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ABSTRACT 

 

 

To address initial value issues, we use Euler's approach and the Runge-Kutta method in this 

thesis. The project's purpose is to compare the two methodologies on preliminary problems, 

highlighting their limitations and benefits. We also use the Runge-Kutta method as a way for 

creating a mathematical traffic flow model. The purpose of this thesis is to shed light on how 

The Optimal Velocity Model is solved using the fourth-order Runge-Kutta method. To execute 

simulations of the model, we select beginning conditions and base cases. To validate the usage of 

the two - fourth-order Runge-Kutta method , Optimal Velocity Model, we consider a few 

examples with one-car ,two-car systems. 
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CHAPTER-1 

 

INTRODUCTION 

 

The field of applied mathematics includes numerical analysis. Exact methods can be used to 

solve some equations, but others, which are more complex numerical estimating approaches 

must be used to solve them. Many studies on traffic modelling employ numerical analysis for 

solving the models, but they don't explain why they picked that strategy. They also don't go into 

great detail on the start conditions or the necessary base case scenarios. The models could be 

solved in a variety of ways. Some researchers, for example, employ Euler's approach. Others 

employ the Runge-Kutta method. It is critical that the viewer knows the starting conditions and 

how this system works for either way. 

Both methods are used to approximate points on the graph of the solution in a given interval to 

solve a differential equation given initial values. One of these numerical analytic approaches' 

limitations is that they are distant from the beginning value point, the further the approximation. 

The estimation is based on the actual values. Euler's approach has a higher error compared to 

Runge-Kutta, although Runge-Kutta computations are more complicated. Euler's method has a 

higher inaccuracy than Runge Kutta's, but it's a good starting point for more advanced 

techniques.   
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CHAPTER-2 

 

Ordinary Differential Equations (Numerical methods) 

 

Numerical methods such as Euler's and Runge-Kutta approximate the solutions of the 

differential equations to initial value issues on a given interval, as previously stated: 

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) ,  𝑦(𝑎) = 𝛼 , 𝑎 ≤ 𝑡 ≤ 𝑏                             (2.1) 

 

At N discrete places, both approaches estimate the answer. Throughout the interval  

[𝑎, 𝑏], the t values are evenly distributed. We employ a step size. 

                        

                     ℎ =
(𝑏−𝑎)

𝑁
                                             (2.2) 

 

Both methods, which are have been based on the Taylor Series expansion, use 𝑓(𝑡, 𝑦) 

to approximate the solution. The approaches employ a difference equation that 

estimates the solution  𝑤𝑖+1at the next time step ti+1 based on the estimated solution 𝑤𝑖 

at the present time (step) 𝑡𝑖 

 

The difference equations yields N values 𝑤0  , 𝑤1, … . , 𝑤𝑖 , … . . , 𝑤𝑁 that are close to  

𝑦0, 𝑦1, … . , 𝑦𝑖 , … , 𝑦𝑁 at times 𝑡0, 𝑡1, … . , 𝑡𝑖 , … . , 𝑡𝑁  respectively. It is a difference equation 

because it depends on the quotient(difference)   
wi+1 −wi 

ℎ
 ℎ = 𝑡𝑖+1 + 𝑡𝑖  (as per the 

approximation of 𝑓(𝑡, 𝑦)). 

 

We'll use the following example problem to demonstrate how these strategies function. 

 

                        𝑦′ = 1 +
𝑦

𝑡
 ,       1 ≤ t ≤ 2, y(1) = 2, with h = 0.25.                    (2.3) 

 

Let's have a look at two of the specific techniques now. 

 

 

2.1 EULER'S METHOD 

 

At mesh point i , the approximate solution of Initial Value Problem 2.1. will be defined as 

𝑊𝑖, and the t value at the ith mesh point will be defined as 𝑡𝑖 . Using the following 

procedure, Euler's approach yields the approximate solution point (𝑡𝑖, 𝑤𝑖): 
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𝑡0 = 𝑎 𝑤0 =  𝛼, 

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓(𝑡𝑖, 𝑤𝑖), 𝑖 = 0,1, … . . , 𝑁 − 1,   (2.4) 

𝑡𝑖+1 = 𝑡𝑖 + ℎ, 

 

where y is the exact solution's beginning value as provided in Equation 2.1. The 

difference equation of Euler's approach is Equation 2.4. N  points (𝑡𝑖, 𝑤𝑖)  are obtained 

using this procedure. 

