value for TBTB of different algorithm and Algorithm 1. . . 19

ix

Chapter 1

Introduction

Line search methods start with a starting point and go through a sequence of
iterations to find the optimal point. The next point of iteration is calculated by the
addition of previous point and the direction in which to move multiply by a suitable
step length. Thus, line search methods follows the following iterative sequence to
obtain the optimal point of unconstrained optimization problem min{g(t) : t ∈ Rn}

t(k+1) = t(k) + α(k)d(k), k ∈ {0, 1, 2 . . .},

where d(k) is a search direction and α(k) ∈ (0, 1] is the step length along the direction
dk. Moreover, the step length α(k) is selected such that the function value at current
iteration should be less than or equal to the previous point. It may be possible that
if we are moving towards the search direction, where the function value does not
reduce then we shorten the step length until the following inequality satisfies

g(t(k) + αd(k)) ≤ g(t(k)) for all k ∈ {0, 1, 2, . . .},

where α is reduced step length.
Constrained nonlinear optimization problems can be found in a broad variety

of optimization problems. A line search technique known as interior point methods
(IPM) is commonly used to solve constrained nonlinear optimization problems.
Interior-point algorithms have been the main and most promising area of study
for optimization techniques because of its polynomial-time complexity. In 1884,
Karmarkar published a new polynomial-time algorithm after Khachiyan’s ellip-
soid method. IPM outperformed the ellipsoid process in terms of performance.
Karmarkar also argued that his method outperformed the simplex method. Interior-
point techniques were originally used to solve problems where feasible regions

1

have nonempty interiors and the starting point was a feasible region’s interior point.
However, computing an interior-point of the feasible region is a difficult process,
and the feasible region’s interior can be an empty set.

The infeasible interior-point approach was introduced by Lustig, and it is an
interior-point algorithm in which the initial point is not a feasible point (IIPM).
Vanderbei introduced LOQO, a software package that applies a primal-dual interior-
point approach for general quadratic programming, in 1999. The function of Van-
derbei and Shanno covers both convex and nonconvex optimization problems.

The paper is organised as follows. In Section 3.1.1 , we give some basic defini-
tions. The description of the proposed algorithm is detailed in Section 4.1. Section
contains the details of the merit function 4.2. In Section 5.1, numerical results of
the proposed algorithm are shown and also, compare the results with the existing
methods.

1.1 Preliminaries and Notations

The following lists of notations used throughout the article.

• ∇x denotes the gradient operator.

• ∇xx denotes the Hessian operator.

• ‖x‖2 =

(
n
∑

i=1
|xi|2

)1
2

.

The following optimization problem is taken into consideration:

min f (x)

s.t. ci(x) ≥ 0, i = 1, 2, · · ·m,

}
(1.1)

where x = (x1, x2, . . . , xn)> is a vector of decision variables and the objective func-
tion f (f : Rn → R) and the constraint functions ci (ci : Rn → R) are twice
continuously differentiable for all i = 1, 2, . . . , m.

2

1.1.1 Basic Definitions

1.1.1.1 Local minimizer

Let Ω ⊂ Rn and a∗ ∈ Ω. A point a∗ is local minimizer of the function f : Ω→ R if
there exists ε > 0 such that whenever ‖a− a∗‖ < ε then

f (a) ≥ f (a∗) for every a ∈ Ω\{a∗}.

1.1.1.2 Global minimizer

Let Ω ⊂ Rn and a∗ ∈ Ω. A point a∗ is global minimizer of the function f : Ω→ R

if there exists ε > 0 such that

f (a) ≥ f (a∗) for every a ∈ Ω\{a∗}.

1.1.1.3 Descent Direction

Let ŷ ∈ Rn and d ∈ Rn. If there exists δ > 0 such that f (ŷ + αd) < f (ŷ) for all
α ∈ (0, δ), then d is a descent direction of f at ŷ. Alternatively,
Let ŷ ∈ Rn be a point and d ∈ Rn satisfying

〈d,∇y f (ŷ)〉 < 0.

Then d is a descent direction of function f at ŷ.

1.1.1.4 Convex Function

Consider C as a convex subset of Rn. Then the function f : C → R is convex if the
following inequality satisfy:

f (νy1 + (1− ν)y2) ≤ ν f (y1) + (1− ν) f (y2), for any y1, y2 ∈ C and ν ∈ [0, 1].

Alternatively,
A twice differentiable function f : Rn → R is convex, if and only if the hession
∇yy f (y) is positive semi-definite for all y ∈ Rn.

