
Android Malware Detection using
Machine Learning Techniques on

Low-Privileged Monitorable Features

A Major Project-II Progress Report

Submitted in partial fulfillment of
the requirements for the award of the degree

of
Master of Technology

in
Department of Computer Science and Engineering

by
Abhishek Shukla

(Roll No: 2K18/SWE/01)
under the guidance of

Dr. Divyashikha Sethia
Assistant Professor

Department of Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY, DELHI

OCTOBER, 2020

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi - 110042

CERTIFICATE

I certify that the Project Dissertation titled Android Malware Detection using
Machine Learning Techniques on Low-Privileged Monitorable Features which
is submitted by Abhishek Shukla (Roll number: 2K18/SWE/01), Department of Com-
puter Science Engineering, Delhi Technological University, Delhi in partial fulfilment of
the requirement for the award of the degree of Master of Technology, is a record of the
project work carried out by the student under my supervision. To the best of my knowl-
edge this work has not been submitted in part or full for any degree or diploma to this
university or elsewhere.

Place: Delhi
Date:

Dr. Divyashikha Sethia
Assistant Professor,
Department of Computer
Science and Engineering,
Delhi Technological
University

i

30/10/2020

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi - 110042

DECLARATION

I, Abhishek Shukla, Roll No. 2K18/SWE/01, student of M.Tech (Software Engineering),
hereby declare that the project report titled Android Malware Detection using Ma-
chine Learning Techniques on Low-Privileged Monitorable Features which is
submitted by me to the Department of Computer Science and Engineering, Delhi Tech-
nological University, Delhi in partial fulfilment of the requirement for the award of the
degree of Master of Technology, is original and not copied from any source without proper
citation. This work has not been submitted anywhere for the award of Degree, Diploma,
Fellowship or other similar title or recognition to the best of my knowledge.

Place: Delhi
Date:

Abhishek Shukla
Roll No. 2K18/SWE/01
Department of Computer
Science and Engineering,
Delhi Technological
University

ii

30/10/2020

ACKNOWLEDGEMENT

The success of a project requires help and contribution from numerous individuals and
the organization. Writing the report of this project work gives me an opportunity to
express my gratitude to everyone who has helped in shaping up the outcome of the
project. I express my heartfelt gratitude to my project guide Dr. Divyashikha Sethia,
Department of CSE for giving me the opportunity to do my project work under their
guidance. Their constant support and encouragement has made me realize that it is the
process of learning which weighs more than the end result. I thank my lab mates, without
whose contribution this project would not have been possible. I also reveal my thanks to
all my friends and my family for constant support.

iii

ABSTRACT

The Android platform became one of the most vulnerable targets for cyberattacks in
recent times due to a rapid surge in malware embedded apps. Researchers have inves-
tigated various machine learning techniques for Android malware detection but most of
these techniques are inefficient against the novel malware. The various problems like code
obfuscation, the requirement of device root privileges, simulated and small size datasets
pose serious flaws to the existing solutions. This work evaluates several machine learning
models for mitigating these issues using low-privileged monitorable features sampled in
the SherLock dataset. The findings of this research conclude that the XGBoost clas-
sifier is the most accurate in detecting the malware compared to other classifiers with
93% overall values of precision, recall, and accuracy. In terms of FNR values, which sig-
nify the undetected malware, the XGBoost classifier also performs better than the other
algorithms with values of 7.0%.

iv

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 3
1.3 Problem Statement . 4
1.4 Proposed Solution . 5

2 Literature Review 6
2.1 Android Platform Architecture . 6

2.1.1 The Linux Kernel . 6
2.1.2 Hardware Abstraction Layer . 7
2.1.3 Android Runtime . 7
2.1.4 Native C/C++ Libraries . 7
2.1.5 Java API Framework . 9
2.1.6 System Apps . 9

2.2 Dalvik Vertual Machine . 9
2.3 Android Application . 10

2.3.1 Components of Application . 10
2.4 Malware . 11
2.5 Device Monitoring . 11
2.6 Machine Learning Classifier . 12

2.6.1 Naive Bayes classifier . 12
2.6.2 K-nearest neighbour . 13
2.6.3 Decision Tree . 14
2.6.4 Random Forest . 15
2.6.5 XGBoost . 17

2.7 Data Analysis . 17
2.7.1 Data Preprocessing . 17
2.7.2 Data Analysis Phase . 19
2.7.3 Feature Selection . 19

2.8 Evaluation Metrics . 20

3 Related Works 22
3.1 Static Analysis . 22
3.2 Dynamic Analysis . 24
3.3 Android malware detection using low-privileged monitorable features . . 26
3.4 Limitation of Methods . 28

v

4 Methodology 29
4.1 Environmental configuration . 29
4.2 Dataset . 29
4.3 Feature Selection . 32
4.4 Machine Learning Classifications . 32
4.5 Evaluation Metrics . 33

5 Results 35

6 Conclusion and Future Work 39

vi

List of Figures

2.1 Android low level system architecture [1] 8
2.2 K-Nearest Neighbour [2] . 13
2.3 Decision Tree [3] . 14
2.4 Random Forest [4] . 16
2.5 Data integration . 18
2.6 Data Transformation . 18
2.7 Data Reduction . 18

4.1 Top 15 features obtained using Mutual Information Gain method 33

5.1 Measure of Accuracy, FNR, and FPR for all five classifiers 36
5.2 ROC curves for all five classifiers . 37
5.3 Precision-Recall curves for all five classifiers 38

vii

List of Tables

2.1 Confusion Matrix . 20

3.1 Overview of some of the works for Android malware detection. 27
3.2 Limitations of Related Work . 28

4.1 Files selected for use . 31

5.1 Comparison of the performance of classification algorithms 35
5.2 Results For Benign Applications . 37
5.3 Results For Malicious Applications . 38

viii

Chapter 1

Introduction

1.1 Overview

In recent times, smartphones turn out to be an indispensable part of human life as most
of the day to day life computation is shifting towards smartphones. The smartphones
are equipped with a variety of sensors to provide several applications to the end-users
and generates a huge amount of sensitive and confidential data. Android OS, due to its
open-source distribution, emerged as blazing popularity for smartphones in the last few
years. This predominant operating system platform has established itself not only in the
mobile world but also in the Internet of Things devices and turns out to be the most
common operating system for smartphones with a market share of 86.1% by the end of
2019 [5].

The widespread adoption as well as the huge explosion of Android applications and
contextually sensitive nature of smartphone devices has increased concerns over Android
malware as it is very harmful to both the user data and device. The increase in users of
Android smartphones has led to an increase in malicious applications that target mobile
devices. Criminals are seeking to manipulate vulnerabilities on people’s devices for their
benefits. Due to the wide-scale acceptability of Android devices, a plethora of Google
play store apps as well as third-party apps available for various applications to the end-
users, but this popularity also brings challenges in the form of malware embedded apps.
These malware-embedded apps aim to jeopardize the privacy and security of users by
permitting unauthorized access to sensitive and confidential resources.

Malware can be harmful to the users in many ways like it can steal private information
such as contact details, call details, message details. It may also harm the devices by
exploiting the mobile resources which may lead to starvation of resources for benign
apps. Similarly, spyware embedded internet browsing apps may keep an eye on internet
activities, network traffic details, and sometimes even spot misleading advertisements and
pop-ups within the web apps. Malware can also attack an android device by performing
a privilege escalation attack [6] by which an unauthorized person can gain control of the
phone via the backdoor. Furthermore, malware can perform other attacks like phishing
and ransomware as well as it can affect the device by draining the battery and infecting
the network interface card. So, there is a requirement of efficient security mechanisms for
malware detection in Android devices.

The Google Play store as well as various other third-party app stores, including the
app store provided by the smartphone manufacturers, provides an environment for the
hosting and distribution of the Android apps. But uploading the new apps on these app

1

stores is quite easy and lenient as there is no strict standardization and security check
mechanism for identifying the malicious apps. Google play store follows a very simple
security mechanism known as Bouncer [7]. It is a third-party program that continuously
scans the google play store repository for identifying malicious apps. However, this may
reduce the number of uploaded malicious apps but still, it fails to detect most of the
vulnerable apps uploaded on the play store. The other security mechanisms such as the
Android permission system, integrated with the Android OS, control the permission to
access the resources by giving the individual permissions to apps statically at the time
of installation. But the issue with the Android permission system is that almost all
the end-users blindly grant permission to apps during the installation. As a result, the
intent of the installed apps may not be recognized by the end-user and it may jeopardize
the privacy and security of the user by granting unauthorized access to sensitive and
confidential resources.

In the earlier time, when malware is posing serious security issues, researchers have
tried to apply the PC (personal computer) based security solutions to smartphones.
Botha et al. [8] have applied the security mechanism used for PC to smartphones and
claim that smartphones fail to perform well with these methods due to extensive resource
utilization. Hence there is an an increasing need for sophisticated, advanced, robust,
and automated malware detection systems to detect malicious applications. Machine
learning methods are very recent and well-established techniques for malware detection
on the Android platform. Researchers have extensively classified the study of Android
malware detection using machine learning techniques into two ways, static and dynamic
analysis based on the features set acquired from the apps [9].

Static analysis refers to malware analysis before run-time execution by analysing the
malware installation packages. Static investigation gathers set of features from applica-
tions by dismantling them using reverse engineering [10] without the run time execution.
The features such as permissions set, APIs, application components, filtered intents, op-
codes, and strings used by the apps are extracted by dismantling and parsing the instal-
lation.apk and AndroidManifest.xml files. [11]. The reasonable resource requirement and
less time consuming make the static analysis best suited for devices having low memory
and less processing capacity. The downside of the static analysis is that it can’t avoid the
code obfuscation [12] [13], as well as it can’t detect the injection of non-Java code, net-
work activity, and the modification of objects at run-time as they are only visible during
execution [14]. A major drawback of static analysis is that most of the work for malware
detection is based on analysis in virtual environments, like analysing on PC, rather than
analysing on real mobile devices. Also there is an increasing surge in malware that uses
strategies to prevent detection in virtual environments, making analytical approaches in
virtual environments less effective than those approaches focused on real devices.

Whereas dynamic analysis refers to malware analysis during run-time, i.e. during
execution of the application, and the malicious application is identified using the features
based on system calls, memory usage, network connections, power intake, as well as
individual’s interaction with the user interface (UI). An open-source tool, called DroidBox
[15], can be used to extract these features from the apps on emulated environments. As
compared to static analysis, dynamic analysis is very effective against the code obfuscation
but still, it is suffered from the problem of ant-virtualization [16], [17], code coverage
constraints [18], [14], and device root privileges. Device root privileges require some
adjustments to the kernel of codes which may lead the security architectures of operating
systems to lose their efficacy [19].

