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ABSTRACT

We have constructed a family of map. The map is shown to be positive when imposing
certain condition on the parameters. Then we show that the constructed map can never
be completely positive. After tuning the parameters, we found that the map still remain
positive but it is not completely positive. We then use the positive but not completely
positive map in the detection of entanglement of a composite bipartite quantum system
such as Bound Entangled States (BES) and Negative Partial Transpose Entangled States
(NPTES).
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Chapter 1

Introduction

1.1 Introduction to Entanglement
From the past times, everyone has raised the issue of scarceness from quantum me-
chanics and that is why the quantum correlation has been the topic of debates and
research.[1] It plays a central role in many information processing protocols such as
quantum cryptography [4], quantum super dense coding [5] and quantum teleporta-
tion [6, 7]. The potential offered by quantum entanglement to computing, security and
communication makes it a topic of vital interest to researchers all across the globe.
The breach of Bell-type inequalities tells the fundamentally different nature of quan-
tum correlations in comparison to classical correlations. Discussing such correlations,
Schrodinger first used the term entanglement and assumed it to be the predictable trait
of quantum mechanics. Bohm then inspected entanglement in an easier way, that of
a pair of spins in the singlet state, which are still the review of the organizations of
quantum mechanics and quantum information. Using this progress, Bell successfully
updated the study of quantum entanglement by finding it. Now it is known as Bell’s
inequality that must be followed by systems that are correlated. The potential offered
by the systematic use of such entangled systems as resources for quantum information,
communication, and quantum computing has led to many engaging procedures. [3, 2]
The use of entangled resources is to find engaging and leading results in quantum in-
formation and communication.These long-range correlations with no classical analogs
thus distinguish the quantum world from classical world. Besides, quantum correla-
tions not only put focus on the complex nature of entanglement but also give physical
help to quantum computing and quantum communication.
Moreover, a separable state is defined as any state ρ = HA ⊗HB that is written as,

ρ =
∑
i

piρ
i
A ⊗ ρiB , 0 ≤ pi ≤ 1,

∑
i

pi = 1 (1.1)

If (1.1) does not hold, then the state is known as Entangled State.

One of the major problem in QIT is the detection of entanglement in a quantum me-
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chanical system. A pure two-qubit entangled system always violated Bell-CHSH in-
equality and thus detected by Bell-CHSH operator [8, 9]. On the other hand, the Bell-
CHSH inequality fails to detect the several mixed bipartite entangled state. This loop-
hole can be fixed using Peres-Horodecki (PH) positive partial transpose (PPT) criteria,
which is required for the detection of entanglement in 2⊗2 and 2⊗3 systems [10, 11].
If the dimensions are higher then all states with negative partial transpose (NPT) are
entangled but the states with PPT may or may not be entangled [12]. The entangled
states which are expressed by a density matrix, are positive under partial transposi-
tion are known as bound entangled states. Thus, the separability problem can also be
framed as studying whether states with PPT are entangled or not.
The separability problem can be tackled to certain extent by witness operator [13, 14].
Witness operators are hermitian operators with at least one negative eigenvalues. The
witness operators are more powerful than Bell inequalities in the sense that it can de-
tect multipartite entanglement in different cuts, if some prior information about the
state under investigation is provided. They not only detect multipartite entanglement in
different cuts but also detect genuine entanglement and classify entanglement in mul-
tipartite system. They are observables and thus experimentally realizable also.
A map Λ : Md1(C) → Md2(C) is known as a positive map if Λ(A) ∈ Md2(C) wiil
be positive, for any positive A ∈ Md1(C). Unfortunately, the structure of positive
map is not completely understood and still it is under extensive research [15, 16, 17].
Indecomposable maps plays an important role among all positive linear maps due to
the fact that it can detect positive partial transpose entangled states. Let Λ be a positive
map and let Id : Md(C) → Md(C) be a identity map. TNow, we can state that Λ is
completely positive if for all d, the extended map Id ⊗ Λ is positive.
The separability problem can be reformulated in terms of positive maps [11] as fol-
lows: Let us suppose that Hd1 and Hd2 represent two Hilbert spaces with dimensions
d1 and d2 respectively. A bipartite quantum state described by the density operator
σ ∈ Hd1 ⊗ Hd2 is separable iff (Id1 ⊗ Λ)σ is positive for any positive map Λ. Thus
there is a deep relation between the theory of detection of entanglement and operator
theory. This linkage has been established by Choi-Jamiolkowski isomorphism [18, 19].