1.1.1.5 Feasible point

A point y is said to be feasible point for problem (2.1) if y ∈ F , where

F = {y : ci(y) ≥ 0, i ∈ {1, 2, · · · , m}}.

The set F is known as feasible set.

3

1.1.1.6 Karush-Kuhn-Tucker conditions

If y∗ is a local minimum for problem (2.1), then the following necessary conditions
hold :

• ∇y f (y∗) + ∑m
i=1 λi∇yci(y∗) = 0, (Stationarity);

• ci(y) ≥ 0, i ∈ {1, 2, · · · , m}, (Feasibility);

• λi ≥ 0, i ∈ {1, 2, · · · , m}, (Nonnegativity);

• λici(y) = 0, i ∈ {1, 2, · · · , m}. (Complementarity slackness);

4

Chapter 2

Interior Point Method

2.1 Description of Interior Point Method

In this section, we first convert the inequality constraints into equality by intro-
ducing slack variables. Thereafter, a log-barrier problem is formulated and corre-
sponding to this barrier problem KKT conditions are derived. In order to solve KKT
conditions, Newton method is applied to find the search directions towards the
solution of KKT conditions.

Recall the optimization problem (2.1)

min f (x)

s.t. c(x) ≥ 0,

where c(x) = (c1(x), c2(x), · · · , cm(x))> .

Introducing the slack variables vector t = (t1, t2, · · · , tm) to make the inequality
constraints into the equality constraints

min f (x)

s.t. c(x)− t = 0,

t ≥ 0.

(2.1)

A log-barrier problem corresponding (2.1) is formulated in which nonnegative
slack variables are kept inside the log term

min B(x, t; µ)

s.t. c(x)− t = 0,
(2.2)

5

where B(x, t; µ) = f (x)− µ ∑m
i=1 log(ti) and µ > 0 is the barrier parameter.

The Lagrangian function for barrier problem (2.2) is

L(x, t, λ; µ) = B(x, t; µ)− λ> (c(x)− t) . (2.3)

For µ > 0, the first order KKT conditions associated to the problem (2.2) are as
follows:

∇xL = ∇ f (x)−∇c(x)>λ = 0

∇tL = − µT−1e + λ = 0

∇λL = c(x)− t = 0,

 (2.4)

where T = diag(t1, t2 . . . , tm), e = (1, 1, . . . , 1)> and ∇c(x) denotes the Jacobian
matrix of the vector c(x).

Now, multiplying second equation of (2.4) by T, we obtain the following reduced
KKT conditions.

∇ f (x)−∇c(x)>λ = 0

−µe + TΛe = 0

c(x)− t = 0,

 (2.5)

where Λ is again a diagonal matrix with λi, i = 1, 2, · · · , m.

In order to solve (2.5), interior point method utilizes Newton method. Hence,
for a given µ > 0, Newton direction (∆x, ∆t, ∆Λ) at point (x, t, λ) is determined by
solving the following system for (2.5)

H(x, t) 0 −(A(x))>

0 Λ T
A(x) −I 0

∆x
∆t
∆λ

 =

∇c(x)>λ−∇ f (x)
µe− TΛe
−c(x) + t

 , (2.6)

where

H(x, t) = ∇xx f (x)−
m

∑
i=1

λi∇xxci(x) and A(x) = ∇xc(x).

On multiply the first equation of (2.6) by −1 and the second equation by −T−1,
we get the following system

6

−H(x, t) 0 (A(x))>

0 −T−1Λ −I
A(x) −I 0

∆x
∆t
∆λ

 =

σ
γ
ρ

 , (2.7)

where

σ = ∇c(x)>λ−∇ f (x),

γ = µT−1e− λ,

ρ = c(x)− t.

 (2.8)

We denote ρ and σ as the primal infeasibility and dual infeasibility respectively.
If ρ is zero at a point, then the point is primal feasible. Also, we refer p = (x, t) as
the primal variables. Consider the following measure

ν(p, λ) = max {‖σ‖2, ‖ρ‖2, ‖TΛe‖2} . (2.9)

A point (p, λ) is said to KKT point if ν(p, λ) = 0. Also, for a predefined accuracy
parameter ε if ν(p, λ) < ε, then we declare that point as a approximated KKT point.

From (2.7), we can eliminate ∆t by using the following expression

∆t = TΛ−1(γ− ∆λ).