2

Some other techniques like hybrid analysis combine both the static and dynamic anal-
ysis to mitigate each other’s limitations but still, it is not effective in terms of performance
overhead, decrease transparency, increase chances of code bugs, and maybe less portabil-
ity [14]. So because of these unrealistic demerits, most research works does not provide
a realistic assessment and performance to their detection methods.

So to overcome the limitations of Static and Dynamic analysis, researchers have
proposed the machine learning approach to malware detection using device-based low-
privileged monitorable features. Shabtai et al. [20] have utilized Logistic Regression,
Naive Bayes, and Decision Tree with various low-privileged monitorable features but the
results of this method are not effective to a large extent due to small training dataset.
Memon et al. [21] have also worked with low-privileged monitorable features and uti-
lized various algorithms like Decision Tree, Random Forest, Support Vector Machines,
Gradient Boosting etc. but their results show a high false positive rate (FPR) and low
accuracy. Wassermann et al. [22] have also used low privileged monitorable features for
malware detection and obtains a good classification accuracy using the Decision Tree,
but it may suffer from the overfitting of data in the training phase.

To mitigate the limitations of the above approach, in this research we applied a ma-
chine learning approach to malware detection using the SherLock dataset [23] which is a
labeled dataset consist of device-based low-privileged monitorable features. We employed
the Mutual Information gain method for feature selection and utilized Random Forest [24]
and XGBoost classifier [25] for avoiding the overfitting of data in the training phase. Our
experiment shows very effective results compared to the above methods in terms of low
FNR and FPR values with high accuracy and recall rate. Our work compares the per-
formance of various machine learning techniques on the features sampled from real-time
sensors. The Ben-Gurion University provides a significant smartphone data known as
Sherlock dataset [23], which contains the malware related data and global device data
from 47 users since 2016. Malware related data provides logs of actions taken by various
malicious applications and record the hidden malicious activities performed by them. The
global device data are the system metric logs, like usage of the CPU, usage of memory
and usage of batteries etc. Monitoring the device metrics does not need any changes like
rooting the android devices, i.e. changing the Operating system to allow the monitor-
ing at kernel level. In this work we develop a malware detection methods for unrooted
android devices, as more than 95 percent of android devices are unrooted, and train the
following classifiers for malware detection purpose: i) Naive Bayes, ii) K-nearest neigh-
bor, iii) Decision Tree, iv) Random Forest and v) XGBoost. The classifiers are trained
to determine whether an application is performing benign or malicious activities on the
phones, provided the system metrics of a phone at a given moment.

1.2 Motivation

The popularity of smartphones and other types of mobile devices such as tablets has risen
considerably in the past several years. The large quantity and variety of mobile appli-
cations and the increased functionality of the mobile devices themselves accompany this
fact. Android OS emerged as a blazing popularity since the last few years for smartphones
and tablets with an estimated market share of 86.1% [5].

As a side effect of this blazing popularity of android operating system, centralized
marketplaces like Google Play have evolved exponentially. Such marketplaces allow de-

3

velopers to conveniently upload their own apps and users can download those apps directly
to their mobile devices from app store. In addition to official platform vendors markets
like Google manufacturers like Samsung and HTC, a large number of unofficial third
party marketplaces also available. Most of these marketplace have thousands of apps,
and million of these apps are downloaded monthly. This rapid growth rate of android
application comes at a cost. Attackers have realized that to perform cyber attacks on
smartphones, rogue and malicious apps can be used and hence smartphone malware has
become popular in the recent past. The open design of Android allows users to install
applications from the third party vendor that do not necessarily available on Google Play
Store. With over 1 million apps available for download from the official Google store,
and probably another million scattered across third-party app stores, we can estimate
that more than 20,000 new apps are launched each month. This requires that malware
researchers and store managers have access to a scalable solution to quickly analyze new
apps and identify malicious applications and isolate them. A large amount of research has
been going on Android malware detection, but none of them provide a viable solution to
acquire a thorough understanding of unknown applications. Most of these work is based
on the System call analysis and tracking of only specific API invocations. These specific
malware detection methods need rooting of devices and need change in kernel level code.
So there is requirement of a sophisticated malware detection system which works with
low privileged monitorable features on unrooted devices.

1.3 Problem Statement

The Android system popularity has resulted in a significant increase in the spread of
Android malware, as discussed in section 1.1. This shows Android malware development
over 2014. These malware is mainly distributed and managed by third-party markets,
but even Google’s Android Market can not guarantee that all of its listed applications
are free of threats. Examples of Android malware include phishing applications,banking
Trojan, spyware, bots, root exploits, SMS scams, and fake installers. There are Trojan
apps that download their malicious code after installation so that Google technology can
not easily detect those apps when they are published on the Google Android Market.

Most malware detection strategies are based on conventional content signature driven
techniques, using a list of signature malware definition and comparing each application
to the known signature database for malware. The downside of this method is that users
are only protected from malware detected by the most recent updated signatures, but
are not protected from the new malware. So the efficiency of this method is based on the
exposure of database to new malware signatures. The earlier studies of malicious pat-
terns concluded that signature-based approaches never keep up with the speed at which
malware is created and evolved. The other security mechanisms such as the Android
permission system, integrated with the Android OS, control the permission to access the
resources by giving the individual permissions to apps statically at the time of installa-
tion. But the issue with the Android permission system is that almost all the end-users
blindly grant permission to apps during the installation. As a result, the intent of the
installed apps may not be recognized by the end-user and it may jeopardize the privacy
and security of the user by granting unauthorized access to sensitive and confidential
resources.

4

1.4 Proposed Solution

One of the solution to this problem is to utilize the power of Machine Learning tech-
niques on phone sensor data set. In this work, our aim is to identify a machine learning
solution to Android malware detection based on the low privileged sensor data. The
proposed solution aims to provide a practical solution to android malware by avoiding
the device root privileges requirement and offers the resistance against code obfuscation,
anti virtualization and, code coverage constraints. In this work, we utilize the Mutual
Information gain method for feature selection and employed various classifiers like Naive
Bayes, K-nearest neighbor, Decision Tree, Random Forest and XGBoost. We carried out
our work in following steps maintained as follows.

• Pre-process the existing sensor data (In this work Sherlock Data set [23] is used).

• Implement Classification model.

• Classify new set of Data and evaluates the model.

5

Chapter 2

Literature Review

It’s important to understand the architecture of Android operating system and working of
Android applications before discussing the details of this research work. Along with this,
there is a detail discussion on the machine learning techniques used, data pre-processing
techniques, and evaluation metrics utilized to inspect the classification model. In this
chapter a brief introduction to the Android architecture, malware family and different
types of malware attacks is given. In section 2.1 a high-level overview of the Android
system architecture is given. It briefly discusses the architecture and different component
layers of android system. Section 2.2 deals with the virtual machine that is responsible
for operating the Android applications. Section 2.3 discuss key modules used in Android
apps. This section discusses activities, services, recipients and attempts, the building
blocks of Android applications. Finally, section 2.4 discuss briefly about different types
of Android malware and malware acts on the the Android platform. Section 2.5 provides
the detail about the features obtained from Android devices and Android applications.
Further, section 2.6 discusses the different machine learning techniques used in this work.
Section 2.7 and 2.8 discusses about the data analysis and evaluation metrics respectively.

2.1 Android Platform Architecture

Android is an open source software platform based on Linux, built for a wide range
of devices and form factors. The key components of Android platform is shown in be-
low diagram. In this figure, violets items are modules written in native machine code
(C/C++), while green items are modules interpreted and executed by the Dalvik Virtual
Machine(DVM). The bottom red layer contains the components of the Linux kernel and
executes in kernel space. Using a bottom-up approach, we address briefly the different
abstraction layers in the following subsections.

2.1.1 The Linux Kernel

The Android platform is based on the Linux kernel. The Android Run time (ART),for
example, depends on the Linux kernel for basic functionalities including multi threading
and low-level memory management. Linux kernel helps Android to take advantage of core
security features and encourages handset makers to build hardware drivers for well-known
kernel. Android uses a sophisticated version with some special additions to the Linux
Kernel. These includes wake-locks, memory protection scheme that is more proactive in

6

saving memory, the Binder IPC driver, and other functionality that are essential for a
mobile embedded platform such as Android.

2.1.2 Hardware Abstraction Layer

The Hardware abstraction layer primarily offers standard interfaces that present the
functionality of device hardware to high level Java API platform. The HAL consists of
several library modules, each of which implements an interface for a particular type of
hardware item, such as the camera or the bluetooth module. The Android system loads
the library package for that hardware unit when a Framework API makes a call for device
hardware to access.

2.1.3 Android Runtime

The Android Runtime is a middleware component consists of the Dalvik Virtual Ma-
chine(DVM or DalvikVM) and a collection of core libraries. Dalvik VM is accountable for
executing applications developed using the Java programming language. For devices that
run Android version 5.0 (API level 21) or above, each application runs its own Android
Runtime (ART) instance with its own process. ART is compiled to run multiple virtual
machines on low-memory phones by executing DEX files, a Bytecode format specifically
designed for Android that is optimized for minimal memory requirement. Android have
two different types of main libraries.

1. Dalvik Virtual Machine specific libraries

2. Java programming language interoperability libraries

The first set allows specific VM information to be processed or modified, and is used
primarily when byte code needs to be loaded into memory. The second set provides Java
programmers with the common environment, which comes from Apaches modules. It
implements most of the Java common packages like java.lang and java.util. Some of the
key features of Android Run Time include the following:

• Ahead-of-time (AOT) and just-in-time (JIT) compilation

• Optimized garbage collection (GC)

• Better debugging support with a dedicated sampling profiler, detailed diagnostic
exceptions and crash reporting

2.1.4 Native C/C++ Libraries

Many core components and services of the Android system, such as ART and HAL,
are developed from native code, which require native libraries written in C and C++
language. Mostly these are external libraries with only slight improvements such as
OpenSSL, WebKit and bzip2. The Android platform provides Java framework APIs
to expose applications to some of those native libraries’ functionality.You can use the
Android NDK to use any of these native application libraries directly from your native
code if you are creating an app that requires C or C++ code.

7

Figure 2.1: Android low level system architecture [1]

8

2.1.5 Java API Framework

The entire Android OS feature set is available to you via Java-written APIs. These APIs
comprise the building blocks that you need to develop Android apps by simplifying the
re-usability of core, modular framework components, and services. Some modules han-
dle simple phone functions such as accepting phone calls or text messages or controlling
power consumption. A few things need a little more consideration.

1. Activity Manager: If the device is running out of memory it is liable for terminat-
ing background processes. This also has the ability to detect unresponsive applications
when it fails to respond within 5 seconds to an input event (such as a key press or a
screen touch). This then triggers the Not Responding Request message.