1.2 Positive and Completely Positive Map
A hermitian matrix A is known as a positive semi definite if A has all positive eigen
values. Consequently, a mapping Λ : Md1(C) → Md2(C) is known to be positive
iff the mapping maps the positive semi definite matrices of Md1(C) to positive semi
definite elements of Md1(C).
Assume that Td1 represents the transpose mapping on Md1(C), then if the mapping,
Λ⊗ Td1 is positiven then the map, Λ is known to be co positive.
For the identity mapping, Ik : Mk(C)→Mk(C), if the mapping, Ik ⊗ Λ : Mk (C)⊗
Md1 (C)→Mk (C)⊗Md2 (C) is positive, then the map, Λ is said to be k-positive.

The map, Λ is known as a completely positive mapping, iff it is k-positive for ∀k ∈ N.
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1.3 Some Results using Positive Definite Matrix
Lemma-1: If a ≥ b, matrix [ai+j−1 − bai+j−2] of order, (r + 1)× (r + 1) is positive
semi definite (psd) where 1 ≤ i, j ≤ r + 1, r = 0, 1, 2...

Proof: It is known that the matrix ai+j−2 is psd for all a ∈ <
The rank of the matrix ai+j−2 is one and it has a non-negative trace.
Also, the matrix [a− b] is psd as a ≥ b. So, the Schur product given by,

ai+j−2 ◦ [a− b] = [ai+j−1 − bai+j−2]

is also psd.

Theorem 1: Let Φ be a positive unital linear mapping defined on M(n) → M(l).
Consider a Hermitian element of M(n), A such that the spectrum of A is in [m,M ].
Then

[Φ(Ai+j−1)−mΦ(Ai+j−2)](r+1)×(r+1) ≥ 0 (1.2)

and
[MΦ(Ai+j−2)− Φ(Ai+j−1)](r+1)×(r+1) ≥ 0 (1.3)

Proof: Using the eigenvalues of the matrices, we have

[Φ(Ai+j−1)−mΦ(Ai+j−2)] =
∑n
k=1[(λi+j−1

k −mλi+j−2
k )Φ(Pk)]

[Φ(Ai+j−1)−mΦ(Ai+j−2)] =

n∑
k=1

[(λi+j−1
k −mλi+j−2

k )⊗ Φ(Pk)] (1.4)

Here ⊗ is the matrix tensor product. By equation (3), and using lemma 1, we can say
that [Φ(Ai+j−1)−mΦ(Ai+j−2)] is result of the addition of tensor products of two psd
matrices and hence it is psd.

On similar note, from equation (2), we can say that

[(Mλi+j−2
k − λi+j−1

k )]

is also psd.

Theorem 2: Consider the elements Φ, A, m and M as defined in the first theorem.
Let the matrix, A, be positive definite. Then

[Φ(Ai+j−2)−mΦ(Ai+j−3)](r+1)×(r+1) ≥ 0 (1.5)

and
[MΦ(Ai+j−3)− Φ(Ai+j−2)](r+1)×(r+1) ≥ 0 (1.6)
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Lemma-2: Let x ≥ y ≥ z and consider a psd matrix [yi+j−2(x− y)(y − z)] of order,
(r + 1)× (r + 1) and 1 ≤ i, j ≤ r + 1, r = 0, 1, 2...

Proof: The expression, [yi+j−2(x− y)(y − z)] can be written in the form of a Schur
product as,

[y(i+j−2)(x− y)(y − z)] = [yi+j−2] ◦ [(x− y)(y − z)]

The RHS of the expression is clearly psd.

Theorem 3: Consider the elements Φ, A, m and M as defined in the first theorem.
Let the matrix, A, be a positive definite matrix. Then,

[Φ(Ai+j−2)(A−mI)(MI −A)](r+1)×(r+1) ≥ 0 (1.7)

Proof: Using the lemma 2, we have

[(λi+j−2
k ] ◦ [(λk −m)(M − λk)] = [(λi+j−2

k (λk −m)(M − λk)]

This is psd. Now we can use same steps as in Theorem 1.