Now resulting Newton system is[
−H(x, t) (A(x))>

A(x) TΛ−1

] [
∆x
∆λ

]
=

[
σ

ρ + TΛ−1γ

]
. (2.10)

The system (2.10) has unique solution, when the matrix H(x, t) is positive defi-
nite. In case of non positive definite, we perturb the Hessian matrix as Ĥ = H + rI,
where r > 0 is chosen so that the matrix Ĥ is positive definite. By solving the system
(2.10), we can easily find the direction ∆x, ∆λ and ∆t. The explicit formulas of the
search direction are

∆x = N−1
(
(A(x))>(T−1Λρ + γ)− σ

)
∆t = −ρ + A(x)∆x,

∆λ = γ + T−1Λ(−A(x)∆x + ρ),

 (2.11)

7

where N = H(x, t) + (A(x))>T−1ΛA(x). If H is not positive definite, we re-
place it by Ĥ.

To find a solution of 2.4, the algorithm that we propose here starts from an initial
point

(
x(0), t(0), λ(0)); then, at the k-th iteration, it determines a search direction(

∆x(k), ∆t(k), ∆λ(k)) by 2.11 at
(

x(k), t(k), λ(k)
)

; lastly, it chooses a step length α(k)

and then finds the next iterate by x(k+1) = x(k) + α(k)∆x(k), t(k+1) = t(k) + α(k)∆t(k)

and λ(k+1) = λ(k) + α(k)∆λ(k), where the step length α(k) is detailed in the next
subsection.

2.1.1 Selection of step length

The proposed algorithm updates the iteration point at the end of each iteration by
??. When choosing the step length at every iteration, attention must be given so
that the vectors t and λ, stay positive across the iterations. For this positivity, we
choose the step length α at every iteration by the following standard ratio formula:

α = min

{
δ

(
max

i

{
−∆ti

ti
,−∆λi

λi

})−1

, 1

}
, (2.12)

where 0 < δ ≤ 1.

2.2 Merit Function

Over the last two decades, there has been a lot of study on merit functions for
constrained nonlinear programming. A merit function ensures that progress toward
a local minimizer and feasibility is made in tandem. This progress is accomplished
by shortening the steplength along the search directions specified by (8) as required
to decrease the merit function sufficiently. One possibility of the merit function can
be

Ψ1(x, β) = f (x) + β‖ρ(x, t)‖1 (2.13)

This merit function is exact, which implies that there exists a β0 such that, for all
β ≥ β0, a minimizer of (6) is guaranteed to be feasible and, under general conditions,
a local minimizer of the problem (2.1). Though exactness is a desirable property, the

8

nondifferentiability of `1-norms can make mathematical calculations challenging.
The variety of the smooth merit function is defined as

Ψ2(x, β) = f (x) +
β

2
‖ρ(x, t)‖2

2 (2.14)

The merit function Ψ2 is studied by Fiacco and McCormick.
The `2 merit function (2.14) for problem (2.2) is

Ψβ,µ(x, ω) = f (x)−
m

∑
i=1

log(ti) +
β

2
‖ρ(x, t)‖2

2, (2.15)

where ρ(x, t) = t− h(x).

Theorem 1 shows that for large enough β′s the search directions defined by
(2.11) are descent directions for Ψβ,µ whenever the problem is H(x, t) is positive
definite.

Theorem 1 Let the matrix N is positive definite, Then there exist βmin ≥ 0 such that,
for each β > βmin the search directions (∆x, ∆t) are descent for the merit function
Ψβ,µ i.,e., [

∇xΨβ,µ
∇tΨβ,µ

]> [∆x
∆t

]
< 0.

Proof The gradient of merit function with respect to x and t are[
∇xΨβ,µ
∇tΨβ,µ

]
=

[
∇x f (x)− β(A(x))>ρ
−µT−1e + βρ

]
.

Now,[
∇xΨβ,µ
∇tΨβ,µ

]> [∆x
∆t

]
=−

(
∇x f (x)− µ(A(x))>T−1e

)>
N−1

(
∇x f (x)− µ(A(x))>T−1e

)
+ µe>T−1ρ +

(
∇x f (x)− µ(A(x))>T−1e

)>
N−1(A(x))>T−1Λρ

− β‖ρ‖2.

Now, two cases arise

1. When the term of the last expression

Γ = µe>T−1ρ +
(
∇x f (x)− µ(A(x))>T−1e

)>
N−1(A(x))>T−1Λρ

9

is negative then [
∇xΨβ,µ
∇tΨβ,µ

]> [∆x
∆t

]
< 0.

Hence (∆x, ∆t) is descent direction for the merit function Ψβ,µ.

2. If the term

Γ = µe>T−1ρ +
(
∇x f (x)− µ(A(x))>T−1e

)>
N−1(A(x))>T−1Λρ > 0,

then we set

βmin =
−
(
∇x f (x)− µ(A(x))>T−1e

)> N−1 (∇x f (x)− µ(A(x))>T−1e
)
+ Γ

‖ρ‖2 .