 

-Example 2.3  

We can see that       𝑓(𝑡, 𝑤) = 1 +
𝑤

𝑡
 

 

As per the known algorithm, 

𝑡0 = 1, 𝑤0 = 2 

 

 

computing the difference equations 

 

w1 = w0 + h*f(t0, w0) = 2 + .25*(1 + 2/1) = 2.750000, t1 = t0 + h = 1.25, 

w2 = w1 + h*f(t1, w1) = 2.75 + .25*(1 + 2.75/1.25) = 3.550000, t2 = t0 + 2h = 1.5, 

w3 = w2 + h*f(t2, w2) = 3.55 + .25*(1 + 3.55/1.5) = 4.391667, t3 = t0 + 3h = 1.75, 

w4 = w3+h*f(t3, w3) = 4.391667+.25*(1+4.391667/1.75) = 5.269047, t4 = t0+4h = 2. 

 

As a result, the approximation indicated in Table 2.1 is obtained using Euler's approach 

on Problem 2.3. 

 

 
 

Initial Value Problem 2.3 is a straightforward problem that comes from a textbook. It 

does, in fact, have an exact solution. The exact solution is  

𝑦(𝑡) = 𝑡(ln|𝑡| + 2 ),  
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which may be found using the linear equation technique of differential equations. We 

may now evaluate how well Euler's technique approximates the solution curve points. 

Table 2.2 may now display the error 

|𝑦(𝑡𝑖) − 𝑤𝑖| 

 

When we add a column with the actual values at the (t )  stages. 

 

 
 

 

We can notice that the error grows as we move away from the starting point. When 

analysing a numerical approach like Euler's Method, error analysis is crucial. 

 

 

2.1.1 Euler's Method Error Analysis 

 

Because numerical approaches such as Euler's Approach do not discover accurate 

solutions, error plays a significant role in determining which method to adopt. The 

expansion of 𝑦(𝑡)  around the point 𝑡 = 𝑡0   by Taylor Series is used in many of the 

methods. We know that 𝑡𝑖 = 𝑡0 + 𝑖ℎ in Euler's approach.  

The Taylor polynomial of nth degree takes the form 

 

 

𝑃𝑛(𝑡𝑖) = 𝑦(𝑡0) + 𝑦′(𝑡0)𝑖ℎ +
y''(t0)

2 !    
𝑖2ℎ2 + ⋯ + 

y(n)(t0)

n !    
𝑖𝑛ℎ𝑛       (2.5) 

   

The step size h in the formula is the same as in Euler's approach. The Taylor series has 

a n that goes to infinity. The series is truncated at the (n + 1)th term by the nth Taylor 

polynomial. There is some kind of error in the Taylor polynomial and y when the series 

is truncated (t). The remaining term or truncation error is defined as follows: 

 

𝑅𝑛(𝑡𝑖) =
y(n+1)(ξ(t))

(n+1)!      
𝑖𝑛+1ℎ𝑛+1      (2.6)  
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This word aids us in determining the numerical method's inaccuracy. Because the 

Taylor polynomial of order 1 is used in Euler's approach, the remaining term is 

 

 

𝑅𝑛(𝑡𝑖) = 𝑦′(𝜉(𝑡))𝑖ℎ                               (2.7) 

 

 

So as 𝑦′(𝑡) is constrained by M on [𝑎, 𝑏], and hence the error reduces as the step size h 

decreases the remainder term . This is one way to reduce mistakes. 

When the step size is smaller, the more calculations a computer has to perform. 

 

 

2.2 Runge-Kutta 

 

Runge-Kutta performs better than Euler's approach in terms of estimation. The second-

order Midpoint technique is the simplest of the various Runge-Kutta methods. The 

function is used to estimate the second-order Taylor Polynomial. 

 

𝑎1𝑓(𝑡 + 𝛼1, 𝑦 + 𝛽1).      (2.8) 

 

When enlarged Taylor polynomials are used to solve the problem, we get 

 

𝑎1 = 1, 𝛼1 =
ℎ

2
, 𝛽1 =

ℎ

2
. 