Theorem 4:Let Φ be a positive unital linear mapping defined on M(n) → M(l).
Consider a Hermitian element of M(n), A such that A has unique eigenvalues λ1 <
λ2 < ...λk. Then,

[Φ(Ai+j−2)(A− λj−1I)(A− λjI](r+1)×(r+1) ≥ 0 (1.8)

Proof: Since, all the λk(k = 1, 2, ..., n) does not lie inside the interval (λj−1, λj), j =
2, 3, ..., k.
Now, we have

[(λi+j−2
k ] ◦ [(λk − λj−1)(λk − λj ] = [(λi+j−2

k (λk − λj−1)(λk − λj)]

This is psd. Now we can use same steps as in Theorem 1.

1.4 Preliminaries
Definition 1: Tensor Product
The tensor product of two matrices, X = [xij ]1≤i,j≤m,n and Y = [ykl]1≤k,l≤p,q is
given by;

X ⊗ Y =


x11Y x12Y · · · x1nY
x21Y x22Y · · · x2nY

...
...

. . .
...

xm1Y xm2Y · · · xmnY


mq×np
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Definition 2: Partial Transposition
Let A be a partitioned block matrix of the form

A =

(
X Y
Z W

)
The partial transposition of the block matrix A is given by;

AΓ =

(
XT Y T

ZT WT

)

Definition 3: Contraction
A matrix V is said to be a contraction if

‖V ‖ ≤ 1 (1.9)

where ‖.‖ denote the operator norm.

Let A be a partitioned block matrix of the form

B =

(
X Y
Y ∗ Z

)
(1.10)

Definition 4: Choi Matrix
Consider φ : Md1(C) → Md2(C) to be a linear mapping, then the Choi matrix corre-
sponding to φ is given by;

Cφ :=

1∑
i,j=0

|i〉 〈j| ⊗ φ (|i〉 〈j|)

Definition 5: Choi-Jamiolkowski Isomorphism
Consider Σ : B (Md1 (C) ,Md2 (C)) → Md1 (C) ⊗Md2 (C) to be a mapping, given
by; φ→ Cφ. The mapping is linear and bijective, and is known as Choi-Jamiolkowski
Isomorphism.

Definition 6: Separable States
A pure state |ψ〉 ∈ H is called separable state if we can find states

∣∣φA〉 ∈ HA and∣∣φB〉 ∈ HB , such that

|ψ〉 =
∣∣φA〉 ⊗ ∣∣φB〉

If this condition does not hold, then the state |ψ〉 is known as Entangled State.

Definition 7: Density Operator
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An operator ρ that satisfies the following conditions is known as a density operator:
(i) Tr(ρ) is equal to one.
(ii) ρ is a positive operator.

Definition 8: Bound Entangled State
Bound entangled states are the states which are entangled and have positive partial
transposition.

Result-1 [21]: The block matrix (1.10) is positive semidefinite if and only if X and
Z are positive semidefinite and there exists a contraction V such that

Y = X
1
2V Z

1
2 (1.11)

Result-2: Descarte’s Rule of Sign The number of most number of positive roots of
an function f (x) is equal to the number of changes of sign when the exponents of the
polynomials are arranged in decreasing order.
The number of negative roots of an equation can be found out by the determining the
number of changes in sign of the function f (−x).

Result- 3 [20]: Let φ : Mm(C) → Mn(C) be a linear map. Then the following
statements are equivalent:
(i) φ is completely positive.
(ii) Cφ is positive semidefinite, where Cφ denote the Choi matrix of φ.

Result-4 [22]:
For positive definite blocks X and Z, the matrix A given in (1.10) is positive semidef-
inite iff X ≥ Y Z−1Y †.

Result-5 : PPT Criterion
A Quantum state, ρ is said to be entangled if the partial transpose of the state, ρΓ, is
negative definite. Otherwise, the state is said to be separable.

Motivation of the Thesis:
The motivation of this work is as follows: The construction and studying the struc-
ture of new positive map may give useful insight in the understanding of positive map,
which gives us the first motivation of this work. Secondly, we find that the problem of
constructing the positive but not completely positive map and its relation in the detec-
tion of entanglement may take one step further in the development of not only operator
theory but also quantum information theory.
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Chapter 2

Construction of a family of map

In this chapter, we will construct a map and derive the condition for which the map is
positive. Further, we will probe that whether the constructed map is completely posi-
tive. Moreover, we will provide the explicit matrix form of the map, which is positive
but not completely positive.