Hence, in this case, we can choose a β > βmin such that[
∇xΨβ,µ
∇tΨβ,µ

]> [∆x
∆t

]
< 0.

.

2.2.1 Selection of Barrier Parameter

Interior point method keeps changing the value of barrier parameter at every point
of iteration. Traditionally the value of barrier parameter is chosen as

µ = r
T>λ

m
, (2.16)

where r ∈ (0, 1).

We propose the following interior-point algorithm with a backtracking line-
search algorithm for the nonlinear optimization problem:

2.2.2 Algoritm 1

• Initialization
Give an initial point (x(0), t(0), λ(0)) such that t(0), λ(0) > 0.
Give the values of parameters r ∈ (0, 1) and 0 < κ < 1.

10

Give a value of the precision parameter ε > 0. Set k = 0.
•Main Steps
while ν(p(k), λ(k)) ≥ ε

µ(k) according to (2.16).
Calculate the search directions (∆x(k), ∆t(k), ∆λ(k)) by (2.11).
Set β = 10βmin to guarantee that (∆x(k), ∆t(k), ∆λ(k)) are descent for Ψ.
Choose step length α by the formula (2.12)
Set p(k+1) = p(k) + α∆p(k), λ(k+1) = λ(k) + α∆λ(k)

Find α(k) ∈ (0, α) such that the following Armijo condition satisfied

Ψη,µ(k)(p(k+1)) ≤ Ψη,µ(k)(p(k)) + α(k)κ
(
∇Ψη,µ(k)

)>
∆p(k).

Set p(k+1) = p(k) + α(k)∆p(k), λ(k+1) = λ(k) + α(k)∆λ(k)

• end while
• return minimum point x∗.

11

Chapter 3

Numerical Experiments

3.1 Numerical Implementation

In this part, we report some mathematical investigations for the proposed Algorithm
1(2.2.2). The programs are written in MATLAB R2020a and run on a machine with
an Intel Core i3 7020 2.30GHz CPU and 3.00GB RAM. We used the following value
of the parameters ε = 10−6, κ = 0.1, r = 0.01.

In the next part, we take some test problems to test the exhibition of the Algo-
rithm 1(2.2.2). Details of these test problems are described in Table 3.1.

3.1.1 Test Problems

3.1.1.1 Test 1

min (X1 + X2
2 − 7)2 + (X2

1 + X2 − 11)2

s.t. (X1 − 0.05)2 + (X2 − 2.5)2 − 4.84 ≤ 0,

4.84− (X1)
2 − (X2 − 2.5)2 ≤ 0,

X1, X2 ∈ [0, 6].

3.1.1.2 Test 2

Minimize 6(X1 − 10)2 + 4(X2 − 12.5)2,

Subject to X2
1 + (X2 − 5)2 ≤ 50,

X2
1 + 3X2 ≤ 200,

(X1 − 6)2 + X2
2 ≤ 37.

12

Table 3.1: Data for the test problems performed by the Algorithm 1.

Problem no. of variables (n) no. of constraints (m) iterations x∗ f (x∗)

Test 1 2 2 9 (2.2468, 2.3818)> 13.5898

Test 2 2 3 8 (6.9999, 5.9999)> 223.0011

Test 3 2 1 13 (0.9999, 0.9999)> 0.0000

Test 4 2 1 10 (0.9999, 0.9999)> 0.0000

3.1.1.3 Test 3

min (1− X1)
2 + 100(X2 − X2

1)
2,

s.t. (X1 − 1)3 − X2 + 1 ≤ 0,

−1.5 ≤ X1 ≤ 1.5,

−0.5 ≤ X2 ≤ 2.5

3.1.1.4 Test 4

min (1− X1)
2 + 100(X2 − X2

1)
2,

s.t. X2
1 + X2

2 ≤ 2,

−1.5 ≤ X1 ≤ 1.5,

−1.5 ≤ X2 ≤ 1.5

3.1.2 Real World Problems

3.1.2.1 Welded Beam Design Problem (WBDP) [13]

The aim of this problem is to minimize the expense of the welded beam when taking
into account constraints such as end deflection of the beam (δ), shear stress (θ),
bucking load on the bar (Pc), bending stress in the beam (σ), and side constraints.
Mathematically, this problem can be written as:

13

1 2 3 4 5 6 7 8 9

Iterations

0

500

1000

1500

2000

2500

3000

3500

4000
Test 1

Figure 3.1: Convergence of Algorithm 1 for Test1

min 0.04811X3X4(14.0 + X2)1.1047X2
1X2

s.t. θ(X) ≤ θmax

σ(X) ≤ σmax

X1 − X4 ≤ 0

P ≤ Pc(X)