 

The method of the midpoint is 

 

𝑤0 = 𝛼      (2.9) 

 

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑤𝑖 +

ℎ

2
𝑓(𝑡𝑖, 𝑤𝑖)) , 𝑓𝑜𝑟 𝑖 = 0,1, … . . , 𝑁 − 1   (2.10) 

 

The difference equation is Equation 2.10. The step size in Equation 2.2 is used in the 

Midpoint technique. We cycle through the process finding 𝑤𝑖 until we reach the end of 

the interval, just as Euler's approach. Consider the following scenario. 

 

We'll utilize the example from Burden and Faires (2003), Equation 2.3, that we used to 

show Euler's Method. We'll use the Midpoint approach this time. We may derive h = 
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0.25 using Equation 2.3, which shows that 𝑤0= 2. Using Equation 2.10, we find that the 

difference equation for the above problem using the Midpoint approach is  

 

  
We can now calculate the respective values at mesh points: 

 

 

𝑤1 =
(4(0)2 + 38i + 90)2 + (0)2 + 9(0) + 20

(4(0)2 + 34(0) + 72) ) 
= 2.777778, 

w2 =
(4(1)2 + 38i + 90)2.7777778 + (1)2 +9(1) + 20

(4(1)2 + 34(1) + 72) 
   = 3.606060. 

 

 

As shown in Table 2.3, the process is repeated for all N points.  

𝑦(𝑡) = 𝑡(ln|𝑡| + 2) is the exact answer to this issue. We may use it to observe the way 

the error changes when we go closer to the interval's end and further away from the 

starting point. 

 

 
 

The fourth-order Runge-Kutta method is the most often used method out of the rest of 

the variants. It is more precise as compared to the Midpoint approach, but it is also 

more difficult. The exactly same step size as in Equation 2.2 is used by Runge-Kutta, 

and is the beginning value of y. 

The procedure is as follows: 
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𝑡0 = 𝑎 , 𝑤0 = 𝛼 , 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑤𝑖), 

𝑘2 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑤𝑖 +

1

2
, 𝑘1), 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑤𝑖 +

1

2
, 𝑘2), 

𝑘4 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑤𝑖 + 𝑘3), 

 
 

 

Applying Runge kutte fourth order method to the above stated problem. 

The following is the initial iteration: 

 

𝑤0 =  2, 

 

𝑘1 =  0.25 ∗ 𝑓(1, 2) =  0.25 ∗ (1 +  2) /4 =  3/4 =  0.750000, 

𝑘2 =  0.25 ∗ 𝑓 (1 + 0.125, 2 +
1

2(0.75)
) =  0.25 ∗ 𝑓(1.125, 2.375)  =  0.777778, 

𝑘3 =  0.25 ∗ 𝑓 (1.125, 2 +
1

2(0.766778)
) =  0.25 ∗ 𝑓(1.125, 2.387789)

=  0.25 ∗ (1 + 2.387789/1.125)  =  0.780642, 

𝑘4 =  0.25 ∗ 𝑓(1.25, 2 +  0.78064) =  0.25 ∗ (1 +  2.78064/1.25)  =  0.806373, 

𝑤1 =  2 +  
1

6
, (0.75 +  0.777778 +  0.780642 +  0.806373)  =  2.778909. 

 

 

2.2.1 The Runge-Kutta Method Error Analysis 

 

Runge-Kutta methods, like Euler's approach, are based on Taylor series 

polynomials.The second-order Taylor series polynomial is used in second-order Runge-

Kutta procedures like the Midpoint technique. 

 

 

𝑅𝑛(𝑡𝑖) =
y2(ξ(t))

2!  
𝑖2ℎ2                         (2.12) 
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As far as the derivative 𝑦(2)  is constrained by M on [𝑎, 𝑏] the Midpoint approach has an 

error of 𝑂(ℎ2). The error in the Midpoint technique is less when compared to the error of 

Euler's technique because of ℎ2 < ℎ for step sizes smaller than 1. 

The residual term of the fourth-order Runge-Kutta technique is the fourth-order Taylor 

polynomial. i.e. 

 

 

𝑅𝑛(𝑡𝑖) =
y4(ξ(t))

4!  
𝑖4ℎ4                              (2.13)  

. 