2.1 Defining a Map
Let us take a positive integer n (n ≥ 2) and then we define a general family of map
Φ : Mn(C)→Mn(C)⊗Mn(C) as

Φα,β(A) = α((A+AT )⊗ In) + β(|ψ+〉〈ψ+|)Γ (2.1)

whereA denote n×nmatrix, α, β ∈ R, Γ represent the partial transposition, In denote
the identity matrix of order n and |ψ+〉 = 1√

n

∑n
i=1 |ii〉.

To discuss our result, we will fix n = 2 and re-define the map Φ : M2(C)→M2(C)⊗
M2(C) as

Φα,β(A) = α((A+AT )⊗ I2) + β(|ψ+〉〈ψ+|)Γ (2.2)

where I2 denote the identity matrix of order 2 and |ψ+〉 = 1√
2
(|00〉+ |11〉).

For any a, d ≥ 0 and b, c ∈ R, we can take the input matrix A ∈M2(R) of the form

A =

(
a b
c d

)
(2.3)

In matrix notation, the output of the map Φα,β can be expressed as

Φα,β =


2aα+ β

2 0 α(b+ c) 0

0 2aα β
2 α(b+ c)

α(b+ c) β
2 2dα 0

0 α(b+ c) 0 2dα+ β
2

 (2.4)
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2.2 Conditions for which a map φ will be positive
We will derive here the conditions for which Φ represent a positive map. The map
Φ will be positive if the matrix represented by Φα,β given in (2.4) is a positive semi-
definite matrix. To accomplish this task, we re-express Φα,β in a block matrix form
as

Φα,β =

(
X Y
Y ∗ Z

)
(2.5)

where

X =

(
2aα+ β

2 0
0 2aα

)
, Y =

(
α(b+ c) 0

β
2 α(b+ c)

)
,

Z =

(
2dα 0

0 2dα+ β
2

)
(2.6)

Applying Result-2 on Φα,β , we can state that the matrix Φα,β will be positive semidef-
inite if the below mentioned conditions hold:

(i)X ≥ 0⇒ 2aα ≥ 0 and 4aα+ β ≥ 0 (2.7)

(ii)Z ≥ 0⇒ 2dα ≥ 0 and 4dα+ β ≥ 0 (2.8)

(iii) ‖V ‖ = ‖X 1
2Y Z

1
2 ‖ ≤ 1

⇒ ‖

 α(b+c)√
dα(4aα+β)

0

β

4α
√
ad

α(b+c)√
aα(4dα+β)

 ‖ ≤ 1 (2.9)

where ‖V ‖ denote the operator norm of V .
Conditions (i) and (ii) given by (2.7) and (2.8) are collectively given by

2α(a+ d) + β ≥ 0, α ≥ 0 (2.10)

Now our task is to take into account condition (iii) in which we need to calculate
the operator norm of the matrix V . Operator norm of the matrix V is defined as the
maximum eigenvalue of V TV . The eigenvalue of V TV can be calculated from the
characteristic equation of V TV . The characteristic equation of V TV is given by

λ2 − k1λ+
k2

4
= 0 (2.11)

where k1 = α(b+c)2

(4aα+β)d + β
4aα + β2

16adα2 + d
a and k2 = (b+c)2(β+4dα)

ad(4aα+β) .
Since a ≥ 0 and d ≥ 0 from the earlier assumptions and using equations (2.7) and
(2.8), we can infer that k1 ≥ 0 and k2 ≥ 0. Thus, it is clear from Descarte’s rule of
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sign that the two roots of the characteristic equation given by (2.11) will be positive. If
λ1 and λ2 denote two positive eigenvalues of V TV then they are given by

λ1 =
1

2
(k1 +

√
k2

1 − k2)

λ2 =
1

2
(k1 −

√
k2

1 − k2) (2.12)

Since both the eigenvalues are positive so ‖V ‖ = max{λ1, λ2} = λ1. The condition
(iii) says that ‖V ‖ ≤ 1 which implies

4(1 +
√
k2

1 − k2 − k2) ≥ 1 (2.13)

The map Φα,β is positive if equations (2.10) and (2.13) holds simultaneously. In par-
ticular, the map Φα,β will be positive for α ≥ 0 and β = 0.