2. Content Provider: Content Providers are one of Android’s main building blocks.
They are used for data exchange between different applications and components. For
example, since contact list data required to be accessed by various application and thus
must be stored in a content provider.

3. Telephony Manager: The Telephony Manager conveys information about the
telephony resources, such as the unique user identification (IMEI) of the handset or the
actual cell location. This is also accountable for managing phone calls.

4. Location Manager: The Location Manager provides access to system location
services that enable applications to regularly update the geographical location of the
device using the GPS sensor of the devices.

2.1.6 System Apps

Applications or integrated on top of the Application Framework and are responsible for
the interfacing between end-users and the device. Android comes with a collection of core
apps like email application, Text message, calendars, browser for online surfing, contact
list and many more. Apps installed with the platform have no special privilege among
the other installed apps which the user chooses. And so a third-party app can be the
default web browser, SMS messenger or even the default keyboard for the user with some
exceptions will be there such as the system Settings application etc.

2.2 Dalvik Vertual Machine

Usually, Java source code is compiled and transmitted as Java byte code and is interpreted
and executed by a Virtual Machine (VM) at run time. But Google has decided to use a
different byte code and Virtual Machine format called Dalvik for Android platform. Java
byte code is converted to Dalvik byte code during the compilation process of Android ap-
plications which can later be executed by the specially designed Dalvik Virtual Machine.
The bytecode that the DVM interprets is so-called DEX bytecode (Dalvik EXecutable
code). DEXcode is obtained using the dx tool on converting the Java bytecode.

9

2.3 Android Application

Mobile apps are delivered as APK files. APK files are signed ZIP files that comprises
the byte code of the application along with all its data, tools, third-party libraries and
a manifest file describing the detail functionality of the application. Permissions for files
in an application are then registered so that only the application itself can able to access
them. In addition, every program is given its own Virtual Machine when it is started
which ensures code is segregated from other applications

2.3.1 Components of Application

We now discuss a number of core components of the framework which is used to create
Android applications.

Activities

An activity stands for a single screen with a specific user interface. Apps are likely to have
more than one activity numbers each with a different purpose and activity interlinked
with each other. Each activity is independent of the others and can be started by other
applications too if permitted by the app. For example, a music player could have one
activity showing a list of available albums and another activity showing the song being
played with buttons, to pause, enable shuffling, or quickly forwarding.

Services

Services are elements running in the background for long running operations and do not
provides a user interface. For example, the music streaming app will have a music service
that is responsible for playing background music whilst the user is interacting with other
application. Other components of the app like an activity or a broadcast receiver can
initiate services.

Content providers

Content providers are used for data sharing across multiple applications. They manage
shareable set of data among different applications. For example, contact data is kept in
a content provider so that it can be queried by other applications when necessary.

Broadcast receiver

A broadcast receiver listen and respond to specific system broadcast announcements.
Broadcast receivers have no graphical user interface and are often used to act as entry
point to other components. For example, they may invoke a background services to do
some function based on occurrence of a specific event.

10

2.4 Malware

The term malware represents a contraction of malicious software. In simple terms mal-
ware is any piece of software that was written to damage devices, leak information and
generally cause mess. Viruses, trojans, spyware, and ransomware are among the most
common malware styles. In this section, we take a closer look at the characteristics of
mobile malware and discuss how it is distributed.

Types of Malware

• Virus: Viruses as like their biological namesakes, attach themselves to clean files and
infect other clean files. They canbe spread in uncontrolled way and can damage the core
functionality of the system and can make changes,delete or corrupt files. Commonly they
come as an executable file.

• Trojan: This kind of malware masks itself as legitimate software, or is concealed
in legitimate software that has been compromised. It begins to act discreetly and create
security holes to let other malware in, in your security.

• Spyware: spyware is malware intended for spying on you. It resides in the back-
ground and keep eyes on about what you are doing online, including your passwords,
credit card numbers, browsing activities, and more.

• Worms: Worms attack whole computer networks using network interfaces, either
locally or over the internet. It uses each computer that has been infected consecutively
to infect others.

• Ransomware: Typically this kind of malware locks down your mobile device and
files, and jeopardizes to erase everything unless you pay a ransom.

• Adware: Although not always malicious in nature, intensive advertising software
can bolster your security just to serve you ads — which can provide an easy way in for
other malware.

• Botnet: Botnets are used to infect the networks of machine, which are made to
work together under an attacker’s control.

2.5 Device Monitoring

Device monitoring is described as the analysis and monitoring of the features by the
detection method to identify the behaviour of the system is malicious or not. The device
can be monitored in different ways depending on the types of the features used by mobile
malware detection method. The features can be act as the input to the malware detection
method. Features could be categorized into three categories:

• Hardware Features

• Software Features

11

• Firmware Features

Hardware features are features that can be tracked and are device-specific, such as
battery storage, Processor and memory utilization. Software features are functions which
can be tracked during program execution or by analysis of software package such as
permissions and network traffic. Firmware features are features from programs that
use read-only memory. Most firmware features require the Android OS to have rooting
privileges.

2.6 Machine Learning Classifier

Machine learning is the quintessential skill of this digital age. As we dissect the process
how a machine learns to classify and the inputs or the raw materials needed for learning
the specifics of the desired task, features or attributes forms the basis of what we feed in
the learning algorithm. In the task of android malware detection machine learning plays
an important role. There might be many techniques available to do such task. We will
discuss various methods that can be used to achieve such task.

2.6.1 Naive Bayes classifier

Näıve Bayes (NB) is classification techniques based on statistic, which uses the Bayes
theorem to determine the probability of a given sample point that belongs to a certain
class. The Bayes theorem calculates the likelihood of a hypothesis H being true given
that some evidence e, according to the below given formula.

P (c/x) =
P (c) ∗ P (x/c)

P (x)

P (c/x) = P (x1/c) ∗ P (x2/c) ∗P (xn/c)

where,

P(c) denotes the prior probability of class (c)

P(x) denotes the prior probability of predictor

P(x/c) denotes the posterior probability of predictor (x) given class (c)

P(c/x) denotes the posterior probability of class (c) given predictor (x) attributes

The classification model is called naive because it implies conditional independence, try-
ing to make it less computationally expensive to compute the above formula, particularly
for data sets with several features. While Naive Bayes implies conditional independence,
still it performs well in those mathematical perspective where conditional independence
is violated. Naive Bayes classifier is advantageous as it fast, simplistic and mature al-
gorithm, insensitive to irrelevant feature data and a disadvantage is that it requires the
assumption that features are independent.

12

2.6.2 K-nearest neighbour

K-nearest neighbour is a distance based classification technique in which new data points
are classified by looking at their k- number of neighbours. The new data point is being
associated to the class which has majority among the entire k neighbours. Thus decision
boundary of majority class is improved by some margin. This process continues till all
the points are being classified. KNN has been used in statistical estimation and pattern
recognition already in the beginning of 1970’s as a non-parametric technique.

Figure 2.2: K-Nearest Neighbour [2]

Algorithm

A class is classified by a majority support of its neighbours. The class being assigned to
the most common amongst its K nearest neighbours measured by a distance function.
There are three distance metrics used for calculating the neighbouring distance.

• Euclidean

• Manhattan

• Minkowski

Eucledian Distance :The Euclidean distance of two points p and q in n-dimensional system
is given by

d (p, q) =

√√√√ n∑
i=1

(qi − pi)
2

13

Manhatan Distance: The manhattan distance between two points is defined as:

d(M,P) ≡ |Mx − Px|+ |My − Py|

Minkowski Distance: The Minkowski distance between two variabes X and Y is defined
as

d (X, Y) = (
n∑

i=1

|Xi − Yi|p)1/p

such as, when p = 1 it represents Manhattan distance and when p = 2 it represents
Euclidean distance. As p is a real value it may attain any value but normally it sets to
a value from 1 to 2. The above theorem does not determines a valid distance metric for
values of p less than 1, as it violate the triangle inequality.

2.6.3 Decision Tree

A decision tree is a non-parametric supervised model constructed using the recursive
instance space partition method. It is a tree-like graph having internal nodes representing
an attribute with rules, edges are the responses to the rules, and the leaves represent the
class label. The model is constructed by learning the simple decision rules derived from
the data features and can be used for both classification and regression purposes. Since
these decision rules are mostly in the form of if-then-else statements so, the deeper the
tree, the more complicated the rules would be and thus provides the best-fit model.

Figure 2.3: Decision Tree [3]

14

Algorithm

The baseline algorithm used in the decision trees is known as the ID3 algorithm that
generates a decision tree by using the greedy, top-down strategy. Briefly, the algorithm
steps are:-

• Pick the best attribute ”A” from the initial dataset.

• Allocate A as the decision attribute for the NODE.

• Produces a new descendant of the NODE for each value of ”A”.

• Arrange the training instances to the descendant leaf node.

• If the instances are correctly defined, then STOP else iterate over the new leaf
nodes.

The most important thing in the decision tree algorithm is choosing the best attribute
in every iteration. For the ID3 algorithm, the best attribute is that which has the most
information gain, which is a metric that reflects how well an attribute separates the data
into classification classes and can be expressed as follows in terms of entropy.

InformationGain = 1− Entropy (1)

Where, the entropy can be calculated using:

Entropy = −
∑
x∈X

pi log2 pi (2)

where, pi= Probability of classi.

Entropy is utilised to measure the purity of node such as lower entropy value signifies
higher node purity. The Entropy of the Homogeneous node is zero hence its Information
Gain is maximum equal to 1 as evident from the above equations.

2.6.4 Random Forest

Random forest is a tree-based algorithm composed of several decision trees and their
performance is combined to boost the generalisation ability of the model. The ways of
combining the trees are known as ensembling which is defined as combining the weak
learners (individual trees) to build a strong learner. Random Forest can be utilized to
solve the problem of regression and classification. In regression problems the dependent
variable is constant whereas in classification problems the dependent variable is categori-
cal. Random forest employ bootstrapping with decision tree models in attempts to create
several decision tree models with resampled dataset and initial variables to reduce the
variance and improves the generalization capability of model. This process is repeated
several times before making final predictions on each observation and final prediction is
the function of each prediction such that it can simply be the mean of each outcomes.

15

Figure 2.4: Random Forest [4]

Algorithm

The basic steps followed in Random Forest algorithm is briefly explained below.

• The first step is to generates a random samples using the Bagging (Bootstrap Ag-
gregating) algorithm. Suppose we have a dataset D1 having n rows and p columns,
a new dataset (D2) is generated by randomly sampling n cases with replacement
from the original data such that 1/3 of the rows from D1 are left out, known as
Out of Bag (OOB) sample.