 

As far as the derivative 𝑦(4)  is bounded by M on [𝑎, 𝑏], then the error is 𝑂(ℎ4) obviously 

better than any other approaches given thus far. With a significantly bigger step size, 

the fourth-order Runge-Kutta technique has a lower error than the Euler's technique or 

the Midpoint technique. To demonstrate, consider Problem 2.3, which was solved using 

Euler's technique with h = 0.025, the Midpoint technique with h = 0.05, and fourth-order 

Runge-Kutta with h = 0.1. Notice how, despite having the biggest step size, the fourth-

order Runge-Kutta algorithm has the smallest error. Since Euler's technique has an 

error of 𝑂(ℎ2) and the fourth-order Runge-Kutta has an error of 𝑂(ℎ5) the Runge-Kutta 

error must be less, as indicated in the table. 

 

It should be observed that fourth-order Runge-Kutta will require less calculations to 

achieve similar inaccuracy than the other approaches. Because when the step size is 

larger, the computer will be able to repeat the process several times to obtain precise 

estimates. 
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CHAPTER- 3   

Numerical Methods For High Order Systems 

 

3.1 Runge-Kutta ( first order systems) 

 

Runge-Kutta can also be used to solve initial value problems in systems. The form of an 

initial value problem with m equations is 

 

𝑑𝑢1

𝑑𝑡
= 𝑓1(𝑡, 𝑢1, 𝑢2, … . , 𝑢𝑚) 

𝑑𝑢2

𝑑𝑡
= 𝑓2(𝑡, 𝑢1, 𝑢2, … . , 𝑢𝑚) 

            . 

            . 

            . 

                 
𝑑𝑢𝑚

𝑑𝑡
= 𝑓𝑚(𝑡, 𝑢1, 𝑢2, … . , 𝑢𝑚)     (3.1) 

𝑢1(𝑎) = 𝛼1, 𝑢2(𝑎) = 𝛼2, … . . , 𝑢𝑚(𝑎) = 𝛼𝑚 

 

 

You specify a N   specifying the number of mesh points to solve with the Runge-Kutta 

system. The step size is now given by Equation 2.2 and 𝑡𝑗 = 𝑎 + 𝑗ℎ for each 

 j = 0, 1,..., N, just as it was before with Euler's and Runge-Kutta. The approximated 

solution of 𝑢𝑖 in the system of Equations will be denoted 𝑤𝑖𝑗 

So the initial conditions give us 

 

𝑤1,0 = 𝛼1, 𝑤2,0 = 𝛼2, … . . , 𝑤𝑚,0 = 𝛼𝑚 

 

To get 𝑤𝑗+1  using the already known wj values, we must compute k1, k2, k3, and k4 

values, just as we did with the fourth-order Runge-Kutta method. Before moving on to 

the next k value , each k value for each equation in the system must be computed. As a 

result, for each i = 1, 2,..., m, we calculate; 

𝑘1,𝑖 = ℎ𝑓𝑖(𝑡𝑗 , 𝑤1,𝑗, 𝑤2,𝑗, … . . , 𝑤𝑚,𝑗), 

 

then for each i = 1, 2, . . . , m  we calculate; 

𝑘2,𝑖 = ℎ𝑓𝑖 (𝑡𝑗 +
ℎ

2
, 𝑤1,𝑗 +

1

2
𝑘1,1, 𝑤2,𝑗 +

1

2
𝑘1,2, … . . , 𝑤𝑚,𝑗 +

1

2
𝑘1,𝑚), 

 

 

 

then for each i = 1, 2, . . . , m  we calculate; 
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𝑘3,𝑖 = ℎ𝑓𝑖 (𝑡𝑗 +
ℎ

2
, 𝑤1,𝑗 +

1

2
𝑘2,1, 𝑤2,𝑗 +

1

2
𝑘2,2, … . . , 𝑤𝑚,𝑗 +

1

2
𝑘2,𝑚), 

 

 

then for each i = 1, 2, . . . , m we calculate, 

 

𝑘4,𝑖 = ℎ𝑓𝑖 (𝑡𝑗 +
ℎ

2
, 𝑤1,𝑗 +

1

2
𝑘3,1, 𝑤2,𝑗 +

1

2
𝑘3,2, … . . , 𝑤𝑚,𝑗 +

1

2
𝑘3,𝑚), 

 

and then for each i = 1, 2, . . . , m 

 

𝑤𝑖,𝑗+1 = 𝑤𝑖,𝑗 +
1

6
(𝑘1,𝑖 + 2𝑘2,𝑖 + 2𝑘3,𝑖 + 𝑘4,𝑖) 

 

It can assist to see a simple example. We calculate a total of twelve k values and three 

difference equations to depict the calculations for just one step in a system of three 

equations. Implementing the procedure on a computer and analysing the outcomes is 

the best approach to demonstrate it.  