δ(X) ≤ δmax

X1, X4 ∈ [0.1, 2] and X2, x3 ∈ [0.1, 10],

where

θ(X) =

√√√√((θ′(X))2 + ((θ′′(X))2 +
X2(θ′(X)(θ′′(X))√

0.25[X2
2 + (X1 + X3)2]

,

σ(X) =
6PL
X2

3X4
, δ(X) =

4PL3

EX2
3X4

,

14

1 2 3 4 5 6 7 8 9 10

Iterations

0

100

200

300

400

500

600

700

800

900

1000
Test 2

Figure 3.2: Convergence of Algorithm 1 for Test 2

Pc(X) =
4.013E

√
X2

3X6
4

36
L2

[
1− X3

2L

√
E

4G

]
where

θ′(X) =
P√

2X1X2
, θ′′(X) =

MR
J

M = [L + 0.5X2] P, R =
√

0.25X2
2 + 0.25(X1 + X3)2

J = 2
√

2 X2X1

(
X2

2/12 + 0.25(X1 + X3)
2
)

P = 6000lb, E = 30106psi, L = 14in, G = 12106psi, θmax = 13600psi, δmax =

0.25in σmax = 30000psi.

15

0 2 4 6 8 10 12 14

Iterations

0

100

200

300

400

500

600

700

800

900

1000
Test 3

Figure 3.3: Convergence of Algorithm 1 for Test 3

3.1.2.2 Weight of a Tension /Compression Spring Problem (WSP) [14]

The aim of this problem is to reduce the weight of a tension as much as possible with
the restrictions: minimum deflection, limits on outside, surge frequency, diameter,
shear stress (see Figure 5.7). The problem formulation is as follows:

min X2
1X2(2 + X3),

s.t.
X3

2X3

(71785X4
1)
− 1 ≥ 0,

1− 4X2
2 − X1X2

12566X3
1(X2 − X1)

− 1
5108X2

1

X3
2X3

(71785X4
1)
− 1 ≥ 0,

140.45X1

XX3x2
2
− 1

X3
2X3

(71785X4
1)
− 1 ≥ 0,

1− X1 + X2

1.5− 1
X3

2X3

(71785X4
1)
− 1 ≥ 0,

and X1 ∈ [0.05, 2], X2 ∈ [0.25, 1.3], X3 ∈ [2, 15].

16

1 2 3 4 5 6 7 8 9 10

Iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Test 4

Figure 3.4: Convergence of Algorithm 1 for Test 4

3.1.2.3 Three Bar Truss Problem (TBTB) [14]

In this problem, three bars should be put as seen in Figure 5.9. The goal is to keep
the weight of the bars in this position as low as possible. This dilemma has the
following mathematical expression:

min (2
√

2X1 + X2)L

s.t. σ−
√

2X1 + X2√
2X2

1 + 2X1X2
P ≥ 0

σ− X2√
2X2

1 + 2X1X2
P ≥ 0

σ− 1
X1 +

√
2X2

P ≥ 0

0 ≤ X1, X2 ≤ 1.

The constants are L = 100cm, σ = 2KN/cm2 and P = 2KN/cm2.

17

Table 3.2: Optimal value for WBDP of different algorithm and Algorithm 1

Method Author f ∗(x)

Interior-point method This paper 1.72485

Self-adaptive penalty approach Coello 1.74830

Constraint correction at constant cost Arora 2.43311

CPSO He and Wang 1.728024

Geometric programming Ragsdell and Phillips 2.38593

GA Deb 2.43311

Feasibility-based tournament selection Coello and Montes 1.72822

Modified PSO Ebehart 1.72485

Table 3.3: Optimal value for WSB of different algorithm and Algorithm 1.

Author Method f (x∗)

This paper Interior-point method 0.01266

He and Wang CPSO 0.01267

Ebehart Modified PSO 0.01266

Coello Self-adaptive penalty approach 0.01270

Belegundu Numerical optimization technique 0.01283

Arora Constraint correction at constant cost 0.12730

Coello and Montes Feasibility-based tournament selection 0.01268

18

Figure 3.5: Welded Beam Design

Table 3.4: Optimal value for TBTB of different algorithm and Algorithm 1.