• In second step the models are trained using D2 dataset and utilized the OOB sample
for determining unbiased estimate of the error.

• Now for constructing the tree, at each node P columns out of p columns, such that
P<< p, are randomly selected. The default choice of P is p/3 for regression and
sqrt(p) for classification tree.

• Unlike decision tree, no pruning occurs in a random forest and every tree is gen-
erated completely. The pruning is a method for preventing overfitting in decision
trees by selecting a subtree which results in the lowest rate of error testing. Cross-
validation can be used to evaluate the test error rate for a subtree.

• Bootstrapping is employed to grow several decision tree models and final prediction
is obtained by averaging or voting the output of every decision tree model.

16

2.6.5 XGBoost

XGBoost is nowadays the most popular machine learning algorithms to provide better
solutions than other well-known ML algorithms for the problem of regression or classifi-
cation regardless of the form of data. It is an ensemble learning method that provides
a comprehensive approach for integrating the predictive power of multiple learners and
results in a single model that generates aggregated output from several models. The
models that constitute the ensemble method could be either from the same learning algo-
rithms or from different learning algorithms and these models are known as base learners.
Bagging and boosting are two common approaches to ensemble learners and can be used
with several mathematical models, but the most commonly utilized with decision trees.
For certain algorithms like decision trees including Classification and Regression Trees
(CART) that have a high variance, bagging (bootstrap aggregation) is a common method
to reduce the variance. The decision trees are very prone to the training data used as
the resulting decision tree will be quite different if the training data is resampled with
different sizes and different initial variables and so the predictions can be quite different
in turn also. Bagging is the extension of the Bootstrap technique to, a high-variance
machine learning algorithms, usually a decision trees. When the bagging is applied with
the decision trees, the concern of overfitting the training data with the individual trees
is not considered and hence the individual decision trees are allowed to grow deeper and
the pruning of trees is avoided. The boosting is a process in which trees are created
sequentially so that each of the corresponding trees attempts to reduce the errors asso-
ciated with the previous trees. Each tree improves to its counterparts and the residual
errors are updated. Therefore the tree that evolves next in the series will improve from a
modified version of the residual. The base learners involve in boosting are weak learners
with high bias and better predictive power. Each of these weak learners adds some crucial
predictive knowledge and allows the boosting technique to effectively combine these weak
learners to create a strong learner which takes down both bias and variance.

2.7 Data Analysis

Data analysis is the application of statistical process for examining, filtering, transform-
ing and modelling of data in order to uncover valuable knowledge, to draw insights and
facilitate decision-making. Data collection and analysis have several nuances and ap-
proaches which covers a vast application in various areas of business, science and social
science.

2.7.1 Data Preprocessing

This is the very basic step in modeling any machine learning model as in this phase the
data is converted into a format that can be processed easily and effectively. That is done
by cleaning dirty data for improving the quality of data. Various types of preprocessing
techniques are as follows:-

• Data cleaning

Redundancy is removed, missing values are handled and inconsistency is taken care of.

17

• Data Integration

Combining related data together to form a single dataset is called Data Integration.
Usually different type of datas are stored in different dataware house. So at the time of
processing we need to integrate the data.

Figure 2.5: Data integration

• Data Transformation

Transforming data into usable form or into another from for normalizing it with respect
to other attributes.

Figure 2.6: Data Transformation

• Data Reduction

Removing unnecessary data from the dataset or by reducing the feature set and reducing
the dimensionality.

Figure 2.7: Data Reduction

18

2.7.2 Data Analysis Phase

This phase refers to identification of techniques to be used, irregularities in the data are
identified and feature set are selected which are most crucial in decision making

• Selection of methods

In this step, out of so many techniques available, a most suitable technique is identified
and data irregularities are identified on the basis of which classification is to be made.

• Identification of decision making features

In this step out of many features only those crucial features which are useful for designing
the model are selected.

• Declaration of rules and conditions for selected methodology

In this step rules are recognized and declared on the basis of which decision making is to
be done.

2.7.3 Feature Selection

Information Gain method

Feature selection is performed to get rid of the insignificant and repetitive information
present in the dataset. It reduces the dimension of the dataset to avoid overfitting of data
hence improves the accuracy and reduces the complexity and running time of the model.
The mutual information between the discrete random feature variable X={x1, x2, ..., xk}
and discrete random target variable Y={ y1, y2, ..., yd} is expressed as:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) · log
p(x, y)

p(x) · p(y)
(1)

The mutual information I(X;Y) can quantify any kind of relation between variables and
if its value is large, it means two variables are closely else they are not closely related.
The value of mutual information can not be negative, if its value is zero it means two
variables are independent of each other.

The mutual information I(X;Y) is also related to entropy (H) and can be equivalently
expressed as:

I(X;Y) = H(X)−H(X|Y) (2)

where H(X) is the entropy of feature X and H(X|Y) is the conditional entropy of X when
Y is introduced. The entropy of feature variable X can be calculated using:

H(X) = −
∑
x∈X

p(x) log p(x) (3)

where p(x) is the mass probability function for the random variable X. Similarly, the
conditional entropy of X against Y can be calculated as:

H(X|Y) = −
∑
x∈X

∑
y∈Y

p(x|y) log p(x|y) (4)

where p(x|y) is the conditional probability of x against y. So from the above equations, we
conclude that reduction in entropy of feature X will enhance the significance of feature.

19

Wrapper and Embedded method

Feature selection is performed to get rid of the insignificant and repetitive information
present in dataset. It reduces the dimension of dataset to avoid over-fitting of data hence
improves the accuracy and reduces the complexity and running time of the model. We use
the Recursive Feature Elimination (RFE) method and regularization algorithm like Select
From Model to find out the importance of every features and further these features are
used to train the classification model. In Recursive Feature Elimination method greedy
search approach is followed to find out the set of features which have effective performance
with the specified ML algorithms. Whereas in Select From model there is in built feature
selection method associated with ML algorithms.

2.8 Evaluation Metrics

Evaluation metrics are used to evaluate the classification modeladjustbox. There are
various evaluation metrics used to inspect the classification model like confusion matrix,
cross-validation, AUC - ROC (receiver operating characteristic) curve, and Precision -
Recall curve. These metrics help to evaluate the effectiveness of model depending on the
requirement of problems.

Confusion Matrix

This matrix gives information about actual and predicted class and used for the perfor-
mance evaluation of the supervised machine learning models. The confusion matrix is
shown in table 2.1 which has four cells names as TP (True Positive), TN (True Nega-
tive), FP (False Positive), and FN (False Negative) where true cases determines number
of correct predictions and false cases are wrong predictions. There are some standard
terms derived from the confusion matrix which acts as performance evaluation metrics
for any model which are stated as follows.

Predicted Class
Malicious Benign

Actual
Class

Malicious
True Positive

(TP)
False Negative

(FN)

Benign
False Positive

(FP)
True Negative

(TN)

Table 2.1: Confusion Matrix

• The recall or true positive rate (TPR) is defined as

Recall =
TP

TP+FN

• The false positive rate (FPR) is defined as

FPR =
FP

TN+FP

20

• The false negative rate (FNR) is defined as

FNR =
FN

TP+FN

• The accuracy is defined as

Accuracy =
TP+TN

TP+TN+FP+FN

• The precision is defined as

Precision =
TP

TP+FP

• The F1-score is defined as

F1− score = 2∗ Recall*Precision

Recall+Precision

Receiver Operating Characteristic curve

To compare the detection performance of classifiers, the receiver operating characteristic
(ROC) curve is utilized which a plot between TPR and FPR for different thresholds of the
detection methods. The AUC (area under the curve) value of ROC curves gives the sense
of how effectively the data can be separated by the classification model. It represents
the total area under the ROC curve and its value closer to 1 implies better classification.
So, the value of AUC closer to 1 indicates better classification power of that particular
model.

Precision-Recall curve

Precision-Recall curve is a plot between precision and recall for different thresholds of
the detection methods. This plot used to represents the tradeoff between precision and
recall such as high AUC (area under the curve) value of Precision-Recall curve shows
high precision (low false positive rate) and high recall (low false negative rate).

21

Chapter 3

Related Works

In this chapter, we discussed relevant research work done on android malware detection
using machine learning techniques. The literature contains various methods which adapt
different strategies to detect malware applications. Basically most of the android malware
detection work can be grouped in two categories, static analysis and dynamic analysis.
Both approaches have their advantages and disadvantages as Static analysis is unrealistic
and vulnerable to obfuscation where as dynamic analysis is generally faster as compared to
static analysis and less resource intensive but requires change in kernel of the operating
system. Some other methods combine static and dynamic analysis, known as hybrid
analysis, to improve detection accuracy. Along with this, there are some new approaches
to malware detection using device-based low monitorable features. Below, we give a quick
review of existing approaches that belong to these categories. In this segment, we also
address the work done using the identification of behavioral and signature based malware.

3.1 Static Analysis

One of the significant techniques for analysing the malware is through static analysis
that performs detection of malware applications before installing or before running on
the devices. Static analysis gathers set of features from applications by unpacking and
dismantling them without installing and executing on device. The static analysis based
features are extracted from the installation.apk files and parsing the classes.dex and An-
droidManifest.xml files. This provides the permission set required and API call sequence
used by the application. It is useful with respect to less computational expense, low asset
usage, light-weights and less time expending in nature. The static examination can be
utilized on gadgets which are low in memory and less power consuming in nature. Recent
work on Android malware detection which uses machine learning techniques with static
features are discussed as follows.

Chin et al. [26] proposed a method called Comdroid which is used for detecting the
malicious application using communication based vulnerabilities in Android. In addition
to an open API, the Android operating system also features a rich inter application
message passing system for transferring messages between applications. This promotes
cooperation between applications and reduces the burden on developers by encouraging
reuse of the components. Unfortunately, the passing of message is also the subject of an
application attack. So Comdroid utilize this concept and analyze the interaction between
Android application and determine Security threats in application modules.

Wei et al. [27] suggested a techniques called ProfileDroid which is a multilayer pro-

22

cessing method for monitoring and evaluating the application. This approach inspect the
applications at four layers: The first one is at level of static analysis or app configuration,
the second one is at level of user interaction, the third one is at the level of operating
system, and the last one is at network level.

Guivarch et al. [28] have suggested a method called DroidMat which apply k-means
and k-nearest neighbor (KNN) clustering algorithms on the features obtained using static
analysis to identify the apps as malicious or not. This method considers the static details,
such as app permission, deployment of different components, intent messages, and API
calls for characterization of the Android apps.