  (3.2) 

 

for t ∈ [0, 1]. We used a step size of h = 0.1 and were given the exact solutions of 

 

p1(t) = −0.05*t5 + 0.25*t4 + t + 2 − e-t, 

p2(t) = t3 + 1, and p3(t) = 0.25*t4 + t − e-t.  

 

The fourth -order Runge-Kutta for the above system of equations produced the values 

for 𝑤𝑖,𝑗 
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Table 2.4 : Runge kutta method values and exact solutions for the equation 

 

j     ti       w1,j             p1,j           w2,j         p2,j         w3,j             p3,j 

0     0    1               1               1           1            -1               -1 

4    .3     1.5610    1.5610      1.027      1.027    -0.4388      -0.43879323 

7    .6      2.0796   2.0798      1.216      1.216     0.0836       0.08358836 

9     .8     2.4367    2.436       1.512      1.512      0.453       0.45307106 

11    1      2.8321   2.8321      2               2           0.882       0.8821205 

 

3.2  Runge-Kutta Method for Higher-Order Systems 

 

So far, all of the methods have been used to solve a variety of ordinary differential 

equations. Regrettably, as we'll see in Chapter 4, the Optimal Velocity Model we're 

going to assess is a system of second-order differential equations. Now we’ll proceed 

by conversion : we will convert all second order differential equations to two first order 

differential equations.  

Consider the following equation of second order: 

 

 
d2y

dt2
= 𝑓(𝑡, 𝑦,

𝑑𝑦

𝑑𝑡
) , y(a) = α1, 

𝑑𝑦

𝑑𝑡
 (𝑎) = 𝛼2.                      (3.3) 

 

The system of equations is then constructed as follows: 

 

     
𝑑𝑦

𝑑𝑡
= 𝑣, 

𝑑𝑣

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑣) 

 

This is now just a two first-order differential equations system. For systems, we may 

now employ the fourth-order Runge-Kutta approach. 
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CHAPTER-4  

 

A Traffic Model's Numerical Solution 

 

The Optimal Velocity Model, referred as OVM, for traffic flow is discussed in this 

chapter. Analytically, the initial-value problem cannot be solved. The Runge-Kutta 

method will be used to approximate the solution. We demonstrate the procedure and 

describe how and why the Runge-Kutta method can be used to a traffic flow model. 

 

4.1 THE MODEL 

 

The following equation is used to describe the movement of automobile i. 

 
d2xi (t)

dt2
= 𝑎(𝑉(∆𝑥𝑖(𝑡)) −

𝑑𝑥𝑖(𝑡)

𝑑𝑡
             (4.1) 

 

At time t, the position of automobile I is 𝑥𝑖(𝑡). The distance between the two cars (car i 

and the car in front of it) at time t is defined as ∆𝑥𝑖(𝑡). 

 

∆𝑥𝑖(𝑡) =  𝑥𝑖+1(𝑡)  −  𝑥𝑖(𝑡).                                             (4.2) 

 

 

The headway of car i at time t is a common term for this. The sensitivity parameter, a, is 

a constant. It describes the average driver's sensitivity to the motion of the vehicle in 

front of him. The time lag when a front car changes speeds and the automobile behind it 

reactes and then adapting to the front car is the inverse of the sensitivity parameter. 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
  is the velocity of the car i.  

The optimal velocity of the car is denoted by :  

 
 

𝑉 (∆𝑥𝑖(𝑡))  =  
𝑉𝑚𝑎𝑥

2
 [𝑡𝑎𝑛ℎ (∆𝑥𝑖(𝑡)  −  𝑥𝑐)  + 𝑡𝑎𝑛ℎ(𝑥𝑐)].               (4.3) 

 

 

If 𝑥𝑐  =  4, the optimal velocity 𝑉 (𝑥𝑖(𝑡)) approaches a value in close bracket of 0.0004 

percent of Vmax, as the headway 𝑥𝑖(𝑡) approaches infinity. As a result, when the 

headway is sufficiently larger than the safety distance, cars will approach their 
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maximum speed. The value of 𝑉 (∆𝑥𝑖(𝑡)) will approach 0 if the safety distance gets 

arbitrarily long. The acceleration is positive when the ideal velocity in Equation 4.3 is 

larger than the car's current velocity 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
  . In this instance, the car's speed will 

increase. The acceleration is 0 when the ideal velocity is same as the present velocity. 