2.3 Is the map φ completely positive?
In this section, we will investigate the fact that whether the map φ is completely pos-
itive. To do this, we begin with the construction of Choi matrix corresponding to the
positive operator Φα,β . The Choi matrix CΦα,β is defined as [18]

CΦα,β =

1∑
i,j=0

|i〉〈j| ⊗ Φα,β(|i〉〈j|) (2.14)

where |i〉 represent the basis state in two-dimensional Hilbert space.
The Choi matrix CΦα,β can be re-expressed in terms of matrix as

CΦα,β =



2α+ β
2 0 0 0 β

2 0 α 0

0 2α β
2 0 0 0 β

2 α

0 β
2 0 0 α β

2 0 0

0 0 0 β
2 0 α 0 β

2
β
2 0 α 0 β

2 0 0 0

0 0 β
2 α 0 0 β

2 0

α β
2 0 0 0 β

2 2α 0

0 α 0 β
2 0 0 0 2α+ β

2


, (2.15)

To show the completely positivity of a positive map Φα,β , we need to the show that the
choi matrix CΦα,β corresponding to the positive map Φα,β is positive semidefinite. We
first express the choi matrix in block form as

CΦα,β =

(
P Q
Q∗ R

)
(2.16)
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where

P =


2α+ β

2 0 0 0

0 2α β
2 0

0 β
2 0 0

0 0 0 β
2

 , Q =


β
2 0 α 0

0 0 β
2 α

α β
2 0 0

0 α 0 β
2

 ,

R =


β
2 0 0 0

0 0 β
2 0

0 β
2 2α 0

0 0 0 2α+ β
2

 (2.17)

Following Result-3, we can show that the choi matrix CΦα,β is positive semidefinite if
and only if the below mentioned conditions are satisfied:

(i) P ≥ 0 holds when β = 0 and α ≥ 0 (2.18)

(ii) R ≥ 0 holds when β = 0 and α ≥ 0 (2.19)

(iii) P −QR−1Q∗ ≥ 0 holds for either
(α = 0 and β 6= 0) or (α > 0 and 4α+ β < 0)

or (α > 0 , 3α+ 2β ≥ 0 and β 6= 0) (2.20)

It can be easily observe that the conditions (i), (ii) and (iii) does not hold simultane-
ously. Thus the map Φα,β is not completely positive.

2.4 Conditions for which a map φ will be positive but
not completely positive

In the previous sections, we have derived the condition for which the map Φ will be
positive and later we proved that the positive map Φ cannot be completely positive.
In this section, we will derive the common interval of α for which the map Φ will be
positive but not completely positive simultaneously.
Without any loss of generality, let us consider the 2 × 2 positive matrix A1 ∈ M2(R)
as

A1 =

(
1
4

1
3

1
9 2

)
(2.21)

Further, taking β = −γ(γ > 0), the output of the mapping can be represented by the
matrix as

Φα,−γ(A1) =


α
2 −

γ
2 0 4α

9 0
0 α

2 −γ2
4α
9

4α
9 −γ2 4α 0
0 4α

9 0 4α− γ
2

 (2.22)
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It can be easily shown that the map Φα,−γ always produces a positive matrix at the
output if γ > 0 and α ≥ 9γ

2
√

146
. Thus Φα,−γ represent a positive map if γ > 0 and

α ≥ 9γ

2
√

146
. Furthermore, the Choi matrix corresponding to the positive map Φα,−γ is

given by

CΦα,−γ =



m1 0 0 0 −γ2 0 α 0
0 2α −γ2 0 0 0 −γ2 α
0 −γ2 0 0 α −γ2 0 0
0 0 0 −γ2 0 α 0 −γ2
−γ2 0 α 0 −γ2 0 0 0
0 0 −γ2 α 0 0 −γ2 0
α −γ2 0 0 0 −γ2 2α 0
0 α 0 −γ2 0 0 0 m1


(2.23)

where m1 = 2α− γ
2 .