Arp et al. [29] have proposed a model for the lightweight system which uses the
Support Vector Machine (SVM) model on the features based on network information and
API calls. This approach is very reliable in detecting various families of malware with
an accuracy of 93% at a FPR of 1%, but it fails to detect that malware which shows the
reflection and byte-code encryption

Yerima et al. [30] have applied the Random Forest ensemble learning approach to the
features based on API calls, embedded commands, and permissions set. This approach
achieved an accuracy of 97.6% with a true positive rate (TPR) of 97.3% and a false
positive rate of 2.3% but it is exposed to the problem of code obfuscation and zero-day
malware attacks.

Varsha et al. [31] have employed various algorithms like the Rotational Forest, SVM,
and Random Forest with static features such as permissions, application components,
filtered intents, opcodes, and strings extracted from executable and manifest files. The
author reported a respective accuracy of almost 97% and 99% using Random Forest, on
the features selected using Entropy-based Category Coverage Difference (ECCD) method
and Weighted Mutual Information (WI) method but still, it is vulnerable to code obfus-
cation and zero-day attacks.

Fan et al. [32] have employed various algorithms like Decision Tree, Random Forest,
PART, and KNN to detect the piggybacked apps using the features constructed from
sensitive subgraph (SSG) and concluded that Random Forest achieves best results with a
TPR of 95% at an FPR of 0.7%. The downside of this approach is a small size imbalanced
dataset and problem of code obfuscation techniques, such as encryption and refection.

Wang et al. [33] have applied various algorithms like Logistic Regression, Decision
Tree, Random Forest, and Linear SVM on the features generated using static analysis
and concluded that Logistic Regression yields the best performance with the TPR of 96%
at FPR of 0.06%. This method uses a small size dataset so that it covers only limited
malware attacks and shows inefficiency against the code obfuscation and zero-day attacks.

Xu et al. [34] have utilized the Long Short Term Memory (LSTM) network on au-
tomatically extracted features from XML files and bytecode and reported accuracy of
97.74% with a true positive rate of 97.96% and a false positive rate of 2.54%. Although
this method is very effective against code obfuscation but still, it shows some limitations
against the obfuscated malicious apps generated by Call Indirection.

Zhu et al. [35] have applied Ensemble Rotation Forest with permission set, sensitive
APIs, system events, and permission-rate as input features and found an accuracy of
88.26% at the TPR of 88.40% with the precision of 88.16%.

DAPASA [32] aimed at detecting piggybacked malware on benign apps by using sen-
sitive subgraphs to create five characteristics features invocation patterns. The features
are then fed into machine learning algorithms like Random Forest, Decision Tree, k -NN,
and PART and the best detection performance is observed with random forests.

23

Sharma et al. [36] used API calls and permissions for the development of malware detec-
tion schemes based on Naive Bayes and k-NN. Similarly, Cerbo et al. [37] has proposed
a method to utilize the android permissions present in manifest file as features set to
identify malicious applications. Other approaches, such as suggested by Hao et al. [38]
performs static analysis to leverage the information embedded in byte code of application
for predicting its behaviour.

Most of the Android malware static-analysis research primarily uses features such
as md5 hash, signature, data flows, permissions, API (Application Programming Inter-
face) calls extracted from manifest file of android application. These features lack the
understanding of APK code organizations and object hierarchy, and therefore may be
inadequate in detecting and forecasting the behaviors and maliciousness of an android
applications.

Li et al. [39] have suggested a static analysis method based on Characteristic Tree
and sought to apply a fresh approach to characterization of the API used for Android
application at different levels of resolutions including packages, classes, functions and
interface. A tree structure called ”Characteristic Tree” is used to store certain knowledge
about the use of APIs on various layers of tree structure and a comparison algorithm is
developed to calculate the similarity of characteristic tree. This new detection process
gives more rigorous insights into classifying and detecting Android malware of different
kinds and code families.

3.2 Dynamic Analysis

Another techniques to detect Android malware is based on dynamic analysis where the
malware could be detected during execution of the application. In dynamic analysis,
features are extracted by collecting data from DroidBox or an application sandbox during
the execution of the applications and utilized the features like system calls, network
connection, memory usage, power utilization and intent call for malware detection. There
are various strategies suggested by researchers for dynamic analysis on malware detection
some of the recent work is discussed below.

Zhao et al. [40] have proposed a method, named AntiMalDroid which uses SVM
as a classification model and dynamically picked software behavior signature as input
features to train the model for malware detection. This approach achieves a detection
rate of 93.3%, 90%, and 90% for three types of malware such as Geinimi, DroidDream,
and Plankton respectively. The major limitation with this approach is the small data
sample and more time consumption.

Wu et al. [41] have applied SVM with the useful static and dynamic features extracted
from the logged data and obtained an accuracy of 86.1% with an F-score of 0.85. This
approach is comparatively inefficient with low accuracy, more time consumption, and
suffered from the problem of malware anti-emulation techniques.

Afonso et al. [42] have investigated various algorithms like Naive Bayes, Random
Forest, SVM, and J48 with system call sequence, and Android API call trace as features
and concluded that Random Forest obtains the best accuracy score of 96.66%. But
this method may fail to detect some malware that does not show their behavior in the
emulated environment.

Alzaylaee et al. [43] have evaluated the performance of malware detection on real
devices instead of emulators by utilizing the various algorithms like Naive Bayes, Random

24

Forest, SVM, PART and multilayer perceptron on the dynamically obtained features.
They have concluded that phone-based analysis, using the Random Forest classifier, shows
better results with F-measure of 0.926 and TPR of 93.1%. Although, this work reduces
the problem of malware anti-emulation but still, there is a requirement of an effective
solution based on an alternative set of dynamic features using large sample datasets.

Mahindru et al. [44] have extracted a set of 123 dynamic permissions from the 11000
apps and evaluates these features using several classifiers like Simple Logistic, Naive
Bayes, Decision Tree, and Random Forest. They have concluded that Simple Logistic is
a better performer with an accuracy rate of 99.7% but this approach suffered from the
problem of zero-day malware attacks as the sample size is very small.

Cai et al. [45] have used dynamic features based on method calls and intent-component
communication and observed an F1-score of 97.39% with a precision of 97.53% and recall
of 97.34% using Random Forest as the classifier.

Feng et al. [46] have applied the ensemble of multiple base classifiers like Linear SVM,
Decision Tree, Random Forest, Extremely Randomized Trees, and Boosted Trees with
dynamic behavior features like cryptographic operations, network operations, file oper-
ations, and system calls. The author has reported an accuracy of 98.18% with a true
positive rate of 98.20% and a false positive rate of 1.61%. Similar to the limitations of
dynamic analysis, this method also suffered from the malware ant-emulation and envi-
ronmental shortcomings.

Xiao et al. [47] have proposed a method that uses system call sequence as input
features with the LSTM network as a classifier and achieves an accuracy of 93.7% with a
precision of 91.3%, recall of 96.6% and low FPR of 9.3%. This method achieves a reliable
recall rate but lags in FPR value, as well as it is not much efficient as time and power
consumption is high.

Ni et al. [48] have suggested a real-time malicious activity detection system that tracks
API calls, permissions set and other real time features, such as device operations and
utilized these features to model SVM and Naive Bayes algorithms for malware detection
work.

DroidDolphin [49] has also used Support Vector Machine with features that were
dynamically acquired. These features are the information related to memory utilization,
network information, binder function information etc. Similarly, Enck et al. [50] simply
performs dynamic taint analysis to monitor the flow of sensitive and confidential data via
the third-party applications and detect any leakage of data to remote servers.

There are some other techniques known as hybrid analysis that leverages the approach
of static and dynamic analysis for feature extraction and model training. Lindorfer et
al. [51] have utilized SVM with RBF kernel and two linear classifiers with L1- and L2-
regularized Logistic Regression to perform hybrid analysis and obtained an accuracy of
99.76%, 99.85%, and 99.83% for respective classifiers. In the same way, Su et al. [52]
applied hybrid analysis to 1200 (900 benign and 300 infected) samples and evaluated
several classifiers like Naive Bayes, SVM, and KNN and concludes that SVM performs
better than the other classifiers with an accuracy of 97.4%. Similar to the limitations of
the static and dynamic analysis, these methods also suffered from the problem of code
obfuscation, malware anti-emulation, evasion, and high time consumption.

In recent time, application of machine learning and deep learning methods to Android
malware detection and categorization have become an active research field. This section
examines the related works of neural network and recurrent neural network for static
and dynamic analysis in the identification and classification of Android malware. In

25

the Android application there is a file named AndroidManifest.xml which defines all the
permissions and the API calls made by the application [53]. Along with this there are
various other approaches to collect the feature set like Isohara et al. [54] have devised
a mechanism for kernel based log collector to collect system calls and filters events and
claimed that the system calls are more effective with the experiments of Android malware
detection. These collected features can be possibly utilized in two ways for malware
detection :

• Extract the features such as permission sets, API calls, intent filters etc. and apply
classical machine learning techniques

• Convert the permission sets, API calls, Sensitive API, and Strings etc. into vector
using word embedding and apply deep learning methods

The second approach is also utilized by many researchers but due to limited mobile
computing power and limited battery backup these methods are not practically feasible.
Some of the work devised by researchers in the field of Android malware detection using
deep learning are as follows. Yuan et al. [55] has suggested a deep learning method for
Android malware detection by utilizing more than 200 features from 3 categories such as
permissions, Sensitive API and dynamic actions extracted from static and dynamic anal-
ysis and achieves an accuracy of 96%. Chen et al. [56] have proposed DroidVecDeep in
which they extract 240 features from 4 main static type feature such as permissions, ac-
tions, sensitive API, and strings and transform these features into vector using word2vec.
Further these vectors are modelled using a Deep Belief Networks which is a deep learning
methods and achieves a promising accuracy of 99.1%.

3.3 Android malware detection using low-privileged

monitorable features

Apart from malware detection work based on static and dynamic features extracted form
apps, researchers have discussed some new approaches to malware detection based on
low-privileged monitorable features. These methods mitigate the basic limitations of
static and dynamic analysis. Shabtai et al. [20] have utilized Logistic Regression, Naive
Bayes, and Decision Tree with various low-privileged monitorable features like CPU usage,
battery consumption, and the amount of data packets sent over the network. The results
of this method are not effective to a large extent because the models are trained on a small
dataset so it didn’t perform well for every malware family. Zheng et al. [57] have applied
various classical techniques like Naive Bayes, Decision Tree, Random Forest and modern
techniques like recurrent neural networks with long short-term memory (LSTM) on low-
privileged monitorable features [23] and conclude that Random Forest outperformed the
LSTM network. Wassermann et al. [22] have discussed the machine learning approach for
the malware detection and app identification using SherLock data [23] and concluded that
Decision Tree is the best performer with high accuracy. The downside of this experiment
is that the Decision Tree may show the overfitting of data. Memon et al. [21] have utilized
the SherLock data [23] with various machine learning models like Decision Tree, Random
Forest, Support Vector Machines, Gradient Boosting etc. on the features selected using
chi-square method. They claimed that Extended Gradient Boosting is the best performing
classifier with the accuracy of 90%. The same algorithm achieves a highest precision value

26

of 0.91 and highest recall value of 0.90. The Extended Gradient Boosted model also shows
the best F1-Score of 90.89% but this method has some limitations like it have utilized
only quarter 3 dataset, as well as FPR value achieved in this experiment is 9.2% which is
comparatively high. A brief overview of some of the work for Android malware detection
is given in table 3.1.