Algorithm name optimal point optimal value

Cricket algorithm (0.7886, 0.4083) 263.8958

Bat algorithm (0.7886, 0.4082) 263.8958

Swarm optimization approach (0.7950, 0.3950) 264.3000

Mine blast algorithm (0.7885, 0.4082) 263.8958

Cuckoo search algorithm (0.7886, 0.4090) 263.9716

Artificial atom algorithm (A3) (0.7887, 0.4080) 263.8958

Interior-point method (0.7886, 0.4082) 263.8956

19

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4
1017 Welded Beam Design

Figure 3.6: Convergence of Algorithm 1 for Welded Beam Design Problem

Figure 3.7: Tension/compression string problem

20

0 2 4 6 8 10 12 14 16

Iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Tension/Compression String

Figure 3.8: Convergence of Algorithm 1 for Tension string problem

Figure 3.9: Three Bar Truss Problem

21

0 2 4 6 8 10 12 14

Iterations

0

1

2

3

4

5

6

7
104 Three Bar Truss

Figure 3.10: Convergence of Algorithm 1 for Three Bar Truss Problem

22

Chapter 4

Conclusion

In this project, a system of perturbed KKT systems are solved with the help of
IPM. IPM utilizes Newton method to find the direction along which to proceed. A
merit function is used to take appropriate steplength along the search direction.
Hence, proposed algorithm gradually reduces ν(p, λ) as the iterations increase. The
efficiency of the proposed algorithims tested on some test problems and real worlds
problems. The numerical outcomes have shown that the proposed algorithm is able
to solve constrained problems and real-world problems efficiently.

23

Chapter 5

MATLAB CODE (Test 1)

x = [x1; x2];
X = diag(x);
w = [w1;w2;w3;w4;w5;w6];
W = diag(w);
y = [y1;y2;y3;y4;y5;y6];
Y = diag(y);
e = [1;1;1;1;1;1];
I = diag(e);
I1=diag([1,1]);
f = (x1*x1 + x2 -11)*(x1*x1 + x2 -11) + (x1+x2*x2 -7)*(x1+x2*x2 -7);
x0 = [1;1];
w0 = ones(6,1);
y0 = 1./w0;
h1 = 4.84 - (x1 - 0.05)2 − (x2− 2.5)2;
h2 = x1 ∗ x1 + (x2− 2.5) ∗ (x2− 2.5)− 4.84;
h3 = x1;
h4 = x2;
h5 = 6− x1;
h6 = 6− x2;
h = [h1; h2; h3; h4; h5; h6];
grad f = gradient(f , x);
b = f − k ∗ (sum(log(w(1 : 6))));
gradbx = gradient(b, x);
gradbw = gradient(b, w);

24

H1 = 0;
f ori = 1 : 6
H1 = H1− y(i). ∗ hessian(h(i), x);
end
H = hessian(f , x) + H1;
H0 = vpa(subs(H, [x; y], [x0; y0]));
A = vpa(jacobian(h, x));
sigma = grad f − transpose(A) ∗ y;
sgm = grad f − k ∗ transpose(A) ∗ inv(W) ∗ e;
sigma1 = subs(sigma, [x; y], [x0; y0])
gamma = k ∗ inv(W) ∗ e− y;
game = W ∗Y ∗ e;
game1 = subs(game, [w; y], [w0; y0])
rho = w− h;
rho1 = subs(rho, [x; w], [x0; w0])
S = b + (t/2) ∗ transpose(rho) ∗ rho;
gradSx = gradient(S, x);
gradSw = gradient(S, w);
N = H + transpose(A) ∗ inv(W) ∗Y ∗ A;
d1 = vpa(transpose(rho1) ∗ rho1);
d2 = transpose(game1) ∗ game1;
d3 = transpose(sigma1) ∗ sigma1;
mer1 = max([d1, d2, d3]);
count = 0;
f ori = 1 : 80
disp(′enteredin f orloop(numbero f iteration)i =′)
disp(i)
count = count + 1
xk = x0;
wk = w0;
yk = y0;
Wk = diag(wk);
Yk = diag(yk);
A1 = subs(A, x, xk);