As a result, the car's speed remains constant. When the present speed exceeds the 

optimal speed, the acceleration becomes negative, and thus the car slows down. 

A proportionality parameter is present in the acceleration. A high sensitivity parameter 

means a quick response time because the sensitivity parameter is  equal to the inverse 

of the time lag it takes for a driver to react to a car in front of it. As a result of the high 

sensitivity parameter, the acceleration is increased. 

We’ll use the following parameters to take the calculations forward. 

 

𝑎 =  1, 

𝑉𝑚𝑎𝑥 =  4, 

                  𝑥𝑐  =  4. 

 

Over the t interval [0, 6], we ran each Runge-Kutta technique with a step size of 0.001. 

 

 

 

4.2 Runge-Kutta Implementation on the Model 

 

A series of second-order differential equations governs the Optimal Velocity Model 

mentioned above. As mentioned in Subsection 3.2, each second-order differential 

equation must be transformed into two subsequent first-order differential equations.  

 

 
dxi (t)

dt
= 𝑦𝑖(𝑡) 𝑎𝑛𝑑 

dyi (t)

dt
= 𝑎 (𝑉(𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡)) − 𝑦𝑖(𝑡)).    (4.4) 

 

 

There are two differential equations associated with each automobile 𝑖. As a result, 

suppose there are M cars in our system, then there are 2M equations. 

To implement a fourth-order Runge-Kutta technique, we must first define a starting 

condition for each equation. Each car in the system must have a starting position and 

velocity in this model.There is no way to duplicate their precise simulation without 

knowing the start conditions. We establish our own starting conditions. 
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The Optimal Velocity Equation 4.3 also has an automobile in front of the 𝑖th automobile, 

which is a problem. The system's final equation is 

 
dyM (t)

dt
= 𝑎 (𝑉(𝑥𝑀+1(𝑡) − 𝑥𝑀(𝑡)) − 𝑦𝑀(𝑡)).   

 

This is predicated on the existence of a (𝑀 +  1) automobile, which does not exist. So, 

what to with the Mth car's motion as part of the system? 

The entire system is based on how to programme the lead car's behaviour, which 

influences the behaviour of the automobiles behind it. We set our own values for 

𝑥𝑀+1 . To evaluate the approach and model's application, we chose to simplify the 

model to only one automobile, then two automobiles. 

 

 

 

4.3 One Car and a Stopped Object Simulation 

 

This simulation depicts a car's reaction to a halted item. We go close enough to the 

thing that the car then has to slow down. 

For this simulation, we'll use Equation 4.4's first-order system for a single car's position 

x1(t) and velocity y1(t). We discussed x2(t) as the position of the second automobile in 

the system in Section 4.1, but now we consider it to be an item halted at position 20. 

 

Through the entire process, we will make use of : 𝑥2(𝑡)  =  20. 

And then the system becomes 

 
dx1 (t)

dt
= 𝑦1(𝑡),  

dy1 (t)

dt
= 𝑎(𝑉(20 − 𝑥1(𝑡)) − 𝑦1(𝑡)) 

 

The car begins at a position x1(0) = 0. 

The car's start velocity is set to be the ideal velocity as follows: 

 

dx1 

dt
|

𝑡=0
= 𝑉 (∆𝑥1(0))  

where ∆𝑥1(0)  = 𝑥2(0)  − 𝑥1(0)  =  20 −  0 =  20      

is headway at time 0 
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We may now solve for the car's position 𝑥1(𝑡) and velocity 𝑦1(𝑡) using the fourth-order 

Runge-Kutta method. 

 

The figure below shows the result for the experiment. The left one shows the position of car 

versus time , the right one shows velocity versus time.  

 

 

          
 

Figure 4.1 : Position versus time and velocity versus time when approaches to the 

stopped object ( dashed line) . 
 

 

 

 

4.4 Simulation With a clear road in front of the car  

 

This simulation depicts a car's reaction to a clean road ahead of it. Then we place the 

thing far enough away from the car that it has no effect on it. 

The first-order system for the position x1 is used in this simulation (𝑡) and velocity 𝑦1(𝑡) 

of a single car. 