Paper Method
Features

Set
Algorithms Results

Zhu et al.
[35]

Static

-permissions
-senstive APIs
-system events

-permission-rate

Ensemble
Rotation

Forest

Acc is 88.2%
TPR is 88.4%

Xu et al.
[34]

Static
-extract features

from xml files
and bytecode

LSTM
(RNN)

Acc is 97.7%
FPR is 2.5%

Cai et al.
[45]

Dynamic

-method calls
-ICC intent

-app resources
-system calls

NB, DT,
RF, SVM,

KNN

RF is best.
TPR is 97.3%
Prc is 97.5%

Xiao et al.
[47]

Dynamic
-system call
sequences

LSTM
(RNN)

Acc is 93.7%
TPR is 96.6%
Prc is 91.3%

Zheng et al.
[57]

Dynamic
-T4 Probe

[23]
RF,

LSTM
RF is best.

Acc is 95.8%

Memon et al.
[21]

Dynamic
-T4 Probe

[23]

DT, KNN,
NB, GBT,
SVM, RF

GBT is best.
Acc is 90%

FPR is 9.2%

Proposed
Work

Dynamic
-T4 Probe

[23]

NB, DT,
KNN, RF
XGBoost

XGBoost is
best.

Acc is 93%
FNR is 6.9%
FPR is 6.5%

Table 3.1: Overview of some of the works for Android malware detection.

Note: NB=Naive Bayes; LR=Linear Regression; DT=Decision Tree; RF=Random
Forest; KNN=K-Nearest Neighbors; LSTM=Long Short Term Memory; RNN=Recurrent
Neural Network; GBT=Gradient Boosting Trees; SVM=Support Vector Machine;
Acc=Accuracy; Prc=Precision.

27

3.4 Limitation of Methods

Analysis Detection Limitations

Types Methods

Static

Signature Based Identifies malware from previously existing signatures

so that undiscovered malware can not be detected.

Permission Based May identify benign apps as suspicious because of very

minor differences in permission set, so have high FPR.

Dalvik Bytecode It require high computation power on the device thus

going to drain the battery and exhaust the memory.

Anamoly Based May categorize a benign apps as malicious if there are

some warning signs in a benign application, such as more

battery consumption, high traffic so high FPR.

Dynamic

Taint Analysis Requires high computation on the device so it takes a lot

of time for real time detection and make device slow.

Emulation Based Requires high utilization of memory and resources

Device start to hang.

Hybrid ML approach
Training costs is very high, FPR is high due to data set

problems, data set is very old and slow identification.

Table 3.2: Limitations of Related Work

28

Chapter 4

Methodology

This section describes the methodology of the experiment and discussed a novel approach
to Android malware detection using a significant smartphone data set composed of low-
privileged monitorable features. The experiment is performed to employ various machine
learning algorithms on the features obtained after the feature selection process and their
performance is evaluated using various metrics.

4.1 Environmental configuration

This experiment is performed using an Apache Spark cluster computing framework. The
Spark cluster was running on Elastic Map Reduce (EMR) platforms of Amazon Web
Services (AWS) and the data was stored in AWS Simple Storage Service (S3). The Spark
cluster is made of 12 nodes, out of which 11 nodes were arranged as slave nodes. Each
node is installed with PySpark and composed of 8GB RAM and Quad-core processor.

4.2 Dataset

The dataset [23], used in this work is provided by the University of Ben-Gurion, called
SherLock dataset. This significant smartphone data is generated from a continuing long-
term data collection experiment by providing Samsung Galaxy S5 to 50 volunteers. The
two Smartphone agents are involved in this data collection experiment: SherLock and
Moriarty.

• Sherlock: SherLock is a data collection agent which captures various device metrics
(such as battery usage, CPU usage and memory usage etc.) from a wide range of sensors
and applications at a high sampling rate.

• Moriarty: Moriarty perpetrates varied cyber attacks on the user and records its
activities in order to provide labels to SherLock dataset.

The primary objective of the dataset is to help safety professionals and research groups
to develop a innovative methods to detect malicious behavior in smartphones implicitly
in those devices where sensor data can be accessed without the privileges of the supe-
ruser(root).

The SherLock dataset is very distinct and unique as compared to existing public
datasets due to the following reasons:

29

1.Temporal Resolution: The SherLock data set contains low monitorable attributes
sampled at a higher frequency. In addition, the data from the motion sensor has 80-fold
temporal coverage over other public existing datasets.

2. The Collected Data: The SherLock dataset provides detail information of
device metrics like Linux level memory usage, CPU utilization, and scheduler details
from everyday running application. In addition, it also sampled a broader variety of
aggregated motion sensors data.

3. Explicit Labels: The SherLock dataset provides explicit labelling for every
type of malware attacks and captures the device metrics and labels for various malware
performing malicious activities.

Datset description

The SherLock dataset is organized into form of probe. A probe is a data table in which
multiple sensors sharing the same interval are grouped to collect the data. The data
set is decomposed into 15 different probes. Of the 15 probes, 8 are PULL probes which
captures sensor data in fixed time interval and 7 are PUSH probes which captures sensor
data as soon as the new information arrives.

PULL probes are those table which are sampled at regular frequency. For example
system metrics is collected in every 5 seconds and therefore recorded in T4 PULL probe.
The various PULL probes which provides different information are explained below.

• T0 probe : Contains Telephone, System and Hardware Information.

• T1 probe : Contains Location, Cell tower, Wi-fi and Bluetooth scan information.

• T2 probe : Contains Accelerometer, Gyroscope and Magnetic field information.

• T3 probe : Contains information about audio and light data.

• T4 probe : Contains CPU, memory, Network traffic, Io interrupts etc. information.

• App probe: Contains information like memory, CPU etc. for each running apps.

PUSH probes are those table which are sampled at the occurrence of specific events.
For example, as soon as a new SMS message arrived it was recorded by the SMS PUSH
probe instantly. There are various PUSH probes which provides different information are
explained below.

• App package : Contains information about installed, updated and removed apps.

• Broadcast : Contains information about Broadcast intent.

• Call log : Contains information about calls.

• Moriarty : Contains information about Malware actions and Malware sessions.

• SMS log : Contains information about SMS status.

• Screen status: Contains information about screen on/off.

• User present: Contains information about interaction of user with apps.

30

In this work we use the combination of hardware and software features to identify
the action of installed app being malicious or not. So the system specific data such as
CPU utilization, amount of data transmission over network as well as memory utilization
etc. are used to identify the behaviour of application. Considering this requirement, the
T4 probe is selected which provides system specific data and Moriarty probe is selected
which provides explicit label to T4 probe for the android malware detection work as well
as App probe is also selected to identify the data related to which applcation. Therefore
we select T4 probe, Apps probe and Moriarty probe for the malware detection work. The
three selected probes are described in more detail as follows:

Moriarty Probe : The Moriarty probe has been tracking the data of various malware
attacks carries out by Moriarty agent installed on devices. The record of each Moriarty
probe is a log of the action taken by the user’s malware application. The log includes
information of the action and session and it also contains other features such as the
malware version and the time-tamp. Moriarty probe can be used to provide the label
of the T4 probe and apps probe data. The malware application actually started either
in a benign session or in a malicious session. In benign session only benign actions are
performed but inside a malicious session malware can performed either malicious action
or benign action.

System Probe(T4) : The system probe or T4 probe monitor and collects global
device data in every five second. The recorded feature categories as CPU utilization,
battery utilization, memory utilization, network details, I/O interrupts and storage in-
formation etc. At a given moment, each record in T4 probe is a log of the user’s global
device data.

App Probe : The app probe tracked app data for each application installed on the
device at every fixed time interval. The only relevant data for this research is the malware
packages app data. Each record of the apps probe is a log of data at given time from the
user’s malware app.

File Name Description

T4
probe

Data is sampled and recorded at every 5 seconds. It contains CPU
utilization of each core and utilization of memory, virtual memory
and cache. It describe information about number of processes in
user mode, kernel mode, number of threads created, running and

blocked processes, and internal and external storage.
Moriarity

probe
This table is updated when clue is recorded by the malicious agent.

It describes behaviours, action details and type at specific timestamp.

App
probe

The app probe tracked app data for each application installed on the
device at every fixed time interval. Each record of the apps probe is

a log of data at given time from the installed apps.

Table 4.1: Files selected for use

31

Data Preparation

The experiment of ML-based malware detection schemes is performed on the large dataset
to get better performance. But due to the limited computing resources, the experiment
is conducted on the quarter 3 of 2016 dataset with a size of 35 GB. As already stated
system data is sampled in T4 probe and label of those records is present in Moriarty
probe. So labelled points were generated by joining the Moriarty and T4 data tables.
Only such T4 records were taken to join which has both benign and malicious data
collected during the Moriarty application session. To obtain the labeled data points, the
T4 probe and Moriarty probe are joined based on the closest timestamp for every user.
Further, to identify the app associated with every instance, the relational join is performed
between the T4-Moriarty probe (obtained in the previous step) and the Application probe
to include the application related information [23]. So the final dataset contains the
information about the behavior of each application with the captured system metrics.
In the next step, we perform the feature selection to obtain the most important features
used for training the classification model. The file selected for experiments had 34.23
million records after combining Moriarty and T4 to create labeled points. The statistics
of data shows a class imbalance and as malicious samples are very high as compared to
benign samples. To rectify this imbalance, equivalent positives and negatives data points
were chosen and dataset was splited in the ratio of 70:30, respectively for training and
testing the classification models.

4.3 Feature Selection

In this work, the mutual information gain method is used for selecting the features to train
the classification model. The mutual information I(X;Y) can quantify any kind of relation
between variables and if its value is large, it means two variables are closely related else
they are not closely related. The value of mutual information can not be negative, if its
value is zero it means two variables are independent of each other. Relative importance
of the top 15 features obtained using the mutual information gain method has shown in
Fig. 4.1. After analysing and performing the feature selection work, the top 40 significant
features from an initial set of 130 features are selected to train the classification model so
that it reduces the training time and complexity of the model. The methods used by our
system and the one presented by Memon et al. [21] are very similar. Their system uses
the features selected using the Chi-square method having a p-value > 0.05, whereas our
system uses the top 40 features selected using the mutual information gain method. The
results obtained in this work shows that the futures selected using the mutual information
gain method gives the better result for the Android malware detection on the SherLock
dataset.