25

rho1 = subs(rho, [x; w], [xk; wk]);
sigma1 = subs(sigma, [x; y], [xk; yk]);
k1 = 0.01 ∗ (transpose(wk) ∗ yk)/(10)
sgm1 = subs(sgm, [x; w; k], [xk; wk; k1]);
gradbx1 = subs(gradbx, [x; k], [xk; k1]);
gradbw1 = subs(gradbw, [w; k], [wk; k1]);
gradSx1 = subs(gradSx, [x; w; k], [xk; wk; k1]);
gradSw1 = subs(gradSw, [x; w; k], [xk; wk; k1]);
H1 = subs(H, [x; y], [xk; yk]);
N1 = subs(N, [x; w; y], [xk; wk; yk]);
lambN = eig(N1);
pos = min(lambN);
i f (pos < 0)
N1 = N1 + (abs(pos) + 1) ∗ I1;
end
delx = k ∗ inv(N1) ∗ transpose(A) ∗ inv(W) ∗ e − inv(N1) ∗ grad f + inv(N1) ∗
transpose(A) ∗ inv(W) ∗Y ∗ rho;
delw = k ∗ A ∗ inv(N1) ∗ transpose(A) ∗ inv(W) ∗ e− A ∗ inv(N1) ∗ grad f − (I −
A ∗ inv(N1) ∗ transpose(A) ∗ inv(W) ∗Y) ∗ rho;
dely = −inv(W) ∗Y ∗ delw + gamma;
delx1 = subs(delx, [x; w; y; k], [xk; wk; yk; k1]);
delw1 = subs(delw, [x; w; y; k], [xk; wk; yk; k1]);
dely1 = subs(dely, [x; w; y; k], [xk; wk; yk; k1]);
d1 = [delx1; delw1];
db1 = [gradbx1; gradbw1];
ppp = transpose(db1) ∗ d1
pp3 = −transpose(sgm1) ∗ inv(N1) ∗ sgm1 + k1 ∗ transpose(e) ∗ inv(Wk) ∗ rho1 +

transpose(sgm1) ∗ inv(N1) ∗ transpose(A1) ∗ inv(Wk) ∗Yk ∗ rho1;
i f (transpose(db1) ∗ d1 < 0)
disp(′umhhbetaiszerohereandxkisin f easible′)
t1 = 0;
a1 = −(delw1./wk);

26

a2=-(dely1./yk);
a3=max([a1 ;a2]);
a4=min([1,0.95/a3]) ;
xnew = vpa(x0 + a4 ∗ delx1);
wnew = vpa(w0 + a4 ∗ delw1);
ynew = vpa(y0 + a4 ∗ dely1);
bk = subs(b, [x; w; k], [xk; wk; k1])
bnew = subs(b, [x; w; k], [xnew; wnew; k1])
while(bnew > bk + a4 ∗ 0.01 ∗ ppp)
disp(′shorteningthestep′)
a11 = a4;
a111 = 0.05 ∗ a11;
xnew = xk + a111 ∗ delx1
wnew = wk + a111 ∗ delw1
ynew = yk + a111 ∗ dely1;
bknew = subs(b, [x; w; k], [xnew; wnew; k1])
bnew = vpa(bknew);
a4 = a111;
end
x0 = xnew;
w0 = wnew;
y0 = ynew;
else

if (pp3¡0)
t1=0;
a1=-(delw1./wk);

a2=-(dely1./yk);
a3=max([a1 ;a2]);
a4=min([1,0.95/a3]) ;
xnew = vpa(x0 + a4 ∗ delx1);
wnew = vpa(w0 + a4 ∗ delw1);
ynew = vpa(y0 + a4 ∗ dely1);

27

bk = subs(b, [x; w; k], [xk; wk; k1]);
bnew = subs(b, [x; w; k], [xnew; wnew; k1]);
while(bnew > bk + a4 ∗ 0.01 ∗ ppp)
disp(′shorteningthestep′)
a11 = a4;
a111 = 0.05 ∗ a11;
xnew = xk + a111 ∗ delx1;
wnew = wk + a111 ∗ delw1;
ynew = yk + a111 ∗ dely1;
bknew = subs(b, [x; w; k], [xnew; wnew; k1]);
bnew = vpa(bknew);
a4 = a111;
end
x0 = xnew;
w0 = wnew;
y0 = ynew;
else
disp(′nowcalculatebetaandxkisin f easible′)
t2 = pp3/(transpose(rho1) ∗ rho1);
t1 = 10 ∗ t2;
S = b + (t/2) ∗ transpose(rho) ∗ rho;
gradSx = gradient(S, x);
gradSw = gradient(S, w);
gradSx1 = subs(gradSx, [x; w; k; t], [xk; wk; k1; t1]);
gradSw1 = subs(gradSw, [x; w; k; t], [xk; wk; k1; t1]);
db2 = [gradSx1; gradSw1];
kkk4 = transpose(db2) ∗ d1
khg = pp3− t1 ∗ transpose(rho1) ∗ rho1
i f (transpose(db2) ∗ d1 < 0)
disp(′calculatedbeta′)
a1 = −(delw1./wk);

a2=-(dely1./yk);
a3=max([a1 ;a2]);