 

We think of 𝑥2(𝑡) as an item halted at the far distant point of 100, much as we did with 

the stopped car simulation. 𝑥2(𝑡)  =  100 is used throughout the simulation. As a result, 

the system is 

 
dx1 (t)

dt
= 𝑦1(𝑡),  

dy1 (t)

dt
= 𝑎(𝑉(100 − 𝑥1(𝑡)) − 𝑦1(𝑡)) 

 

The car begins at position 𝑥1(0)  =  0. 

The car's velocity is initially set to a sluggish speed of 1, recalling that the Vmax is four 

in Section 4.1.  
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As a result 

dx1 

dt
|𝑡=0 = 1 

 

Starting the car slowly will allow it to pick up speed as the scenario progresses.We may 

now solve the car's position x1(t) and velocity y1(t) using the fourth-order Runge-Kutta 

method. 

The simulation's findings are shown in Figure 4.2. The position of the car as a function 

of time is depicted in the left picture. The velocity is depicted in the right figure. Figure 

4.2's right graph depicts the car moving up to attain its top speed of four miles per hour. 

The right graph's concavity indicates that the car is speeding because it is concave up. 

 

 

  
Figure 4.2: Position versus time (left graph) and velocity versus time (right graph) for a car 

starting slowly and accelerating due to the clear path in front.. 
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4.5 Simulating an Object Traveling at a Constant Slow Speed 

 

This simulation depicts a car's reaction to any type of slow-moving vehicle in front of it. 

We'll start with the two cars with minimum distance between them so that the back car 

will have to slow down. 

For this simulation, we'll use Equation 4.4's first-order system for a single car's position 

x1(t) and velocity y1(t).  x2(t) does describe a car's motion in this scenario. Throughout 

the experiment, we give it a predetermined velocity of two and a starting position of ten. 

As a result. 

 

𝑥2(𝑡)  =  10 +  2𝑡. 

 

Thus, the system is 

 
dx1 (t)

dt
= 𝑦1(𝑡),  

dy1 (t)

dt
= 𝑎(𝑉((10 + 2𝑡) − 𝑥1(𝑡)) − 𝑦1(𝑡)) 

 

 

Car 1 begins at a position x1(0) = 5. 

 

The car's start velocity is set to be the ideal velocity as follows: 

 

dx1 

dt
|

𝑡=0
= 𝑉 (∆𝑥1(0))  

 

where ∆𝑥1(0)  =  𝑥2(0) − 𝑥1(0)  =  10 −  5 =  5 

is the headway at time zero. 

We may now solve for the car's position x1(t) and velocity y1(t) using the fourth-order 

Runge-Kutta method. 
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Figure 4.3: Position versus time depicted by left graph and velocity versus time 

depicted by right graph of a car depicted by solid line with a slow moving constant 

speed object depicted by dashed line.  

 

 

The simulation's findings are shown in Figure 4.3. The position of the two cars are 

shown as functions of time in the left figure. The velocities are depicted in the right 

figure. In the graphs the car slows down to match the slower moving car's speed. 

 

 

4.6 Two Cars and a Stopped Object Simulation 

 

The reaction of two cars to a halted item is depicted in this simulation. This simulation is 

similar to the one in Section 4.3, except that we add another automobile to study how 

the dynamics change. 

The first-order system in Equation 4.4 is used in this simulation for the coordinates xi (t) 

and velocity yi(t).  x3(t) is the position of a halted object at 20, similar to x2(t) in Section 

4.3. x3(t) = 20 is used throughout the simulation. 

 

Thus, the system is 

 
dxi (t)

dt
= 𝑦𝑖(𝑡),  

dyi (t)

dt
= 𝑎(𝑉(𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡)) − 𝑦𝑖(𝑡)) , 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2. 

 

The headways of the cars are 

∆𝑥1(𝑡)  =  𝑥2(𝑡) −  𝑥1(𝑡) 

And 

∆𝑥2(0)  =  20 − 𝑥2(𝑡) 

 

The cars begin at positions x1(0) = 0 and x2(0) = 5. 
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The cars' initial velocity is set to be the ideal velocity as follows: 

 

dx1 

dt
|

𝑡=0
= 𝑉 (∆𝑥𝑖(0)) 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2. 

 

Now we can solve for the coordinates xi(t) and velocities yi(t) using the fourth-order 

Runge-Kutta technique, 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2. 