The eigenvalues of CΦα,−γ are given by

µ1 =
−γ +

√
4α2 + γ2

2
, µ2 =

−γ −
√

4α2 + γ2

2

µ3 =
4α− γ +

√
4α2 + γ2

2
,

µ4 =
4α− γ −

√
4α2 + γ2

2
,

µ5 = α+

√
4α2 + γ2 +

√
16α2 + 4α2γ2 + γ4

2

µ6 = α+

√
4α2 + γ2 −

√
16α2 + 4α2γ2 + γ4

2

µ7 = α−

√
4α2 + γ2 +

√
16α2 + 4α2γ2 + γ4

2

µ8 = α−

√
4α2 + γ2 −

√
16α2 + 4α2γ2 + γ4

2

(2.24)

It can be observed that the Choi matrix CΦα,−γ has at least one negative eigenvalues
for any α and γ. Therefore, Φα,−γ is not completely positive map for any α and γ.
Thus for γ > 0 and α ≥ 9γ

2
√

146
, the map Φα,−γ is positive but not completely positive.

17



Chapter 3

Detection of entangled States

In this chapter, we will use the constructed map which is positive but not completely
positive to detect negative partial transpose entangled states and bound entangled states.
We will construct the Choi matrix from the positive map that can be considered as a
witness operator. A witness operator W is a hermitian operator, which satisfies the
following properties:

(i) Tr(Wρs) ≥ 0, for all separable state ρs

(ii) Tr(Wρe) < 0, for at least one entangled state ρe

(3.1)

3.1 Detection of Bound Entangled State
In this section, our task is to detect Bound Entangled States with the help of a positive
but not completely positive map.

Recalling 2.22 and considering γ = 2. We then choose a value of α in the interval
α ≥ 9√

146
. Taking α = 3

4 , the matrix given in (2.22) reduces to

Φ 3
4 ,−2(A1) =


11
8 0 1

3 0
0 3

8 −1 1
3

1
3 −1 3 0
0 1

3 0 4

 (3.2)

In particular, the map Φ 3
4 ,−2 represent a positive map. Using this positive map, we can
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construct the Choi matrix which is given below:

CΦ 3
4
,−2

=



1
2 0 0 0 −1 0 3

4 0
0 3

2 −1 0 0 0 −1 3
4

0 −1 0 0 3
4 −1 0 0

0 0 0 −1 0 3
4 0 −1

−1 0 3
4 0 −1 0 0 0

0 0 −1 3
4 0 0 −1 0

3
4 −1 0 0 0 −1 3

2 0
0 3

4 0 −1 0 0 0 1
2


, (3.3)

The Choi matrix CΦ 3
4
,−2

has at least one negative eigenvalues and thus it does not
represent a positive semidefinite matrix. Hence Φ 3

4 ,−2 is a positive but not completely
positive map.
Next our task is to show that CΦ 3

4
,−2

act as witness operator and for this it is sufficient
to show that there exist at least one entangled states described by the density operator
ρe for which Tr(CΦ 3

4
,−2
ρe) < 0. Then we can say that the entangled state will be

detected by CΦ 3
4
,−2

.
Let us consider a quantum state described by the density operator ρb which is given by

ρb =
1

1 + 7b



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2
2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2
2 0 0 1+b

2


(3.4)

where the state parameter satisfies 0 ≤ b ≤ 1. The state ρb is shown to be a bound
entangled state by range criterion [12].
We are now in a position to show the utility of the operator CΦ 3

4
,−2

in the detection of

entanglement. To accomplish this task, we calculate Tr(CΦ 3
4
,−2
ρb), which is given by

Tr(CΦ 3
4
,−2
ρb) =

b− 1

4(1 + 7b)
< 0 (3.5)

Thus the bound entangled state ρb detected by the witness operator CΦ 3
4
,−2

.
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3.2 Detection of Negative Partial Transpose Entangled
State

Let us consider a quantum state described by the density operator ρNPT which is given
by

ρNPT =
1

3



1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


(3.6)

It can be easily shown that the state (3.6) represent a negative partial transpose entan-
gled state. Now, our task is to construct a witness operator which can detect it. To
accomplish this task, let us start with the positive input matrix which is given by

A2 =

(
3 1

3
1
9 2

)
(3.7)

Considering β = −γ(γ > 0) and applying the map on A2, we get the output matrix in
the form

Φα,−γ(A2) =


6α− γ

2 0 4α
9 0

0 6α −γ2
4α
9

4α
9 −γ2 4α 0
0 4α

9 0 4α− γ
2

 (3.8)