28

a4=min([1,0.95/a3]);
xnew = vpa(x0 + a4 ∗ delx1);
wnew = vpa(w0 + a4 ∗ delw1);
ynew = vpa(y0 + a4 ∗ dely1);
Sk = subs(S, [x; w; t; k], [xk; wk; t1; k1]);
Snew = subs(S, [x; w; t; k], [xnew; wnew; t1; k1]);
while(Snew > Sk + a4 ∗ 0.01 ∗ kkk4)
disp(′shorteningthestep′)
a11 = a4;
a111 = 0.05 ∗ a11;
wnew = wk + a111 ∗ delw1;
ynew = yk + a111 ∗ dely1;
Snew1 = subs(S, [x; w; k; t], [xnew; wnew; k1; t1]);
Snew = vpa(Snew1);
a4 = a111;
end
x0 = xnew;
w0 = wnew;
y0 = ynew;
else
end
end
end
rho2 = subs(rho, [x; w], [x0; w0]);
sigma2 = subs(sigma, [x; y], [x0; y0]);
gamma2 = subs(game, [w; y; k], [w0; y0; k1]);
norm = transpose(rho2) ∗ rho2+ transpose(sigma2) ∗ sigma2+ transpose(gamma2) ∗
gamma2
SAI1 = vpa(subs(S, [x; w; k; t], [x0; w0; k1; t1]));
bar = subs(b, [x; w; k; t], [x0; w0; k1; t1]);
holdon
xlabel(′ Iterations′)
ylabel(′ν(p, λ)’,’interpreter’,’latex’)
title(’Test 1’)

29

Dh(i) = norm;
plot(1:i,Dh(1:i),’b-’)
if (norm¡=0.00001)
disp(xk)
break
end
x0=xnew;
w0 = wnew;
y0 = ynew;
end
disp(x0)
f unval = subs(f , x, x0)

30

Bibliography

[1] Khachiyan, Leonid Genrikhovich. ”A polynomial algorithm in linear program-
ming.” Doklady Akademii Nauk. Vol. 244. No. 5. Russian Academy of Sciences,
1979.

[2] Karmarkar, Narendra. ”A new polynomial-time algorithm for linear program-
ming.” Proceedings of the sixteenth annual ACM symposium on Theory of
computing. 1984.

[3] Lustig, Irvin J. ”Feasibility issues in a primal-dual interior-point method for
linear programming.” Mathematical Programming 49.1 (1990): 145-162.

[4] Wright, Stephen J. Primal-dual interior-point methods. Society for Industrial
and Applied Mathematics, 1997.

[5] Yuan, Gonglin, and Zengxin Wei. ”New line search methods for unconstrained
optimization.” Journal of the Korean Statistical Society 38.1 (2009): 29-39.

[6] Gertz, Edward Michael. Combination trust-region line-search methods for
unconstrained optimization. University of California, San Diego, 1999.

[7] Yuan, Ya-xiang. ”A new stepsize for the steepest descent method.” Journal of
Computational Mathematics (2006): 149-156.

[8] Yuan, Gonglin, Xiwen Lu, and Zengxin Wei. ”A conjugate gradient method
with descent direction for unconstrained optimization.” Journal of Computa-
tional and Applied Mathematics 233.2 (2009): 519-530.

[9] Fischer, Andreas. ”A special Newton-type optimization method.” Optimiza-
tion 24.3-4 (1992): 269-284.

31

[10] Yin Zhang. On the convergence of a class of infeasible interior-
point methods for the horizontallinear complementarity prob-
lem.SIAMJournalonOptimization, 4(1):208–227, 1994.

[11] R J Vanderbei. An interior point code for quadratic program-
ming.PrincetonUniversity,Princeton,NJ,USA, 1994

[12] Robert J Vanderbei and David F Shanno. An interior-point algorithm for non-
convex nonlinear programming Computational Optimization and Applica-
tions, 13(1-3):231–252, 1999.

[13] Yokota, Takao, Takeaki Taguchi, and Mitsuo Gen. ”A solution method for opti-
mal cost problem of welded beam by using genetic algorithms.” Computers &
industrial engineering 37.1-2 (1999): 379-382.

[14] Amer, Noor Hafizah, Nurhidayati Ahmad, and Amar Faiz Zainal Abidin.
”Weight Minimization of Helical Compression Spring Using Gravitational
Search Algorithm (GSA).” Applied Mechanics and Materials. Vol. 773. Trans
Tech Publications Ltd, 2015.

[15] Yildirim, Ayşe Erdoan, and Ali Karci. ”Application of Three Bar Truss Problem
among Engineering Design Optimization Problems using Artificial Atom
Algorithm.” 2018 International Conference on Artificial Intelligence and Data
Processing (IDAP). IEEE, 2018.

32