4.4 Machine Learning Classifications

The most enticing machine learning strategies have been chosen based on the findings
of the work done on dynamic malware detection as discussed in section 3.2, various ma-
chine learning algorithms like Random Forest, Näıve Bayes and K-Nearest Neighbor have
showed the promising results in malware detection by maximising the (TPR) and min-
imising the low false flags (FPR and FNR). Furthermore, recent studies on the use of

32

Figure 4.1: Top 15 features obtained using Mutual Information Gain method

Extended Gradient Boosting for mobile malware identification has shown encouraging
results. Therefore, for the detection model, this thesis uses Naive Bayes (NB), K-Nearest
Neighbor (K-NN), Decision Tree (DT), Random Forest (RF), and Extended Gradient
Boosting (XGBoost) classifiers. Before selecting the classification model, the criteria of
the domain such as high-dimensional feature space, sparse data, performance and com-
puting constrains are analysed in detail. Since the performance of tree based algorithms
for binary classification problem over high dimensional feature spaces is very significant
and requires less computing power in real environment, so the selection of these algo-
rithms in this work is justified. The top 40 features obtained after the feature selection
process is used to train the models and their performance is investigated using the various
evaluation metrics. The selected models are trained on the filtered data obtained after
the pre-processing steps. The detection models aims to determine the class of applica-
tion either malicious or benign and the performance of these trained models are evaluated
using various evaluation metrics.

4.5 Evaluation Metrics

In order to evaluate the features obtained after the feature selection process, we apply
the five selected classification models in this experiment as stated earlier, and examines
their effectiveness using various performance metrics introduced earlier. The experiment

33

intends to improve the results of Memon et al. [21] and the results of the experiment, for
all five classifiers, are presented in chapter 5.

The goal of the research is to : (i)Analyze and compare the performance of employed
malware detection model; (ii)Analyze and identify the samples that are incorrectly clas-
sified in each model; (iii) Identify the reasons about samples incorrectly classified in one
process but classified correctly by another; and lastly (iv) Enquire about the method
employed for detection purpose is accurately separating the malicious and benign sample
or not. Since any approach has inherent drawbacks, the distinction between them is
not obvious from usual estimation. Therefore, for comparing the performance of all the
selected models various evaluation metrics are utilized.

In this assessment, Android malware is recognized as a positive instance and benign
application is recognized as a negative instance. Here, let the number of Android malware
that is correctly detected is denoted by TP (true positive); the number of Android mal-
ware that is not detected as malicious is denoted by FN (false negative); the number of
benign apps that are correctly detected is denoted by TN (true negative), and the num-
ber of benign apps that are detected as malicious is denoted by FP (false positive). The
effectiveness of the trained models is evaluated using various metrics, based on the con-
fusion matrix, such as true positive rate (TPR), false-positive rate (FPR), false-negative
rate (FNR), accuracy, precision, and F1-score. Along with the confusion matrix, ROC
curve and Precision-Recall cure is also utilized to analyze the detection performance and
precision-recall tradeoff respectively for the employed models.

34

Chapter 5

Results

In order to evaluate the features obtained after the feature selection process, we apply
the five selected classification models in this experiment as stated earlier, and examines
their effectiveness using various performance metrics introduced earlier. The experiment
intends to improve the results of Memon et al. [21] and performed using a balanced dataset
having 70% of data for training and 30% of data for testing the models. The results of the
experiment, for all five classifiers, are presented in Table 5.1. The percentage accuracy
achieved by all the five classifiers is presented in Fig. 5.1, which shows that the XGBoost
attains the highest classification accuracy of 93.25%, Random Forest attains the second-
highest accuracy of 92.19%, and the Decision Tree achieves the third-highest accuracy of
87.74%. The respective accuracy sore of KNN and Naive Bayes classifier is 84.22% and
70.79%. The methods used by our system and the one presented by Memon et al. [21]
are very similar. Their system uses the features selected using the Chi-square method
having a p-value > 0.05, whereas our system uses the top 40 features selected using the
mutual information gain method. We show that the futures selected using the mutual
information gain method gives the better result for the Android malware detection on
the SherLock dataset as the highest accuracy achieved by our system using the XGBoost
(Extreme Gradient Boosting) classifier is 93.25%, whereas the highest accuracy achieved
by Memon et al. [21] using Gradient Boosted Trees is 90.24%. Our methods show the
better result for the Random Forest also with an accuracy of 92.19% as compared to
the accuracy of 89.67% reported by the same classifier in Memon et al. [21]. However,
the Decision Tree used by Memon et al. [21] obtained better results in terms of accuracy
value 89.72% and FPR value 9.65% as compared to our approach having an accuracy
value 87.74% and FPR value 12.25% using the same algorithm. FPR and FNR denotes

Table 5.1: Comparison of the performance of classification algorithms

Model TPR FPR FNR Precision F1-Score Accuracy AUC
Naive Bayes 62.5% 21.3% 37.5% 73.65% 67.62% 70.79% 78.11%

KNN 83.65% 15.23% 16.34% 83.95% 83.80% 84.22% 91.48%
Decision Tree 87.74% 12.25% 12.25% 87.21% 87.47% 87.74% 87.72%

Random Forest 92.42% 8.01% 7.57% 91.65% 92.04% 92.19% 97.56%
XGBoost 93.02% 6.52% 7.0% 93.14% 93.08% 93.25% 97.87%

the total misclassified records but FPR is not considered as critical as FNR because the
latter directly indicates the undetected malware, whereas FPR indicates the benign apps
that have been detected as malicious. So a low value of FPR and FNR is desirable to
make our detection system more accurate and less time-consuming. Fig. 5.1 shows the

35

Figure 5.1: Measure of Accuracy, FNR, and FPR for all five classifiers

percentage value of FPR and FNR observed by all the classifiers. XGBoost has achieved
the lowest FPR and FNR values compared to other algorithms, which is 6.5% and 7%
respectively. The second-best performance is achieved by the Random Forest with an
FPR of 8% and an FNR of 7.6%. The FNR values achieved by the other classification
models as shown in Fig. 5.1 is 37.5%, 16.3%, and 12.3% respectively for Naive Bayes,
KNN, and Decision Tree classifier. Similarly, the FPR values achieved by the other
classification models are also shown in Fig. 5.1, which are 21.3%, 15.2%, and 12.2%
respectively for Naive Bayes, KNN, and Decision Tree. From the results shown in Table
5.1, we conclude that the XGBoost classifier outperforms the other classification models
in terms of the highest accuracy and the lowest FPR and FNR values, as it reduces
the risk of undetected malware and lowers the false notification of malware detection.
Comparing to Memon et al. [21], our approach shows a better performance in terms of
FPR also as the lowest FPR value achieved in our proposed work is 6.52% using XGBoost
classifier, whereas they achieved the lowest FPR of 9.2% using Gradient Boosted Trees.
The Random Forest in our approach also shows a better FPR value of 8% compared to
the FPR value of 10.16% achieved by the same algorithm in Memon et al. [21].

Further to assess and compare the detection performance of every selected classifier,
the ROC curve and AUC values are computed and presented in Fig. 5.2. The ROC
curves indicate that XGBoost and Random Forest have similar detection performance
with a high value of TPR at a low value of FPR. The AUC values of the Random Forest
and XGBoost classifier as shown in Fig. 5.2 are 97.6% and 97.9% respectively which
are almost equal and hence both approaches have a similar detection performance. The
detection performance of XGBoost shows a TPR of 0.93 at an FPR of 0.065 and Random
Forest shows a TPR of 0.92 at an FPR of 0.08. From Fig. 5.2, we conclude that the
XGBoost and Random Forest have better detection performance in terms of ROC-AUC
values compared to other classifiers. The performance of Random Forest is very effective
with this dataset due to two reasons [24]. First, the use of out-of-bag error as an estimate

36

Figure 5.2: ROC curves for all five classifiers

for generalizing the error improves its performance. Second, being an ensemble classifier
it prevents the overfitting of data as it yields the limited value of generalization error
even after adding more trees to Random Forest. On the other hand, the performance
of XGBoost is very effective, as it avoids the overfitting of data, reduces error rate, and
performs faster than other classifiers, due to regularization nature and parallel processing
implementation [25].

Model Precision Recall F1-Score
NB 0.69 0.79 0.73

KNN 0.84 0.85 0.85
DT 0.88 0.88 0.88
RF 0.93 0.92 0.92

XGB 0.93 0.93 0.93

Table 5.2: Results For Benign Applications

We performed label wise experimental studies to make sure that the classification
models work equally well in tracking both malicious and benign applications. Table 5.2
and Table 5.3 show that Naive Bayes has the lowest precision and recall value for both
benign and malicious applications whereas, the XGBoost and Random Forest classifier
has significant performance for both applications in terms of precision and recall value.
As evident from Table 5.2 and Table 5.3, XGBoost attains the highest precision and recall
value of 0.93 for both the malicious and benign classes whereas, Random Forest achieves
the second-highest precision and recall value of almost 0.92 for both the classes. So in
terms of the precision-recall trade-off for both classes, XGBoost performs slightly better
than the Random Forest as precision and recall values get closer to 1 implies data is
perfectly separable in two classes. Table 5.2 and Table 5.3 show that for both benign and
malicious classes, XGBoost has the highest F1-score of 0.93 and Random Forest has the

37

Model Precision Recall F1-Score
NB 0.74 0.62 0.68

KNN 0.84 0.84 0.84
DT 0.87 0.88 0.87
RF 0.92 0.92 0.92

XGB 0.93 0.93 0.93

Table 5.3: Results For Malicious Applications

second-highest F1-score of 0.92, which indicates that XGBoost has perfect precision and
recall value. From the above discussions, we conclude that the top two performers for
the detection of both malicious and benign applications are the XGBoost and Random
Forest classifier.

Figure 5.3: Precision-Recall curves for all five classifiers

To analyze the precision-recall tradeoff for all classification model, the Precision-Recall
curve is computed as shown in Fig. 5.3 for different thresholds. The AUC (area under
curve) value and F1 value for all classification models are also shown in the above Fig. 5.3
which shows that in term of precion and recall XGBoost is also the best performer with
an AUC value of 97.7% and F1 value of 93.1%. The second best performance is shown
by the Random Forest with AUC and F1 value of 97.4% and 92% respectively. Precision-
Recall tradeoff is a very important parameter to measure the effectiveness of model. High
precision value shows reduced false positive rate and high recall value shows reduced false
negative rate. So the AUC value closer to 1 corresponds to high precision and high recall
and thus reduces the error rate of the model. Hence XGBoost have minimum error rate
compared to other models.