The map Φα,−γ will be positive map if γ > 0 and α ≥ 9γ

90−2
√

27
. In the next step, we

fix γ = 1 and then choose a value of α from the interval α ≥ 9
90−2

√
27

. Taking α = 1
8 ,

the matrix given in (3.8) reduces to

Φ 1
8 ,−1(A2) =


1
4 0 1

18 0
0 3

4
−1
2

1
18

1
18

−1
2

1
2 0

0 1
18 0 0

 (3.9)

Therefore, the particular form of the map Φ 1
8 ,−1 represent a positive map. Using this

positive map, we can construct the Choi matrix as

CΦ 1
8
,−1

=



−1
4 0 0 0 −1

2 0 1
8 0

0 1
4

−1
2 0 0 0 −1

2
1
8

0 −1
2 0 0 1

8
−1
2 0 0

0 0 0 −1
2 0 1

8 0 −1
2−1

2 0 1
8 0 −1

2 0 0 0
0 0 −1

2
1
8 0 0 −1

2 0
1
8

−1
2 0 0 0 −1

2
1
4 0

0 1
8 0 −1

2 0 0 0 −1
4


, (3.10)
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The Choi matrix CΦ 1
8
,−1

has at least one negative eigenvalues and thus it does not rep-
resent a positive semidefinite matrix. Hence Φ 1

8 ,−1 is a positive but not completely
positive map.
We will now show that CΦ 3

4
,−2

act as witness operator and it detect the state (3.6). To

detect the state described by the density operator ρNPT , we calculate Tr(CΦ 3
4
,−2
ρNPT ),

which is given by

Tr(CΦ 1
8
,−1
ρNPT ) =

−1

6
< 0 (3.11)

Thus the negative partial transpose entangled state ρNPT detected by the witness oper-
ator CΦ 1

8
,−1

.
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Chapter 4

Conclusion

• To summarize, we have constructed a map which is applied on n×n matrix and
as a result, we obtain n2 × n2 matrix at the output. The mapping constructed
here is general and work for higher order matrices also. But to simplify the
discussion, we have taken n = 2 and then showed that the map is positive under
certain conditions.

• Further, we have shown that the constructed map can never be completely posi-
tive and also obtained the conditions for which the map is positive but not com-
pletely positive.

• Lastly, we have discussed that the Choi matrix constructed from the positive map
can act as a witness operator and take part in the detection of bound entangled
state and negative partial transpose entangled state.

22



Bibliography

[1] A. Einstein, B. Podolsky and N. Rosen, Phys.Rev. 47, 777 (1935).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys.
81, 865 (2009).

[3] A. Ekert, and R. Jozsa, Phil. Trans. R. Soc. Lond. A 356, 1769 (1998).

[4] A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[5] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

[6] C. H. Bennett and G. Brassard, Proceedings of IEEE International Conference on
Computers, Systems and Signal Processing, Bangalore, India, 1984, pp.175-179.

[7] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters,
Phys. Rev. Lett. 70, 1895 (1993).

[8] C. H. Bennett, H. J. Bernstein, S. Popescu and B. Schumacher, Phys. Rev. A 53,
2046 (1996).

[9] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu and A. Sanpera,
Phys. Rev. Lett. 77, 2818 (1996).

[10] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[11] M. Horodecki, P. Horodecki and R. Horodecki, Phys. Lett. A 223, 1 (1996).

[12] P. Horodecki, Phys. Lett. A 232, 333 (1997).

[13] M. Lewenstein, B. Kraus, J. I. Cirac and P. Horodecki, Phys. Rev. A 62, 052310
(2000).

[14] N. Ganguly and S. Adhikari, Phys. Rev. A 80, 032331 (2009).

[15] E. Stormer, Trans. Amer. Math. Soc. 120, 438 (1965).

[16] E. Stormer, Lecture Notes in Physics 29, Springer Verlag, Berlin, 1974, pp. 85-
106.

[17] S. L. Woronowicz, Comm. Math. Phys. 51, 243 (1976).

23



[18] M. D. Choi, Lin. Alg. and its Appl. 10, 285 (1975).

[19] A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972).

[20] E. Stormer, Springer monographs in Mathematics (2013).

[21] Y. Zhang, Lin. Alg. and its Appl. 446, 216 (2014).

[22] R. Sharma, P. Devi, R. Kumari, Lin. Alg. and its Appl. 528, 113 (2017).

24