 

 

  
Figure 4.4: Position versus time (left graph) and velocity versus time (right graph) as 

a stopped object is being approached by two cars(solid and dashed lines). 

 

 

The simulation's findings are shown in Figure 4.4. The position of the cars is depicted 

on the left diagram. The velocities are depicted in the right figure. Car2 slows down as it 

approached the halted item in both graphs. Car 1 (solid line) accelerates somewhat 

faster than car 2, reaches top speed, and then slows down. 

 

 
 

4.8 Two Cars and a Simulated Object Traveling at a Slow Constant Speed 

 

This simulation shows how two cars react to a slow, continuously moving object. 

This simulation is similar to the one in depicted in 4.5, except that we now added 

another automobile to study how the dynamics of the process changes. 

For this simulation, we'll use Equation 4.4 to get the coordinates xi(t) and velocities yi(t) 

when i  is one and subsequently two. We assume x3(t) to represent the position of an 

automobile driving at a constant velocity of three and starting at position ten, as we did 

in Section 4.5. As a result 

 

                          𝑥3(𝑡)  =  10 +  3𝑡 
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all during the simulation As a result, the system is 

 
dxi (t)

dt
= 𝑦𝑖(𝑡),  

dyi (t)

dt
= 𝑎(𝑉(𝑥𝑖+1(𝑡) − 𝑥1(𝑡)) − 𝑦𝑖(𝑡)) , 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2. 

where  

∆𝑥1(𝑡)  =  𝑥2(𝑡) −  𝑥1(𝑡) 

And 

∆𝑥2(0) = (10 + 3𝑡) −  𝑥2(𝑡) 

 

 

The cars begin at positions x1(0) = 0, x2(0) = 5, and x3(0) = 10.v 5rfgv v 5rfgv 4r 

The cars' initial velocity is set to be the ideal velocity as follows:  

 

dx1 

dt
|𝑡=0 = 𝑉 (∆𝑥𝑖(0)) 

 

Now we can solve for the coordinates xi(t) and velocities yi(t) using the fourth-order 

Runge-Kutta technique, where i = 1, 2. 

The simulation's findings are shown in Figure 4.5. The position of the autos as a 

function of time is depicted in the left picture. The velocities are depicted in the right 

figure. Automobile 2 depicted by dashed line slows down to adjust to the slow speed of 

the item ahead depicted by circle line in Figure 4.5, and car 1 (solid line) follows suit. 

 

  
Figure 4.5: Position versus time depicted by left graph and velocity versus time 

depicted by  right graph as two cars depicted by solid line and dashed line slows 

down for a slow moving object depicted by circle line. 
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CHAPTER 5   

Conclusion 

 

 

In this paper, we show how to use the Optimal Velocity Model to implement the fourth-order 

Runge-Kutta algorithm. The lead car's start conditions and base cases were specified and 

addressed. We further extended Kurata and Nagatani (2003)'s dynamics by imposing a small 

range of the leading automobile behaviours as well as a number of start and halt conditions.  

The performance of the fourth-order Runge-Kutta approach yielded digestory results for the 

Optimal Velocity Model since the traffic simulations accurately matched real life scenarios. This 

study gave a different approach the Range Kutta Method. 
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Appendix A  

Code Implementation  

 

 

Code for traffic model 

A.1 Code for the Traffic Model Equation 

The below 3 functions gives the optimal velocity model  

 

vdot : a * (Optimal Velocity Model) 

 

 
 

V : Equation 4.3- Optimal Velocity Equation 

 

 
 

xdot : gives the value for the velocity of the car. 
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A.2 Code for applying Runge Kutta method to one car and stopped object 

This program plots a graph of a car moving from zero to an object stopped at 20   
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A.3 Code for applying Runge Kutta method to clear road in front of the car  

This program plots a graph of a car starting from zero and approaching a far away object at 100. 
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A.4 Code for applying Runge Kutta method to an object moving at slow constangt speed is being 

followed by one car 

This program plots a graph of a car which starts at five approaching an object which starts at ten moves at 

a speed of two. 
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A.5 Code for applying Runge Kutta method to two cars and a stopped object  

This program plots a graph of two cars which starts at zero and five approaching an object which is 

stopped at 20. 
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A.6 Code for applying Runge Kutta method to two cars follows an object with slow constant speed  

This program plots a graph of cars which starts at zero and five approaches an object which starts at ten 

moving at a speed of three. 
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