38

Chapter 6

Conclusion and Future Work

In this work, we have investigated the performance of various classifiers like Naive Bayes,
KNN, Decision Tree, Random Forest, and XGBoost for Android malware detection using
low-privileged monitorable features. To train our model, we have used system-specific
features selected using the mutual information gain method from the T4 probe sampled
in the SherLock dataset. The results obtained in this work shows that the futures selected
using the mutual information gain method gives the better result for the Android malware
detection on the SherLock dataset. The findings of this research show that the XGBoost
and Random Forest are the top two performers with the respective accuracy of 93.25%
and 92.19%. XGBoost classifier is the most accurate in detecting the malware with
93% overall values of precision, recall, and accuracy. In terms of FNR and FPR values,
XGBoost also outperforms the other classifiers with respective values of 7.0% and 6.52%.
Naive Bayes, KNN, and Decision Tree are not that effective as their accuracy score is
70.79%, 84.22%, and 87.74% respectively. If we consider the ROC curves, the detection
performance of XGBoost is best with a TPR of 0.93 at an FPR of 0.065 and Random
Forest has the second-best detection rate with a TPR of 0.92 at an FPR of 0.08, which
indicates that XGBoost has the better classification power. So in this research, we employ
various machine learning techniques and conclude that XGBoost and Random Forest
classifiers are the top two performers for Android malware detection. After all there is
always some scope for the improvement in any work. In this work there is also a scope
of improving the results by utilizing the large amount of data. Along with this there is
also a scope of selecting the set of good features which helps in improving the detection
accuracy. Further, data pre-processing can help to achieve a better result by removing
the anomalous data.

39

Bibliography

[1] “The android software stack,” https://developer.android.com/guide/platform,
accessed: 2020-10-29.

[2] “K-nearest neighbors,” https://towardsdatascience.com/knn-k-nearest-neighbors-1
-a4707b24bd1d, accessed: 2020-10-29.

[3] “Classifying data with decision trees,” https://elf11.github.io/2018/07/01/python-
decision-trees-acm.html, accessed: 2020-10-29.

[4] “Random forests,” https://towardsdatascience.com/random-forests-and-decision-t
rees-from-scratch-in-python-3e4fa5ae4249, accessed: 2020-10-29.

[5] “Smartphone market share,” 2020, (Accessed : July 2020). [Online]. Available:
https://www.idc.com/promo/smartphone-market-share/o

[6] R. H. Niazi, J. A. Shamsi, T. Waseem, and M. M. Khan, “Signature-based detec-
tion of privilege-escalation attacks on android,” in 2015 conference on information
assurance and cyber security (CIACS). IEEE, 2015, pp. 44–49.

[7] J. Oberheide and C. Miller, “Dissecting the android bouncer,” SummerCon2012,
New York, vol. 95, p. 110, 2012.

[8] R. A. Botha, S. M. Furnell, and N. L. Clarke, “From desktop to mobile: Examining
the security experience,” Computers & Security, vol. 28, no. 3-4, pp. 130–137, 2009.

[9] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, “Evolution,
detection and analysis of malware for smart devices,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 2, pp. 961–987, 2013.

[10] A. K. Gahalaut and P. Khandnor, “Reverse engineering: an essence for software
re-engineering and program analysis,” International Journal of Engineering Science
and Technology, vol. 2, no. 06, pp. 2296–2303, 2010.

[11] C. Urcuqui-López and A. N. Cadavid, “Framework for malware analysis in android,”
Sistemas y Telemática, vol. 14, no. 37, pp. 45–56, 2016.

[12] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detec-
tion,” in Twenty-Third Annual Computer Security Applications Conference (ACSAC
2007). IEEE, 2007, pp. 421–430.

[13] A. Apvrille and R. Nigam, “Obfuscation in android malware, and how to fight back,”
Virus Bulletin, 2014.

40

[14] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolution of an-
droid malware and android analysis techniques,” ACM Computing Surveys (CSUR),
vol. 49, no. 4, pp. 1–41, 2017.

[15] “Droidbox: An android application sandbox for dynamic analysis.” [Online].
Available: https://github.com/pjlantz/droidbox

[16] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, “Morpheus: automatically generating
heuristics to detect android emulators,” in Proceedings of the 30th Annual Computer
Security Applications Conference, 2014, pp. 216–225.

[17] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,
“Rage against the virtual machine: hindering dynamic analysis of android malware,”
in Proceedings of the Seventh European Workshop on System Security, 2014, pp. 1–6.

[18] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation for
android: Are we there yet?(e),” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2015, pp. 429–440.

[19] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for an-
droid malware detection,” in 2011 seventh international conference on computational
intelligence and security. IEEE, 2011, pp. 1011–1015.

[20] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, andromaly: a behavioral
malware detectionframework for android devices. Journal of Intelligent Information
Systems, 38(1):161–190, 2012.

[21] L. U. Memon, N. Z. Bawany, and J. A. Shamsi, “A comparison of machine learning
techniques for android malware detection using apache spark,” Journal of Engineer-
ing Science and Technology, vol. 14, no. 3, pp. 1572–1586, 2019.

[22] S. Wassermann and P. Casas, “Bigmomal: Big data analytics for mobile malware
detection,” in Proceedings of the 2018 Workshop on Traffic Measurements for Cy-
bersecurity, 2018, pp. 33–39.

[23] Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, and Y. Elovici, “Sherlock vs moriarty:
A smartphone dataset for cybersecurity research”, in Proceedings of the 2016 ACM
workshop on Artificial intelligence and security, ACM, 2016.

[24] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, 2016, pp. 785–794.

[26] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, Analyzing inter-application com-
munication in android. InInternational conference on Mobile systems, applications,
and services, 2011.

[27] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, Profiledroid: Multi-layer profil-
ing of android applications. InInternational conference on Mobile computing and
networking, 2012.

41

[28] C. Guivarch and S. Hallegatte, “2c or not 2c?”SSRN Electronic Journal, 2012.

[29] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware in your pocket.” in
Ndss, vol. 14, 2014, pp. 23–26.

[30] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware detection
using ensemble learning,” IET Information Security, vol. 9, no. 6, pp. 313–320, 2015.

[31] M. Varsha, P. Vinod, and K. Dhanya, “Identification of malicious android app using
manifest and opcode features,” Journal of Computer Virology and Hacking Tech-
niques, vol. 13, no. 2, pp. 125–138, 2017.

[32] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa: detecting android
piggybacked apps through sensitive subgraph analysis,” IEEE Transactions on In-
formation Forensics and Security, vol. 12, no. 8, pp. 1772–1785, 2017.

[33] X. Wang, W. Wang, Y. He, J. Liu, Z. Han, and X. Zhang, “Characterizing android
apps’ behavior for effective detection of malapps at large scale,” Future generation
computer systems, vol. 75, pp. 30–45, 2017.

[34] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer android malware
detection system applying deep neural networks,” in 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2018, pp. 473–487.

[35] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng, “Droiddet:
effective and robust detection of android malware using static analysis along with
rotation forest model,” Neurocomputing, vol. 272, pp. 638–646, 2018.

[36] A. Sharma and S. K. Dash, “Mining API calls and permissions for Android malware
detection,” in Cryptology and Network Security, Cham, Switzerland:Springer Int,
2014.

[37] F. D. Cerbo, A. Girardello, F. Michahelles, and S. Voronkova, Detection of malicious
applications onandroid os. InComputational Forensics, 2011.

[38] H. Hao, V. Singh, and W. Du, On the effectiveness of api-level access control using
bytecode rewriting inandroid. InACM SIGSAC symposium on Information, com-
puter and communications security, 2013.

[39] Q. Li and X. Li, “Android malware detection based on static analysis of characteristic
tree,” in 2015 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery, 2015.

[40] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, Antimaldroid: An efficient svm-based mal-
ware detection frameworkfor android. InInformation Computing and Applications,
2011.

[41] W.-C. Wu and S.-H. Hung, “Droiddolphin: a dynamic android malware detection
framework using big data and machine learning,” in Proceedings of the 2014 Con-
ference on Research in Adaptive and Convergent Systems, 2014, pp. 247–252.

42

[42] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. de Geus,
“Identifying android malware using dynamically obtained features,” Journal of Com-
puter Virology and Hacking Techniques, vol. 11, no. 1, pp. 9–17, 2015.

[43] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real phone: Android
malware detection using machine learning,” in Proceedings of the 3rd ACM on In-
ternational Workshop on Security and Privacy Analytics, 2017, pp. 65–72.

[44] A. Mahindru and P. Singh, “Dynamic permissions based android malware detec-
tion using machine learning techniques,” in Proceedings of the 10th innovations in
software engineering conference, 2017, pp. 202–210.

[45] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android malware detec-
tion and categorization via app-level profiling,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 6, pp. 1455–1470, 2018.

[46] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware
detection system with ensemble learning,” IEEE Access, vol. 6, pp. 30 996–31 011,
2018.

[47] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android malware
detection based on system call sequences and lstm,” Multimedia Tools and Applica-
tions, vol. 78, no. 4, pp. 3979–3999, 2019.

[48] Z. Ni, M. Yang, Z. Ling, J. N. Wu, and J. Luo, Real-time detection of malicious
behavior in Android apps. Proc. Int. Conf. Adv, 2016.

[49] R. Riasat, “Machine learning approach for malware detection by using apks, 2017.

[50] W. Enck, P. Gilbert, and B. G., Chun. Cox, J. Jung, P. McDaniel, and A. Sheth.
Taintdroid: L. P, 2009.

[51] M. Lindorfer, M. Neugschwandtner, and C. Platzer, MARVIN: Efficient and com-
prehensive mobile app classification through static and dynamic analysis. Proc,
2015.

[52] M. Y. Su, J. Y. Chang, and K. T. Fung, Machine learning on merging static and
dynamic features to identify malicious mobile apps. Proc, 2017.

[53] R. A. Botha, S. M. Furnell, and N. L. Clarke, “From desktop to mobile: Examining
the security experience,” Computers Security.

[54] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for an-
droid malware detection.” IEEE Computer Society, 2011.

[55] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec,” Proceedings of the 2014 ACM
conference on SIGCOMM - SIGCOMM 14, 2014.

[56] T. Chen, Q. Mao, M. Lv, H. Cheng, and Y. Li, “Droidvecdeep: Android malware
detection based on word2vec and deep belief network.” TIIS, vol. 13, no. 4, pp.
2180–2197, 2019.

43

[57] Y. Zheng and S. Srinivasan, “Mobile app and malware classifications by mobile
usage with time dynamics,” in International Conference on Advanced Information
Networking and Applications. Springer, 2019, pp. 595–606.

44

